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Abstract—Mitral regurgitation is a common mitral valve
dysfunction which may lead to heart failure. Because of the
rapid aging of the population, conventional surgical repair
and replacement of the pathological valve are often unsuit-
able for about half of symptomatic patients, who are judged
high-risk. Transcatheter valve implantation could represent
an effective solution. However, currently available aortic
valve devices are inapt for the mitral position. This paper
presents the design, development and hydrodynamic assess-
ment of a novel bi-leaflet mitral valve suitable for tran-
scatheter implantation. The device consists of two leaflets
and a sealing component made from bovine pericardium,
supported by a self-expanding wireframe made from supere-
lastic NiTi alloy. A parametric design procedure based on
numerical simulations was implemented to identify design
parameters providing acceptable stress levels and maximum
coaptation area for the leaflets. The wireframe was designed
to host the leaflets and was optimised numerically to
minimise the stresses for crimping in an 8 mm sheath for
percutaneous delivery. Prototypes were built and their
hydrodynamic performances were tested on a cardiac pulse
duplicator, in compliance with the ISO5840-3:2013 standard.
The numerical results and hydrodynamic tests show the
feasibility of the device to be adopted as a transcatheter valve
implant for treating mitral regurgitation.

Keywords—Transcatheter mitral valve implantation (TMVI),

Heart valve development, Heart valve assessment, Mitral

valve, Bioprosthetic bi-leaflet valve.

INTRODUCTION

Mitral regurgitation is one of the major mitral valve
pathologies leading to heart failure.27 It is a result of

primary anatomical changes affecting the mitral valve
leaflets, or left ventricular remodelling which may lead
to dislocation of papillary muscles.15 Although mild
and moderate mitral regurgitation may be tolerated
and do not require surgical intervention, patients with
severe symptomatic mitral regurgitation have a very
low survival rate in absence of interventions40 which
restore the coaptation of the mitral valve leaflets,11 or
replace the mitral valve with a prosthetic device.30

While non-randomised reports suggest that repairing
techniques have significantly lower mortality rates,54

randomised studies indicate no significant difference in
the mortality rates3 between replacement and repair20

in ischemic related mitral regurgitation. Whenever
practicable, surgical repair remains the best option for
the treatment of degenerative mitral regurgitation.19,20

Nevertheless, in elderly patients surgical intervention is
often associated with comorbidities such as diabetes,
pulmonary disease, perioperative hemodialysis and low
ejection fraction, which increase considerably the risk
of operative mortality.5,49 As a result, only a small
portion of patients suffering from functional mitral
regurgitation and approximately half of those suffering
from degenerative mitral regurgitation currently un-
dergo surgery.7 Minimally invasive transcatheter
implantation can reduce the risks in these patients and
offer an alternative to surgical therapies for mitral
valve diseases.34

Transcatheter techniques to treat mitral regurgita-
tion can be classified as leaflet and chordae repair;
indirect annuloplasty; left ventricular remodelling; and
replacement.25 Leaflet and chordae repair techniques
can be effective and durable in a wide variety of
pathologies, even without annuloplasty in selected
patients.21,36 Indirect annuloplasty releases devices
which support remodelling of the annulus in the
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coronary sinus, improving leaflet coaptation. However
this procedure is associated with adverse cardiovascu-
lar events, such as myocardial infarction and coronary
sinus rupture,24,47 and data available on the short- and
long-term outcome are still limited.32,37 Left ventricu-
lar remodelling is applied to reduce a dilated left ven-
tricle diameter which may tether the mitral valve
leaflets.22 Despite the initial attempts demonstrated
benefits, this technique is not available commercially at
the moment.

Although these transcatheter techniques can suc-
cessfully reduce mitral regurgitation, a valve replace-
ment would allow to restore the unidirectional blood
flow in a wider patients’ anatomical selection. Tran-
scatheter mitral valve (TMV) replacements, which at-
tempt to conjugate the lessons from surgical mitral
valve interventions35,42 with the successful tran-
scatheter aortic valve (TAV) experience, are still in
developmental stages. A number of TMVs have been
proposed, and are at different stages of evalua-
tion.1,23,41 These are typically adapted from TAVs,41

and adopt the same three leaflets circular configura-
tion. Possible issues that may arise with these devices
include suboptimal placement in native mitral position,
due to the irregular non-circular shape of the mitral
annulus, and recurrence of paravalvular leakage.30

This is known to reduce the survival rates after TAV
replacement, and is a more critical problem for mitral
valve implants, where the implantation sizes and the
peak transvalvular pressures are higher.25

In this paper, a novel mitral valve device suitable for
transcatheter implantation, based on a bi-leaflet con-
figuration with D-shaped orifice, is presented. In par-
ticular, the development of the proposed valve, in
terms of design optimisation and in vivo hydrodynamic
assessment is described.

MATERIALS AND METHODS

Leaflet Design Optimisation and Manufacturing

Leaflets were designed to minimise structural and
functional failure. Structural failure typically occurs
due to excessive stresses, with the locations of struc-
tural failure in explanted bioprosthetic heart valves
often associated with the peak regions of maximum
principal stress.9 Design optimisation was performed
using parametrically-varied CAD models by means of
finite element analysis for both structural and func-
tional criteria.

Leaflets were designed to lie, in their unstressed
open configuration, on a ruled surface characterised by
a D-shaped orifice cross section with a ratio between
the antero-posterior and the inter-commissural diam-

eters equal to 3:4 (Fig. 1). Similarly to healthy native
mitral valve,58 leaflets were designed with a conical
shape, reducing their cross section linearly form the
inlet to the outlet. This solution was preferred to
minimise the risk of ventricular outflow tract
obstruction, by decreasing the tendency of the leaflets
to diverge from their design configuration, especially
when the valve is placed in annuli significantly smaller
than the nominal valve dimension. Also, shorter free
edges were observed to reduce the leaflets fluttering
during diastole, which is typically associated with
increased calcification, haemolysis, regurgitation and
early fatigue failure.6 A scale factor (SF), defined as the
ratio between the outlet (DV) and inlet (DA) intertrig-
onal dimensions of the device (Fig. 1a), was introduced
to quantify the leaflets conicity in the free unloaded
configuration. A set of five scale factors of 0.745, 0.798,
0.852, 0.906 and 0.960 were chosen for investigation,
with the smallest corresponding to a maximum
reduction of the D-shape cross sectional area from the
base to the edge of the leaflets equal to 60%. A
coaptation height parameter, CH, was defined, refer-
ring to the vertical distance from the arris between the
aortic and mural leaflets to the middle of the leaflets
free edge. This has the function to allow the adjust-
ment of the leaflets edge and avoid excess of redundant
material, which results in localised buckling, com-
monly associated with failure of pericardial leaflets.50

Five evenly spaced coaptation lengths were chosen for
investigation, from 0 to 30% of the leaflets height. The
combination of five scale factors and coaptation
lengths resulted in twenty-five incrementally different
bi-leaflet CAD models.

The leaflets were designed in their assembled con-
figuration as surfaces using 3D CAD software Rhi-
noceros 4.0 (Robert McNeel & Associates), using an
inter-trigonal dimension equal to 26 mm. Numerical
analyses of structural mechanics were performed using
an explicit solver in LS-DYNA (Livermore Software
Technology Corporation). The analysis of the twenty-
five initial designs provided coaptation area and peak
maximum principal stress data for hypertensive sys-
tolic loading conditions, i.e. when they are fully closed
and a peak of transmitral pressure equal to 200 mmHg
is applied.

Glutaraldehyde fixed bovine pericardium was se-
lected as material for the leaflets, due to its long clinical
use in bioprosthetic heart valves and favorable hemo-
dynamic performance.26 Calf pericardial sacs were
obtained from a local abattoir, and fixed in a 0.5%
solution of glutaraldehyde for 48 h, after removing the
fat and parietal pericardium by hand.26 Three sets of
leaflets were obtained from visually homogeneous
regions of the pericardial sac of thickness in the range
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of 400 lm ±10% (measured using a thickness gauge -
Mitutoyo Corporation, Tokyo, Japan). One dumbbell-
shaped sample of 4 mm width and 16 mm gauge length
was extracted from the unused portion of each patch,
using a die cutter.

Specimens were conditioned with uniaxial tensile
cycles from 0 to 6 N with 20 mm/min rate until sta-
bilisation, using a ZwickiLine testing machine (Zwick/
Roell, Germany) equipped with a media container
maintaining 40 �C, and used to determine the repre-
sentative mechanical properties for the used material.
The constitutive behaviour observed for the treated
pericardium was modeled in the numerical analyses
using a four parameters Ogden equation:

W ¼ l1
a1

ka11 þ ka12 þ ka13 � 3
� �

þ l2
a2

ka21 þ ka22 þ ka23 � 3
� �

ð1Þ

where the strain energy density W is expressed in terms
of the principal stretches k1, k2 and k3, and the four
material constants l1, l2, a1 and a2. The material
constants best fitting the average stress–strain curve
obtained from the experiments were: l1 = 7.6 9 1026;
l2 = 5.7 9 1024; a1 = a2 = 26.26 (R2 = 0.981). The
experimental data points and fitted curve are reported
in the graph in Fig. 1b.

The coaptation of the leaflets was modelled using a
frictionless master-slave contact condition.9 The effect
of the inertia of blood in reducing system oscillations
was reproduced by using a damping coefficient of

0.9965, consistent with what identified in previous
works based on similar simulations.9 Each leaflet was
discretised with approximately 1820 quadrilateral 2D
constant strain Belytschko-Lin-Tsay shell elements
with 5 points of integration across the thickness. The
leaflet thickness was set to 0.4 mm, approximating the
value selected for the patches used for the valve man-
ufacturing. To simulate leaflet closure, a uniformly
distributed opening pressure of 4 mmHg was initially
applied to the leaflets, starting from their unloaded
position, and then reverted and ramped to a closing
pressure of 115 mmHg. This corresponds to the typical
mean transmitral systolic pressure difference obtained
by testing the valve prototypes in the pulse duplicator,
for a cardiac output of 5 L/min, a frequency of 70
beats per minute (with 65% of diastolic time) and a
normotensive aortic pressure of 100 mmHg. A mini-
mum safety factor of 3, based on the strength reported
for glutaraldehyde fixed bovine pericardial tissue,4 was
accepted for the predicted peaks of stress.

Frame Design and Optimisation

The TMV frame is designed to match and support
the two leaflets along their constrained edge and pro-
vide their anchoring. Its structure is obtained from
super elastic NiTi wires of 0.6 mm diameter.

The valve anchoring to the host anatomy is pro-
vided by the counteracting action from a set of prox-
imal smoothly arched ribs, expanding into the atrium

(a) (b)

FIGURE 1. (a) Sketch of the leaflets design: CH represents the coaptation height, DV and DA are the dimensions used to define
scale factor (SF) in the design. (b) Experimental data points describing the constitutive behavior of the used pericardium, and fitted
curve with the adopted Ogden model.
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(portions 7 and 8 in Fig. 2a) and two petal-like struc-
tures protruding into the ventricle between the native
mitral leaflets (portions 3 and 4 in Fig. 2a). The por-
tion of the petals engaging with the anterior native
leaflets (portions 4 in Fig. 2a) are designed to keep this
in tension by expanding its anterioro-lateral and pos-
terior-medial parts12 laterally, in the attempt to reduce
its systolic motion without pushing it markedly in
subaortic position and minimise the risk of left ven-
tricular outflow tract obstruction.59

The distal margin of the ventricular structures in-
cludes distal loops (portions 1 and 2 in Fig. 2) which
act as torsion springs, reducing the levels of stress in
the crimped frame and dampening the load experi-
enced by the leaflets during the operating cycles. The
loops are also used to host control tethers which al-
low the valve recollapse into a delivery sheath by
adopting the same approach described in Rahmani
et al.45

3D solid models of the wireframe (Fig. 2) were
developed using NX CAD (Siemens PLM Software)
program. Each solid model was discretised with
approximately 110,000 tetrahedral elements of maxi-
mum edge size equal to 0.2 mm. The wireframe was
modeled as NiTi shape memory alloy by using an
austenitic Young’s modulus (EA) of 50 GPa, marten-
sitic Young’s modulus (EM) of 25 GPa, and 0.3 for the

Poisson’s ratio of both austenitic and martensitic (mA,
mM) phases.56 The transformation stresses of the NiTi
wire for the austenite start (ras,s), austenite finish
(ras,f), martensite start (rsa,s) and martensite finish
(rsa,f) were 380, 400, 250 and 220 MPa respectively.56

The sleeves were modeled as stainless steel by using a
Young’s modulus of 210 kN/mm2 and a Poisson’s ra-
tio of 0.3, and were connected to the wireframe by
applying stress free projected glued contact to their
surfaces. The relative motion between the TMV and
catheter during crimping was simulated by fixing the
displacement of the top of the loops.

The wireframe geometry was optimised to maintain
the maximum von Mises stress below the martensitic
yield stress, when crimped to 8 mm (24 French)
diameter. Simulations were performed using the FEA
software MSC.Marc/Mentat and an implicit solver
utilizing single-step Houbolt time integration algo-
rithm, by gradually reducing the diameter of a sur-
round cylindrical contact surface. Critical regions
subjected to the highest levels of stress during crimping
were identified in the initial geometry and optimised
iteratively, using the approach described in Burriesci
et al.10 For each portion indicated in Fig. 2, the length,
curvature and angle values were updated in each sim-
ulation in order to obtain a parameter set minimising
the crimping stress on the wireframe.

FIGURE 2. (a) Sketch of the valve wireframe; and (b) schematic representation of the implanted prosthetic valve.
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Valve Prototypes

Prototypes of the wireframe structure were manu-
factured by thermomechanical processing of nitinol
wires, mechanically joined at specific locations by
means of stainless steel crimping sleeves. The leaflets
and the sealing cuff made from bovine pericardium
were sutured to the inner portions of the frame
extensions (portions 5 and 6 in Fig. 2) using
polypropylene surgical sutures. The skirt, made from a
polyester mesh (Surgical Mesh PETKM2004, Textile
Development Associates, USA), was included to gently
distribute the anchoring force over the annulus (be-
tween portions 5, 6 and 7 in Fig. 2). The nominal valve
size of the prototypes, defined based on the inter-trig-
onal dimension of the designed leaflets, was equal to
26 mm. This is suitable for preclinical in vivo evalua-
tion in large animal models.

Hydrodynamic Tests

The hydrodynamic performances of the three valve
prototypes were assessed on a hydro-mechanical car-
diovascular pulse duplicator system (ViVitro Super-
pump SP3891, ViVitro, BC) (Fig. 3). The flow through
the heart valves is measured with two electromagnetic
flow probes and two Carolina Medical flow meters

(Carolina Medical Electronics, USA), and the pres-
sures in the aorta, left ventricle and left atrium are
acquired using Millar Mikro-Cath pressure transduc-
ers. The working fluid was buffers phosphate saline
solution at 37 �C. Hydrodynamic assessment of the
prototypes was performed at 70 bpm heart rate, 5 L/
min mean cardiac output and 100 mmHg mean aortic
pressure, in compliance with the ISO 5840-3:2013
standard. The pulse duplicator was operated to simu-
late systole/diastole ratio as 35/65 over a cardiac cycle
and a bileaflet mechanical heart valve Sorin Bicarbon
size 25 was used to represent the aortic valve. Silicone
models of the mitral annulus and native leaflets were
built, based on the geometry previously described in
Lau et al.33 with inter-trigonal diameters ranging from
21 to 25 mm, and used to house the test valves. This
dimensional range, at least one millimeter smaller than
the nominal size of the test valve, was selected to allow
some anchoring force and verify the valve securing and
hydrodynamic performance over a large anatomical
range.

Hydrodynamic performances of the prototypes were
assessed by calculating the effective orifice area (EOA),
regurgitant fraction and mean transmitral diastolic
pressure. The effective orifice area was estimated using
the Gorlin Equation (Eq. 2), as described in the ISO
5840.

(a) (b)

FIGURE 3. Experimental set-up for the hydrodynamic assessment of the proposed device: (a) pulse duplicator; (b) picture of the
valve prototype indicating the leaflets, the sealing cuff and the anchoring skirt (top); and picture of the device after positioning in
the valve holder (bottom).
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EOA ¼ Qmv;rms

51:6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dpmv=q

p ð2Þ

where, Qmv,rms represents the root mean square of the
flow rate through the mitral valve, Dpmv is the mean
positive differential pressure across the mitral valve
and q is the density of the circulating fluid. The
regurgitant fraction is calculated as the ratio of the
measured closing regurgitant volume (back flow during
valve closure) plus the leakage volume (leaking flow
after closure) and the forward flow volume during the
ventricular filling.

RESULTS

Seventeen of the twenty five bi-leaflet designs sim-
ulated numerically were functionally patent, and all
had an acceptable peak of maximum principal stress
below 5 MPa.61 Due to the need to ensure adequate
valve function for a wide range of possible expansion
sizes and shapes, the design providing maximum
coaptation area was selected (Fig. 4) and the wire-
frame was subsequently made to fit this.

The selected design, characterised by a coaptation
area of 1.8 cm2, met the peak maximum principal
stress design criteria, with an estimated peak value
below 5 MPa (3.51 MPa), located at the arris between

the leaflets. The resulting stress distributions for the
optimal geometry of the crimped wireframe are shown
in Fig. 5. The critical points of maximum stress during
crimping occurred around the sleeves. The highest
stress, as expected, occurred at the maximum collapse
diameter of 8 mm, and was 835 N/mm2. This remains
below the yield stress reported for martensite in
superelastic Nitinol, at the operating range of tem-
perature.46

The optimised wireframe geometry was closely
replicated physically by thermomechanical processing
of Nitinol wire, and mechanical crimping with stainless
steel sleeves. Comparison between the free and
crimped TMV wireframe geometries for the numerical
model and prototype are given in Fig. 6.

Elastic deformation of the wireframe in an 8 mm
diameter tube shows that the portions functioning as
springs (Fig. 2a: portions 3 and 4) and the portions
holding the mitral valve leaflets (Fig. 2a: portions 5
and 6) do not intersect with each other, this leaves
sufficient space for the leaflets and sealing cuff when
crimped. Additionally, the geometry of the crimped
wireframe was in good agreement with the numerical
prediction.

Diagrams of the effective orifice area, regurgitant
fraction and mean diastolic transmitral pressure dif-
ference for the prototypes in the different annulus sizes
are represented in Fig. 7. The estimated EOA

FIGURE 4. Maximum principal stress distribution for the optimal transcatheter mitral valve leaflets in their critical loading mode
when fully closed, peak value 3.51 N/mm2 at the arris between the leaflets.
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increased with the size of the host valve, with the mean
for the three prototypes raising from 1.26 to 1.70 cm2

when moving from the 21 to the 25 mm annulus. All
valves exceeded the effective orifice area required by
the ISO 5840-3:2013 standard, for the different
implantation sizes (larger than 1.05 cm2 and 1.25 cm2

for mitral annuluses of size 23 and 25 mm, respec-
tively).

Regurgitant fractions did not show a clear pattern
with the implantation size, and ranged from 8.2 to
17.8%. However, all prototypes met the minimum
performance requirements in the ISO5840-3:2013
standard (regurgitant flow fraction £20% for both 23
and 25 mm annuli—no specifications for smaller sizes).

The mean diastolic transmitral pressure difference
decreased in the larger annuluses and reached a max-
imum value of about 9 mmHg in the 21 mm annulus,
reducing to 5 mmHg in the 25 mm annulus.

A sequence of snapshot images of one of the pro-
totypes acquired during the forward mitral valve flow
for 23 mm implantation size with 29 fps frame rate are
shown in Fig. 8a. The valve leaflets fully opened at the
beginning of the left ventricular filling. The anterior
leaflet remained fully open during the forward mitral
valve flow while the posterior leaflet was fluttering.
Duration of the leaflet open phase was approximately
60% of the entire cardiac cycle.

The peak (systolic) transmitral pressure difference
was 125 mmHg, while the maximum diastolic opening
pressure was about 45 mmHg. Regurgitant flow was
observed over the ventricular systole, primarily due to
paravalvular leakage between the mitral annulus and
the device. The closing regurgitation (due to closure of
the mitral valve leaflets) was higher in the larger
annuluses. Anchoring was adequate for all tests, and
no valve migration was observed for any of the test
conditions. Typical pressure and flow rate diagrams
through the valve, obtained for one of the three pro-
totypes in an annulus of 23 mm over a cardiac cycle,
are provided in Fig. 8.

DISCUSSION

Currently, no device specifically designed for TMV
implantation has been approved for the European or

FIGURE 5. Stress distributions for the optimal geometry of the transcatheter mitral valve wireframe, crimped to different diameter
sizes.

FIGURE 6. The transcatheter mitral valve wireframe: (a) solid
model; (b) numerical model crimped in a 8 mm diameter
cylinder; (c) manufactured prototype; (d) prototype crimped in
a 8 mm diameter tube
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American market. However, a number of solutions
have been proposed, with many already at the stage of
clinical trial (these include the CardiAQ51,52 and For-
tis,2,8 Edwards Lifescience; the Tendyne,39 Ten-
dyne Holdings Inc., Roseville MN, USA; the Tiara,14

Neovasc, Richmond, Canada; the NaviGate, NaviGate
Cardiac Structures Inc., Lake Forest, CA, USA; and
the Intrepid, Medtronic, Dublin, Ireland).31 Despite
the reduced number of patients involved in the trials
and the large 30 days mortality rate, justified by the
compassionate ground of the implants, this early
experience has confirmed the potential benefit of the
treatment and the ability of transcatheter solutions to
successfully replace the mitral valve function.31 All
devices under investigation are based on three
occluding leaflet, replicating the configuration and
function of semilunar valves. These are supported by
self-expanding stents, obtained from laser-cut nitinol
tubes, mechanically deformed and thermoset.41 The
stents bulge or expand in a flange covered with a fabric
material, designed to apply pressure on the atrial in-
flow portion, and used to minimise paravalvular
leakage while counteracting the ventricular anchoring
force providing the valve securing. From a technical
point of view, a major distinction between the devices
currently under investigation is represented by the
method they use to generate the ventricular anchoring
force, which can be based on ventricular tethers (e.g.
Tendyne), native valve anchors (e.g. CardiAQ, Fortis,
Tiara and NaviGate) or dual stent structures with
barbs.38

The device presented in this paper introduces a
number novel concepts, providing new and alternative
features. Contrary to competing TMVs, the proposed
solution is based on two asymmetric flexible leaflets,
describing a D-shape cross section designed to better
conform to the irregular anatomy of the valve annulus

and minimise the disturbance to the sub-valvular
apparati. This allows to maximise the geometrical
orifice area of the prosthesis without interfering with
the aortic valve anatomy and function. The leaflets are
sutured onto a self-expanding frame, obtained from a
nitinol wire, thermo-mechanically formed and
mechanically crimped at five locations. This defines a
set of arched ribs expanding into the atrium and two
petal-like structures protruding into the ventricle
between the native mitral leaflets, whose counteracting
action generates the anchoring force, whilst limiting
the systolic motion of the native anterior leaflet and the
associated risk of left ventricular outflow tract
obstruction. The wireframe configuration results in
minimum metallic material, and relies on a skirt made
from polymeric mesh (allowing integration from the
host tissues), tensed between the atrial petals and the
leaflets, to gently distribute the contact pressure over
the annulus region. Paravalvular sealing is provided by
a pericardial cuff extending around the entire frame-
work of the valve, which inflates during systole as ef-
fect of the transvalvular closing pressure. The valve,
designed in the presented version for transapical
implantation, can be retrieved into the delivery system
after complete expansion, using a similar mechanism
to that described by the authors for a TAVI device.44

The structural numerical analyses, though inher-
ently limited in their ability to represent the physics
involved in heart valve leaflet closure, were adequate to
predict the systolic function of the leaflets. In partic-
ular, this approximation does not take into account the
interaction between the working fluid and the struc-
tural components, which determine the flow patterns
and the pressure differences acting under real physio-
logical conditions. Fluid structure interaction mod-
elling would be more accurate for the simulation of the
opening and closing leaflets dynamics. However, the

FIGURE 7. Hydrodynamic assessment results for the three tested prototypes (P1, P2, and P3; M represents the mean of the three
tests) in six different annulus sizes: (a) effective orifice area; (b) regurgitation fraction; and (c) mean transmitral pressure difference
during diastole. Minimum performance requirements for 23 and 25 mm, as per ISO 5840-3:2013, are indicated by the asterisk
symbol, with the arrows pointing the allowed region.
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peak of stress in the leaflets during the cardiac cycle is
essentially led by the closing transvalvular pressure
load,33 so that neglecting the local pressure variation

and fluid shear stresses due to blood flow can still yield
to sufficiently accurate results for the design evaluation
stage.10

FIGURE 8. Sequence of snapshot images of one of the tested prototypes during the forward mitral valve flow for 23 mm
implantation (a–o). The anterior and posterior leaflets are on the left and right side, respectively. For the test in the sequence are
also reported: (p) left ventricular, left atrial and aortic pressure signals (plv, pla and pao, respectively); (q) transmitral pressure
difference signal (Dpmv); and (r) flow rate signal through the TMV (Qmv)
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The valve wireframe optimisation was carried out
until obtaining an optimal geometry which has lower
stresses than NiTi yielding. Portions 5 and 6 in Fig. 2a
were imposed by the leaflets geometry and kept un-
changed for all wireframe models. The geometry of the
wireframe is relatively complex, and includes a number
of geometric parameters which needed to be optimised
to obtain a suitable design. Each section was iteratively
modified to minimise local stresses, resulting in a final
geometry which fits adequately into the host mitral
anatomy, maintaining acceptable levels of stress in the
crimped configuration. The finite element analyses of a
wireframe crimped to a diameter of 8 mm resulted in a
maximum stress less than 900 MPa, which corresponds
to a typical yield stress for Nitinol.46 The stress con-
centrations were predicted in the vicinity of the
crimping sleeves, with local maxima around 600 MPa.
Therefore, plastic deformation is not expected in the
crimped wireframe, and this was confirmed by loading
and unloading the physical prototype in an 8 mm
diameter tube multiple times, without observable
changes in shape. Besides, the presented version of the
wireframe is designed to be ideally implantable from
transapical route, which tolerates the use of larger
sheath profiles (up to 33 French, 11 mm), resulting in
further reduction of the stresses on the NiTi wire-
frame.60 Crimping of the TMV wireframe was simu-
lated by gradually shrinking a cylindrical contact
surface surrounding the prosthesis along its entire
length. In the current application, the valve distal loops
(Fig. 2a, portions 1 and 2) are engaged by a set of
tethers, used to pull the valve into the catheter from the
side at the outflow.45 Nevertheless, the resulting
geometry of the crimped wireframe in the numerical
simulations resulted visually accurate.

The valve design and prototypes were of a nominal
size equal to 26 mm, corresponding to the largest inter-
trigonal dimension of the prosthetic leaflets. This is
suitable for patient’s annuli with inter-trigonal diam-
eters equal or lower than 25 mm. Though this range is
smaller than the average size in adult humans, it is
more suitable for preclinical in vivo evaluation in ovine
models,43 which is expected to be one of the next
developmental steps. The prototypes were tested in
mock host annuli of inter-trigonal diameters ranging
from 21 to 25 mm. As expected, the diastolic trans-
mitral pressure difference raised nonlinearly as the
dimensions of the host annulus reduced, increasing
from about 5 mmHg for the 25 mm annulus, to about
9 mmHg for the 21 mm annulus. A high peak in the
initial diastolic transmitral pressure drop is measured
in the tests (up to 45 mmHg). This is often observed in
tests performed on hydro-mechanical pulse duplica-
tors,16,28,29,48,53,55 and could be due to the non-physi-
ological ventricular compliance, which may determine

steeper flow waves and higher pressure gradients
associated with early passive filling during ventricular
relaxation. The calculated EOA well reflected the
variation in the area of the implantation annulus,
varying proportionally. Regurgitant fraction did not
show a clear pattern associated with the implantation
size for the different prototypes, although the mean
value reduced progressively from 21 to 24 mm,
inverting the trend at 25 mm. The reduction with the
size may be associated with the different length of the
mock native leaflets, which were designed proportional
to the annulus size and, therefore, provided different
covering of the sealing cuff of the prosthetic valves. On
the other hand, the increased regurgitant fraction in
the 25 mm annulus may be justified by the presence of
gaps between the device and the mitral annulus.
Globally, the device met the hydrodynamic require-
ments requested for transcatheter mitral valves in the
standard ISO5840-3:2013, for all implantation sizes.
Direct comparison of the hydrodynamic performance
with competing solutions is not possible, as these are
not available in the market and no in vitro data
quantifying their diastolic and systolic efficiency have
been published. However, measured values of trans-
mitral diastolic pressure drops are consistent with
those reported for transcatheter mitral implantation of
off-label TAVI devices in failed mitral valve biopros-
theses or annuloplasty rings, and in severe calcific
mitral stenosis.13,18 Regurgitant fractions were inferior
to those previously measured on the same system for
commercially available TAVI devices.45 This is very
encouraging, in consideration of the fact that, for the
mitral position, closure is associated with higher
transvalvular pressure drop and longer durations with
respect to the cardiac cycle.

In terms of anchoring, no migration was observed
for any of the test configurations, covering host annuli
with inter-trigonal diameters between 21 and 25 mm.
However, it needs to be taken into account that the
mock host valves did not model the physiological
contraction, and cordae tendineae and papillary mus-
cles were absent. Ex vivo isolated beating heart or
pressurised animal heart platforms17,57 and acute in
animal trials could provide more reliable insights on
the fitting and performance of a transcatheter valve.44

These studies would also be essential to verify the
efficacy of the anchoring mechanism to avoid left
ventricular outflow tract obstruction by preventing the
systolic motion of the native anterior leaflet.

CONCLUSION

A novel TMV was developed, consisting of two
bovine pericardial leaflets designed to ensure proper
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functionality across a range of implantation configu-
rations and a sealing cuff, supported by a wireframe,
optimised to minimise stresses whilst crimped. The
device exceeded the minimum performance require-
ment from the international standards, thereby prov-
ing its feasibility as a mitral valve substitute to treat
mitral regurgitation. In vitro durability assessment of
the valve by means of accelerated cyclic tests is now
being conducted, with the aim of verifying that the
solution guarantees a survival equal or superior to the
requirement for flexible leaflets heart valves (200 9 106

cycles). The next steps in the development will include
in vivo preclinical evaluation by means of in animal
implants (possibly complemented by ex vivo studies),
to validate the design principles and the efficacy of the
device.

If these will confirm the predicted performance, the
proposed device could provide a viable alternative to
transcatheter repair techniques and, due to its geo-
metric similarity to the human mitral valve anatomy,
may result a more appropriate option compared to the
other TMVs in development.
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