
How Much Do Industry, Corporation, and Business
Matter, Really? A Meta-Analysis

Bart S. Vanneste
University College London, UCL School of Management, b.vanneste@ucl.ac.uk

May 12, 2017

Forthcoming in Strategy Science

Available at https://doi.org/10.1287/stsc.2017.0029

The academic field of strategy seeks to explain differences in firm performance. A consensus exists that

industry, corporate, and business effects together account for most performance differences, but there is

debate over how much each factor explains. Previous studies have used three different effect size measures:

sum of squares, variance, or standard deviation. These measures yield different results for a given sample,

which precludes direct comparison. Using simulation analysis, I show that the sum-of-squares measure is

sensitive to sample dimensions (e.g., the number of industries, the number of businesses per industry). Using

25 samples from 9 studies (N = 212,112), I find that this sensitivity is strong in practice: knowing only the

dimensions of a sample is sufficient to predict well the sum-of-squares measure. A meta-analysis is conducted

using the variance and standard deviation measures instead (18 samples from 16 studies, N = 225,183). With

the variance measure, the effect sizes are 0.08 for industry, 0.14 for corporate, and 0.36 for business; effect

sizes with the standard deviation measure are 0.28 for industry, 0.36 for corporate, and 0.59 for business.

Thus business effects have about twice the explanatory power of corporate effects, and corporate effects

explain somewhat more than do industry effects.
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1. Introduction

The academic field of strategy seeks to explain differences in firm performance (Rumelt et al. 1994,

Nag et al. 2007). Consider, for example, Procter & Gamble’s business of manufacturing diapers for

babies and Boeing’s business of building military aircraft for governments. Studies have found that

three factors typically account for most of the performance differences between such businesses

(Schmalensee 1985, Hansen and Wernerfelt 1989, Rumelt 1991, Roquebert et al. 1996, McGahan

and Porter 1997): the industry in which the business operates (here, baby care vs. defense industry);

the corporate parent, if any, to which the business belongs (e.g., Procter & Gamble vs. Boeing);

and the business itself (i.e., the specifics of each business). Although consensus exists that industry,

corporate, and business effects together explain most differences in performance, there is ongoing
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debate about how much each of these factors explains (Hough 2006, Misangyi et al. 2006, Bou and

Satorra 2010, Karniouchina et al. 2013, Stavropoulos et al. 2015, Zavosh and Dibiaggio 2015).

I argue that achieving consensus requires consistent measures to quantify the contribution

of industry, corporate, and business factors to firm performance. Studies have used three different

effect size measures: sum of squares, variance, or standard deviation. These various measures yield

different results for a given sample, which precludes the direct comparison of samples using different

measures. Whereas the variance and standard deviation measures are easy to convert from one

to the other, this is not the case for the sum-of-squares and variance measures—which are the

measures used most often.

I employ simulation analysis to show that the sum-of-squares measure is sensitive to sample

dimensions (e.g., the number of industries, the number of businesses per industry), which limits its

usefulness as effect size measure. For example, the industry sum-of-squares measure will be higher

with stronger industry effects or with more industry degrees of freedom. It follows that we obtain

a different sum of squares when changing the degrees of freedom (e.g. by picking a sample with

different dimensions) even when the strength of industry effects is held constant. Using 25 samples

from 9 empirical studies (N = 212,112), I find that this sensitivity is strong in practice: knowing

only the dimensions of a sample is sufficient to predict well the sum-of-squares measure.

To assess the explanatory power of industry, corporate, and business effects, I conduct a meta-

analysis using not the sum-of-squares measure of effect size but instead the variance and standard

deviation measures. Using 18 samples from 16 studies (N = 225,183), the variance findings are 0.08

for industry, 0.14 for corporate, and 0.36 for business effects; the standard deviation findings are

0.28 for industry, 0.36 for corporate, and 0.59 for business. Thus, business effects explain about

twice what industry and corporate effects do and corporate effects explain somewhat more than

do industry effects.

These results contribute in two ways to answering the question of how much of performance

differences is explained by each of these factors. First, the effect size for business is substantially

greater than for industry and corporate, but that difference depends on the measure employed.

For example, the average effect size for business is more than four times that of industry when

measured in variances but only twice as large when measured in standard deviations. Indeed, under

the standard deviation measure, industry and corporate effects together explain as least as much

as do business effects. The variance measure is based on squared distances, so differences between

factors are amplified (Brush and Bromiley 1997, Hunter and Schmidt 2004); taking the square root

of the standard deviation measure reduces that amplification. Thus the question of explanatory

power is as much a question about the strength of particular effects as it is about the effect size

measure itself.
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Second, corporate effects are somewhat greater than industry effects. This finding does not

depend on whether the variance or instead the standard deviation measure is used. Two reasons

may explain why this result has not previously been established in the literature. First of all, the

corporate effect is greater than the industry effect in most samples but not in all samples. It is

more difficult to separate signal from noise in a single sample than in a large set of samples, as

is employed here. In the second place, the industry factor has received more attention than the

corporate factor. All studies in the empirical literature include industry effects but several do not

include corporate effects. In the theoretical literature, most debate concerns the merits of adopting

an external (industry) perspective versus an internal (business) perspective rather than a corporate

perspective. Hence this finding reinforces the relevance of corporate effects for the understanding

of performance differences.

2. Measures
2.1. Background

The empirical approach to explaining firm performance amounts to describing at which level per-

formance differences occur. Here “performance” is usually measured as return on assets and less

frequently as return on sales, return on invested capital, or market share. The levels investigated

most often are industry, corporate parent, and business. An industry is the set of businesses that

sell similar goods or services. Similarity is often captured via an industry classification, such as

the Standard Industrial Classification (SIC) or its successor, the North American Industry Clas-

sification System (NAICS). Thus we can distinguish among the industries of rail transportation

(NAICS 4821), insurance carriers (NAICS 5241), and electric power generation, transmission and

distribution (NAICS 2211). A corporate parent is a legal entity that owns and operates one or more

businesses (Rumelt 1991).1 For example, Berkshire Hathaway owns and operates many businesses,

including a rail transportation business, an insurance business, and an electric power generation

business. The businesses of a corporate parent are demarcated such that each business operates

in one and only one industry. It follows that a business is interpreted from a market perspective

(i.e., as a business segment) and not from an organizational perspective (i.e., not as a business

unit) (McGahan and Porter 1997). Even if the operations of rail transportation and electric power

generation were organized in a single business unit, they would still count as two businesses for the

purposes of performance analysis. Insurance operations that are distributed between two business

units would still be considered a single business.

[[ INSERT FIGURE 1 ABOUT HERE ]]

1 Business ownership can be partial as in the case of business groups (e.g. Khanna and Rivkin 2001).
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Figure 1 gives examples of performance differences occurring at different levels. Consider

four businesses, each belonging to one of two corporate parents (ovals in the figure) and one of

two industries (triangles). Our aim is to characterize the occurrences of high-performing businesses

(gray squares) and low-performing businesses (white squares). Therefore, explaining “firm” per-

formance is equivalent to explaining the performance of businesses, which belong to corporate

parents and industries. Industry effects are such that performance differences occur between indus-

tries. In Example I, all high-performing businesses are in the industry on the figure’s left side

while all low-performing businesses are on the right-side industry. Corporate effects are such that

performance differences occur between corporate parents. So in Example II, all high-performing

businesses belong to the left-side corporate parent and the low-performing businesses to the right-

side corporate parent. Business effects are such that performance differences are related to the

specifics of the business. In Example III, the leftmost and rightmost businesses are high-performing

while those in the middle are low-performing. This pattern cannot be explained either by industry

or corporate effects because each corporate parent and each industry has both a low-performing

and a high-performing business.

These examples are simplifications. First of all, they are “pure” examples: in each case, a

single factor accounts fully for the pattern of performance differences. In reality, the three effects

co-occur; the result is complex performance patterns—especially when considering more than two

industries, two corporate parents, and four businesses. Second, these examples ignore time. If we

interpret Figure 1 as performance from a single year, then all the patterns may reflect nothing

more than randomness. Only if these performance differences persist over longer periods can we

meaningfully talk about industry, corporate, and business effects.

2.2. Basic Properties of Measures

Three different measures have been used to quantify the effect of year, industry, corporate, and

business effects on performance. The first measure is based on the sum of squares of these effects

(e.g., Goddard et al. 2009, Ma et al. 2013, Fitza 2014, Zacharias et al. 2015); the second on

their variances (e.g., Chan et al. 2010, Karniouchina et al. 2013), and the third on their standard

deviations (e.g., Brush and Bromiley 1997, Hough 2006). The sum-of-squares and variance measures

have been used most frequently and the standard deviation measure least frequently.

These measures are related but usually yield different outcomes, which precludes aggregation.

In general, a sum of squares is the sum of squared differences from a mean. A sum of squares divided

by the degrees of freedom gives the variance, and the square root of a variance is the standard

deviation. The sum of squares measure does not account for degrees of freedom. A larger sample

yields a higher sum of squares but not a higher variance or higher standard deviation. Formally,

we have:
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SS(x) =
n∑

i=1

(xi − x̄)2; (1)

V ar(x) =
SS(x)

n− 1
;

SD(x) =
√
V ar(x).

To describe industry, corporate, and business effects, we can write the performance (pjkt) of

a business in corporation k, industry j, and year t in line with Rumelt (1991) as

pjkt =m+Yt + Ij +Ck +Bjk + ejkt. (2)

Here m is a constant (it signifies the mean performance of all businesses across all years), Yt is

the year effect for year t (i.e., the performance difference in year t relative to the mean), Ij is the

industry effect for industry j (i.e., the performance difference in industry j relative to the mean),

Ck is the corporate effect for corporation k (i.e., the performance difference of corporation k relative

to the mean), Bjk is the business effect for a business in corporation k and industry j (i.e., the

performance difference between that business relative to the mean), and ejkt is an error term. For

simplicity, the model does not include interaction effects (in addition to the business effect, which

can be viewed as an interaction between the industry and corporate effects).

For industry, corporate, and business effects, calculation of the three measures is the same

when transforming variance to standard deviation (the square root) but differs when transforming

the sum of squares to variance (i.e., dividing the industry sum of squares by its degrees of freedom

does not yield the industry variance). However, the general intuition holds. The sum of squares

measure is sensitive to sample dimensions, e.g., the number of businesses per industry, and the

variance and standard deviation are not (or much less so).

2.2.1. Measure 1: Sum of Squares. The total sum of squares (SST ) is the sum of squared

differences from the performance mean. The goal with this approach is to allocate the total sum

of squares among the sum of squares of the effects: year, industry, corporate, and business. For

example, the sum of squares industry (SSI) is that part of the total sum of squares arising from

performance differences between industries, and the sum of squares business (SSB) is the part

arising from performance differences between businesses. For comparison, effect sizes are expressed

as a proportion of the total sum of squares: SSI/SST and SSB/SST . These ratios correspond to

a regression’s R2 values that are due to (respectively) industry and business effects.
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The sum-of-squares effect size measure depends not only on the strength of the effects but also

on the sample dimensions (e.g., the number of industries, the number of businesses per industry).

Even if the sum of squares business is greater than the sum of squares industry, we cannot then say

that business is more important than industry because the difference could be due to the sample’s

dimensions and not to any difference in the relative strength of their effects. This property limits

the measure’s usefulness for aggregating results across samples, which is the goal here.

I illustrate the influence of sample dimensions with a simulation.2 For simplicity (but without

loss of generality), I focus on industry and business effects and ignore corporate and year effects.

Let the performance (pjlt) of business l in industry j and year t be written as

pjlt =m+ Ij +Bjl + ejlt. (3)

By construction, industry effects Ij and business effects Bjl are equally important in deter-

mining performance: both are normally distributed with mean 0 and standard deviation 1. The

error (ejlt) has the same distribution. The overall mean (m) is 0. The range of sample dimensions

matches that of the studies included in the meta-analysis: the number of industries ranges from 5

to 2,375 and the number of businesses per industry from 2 to 167. The number of years is fixed

at 8, which is the median of all the studies considered.

Most researchers use ANOVA for the sum-of-squares measure; I shall do likewise. For a

given combination of parameters, each industry has the same number of businesses. The result

is a balanced design (i.e., an equal number of observations per business and an equal number of

businesses per industry). The sum of squares can therefore be calculated directly from the data

without the need for regression analysis (which would give the exact same results but takes much

longer to calculate) (Searle 1971).3 For the sum-of-squares formulas, see column SS of Table 1 (or

Kutner et al. 2005, 1096–99).

[[ INSERT TABLE 1 ABOUT HERE ]]

Figure 2 plots the explained sum of squares for industry and for business (SSI/SST and

SSB/SST ). Each data point represents the average of 1,000 randomly generated samples. In the

figure’s left panel, the number of business per industry is fixed at the studies’ median (10); in the

right panel, the number of industries is fixed at the studies’ median (69). These results illustrate

two points. First, the explained sum of squares for industry and business effects depends on the

2 The R code of the simulation is provided in an online appendix.

3 When taking into account that business is nested within industry, their respective order of entry in a regression is
irrelevant because the data are balanced. Thus the sequential method (e.g., industry first and then business: SS(I)
and SS(B|I)) and the partial method (i.e, industry with business already included and next business with industry
already included: SS(I|B) and SS(B|I)) yield the same sum of squares and R2 as in a regression.
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sample dimensions. Second, despite the equal importance (by design) of industry and business

effects, their sums of squares differ for most parameter combinations.

[[ INSERT FIGURE 2 ABOUT HERE ]]

The right panel of Figure 2 shows that, with two businesses per industry, business effects

explain only about 19% of performance while industry effects explain 51%. Yet with 167 businesses

per industry, the situation is reversed: business effects explain more than do industry effects (38%

vs. 33%). The only difference in these two cases is the number of business effects, not their size. In

the left panel, if there are five industries then industry effects explain about 29% of performance

while business effects explain 38%. Yet for a higher number of industries, industry effects explain

more than business effects: when there are 100 industries, the respective percentages are 37%

and 34%. The only difference is that the sample size has increased. So if the sum of squares is taken

as an indicator of importance for performance, then one could mistakenly conclude that industry

matters less than business if few industries are sampled, and more if many are sampled.

This problem is not resolved by using adjusted R2, which penalizes the addition of more

variables, instead of R2 (cf., Brush et al. 1999). I calculate the adjusted R2 by adjusting the sum

of squares with the appropriate degrees of freedom (see Figure 3). The derived values for adjusted

R2 are somewhat lower than those derived for R2 (because of the penalty just described), but they

lead to the same conclusion: notwithstanding equal industry and business effects, their adjusted

sum of squares differ markedly for most parameter settings and are sensitive to sample dimensions.

[[ INSERT FIGURE 3 ABOUT HERE ]]

The problem arises as follows. Changing the degrees of freedom (e.g. the number of industries)

will naturally lead to a change in the sum of squares (e.g. SSI), simply because a different number

of squares need to be summed, see Table 1. At the same time, the total sum of squares (SST ) will

change, but not in the same magnitude. Hence, the ratio of the two will change (SSI/SST ).4 As

I will show next, this problem is much diminished (or entirely absent) for ratios of variances or

standard deviations.

2.2.2. Measure 2: Variance. The total variance is the variance in performance. The goal

here is to allocate it among the variances of the effects: year, industry, corporate, and business. For

purposes of comparison, the effect size is given as a proportion of the total variance—for example,

σ2
I/σ

2
p for industry or σ2

B/σ
2
p for business. Unlike the sum-of-squares measure, the variance measure

is not (or is only weakly) dependent on sample dimensions.

4 The ANOVA literature emphasizes that the inclusion or exclusion of factors in a research design changes the
denominator but not the numerator (Kennedy 1970, Cohen 1973). This problem is not unique to a ratio of the sum of
squares; it occurs also for a ratio of variances or of standard deviations (Olejnik and Algina 2003, Fritz et al. 2012).
However, the issue at hand here is not the inclusion or exclusion of factors (e.g, industry or business) but how many
effects are included per factor (e.g., the number of industries or the number of businesses).
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To illustrate this difference, I calculate the variance measure for the previously simulated

data (which, by design, had equally strong industry and business effects). Using the simplified

performance equation (3), which includes industry and business effects but not year and corporate

effects, we can write (see e.g., Rumelt 1991)

σ2
p = σ2

I +σ2
B +σ2

e . (4)

Assuming independent effects, this expression decomposes the total variance (σ2
p) into the

variances of the effects (σ2
I for industry and σ2

B for business), and the variance of the error (σ2
e).

Following the extant literature, I use a random-effects assumption when calculating the variances

of the effects. Hence these are expressed as population variances (σ2
I and σ2

B) and not as sample

variances (s2I and s2B), which would apply with a fixed-effects assumption. However, the discussion

that follows holds for both random- and fixed-effects.

For the variance measure, most researchers use either variance component analysis (VCA)

or hierarchical linear modeling (HLM). The key difference between these methods is in how they

account for multi-level data and the relationships between levels (Hough 2006, Misangyi et al.

2006). This distinction is less relevant to the simplified model here, which includes only industry

and business effects. The data are nested (i.e., a business belongs to an industry) but not cross-

classified (i.e., a business does not belong to an industry and a corporation). Because of ease of

calculation, I use VCA to estimate the variances (Searle 1971). This procedure involves equating

the calculated sum of squares with their expected values and then solving the system of equations.5

[[ INSERT FIGURE 4 ABOUT HERE ]]

Figure 4 plots the average explained variance for industry and business (σ̂2
I/σ̂

2
p and σ̂2

B/σ̂
2
p);

each explains about a third of the variance in performance. The number of businesses has no effect

(left panel), but the number of industries has some effect when there are few industries (right

panel). This is because it is difficult to estimate precisely the variance of a factor when limited

levels are sampled (Kutner et al. 2005, Hox 2010).6 That difficulty has been referred to as the

problem of “data sparseness” (for further discussion, see Stavropoulos et al. 2015). Note that this

problem arises only for a small number of levels and appears to be modest in size compared to

5 The expected values for a sum of squares is the degrees of freedom (column df of Table 1) multiplied by the expected
mean square (column E[MS]—Random).

6 The precision of the estimates (SD(σ̂2
I ) and SD(1/σ̂2

p)) matters beyond unbiasedness (E[σ̂2
I ] = σ2

I and E[1/σ̂2
p] =

1/σ2
p) because the effect size measure is a ratio of two random variables. Since Cov(X,Y ) = E[XY ] − E[X]E[Y ],

it follows that we can write E[σ̂2
I/σ̂

2
p] = Cor(σ̂2

I ,1/σ̂
2
p)SD(σ̂2

I )SD(1/σ̂2
p) + E[σ̂2

I ]E[1/σ̂2
p]. When estimate precision is

low, typically E[σ̂2
I/σ̂

2
p] 6= E[σ̂2

I ]/E[σ̂2
p]. Yet with high precision, E[σ̂2

I/σ̂
2
p] ≈ E[σ̂2

I ]/E[σ̂2
p] because (i) any correlation

(Cor(σ̂2
I ,1/σ̂

2
p)) matters less given that both SD(σ̂2

I ) and SD(1/σ̂2
p) are low; and (ii) by Jensen’s inequality E[1/σ̂2

p]
is closer to 1/E[σ̂2

p].
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the sum of squares. So provided the standard errors of the effects’ estimates are not too high, the

variance measure will be insensitive to sample dimensions.

[[ INSERT FIGURE 5 ABOUT HERE ]]

To compare the sum-of-squares and variance measures, Figure 5 shows the effect sizes for

industry relative to business (SSI/SSB and σ̂2
I/σ̂

2
B). The variance measure attributes roughly

equal strength to industry and business irrespective of the sample dimensions; in contrast, the

sum-of-squares measure’s ranking depends on the sample dimensions.

2.2.3. Measure 3: Standard Deviation. The standard deviation measure is the square

root of the variance measure. Expressed as a proportion of the performance standard deviation,

we have for example σI/σp for industry and σB/σp for business. Like the variance measure, the

standard deviation measure is relatively insensitive to sample dimensions.

The variance measure is based on squared distances, so differences in linear distances are

amplified (Brush and Bromiley 1997, Hunter and Schmidt 2004). The square root of the standard

deviation measure reduces that amplification.7 To illustrate this dynamic, I intentionally make the

business effects stronger than the industry effects. Thus I simulate data in which the business effects

have been multiplied by a factor that ranges from 1 to 3 while leaving industry effects unchanged.

The number of industries is fixed at the median (69), as is the number of businesses per industry

(10); the other settings remain unchanged. I use VCA to obtain the variances and then take the

square root to obtain the standard deviation.

[[ INSERT FIGURE 6 ABOUT HERE ]]

Figure 6 illustrates the effect size for business relative to industry using the variance and the

standard deviation measures (σ̂2
B/σ̂

2
I and σ̂B/σ̂I , respectively). Making the business effect 3 times

as strong yields an effect size—for business relative to industry—of 3 (with the standard deviation

measure) and more than 10 (with the variance measure). Thus the variance measure amplifies

differences between industry and business, making industry seem less important than it actually is.

These results reflect the variance measure’s use of squared distances. Because the sum-of-squares

measure is also based on squares, it likewise displays such amplification.

2.3. Methods

The literature has active discussions on fixed- vs. random-effects assumptions and on methods.

Here I describe how these discussions relate to the three measures.

The year, industry, corporate, and business effects can be described as random or fixed

(Searle 1971). If random, then the effects are seen as coming from a larger population. If fixed, then

7 Formally, if 0< a < b, then
√
b/
√
a < b/a because b/a=

√
b/
√
a×
√
b/
√
a and

√
b/
√
a > 1. Thus, if σ̂2

B > σ̂2
I , then

the ratio of standard deviations (σ̂B/σ̂I) is less than that of the ratio of variances (σ̂2
B/σ̂

2
I ).
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the effects are not seen as coming from a larger population. For instance, with a random-effects

assumption, we can describe industry effects in terms of the population standard deviation (σI)—

that is, how much all industries differ from each other. With a fixed-effects assumption, we can

describe such effects only in terms of the sample standard deviation (sI), or how much industries

in the sample differ from each other.8 Because it is not always obvious whether effects are fixed or

random (Searle 1971), some variance decomposition studies have used fixed effects (e.g., Mackey

2008, Goddard et al. 2009, Ma et al. 2013) and others have used random effects (e.g., Roquebert

et al. 1996, Chang and Singh 2000, Chan et al. 2010). These types have been used in separate

models (e.g., Schmalensee 1985, Rumelt 1991, McGahan and Porter 1997) and also in the same

model, as when some effects are fixed and others are random (i.e., mixed-effects) (e.g., Hough 2006,

Misangyi et al. 2006).

The three measures can be calculated for both fixed and random effects (see Table 2). The

sum-of-squares measure is the same for fixed and random effects. Sum of squares is a property

of a sample, hence the presence or absence of a larger population is irrelevant. The variance

and standard deviation measures differ for random versus fixed effects: for random effects, these

measures refer to the population variance and standard deviation; for fixed effects, they refer to

the sample variance and standard deviation.9

[[ INSERT TABLE 2 ABOUT HERE ]]

Even though the fixed versus random effects assumption does not limit one’s choice of mea-

sure, in practice, however, nearly all studies have used either a fixed-effects assumption with the

sum-of-squares measure or a random-effects (or mixed-effects) assumption with the variance and

standard deviation measures (an exception is Brush et al. 1999). Table 3 illustrates this mapping

between the effects assumption made and the measures used. It shows also the variety of methods

employed, including analysis of variance (ANOVA), hierarchical linear modeling (HLM), two-stage

least squares (2SLS), and variance components analysis (VCA). In the literature, debate has cen-

tered on the appropriateness of the fixed- versus random-effects assumption (columns in the table)

and on the merits of the different methods (cells in the table). For a discussion, see for example

Brush and Bromiley (1997), McGahan and Porter (2002, 2005), Ruefli and Wiggins (2003, 2005),

8 The random- versus fixed-effects assumption is not indicative of whether the effects are constant over time. Either
assumption can accommodate time-varying effects by including interactions between year effects and industry or
corporate effects. Neither is the random- versus fixed-effects assumption the same as random- versus fixed-effects
regressions, a distinction that indicates whether (unobserved) effects are assumed to be uncorrelated with the explana-
tory variables. In general, even if a random-effects assumption is made, one must still decide on the uncorrelatedness
of the effects and the explanatory variables (Wooldridge 2003, 473). In the case of ANOVA with a random-effects
assumption, the variance components can be estimated from a dummy variable regression (i.e., a fixed-effects regres-
sion); see Searle (1971, 443) or Method III in Henderson (1953).

9 Even in a fixed-effects model, the notation used for performance is σp—and not sp—because performance includes
the error, which is always seen as coming from a population distribution (i.e., a random “effect”).
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Hough (2006), and Bou and Satorra (2010). Here the discussion has focused on the measures (rows

in the tables).

[[ INSERT TABLE 3 ABOUT HERE ]]

3. Methods
3.1. Identification of Studies

Several steps were taken to identify studies for the meta-analysis. First, the Business Source Pre-

mier database and the Google Scholar database were searched using the following search terms:

industry effect, corporate effect, or business effect; or variance, decomposition, and at least one

of industry, corporate, and business. Second, the following journals were searched for any study

containing at least two of industry, corporate, or business (anywhere in the text): Academy of Man-

agement Journal, Administrative Science Quarterly, Global Strategy Journal, Journal of Business

Research, Journal of International Business Studies, Journal of Management, Journal of Manage-

ment Studies, Longe Range Planning, Management Science, Organization Science, Organization

Studies, Strategic Management Journal, Strategic Organization, and Strategy Science. Third, all

studies citing the foundational study of McGahan and Porter (1997) were searched for the word

“variance”. Fourth, a request for unpublished (and published) studies was sent to strategy scholars

via the BPS listserv. Fifth, all works cited in the identified studies were screened for their possible

relevance.

Most meta-analyses in the strategy literature use as inputs sample estimates that do not

depend on modeling choices (e.g., pairwise rather than partial correlations). Such model-free esti-

mates are unavailable here. To ensure comparability among studies, I selected those that employ

similar models (Hunter and Schmidt 2004). A study was included in the meta-analysis only if

it met the following conditions. First, it had to include industry, corporate, and business effects.

Second, it had to report an effect size in standard deviations, variances, or sums of squares (two

studies excluded). Third, the study had to describe a model with no more than one interaction

term involving year, industry, or corporate effects (in addition to the business effect) (three studies

excluded). Fourth, for VCA or HLM, the study had to report a model without covariances (two

studies excluded).

3.2. Selection of Analyses

Most studies report multiple analyses. For each study, only one is included per measure by sequen-

tially applying the following criteria. First, for overlapping samples, choose the largest. Hence

aggregate samples are chosen instead of subsamples of select industries, but also samples are

selected such that single-business corporations are included rather than excluded. The latter selec-

tion may affect the estimates, especially those of the corporate effects, per Bowman and Helfat
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(2001). I investigate the impact of including versus excluding single-business corporations in an

additional analysis. Second, for the model, choose one without additional interaction effect (if one

is provided). Third, for the method, choose HLM over VCA (only one study uses both). Note that

the more recent studies reporting variances or standard deviations use HLM.

3.3. Calculation of Effect Sizes

Few studies report standard deviations; moreover, in those that do report them, the standard

deviations of effects are relative to each other rather than to performance. So even for studies that

do report standard deviations, I rely on the reported variances to calculate the standard deviations

used here (by taking the square root). Sum-of-squares measures could conceivably be converted

into variances using Henderson’s (1953) “method III”, but studies do not report data sufficient for

conducting these calculations. For this reason, the sum-of-squares samples are reported separately.

The procedures just described yielded, for the standard deviation and variance measures, a

set of 16 studies reporting on 18 samples with a total of N = 225,183 business-year observations.

For the sum-of-squares measure, I obtain a (partially overlapping) set of 9 studies reporting on 25

samples with a total of N = 212,112 observations.

3.4. Non-independence

For a given sample, the effect sizes are not independent. For example, the business standard devi-

ation (as a ratio of the total standard deviation) depends on the corporate standard deviation.

To account for such non-independence, I treat the data as paired when testing for differences in

effect size. For example, I analyze the distribution of the business minus the corporate standard

deviation across samples.

Across samples, the effect sizes are unfortunately also not independent. This violates a key

assumption of a meta-analysis. The problem arises because many samples are from the United

States (12 of the 18 variance and standard deviation samples). Most of these US samples are

from the Compustat database, and some with overlapping time periods. To address this non-

independence, I provide an analysis restricted to the six non-US samples, which draw from different

databases and cover different regions and time periods. Because the results are broadly consistent,

I report all samples as the main analysis and the non-US samples as a supplementary analysis.

Note that the reported confidence intervals for the main analysis are merely indicative and are

probably too narrow.

4. Results

Table 4 lists the studies and samples. The three effect size measures are also reported; these

measures are standardized relative to performance (e.g., industry/performance). The samples are
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sorted by industry effect size for the variance or standard deviation or (absent those measures)

for the sum of squares. Three summary statistics are reported in the bottom rows. The sample

size–weighted mean puts more weight on larger samples, whereas the unweighted mean gives equal

weight to all samples; the median reduces the influence of any outliers.

[[ INSERT TABLE 4 ABOUT HERE ]]

4.1. Sum of Squares vs. Variance

4.1.1. Sensitivity to Sample Dimensions The sum-of-squares measure for actual samples

is sensitive to sample dimensions. In Figure 7 the sum-of-squares samples (1, 14, 19–41) are repre-

sented by dots.10 On the vertical axis is the explained sum of squares per factor; on the horizontal

axis are the degrees of freedom used per factor as a proportion of the total degrees of freedom. If

the degrees of freedom are not reported, then these are calculated for year, industry, and corporate

effects as (respectively) the number of years minus 1, the number of industries minus 1, and the

number of multi-business corporations minus 1. For business effects, missing degrees of freedom

are approximated as the number of businesses minus the number of industries minus the number

of multi-business corporations plus 1. In line with the simulations, more relative degrees of free-

dom corresponds to a higher explained sum of squares for a factor. For instance, a sample with

more relative industry degrees of freedom displays (on average) a greater industry effect whereas

a sample with more relative corporate degrees of freedom displays a greater corporate effect.

[[ INSERT FIGURE 7 ABOUT HERE ]]

The variance measure is much less sensitive to sample dimensions. The correlation between

relative degrees of freedom and effect sizes is weak for the variance but is strong for the sum-

of-squares measure (see the df columns in Table 5).11 The “data sparseness” problem mentioned

before with respect to the variance measure may manifest itself not with relative but rather with

absolute degrees of freedom (Stavropoulos et al. 2015). However, correlations between effect sizes

and the number of years, industries, multi-business corporations, and businesses (column nk) or

their natural logarithms (column ln(nk)) remain weak.

[[ INSERT TABLE 5 ABOUT HERE ]]

4.1.2. Effect Size In the two samples that provide both measures, the effect sizes of the sum-

of-squares measure differ noticeably from those of the variance measure (see Figure 8). In sample 1,

the corporate effect’s size as measured by sum of squares is more than twice its size as measured by

variance. In fact, using sums of squares shows corporate effects to be greater than industry effects

10 Due to incomplete information on sample dimensions, only 24 out of 25 samples are plotted for industry and
corporate effects and 23 samples for business effects.

11 These degrees of freedom are only approximations (Hodges and Sargent 2001).
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whereas the opposite result obtains when variances are used. In sample 14, the ranking of effects is

preserved; however, the industry effect size under sum of squares is more than double that under

variance while the corporate effect size is less when the sum-of-squares measure is used.

[[ INSERT FIGURE 8 ABOUT HERE ]]

At the aggregate level, differences are more subtle. The weighted mean for the sum of squares

measure is similar to that for the variance measure (see Table 6). This outcome is mainly driven by

samples 31 and 35, which together account for more than 60% of all sum-of-squares observations.

Looking instead at the unweighted mean, we see a notable difference for industry effects (0.127 vs.

0.090). This finding underscores the importance of using a common effect size measure.

4.2. Variance vs. Standard Deviation

For the variance and standard deviation samples (1–18) results are consistent across the three

summary statistics (weighted mean, unweighted mean, median). I will focus on the weighted mean

as an estimate of a population parameter (Hunter and Schmidt 2004).

The weighted mean for the variances are 0.01 for year, 0.08 for industry, 0.14 for corporate,

and 0.36 for business effects. The weighted mean for the standard deviations are 0.08 for year,

0.28 for industry, 0.36 for corporate, and 0.59 for business effects.12 Figure 9 and Table 6 report

meta-analytic results with bootstrapped 95% confidence intervals based on 10,000 replications. We

can informally interpret these variances and standard deviations as follows. An effect is defined

as a performance deviation from an overall mean, and the estimates give an indication of the

relative size of these performance deviations associated with each factor. On average, then, the

deviations associated with corporate are somewhat greater than those associated with industry, and

those associated with business are substantially greater. A formal interpretation would reference

equation (2), where performance is the sum of four factors (and an error term). The effect sizes

provide estimates of the distributions of these factors. For example, the industry effects can be seen

as coming from a distribution with mean 0 and a variance of 0.08 or a standard deviation of 0.28.

The year, corporate, and business effects each have their own mean 0 distribution with variance or

standard deviation as reported above.

[[ INSERT TABLE 6 ABOUT HERE ]]

[[ INSERT FIGURE 9 ABOUT HERE ]]

Figure 10 shows the differences for variances (left) and standard deviations (right) between

business and corporate effects, between corporate and industry effects, and between industry and

year effects (for numbers, see Table 6). The figure plots the weighted mean differences and the

12 Note that the standard deviations sum to more than 1. If σ2
p = σ2
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95% confidence intervals. No confidence interval overlaps with 0. Hence business effects are the

strongest, followed by corporate, then industry, and finally year effects.

[[ INSERT FIGURE 10 ABOUT HERE ]]

Thus, the results are qualitatively similar for variance and standard deviation. In line with

the simulation, the variance amplifies differences between factors. For the variance, the industry

effect is ×10.5 (standard deviation: ×3.5) the year effect, the corporate effect is ×1.6 (standard

deviation: ×1.3) the industry effect, and the business effect is ×2.6 (standard deviation: ×1.6) the

corporate effect.

4.3. Additional Analyses for Standard Deviation

To determine how much of the differences between samples are due to sampling error or differences

in underlying effects, we would need the standard errors of the sample estimates. These standard

errors are neither reported nor can they be derived from the data provided. So instead, I explore

the extent to which estimates differ by the following characteristics: sample, method, and model

(see Table 7 and Figure 11). I report here the results for standard deviation (the results for variance

are qualitatively similar).

[[ INSERT FIGURE 11 ABOUT HERE ]]

4.3.1. Sample: US vs. Non-US. In Panel A of Figure 11 (and in rows A1 and A2 of

Table 7), the samples are split by region, which refers to the corporate parent’s location. Most

samples include the international businesses; for example, US samples contain businesses that oper-

ate beyond US borders. The results are fairly similar, although industry, corporate, and business

effects are all somewhat lower in non-US than in US samples. The lack of substantial differences

reduces concerns about the possible non-independence of the US samples.

4.3.2. Sample: Manufacturers Only. Due to data limitations, Rumelt (1991) restricted

his analysis to manufacturing firms only. Nowadays, most data sets include non-manufacturing

firms, too. Out of 18 samples, 4 are manufacturing firms only. The results of these 4 samples are

similar to those of the other 14 (see Panel B of Figure 11 and rows B1 and B2 of Table 7).

4.3.3. Sample: Single- vs. Multi-business. For a single-business corporation, the busi-

ness and corporate effects are indistinguishable. Some studies exclude such corporations whereas

others include them. If they are included then, under VCA, an explicit assumption is needed.

The convention in this regard is to estimate a business effect and then set the corporate effect to

zero. This approach leads to underestimating the corporate effect and overestimating the business

effect (Bowman and Helfat 2001). Under HLM, no such explicit assumption is required because

the model can be estimated. It is difficult ex ante to state with high confidence whether or not
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the inclusion of single-business corporations leads to biases in the corporate or business effect.

Our current knowledge on biases is based on simulations, not on analytical results (e.g., Baldwin

et al. 2011). These simulations indicate that biases are small or nonexistent when the total number

of groups (i.e., single-business plus multi-business corporations) is high, even if the percentage of

“singletons” (single-business corporations) is high. The term “high” is 168 groups consisting of

57% singletons in Clarke and Wheaton (2007) and 500 groups consisting of 70% singletons in Bell

et al. (2008, 2010). One reason for cautious optimism then is that the HLM samples have many

corporations: even the smallest sample contains 136 corporations, and the second smallest has 998.

Because of the different approaches for VCA and HLM, the comparison here is within method (i.e.,

either VCA or HLM). In the next section, the comparison is between methods (i.e., VCA versus

HLM).

Only one VCA sample includes single-business corporations. Its corporate effect (sample 18:

0.084) is, as anticipated, the lowest across all samples; it is also substantially below the sample

with the second-lowest VCA sample (sample 8: 0.225). In contrast, only one HLM sample excludes

singletons. Its corporate effect (sample 17: 0.550) is the highest across all samples and substantially

above the second-highest HLM sample (sample 14: 0.449). The sample without single-business

corporations differs from the others not only in sample selection but also in model specification:

it views the corporate effect as consisting of a business-invariant and a business-variant compo-

nent. Hence from this single and atypical sample we cannot infer the impact of single business

corporations, when using HLM. Below, I provide an analysis for samples with the same model

specification.

4.3.4. Method: VCA vs. HLM. Among the 18 samples, 11 use VCA and 7 use HLM.

Panel C of Figure 11 (and rows C1 and C2 of Table 7) show that industry effects are somewhat

lower and that corporate effects are somewhat higher with the HLM than with the VCA method.

As a result, the difference between industry and corporate effects is more pronounced under HLM.

One distinction is that the VCA samples typically exclude single-business corporations whereas

these are included in the HLM samples. Yet in light of the simulation results mentioned previously,

this distinction may not actually explain the differences in effects. Furthermore, if HLM with single

business corporations overestimates the corporate effect then we should expect it to underestimate

the business effect; but the business effect is, if anything, greater under HLM than under VCA.

Thus further investigation comparing these two approaches is needed.

4.3.5. Model: Year, Industry, Corporate, and Business Effects Only. Model spec-

ifications differ across samples. In particular, half of the samples employ models with only year,

industry, corporate, and business effects (“YICB only”). Studies in the other half also include such
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terms as country, region, and/or an interaction effect between industry and year. Panel D of Fig-

ure 11 (and rows D1 and D2 of Table 7) show that the year, industry, and corporate effects differ

little across alternative model specifications. The business effect becomes weaker when additional

terms are included, which might be explained by the business effect picking up influences that are

fixed for a business but vary across industry or corporations. For example, a business may operate

in a single region even as its industry and corporation span multiple regions. In that case, omitting

region from the specification will lead to a higher business effect.

Thus, a consistent pattern emerges across alternative samples, methods, and models: the

industry effect is about half that of the business effect, and the corporate effect is slightly greater

than the industry effect.

5. Discussion

Based on Cohen’s f2 (1988) criteria yielding 0.02, 0.13, and 0.26 for (respectively) small, medium,

and large explained variance, we can classify the effect sizes for industry and corporate as “medium”

and for business as “large”.13 There are two striking aspects of the findings reported here. First,

business effects explain the most, but their explanatory power relative to industry and corporate

effects depends on whether the variance measure or instead the standard deviation measure is

used. Second, the effect size for corporate effects is somewhat greater than for industry effects; that

relation has not been well established in existing research, regardless of the measure used.

When analyzing industry, corporate, and business effects, one should bear three cautionary

statements in mind. First, the size of an effect does not equal its importance. A small performance

difference can be enough to spell the death (or survival) of a business, and a small difference

in return on assets may represent a big difference in absolute returns. Second, neither is size of

an effect the same as its influence (Bowman and Helfat 2001, McGahan and Porter 2005). Thus

an effect does not, in itself, reveal the managerial actions required to generate the performance

difference. For example, if a successful corporate parent consistently picks profitable industries to

enter, then this upside will be viewed as an industry effect rather than as a corporate effect. In

other words, the empirical approach identifies correlates, not causes, of performance.

Third, it follows that the observed effects are not causal effects. The literature on variance

decomposition defines an “effect” as a performance deviation from a mean (Rumelt 1991, McGahan

and Porter 1997)—for example, the mean performance of the businesses of one corporate parent

13 Cohens f2 is defined as the variance accounted for by a factor over the unaccounted variance (Cohen 1988: 410).
The effect sizes for (respectively) small, medium, and larger are 0.02, 0.15, and 0.35 (p. 413-414). Explained variance
is the variance accounted for by a factor over the total variance. Explained variance is then equivalent to f2/(1 + f2)
(p. 412), from which we obtain the following effect sizes for (respectively) small, medium, and large: 0.02, 0.13, and
0.26.
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relative to an overall mean performance. Both types of performances are observable. In contrast, a

causal effect is interpreted as the difference between factual and counterfactual performance (Rubin

1974, Morgan and Winship 2015); an example here is the performance of a business of a given

corporate parent relative to the performance of the same business if it were under different own-

ership. By definition, factual and counterfactual performances cannot be observed simultaneously.

So then what can be learned from this empirical approach? Most importantly, it offers a set of

stylized facts (McGahan and Porter 2005). If the field of strategy seeks to explain differences in

firm performance, then we need to identify those differences and the level at which they occur.

This study has the following implications for the choice of effect size measure. The variance

and standard devation should be favored over the sum of squares as an effects measure. “An effect-

size measure is a standardized index and estimates a parameter that is independent of sample

size” (Olejnik and Algina 2003, 434)—and, I would add, independent of sample dimensions. The

sum-of-squares measure does not satisfy this criterion. Chang and Singh (2000) show that the

level of industry aggregation (e.g., 3- versus 4-digit industry classification) matters. Yet here the

argument is that, for a given level of industry aggregation, the sum of squares is sensitive to

sample dimensions. As mentioned previously, sum-of-squares measures are well predicted using

only the number of years, industries, corporations, and businesses in the sample. The unfortunate

consequence is that relative effect sizes can differ between samples simply because of their different

dimensions. For this reason, the preference of standard deviation over sum of squares is clear.

The variance measure is (mostly) insensitive to sample dimensions, so the choice between

the standard deviation and variance measures is more subjective. One downside of the variance

measure is that large effects are amplified and small effects are compressed, which may reduce the

latter’s perceived importance. For example, the weighted average variance for year effects is less

than 0.01. Most scholars would be reluctant to claim that the year is irrelevant, but this is what

the variance measure seems to suggest. Similarly, the weighted average variance for industry is

only 0.08, which could create the false impression that industry does not matter. At a minimum,

it makes industry appear to matter less than it actually does. For instance, one of the most

popular strategy textbooks notes that “[i]t appears that industry environment is a relatively minor

determinant of a firm’s profitability. Studies of the sources of interfirm differences in profitability

have produced very different results [. . . ] but all acknowledge that industry factors account for a

minor part (less than 20%) of variation in return on assets among firms” (Grant 2016, 90). Although

the author then proceeds to defend industry analysis, it is unclear whether a defense is needed

(recall that, under Cohen’s criteria, a small effect is around 2% and a medium effect around 13%).

One upside of the variance measure is that it has a long tradition in the social sciences, which

facilitates comparability.



19

This study suggests two opportunities for further research in this area. First, it was found

that the ranking of the industry, corporate, and business effects was fairly constant across samples,

methods, and models (using the standard deviation measure). Even so, each factor separately

exhibited variability across studies. A subgroup analysis was used here to explore that variability.

Future studies can analyze the same question using individual samples and possibly subsamples.

The second research opportunity is that—given the robust findings on industry, corporate, and

business effects—it would be interesting to identify which industries, corporations, and business are

overperformers and which are underperformers. We could then move from a factor to an individual

effect (e.g., from the corporate factor to a specific corporation).
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Table 1 Sum of squares and variances for simulation
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Industry SSI =LT
∑

(p̄j.. − p̄...)
2 J − 1 MSI σ2

e +LTs2I σ
2
e +Tσ2

B +LTσ2
I

Business SSB = T
∑∑

(p̄jl. − p̄j..)
2 J(L− 1) MSB σ2

e +Ts2B σ2
e +Tσ2

B

Error SSE =
∑∑∑

(pjlt − p̄jl.)
2 JL(T − 1) MSE σ2

e σ2
e

Total SST =
∑∑∑

(pjlt − p̄...)
2 JLT − 1

Note: Dot indicates summation over that subscript; p̄ indicates the sample mean.

Table 2 Effect size measures for fixed and random effects

Effect size measure Performance Factor Effect size measure

based on Fixed Random Fixed Random

Sum of squares SST SSY SSY SSY/SST SSY/SST
SSI SSI SSI/SST SSI/SST
SSC SSC SSC/SST SSC/SST
SSB SSB SSB/SST SSB/SST

Variance σ2
p s2Y σ2

Y s2Y /σ
2
p σ2

Y /σ
2
p

s2I σ2
I s2I/σ

2
p σ2

I/σ
2
p

s2C σ2
C s2C/σ

2
p σ2

C/σ
2
p

s2B σ2
B s2B/σ

2
p σ2

B/σ
2
p

Standard deviation σp sY σY sY /σp σY /σp

sI σI sI/σp σI/σp

sC σC sC/σp σC/σp

sB σB sB/σp σB/σp

Table 3 Methods for fixed, mixed, and random effects

Effect size measure Factor

based on Fixed-effects Mixed-effects Random-effects

Sum of squares ANOVA partial — 2SLS
(Ma et al. 2013) (Brush et al. 1999)
ANOVA sequential
(Goddard et al. 2009)

Variance — HLM HLM
(Misangyi et al. 2006) (Karniouchina et al. 2013)

VCA
(Chan et al. 2010)

Standard deviation — HLM —
(Hough 2006)
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Table 4 Studies, samples, and their effect sizes

Sample Study Sample

ID Authors Source Country Period Performance

1 Becerra and Santaló (2003) Compustat USA 1991–1994 ROA
2 Chang and Singh (2000) Trinet USA 1981–1989 Market share
3 Brush et al. (1999) Compustat USA 1986–1995 ROA
4 Chan et al. (2010) METI Trend USA 1996–2005 ROS
5 Tarziján and Ramirez (2011) Economatica Chile 1998–2007 ROA
6 Chan et al. (2010) METI Trend China 1996–2005 ROS
7 Roquebert et al. (1996) Compustat USA 1985–1991 ROA
8 Brush et al. (1999) Compustat USA 1986–1995 ROA
9 Chang and Hong (2002) KIS Korea 1985–1996 ROIC

10 Misangyi et al. (2006) Compustat USA 1984–1999 ROA
11 Chaddad and Mondelli (2013) Compustat USA 1984–2006 ROA
12 Makino et al. (2004) METI Trend Japan 1996–2001 ROS
13 Iurkov and Sasson (2015) Compustat USA 1990–2013 ROA
14 Hough (2006) Compustat USA 1995–1999 ROA
15 Fukui and Ushijima (2011) Nikkei NEEDS Japan 1998–2003 ROA
16 Karniouchina et al. (2013) Compustat USA 1978–1994 ROA
17 Zavosh and Dibiaggio (2016) Compustat USA 2001–2009 ROA
18 Lieu and Chi (2006) TEJ Taiwan 1994–2000 ROS
19 Furman (2000) Worldscope Canada 1992–1996 ROA
20 Khanna and Rivkin (2001) Datastream Int. Philippines 1992-1997 ROA
21 Khanna and Rivkin (2001) Datastream Int. Israel 1992-1997 ROA
22 Khanna and Rivkin (2001) Datastream Int. Argentina 1990-1997 ROA
23 Furman (2000) Worldscope Australia 1992–1996 ROA
24 Khanna and Rivkin (2001) ICMD Indonesia 1993-1995 ROA
25 Khanna and Rivkin (2001) SVS Chile 1988-1996 ROA
26 Khanna and Rivkin (2001) Datastream Int. Mexico 1988-1997 ROA
27 Furman (2000) Worldscope USA 1992–1996 ROA
28 Khanna and Rivkin (2001) Datastream Int. Taiwan 1990-1997 ROA
29 Furman (2000) Worldscope UK 1992–1996 ROA
30 Rumelt (1991) FTC USA 1974–1977 ROA
31 McGahan and Porter (2002) Compustat USA 1982–1994 ROA
32 Khanna and Rivkin (2001) Datastream Int. Turkey 1988-1997 ROA
33 Khanna and Rivkin (2001) Datastream Int. Peru 1991-1997 ROA
34 Khanna and Rivkin (2001) KCH Korea 1991-1995 ROA
35 McGahan and Porter (1997) Compustat USA 1982–1994 ROA
36 Khanna and Rivkin (2001) Datastream Int. Brazil 1990-1997 ROA
37 Mackey (2008) Compustat USA 1992–2002 ROA
38 Khanna and Rivkin (2001) McGregor South Africa 1993-1996 ROA
39 Khanna and Rivkin (2001) Datastream Int. Thailand 1992-1997 ROA
40 Adner and Helfat (2003) FRS USA 1977–1997 ROA
41 Khanna and Rivkin (2001) CME India 1989-1995 ROA
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Continued
Sample

ID Measure Method Table Model Single Y ICB Manufacturing

Sum of Variance business only only
squares corporations

1 X ANOVA 2 No Yes No
1 X VCA 3 No No No
2 X VCA 3 4 No Yes Yes
3 X VCA 10 4 segments No Yes No
4 X VCA 1 1 No No No
5 X HLM 2 Yes Yes No
6 X VCA 1 2 No No No
7 X VCA 3 Average No No Yes
8 X VCA 10 3 segments No Yes No
9 X VCA 2 1 No No No

10 X HLM 3 Yes Yes No
11 X HLM 5 1 Yes Yes No
12 X VCA 2 1 No No No
13 X HLM 3 Yes No No
14 X ANOVA 2 ANOVA uncorrected Yes Yes No
14 X HLM 2 Multilevel Yes Yes No
15 X VCA 2 4 No Yes No
16 X HLM 1 Sample (1978–1994) Yes Yes Yes
17 X HLM 3 No No No
18 X VCA 3 Yes No Yes
19 X ANOVA 5A Canada Yes Yes No
20 X ANOVA 5 Panel B (R2) Yes Yes No
21 X ANOVA 5 Panel B (R2) Yes Yes No
22 X ANOVA 5 Panel B (R2) Yes Yes No
23 X ANOVA 5A Australia Yes Yes No
24 X ANOVA 5 Panel B (R2) Yes Yes No
25 X ANOVA 5 Panel B (R2) Yes Yes No
26 X ANOVA 5 Panel B (R2) Yes Yes No
27 X ANOVA 5A USA Yes Yes No
28 X ANOVA 5 Panel B (R2) Yes Yes No
29 X ANOVA 5A UK Yes Yes No
30 X ANOVA 2 Bottom (Sample B) No Yes Yes
31 X ANOVA 3 Yes Yes No
32 X ANOVA 5 Panel B (R2) Yes Yes No
33 X ANOVA 5 Panel B (R2) Yes Yes No
34 X ANOVA 5 Panel B (R2) Yes Yes No
35 X ANOVA 5 B Yes No No
36 X ANOVA 5 Panel B (R2) Yes Yes No
37 X ANOVA 4 Segment ROA Yes No No
38 X ANOVA 5 Panel B (R2) Yes Yes No
39 X ANOVA 5 Panel B (R2) Yes Yes No
40 X ANOVA 2 Downsizing last Yes Yes No
41 X ANOVA 5 Panel B (R2) Yes Yes No
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Continued
Sample Sum of squares Variance Standard deviation Note

ID n Y I C B Y I C B Y I C B

1 747 0.010 0.210 0.240 0.310 0.011 0.179 0.100 0.409 0.103 0.423 0.316 0.639 a
2 20,161 0.003 0.175 0.110 0.487 0.055 0.418 0.332 0.698
3 3,447 0.008 0.153 0.145 0.251 0.088 0.391 0.381 0.501 e, l
4 16,277 0.002 0.136 0.192 0.175 0.045 0.369 0.438 0.418
5 1,564 — 0.105 0.143 0.463 — 0.324 0.379 0.680 i
6 13,051 0.022 0.105 0.208 0.158 0.148 0.324 0.456 0.397
7 16,596 0.005 0.102 0.179 0.371 0.071 0.319 0.423 0.609 f
8 7,994 0.011 0.097 0.051 0.480 0.107 0.311 0.225 0.693 e, l
9 14,575 0.025 0.076 0.094 0.208 0.158 0.276 0.307 0.456 f

10 10,633 0.008 0.076 0.072 0.366 0.089 0.276 0.268 0.605
11 10,776 0.005 0.070 0.180 0.361 0.071 0.265 0.424 0.601
12 28,809 0.010 0.069 0.108 0.314 0.100 0.263 0.329 0.560
13 7,197 0.010 0.066 0.109 0.361 0.100 0.258 0.330 0.601
14 19,405 0.005 0.139 0.147 0.438 0.005 0.053 0.202 0.401 0.071 0.230 0.449 0.633 a, g, l
15 24,808 0.003 0.053 0.087 0.526 0.055 0.230 0.295 0.725
16 17,773 — 0.042 0.155 0.385 — 0.205 0.394 0.620 i
17 6,821 0.002 0.037 0.302 0.327 0.045 0.192 0.550 0.572 f, j
18 4,549 0.000 0.031 0.007 0.362 0.000 0.177 0.084 0.601 f, h
19 1,142 0.004 0.303 0.090 0.168 a
20 281 0.010 0.265 0.108 0.358 a
21 86 0.124 0.261 0.145 0.242 a
22 129 0.113 0.222 0.108 0.258 a
23 690 0.006 0.191 0.098 0.488 a
24 339 0.006 0.186 0.311 0.243 a
25 1,780 0.008 0.160 0.054 0.457 a
26 344 0.021 0.150 0.042 0.466 a
27 12,390 0.001 0.145 0.135 0.400 a
28 572 0.025 0.119 0.139 0.517 a
29 6,096 0.001 0.114 0.229 0.245 a
30 10,866 0.001 0.098 0.116 0.414 b, k
31 72,742 0.008 0.096 0.120 0.377 a
32 273 0.054 0.081 0.061 0.426 a
33 99 0.110 0.078 0.073 0.421 a
34 2,107 0.014 0.077 0.129 0.439 a
35 58,132 0.003 0.068 0.119 0.349 c, k
36 629 0.083 0.064 0.112 0.178 a
37 8,522 0.000 0.046 0.078 0.344 d
38 1,071 0.002 0.036 0.048 0.835 a
39 1,329 0.084 0.023 0.200 0.331 a
40 1,810 0.013 0.021 0.027 0.194 a
41 10,531 0.006 0.017 0.100 0.458 a

Mean (wei.) 0.006 0.091 0.122 0.377 0.008 0.084 0.138 0.358 0.082 0.283 0.363 0.590
Mean (unw.) 0.028 0.127 0.121 0.374 0.008 0.090 0.136 0.356 0.082 0.292 0.354 0.589
Median 0.008 0.114 0.112 0.349 0.007 0.076 0.126 0.364 0.079 0.276 0.356 0.603
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Note to Table 4 : (a) Sequential method: YICB (sum of squares). (b) Sequential method: YCIB

(sum of squares). (c) YCIB (sum of squares) listed because overlapping sample 31 is YICB

(sum of squares). (d) Partial method (sum of squares). (e) n not provided so estimated as # of

businesses × # of years × 0.623, which is the average of n/(# of businesses × # of years) for

the other samples to account for the fact that not all businesses are observed all years. (f) Model

with industry × year (variance). (g) Year sum of squares and variance reported as < 0.010; here,

the midpoint is taken. (h) Year variance estimated as −0.003; here, 0 is taken. (i) Year variance

accounted for but unreported. (j) Corporate variance is the sum of the business-invariant and

business-variant corporate effects. (k) Variances provided but only from a model with covariance.

(l) Standard deviation provided but not relative to performance.

Table 5 Sample dimensions correlate strongly with sum of squares but not with variance

SS V ar

Sample dimensions: d.f. d.f. nk ln(nk)

Year 0.84 0.16 0.18 0.23
Industry 0.60 0.10 0.11 −0.18
Corporate 0.80 0.12 −0.02 0.09
Business 0.51 0.43 0.34 0.11

Note: Correlations for standard deviation are within 0.06 of those reported for variance.

Table 6 Meta-analytic results for variance and standard deviation for k= 18 samples

Variance Standard deviation

Year 0.01 (0.00, 0.01) 0.08 (0.06, 0.10)
Industry 0.08 (0.06, 0.10) 0.28 (0.25, 0.31)
Corporate 0.14 (0.11, 0.16) 0.36 (0.33, 0.40)
Business 0.36 (0.30, 0.42) 0.59 (0.54, 0.65)
I −Y 0.08 (0.05, 0.10) 0.21 (0.16, 0.24)
C − I 0.05 (0.02, 0.09) 0.08 (0.03, 0.13)
B−C 0.22 (0.15, 0.30) 0.23 (0.15, 0.31)

Note: Weighted mean and 95% confidence interval indicated.
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Table 7 Meta-analytic results for standard deviation by subgroup

Samples Effect size

Year Industry Corporate Business

A1 Sample USA 0.07 (0.06, 0.08) 0.30 (0.25, 0.35) 0.39 (0.35, 0.43) 0.60 (0.56, 0.66)
A2 non-USA 0.10 (0.06, 0.13) 0.26 (0.23, 0.29) 0.32 (0.26, 0.38) 0.57 (0.46, 0.69)
B1 Sample Manuf. only 0.06 (0.04, 0.11) 0.31 (0.22, 0.42) 0.36 (0.31, 0.45) 0.64 (0.60, 0.68)
B2 Other 0.09 (0.07, 0.11) 0.27 (0.24, 0.30) 0.36 (0.31, 0.41) 0.57 (0.51, 0.64)
C1 Method VCA 0.08 (0.06, 0.11) 0.31 (0.26, 0.35) 0.34 (0.30, 0.39) 0.58 (0.51, 0.66)
C2 HLM 0.08 (0.06, 0.09) 0.24 (0.21, 0.26) 0.40 (0.35, 0.47) 0.61 (0.60, 0.63)
D1 Model Y ICB only 0.07 (0.05, 0.08) 0.28 (0.21, 0.32) 0.35 (0.30, 0.40) 0.66 (0.62, 0.70)
D2 Other 0.09 (0.06, 0.12) 0.29 (0.25, 0.32) 0.38 (0.32, 0.43) 0.52 (0.46, 0.58)

Difference in effect size

k N I −Y C − I B−C

A1 12 137,827 0.24 (0.19, 0.30) 0.09 (0.02, 0.17) 0.22 (0.14, 0.30)
A2 6 87,356 0.16 (0.15, 0.18) 0.06 (0.03, 0.10) 0.25 (0.11, 0.42)
B1 4 59,079 0.30 (0.23, 0.42) 0.05 (-0.07, 0.19) 0.28 (0.18, 0.36)
B2 14 166,104 0.19 (0.15, 0.21) 0.09 (0.04, 0.13) 0.21 (0.11, 0.31)
C1 11 151,014 0.22 (0.16, 0.27) 0.04 (0.00, 0.09) 0.24 (0.13, 0.35)
C2 7 74,169 0.17 (0.15, 0.18) 0.17 (0.10, 0.25) 0.21 (0.15, 0.27)
D1 9 116,561 0.22 (0.15, 0.27) 0.07 (-0.01, 0.16) 0.31 (0.23, 0.39)
D2 9 108,622 0.20 (0.14, 0.24) 0.09 (0.03, 0.13) 0.14 (0.06, 0.24)

Note: Weighted mean and 95% confidence interval indicated.
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Figure 1 Examples of industry, corporate, and business effects

I. Industry

effects:

II. Corporate

effects:

III. Business

effects:

: Corporate parent

: High-performing business

: Low-performing business

: Industry
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Figure 2 The industry and business explained sum of squares depend on sample dimensions
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Figure 3 The explained sum of squares depend on sample dimensions even with adjusted R2
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Figure 4 The industry and business explained variances are mostly insensitive to sample dimensions
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Figure 5 The variance measure attributes equal importance to industry and business but the sum of squares

measure does not
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Figure 6 The variance measure amplifies differences between business and industry
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Figure 7 Sample dimensions predict explained sum of squares
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Figure 8 Results for sum of squares and variance differ for the same sample
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Figure 9 Meta-analytic results with 95% CI for k= 18 samples
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Figure 10 Difference between factors for variance (left) and standard deviation (right) with 95% CI
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Figure 11 Meta-analytic results with 95% CI by subgroup

0.0

0.2

0.4

0.6

Year Ind. Corp. Bus.

A: USA

Yes (k = 12)

No (k = 6)

0.0

0.2

0.4

0.6

Year Ind. Corp. Bus.

B: Manufacturing only

Yes (k = 4)

No (k = 14)

0.0

0.2

0.4

0.6

Year Ind. Corp. Bus.

C: Method

VCA (k = 11)

HLM (k = 7)

0.0

0.2

0.4

0.6

Year Ind. Corp. Bus.

D: YICB only

Yes (k = 9)

No (k = 9)

E
ffe

ct
 s

iz
e 

(s
ta

nd
ar

d 
de

vi
at

io
n)


