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A B S T R A C T

Modern observational cosmology relies on statistical inference, which models measur-
able quantities (including their systematic and statistical uncertainties) as random vari-
ates, examples are model parameters (‘cosmological parameters’) to be estimated via
regression, as well as the observable data itself. In various contexts, these exhibit non-
Gaussian distribution properties, e. g., the Bayesian joint posterior distribution of cos-
mological parameters from different data sets, or the random fields affected by late-
time nonlinear structure formation like the convergence of weak gravitational lensing
or the galaxy density contrast. Gaussianisation provides us with a powerful toolbox to
model this non-Gaussian structure: a non-linear transformation from the original non-
Gaussian random variate to an auxiliary random variate with (approximately) Gaussian
distribution allows one to capture the full distribution structure in the first and second
moments of the auxiliary.
We consider parametric families of non-linear transformations, in particular Box-Cox
transformations and generalisations thereof. We develop a framework that allows us to
choose the optimally-Gaussianising transformation by optimising a loss function, and
propose methods to assess the quality of the optimal transform a posteriori.
First, we apply our maximum-likelihood framework to the posterior distribution of
Planck data, and demonstrate how to reproduce the contours of credible regions without
bias – our method significantly outperforms the current gold standard, kernel density
estimation. Next, we use Gaussianisation to compute the model evidence for a com-
bination of CFHTLenS and BOSS data, and compare to standard techniques. Third,
we find Gaussianising transformations for simulated weak lensing convergence maps.
This increases the information content accessible to two-point statistics (e. g.the power
spectrum) and potentially allows for rapid production of independent mock maps with
non-Gaussian correlation structure.
With these examples, we demonstrate how Gaussianisation expands our current in-
ference toolbox, and permits us to accurately extract information from non-Gaussian
contexts.
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Part I

I N T R O D U C T I O N



0
R O A D M A P

Dirk had a tremendous propensity for getting lost when driving. This was
largely because of his method of “Zen” navigation, which was simply to find
any car that looked as if it knew where it was going and follow it. The results
were more often surprising than successful, but he felt it was worth it for the
sake of the few occasions when it was both.

Douglas Adams
The Long Dark Tea-Time of the Soul

During most the 20th century, observational cosmology was dismissed as “the search
for two numbers” (Sandage, 1970), referring to the instantaneous expansion speed of
the Universe, and its instantaneous rate of change. This perception has radically altered
within the last twenty years, with the advent of large data sets from cosmic microwave
background experiments, large-scale galaxy surveys, radio interferometry and many
others. We now find ourselves facing the opposite challenge – rather than experiencing
a paucity of measurements, we now need to understand the statistical properties of data
sets of unprecedented volume, depth, and complexity, so that we may accurately extract
the information stored in them. Simultaneously, we have extended our scientific scope
and focus on increasingly more refined questions: about the nature of dark matter and
dark energy, the formation of the cosmic large-scale structures we observe today, and
the physical nature of inflation.
The modern information-theoretical foundation of inference treats observable quanti-
ties – cosmological parameters as well as data – as random variables within prob-
ability theory. The modelling of their distributions includes all uncertainties which
introduce scatter into their values, systematic biases as well as random noise. A common-
place model for random variates is the Gaussian distribution: it is purely characterised
through its location and its width, and arises naturally in many contexts. Therefore
it is often taken as a first assumption when modelling a random quantity; reporting
measured values of parameters as mean and error bar is testament to this. However, of-
ten this assumption is not valid, and a Gaussian model does not adequately describe the
observable in question – non-linear physics can be one reason of many. The results of this
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mis-modelling can lead to loss of information which is stored in the non-Gaussian higher
orders of the distribution, or even biases. We study the idea of Gaussianisation, to relax
the assumption of Gaussianity, and to respect the non-Gaussian correlation structure
of cosmological observables: mapping a non-Gaussian variable to an (approximately)
Gaussian one with a suitably chosen transformation, which should be one-to-one and
smooth. By recording the moments of this Gaussian distribution, we have found a model
for the original (untransformed) distribution that adequately respects its non-Gaussian
structure – and as long as our transformations have an analytic form, this automatically
gives us explicit expressions for this distribution. In cosmology, this can be employed to
two very different context in which probabilistic models with potentially non-Gaussian
features can be encountered: the estimation of cosmological model parameters, as well
as the observable data itself. Thus, Gaussianisation facilitates reporting a probability
distribution as the outcome of an experiment, and hands us a powerful toolbox which
we will present within this dissertation.
The thesis will proceed as follows: in Chapter 1 we will lay the foundations of mod-
ern cosmology, and the phenomena and data sets we will use. Chapter 2 introduces
the apparatus of Bayesian inference, which is the predominant school of thought for
cosmological data analysis. We specifically emphasize non-Gaussian distributions and
the tools currently available for their treatment. In Chapter 3 the main apparatus will
be introduced: how to find a Gaussianising transformation, how to assess its quality in
reproducing contours, and which parametric transformation families we employ. This
is applied to cosmological parameters and their joint posterior distribution from Planck
data; we demonstrate its performance on various shapes of non-Gaussianity. Chapter 4

is explicitly demonstrating of the usefulness of Gaussianisation for the computation of
the Bayesian evidence, a quantity crucial for model comparison; some of the algebraic
fineprint of Chapter 3 and Chapter 4 can be found in Appendix A and Appendix B.
Chapter 5 details the application of Gaussianisation to weak lensing convergence –

Figure 1: Carl Friedrich Gauß together with
the eponymous probability density,
on an expired German banknote.
From http://bit.ly/2e106YY.

a random field known to harbour a
rich non-Gaussian correlation structure. We
detail how to implement Gaussianisation
for a random field, and demonstrate this
with simulated convergence maps. This
transformation can in principle be used
to efficiently draw independent samples
from the random field distribution. Finally,
Chapter 6 offers conclusions and lists future
directions that open up for further study.
Chapter 3 and Chapter 4 are based on
Schuhmann, Joachimi, and Peiris (2016).
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1
C O S M O L O G Y

In the beginning the Universe was created. This has made a lot of people
very angry and been widely regarded as a bad move.

Douglas Adams
The Restaurant at the End of the Universe

One of the most fascinating and revolutionary scientific discoveries of the twentieth
century is the quantitative physical description of the observable Universe as a whole.
Ideas, myths and reflections on origin, evolution, and fate of the Cosmos and all objects
therein have been around since the dawn of the human mind; for millennia they have
inspired us as individuals and shaped our cultures. However, only within the last
century has our collective inquisitive pursuit solidified these ruminations into a part of
quantitative science and connected them to the fundamental theories of modern physics.
We saw the unfolding of a reliable, coherent narrative stretching from the beginning of
time over the formation of the astrophysical large-scale structures we observe until the
present day – even allowing us to extrapolate into the future and fathom the eventual
fate of the Universe.
Modern cosmology, the science that emerged from this quest, is far from a completed
discipline: despite its towering successes, many questions remain open, as to the forma-
tion of galaxies, or the nature of dark matter and dark energy. In contrast to the more
theoretically motivated approach of the first 100 years, 21st century cosmology is driven
by data sets of unprecedented size and faces new statistical challenges for precise and
accurate inference. Whereas cosmologists of the 20th century worked at the interface
between astronomy, gravitational physics and particle physics, in the new era we find
ourselves bridging astrophysics, computer science and data science.

1.1 at order zero : friedmann-lemaître-robertson-walker cosmology

For modern cosmology, the observable Universe is not merely a collection of interac-
ting massive bodies; it is the background spacetime itself which becomes a dynamical
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physical object. The gravitational dynamics of spacetime is described by the theory of
general relativity, originally formulated by Einstein (1916) – modern accounts of this
bedrock of modern physics can be found in S. Weinberg (1972), Hawking and G. F. Ellis
(1973), Misner, Thorne, and Wheeler (1973), Wald (1984), and Oloff (1999). To mention
but the salient facts of this theory: spacetime is a four-dimensional pseudo-Riemannian
orientable differential manifold whose metric tensor has Lorentzian signature. The met-
ric tensor gµν obeys the Einstein field equation, a non-linear partial differential equation
of second order which determines its future time evolution:

Rµν −
1
2

gµνR + Λgµν = 8πGTµν, (1)

where Rµν and R are Ricci tensor and Ricci scalar of the metric gµν; and Tµν is the
energy-momentum density tensor of all matter on the manifold. We are using time
and space units in which the speed of light c = 1. G and Λ are Newton’s and the
cosmological constant, respectively. Free-falling matter particles move along timelike or
lightlike geodesics Xα(τ), which satisfy the equation

d2Xα

dτ2 + Γα
ρσ [X

µ(τ)]
dXρ

dτ

dXσ

dτ
= 0. (2)

Here, Γα
ρσ is the unique torsion-free Levi-Cività connection which is compatible with gµν;

τ denotes the affine coordinate parametrising the trajectory – this coincides with eigen-
time for timelike geodesics. Misner, Thorne, and Wheeler (1973) subsumed Equation 2

and Equation 1 into the phrase:

“Space acts on matter, telling it how to move. In turn, matter reacts back on
space, telling it how to curve.”

To characterise our observable Universe over all alternative spacetimes, we take two
assumptions as axioms:

• Weyl’s Postulate (Weyl, 1923): The Universe is filled by a congruence of non-
intersecting timelike geodesics with tangent vectors uµ (observers). Further, the
spacetime can be foliated into a family of spatial hypersurfaces that are orthogonal
to the geodesic congruence at each point.

• Cosmological Principle: At a particular time, all points in space are physically
equivalent (spatial homogeneity), and so are all directions (spatial isotropy).

The first assumption merely asserts that there is a global time coordinate – cosmic time –
and allows us to talk about a three-dimensional space at each instant. The second one
states that the curvature of each of these three-dimensional submanifolds needs to be
spatially constant (though they may vary in time). These manifolds of constant curvature
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have the largest possible symmetry group, and are called Einstein spaces.
The Cosmological Principle needs to be taken with a grain of salt, because for our
Universe it is only valid on certain scales. The existence of ourselves and of the structures
directly around us are witness to the fact that today the real Universe is very inhomoge-
neous indeed – only above a certain length scale, often cited to be of order ∼300 Mpc,
does the matter distribution look homogeneous. Further, the patch of the Universe we
can actually observe is of finite volume, limited in the past by the Big Bang, hence there
is a priori no way for us to test for homogeneity on scales much larger. Nevertheless,
phenomena like the cosmic microwave background (CMB; see Section 1.2) and galaxy
clustering (see Section 1.3) indicate that the Cosmological Principle is indeed a valid
and reliable assumption on a range of scales of cosmological interest (Wu, Lahav, and
Rees, 1999).
Friedmann (1922, 1924) first derived an explicit form for all metric tensors satisfying
these two conditions; in the subsequent fifteen years several authors rediscovered and
refined his analysis (Lemaître, 1931; Robertson, 1935, 1936a,b; Walker, 1937) – hence
these metrics are known as Friedmann-Lemaître-Robertson-Walker (FLRW) cosmologies.
For a more comprehensive introduction, see Dodelson (2003), Mukhanov (2005), and S.
Weinberg (2008). With time coordinate t and spherical coordinates (r, ϑ, φ), this metric
is

ds2 = gµνdxµdxν = dt2 − a2(t)
[

dr2

1− Kr2 + r2dΩ
]

. (3)

Here, dΩ = dϑ2 + sin2(ϑ)dφ2 is the standard volume element on the unit 2-sphere. K
is a constant of dimension of inverse area, and is related to the curvature scalar of the
corresponding three-dimensional Einstein space via (3)R = 6K. Note that this is not
the full Ricci scalar of the Lorentzian 4D spacetime manifold, but the Ricci scalar of
the induced metric on the 3D spacelike hypersurfaces at constant cosmic time, i. e., the
Einstein spaces, whose metric is described by the [. . .] term in Equation 3. Often, this
constant is split via K = k/rK

2 into a curvature radius rK > 0 and a unitless constant
k = −1, 0,+1, which classifies the Einstein spaces into hyperbolic, flat, or spherical
geometries. A coordinate transformation from (t, r) to (η, χ) is often used, where the
conformal time η(t) is defined via

η =
∫ t

0

dt′

a(t′)
(4)
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and the conformal radius χ(r) as

χ = rKS−1
k (r/rK); Sk(x) :=


sin(x) (k = +1)

x (k = 0)

sinh(x) (k = −1).

(5)

If we measure these coordinates in units of the curvature radius, i. e. η = rK η̃, χ = rKχ̃,
the line element Equation 3 can be recast as

ds2 = a2(η)r2
K
[
dη̃2 − dχ̃2 − S2

k(χ̃)dΩ
]

. (6)

This makes the geometric classification into spherical/flat/hyperbolic completely lucid,
since this line element is conformally equivalent to the time axis × the unit 3-sphere /
flat R3 / the unit 3-antisphere. The unitless scale factor a(t) is the only degree of freedom
left in the metric tensor: it is a time-dependent scaling of the curvature radius, and thus
contains the full information about the history of expansion (or contraction). Often, it
is normalised such that it reaches unity at the current time. To establish its equations
of motion, we need to insert Equation 3 into Equation 1, and impose the Cosmological
Principle once more: it constrains the energy-momentum tensor to have the shape of a
perfect fluid: Tµ

ν = (ρ + p) uµ uν − pδ
µ
ν = diag[ρ,−p,−p,−p]µν. The functions ρ and p

are the energy density and pressure of the full matter content, and depend on time only.
The resulting differential equations for a(t),

H2(t) =
[

ȧ(t)
a(t)

]2

=
8πG

3
ρ(t)− K

a2 +
Λ
3

(7)

−H2q(t) =
ä(t)
a(t)

= −4πG
3

[ρ(t) + 3p(t)] +
Λ
3

, (8)

are known as the Friedmann equations (Friedmann, 1922). The values of the Hubble pa-
rameter H(t) = ȧ/a and the deceleration parameter q(t) = −äa/ȧ2 determine whether
a FLRW model is expanding or contracting, and whether said evolution speeds up or
slows down. Only a careful balance between the terms in Equation 7 by artificially fine-
tuning Λ to a fixed negative value would allow for a static universe. In fact, this led
Einstein (1917) to introduce Λ into Equation 1 in the first place – later, Hubble (1929)
extended earlier measurements by Slipher (1917) of the recession velocities of galaxies,
and discovered that indeed H > 0, our Universe does indeed expand. Although Einstein
subsequently redacted Λ from the field equations, calling it “his biggest blunder”, we
now have accumulated solid evidence that the cosmological constant has a positive value
measurably different from zero (Riess et al., 1998; Perlmutter et al., 1999).
The Hubble parameter made its first appearance in cosmology as the proportionality
factor between the distance of a remote galaxy and its apparent recession velocity from
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us due to the cosmological expansion: vrec = H0 d (Hubble, 1929). It can be shown
that this linear relation is the only one consistent with the Cosmological Principle (see
Mukhanov, 2005). The inverse of the Hubble parameter defines a length scale rH(z) =

H−1(z). For an observer, imagine a sphere with radius rH (Hubble sphere or Hubble patch) –
its surface consists of the points which recede with the speed of light. Points outside
cannot causally influence the observer at present, and vice versa. However, they could
have done so in the past, or may have the opportunity in the future, since the Hubble
parameter is a function of cosmic time – hence the occasionally used moniker “Hubble
constant” is a historical misnomer (Bondi and Gold, 1948; Hoyle, 1948). A universe
for which H(z) is in fact constant, however, is called de Sitter space (de Sitter, 1917,
1918). Its scale factor grows exponentially, and the spacetime manifold actually exhibits
a causality horizon at distance H−1. Whilst this does not hold in any other spacetime,
rH(z) is often treated as a convenient placeholder for more elaborate causality scales,
which are usually of the same order of magnitude, and in a slight abuse of terminology
called the Hubble horizon.
We can now see what distinguishes the three geometrical cases we outlined earlier:
momentarily setting Λ to zero in Equation 7, we can reshuffle the Friedmann equation
to

K =
8πGa2

3
(ρ− ρcr) , ρcr :=

3H2

8πGa2 . (9)

Hence, the sign of K is determined by the complete energy budget of the Universe ρ in
comparison to the critical density ρcr: if it exceeds it the geometry is spherical, if it falls
short it is hyperbolic, and only if it precisely balances will the Universe be flat.
To solve for the three functions (a, ρ, p), we need to supplement Equation 7 and Equa-
tion 8 with an equation of state connecting energy density and pressure: this arises from
the statistical properties of the fluid in question, and is often of the form p = wρ for a
constant w. For non-relativistic matter (i. e. the average kinetic energy of one particle is
small against its rest mass), this is simply w = 0, whereas for highly relativistic matter
(particle rest mass is either vanishing or small against the average kinetic energy), we
have w = 1/3 (see Dodelson, 2003; Mukhanov, 2005; S. Weinberg, 2008).
The cosmic inventory at the present epoch is usually defined in terms of the omega
parameters1: for each species i, define Ωi = ρi,0/ρcr,0 – its fraction measured in today’s
critical density. If the species is not interacting with other particles, its energy density
will then evolve like ρi(t) = Ωia(t)−3(1+wi).
Often, the cosmological constant and curvature are wedged into the same formalism
by defining a “cosmological constant density” component ΩΛ = Λ/3H2

0 , wΛ = −1. In
particular, this means that the energy density associated with this component, i. e. ρΛ =

1 In what follows, the subscript X,0 shall denote that the quantity X is evaluated at the present moment in
cosmic time.
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ΩΛρcr,0, stays constant in time. The above conclusions connecting energy budget and
curvature remain true if one includes this component. Dark energy scenarios, which
intend to modify either the particle content or the laws of gravity, often present an
explicit component that reproduces the effect of the cosmological constant. It is possible
to go further and define a “curvature density” ΩK = −3K/8πG, which is negative
for spherical geometry and positive for hyperbolic; this hypothetical component would
have an equation-of-state parameter wK = −1/3. Including both of these, the Friedmann
equation Equation 7 at present time can now be recast into the elegant form

∑
i

Ωi = 1; (10)

now index i runs over all species of matter and radiation, Λ, and K.
In case that one single species is present in the Universe, the equation of motion for a(t)
can be solved analytically, yielding the expressions

a(t) = exp(t/t0) (w = −1); (11)

a(t) = (t/t0)
2/3(1+w) (otherwise). (12)

One noteworthy feature of the power-law solutions is that there is a time for which
a(t) = 0: the spacetime manifold is singular at this event. Moving backwards in time
towards t = 0, the physical energy density, pressure and temperature all increase
without bounds, until the validity of our current theories of gravity and particle physics
cannot be ascertained. This scenario, which appears to be an accurate model of our
Universe, is known as the hot Big Bang theory; what is before it is beyond our current
understanding.
The propagation of photons through the expanding homogeneous and isotropic FLRW

geometry are described by the geodesic equation Equation 2. This has one crucial
consequence whose importance for observational cosmology can hardly be overstressed:
the energy of a photon decreases along its trajectory, according to the scale factor:
E(t) ∝ a−1(t). This means that a photon that has been emitted by a galaxy at a time
tem, and absorbed by an observer on earth at a later time tobs will have been shifted
towards redder wavelengths on its way (if the Universe is expanding), or towards the
blue (if it is contracting). This effect is quantified by introducing the redshift parameter
z via

1 + z =
λobs

λem
=

a(tobs)

a(tem)
. (13)

If such a photon is observed today, and its emission wavelength is known, e. g. by virtue
of coming from a known spectral line, it allows us to measure the scale factor at which it
has been emitted. This way, the redshift 1+ z = a−1(t) becomes a natural time coordinate
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for looking back into the cosmos: we are situated at z = 0, and the Big Bang happened
at z = ∞.
One important observable specifying the cosmic expansion history is the redshift de-
pendence of the angular diameter distance, one of several cosmological distance notions
(see Dodelson, 2003; S. Weinberg, 2008). In a Euclidean space, the angular size θ of a
remote object (in rad) is just the quotient of physical size to distance: θ = x/d, hence
if its size is known, we can infer its distance from the angle it subtends on our field of
vision. On an FLRW spacetime, the idea “distance to a remote object, which we observe
at a certain redshift z” is far from obvious – the expanding geometry influences the
propagation of the light coming towards us. Nevertheless we can extend the idea to
define a redshift-dependent distance measure

dA(z) =
x
θ
=

1
H0(1 + z)

√
|ΩK|

Sk

[√
|ΩK|H0χ(z)

]
, (14)

where the comoving distance χ(z) is found via an integral over the expansion history

χ(z) =
1

H0

∫ z

0

dz̃√
ΩΛ + ΩK(1 + z̃)2 + Ωm(1 + z̃)3 + Ωr(1 + z̃)4

. (15)

A cornucopia of data sets from a variety of different cosmic epochs have heralded the
modern age of precision cosmology, and allowed us to measure the omega parameters to
sub-percent accuracy. This permits us to construct a coherent narrative about the history
of the Universe since the Big Bang – this concordance model is commonly referred
to by the name Λ - Cold Dark Matter (ΛCDM). Its inventory consists of the following
species (values from Planck Collaboration, 2015c, the uncertainties cited correspond to
one-sigma):

• baryonic matter (Ωb = 0.0490± 0.0019): This contains all non-relativistic particles
of the standard model - in particular, baryons and non-relativistic leptons. All
visible matter is made up of these species, including galaxies and interstellar gas.

• cold dark matter (Ωc = 0.264± 0.012): The baryonic content is not sufficient to fill
up the entire budget for non-relativistic matter – the rest must consist of a species
whose fundamental particle physics is currently unknown. We know that it is non-
relativistic (cold) and does not participate in electromagnetic or strong interactions
(dark). This unsettling statement matches a series of other anomalies:

(i) Dating back as far as Kapteyn (1922), Oort (1932), and Zwicky (1933), it
has been noted that the velocity dispersion of galaxies in clusters is far higher
than expected from their visible mass content, indicating the presence of another
gravitating component. For a more recent detection of such a system, see Minchin
et al. (2005).
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(ii) Similarly, temperature and flux of X-rays emitted by hot gas in galaxy
clusters allow for a measurement of the gravitating mass in the system. Again,
the baryons can only account for a small fraction of the full mass (Vikhlinin et al.,
2006).

(iii) The differential rotation velocity of many spiral galaxies, in dependence
on the radius from the central bulge, does not match the curves expected if the
majority of the gravitating mass were in the bulge, i. e. the location of most of the
luminous matter (Rubin, Ford, and Thonnard, 1980).

(iv) Weak gravitational lensing, a powerful method that will be introduced in
Section 1.3.1, is equally sensitive to all gravitating mass, luminous or not. Heymans
et al. (2013a) constrain the total mass content to Ωc + Ωb = 0.255 ± 0.014 by
combining tomographic cosmic shear measurements with WMAP7 data (Larson
et al., 2011).

(v) Several systems – the Bullet Cluster (1E 0657-558) being the most famous –
exhibit a significant offset between the luminous component (as imaged with X-
rays) and the gravitating component (as inferred via weak and strong lensing) –
see Markevitch et al. (2004).

• radiation (Ωr = (9.28± 0.52) × 10−5): This measurement includes every species
that has been relativistic in the moment the CMB was created – in the standard
model, these are photons and neutrinos. Cosmology is consistent with the exis-
tence of three light neutrino species, as they are observed in particle physics.

• dark energy (ΩΛ = 0.685± 0.013): This could simply be taken as a measurement
of the cosmological constant Λ; nevertheless, there are substantial fundamental
problems with the theoretical understanding of this value, located at the interface
between gravitation and quantum field theory – see Carroll, Press, and Turner
(1992), Rugh and Zinkernagel (2001), and Padilla (2015); but also Bianchi and Rov-
elli (2010) for a dissenting standpoint. The physical nature of dark energy remains
one of the most important unsolved problems of cosmology and fundamental
physics. In addition to the CMB, the following observations confirm the existence
of this additional component (this is by no means an exhaustive list, see, e. g., D. H.
Weinberg et al., 2013 for a more in-depth treatment):

(i) Direct measurements of the matter density Ωm indicate a deficit in the total
energy budget – since the Universe is measured to be flat, the density parameters
Ωi for all matter species (including all dark components) have to add up to one.
First indications that this is not valid without dark energy arose from the inves-
tigation of galaxy clustering (Efstathiou, Sutherland, and Maddox, 1990; Maddox
et al., 1990; Cole, D. H. Weinberg, et al., 1997).
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(ii) Type-Ia supernovae can be used to trace the late-time expansion history of
the Universe since they are standard candles. This probe constituted the first sig-
nificant discovery that said expansion is accelerating (Riess et al., 1998; Perlmutter
et al., 1999), which was awarded the 2011 Nobel Prize in Physics.

(iii) Weak gravitational lensing and baryon acoustic oscillations are probes
that test the non-linear clustering of matter as well as the late-time expansion
history in a complementary fashion; both confirm the existence of dark energy
to high significance. Their theory and observation will be introduced in detail in
Section 1.3.1 and Section 1.3.2.

The Planck data set, from which these values are derived, measures the statistical prop-
erties of the CMB radiation, whose physics will be detailed in Section 1.2; they are the
constraints from the temperature power spectrum on baseline flat ΛCDM (see Section 1.2
for details on this observable). If the curvature parameter is allowed to vary, the con-
nection of the radiation temperature and polarisation spectra constrain ΩK to zero to a
precision of less than 10−2, hence the restriction to flat ΛCDM cosmology as our Standard
Model of Cosmology is a good one.
Winding back cosmic time in this concordance scenario, the following eras unfold:

• z = 0 – today: The most dominant component in the Universe is dark energy –
i. e. the cosmological constant. Having taken over only relatively recently, it will
continue to do so into the far future, and the expansion of the Universe will ap-
proximate the accelerating de Sitter expansion law Equation 11 ever more closely.

• z ∼ 0.7: around this time, the sign of the deceleration parameter switches, since
we are transitioning from Λ-domination into an era of matter-domination, where
a(t) = (t/t0)2/3. The nonlinear collapse of cosmic structures (dark matter halos,
galaxies) mostly takes place in this era – see Section 1.3.

• z ∼ 1100: the recombination event produces the radiation of the CMB – see Sec-
tion 1.2. Before, the Universe is filled with hot opaque plasma; photons cannot
move freely because they scatter off free electrons.

• z ∼ 3400: at this time, radiation takes over the role of dominating component;
hence a(t) = (t/t0)1/2.

• z ∼ 1028: evidence is substantiating that at extremely high redshift another phase
of approximately de Sitter-like expansion took place, dubbed cosmic inflation.

• z → ∞: in classical gravitation, this would be the spacelike singularity, the Big
Bang. Since this locus signals a breakdown of the theory, we expect that at a finite
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redshift, some more fundamental theory superseding general relativity, perhaps
involving quantum gravity, will take over. Here be dragons.

1.2 at order one : the cosmic microwave background

One robust prediction of the Big Bang model is the presence of a faint background of
thermal electromagnetic blackbody radiation. Since the photon energy density scales
with (1 + z)4, and the Stefan-Boltzmann law dictates ργ = σT4

γ, the photon temperature
will increase linearly with redshift; the number densities of all particle species grow
as well. The radiation of this hot dense plasma should still be visible today, redshifted
to longer wavelengths. Indeed, a faint isotropic microwave background radiation was
discovered by Penzias and R. W. Wilson (1965), more or less by accident. We know
today that this omnipresent radiation component has a density of roughly 300 photons
per cubic centimetre, that it is almost perfectly isotropic, and that its energy distribution
follows the Planckian distribution to high precision, with a temperature of 2.73 K (Fixsen
et al., 1996) – in fact, it is the most perfect blackbody radiation known to science.
This radiation has been studied by many probes, including COBE (Smoot et al., 1992),
BOOMERanG (Torbet et al., 1999), WMAP (Bennett et al., 2003), and Planck (Planck
Collaboration, 2015a).
Although these have revealed a remarkable isotropy of temperature, they have found
fluctuations of the order 10−5, and increased precision has revealed more and more
detail on the temperature maps (see Figure 2). These structures force us to consider
deviations from the perfectly homogeneous and isotropic FLRW background metric: this
is done by introducing density perturbations

δi(t, x) =
ρi(t, x)− ρ̄i(t)

ρ̄i(t)
, (16)

and corresponding perturbations in the metric tensor (as defined in the conformal Newto-
nian gauge)

ds2 = [1 + Ψ(t, x)]dt2 − a2(t)[1 + Φ(t, x)]
{

dr2

1− Kr2 + r2dΩ
}

, (17)

into the joint system of Einstein and Boltzmann equations, which govern the interacting
species of matter and radiation, and then develop the first perturbative order around
FLRW (see Peebles, 1980; Ma and Bertschinger, 1995; Dodelson, 2003, for the detailed
calculation).
The aforementioned inflationary paradigm offers an intriguing explanation for these
minute departures from perfect homogeneity: it postulates a period of accelerated ex-
pansion in the very early cosmos, by a factor of at least exp(60).
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Figure 2: Comparison of CMB temperature aniso-
tropies, as recorded by COBE, WMAP,
and Planck.
From http://bit.ly/2adJw0r.

During this time, the quantum fluctua-
tions in the field driving said expansion
get stretched outside of the horizon; and
at the end of inflation will be imprinted
onto all other species. Subsequently, the
modes of these density contrasts Equa-
tion 16 will collapse under their own
gravity and form structures. This growth
is suppressed in the early radiation-
dominated epoch (z > 3400) and at late
times dominated by dark energy (z < 0.7),
compared to the matter-dominated period
in between.
By the time that the CMB is generated, all
scales still have density contrasts δi � 1,
and can be treated at first perturbation
order – this will change in later periods
of structure formation, see Section 1.3.
In the early Universe, the photons were
tightly coupled to the electrons by Thom-
son scattering and could not propagate
freely; the electron component itself was
tied to the nuclei (mostly protons) via
Coulomb scattering – the photons were
too energetic to let electrons and nuclei
form neutral atoms; protons, electrons

and photons for an opaque plasma. However, once the cosmos expanded enough and
the photon temperature dropped below ∼ 3000K, the reaction p + e− ↔ H + γ tipped
over in favour of neutral hydrogen – this recombination event occurred around 380,000

years after the Big Bang (z ' 1100). As the fraction of free electrons dropped sharply,
the photons were released from their tight coupling, their mean free path grew larger
than the Hubble radius, and their motion became ballistic instead of diffusive. These
are the photons we observe as the CMB radiation today, redshifted into the microwave
regime of the electromagnetic spectrum.
Between the transition from radiation-domination to matter-domination at z ' 3400

and the recombination event at z ' 1100, the perturbations Equation 16 in the density
components would have grown to about one part in 104, and the perturbed gravitational
potential Φ in Equation 17 alongside them. After their decoupling from baryonic matter,
some photons found themselves in gravitational wells, and were redshifted once they
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Planck collaboration: CMB power spectra, likelihoods, and parameters
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Figure 28. Plik 2015 co-added TT , T E, and EE spectra. The blue points are for bins of ∆` = 30, while the grey points are
unbinned. The lower panels show the residuals with respect to the best fit PlikTT+tauprior ΛCDM model. The yellow lines show
the 68 % unbinned error bars. For T E and EE, we also show the best-fit beam-leakage correction (green line; see text and Fig. 23).

own in Fig. 23), which is obtained when fixing the cosmology to
the TT -based model. Let us recall, though, that this correction
is for illustrative purposes only, and it is set to zero for all actual
parameter searches. Indeed, we shall see that these leakage ef-
fects are not enough to bring all the data into full concordance
with the model.

In more quantitative detail, Fig. 30 shows the binned (∆` =
100) residuals for the co-added CMB spectra in units of the
standard deviation of each data point, (data−model)/error. For

TT , we find the greatest deviations at ` ≈ 434 (−1.8σ), 464
(2.7σ), 1214 (−2.1σ), and 1450 (−1.8, σ). At ` = 1754, where
we previously reported a deficit due to the imperfect removal
of the 4He-JT cooler line (see Planck Collaboration XIII 2016,
section 3), there is now a less significant fluctuation, at the level
of −1.4σ. The residuals in polarization show similar levels of
discrepancy.

In order to assess whether these deviations are specific to
one particular frequency channel or appear as a common sig-

35

Figure 3: Temperature and polarisation power spectra, as measured by Planck. The red line is the
best flat ΛCDM as fitted to the temperature spectra alone; the lower half for each panel
shows residuals. Grey dots are the measured spectra for each multipole, blue dots are
binned in `, the yellow lines show the 68%-errors of the unbinned points. From (Planck
Collaboration, 2015b).

climbed out; other photons experienced a corresponding blueshift. Further, the potential
Ψ in Equation 17 introduces a time dilation, which also results in shifting the photon
energy. Accordingly, the temperature of the photons carries the imprint of the metric
perturbations – this interplay between photons and gravitational potentials is known as
the Sachs-Wolfe effect (Sachs and Wolfe, 1967), and is responsible for the temperature
fluctuations visible in the CMB. The anisotropies carry the imprint of a tremendous
amount of physics: they are a window into the very early cosmos long before the
formation of galaxies; they offer the opportunity to measure cosmological parameters
with high precision. Some quantities – like ΩK and ΩΛ – influence the propagation of the
CMB photons from recombination to us, some affect the recombination event directly –
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like Ωb, some determine the structure growth before recombination, like Ωc. Also, we
can infer properties of the primordial inhomogeneity spectrum that has been generated
by inflation, like its spectral index ns, and thus look back to the earliest time that is
meaningful in a cosmological context. The amount of information increases further once
we take into account the polarisation of the radiation.
On top of the primary anisotropies generated by the early Sachs-Wolfe effect at the
recombination event, there are several processes influencing the CMB radiation on its
journey through the late-time universe. To mention a few: the pattern of primary
anisotropy is lensed by the gravitational potentials of the evolving dark matter (CMB
lensing, see Lewis and Challinor, 2006), the photons experience additional shifts in
frequency by these potentials (Rees-Sciama effect, see Rees and Sciama, 1968), and they
are scattered by hot gas in galaxy clusters (Sunyaev-Zel’dovich effect, see Sunyaev and
Zel’dovich, 1970). These secondary effects harbour a wealth of information adding to
the primary structure – for a more complete treatment see Aghanim, Majumdar, and
Silk (2008).
The main observable that is extracted from CMB maps is the angular power spectra,
i. e. the auto- and cross-correlations of temperature and polarisation in harmonic space
(see Figure 3), which quantify the statistical correlation properties of two random points
separated by a specific angle. Since the evolution of the density contrasts in this regime
is linear, and since non-Gaussianity in the primordial spectrum has yet to be found
(Planck Collaboration, 2015d), we can expect that this two-point statistic contains the
major part of the cosmological information.
The next generation of surveys will concentrate on precision measurements of CMB

polarisation, with particular emphasis on a possible primordial B-mode component,
its impact on inflation, physics beyond the standard model, neutrino mass constraints,
and spectral distortions. Current and upcoming ground-based efforts include ACTPOL
(Niemack et al., 2010; Henderson et al., 2016), POLARBEAR and the Simons Array
(Arnold et al., 2010; Suzuki et al., 2016), SPTpol (Austermann et al., 2012), the Keck array
and BICEP3 (Staniszewski et al., 2012; Grayson et al., 2016). Also, there are balloon-based
experiments like SPIDER (Crill et al., 2008); proposals for space-based missions include
COrE+ (Rubiño-Martín and COrE+ Collaboration, 2015), LiteBIRD (Matsumura et al.,
2014), and PIXIE (Kogut et al., 2014).
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1.3 at higher order : evolution of structure

Validity of perturbation theory hinges upon the density contrasts Equation 16, or their
Fourier transforms

δi(t, k) =
∫

d3x δi(t, x) exp [−i k · x] , (18)

being � 1. We would expect that growth of cosmic structure increases the amplitude
of these fluctuations, until this assumption breaks down for at least a range of k-modes.
To investigate this, we define the dark matter power spectrum through the two-point
correlation function in momentum space

〈δ̄c(t, k)δc(t, q)〉 = (2π)3δ
(3)
D (k− q)P(k, t). (19)

The proportionality with the Dirac delta function is enforced by the statistical homo-
geneity of the field in real space, and isotropy ensures that the power spectrum P(k, t)
depends only on the magnitude of k. The dimensionless power spectrum

∆2(k, t) =
k3P(k, t)

2π2 (20)

is a convenient measure for the mean squared fluctuations of the random field δc on a
given scale k. As long as this is well below unity, the linear approximation holds. In the
first-order perturbation calculation mentioned in Section 1.2, the differential equations
governing Fourier modes δc(k), δc(q) decouple for k 6= q. Hence, the amplitude of every
mode grows independent of all others – the evolution from the initial amplitude at the
exit from inflation δc(z = zi, k) to today (z = 0), is encapsulated in the transfer function
(except from an overall factor D1(z), see below)

T(k) =
δc(z = 0, k)
δc(z = zi, k)

δc(z = zi, k = o)
δc(z = 0, k = o)

, (21)

which encompasses every physical effect that distinguishes the growth process of one
mode from another (e. g. the redshift of radiation-matter transition, or the impact of
baryons, see Section 1.3.2). For a given combination of cosmological parameters, the
transfer function is computed via one of the analytic fitting formulae found by numeri-
cally integrating the Boltzmann equations (Bond and Szalay, 1983; Bond and Efstathiou,
1984; Bardeen et al., 1986; Eisenstein and Hu, 1998).
The overall increase in amplitude, common to all modes, is described by the growth
function D1(z). It depends on the cosmic expansion history, i. e. which component
was dominating the Friedmann equations for which range of redshift. Under certain
assumptions on redshift z and cosmological constant Λ, this growth function can be
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FIG. 3: The power spectrum of clustering of matter in the Universe as a function of the density of all matter (Ωm),
(cold) dark matter (Ωcdm, dark energy (ΩΛ and baryonic matter (Ωb). Only flat models are presented here, i.e., all
densities must sum to one. Figure kindly provided by Gert Hutsi. A similar plot can be found at [5].

B. Statistical Methods of Galaxy Clustering

The most popular statistical method for measuring the clustering of matter in the Universe is the two–
point autocorrelation function (ξ(r)), which quantifies the probability (P12) of finding a pair of galaxies
(separated by distance r) compared to a random distribution of galaxies, i.e.,

P12 = n̄2(1 + ξ(r))dV1dV2, (1)

where n̄ is the mean space density of galaxies, and dV1 and dV2 are the search volumes for the two galaxies in
question (with subscripts 1 and 2). As one can see, when ξ(r) = 0 the probability is just that expected from
a random distribution of galaxies. If ξ(r) > 0, then the galaxies are more clustered than random (higher
probability of finding a pair of galaxies separated by r), while ξ(r) < 0 means the galaxies are less clustered
than random.

Practically, ξ(r) is computed by counting all galaxy pairs, as a function of their separation distance, and
then comparing this with a similar counting of pairs of random points distributed over the same volume as
the real data. This can be written as

ξ(r) =
DD(r)

RR(r)
− 1, (2)

Figure 4: Linear power spectra of cold dark matter at redshift z = 0, computed for various
combinations of cosmological parameters.
From Nichol (2008).

expressed analytically as a hypergeometric function; convenient approximations for a
wider range of values for Ωm and ΩΛ can be found in Lightman and Schechter (1990),
Lahav et al. (1991), and Carroll, Press, and Turner (1992). If we assume that the initial
dark matter power spectrum as seeded by inflation can be described by a simple power
law Pi(k) ∝ kns , we can assemble an expression for the linear power spectrum of evolved
cold dark matter:

∆2
L(z, k) ∝ kns+3T2(k)D2

1(z), (22)

and an analogous expression for PL(z, k). See Figure 4 for a comparison of several linear
power spectra, computed in various cosmological models.
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1.3.1 Weak Gravitational Lensing

3 Gravitational Light Deflection

In this section, we summarise the theoretical basis for the description of light de-
flection by gravitational fields. Granted the validity of Einstein’s Theory of General
Relativity, light propagates on the null geodesics of the space-time metric. How-
ever, most astrophysically relevant situations permit a much simpler approximate
description of light rays, which is called gravitational lens theory; we first describe
this theory in Sect. 3.1. It is sufficient for the treatment oflensing by galaxy clus-
ters in Sect. 5, where the deflecting mass is localised in a region small compared
to the distance between source and deflector, and between deflector and observer.
In contrast, mass distributions on a cosmic scale cause small light deflections all
along the path from the source to the observer. The magnification and shear effects
resulting therefrom require a more general description, which we shall develop in
Sect. 3.2. In particular, we outline how the gravitational lens approximation derives
from this more general description.

3.1 Gravitational Lens Theory

Observer

Lens plane

Source plane

θ

β

ξ

α̂

η

Dds

Dd

Ds

Fig. 11. Sketch of a typical gravitational lens system.
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Figure 5: Shift of a source at β through
a thin gravitational lens,
making it appear under an
angle θ. All coordinates are
comoving. From Bartelmann
and P. Schneider (2001).

Gravity – i. e. the curvature of spacetime –
deflects the propagation of light. This prediction
was the target of the first experimental trial
to which Einstein’s theory of general relativity
was subjected. Although Newton’s theory can
produce a similar bending in the trajectory
of corpuscular light near massive bodies, the
Equivalence Principle predicts a deflection angle
twice as large (Einstein, 1911) – and indeed: during
the solar eclipse of May 29th, 1919, the pattern of
stars surrounding the sun was observed by Dyson,
Eddington, and Davidson (1920). At the time, the
majority of scientists took their results as a clear
confirmation for Einstein over Newton, although
today it is unclear whether their methodology
holds up to scrutiny (Earman and Glymour, 1980).
Further investigation of the phenomenon brought
the realisation that a gravitational well can act
like an optical lens by influencing the image of
luminous objects (e. g. galaxies, quasars or even
single stars) behind it. The result of this can be a
deformation of a single galaxy into one or even
multiple arcs (strong lensing, see Chwolson, 1924; Einstein, 1936; Walsh, Carswell, and
Weymann, 1979), the statistically correlated minimal image stretching and deformation
over a large field of galaxies, as induced by large scale structure (weak lensing – which
we will be concerned with, see Gunn, 1967; Blandford et al., 1991; Miralda-Escude, 1991;
Kaiser, 1992), or a temporary increase in luminosity of a single object due to focusing,
without noticeable deformation of its image (microlensing, see Irwin et al., 1989).
Due to its historical role for the theory, most books introducing general relativity
contain Einstein’s perturbative calculation of the deflection angle of a light ray grazing
a single massive object, including S. Weinberg (1972), Misner, Thorne, and Wheeler
(1973), Wald (1984), and Oloff (1999), see also P. Schneider, Ehlers, and Falco (1992) for
a treatment geared towards lensing, and Bartelmann and P. Schneider (2001), Hoekstra
and Jain (2008), Munshi et al. (2008), Bartelmann (2010), and Kilbinger (2015) for general
reviews of weak gravitational lensing. It is found to be α = 2rS/ξ = 4GM/ξ for
impact parameter ξ along an object of mass M and Schwarzschild radius rS. Given
that the positions of galaxies on the sky have only small angular separation from
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the optical axis, we can treat the elongation angles as two-dimensional vectors and
approximate the sky as flat. In Figure 5, a source is located at an angle β, so its transverse
elongation in the source plane is η = Dsβ = D(χS)β. Here D(χS) is the comoving
angular diameter distance to the source located at comoving distance χS and redshift zS:
dA(zS) = D(χS)/(1 + zS) – see Equation 14. Assuming for an instant that the thickness
of the lens plane is negligible (thin lens approximation), the geometry of Figure 5 dictates
that Dsθ = Dsβ + Ddsα, therefore with Ds = D(χS), Dds = D(χS − χ)

δθ = θ − β =
D(χS − χ)

D(χS)
α =
D(χS − χ)

D(χS)
2∇⊥Φ. (23)

Figure 6: Effect of convergence κ
and complex shear γ
as linear deformations
of a small circular disk
(green). From http://
bit.ly/2amrZYi.

The deflection angle can be expressed through the
projection of the potential gradient onto the lens plane.
Since the problem has been linearised, the deflection
due to a bulk of gravitating matter can be found by
integrating over a continuum of thin lenses:

θ = β + 2
∫ χS

0
dχ
D(χS − χ)

D(χS)
∇⊥Φ(χ). (24)

See Dodelson (2003) and Bartelmann (2010) for a
derivation of this result via the geodesic equation
Equation 2. Since we are interested in the slight
deformations in the images of galaxies, we take only
the linear term in the map from apparent position θ

to actual position β: β = (1−ψ)θ + O(δθ2), with the
matrix

ψij = −
∂

∂θj
δθi = −2

∫ χS

0
dχ
D(χS − χ)D(χ)

D(χS)
∂i∂jΦ(χ).

(25)

This symmetric matrix contains three real degrees of freedom describing the linear
deformation of a small circular image. It is customary to introduce two quantities,
convergence κ(θ) and shear γ(θ) = γ1 + iγ2 to classify the image distortions:

ψ =

 −κ − γ1 −γ2

−γ2 −κ + γ1

 . (26)

If we are interested in the shear field induced by cosmic large scale structure, rather than
lensing by single objects, we refer to cosmic shear. The distortion effect of each of these
components is illustrated in Figure 6. To make contact with power spectra of the large-
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scale matter distribution which induces weak lensing, we insert the Poisson equation,
which is the weak-field limit of general relativity:

∆Φ =
3
2

ΩmH2
0(1 + z)δm, (27)

into Equation 25 and Equation 26, and approximate the 2D Laplacian via the 3D
Laplacian inside the χ-integration (see Limber, 1954; Peebles, 1980; Kaiser, 1992), which
averages out modes parallel to the line of sight:

κ(θ; zS) '
∫ χS

0
dχ w(χ, χS) δ [χ,D(χ)θ] , (28)

with the definition

w(χ, χS) =
3
2

H2
0 Ωm(1 + z)

D(χ)D(χS − χ)

D(χS)
. (29)

It should be noted that Equation 28 is practical if all source galaxies had the very same
redshift zS. Realistically, observers deal with a source distribution p(zS), which has to
be modelled according to the data set at hand. One frequently used form is

p(zS) =
β z2

S

Γ(3/β) z3
0

exp

[
−
(

zS

z0

)β
]

, (30)

with parameters z0, β suitably chosen (Brainerd, Blandford, and Smail, 1996). For such
a distribution with maximal redshift zmax, the convergence is

κ(θ) =
∫ zmax

0
dzS p(zS)κ(θ; zS) =

3H2
0 Ωm

2

∫ χmax

0
dχ

q[z(χ)]D(χ)
a(χ)

δ(χ,D(χ)θ), (31)

with the lensing efficiency kernel

q(z) =
∫ zmax

z
dzS p(zS)

D(χS − χ)

D(χS)
. (32)

The power spectrum of the convergence field is found from the 2D versions of
Equation 18 and Equation 19:

P(12)
κκ (`) =

9H4
0 Ω2

m

4

∫ χmax

0
dχ

q(1)(χ)q(2)(χ)
a2(χ)

Pδδ(k)|k=[`/D(χ),χ] , (33)

where we allowed for cross-correlating two different galaxy samples p(1)(zS), p(2)(zS)

with corresponding kernels q(i)(χ) (Hu, 1999). It can be shown that the cosmic shear
power spectra Pγγ are identical to spectra Pκκ.
In an idealised setting, with all galaxies assumed spherical and spaced on a quadratic
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grid, the cosmic shear can be estimated directly from the measured ellipticity. This can
be derived from the quadrupole tensor of an image I(θ):

qij =
1
N

∫
dθ w[I(θ)](θi − 〈θi〉)(θj − 〈θj〉), (34)

with 〈θk〉 =
1
N

∫
dθ w[I(θ)]θk; N =

∫
dθ w[I(θ)]. (35)

The weight function w[I] allows down-weighting of the noisy outer regions of a galaxy,
to obtain a more reliable shape measurement. Now, the (complex) ellipticity of the image
is defined via

ε =
q11 − q22 + 2iq12

q11 + q22 + 2
√

q11q22 − q2
12

. (36)

In the real world, galaxy shapes already have elliptical or more complex shapes, so upon
being weakly lensed, their intrinsic ellipticity εS is related to the observed ε via

ε =
εS + g

1 + εS ḡ
' εS + γ; g =

γ

1− κ
, (37)

(Seitz and P. Schneider, 1997). Compared to the intrinsic ellipticity, the shear is usually an
effect of a few percent, hence to collect a sufficient amount of information it is necessary
to precisely image a high number of galaxies in large cosmic volumes. The following
issues have to be included in the forward modelling process, to accurately extract the
weak lensing signal:

• Modelling the distribution of source ellipticities is challenging, and needs to be
calibrated separately. Additionally, galaxy formation can align the intrinsic ellip-
ticity of adjacent galaxies, and this correlation can be mistaken for a shear signal
(Joachimi, Cacciato, et al., 2015; Kiessling et al., 2015; Kirk et al., 2015).

• Given the number of galaxies necessary, it is too costly to take spectra for each
one. The problem of inducing the source redshift zS from the flux in several bands
(photometric redshifts) is a vital modelling step opening up a large field of research,
and can introduce further uncertainties or biases if done inadequately.

• Precise imaging is indispensable. Hence, weak lensing is particularly sensitive to
proper modelling of the point-spread function, including atmospheric seeing and
instrumental effects.

• The finite resolution of CCD cameras breaks the image into pixels, which further
deprecates the image quality. Since we need large numbers of galaxies, we are
coerced into working at the resolution limit.
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Figure 7: Schematic demonstration of the inverse problem of shear estimation, from actual galaxy
to image: the weak lensing signal, confronted with some of the most important steps
of the forward modelling process. From Bridle et al., 2009.

Figure 7 illustrates various distortions acting on a galaxy image, which have to be
modelled appropriately to recover the weak lensing shear signal.
Despite these challenges to accurate inference, weak gravitational lensing has become
one of the strongest probes of the dark sector, since it was first detected by four groups
almost simultaneously (Bacon, Refregier, and R. S. Ellis, 2000; Kaiser, G. Wilson, and
Luppino, 2000; Van Waerbeke et al., 2000; Wittman et al., 2000). Further methodology
was developed by COSMOS (Schrabback et al., 2010) and the Canada-France-Hawaii
Telescope Lensing Survey (CFHTLenS) (Heymans, Van Waerbeke, et al., 2012; Kilbinger,
Fu, et al., 2013; Simpson et al., 2013). One particularly promising strategy to increase the
leverage on the evolution of the lensing signal with redshift is weak lensing tomography
(see Heymans et al., 2013b): the galaxies are divided into redshift bins, such that sources
in higher-redshift bins get lensed by a larger portion of mass inhomogeneities than those
at lower z. The redshift bins are modelled by different source distributions pi(zS), hence
the observables are the auto- and cross-correlation power spectra Equation 33, or the
corresponding correlation functions in real space.
Since the scales relevant for weak lensing surveys are non-linear, we expect the shear
field to have significant non-Gaussian correlation properties. Indeed, these have been
observed in Bernardeau, Mellier, and van Waerbeke (2002). Accurate inference of pa-
rameters using power spectra or an equivalent two-point statistic has to take these
into account (Cooray and Hu, 2001; Semboloni et al., 2007; Hartlap, Schrabback, et al.,
2009). In addition, using higher-order statistics such as skewness has the potential to
break parameter degeneracies in the shear power spectra (Bernardeau, Mellier, and van
Waerbeke, 2002; Kilbinger and P. Schneider, 2005); see Fu et al. (2014) and Simon et al.
(2015) for recent measurements of third-order statistics on CFHTLenS data.
The precision of the most recent weak lensing surveys has reached the point where the
uncertainties in cosmological parameters are limited by systematics; hence their proper
modelling will become even more important with the advent of even larger and deeper
data sets within the next decade, which are at least partly devoted to weak gravitational

34



Figure 8: Galaxy clustering: a slice from the 2dFGRS, a spectroscopic survey mapping the 3D
positions of approximately 220,000 galaxies (Cole, Percival, et al., 2005), displaying the
filamentary structure in the statistical distribution of clustered objects.
From http://www.roe.ac.uk/~jap/2df/2df_slice_black_big.gif.

lensing – most notably Euclid (Laureijs et al., 2011); the Kilo-Degree Survey (KiDS) (de
Jong et al., 2013; Hildebrandt, Viola, et al., 2016); the Dark Energy Survey (DES) (Becker
et al., 2015; Dark Energy Survey Collaboration, 2016); and the Large Synoptic Survey
Telescope (LSST) (LSST Dark Energy Science Collaboration, 2012).

1.3.2 Baryon Acoustic Oscillations

Before the recombination event, the baryonic part of the matter content consisted of free
electrons and ionised nuclei (mostly hydrogen and helium), tied together by Coulomb
scattering. Two forces act on them: gravity and the pressure of the photons, which is
only felt by electromagnetically charged particles. Due to the high number densities,
photons scatter off electrons efficiently, with a mean free path that is below the Hubble
horizon scale – the photonic, electonic and baryonic fluids are coupled together tightly,
and are constrained to move as a bulk.
If we express the perturbation in the photon monopole via the local deviations from the
average temperature Θ(t, x) = δT/T̄ = δργ/4ρ̄γ, and insert these into the conservation
equations for photon number and photon momentum, the following linear hyperbolic
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wave equation emerges (see Peebles and J. T. Yu, 1970; Hu and White, 1996; Hu and
Dodelson, 2002):[

d2

dη2 +
R′

1 + R
d

dη
+

k2

3(1 + R)

]
(Θ + Φ) =

k2

3

(
Φ

1 + R
−Ψ

)
. (38)

A similar equation can be derived for δb (see Eisenstein, Seo, and White, 2007). Here, a
prime ′ denotes a derivative with respect to conformal time η – see Equation 4. The
quantity R quantifies the impact of the baryons onto the photonic component: it is
defined as the quotient of baryonic to photonic spatial momentum densities:

R =
|πb|
|πγ|

=
3ρb

4ργ
. (39)

For every particle species in the cosmic inventory, this momentum density is the three-
dimensional momentum per unit spatial volume; its components are stored inside the
energy-momentum tensor Tµν for each species: (πX)

i = (TX)
i

0 . In the very early Uni-
verse the majority of the momentum is stored in photons (R � 1), but towards the
recombination event the drag of the baryons adds a considerable amount of inertia to
the photons.
Equation 38 is a damped harmonic oscillator in the Fourier domain, driven by the
gravitational potentials on the right hand side. The fact that the combination (Θ + Φ)

appears is just the Sachs-Wolfe effect explained in Section 1.2. Thus, we expect solutions
in the form of acoustic pressure waves propagating through the optically thick plasma,
with the sound speed

c2
s =

1
3(1 + R)

. (40)

These sound waves are commonly referred to as baryon acoustic oscillations BAO. First,
these waves move freely, but once baryon drag becomes important around recombina-
tion, R grows – the drop in sound speed and the increase of the friction term in Equa-
tion 38 shut off the wave propagation. Since the exit from inflation, they have travelled
a comoving distance of

rs =
∫ ηrec

ηi

dη cs(η) (41)

until the wavefronts get frozen in. This sound horizon is imprinted onto the baryonic
matter distribution as an enhanced correlation in the statistical matter distribution across
this length scale. It can also be seen in the CMB, the snapshot of the baryon-photon
plasma from the last moment it was optically thick, and determines the location of
the first acoustic peak in the multipoles of the temperature autocorrelation function
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Fig. 1.—Snapshots of evolution of the radial mass profile vs. comoving radius of an initially pointlike overdensity located at the origin. All perturbations are fractional
for that species; moreover, the relativistic species have had their energy density perturbation divided by 4/3 to put them on the same scale. The black, blue, red, and green
lines are the dark matter, baryons, photons, and neutrinos, respectively. The redshift and time after the big bang are given in each panel. The units of the mass pro-
file are arbitrary but are correctly scaled between the panels for the synchronous gauge. Top left: Near the initial time, the photons and baryons travel outward as a pulse.
Top right: Approaching recombination, one can see the wake in the cold dark matter raised by the outward-going pulse of baryons and relativistic species.Middle left: At
recombination, the photons leak away from the baryonic perturbation.Middle right: With recombination complete, we are left with a CDM perturbation toward the center
and a baryonic perturbation in a shell.Bottom left: Gravitational instability now takes over, and new baryons and darkmatter are attracted to the overdensities.Bottom right:
At late times, the baryonic fraction of the perturbation is near the cosmic value, because all of the newmaterial was at the cosmicmean. These figures weremade by suitable
transforms of the transfer functions created by CMBFAST (Seljak & Zaldarriaga 1996; Zaldarriaga & Seljak 2000).

Figure 9: Snapshots of radial mass profiles vs comoving radius for various matter components.
The simulation has been seeded with pointlike adiabatic overdensities at the origin at
t = 0 yrs, the contrasts are evolving and interacting, and demonstrating the imprint of
BAO onto the dark matter. From Eisenstein, Seo, and White (2007)

around ` ∼ 220, which corresponds to an angular scale of roughly one degree – see Fig-
ure 3. Figure 9 displays the interaction between different components before and after
recombination: in the first row of panels, matter and baryonic gas are tightly coupled
together, and jointly propagate outwards. Once the photons can stream freely (middle
panels), an overdensity in the baryonic component remains, shaped like a spherical
shell. The gravitational interaction between dark and baryonic matter imprints this
structure onto the dark matter species (lower panels). In the subsequent formation of
structure via gravitational collapse, the sound horizon feature persists to lower redshift.
Indeed, they also show up in the transfer functions (Eisenstein and Hu, 1998), and the
oscillations in the dark matter power spectra of Figure 4 are of baryon-acoustic origin –
they vanish once the baryon fraction Ωb is set to zero. Since baryons trace the dark
matter distribution, the correlation excess on the acoustic scale will be transferred to the
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Figure 3. The CMASS correlation function before (left) and after (right) reconstruction (crosses) with the best-fitting models overplotted (solid lines). Error
bars show the square root of the diagonal covariance matrix elements, and data on similar scales are also correlated. The BAO feature is clearly evident, and
well matched to the best-fitting model. The best-fitting dilation scale is given in each plot, with the χ2 statistic giving goodness of fit.

Figure 4. Average of the mock correlation functions before and after recon-
struction showing that the average acoustic peak sharpens up significantly
after reconstruction. This indicates that, on average, our reconstruction tech-
nique effectively removes some of the smearing caused by non-linear struc-
ture growth, affording us the ability to more precisely centroid the acoustic
peak.

(iii) spectroscopically confirmed stars (Nstar),
(iv) objects with BOSS spectra from which stellar classification

or redshift determination failed (Nfail),
(v) objects with no spectra, in a close-pair (Ncp),
(vi) objects with no spectra, or spectra removed following the

subsampling discussed in Section 3.3, not in a close-pair (Nmissed).

In the following, we define the number of target objects per sector

Ntarg = Nstar + Ngal + Nfail + Ncp + Nmissed + Nknown, (11)

and the number of targets observed per sector

Nobs = Nstar + Ngal + Nfail. (12)

The number of good galaxies used in the analysis per sector, Nused, is
less than Ngal + Nknown as we only use galaxies with 0.43 < z < 0.7.
Table 1 gives the total split of galaxies in the CMASS DR9 target
sample into these categories, where we define N̄x = ∑

sectors Nx ,
and the areas and weighted areas for the CMASS sample in the
Northern Galactic Cap (NGC) and Southern Galactic Cap (SGC),
and combined as derived from the DR9 data.

Considering the numbers of galaxies in each category per sector,
we can define a sector completeness as in equation (10), and the
galaxies with previously known redshifts are subsampled to match
this completeness, as well as the BOSS-only close-pair fraction as
detailed in Section 3.3. The distribution of sector completenesses
across the BOSS footprint is shown in Fig. 1. To remove sectors
that have only been partially observed, we only retain sectors with
CBOSS greater than 70 per cent.

We also make a cut on the total redshift failure within each sector.
First, we define a redshift completeness by

Cred = Ngal

Nobs − Nstar
. (13)

Then a sector is removed if it has more than 10 BOSS galaxy
spectra, but fewer than 80 per cent of the non-stellar spectra have
good redshift measurements (i.e. we remove sectors with Ngal >

10 and Cred < 0.8). For these sectors we assume that there was a
serious problem with the observations. Plate 3698 observed on MJD
55501 is responsible for many redshift failures; it comprised poor
data inadvertently included in DR9 with a CMASS failure rate of
23 per cent.

3.6 Systematic weights

Ross et al. (2011) have presented a critical examination of the large-
scale angular clustering of CMASS target galaxies. They demon-
strated that the density of stars has a significant effect on the ob-
served density of galaxies, and this can introduce spurious fluctu-
ations in the galaxy density field. This effect arises because stars
have a large-scale power signature in their distribution across the
sky. Additional potential systematics such as Galactic extinction,
seeing, air mass and sky background have also been investigated,
and all have been found to potentially introduce spurious fluctua-
tions into the galaxy density field, albeit to varying degrees. These
non-cosmological fluctuations can be corrected for using a weight-
ing scheme that minimizes these fluctuations as a function of a given
systematic effect (see fig. 4 of Ross et al. 2011).

Ross et al. (2012) investigated systematic effects on the 3D clus-
tering of the DR9 CMASS sample. They found that stellar density is
the primary source of systematic error, and that computing a set of
weights based on stellar density and ifib2 magnitude alone has a sim-
ilar effect to fitting for all five systematic sources simultaneously.
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Figure 10: Galaxy autocorrelation function of the BOSS CMASS data set. The BAO peak is clearly
visible. Right panel: it is possible to reconstruct the linear matter field from a non-
linearly evolved field of galaxies by tracing their proper motions (see Eisenstein,
Seo, Sirko, et al., 2007; D. H. Weinberg et al., 2013). This improves the measurement
precision by reversing the non-linear evolution degrading the acoustic feature. From
Anderson et al. (2012)

distribution of galaxies, and shows up as a bump in the galaxy correlation function, or
as oscillations in the power spectrum. It should be noted that the galaxy density contrast
δg need not be a faithful tracer of the underlying dark matter density contrast δc, or even
the baryon density δb; this phenomenon is known as galaxy bias. It can shift the location
of the BAO peak by almost up to one percent, and needs to be taken into account – see
Padmanabhan and White (2009) and Mehta et al. (2011) for theoretical and numerical
investigations.
The first observations of this feature in galaxy clustering data were by the Sloan Digital
Sky Survey (SDSS) (Eisenstein, Zehavi, et al., 2005) and almost simultaneously in the
2-degree field galaxy redshift survey (2dFGRS) data (Cole, Percival, et al., 2005). It has
since been observed by its successor collaboration, the 6-degree field galaxy redshift
survey (6dFGRS) (Beutler et al., 2011); by the WiggleZ Dark Energy Survey (Blake et al.,
2011); by the subsequent SDSS data releases DR5 (Percival, Cole, et al., 2007) and DR7

(Percival, Reid, et al., 2010), and by the Baryon Oscillation Spectroscopic Survey (BOSS),
which is a part of SDSS-III DR12 data release (Dawson, Schlegel, et al., 2013; Alam et al.,
2016).
Since the sound horizon is a feature present across a wide range of redshifts, it can be
used to constrain cosmological parameters (Eisenstein and Hu, 1998). Its comoving size
of about 150 Mpc is fixed, and functions as a standard ruler: by observing the angular
size of the correlation feature on the sky at different redshifts, we can infer the cosmic
expansion history by mapping the redshift dependence of the angular diameter distance
Equation 14, which varies with cosmology, particularly ΩK. Since we are mapping galaxy
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clustering at relatively low redshift, we expect to constrain dark energy and the Hubble
parameter; also, the amplitude of the correlation excess depends on Ωb/Ωc.
Future BAO programmes will extend the surveyed comoving volume by covering a larger
fraction of the sky and going to deeper redshifts; they will also focus on more galaxy
populations of interest. Upcoming spectroscopic surveys include eBOSS (Dawson, Kneib,
et al., 2016), DESI (Levi et al., 2013), PFS (Sugai et al., 2012), as well as the space-based
missions Euclid (Laureijs et al., 2011) and WFIRST (Green et al., 2012).
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2
S TAT I S T I C A L I N F E R E N C E F R O M D ATA

High on a rocky promontory sat an Electric Monk on a bored horse.
From under its woven cowl the Monk gazed unblinkingly into another
valley, with which it was having a problem. [...]
The Electric Monk was a labour-saving device, like a dishwasher or a video
recorder. [...] Electric Monks believed things for you, thus saving you what
was becoming an increasingly onerous task, that of believing all the things
the world expected you to believe. [...]
The problem with the valley was this. The Monk currently believed that the
valley and everything in the valley and around it, including the Monk itself
and the Monk’s horse, was a uniform shade of pale pink.

Douglas Adams
Dirk Gently’s Holistic Detective Agency

2.1 bayesian inference

It is integral to the scientific method to acknowledge that we are not searching for eternal
certainty, and that we are not capable of acquiring complete knowledge about the Real
World, even in principle. When gathering information from it, we aspire to structure it
to infer some of the Real World’s properties, and thus to learn about it – without ever
proclaiming that what we are gathering fulfils our notion of absolute truth – without ever
immunising ourselves against having to change our beliefs and theories in the future: the
history of science, which so far toppled every such attempt at a Theory of Everything™,
has taught the majority of scientists otherwise (Kuhn, 1970). Therefore, classical logic,
which handles statements that are either True or False and nothing in between, is of
limited use to the inference-based enterprise of science: when we put forward statements
about the Real World, we seek to compare their quality: how plausible are they, in the
face of the (limited) information we have gathered so far, and how does their plausibility
change once new information is added? This humble approach to science, inductive
inference, has proven tremendously successful.
The idea of using probabilities to quantify degrees of higher or lower plausibility of
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a certain statement was advocated by Bayes and Price (1763), and is widely known as
Bayesianism, although it has been disputed that Bayes was the first to publish the idea
that now bears his name (Stigler, 1983). This interpretation of the term “probability” has
later been rediscovered and substantially refined by de Laplace (1774, 1785, 1814). Mod-
ern treatments of Bayesian inference in science are Jeffreys (1961), Jaynes and Bretthorst
(2003), and Gelman et al. (2013), see also the lecture notes by Caticha (2008), and the
introduction written specifically for cosmologists by Trotta (2008).
There are different philosophical standpoints towards the precise definition and mean-
ing of “plausibility” within the Bayesian framework – see Hacking (2001). We shall
follow most data scientists in accepting the objective Bayesian stance: plausibility is a
degree of rational belief which can only be changed by new information and not by intro-
spection or revelation; two individuals beginning with the same assumptions, facing the
same information, will end up with the identical sets of plausibilities. A seminal result is
due to R. T. Cox (1946): if we make several weak assumptions on our way of consistently
assigning plausibilities to statements, it will coincide with standard probability theory.
Specifically, we wish these to be represented by positive real numbers ω(A|Z) – the
plausibility of statement A, assuming another statement Z1 as given. We now postulate

• that the plausibility of Ā, the negation of statement A, only depends on the
plausibility of A under the same assumptions: ω(Ā|Z) = f

[
ω(A|Z)

]
,

• that the joint plausibility of statements A and B only depends on the plausibility
of A, and the plausibility of B, given A: ω(A, B|Z) = g

[
ω(A|Z); ω(B|A, Z)

]
.

Then, according to R. T. Cox (1946), the following can be shown: there is a bijection from
ω(A|Z) to an equivalent set of real-valued plausibilities P(A|Z) – Bayesian probabilities –
such that

• absolute certainty is represented by P(A|Z) = 1, absolute falsehood by P(A|Z) =
0. Statements of this kind obey Aristotelian logic and thus form a Boolean algebra.

• the “sum rule” of negation: P(A|Z) + P(Ā|Z) = 1

• the “product rule” of conjunction:
P(A, B|Z) = P(A|Z)P(B|A, Z) = P(B|Z)P(A|B, Z).

This means that the powerful machinery of classical probability theory (Kolmogorov,
1933) is now completely at the disposal of inductive inference: a belief state on a certain
set of statements Ω is mathematically described by a probability space, i. e. a measure
space (Ω,S ,P) with P(Ω) = 1. Furthermore, n-dimensional real random variables are
measurable functions X : Ω→ Rn.

1 It is customary to always write these as conditional plausibilities, since realistically every inference always
hinges upon fundamental underlying assumptions – e. g. a certain model framework.
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Returning to the problem of inference about the Real World: let us assume a certain
modelM (this could be, e. g., flat ΛCDM) which allows for different statements (or theo-
ries) Θ, all of which are insideM in the sense that they make additional assumptions –
e. g. certain values for the density parameters Ωi and the Hubble parameter H0. We
begin with a certain belief state P(Θ|M), and wish to incorporate new information in
the form of a data set D. The result will be an updated belief state P(Θ|D,M), and the
learning step from one to the other is referred to as Bayesian updating. The product rule
of conjunction provides a recipe how to jump from one to the other:

Theorem 1 (Bayes’ Theorem)

P(Θ|D,M) =
P(D|Θ,M)P(Θ|M)

P(D|M)
. (42)

In standard probability theory this is just a trivial consequence of the definition of
conditional probability, but adding the Bayesian interpretation it forms the cornerstone
for the framework of inductive inference: it describes how we transform information
into knowledge. Each ingredient has name and meaning:

• the prior distribution π(Θ) = P(Θ|M) on the space of theories,

• the posterior distribution Π(Θ) = P(Θ|D,M) after updating,

• the likelihood L(D|Θ) = P(D|Θ,M) is modelling the full process by which the
data set D was produced, and its dependence on the specific theory Θ,

• the model evidence E(M) = P(D|M) =
∫

dΘP(D|Θ,M)P(Θ|M) is, for the time
being, just a factor ensuring that the posterior is properly normalised. However, in
Section 2.1.2 this number will prove to be crucial for comparing different models
M1 andM2.

Criticism of the Bayesian inference paradigm often attacks the incorporation of priors as
subjective and dependent on the particular whims of the researcher choosing one set of
prior beliefs over another. It should be noted that priors are a feature and an integral part
of the whole endeavour: in situations where the data set is small, the prior will influence
the posterior significantly, compared to the likelihood (this may change once more data
accumulates). Then, there are good explicit reasons for choosing one distribution over
another – one may want to model the outcome of another experiment as knowledge
which we now attempt to build on (informative prior). This allows the combination of
multiple data sets to merge the information inside them. Often, only certain ranges of
parameters are physically sensible – particle masses need to be non-negative numbers;
often, model assumptions hinge upon certain parameters not leaving a certain interval –
all this can be enforced by setting the prior distribution outside of the desirable region
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to zero. If Θ is confined to a finite volume, a uniform distribution can be used to model
the lack of preference of any point in said volume over any other (flat prior). There are
more sophisticated methods to construct priors modelling ignorance (objective priors, see
Ghosh, Delampady, and Samantha, 2006), or priors which maximise information gain
from the data set (reference priors, see Berger, Bernardo, and Sun, 2009), or priors which
maximise the ignorance before taking the data (entropic priors, see Skilling, 1989).
Since any data analysis step is only complete with data set and likelihood in conjunction
with a specific prior, we can see that there is nothing perniciously subjective in the
Bayesian paradigm, since jointly they uniquely determine the posterior distribution –
the scientist is ultimately accountable for selection and explicit reporting of the prior
they have used.

2.1.1 Parameter Estimation

For the practising Bayesian cosmologist, theory spaces tend to be bounded or unbounded
domains in Rn, and the distribution laws (prior and posterior) on the parameter vector
Θ are probability densities with respect to the Lebesgue measure. Bayesian updating
through a data set will result in a multivariate distribution as the outcome of an observa-
tion or experiment, and it is this full distribution which is to be reported by the scientist –
see Section 2.2 for the state-of-the-art methods to do this. Often, one is interested only
in the expectation value

E[Θi] = 〈Θi〉 =
∫

dΘ ΘiΠ(Θ), (43)

and the variance (square of the error bar)

Var[Θi] = σ2
Θi

=
〈
(Θi − 〈Θi〉)2〉 = 〈Θ2

i 〉 − 〈Θi〉2, (44)

for each of the parameters under the posterior density Π(Θ), since these numbers give
us an idea of the location and typical width of the distribution in parameters space.
Nevertheless, it is important to take note that the full distribution Π(Θ) contains more
information – about the cross-covariances of Θi and Θj (i 6= j):

Cov[Θi Θj] =
〈
(Θi − 〈Θi〉)(Θj − 〈Θj〉)

〉
, (45)

and about all the higher moments 〈ΘiΘj · · ·Θk〉. These numbers quantify, e. g., the
skewness and the kurtosis of the distribution, as well as the long-distance decay be-
haviour – everything that is not contained in a quadratic expansion of ln Π(Θ) around
its maximum.
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CFHTLenS: Tomographic weak lensing 13

by±7 per cent. Note that we chose the value of 7 per cent from the
average error over the range of k scales tested in Eifler (2011). For
angular scales where more than a 10 per cent difference is found in
the expected signal, between these two different non-linear correc-
tion regimes, we remove these scales from our analysis. As the ξ−
statistic probes significantly smaller k scales compared to the ξ+
statistic, at a fixed θ, we cut more ξ− data than ξ+ (see Benjamin
et al. 2013, for further discussion). For ξ+, our requirement for less
than a 10 per cent deviation corresponds to the removal of data with
θ <∼ 3 arcmin for tomographic bin combinations including bins 1
and 2. For ξ−, this corresponds to removing data with θ <∼ 30 ar-
cmin for tomographic bin combinations including bins 1, 2, 3 and
4, and data with θ <∼ 16 arcmin for tomographic bin combinations
including bins 5 and 6. Applying these cuts in angular scale results
in a final data vector of length p = 120. As the ξ± statistic is an
integral over many k scales weighted by J0 and J4 Bessel func-
tions, one cannot directly relate the limits we place on θ, to limits
on k. We note, however, that as these cuts do preferentially remove
the smallest physical k scales where the theoretical prediction to
the power spectrum is expected to be most impacted by baryonic
feedback effects. This conservative analysis to test the non-linear
correction therefore also works as a mitigation strategy to avoid
uncertain baryon feedback errors. For this conservative analysis we
find no change in the best-fit measurement of σ8(Ωm/0.27)α, but a
reduction in the constraining power by roughly 20 per cent (see the
‘Low θ scales removed’ row in table 2). We also lose roughly 20
per cent of the constraining power on the intrinsic alignment am-
plitude A with this conservative analysis. As the best-fit value for
σ8(Ωm/0.27)α remains unchanged, we can conclude that the in-
clusion of small-scale data does not introduce any significant bias
in our results. Furthermore, as our focus for this analysis is the mit-
igation of intrinsic galaxy alignments, which are most tightly con-
strained by the low-redshift bins preferentially cut with this type
of conservative analysis, the CFHTLenS results that follow include
the full angular scale range shown in Figure 2.

4.3 Joint Cosmological Parameter constraints

We present joint cosmological parameter constraints from
CFHTLenS combined with WMAP7, BOSS and R11 for four cos-
mological models testing flat and curved ΛCDM and wCDM cos-
mologies. Table 3 lists the best-fit 68 per cent confidence limits for
our cosmological parameter set for the combination of CFHTLenS
and WMAP7 (first line for each parameter), CFHTLenS, WMAP7
and R11 (second line for each parameter) and for CFHTLenS,
WMAP7, BOSS and R11 (third line for each parameter). For
comparison the figures in this section also show constraints for
WMAP7-only and WMAP7 combined with BOSS and R11. We
refer the reader to Komatsu et al. (2011) and Anderson et al.
(2012) for tabulated cosmological parameter constraints for the
non-CFHTLenS combination of data sets shown, noting that we
find good agreement with their tabulated constraints. We also re-
fer the reader to Kilbinger et al. (2013) for CFHTLenS-only pa-
rameter constraints for the curved and wCDM cosmological mod-
els tested in this section. Whilst CFHTLenS currently represents
the most cosmologically constraining weak lensing survey, it spans
only 154 square degrees and is therefore not expected to have sig-
nificant constraining power when considered alone. This is demon-
strated in Figure 5 which compares parameter constraints in the
σ8 − Ωm plane for a flat ΛCDM cosmology. The wide constraints
from CFHTLenS-only are shown in pink (note the inner 68 per
cent confidence region was shown in pink in Figure 4), in compar-

Figure 5. Flat ΛCDM joint parameter constraints (68 and 95 per cent
confidence) on the amplitude of the matter power spectrum controlled by
σ8 and the matter density parameter Ωm from CFHTLenS-only (pink),
WMAP7-only (blue), BOSS combined with WMAP7 and R11 (green), and
CFHTLenS combined with BOSS, WMAP7 and R11 (white).

ison to the tight constraints from WMAP7-only (blue). The power
of lensing, however arises from its ability to break degeneracies
in this parameter space owing to the orthogonal degeneracy direc-
tions. BOSS combined with WMAP7 and R11 is shown green and
when CFHTLenS is added in combination with BOSS, WMAP7
and R11 (white) we find the combined confidence region decreases
in area by nearly a factor of two. As we will show in this section,
the tomographic lensing information presented in this analysis is
therefore very powerful when used in combination with auxiliary
data sets.

The figures that follow in this section all compare constraints
for different combinations of cosmological parameters and cosmo-
logical models with the following colour-scheme: WMAP7-only
(in blue), WMAP7 combined with CFHTLenS and R11 (in pink),
WMAP7 combined with BOSS and R11 (in green) and all four
data sets in combination (in white). Comparing the green contours
with the pink contours allows the reader to gauge the relative power
of BOSS and CFHTLenS when either survey is used in combina-
tion with WMAP7 and R11. Comparing the green contours with the
white contours allows the reader to gauge the extra contribution that
CFHTLenS makes to BOSS, R11 and WMAP7 in breaking differ-
ent parameter degeneracies and constraining cosmological param-
eters.

4.3.1 Constraints in the σ8 − Ωm plane

Figure 6 shows joint parameter constraints on the normalisation of
the matter power spectrum σ8 and the matter density parameter
Ωm for four cosmological models: flat ΛCDM, flat wCDM, curved
ΛCDM and curved wCDM. The comparison of the results for the
four cosmological models show the decreased WMAP7 sensitiv-
ity to these two cosmological parameters when extra freedom in
the cosmological model is introduced, such as dark energy w0, or
curvature. We find slightly tighter constraints from CFHTLenS in
combination with WMAP7 and R11 (pink), in comparison to BOSS

c© 0000 RAS, MNRAS 000, 000–000

Figure 11: Example posterior density of
the CFHTLenS tomography data
set in combination with various
other data sets. Shown are 68%
and 95% credible regions. From
Heymans et al. (2013b) – see
there for details on the data.

For illustrative purposes, it is useful to plot
credible regions of posterior distributions –
often called contours, in slight abuse of
terminology. These are the surfaces of constant
probability density Π(Θ) which happen to
enclose a given probability mass 0 < p ≤ 1.
Custom values are p = 68.3%, 95.4% and
99.73% (one/two/three sigma) – see Figure 11

for credible regions of an example poste-
rior density on the cosmological parameters
Θ = (Ωm, σ8). These numbers stem from
the paradigmatic standard Normal distribution
which has the density

N (θ) =
1√
2π

exp
(
− θ2

2

)
(46)

for θ ∈ R. It has vanishing mean and unit
variance, and the concentric intervals [−n, n]
contain the above probability masses of p = 0.683, 0.954, 0.997 for n = 1, 2, 3.
Its generalisation to arbitrary location, spread, and correlation is the multivariate Gaussian
distribution, which has the property that it is fully quantified by its mean vector µ = 〈Θ〉
and its variance-covariance matrix Σ = (Σij) = (Cov[ΘiΘj]):

G(Θ; µ, Σ) =
1√

(2π)n det Σ
exp

[
−1

2
(Θ− µ)TΣ−1(Θ− µ)

]
. (47)

Its credible regions are always the shape of ellipsoids with coincident axes – ostensibly
the 2D example in Figure 11 (pink) shows significant deviations from a Gaussian. The
analysis of Heymans et al. (2013b) actually includes five parameters into its flat ΛCDM

model: Θ = (Ωm, σ8, Ωb, h, nS). The posterior on (Ωm, σ8) in Figure 11 has been found by
marginalisation: if we are only interested in the distribution on a subset of parameters θ

instead of the full distribution of Θ = (θ, ψ), we can integrate out the nuisance parameters
ψ:

Πmarg(θ) =
∫

dψ Π(θ, ψ). (48)

This technique is one strength of the Bayesian approach to inference: often, it is necessary
to include parameters into the analysis that are not of physical interest, but that
model systematics, such as physical contaminations, calibration parameters, or properties
of the measurement device. These can be included into the analysis in a consistent
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manner, and afterwards removed via marginalisation. As an example, the analysis of
Planck data included six cosmological parameters in the baseline flat ΛCDM model,
and additionally 26 nuisance parameters quantifying foregrounds and calibrations (see
Planck Collaboration, 2015b,c).
Another important feature of the distribution shown in Figure 11 is the presence of a
near-degeneracy in the CFHTLenS-only data (pink). It is possible to move along a ridge
of comparably plausible parameter values (high posterior density values), which spans
a wide range for each of the parameters – hence the marginalised constraints on Ωm

and σ8 on their own are not strong. Only a certain combination of these parameters –
that which changes when moving across the ridge – is strongly constrained by the data.
Note that this direction is the least well-constrained by the WMAP measurement of the
CMB (blue, see Komatsu et al., 2011). Hence a combination of both data sets resolves the
problem due to their mutual complementarity, and yields good marginal constraints for
each of the parameters – such a complementarity is referred to as lifting the degeneracy.

2.1.2 Model Selection

Given the choice between two models describing the same observational phenomenon,
but which are different in their basic tenets, which should be chosen to explain the
underlying science? An early approach to the question stated that the model with
the least amount of assumptions, or the simplest ones, is to be preferred, such that
none of them is dispensable. This parsimony of hypotheses is still a vital element
in scientific thinking, and is commonly attributed to the medieval monk William of
Ockham (“Ockham’s Razor”), although the idea traces back to Aristotle (ca. 350 BCE).
We can also use a modern Bayesian framework to address these questions: which of
two models should we prefer when inferring from a data set? Is the extra complexity
of one over the other justified, given the potential gain in predictivity? This shifts the
focus from “least assumptions” to “most predictive assumptions”, it also carves out the
notion of predictivity with more precision (Jeffreys, 1935, 1961; Kass and Raftery, 1995),
see also Jaynes and Bretthorst (2003) and Gelman et al. (2013).
We proceed in the spirit of interpreting a Bayesian probability as a quantifier of the
plausibility of an assertion: instead of comparing the plausibility of several theories Θi,
given one model M, we can ask for the plausibility of different models Mi in the face
of data D – rephrasing Equation 42 on the set of models:

P(Mi|D)
P(Mj|D)

=
P(D|Mi)

P(D|Mj)

P(Mi)

P(Mj)
=

E(Mi)

E(Mj)

P(Mi)

P(Mj)
. (49)

Hence, stepping from the prior odds ratio P(Mi)/P(Mj) to the posterior odds ratio
P(Mi|D)/P(Mj|D), the crucial quantity is the ratio of evidences Bij = E(Mi)/E(Mj),
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| ln B21| odds ratio interpretation

0− 1 < 3 : 1 inconclusive
1− 2.5 ∼ 3 : 1 substantial evidence
2.5− 5 ∼ 12 : 1 strong evidence
> 5 > 150 : 1 decisive evidence

Table 1: Jeffreys’ scale for translating Bayes factors into verdicts.

known as the Bayes factor.
Each modelMk has its own parameter space {Θk}. The evidence is an integral over the
non-normalised posterior

E(Mk) =
∫

dΘk P(D|Θk,Mk)P(Θk|Mk), (50)

which explains the frequently-(ab)used term marginal likelihood. It can be computation-
ally expensive or impossible to compute, if the parameter space is high-dimensional.
There are several heuristic information criteria, which are approximations to the Bayesian
evidence and can be easier to compute in specific situations (Liddle, 2007), but only
the evidence can be justified from the information theoretic formalism laid out by Cox’
axioms.
Progress can be made in the context of nested models (Dickey, 1971; Verde, Feeney, et al.,
2013), by what is known as the Savage-Dickey Density Ratio (SDDR). Assume that the
parameters of one model M1 can be split apart: Θ1 = (Θ2, Ψ). The lower-dimensional
model M2 shall be a hypersurface in this parameter space specified by setting Ψ = Ψ0

constant, and its coordinates are the parameters common to both models, namely Θ2.
It can be shown that upon weak consistency requirements the evidence ratio can be
expressed as

B21 =
E(M2)

E(M1)
=
Pmarg(Ψ = Ψ0|D,M1)

Pmarg(Ψ = Ψ0|M1)
. (51)

Here Pmarg(Ψ|D,M1) and Pmarg(Ψ|M1) are posterior and prior density of M1, margi-
nalised down to only the extra parameters Ψ. This is intuitive: if the probability mass on
the hypersurface Ψ = Ψ0 increases during Bayesian updating, this will tilt our preference
towards the submodel.
To judge different values for ln B21, the terminologies laid out in Table 1, or slight
variations thereof, are in frequent use to relate betting odds ratios to their intuitive
meaning and to the outcome of the model comparison (see Jeffreys, 1961; Kass and
Raftery, 1995; Trotta, 2008; Verde, Feeney, et al., 2013). It should be noted, however, that
this classification scheme is purely a matter of semantics – the numerical value speaks
for itself.
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2.2 sampling

One main lesson from Bayesian data analysis is that the outcome of an inferential
analysis is represented by a posterior probability distribution on the space of model
parameters. This begs the question – how to report it to fellow scientists? In only the
easiest cases can we expect to derive an analytic form for the density, for every realistic
problem we will have to rely on finite-dimensional summary statistics (like means and
covariances), which necessarily discard information about the full distribution. Plots of
credible regions, as illustrative as they may be, do not allow a reconstruction of the
posterior density.
Currently the most practical solution is to produce large samples, i. e. sets of points
in parameter space that are (ideally) independent and identically distributed (iid) draws
from the target distribution. In this case, the point density converges almost surely to the
probability density (i. e. the set of cases on which this does not happen has probability
measure zero); this is a consequence of the Strong Law of Large Numbers. We will
present two modern methods to produce approximately iid samples in Section 2.2.1 and
Section 2.2.2.
One frequent problem is the computation of expectation values of functions on para-
meter space. With an iid sample {Xi}Ni=1 drawn from a target distribution Π(X), the
expectation value of any function F(X) weighted with the same distribution can be
approximated as

〈F〉Π =
∫

dX Π(X) F(X) ' 1
N

N
∑
i=1

F(Xi), (52)

where convergence is guaranteed almost surely for N → ∞.
Another advantage of iid samples is facilitated marginalisation: assuming that p : X 7→ x
projects the parameter vector X down to a subset of its entries x, then {p(Xi)}Ni=1 is
automatically a sample of the marginal distribution Πmarg(x) – in practice this is easily
achieved by discarding all coordinates of the sample points that we are not interested in.
How to reconstruct the probability density from a sample thereof? Many approaches
can be captured in the idea of kernel density estimation (KDE) (Rosenblatt, 1956; Parzen,
1962), which is in widespread use in cosmology2. To smooth out the points {Xi}Ni=1

into a continuous density, centre a unimodal null-centered probability density Kh(X) of
suitably chosen width h (kernel) onto each sample point, and sum up the contributions
from all points:

Π̂h(Y) =
1
N

N
∑
i=1

Kh(Y− Xi). (53)

2 See, e. g. the popular GetDist package: http://getdist.readthedocs.io.
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Popular choices for the kernel are multivariate Gaussian, uniform (top-hat), Epanech-
nikov (truncated parabola), and many more (Silverman, 1986). One main advantage of
this approach is that it is non-parametric: no assumptions have to be made about the
point distribution, and the resulting density estimate is entirely data-driven.
However, the KDE method has shortcomings: often the plots of credible regions as found
via KDE are still ragged and require further smoothing. The evaluation of the estimator
Π̂h can be slow for large sample size. Its value still depends on the particular choice
of kernel Kh(X); so do continuity, differentiability and smoothness of the estimated
density function. Also – it is vital to choose the kernel bandwidth h correctly; one
common approach is to minimise the mean integrated square error (MISE), or a suitable
approximation thereof. At each point Y, the estimator Π̂h(Y) has a distribution due to
sampling scatter, with expectation value E

[
Π̂h(Y)

]
and variance Var

[
Π̂h(Y)

]
– all of

these are bandwidth-dependent. With some algebra we find that

MISEh = E

∫
dY

{
Π(Y)− Π̂h(Y)

}2

=
∫

dY Var
[
Π̂h(Y)

]
+
∫

dY
{

Π(Y)−E
[
Π̂h(Y)

]}2
. (54)

The MISE – the expected quadratic deviation from the truth – is composed of one term
quantifying the variance of the density estimator and one for its squared bias – typically,
choosing h too high will cause the bias term to grow, whereas a value too low increases
the variance term. This trade-off between variance and bias means that there may be a
compromise in between, but the density estimate – and hence the contours – will still be
somewhat biased and noisy. Under additional assumptions – multivariate Gaussianity
of the target distribution, multivariate Gaussian kernel – an analytic form for the ideal
bandwidth is found to be

hopt =

[
4

N (2d + 1)

] 1
d+4

, (55)

where d is the dimension of parameter space. Even if the assumption regarding the
target density is only approximately satisfied, it is often used as a rule of thumb, known
as Silverman’s rule (Silverman, 1986).

2.2.1 Markov Chain Monte Carlo (MCMC)

Drawing iid pseudo-random samples directly from multivariate random distributions is
only possible for select densities with analytic expressions, e. g. uniform or Gaussian.
For generic high-dimensional distributions, like most posterior densities encountered
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in cosmology, more advanced strategies are necessary – of which MCMC is the modern
gold standard, and in wide use in many areas of science (see Gilks, Richardson, and
Spiegelhalter, 1995; Brooks et al., 2011; Gelman et al., 2013) – early applications of the
technique in cosmology are Christensen et al. (2001) and Lewis and Bridle (2002).
Samples {Xi}Ni=1 are produced by a random walk through parameter space, which fol-
lows the defining property of a discrete-time Markov chain: the distribution of a new point
Xk+1 does only depend on the location of the last point Xk and is given by P(Xk+1|Xk).
If this distribution (transition kernel) is designed carefully, taking into account the target
distribution Π(X), then the point density will indeed converge in distribution against
Π(X) almost surely. For an ergodic Markov chain, the sufficient criterion for this to
happen in the limit N → ∞ is the detailed balance property: for all points X, Y

P(Y|X)Π(X) = P(X|Y)Π(Y). (56)

One family of sampling strategies that satisfy this condition by design is Metropolis-
Hastings (see Metropolis et al., 1953; Hastings, 1970): to transition from one sample point
Xk to the next, iterate the following steps:

1. Draw a proposal point Y from a jumping distribution J(Y|Xk).

2. Consider the ratio of target densities between the current point and the proposal
point, corrected by the possible asymmetry in the jumping distribution:

r =
Π(Y)
Π(Xk)

J(Xk|Y)
J(Y|Xk)

. (57)

Is r ≥ 1?

Yes: accept the proposal, Xk+1 = Y.

No: draw a random number α ∼ U [0; 1]. Is α < r?

Yes: accept the proposal, Xk+1 = Y.

No: reject the proposal, Xk+1 = Xk.

Intuitively, accepting points with lower target distribution values is what allows the
chain to explore the full likelihood surface representatively, including the tails (this
behaviour is known as proper mixing), instead of just hunting for the mode. The choice
of the starting point does not matter if the iteration is set up properly: the chain will
quickly move towards the support of the equilibrium distribution and “forget” about
its initial state. It is customary to discard several hundred steps at the beginning, until
convergence has been reached (burn-in). Further, the points of a converged chain will
still be dependent: to provide an iid sample, it is necessary to decorrelate the chain by
retaining only every kth point, where k is an integer larger than the typical correlation
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length (a common heuristic is k = 10).
The explicit choice of the jumping distribution requires proper care: if it is chosen
too narrowly, then the chain will not be mixing; if chosen too widely, the algorithm
becomes ineffective due to high rejection rates. It is custom practice to start several
chains with over-dispersed starting points, to get an idea of the typical width of the
target distribution, and to use that knowledge to adapt the width of the jumping kernel.
There exist several tools to judge whether proper convergence and mixing have been
achieved after a finite number of steps, which is a major challenge – especially in high-
dimensional parameters spaces, and for likelihood surfaces with peculiar shapes or
multiple modes (see Cowles and Carlin, 1996, for a comparative review).
Modern precision cosmology has profited immensely from implementing MCMC as the
standard scientific tool to transfer and report probability distributions. The full data
products of the Planck satellite are freely available online in the Planck Legacy Archive
(http://pla.esac.esa.int/pla/#home) – the full grid of chains for all models and data
sets considered are about 13 GB in volume (Planck Collaboration, 2015a,c). See also the
Legacy Archive for Microwave Background Data Analysis (http://lambda.gsfc.nasa.
gov/) providing chains for an eclectic collection of data sets and models.
Software implementations of MCMC that are in widespread use in cosmology include
the following:

• CosmoMC: Lewis and Bridle (2002), see http://cosmologist.info/cosmomc/;

• AnalyzeThis!: Doran and Müller (2004), see https://github.com/EdoardoCarlesi/
cmbeasy;

• emcee: Foreman-Mackey et al. (2013), see http://dan.iel.fm/emcee/current/;

• its cosmology wrapper CosmoHammer: Akeret et al. (2012), see https://github.com/

cosmo-ethz/CosmoHammer;

• Monte Python: Audren et al. (2013), see https://github.com/baudren/montepython_

public/.

2.2.2 Population Monte Carlo (PMC)

An alternative sampling algorithm, PMC, is based on importance sampling: if we have
a probability density q(X) which is a reasonable approximation to the target density
Π(X), and which is easy to sample, it is possible to reweight an iid sample {Xi}Ni=1 of q to
produce a weighted sample {(Xi, wi)}Ni=1 of Π. This works because of the observation that
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the expectation value of any function F(X) under q can be found directly by averaging
over the sample

〈F〉q =
∫

dX q(X) F(X) ' 1
N

N
∑
i=1

F(Xi), (58)

hence the expectation value under Π

〈F〉Π =
∫

dX Π(X) F(X) =
∫

dX q(X)
Π(X)

q(X)
F(X) ' 1

N
N
∑
i=1

wiF(Xi) (59)

can be expressed as a weighted average of F over the same points, provided we set the
weights to wi = Π(Xi)/q(Xi). PMC is an adaptive importance sampling scheme, which
aims to iteratively approximate the target density by a Gaussian mixture model, i. e. a
convex combination of D multivariate Gaussian probability densities

qt(X) =
D

∑
d=1

λt
d G(X; µt

d
, Σt

d), (60)

each with their individual mean vector µt
d

and covariance matrix Σt
d; the component

weights λt
d ≥ 0 are required to satisfy the normalisation constraint ∑d λt

d = 1. The
quantities (λt

d, µt
d
, Σt

d) are being updated in every iteration step t = 1, 2, · · · tmax. The
objective of the iteration is to minimise the Kullback-Leibler divergence (also relative entropy)
between both distributions Π and q:

DKL(Π || q) =
∫

dX Π(X) ln
Π(X)

q(X)
. (61)

This is a frequently used measure for the dissimilarity of two probability distributions,
which has the properties of being positive definite – DKL(p||q) ≥ 0, (and = 0 if and only
if p ≡ q p-almost everywhere) – and usually asymmetric – DKL(p||q) 6= DKL(q||p). For
details on, and variants of, the optimisation procedure, see Cappé, Guillin, et al. (2004),
Cappé, Douc, et al. (2007), Douc et al. (2007a,b), and Wraith et al. (2009).
As a byproduct, the PMC algorithm produces an estimate of the model evidence: if we
sample the posterior distribution Π(X) = P(X|D,M) of data set D in modelM, then

E(M) ' 1
N

N
∑
i=1

wi, (62)

where the precision of the estimate depends on the closeness of q and Π (Kilbinger,
Wraith, et al., 2010). A common diagnostic for convergence of proposal density qt(X) is
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the perplexity, a quantity derived from the Shannon entropy Ht of the distribution of the
normalised weights w̄t

i :

p =
1
N exp[Ht]; Ht = −

N
∑
i=1

w̄t
i ln w̄t

i ; w̄t
i =

wt
i

∑Nk=1 wt
k

. (63)

In the ideal case where qt ≡ Π, all weights w̄t
i = 1/N , and p = 1; in practice, a value of

p > 0.7 will result in reliable sampling of the posterior density.
A popular cosmology sampler using PMC is CosmoPMC (Wraith et al., 2009; Kilbinger,
Benabed, et al., 2011) – see http://www2.iap.fr/users/kilbinge/CosmoPMC/ for source
code, and Kilbinger, Wraith, et al. (2010), Heymans et al. (2013b), and Kilbinger, Fu, et al.
(2013) for applications of CosmoPMC to CFHTLenS and other data sets.

2.3 non-gaussian random variables

The Gaussian probability density (Equation 47) is one of the most fundamental build-
ing blocks of stochastics and omnipresent in probabilistic inference. This stems from
two fundamental reasons: for a real-valued random variable, the Gaussian probability
density maximises the differential entropy functional

H[p] = −〈ln p〉p =
∫

dx p(x) ln p(x) (64)

under the constraints of fixed mean µ = 〈x〉 and fixed variance σ2 = 〈x2〉 − µ2. This
functional is the generalisation of Shannon entropy for a continuous variable x (Shannon,
1948); it is commonly interpreted as measuring the amount of information about x,
where high entropy corresponds to high uncertainty, or lack in information (Cover and
J. A. Thomas, 2006; Caticha, 2008). In this sense, the Gaussian distribution is the most
economical assumption for a probability density of which only location and width are
known.
The other reason for the importance of the Normal distribution is the Central Limit
Theorem (see de Moivre, 1738; de Laplace, 1812; Lyapunov, 1901; Lindeberg, 1922; Lévy,
1925; Turing, 1938, or any introductory text on probability theory): Let X1, X2, ... be a
sequence of iid real random variables with mean µ and variance σ2 < ∞. Let

Sn =
1
n

n

∑
i=1

Xi (65)

be the average value of {X1 . . . Xn}. Then, as n → ∞, the random variable
√

n Sn−µ
σ will

converge in distribution towards a Normal variate with mean zero and variance one.
Inference often deals with the sum or average of iid variates – e. g. the log-likelihood
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L(D|θ) for a data set D = {(Xi, Yi)}N
i=1, with theoretical model Yθ(X). If every measure-

ment Yi of the quantity Y has an error bar σi, then a common ansatz to assemble the
log-likelihood is

L(D|θ) ∝
N

∑
i=1

[Yi −Yθ(Xi)]
2

σ2
i

. (66)

If there are enough data points, and as long as the measurements are independent,
the shape of the likelihood will be asymptotically Gaussian in the data even if the
distribution of each measurement on its own is not. Additionally, if the model Yθ(X)

is linear in θ, the likelihood will also have a Gaussian dependence on the parameters θ.
However, often enough the latter assumption is not satisfied, and random variates of
cosmological interest are not well described by Gaussian variables (see, e. g., Figure 11);
in these situations recording only the first two cumulants, i. e. sample mean and sample
variance, will discard information about the distribution.

2.3.1 Classical Gaussianity Tests

Given a sample D = {x1, . . . , xn} from a probability distribution (i. e. a data set), has
it been drawn from a Gaussian density? The first methods to address this question
were formulated in the framework of classical hypothesis testing, which is a frequentist
approach to statistical decision theory developed and popularised by Fisher (1925) and
Neyman and Pearson (1933); for the dispute between the creators about the role of hy-
potheses, see e. g. Fisher (1958), Lehmann (1993), and Lenhard (2006), and also Kendall
et al. (1999) for the modern consensus synthesizing their work.

Classical tests of Gaussianity proceed to compare the hypotheses

H0 (null hypothesis): the distribution is Gaussian –

Ha (alternative hypothesis): the distribution is not Gaussian –

in the face of the data set D. The decision is made via the p-value – i. e. the probability
that a result as extreme as D (or more extreme) can occur assuming H0 is true. If this
probability is less than a fixed value α that has been set before performing the test,
the null hypothesis is rejected in favour of the alternative hypothesis. The number α is
known as the significance level of the test, a commonplace heuristic is α = 0.05.
The framework laid out by hypothesis testing and p-values is in widespread use across
areas of science science as manifold as biology, sociology, medicine and epidemiology,
pharmacology, economics, criminology, political science, and psychology, and is not
without controversy – partly because of the arbitrariness of the choice of α, partly be-
cause of epidemic misunderstandings about their interpretation (e. g. it is often wrongly
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treated as “the probability that H0 is true”), partly because of various other logical,
methodological, statistical, and philosophical concerns – see, e. g., Bakan (1966), Good-
man (1992), Schervish (1996), Hunter (1997), Goodman (1999), Ioannidis (2005), Mur-
doch, Tsai, and Adcock (2008), Lambdin (2012), Trafimow and Marks (2015), and Wasser-
stein and Lazar (2016) as well as many other contributions3.
We will focus on one Gaussianity test in detail: Shapiro and Wilk (1965) proposed the
statistic W in order to test a univariate sample for Gaussianity. Given D = x1, . . . , xn,
define the vector containing xi as entries, but in ascending order: y = [y1, . . . , yn]T, such
that y1 ≤ y2 ≤ . . . ≤ yn, and {xi} = {yi}. Then,

W =
(∑n

i=1 aiyi)
2

∑n
i=1(yi − ȳ)2 , (67)

where ȳ = ∑ yi/n is the sample mean, and the weight vector a is defined via

a =
V−1m√

mTV−1V−1m
. (68)

Here, m and V are mean vector and covariance matrix of the order statistics for a sample
of length n, drawn from a univariate Normal distribution; these can be approximated
in closed form (Royston, 1992, 1993). These publications also present expressions for the
distribution of the W statistic, provided that the null hypothesis holds; this is needed
for the computation of the p-value.
The Shapiro-Wilk test has been compared to other classical tests of Gaussianity (Stephens,
1974; Pearson, D’Agostino, and Bowman, 1977; Razali and Wah, 2011). In terms of sta-
tistical power, i. e. the probability of rejecting the null-hypothesis under the assumption
that it is false, it outperforms all other common Gaussianity test, including Kolmogorov-
Smirnov, Anderson-Darling, D’Agostino, and Lilliefors; hence, it is generally accepted
as the strongest classical test of Gaussianity.

2.3.2 Random Fields

Random fields can be thought of as the infinite-dimensional extension of random vari-
ables; or equivalently, as the multi-dimensional generalisation of stochastic processes in
the time domain. They are frequently applied in statistical cosmology – see Bardeen et al.
(1986), and also Adler and J. E. Taylor (2007) for a rigorous mathematical treatment on
arbitrary Riemannian manifolds.

3 Accessible, non-technical discussions emphasizing the common practice and its impact on experimental
research include http://www.nature.com/news/scientific-method-statistical-errors-1.14700/,
http://fivethirtyeight.com/features/science-isnt-broken/, and also
http://www.youtube.com/watch?v=42QuXLucH3Q.
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Intuitively, a random field in d dimensions is a way to attach a real or complex random
variable to each point in Rd, such that each realisation of the field configuration is
sufficiently regular (e. g. has a Fourier transform).
More precisely: let (Ω,S , P) be a probability space. A random field on an open set Γ ⊆ Rd

is a map ζ : Γ×Ω → R or C; (x, ω) 7→ ζω(x). At each point x ∈ Γ we require the field
strength ζ(x) ≡ ζ•(x) to be a random variable, this is satisfied if ζ•(x) : Ω→ R or C is a
P-measurable function. Further, we impose regularity of each realisation of the random
field: ∀ω ∈ Ω : ζω(•) ∈ L1(Γ) ∩ L∞(Γ) – this ensures that the Fourier transform of each
random field realisation exists, and is again a realisation of another random field.
A common way to characterise random fields is via their n-point distributions – given
finitely many points x1, . . . , xn ∈ Γ, they are defined as

Pn[ζ(x1) = ζ1, · · · , ζ(xn) = ζn] = P
(
{ω ∈ Ω : ζω(x1) = ζ1, · · · ζω(xn) = ζn}

)
, (69)

Thinking as a random field as an uncountably-infinite collection of random variables in-
dexed by a continuous variable x, these are the marginal distributions of a finite number
of points: fixing the field strengths ζ(xi) to the value ζi, what is the probability mass of
all realisations satisfying this constraint? Effectively, this integrates the distribution of
ζ(x) over the infinite number of points in Γ \ {x1 . . . xn}, leaving us with a probability
distribution on a finite-dimensional space.
Another important quantity containing information about the correlation structure of
the random field are the associated n-point functions – these are the generalisation of the
moments of a finite-dimensional random vector:

Fn(x1, · · · , xn) = 〈ζ(x1) · · · ζ(xn)〉 =
∫

Ω
dP(ω)ζω(x1) · · · ζω(xn).

A random field is statistically homogeneous (or stationary) if all n-point functions are shift-
invariant;

for every shift vector r : Fn(x1 + r, · · · , xn + r) = Fn(x1, · · · xn), (70)

and statistically isotropic if they are rotation-invariant;

for every rotation matrix R : Fn(Rx1, · · · Rxn) = Fn(x1, · · · xn). (71)

A random field is Gaussian if all n-point distributions Pn are Gaussian distributions,
i. e. with densities of the form Equation 47. It should be noted that this definition has
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practical difficulties, since it requires control over an infinite set of n-point distributions.
Transforming the random field ζ(x) into the Fourier domain yields

ζω(`) =
∫

ddx ζω(x) exp[−i ` · x]⇔ ζω(x) =
1

(2π)d

∫
ddk ζω(`) exp[+i ` · x]. (72)

We will denote a function f (θ) and its Fourier transform f (`) by the same letter through-
out this work; the argument will always clarify the context. The Fourier modes ζ(`) are
again a set of random variables labelled by the wave vector `, hence they form a random
field on wave number space. If ζ(x) is statistically homogeneous, then the Fourier modes
for different `′ 6= ` are uncorrelated, though not necessarily independent. However, if
additionally ζ(x) is a Gaussian random field , then so is ζ(`), and uncorrelatedness does
indeed imply independence.
We have already introduced the power spectrum P(`) in Equation 19 – it is the statement
of the famous Wiener-Khinchin theorem that for a homogeneous random field the power
spectrum is the Fourier transform of the second-order cumulant (correlation function)

ξ(r) =
〈
ζ(x)ζ(x + r)

〉
−
〈
ζ(x)

〉 〈
ζ(x + r)

〉
=

1
(2π)d

∫
dd` P(`) exp[i r · `] (73)

(Wiener, 1930; Khintchin, 1934). The Fourier transforms of all higher-order cumulants
are called polyspectra (Brillinger, 2012), and are important detectors of deviations from
Gaussianity: since all cumulants of order n ≥ 3 of a Gaussian distribution must vanish,
so in consequence all polyspectra vanish as well, with the sole exception of the power
spectrum (Isserlis, 1918; Wick, 1950).
The averages 〈. . .〉 denote averages over the entire ensemble Ω, i. e., over all realisations
ζω of the random field ζ – for any measurable function F(ζ), we have

〈F(ζ)〉 =
∫

Ω
dP(ω)F(ζω). (74)

We can only observe a (finite sub-volume of) a single Universe, hence we are left with
a single realisation for the random fields of interest – a priori it is hopeless to try to
estimate statistical quantities like n-point functions or polyspectra from one sample
alone. To salvage our enterprise, we introduce an additional property of random fields,
namely ergodicity: if we can exchange the ensemble average with a spatial average, we
can instead compute the average on a subregion ∆ ⊆ Γ

〈F(ζ)〉 ' 〈F(ζ)〉∆ =
1

vol(∆)

∫
∆

dx F(ζω(x)) for almost all ω. (75)

A random field ζ satisfying this property for a sufficiently wide set of functions F(ζ)
will be called ergodic (Boltzmann, 1884). Under certain assumptions – e. g. stationarity,
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Gaussianity and continuity of the power spectrum – it can be proved (Maruyama, 1949;
Grenander, 1950), but for the general case we need to postulate it. The collection of
homogeneity, isotropy, and ergodicity is often called the fair sample hypothesis in cosmol-
ogy (Peebles, 1980; Martínez and Saar, 2002). In practice, this spatial averaging amounts
to partitioning the region Γ into subregions and estimating the n-point functions on
each – this requires that the subregions are sufficiently independent. Further, on large
scales, where only a few partitions exist, the low number of samples will lead to large
uncertainties in the estimates – a phenomenon known as cosmic variance.
In contrast to finite-dimensional random vectors (see Section 2.3.1), the toolbox for
testing Gaussianity of random fields is comparably empty. One approach is to express a
random field in a given basis (pixels or harmonic functions), restrict to a finite number
of coefficients, and test for Gaussianity on this finite-dimensional subspace – see Hansen
et al. (2002) for an application of the Kolmogorov-Smirnov and the Cramér-von Mises
tests to the harmonic coefficients alm of a toy model of the CMB, and Dineen and Coles
(2005) for an entire battery of classical tests of Gaussianity applied to WMAP data – some
of them focusing on the one-point distribution, some on multivariate non-Gaussianity.
An approach generically addressing the (non-)Gaussianity of a stationary stochastic
process (i. e. a homogeneous random field with d = 1) was proposed by Cuesta-Albertos
et al. (2007) and Nieto-Reyes, Cuesta-Albertos, and Gamboa (2009, 2014). The foundation
of the test is the intuitive observation that all projections of a Gaussian distribution will
have Gaussian marginals, whereas for a non-Gaussian distributions none of them will
except possibly a null set of fringe cases. The set of random fields is modelled as a
separable real Hilbert space (H, 〈·|·〉) – this includes stochastic processes as well as
finite-dimensional random variables. Cuesta-Albertos et al. (2007) proceeded to prove
the following theorem:

Let µ be a dissipative probability measure on H (see the cited paper for the technical
definition), and ζ be an H-valued random quantity. Then, ζ is Gaussian if and only if
µ(E) > 0, where

E(ζ) = {h ∈ H : the distribution of 〈h|ζ〉 is Gaussian}. (76)

Since any quantity ζ with a Gaussian distribution will have Gaussian-distributed projec-
tion marginals 〈h|ζ〉 for any h ∈ H, the formulation can be sharpened: with the above
definition for set E(ζ), exactly one of the following statements is true:

• µ(E) = 1: the distribution of ζ is Gaussian.

• µ(E) = 0: the distribution of ζ is not Gaussian.

Intuitively, the property of a measure to be dissipative is the analogue of continuity with
respect to the Lebesgue measure, generalised to the context of the infinite-dimensional
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space of field configurations, where no Lebesgue measure exists. This ensures that the
measure from which the projection directions h are drawn is sufficiently regular: the set
of fringe cases that make a non-Gaussian ζ look Gaussian upon projection is indeed a
set of measure zero.
Nieto-Reyes, Cuesta-Albertos, and Gamboa (2014) give practical recipes to construct
dissipative measures for stochastic processes. Given a sample from a stationary process
X = (Xt)t∈Z, they recommend the following procedure:

• Draw a random vector h = (ht)t∈N from a dissipative distribution.

• Convolve X with h: Yh
t = ∑∞

i=0 hiXt−i; t ∈ Z.

• Test the one-dimensional marginals of Yh for Gaussianity with any of the classical
tests. Since non-Gaussianity of these will translate into non-Gaussianity of the full
process X with probability one, a one-dimensional Gaussianity test with signifi-
cance level α on the marginals will test the Gaussianity of the stochastic process
on the same level of significance.

To increase the sensitivity of the test to the full range of observations (Xi), the authors
recommend choosing multiple directions hi from dissipative distributions with varying
parameters, perform the test with each of them, and combine the individual p-values
via the False Discovery Rate (Benjamini and Hochberg, 1995; Benjamini and Yekutieli,
2001).

2.3.3 Transforming to Gaussianity

Any linear map f : R 7→ S = AR + B from a Gaussian random variate R (this discussion
applies to finite-dimensional random vectors as well as to random fields) will again
result in a Gaussian random variate S – the Fourier transform of a random field is
just one example for this. However, if f is smooth but non-linear, this will lead to a
non-Gaussian S, since its cumulants of third and higher order will receive additional
contributions from the first- and second order cumulant of R via the Taylor expansion
of f , and hence they will fail to vanish.
This observation opens up a path to model non-Gaussian random variates: given a
well-motivated transformation T that remaps a non-Gaussian X to a Gaussian Y, it
is simple to simulate a sample from the distribution of Y, and apply the inverse of
transformation T; this strategy is known as Gaussianisation. For consistency, T should
have the properties of being bijective (i. e. a one-to-one mapping) as well as continuously
differentiable and measurable, such that the probability distributions of X and Y can be
transformed into each other.
Typically, the random fields of interest to observational cosmology have significant
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non-Gaussian distribution properties at low redshift; specifically interesting examples
include the three-dimensional density contrasts of dark matter δc or its galaxy coun-
terpart δg, and the two-dimensional convergence κ and shear γ of weak gravitational
lensing. It is still unknown whether the initial spectrum of perturbations, as seeded by
inflation, is already non-Gaussian (Planck Collaboration, 2015d), and the investigation of
this question is an active field of research since any deviation from Gaussianity would
provide insight into the physics behind cosmic inflation (Verde, L. Wang, et al., 2000;
Bartolo et al., 2004).
However, non-linear structure formation will introduce couplings between modes and
thus lead to non-Gaussian distribution properties even if the initial perturbations were
perfectly Gaussian. This is due to the non-linearity of the equations of motion that
govern the evolution of the dark matter density contrast: gravitation is an inherently non-
linear theory. The first-order perturbation theory described in Section 1.3 and Section 1.2
fails to describe the evolution once the fluctuations in the density contrast δc reach unity,
and moments of higher than second order attain significant and measurable values. For
example, in an Einstein-de Sitter universe (Ωm = 1, Λ = 0), a second-order calculation
of the normalised skewness parameter

S3(z) =
〈δ3

c (z, x)〉
〈δ2

c (z, x)〉2 (77)

reveals it to be equal to 34/7 at redshift z = 0, assuming Einstein gravity and Gaussian
initial conditions (Peebles, 1980). See Bernardeau, Colombi, et al. (2002) for corrections
to the above value accounting for smoothing in Fourier space, and also Catelan and
Moscardini (1994) for a similar calculation of the fourth-order kurtosis parameter S4 =

[〈δ4
c 〉 − 3〈δ2

c 〉2]/〈δ2
c 〉3.

Bispectrum measurements have been reported by Bernardeau, Mellier, and van Waer-
beke (2002), Fu et al. (2014), and Simon et al. (2015) for weak lensing convergence, and
e. g. by Gil-Marín et al. (2015) for the clustering of BOSS galaxies. The cosmological infor-
mation stored in the cumulants of higher than second order are increasingly challenging
to measure directly, but are expected to hold an information content comparable to two-
point statistics. This has been demonstrated by Takada and Jain (2003, 2004, 2009) and
Sato and Nishimichi (2013) by comparing cosmological parameter constraints arising
from weak lensing bispectra and those from power spectra.
Further, the presence of non-Gaussianity needs to be taken into account if we wish to
perform inference on two-point statistics like correlation functions or power spectra,
and compare them to theoretical predictions (Hu and White, 1996; Cooray and Hu,
2001; Semboloni et al., 2007). Estimated values for the power spectrum, evaluated at
two different wave vectors ` 6= `′ will be uncorrelated if the underlying random field
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is Gaussian – this is a consequence of homogeneity, as discussed in Section 2.3.2. By
corollary, the correlation matrix of the power spectrum estimator

Corr[P̂(`i), P̂(`j)] =
Cov[P̂(`i), P̂(`j)]√
Var[P̂(`i)]Var[P̂(`j)]

(78)

is equal to the unit matrix (or rather – a noisy version thereof). For non-Gaussian
random fields, however, off-diagonal terms appear in the covariance matrix, in the form
of trispectrum contributions (see Peebles, 1980; Meiksin and White, 1999; Scoccimarro,
Zaldarriaga, and Hui, 1999; Cooray and Hu, 2001, for semi-analytical calculations and
comparisons to N-body simulations). These off-diagonal contributions remain present
for band-averaged power estimates even in the infinte-volume limit; see also Feldman,
Kaiser, and Peacock (1994), Tegmark, Hamilton, et al. (1998), and Hu and White (2001)
for technical reviews on band-averaged power spectrum estimation. These off-diagonal
covariances will already affect weakly non-linear scales by inflating the error bars of
band power estimates; hence the information content of these scales, when used for
power spectrum estimation, is small compared to that of larger scales which are fully
linear (Rimes and Hamilton, 2005, 2006; Neyrinck, Szapudi, and Rimes, 2006; Neyrinck
and Szapudi, 2007; Sato, Hamana, et al., 2009). Similarly, terms containing the pentaspec-
trum and the trispectrum will appear in the covariance matrix of bispectrum estimators
(Scoccimarro and Couchman, 2001; Kayo, Takada, and Jain, 2013; Sato and Nishimichi,
2013).
To find the covariance matrix of weak lensing two-point statistics, a vital ingredient
of the likelihood, mock realisations of the random fields can be used alternatively. To
this end, N-body simulations of gravitational collapse are used to produce a large
number of independent convergence maps, from which the sample covariance matrix
can be estimated in an unbiased fashion. Inverting this matrix, which is necessary for
assembling the likelihood function, can introduce bias; this can be computed from the
simulations and corrected, but the procedure comes at the price of requiring a larger
number of independent realisations, thus increasing the computational cost even further
(Hartlap, Simon, and P. Schneider, 2007; Dodelson and M. D. Schneider, 2013; A. N.
Taylor, Joachimi, and Kitching, 2013).
Two ideas to motivate a transformation that approximately Gaussianises the evolved
field of cosmological perturbations have gained popularity – one parametric, and one
non-parametric. The first – known as the lognormal transformation – was initially mo-
tivated by the asymmetric shape of the histogram of δg, i. e. the one-point distribution
(Hubble, 1934): it is supported on the interval [−1,+∞), and the decay behaviour for
δg → ∞ is ostensibly slower than exponential. The approximate lognormality of the
histogram of δg has been confirmed by Wild et al. (2005) on 2dFGRS data, and the
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approximate lognormality of the histogram of κ by Clerkin et al. (2016) on DES data;
for comparisons to N-body simulations see Colombi (1994), Bernardeau and Kofman
(1995), and Kayo, Taruya, and Suto (2001a).
A major advantage of the lognormal model, explaining its popularity, is that it pro-
vides a simple analytical expression for the probability, which allows one to perform
calculations with pen and paper – see Hilbert, Hartlap, and P. Schneider (2011) for
a compendium of useful expressions for cosmic shear. Specifically, the transformation
itself takes the form

δg → δln = ln(1 + δg) (79)

for the galaxy density contrast and

κ → κln = κ0 ln
(

1 +
κ

κ0

)
(80)

for weak lensing convergence (κ0 > − inf{κ}). The hope is that the Gaussianised random
fields δln, κln have approximately Gaussian distribution properties in all n-point distri-
butions including the histogram. Coles and Jones (1991) proposed a heuristic argument
for how a Gaussian distribution for the initial spectrum of peculiar velocities can lead to
a lognormal distribution, but its validity has been questioned (Kayo, Taruya, and Suto,
2001b); further, the variable ln(1 + δc) can also be used as an expansion parameter in
cosmological perturbation theory (Szapudi and Kaiser, 2003; Szapudi, 2009; X. Wang
et al., 2011).
A lognormal model for cosmological random fields has been shown to outperform
simplistic Gaussian models in various settings: the one- and two-point probability dis-
tributions have been shown to be accurately described with a lognormal model (Kayo,
Taruya, and Suto, 2001b); the density contrast of cold dark matter and galaxies, when
evolved to low redshifts, exhibit a significantly higher information content when log-
transformed, this is because some of the small, non-linear scales will be decorrelated
and can be used for estimation of two-point statistics like the power spectrum (Neyrinck,
Szapudi, and Szalay, 2009; Neyrinck, 2011; Neyrinck, Szapudi, and Szalay, 2011). The log-
normal transformation has a similar effect on weak lensing convergence and particulary
increases the sensitivity to the redshift evolution of dark energy (Hilbert, Hartlap, and
P. Schneider, 2011; Seo, Sato, Dodelson, et al., 2011; Seo, Sato, Takada, et al., 2012). These
information gains can be interpreted as pulling information from higher-point statistics
into the two-point function.
Whilst it is significantly better than a naïve assumption of Gaussianity, however, the
lognormal transformation has several downsides: the observed histogram actually has
more probability mass in its long tail than a suitable lognormal distribution (Joachimi,
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A. N. Taylor, and Kiessling, 2011). The correlation structure that can be attained with
lognormal random variables is limited (Denuit and Dhaene, 2003; Xavier, Abdalla, and
Joachimi, 2016), since any permissible Gaussian distribution must have a positive-definite
covariance matrix; conversely, applying a lognormal transformation to convergence maps
has in fact been observed to lead to negative eigenvalues of the sample covariance matrix
(Hilbert, Hartlap, and P. Schneider, 2011; Xavier, Abdalla, and Joachimi, 2016). Further,
the information gains diminish significantly once a realistic level of shape noise is added
(Joachimi, A. N. Taylor, and Kiessling, 2011; Seo, Sato, Takada, et al., 2012).
The second approach to motivating a Gaussianising map is the Rosenblatt transform
(Lévy, 1937; Rosenblatt, 1952). This transformation is based on the elementary obser-
vation that any real random variable X can be bijectively mapped into uniformity: if
pX(x) is the probability density of X, and CX(x) =

∫ x
−∞ dr pX(r) is its cumulative

distribution, then Y = CX(X) is a random variable with uniform distribution on the
unit interval [0, 1]. We can now play the inverse game with the Gaussian distribution:
let Φ(z) =

∫ z
−∞

ds√
2π

exp
[
− s2

2

]
be the cumulative distribution of the Normal distribution

with mean zero and variance one. Then, Z = Φ−1(Y) = Φ−1 ◦ CX (X) is a random

variable that is exactly Normal. Further, the transformation X CX7→ Y Φ−1

7→ Z is bijective and
continuously differentiable, as long as pX(x) is continuous. It should be noted, however,
that unlike the lognormal transformation there is no analytic closed form for the map
Φ−1 ◦CX, since the cumulative distribution needs to be empirically determined from the
data set at hand.
This transformation, since its first application to non-Gaussian random fields of cosmo-
logical importance by D. H. Weinberg (1992), has gained popularity, and is often used
synonymously with Gaussianisation (note that our use of the word is not limited to
the Rosenblatt transform) – another common term is rank-order Gaussianisation. Like the
lognormal transformation, it has been demonstrated to mitigate the polyspectra of third
to sixth order for weak lensing convergence (Y. Yu et al., 2011, 2012), and to increase
the information content accessible to two-point statistics for the dark matter density
contrast (Neyrinck, Szapudi, and Szalay, 2009; Neyrinck, 2011; Neyrinck, Szapudi, and
Szalay, 2011); it slightly outperforms the lognormal transformation in this objective. In
any way, these gains are found to degrade once a realistic level of noise is added.
For a random vector X ∈ Rd, the collection of univariate marginal distributions of each
component on its own {pi(x)}d

i=1 does not completely constrain the full multivariate
distribution P(X). Instead, the correlation structure between the components, which
gets lost during marginalisation, is captured in the d-dimensional copula – the latter
being a term for a probability distribution on the unit cube [0, 1]d. In fact, Sklar’s theorem
asserts that the d one-dimensional marginal distributions combined with a copula do
indeed determine the full multivariate distribution and vice versa – since the copula
is exactly what remains after each component of X has been Rosenblatt-transformed

62



(Sklar, 1959; Nelsen, 1999).
The random fields describing cosmological large-scale structure have an infinite se-
quence of n-point copulas, each and every one of which have to agree with the Gaussian
copula on the n-hypercube if the random field in question can be perfectly Gaussianised.
Scherrer et al. (2010) postulated exactly this under the name Gaussian Copula Hy-
pothesis (GCH), and demonstrated its validity for n = 2. If the GCH is satisfied, then
the Rosenblatt transformation is automatically the best Gaussianising transformation,
making all polyspectra vanish identically.
Sato, Ichiki, and Takeuchi (2010, 2011) have used the Gaussian copula to construct a like-
lihood for band-averaged power spectrum estimates of weak lensing convergence, and
demonstrate that it reproduces their two-dimensional joint distributions more faithfully
than a Gaussian probability density. Lin and Kilbinger (2015a,b) and Lin, Kilbinger, and
Pires (2016) used the Gaussian copula to construct a likelihood for weak lensing peak
counts, which are an alternative observable known to harbour nonlinear information
(Hamana, Takada, and Yoshida, 2004; Pires, Leonard, and Starck, 2012).
The status of the full GCH, however, remains unclear; as does the question of the conse-
quences for Rosenblatt Gaussianisation, should it fail partially. We will pick up on this
point in Chapter 5 to discuss it in further depth.
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Part II

G A U S S I A N I S AT I O N



3
M O D E L L I N G O F P O S T E R I O R D E N S I T I E S

The Infinite Improbability Drive is a wonderful new method of crossing vast
interstellar distances in a mere nothingth of a second, without all that
tedious mucking about in hyperspace. [...]
The principle of generating small amounts of finite improbability by simply
hooking up the logic circuits of a Bambleweeny 57 Sub-Meson Brain to an
atomic vector plotter suspended in a strong Brownian motion producer (say
a nice hot cup of tea) were of course well understood – and such generators
were often used to break the ice at parties by making all the molecules in the
host’s undergarments leap simultaneously one foot to the left, in accordance
with the Theory of Indeterminacy.
Many respectable physicists said that they weren’t going to stand for this,
partly because it was a debasement of science, but mostly because they didn’t
get invited to those sorts of parties.

Douglas Adams
The Hitchhiker’s Guide to the Galaxy

3.1 introduction

According to the Bayesian paradigm, inference on any data set will yield a posterior
probability distribution on the space of model parameters. This density function repre-
sents, in its entirety, the full knowledge gained in the attempt to infer the underlying
parameters. Such distributions often depart significantly from a Gaussian form. This
led to the widespread use of Monte Carlo sampling methods to report the typically
non-Gaussian posterior constraints obtained from experiments, such as Planck1. Recon-
structing the posterior density from such a Markov Chain Monte Carlo (MCMC) sample,
e.g. to visualise the multivariate parameter constraints, or to combine the constraints
from multiple data sets, can be nontrivial due to the large sample size necessary to ap-
propriately map the distribution; in addition, the contours often need further smoothing

1 See Planck Collaboration et al. (2014) and Planck Collaboration (2015c). For the Markov chains see http:
//www.cosmos.esa.int/web/planck/pla; consult http://lambda.gsfc.nasa.gov for an eclectic list of data
combinations in various cosmological models.
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for stylistic reasons.
Instead, we propose to redefine the underlying model parameters, so that the new
posterior density approximately takes a Gaussian shape after the transformation from
old to new parameters; this presupposes that we begin with a unimodal posterior
density. Whereas this formalism may be extended to multimodal probability densities,
we currently restrict ourselves to unimodal distributions in this work. Suggestions for
how to extend it are given in Section 6.1.2. Such a Gaussianising transformation would
allow for enormous data compression: instead of a full MCMC sample from the pos-
terior distribution, we only need to report the Gaussianising transformation, and the
first and second moments of the resulting Gaussian distribution. From these alone, we
can reconstruct an analytic expression for the full non-Gaussian posterior density, and
subsequently combine it with other data sets.
Further, it becomes possible to display and compare non-ellipsoidally-shaped contours
of non-Gaussian parameter constraints – whether joint or marginalised – without any
smoothing. Thus, this method allows for summarising posterior densities in a versatile
and efficient way, which faithfully reproduces the information contained in the full
probability density.
The idea of transforming a function to a Gaussian shape is, in principle, not limited
to reproducing probability densities. As the integral over a Gaussian can be performed
analytically, this opens up a strategy to feasibly compute high-dimensional integrals,
such as the model evidence (i.e. the marginal likelihood).
The transformed model parameters are analogous to the normal parameters of the
CMB: it has been highly advantageous for rapid likelihood calculation (such as CMBfit,
CMBwarp, and PICO; see Kosowsky, Milosavljevic, and Jimenez 2002; Chu, Kaplinghat,
and Knox 2003; Jimenez et al. 2004; Sandvik et al. 2004; Fendt and Wandelt 2007), to
redefine the cosmological model parameters such that the model is approximately linear
in these newly defined normal parameters. Thus the likelihood approximately takes the
form of a multivariate Gaussian density. For most observables, we would be at a loss to
search for a linearising redefinition of the model parameter space directly motivated by
the structure of the model itself. Instead, is it possible to computationally find suitable
parameters, i.e. a suitable bijective transformation which approximately Gaussianises
the posterior in question?
Extending the work of Joachimi and A. N. Taylor (2011), we present an algorithm to find
and test such a non-linear Gaussianising transformation from a Markov chain sampling
the posterior distribution of the original parameters. In principle, this distribution could
stem from any experiment or data type. In Section 3.2, we describe the details of the
algorithm, verification of the reconstructed posterior distribution, and the specific trans-
formations employed. Following an illustration of these on a toy example in Section 3.3,
Section 3.4 demonstrates the performance of our implementation, using Markov chains
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from the Planck satellite constraints on cosmological models (Planck Collaboration et al.,
2014; Planck Collaboration, 2015c).

3.2 gaussianisation

To find the right multivariate transformation, we will at first adopt the strategy of
redefining each model parameter separately, i.e. the first new model parameter will
only depend on the first old model parameter, etc. In Section 3.2.4, we will drop this
assumption and consider transformations which can correlate the model parameters.
The set of all multivariate Gaussianisation transformations, from which we are to pick
the optimal one, will be constructed in the following way: assume a family of bijective
real-valued functions F∆ : R → R indexed by n real transformation parameters ∆ =

(δ1, . . . , δn). Given the d-dimensional vector of model parameters X = (X1, . . . , Xd), we
transform to the new (Gaussian-distributed) parameters Y via

Y = (Y1, . . . Yd) = [F∆1(X1), . . . , F∆d(Xd)] , (81)

where the full multivariate transformation is now specified by all d transformation
parameter n-tuples (∆1, . . . , ∆d), i.e. one ∆i = (δ1

i , . . . , δn
i ) for each model parameter. To

avoid confusion, we shall from now on distinguish between model parameters (MP),
which the posterior probability density depends on, and transformation parameters
(TP), which specify one Gaussianising transformation. The algorithm can be applied
to arbitrary parametrised transformation families, suitable for various forms of non-
Gaussianity – in principle, we could even choose different transformations for each
model parameter, instead of using the same shape F∆i(Xi) for all of them.
Assuming such a bijective transformation X 7→ Y, we immediately have an analytic form
for the posterior density

Π(X) = Π̃(Y)
∣∣∣∣dY
dX

∣∣∣∣ (82)

=
1√

(2π)d det Σ̃
exp

{
−1

2

[
Y(X)− µ̃

]T
Σ̃−1

[
Y(X)− µ̃

]} d

∏
i=1

∣∣∣∣dF∆i

dX
(Xi)

∣∣∣∣ .

One still needs to find the mean vector µ̃ and the covariance matrix Σ̃ of the trans-
formed posterior density Π̃. These are estimated from the transformed sample (see
Section 3.2.1).
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3.2.1 Finding the optimal transformation

Given a weighted point sample D = {(Xa, wa)}Na=1, containing N points in Rd and
probability weights wa, which has been sampled from the posterior distribution in ques-
tion, we wish to quantify the Gaussianisation properties of different transformations
applied to this sample. To this end, we follow Box and D. R. Cox (1964) (see also
Velilla, 1993; Joachimi and A. N. Taylor, 2011) in maximising the profile likelihood over
TP space, i.e. depending only on the n × d real transformation parameters contained
in ∆ = (∆1, . . . , ∆d). This likelihood is a function of the transformation parameters ∆,
quantifying how well each transformation Gaussianises the distribution of data set D;
however, it does not pertain to the posterior density in Equation 82, which is a function
of the model parameters X.
For the Gaussian parameters µ̃, Σ̃ in Equation 82, we insert their standard debiased
weighted maximum-likelihood estimators, which depend on the transformed sample
{(Ya, wa)}Na=1

µ̃ =
1

W1

N
∑
a=1

waYa; (83)

Σ̃ =
W1

(W1)2 −W2

N
∑
a=1

wa(Ya − µ̃) (Ya − µ̃)T, (84)

with W1 = ∑ wa and W2 = ∑(wa)2. These estimators depend on ∆ indirectly, as they
are computed after D has been transformed with ∆. We arrive at the profile weighted
log-likelihood

L(∆|D) = −W1

2
ln det Σ̃(∆,D) +

N
∑
a=1

wa
d

∑
i=1

ln
∣∣∣∣dF∆i

dX
(Xa

i)

∣∣∣∣ , (85)

where several terms independent of ∆ have been discarded. In general, both the covari-
ance matrix of the transformed sample and the Jacobian term will depend on the trans-
formation parameters ∆ in a non-linear way, hence finding the maximum-likelihood val-
ues for the TPs will require numerical optimisation. For this purpose, we have employed
the GSL implementation of the well-known Nelder–Mead simplex algorithm (Nelder
and Mead 1965).
As already noted by Joachimi and A. N. Taylor (2011), log-likelihood degeneracies in TP

space are common. These may jeopardise the numerical stability of the calculation of
L. There are generic cases where a moderately large value for one transformation para-
meter may already result in unmanageably large numerical values for the transformed
sample, such as e.g. the power transformation Xi 7→ (Xi)

λi with λi ∼ 50. Generically,
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the optimisation algorithm tends to slide into these TP space regions quite easily. Hence,
we include a penalty term of the form

P(∆) = ε
d

∑
i=1

n

∑
s=1

(δs
i − δs,U)p, (86)

where δs,U are the parameter values corresponding to the identity transformation. We
minimise the function −L(∆|D) + P(∆) over the n × d real numbers in ∆. Values of
p = 4 and ε = 10−4 have proven to be highly stabilising, and at the same time do not
distort the shape of the resulting analytic posterior distribution.
In this work, we employ the Nelder–Mead algorithm just for illustrating the method –
faster and more reliable algorithms to find the global minimum of the likelihood func-
tion exist (such as BOBYQA, see Powell, 2008) and can readily be applied here.

3.2.2 Box–Cox transformations and their kin

The Box–Cox transformation (Box and D. R. Cox, 1964) is a generalisation of the power
map. This transformation family is widely used in statistics and econometrics, e.g. to
make data approximately homoscedastic and normal. Our usage is different in that we
use it to alter the distribution of model parameters, rather than the distribution of data.
Including a shift parameter a, the one-dimensional version is defined as

x 7→ BC(a,λ)(x) =

 λ−1[(x + a)λ − 1] (λ 6= 0)

ln(x + a) (λ = 0)
(87)

for a single MP x, i.e. (δ1, δ2) = (a, λ). Note that the family is continuous at λ = 0
and that the mapping requires a < x. Typically, an MP with a skewed distribution can
be transformed to an MP with symmetric, Gaussian distribution upon the appropriate
choice of the power TP λ, e.g., a log-normal distribution can be analytically transformed
to a Gaussian with a = λ = 0. The identity transformation corresponds to δ1,U = a = 1
and δ2,U = λ = 1. Inserting this transformation family into Equation 82, we recover the
formula given in Joachimi and A. N. Taylor (2011).
As an extension of the Box–Cox family, we propose the Arcsinh–Box–Cox transformation
(‘ABC transformation’ hereafter):

x 7→ ABC(a,λ,t)(x) =


t−1 sinh[t BC(a,λ)(x)] (t > 0)

BC(a,λ)(x) (t = 0)

t−1 arcsinh[t BC(a,λ)(x)] (t < 0).

(88)
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The inclusion of the TP t will prove particularly useful to remove residual kurtosis from
a MP distribution. The identity transformation reads δ1,U = a = 1, δ2,U = λ = 1, δ3,U =

t = 0.
The Box–Cox family does not form a group, because two subsequent transformations
cannot be expressed as another Box–Cox transformation; the same holds for the ABC

family. This will be of importance for Section 3.2.4.
Box–Cox transformations demonstrate that the domain of the function F∆ – in particular
its dependence on ∆ – requires special attention: for given a, it is defined only for x ∈
(−a, ∞), the same holds for ABC transformations. Thus, the optimisation procedure for
the sample D = {Xa}Na=1 requires that ai, the shift parameter for the model parameter
Xi, is bounded from below, i.e. ai > mina(−Xa

i ). Conversely, this means that, once
the optimal transformation parameters ∆opt are found and inserted into the analytic
expression for the original posterior density, Equation 82, it is not defined for every
value possible value of the MP X, but only for Xi > aopt

i . This also necessitates that
the normalisation needs to be adjusted, which can be done analytically. However, if the
sample is large enough so that the tails of the distributions are properly represented,
this truncation of the domain is not problematic.

3.2.3 Verifying the optimal transformation

Once the optimal transformation within its family is found, how do we judge the
effectiveness of the resulting Gaussianisation? We adopt the following pragmatic stand-
point: if the analytic posterior manages to reproduce the one-dimensional and two-
dimensional marginalised contours of the sample, it is deemed acceptable. To this end,
we propose the test via a cross-contour (CC) plot. The idea is to characterise a probability
density by the location of its contours - the surfaces of constant density - and the
probability mass stored inside, i.e. the integral of the density over the interiour of a
contour. If two densities p(X) and q(X) are identical, then they will store the same mass
in any region of the parameter space; if they are different, we expect to find different
probabilities for the same regions (e.g. the regions bounded by contours of p). Thus,
looking at the family of contour-bounded regions of p, we can ask: does the probability
for these, assigned via q, agree with the probability for them assigned via p?
To formalise this, consider the following: given a probability density p in d dimensions,
which takes function values between 0 and pmax, we define the contour-bounded region
assigned to the density value r ∈ [0, pmax] as

Ωp(r) = {X ∈ Rd : p(X) ≥ r}.
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The probability mass enclosed in any of these is∫
Ωp(r)

p(X)dX ∈ [0, 1].

Now, assuming we have two probability densities p and q in d dimensions, do the
contours of q reproduce those of p? They do in the relevant sense if for every r ∈ [0, pmax],
the q-mass enclosed in the r-contour of p equals the p-mass in this contour, i.e.∫

Ωp(r)
q(X)dX =

∫
Ωp(r)

p(X)dX. (89)

It should be noted that this alone is not a sufficient condition for p ≡ q, but the
counterexamples, which can be constructed mathematically, are non-generic and can
be neglected for our purposes.
To detect deviations of the contours of p and q, we could simply plot the left and the
right side of Equation 89 for a grid of r-values between 0 and pmax, and plot the points
with respect to the line y = x. For concrete problems, it is often more instructive to
subtract the right side from the left side, and plot the excess (or deficit) probability mass
of q inside the contours of p. If, in this plot, the excess for every contour is consistent
with zero, we have succeded.
In our situation, we compare a point sample D with a probability density function p –
the analytic posterior density as reconstructed via Gaussianisation. The right side of
Equation 89 is the probability mass in the region where the density is greater or equal
to r; the left side is the fraction of the point sample which lies in the same region. So,
for every value r in the range of p, we find the probability mass enclosed in Ωp(r) by
gridding p(X) over a region containing the sample. Similarly, we count the number
of points in D where the value of p is above r, to compute the fraction of points that
lie within Ωp(r). This fraction is an estimator of the actual probability mass enclosed,
becauseD is a discrete sample from the actual posterior distribution. To find the variance
of this estimator, we calculate the fraction on 2,000 bootstrap realisations of D, and
determine the 95%-confidence intervals from these. If, for every r, the analytic posterior
probability mass inside Ωp(r) is within this confidence interval for the sample point
fraction within Ωp(r), we judge our reconstruction attempt to be successful.
It should be noted that poor MCMC sampling of the original target density will yield
a poor representation of this density by our reconstructed density Equation 82. Any
information about the distribution lost by undersampling cannot be regained. However,
as demonstrated in Section 3.3, our method reproduces less biased contours than other
standard methods of density estimation even in regions of low point density, i.e. where
any density estimate must be an extrapolation. Hence, it can be used when the length
of the input Markov chains is restricted by computational cost or file size.

71



3.2.4 Multi-pass transformations

If even the optimal Gaussianising transformation amongst a given family does not bring
the posterior density sufficiently close to a Gaussian shape (e.g., as determined via a CC

plot), we have two options. We can provide a different family of transformations and
redo the optimisation; or we can repeat the process on the sample after the first trans-
formation. As already mentioned in Section 3.2.2, the transformation families employed
in this work do not form groups. Hence, two subsequent transformations do not result
in another transformation from that family, and transforming twice potentially provides
a better Gaussianisation than transforming once. In principle, it is possible to apply
multiple subsequent transformations, should the quality of the result necessitate it.
In this spirit, we have implemented the following two-pass transformation protocol:

• Optimise the TPs of the first transformation.

• Linear reshaping: centring, rescaling, rotating.

• Optimise the TPs of the second transformation.

Strictly speaking, this transformation, whilst being bijective, no longer falls into the
class as set up in Equation 81, as different model parameters are mixed. Nonetheless,
Equation 82 for the analytic posterior density generalises in a straightforward way.
In the second step, the sample after the first Gaussianising transformation is subjected
to the following maps (in this order): subtract the sample mean from every parameter,
so that the sample is centred on the origin. Then, rescale every parameter such that
the standard deviation is unity. Finally, rotate into the eigenbasis of the covariance
matrix – this procedure is generally known as Principal Component Analysis (PCA).
These reshaping operations not only help to avoid numerical instabilities (centring,
rescaling), but also open up new directions for Gaussianisation by presenting uncorre-
lated parameters to the second Gaussianising transformation, since the transformations
defined in Equation 81 cannot mix parameters. If two parameters have substantial
covariance after step 1, it can be crucial to decorrelate them.
Nevertheless, a price is to be paid for the Gaussianising power added with Step 2: it
sacrifices a decisive property of the simple one-step transformation routine, namely
that every transformed MP Yi only depends on a single untransformed MP Xi. This
property allows for easy marginalisation of the analytic posterior: to compute this,
we can marginalise the Gaussianised sample by dropping all coordinates we wish to
marginalise out and determining the mean vector and covariance matrix of the re-
maining ones. Transforming this marginalised Gaussian density back will then yield
the marginalised posterior density on the untransformed MPs. However, with linear
reshaping included, this is no longer possible.
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Figure 12: Bivariate sample before (left) and after Gaussianisation (right). We show the two-
dimensional sample and its 1D marginals (red), and compare to the reconstructed
analytic posterior density (black): the full 2D contours, and its 1D marginal
distributions.

This may be problematic for some applications (such as visualisation of 1D or 2D
marginal distributions, or creating a CC plot), but not for others – as long as we need only
the marginal distribution of a single combination of parameters, we can marginalise by
discarding all MP columns of the sample except the ones in question, prior to Gaussian-
ising.

3.3 a toy example

We illustrate these ideas on a two-dimensional example. We draw a sample of 10,000

points from a bivariate Gaussian distribution, and map it through an inverse Box–Cox
transformation with known input TP values (see Table 2. All weights are set to unity.
This mock data sample has the advantage that there is at least one Box–Cox transfor-
mation which precisely Gaussianises the underlying probability distribution. Figure 12

shows the original sample, and the one transformed with the one-pass Box–Cox trans-
formation which was found to be optimally Gaussianising, i.e. maximising the log-
likelihood in Equation 85. As this is a comparably simple problem, we have set the
penalty term in Equation 86 to zero. The Nelder–Mead algorithm was started sixteen
times independently with randomised initial conditions. The values of the recovered
optimal TPs are shown in Table 2; the standard deviation amongst these sixteen values
is of order 10−7 at worst, so multiple Nelder–Mead runs are not necessary in this low-
dimensional example: all of them find the same maximum of the log-likelihood. In
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Figure 13: Profile log-likelihood for the transformation parameters relating to X1 (top), and
to X2 (bottom). The red star shows the input values, the black cross the recovered
values, as projected onto the plane. The degeneracies between different transformation
parameters are apparent.

Parameter input value recovered value

a1 2 2.4
λ1 0.4 0.1
a2 3 2.6
λ2 4 2.9

Table 2: Optimally Gaussianising parameters for the distribution in Figure 12, as found with
one-pass Box–Cox transformation.

high-dimensional cases, however, this strategy can increase the robustness of the pro-
cedure. The apparent difference between the parameters of the single inverse Box–Cox
transformation and the values found for Box–Cox optimisation is due to degeneracies
in parameter space. To illustrate these, we show the profile likelihood for (a1, λ1) where
(a2, λ2) are held fixed at their input values, and vice versa, in Figure 13. The TPs found
by the optimisation algorithm (black crosses - note that they are projected onto the plane
for which the profile likelihood is shown) are degenerate with the input ones (red star).
Both Box–Cox transformations map the distribution to sufficiently Gaussian form. We
compare our method of reconstructing an analytic posterior density from an MCMC

sample with the standard nonparametric method, Kernel Density Estimation (KDE),
which also aims to find a functional form for the probability density. The 1− 3σ-contours
of the posterior density from Gaussianisation are shown jointly with those from KDE:
these employ a Gaussian kernel, whose covariance matrix is estimated from the sample,
and Silverman’s rule (Silverman 1986) has been used to determine the bandwidth para-
meter. No additional smoothing has been applied in Figure 14, top panel. The bottom
panel shows the excess cross-contour probability masses between analytic posterior and
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Figure 14: Comparison of the analytic posterior density, as found via Gaussianisation (dark gray),
to kernel density estimation (light gray). The top panel shows the 2D contours of each
density estimation method in relation to the original sample (red dots). The bottom
panel (CC plots; top: Box–Cox, bottom: KDE) compares the respective contours of each
function to the original sample: We determine the fraction of the point sample located
inside one probability contour, and plot the excess of this fraction over the probability
density mass for that same contour. The band shows the 95%-variance in the point
fraction due to sampling.

sample, and KDE and sample respectively, as detailed in Section 3.2.3. Whereas the Box–
Cox posterior is consistent with the sample distribution for every single contour, the
KDE contours show a strong bias – the contours are wider than they should be. Given
that the precision of the contour reconstruction is, for the Box–Cox method, limited
only by the finite size of the sample, it has the potential to perform better than the
(biased) kernel density method – see Section 2.2 for the origin of the bias of density
estimates. Additionally, for applications in which frequent calls of the posterior density
are a bottleneck for computation speed, our method of density reconstruction can be
advantageous: the additional initial cost for finding the transformation parameters can
be outweighed by the subsequent evaluation speedup.

3.4 performance results : planck data

To demonstrate how the algorithm works on real data, we have employed MCMC sam-
ples from the first data release of the Planck mission (see Planck Collaboration et al.,
2014). This satellite has measured the temperature and polarisation anisotropies in the
CMB, whose power spectra are sensitive measures of the underlying cosmology. The
Planck Collaboration has published several data products2, including MCMC samples
from the posterior probability densities of various cosmological models, generated with

2 See http://www.cosmos.esa.int/web/planck/pla.
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Figure 15: One-pass Gaussianisation of a triangular-shaped non-Gaussian feature in a 2D
marginal Planck posterior via ABC transformation. Left: original sample (red dots) and
reconstructed analytic posterior (black contours). Right: the CC plot shows that for
every contour of the analytic posterior, the probability mass inside (white line) equals
the fraction of the point sample inside, within its 95%-confidence interval (green
band).
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Figure 16: Two-pass Gaussianisation of a non-Gaussian model parameter degeneracy in a 2D
marginal Planck posterior via ABC transformation, explicitly showing the protocol
described in Section 3.2.4: (θ1, θ2) are the parameters after the first transformation;
(π1, π2) are the coordinates after rotation into the PCA eigenbasis of the centred
and rescaled (θ1, θ2)-sample, which are finally transformed again. (∆1, ∆2) designate
the transformation parameters of the first, (Λ1, Λ2) those of the second ABC
transformation. Note how crucial the intermediate PCA step is to achieve Gaussianity.
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CosmoMC (see Lewis and Bridle, 2002, also: http://cosmologist.info/cosmomc).
The baseline cosmology is the standard model of a flat Universe with cold dark matter
and a cosmological constant, commonly known as ΛCDM. It contains six parameters:
Ωbh2 (today’s baryon density), Ωch2 (today’s cold dark matter density), 100 θMC (scaled
sound horizon), τ (reionisation optical depth), ns (spectral index of primordial scalar
perturbations), and ln(1010 As) (log power amplitude of primordial scalar perturbations).
Several extensions of this baseline model are also listed, including those by adding
either of the following parameters: ΩK (curvature parameter), w (dark energy equation
of state), r (primordial tensor-to-scalar amplitude ratio), and Neff (effective number of
relativistic degrees of freedom). The combinations Ωih2 have been chosen as model
parameters, instead of the density parameters Ωi, since the former are independent
of the value of the Hubble parameter H0 – the definition of the density parameters
(Equation 9) involves the critical density ρcr ∝ H2

0 . Hence, Ωih2 are directly proportional
to the physical densities ρi. Note that this does not hold for ΩK. Further, these chains
list derived quantities, e.g. today’s Hubble parameter H0, the age of the Universe, and a
variety of foreground modelling parameters, such as APS

ν and ACIB
ν , modelling the am-

plitudes of Poisson point sources and the cosmic infrared background in the frequency
bands ν = 100 GHz, 143 GHz and 217 GHz. These are of particular interest to us, as the
most prominent non-Gaussian features of the posterior densities can be seen in them.
The chains, as presented, are not decorrelated, so we thin them by using every 20th

sample. We employ the ‘..._planck_lowl_...’ chains, which use only the temperature-
temperature correlations. The plots in this section are created using the seven-parameter
model including ΩK; the sample contains 11,546 points after thinning.
All these Markov chains assume uniform proper prior densities (i.e. being supported
on compact rectangular boxes) and list the log-likelihood for every point (for further
details, see Planck Collaboration et al., 2014).
We show several 2D marginalised posterior samples exhibiting different non-Gaussian
features, and how well they are reproduced by the analytic posterior (Equation 82).
The model parameter distributions plotted have been chosen to display various kinds
of non-Gaussian morphologies, these arise either from non-linearity of the cosmolo-
gical or foreground model, or from a prior-driven hard constraint on MP space. Our
demonstration includes various kinds of non-Gaussianity, such as triangular shapes (see
Figure 15), pronounced non-linear degeneracies (see Figure 16), and sharp boundaries
(‘walls’) arising from MP space boundaries (see Figure 17).
Figure 16 demonstrates the usefulness of the intermediate PCA in between the ABC

transformations: the first transformation has straightened out the curved shape of the
maximum, but the distribution still appears skewed towards the upper left direction (see
top right panel). This is remedied by reshaping, PCA and another ABC transformation
(bottom right panel) – the second Gaussianising transformation having only little effect
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Figure 17: Two-pass Gaussianisation of a wall-like non-Gaussian feature in a 2D marginal Planck
posterior via ABC transformation; in the same format as as Figure 16, but with the
transformation parameters (∆1, ∆2) and (Λ1, Λ2) that have been found for this sample.
It is apparent that after the first transformation, the parameter θ1 still exhibits residual
kurtosis.
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Figure 18: One-pass Gaussianisation of a 2D marginal Planck posterior via ABC transformation.
Left: original sample and contours of the analytic posterior. Top right: CC plot for
the two-pass Gaussianisation in Figure 17. Bottom right: CC plot for the one-pass
Gaussianisation (see left panel), showing deviations of the cross-contour masses.
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compared to the PCA.
The Gaussianisation of the distribution in Figure 17 (top left) shows how two concate-
nated transformations can be more powerful than a single one. The once-transformed
sample still exhibits negative excess kurtosis, which is removed by the second transfor-
mation (bottom left to bottom right panel).
Further, we compare the CC plots of this two-pass transformation and the one-pass
transformation in Figure 18, which also shows the resulting contours (left panel). The
associated one-pass CC plot (bottom right) shows a significant deficit of point sample
mass compared to the analytic posterior mass, for the posterior contours between ∼ 0.1
and ∼ 0.3, as well as for ∼ 0.8, and between ∼ 0.95 and 1. The latter is visible between
the 2σ- and 3σ-contours close to the wall-like constraint at ln(1010AS) ' 2.92. By contrast,
the CC plot for the two-pass transformation (Figure 18, top right) demonstrates good
agreement between the contours of analytic posterior and point samples.
To demonstrate the algorithm working on a high-dimensional example, we Gaussianise
a seven-dimensional Planck MCMC sample with an ABC transformation. In order to
visualise the result, we show all one-dimensional and two-dimensional marginal dis-
tributions of the point sample and the full analytic posterior density (see Figure 19). We
employ one-pass transformations, because, as discussed in Section 3.2.4, the marginalisa-
tion of the analytic posterior from 7D down to 2D or 1D would not be possible without
explicit integration or sampling, had we chosen to use the two-pass protocol.
We have demonstrated that, equipped with multi-pass protocol and CC plot, Gaussian-
isation is a versatile and robust toolbox for the reconstruction of posterior probability
densities that we have field-tested on cosmological data.
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Figure 19: Reconstruction of a seven-dimensional Planck posterior density via a one-pass ABC
transformation: 1D and 2D marginals. Black: marginal analytic posterior density (1D)
or 1,2,3 σ contours. Red: marginal point sample distributions. For the 1D cases, the
histograms have renormalised bar heights, to demonstrate the agreement with the
value of the probability density.
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4
A N O V E L WAY T O C O M P U T E E V I D E N C E

There is a theory which states that if ever anyone discovers exactly what the
Universe is for and why it is here, it will instantly disappear and be replaced
by something even more bizarre and inexplicable.
There is another theory which states that this has already happened.

Douglas Adams
The Restaurant at the End of the Universe

The model evidence is the central tool to compare the predictivity of two different
cosmological models in a Bayesian fashion – the evidence ratio allows the updating
from prior to posterior odds ratios (see Section 2.1.2). In case that one model is nested
in the other (just like flat ΛCDM resides inside curved ΛCDM as the hyperplane ΩK = 0),
the evidence ratio is readily computed via the SDDR (Dickey, 1971; Verde, Feeney, et al.,
2013). In the general case, however, no such shortcut exists. Several sampling algorithms
that are popular in cosmology provide evidence estimates for the underlying likelihood
and prior – these include PMC (Kilbinger, Wraith, et al., 2010) and Multinest (Skilling,
2006). However, the problem of evidence computation remains slow and computation-
ally involved. We will demonstrate how to employ Gaussianisation as a new tool to
access this problem, and compare to several existing methods.

4.1 analytic formulae for evidence

The model evidence for a modelMi, can be computed via

Ei = P(D|Mi) =
∫

dXP(D|X,Mi)P(X|Mi) (90)

i.e. via integration of the (unnormalised) posterior density Π(X) = P(D|X,Mi)P(X|Mi)

over the respective parameter space of modelMi – hence the term ‘marginal likelihood’
for E. If Π takes a form with non-Gaussian features, and if the model parameter space
is high-dimensional, this integral itself is often difficult to calculate.
However, with a bijective transformation T : X 7→ Y that Gaussianises the unnormalised
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posterior density Π̃(Y) = Π[T−1(Y)] |dX/dY|, we can compute the evidence integral
analytically. If Π̃ has the shape of an (unnormalised) multivariate Gaussian

Π̃(Y) = Π̂ exp
[
−1

2
(Y− µ̃)TΣ̃−1(Y− µ̃)

]
(91)

with means µ̃, covariance matrix Σ̃ and maximum Π̂, the log-evidence reads

ln E = ln Π̂ +
1
2

ln det Σ̃ +
d
2

ln(2π). (92)

Similar expressions for Gaussian posterior densities can be found in A. N. Taylor and
Kitching (2010). To estimate Π̂, we need the absolute normalisation of Π̃; hence this
method can only be applied to samples which provide the values for Π (possibly also in
the form of log-likelihood and log-prior). From these, we compute the values of ln Π̃(Y)
on the optimally-Gaussianised sample by adding the logarithm of the transformation
Jacobian, and then fit the parameters µ̃, Σ̃, and Π̂ of the Gaussian via least-squares
regression. This can be performed analytically, and even be used to compute an error
bar on the value of ln E – see Appendix B for details.
If the prior distribution for one MP, and hence the posterior, is supported only on a
finite interval, the same will hold true for the transformed MP if we restrict ourselves
to one-pass transformations. If the sample size is large enough to properly represent
the cutoff, the Gaussianisation transformation will alleviate this feature, but may not
fully remove it. Assuming the marginal distribution to be Gaussian, when in reality we
may deal with a truncated Gaussian, will lead to a systematic error in the evidence,
so it is advantageous to remove these features before starting the search for optimally
Gaussianising TPs. Appendix A details ‘unboxing transformations’, which redefine the
MPs, mapping a finite open interval to the entire real line. In fact, it is also possible to
use them for posterior density reconstruction, before Step 1 in Section 3.2.4.

4.2 application to lognormal simulated data

To demonstrate this idea, we compute the evidence integral first on a mock data set, and
subsequently on real data from cosmology. For the former, we draw a random sample
of length 10,000 from a ten-dimensional log-normal probability distribution, and assign
to each point the value of the probability density function, multiplied with a factor of
E = exp(5). All weights are set to unity. This mock sample is subjected first to the
Gaussianisation procedure with one-pass ABC transformations (no unboxing), and then
to the regression outlined in Appendix B to retrieve the best-fit estimate for ln E and its
error bar.
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Figure 20: Ratio of log-evidence values for mock data set drawn
from a 10D log-normal distribution, computed after
24 Gaussianisation runs to the true value, versus
the negative log-likelihood for each run (including
penalty term). Values and error bars shown are from
analytic regression, as detailed in Appendix B (red),
and the means and one-sigma confidence intervals
from the bootstrapped distributions (black). The black
line indicates the true value. Inset: zoomed-in version
of the lower left corner.

To verify these, we de-
termine the distribution
of the estimator in Equa-
tion 92 by producing 1,000

bootstrap samples from
the transformed sample,
and computing ln E on
each of them, together
with its one-sigma con-
fidence intervals. To in-
crease the reliability of
the optimally Gaussian-
ising transformation, 24

independent Gaussianisa-
tion runs are started with
randomised initial condi-
tions; Figure 20 shows the
results for these. Relative
to the “true” value of 5,
these agree to sub-percent
accuracy. It is also noteworthy that a lower local maximum of the likelihood, i.e.
one further to the right, will depart more from the true value. Hence, a location in
TP space that is close to the exact optimum will yield a biased value for the log-
evidence. This indicates that the evidence is a sensitive indicator for departures from
Gaussianity. Note that a log-normal distribution can be precisely Gaussianised with
Box-Cox transformations – and thus also by ABC transformations, which are a superset
of these. Further, it is noteworthy that our analytic procedure yields error bars of the
right magnitude, yet somewhat more conservative, compared to their bootstrapped
counterparts. This discrepancy arises because the bootstrapped distributions for ln det Σ̃
and ln Π̂ deviate slightly from Gaussianity, whereas the analytic error bars assume
Gaussian error propagation (see Appendix B for details).

4.3 application to cosmological data

For a demonstration on real-world data, we Gaussianise the joint posterior distribution
of MPs of data from weak lensing and baryon acoustic oscillations. The weak lensing
data set is the 2D cosmic shear data taken by the Canada-France-Hawaii Telescope
Lensing Survey (CFHTLenS; see Heymans, Van Waerbeke, et al. 2012; Kilbinger, Fu, et
al. 2013). The CFHTLenS survey analysis combined weak lensing data processing with
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THELI (Erben et al., 2013), shear measurement with lensfit (Miller et al., 2013), and
photometric redshift measurement with PSF-matched photometry (Hildebrandt, Erben,
et al., 2012). A full systematic error analysis of the shear measurements in combination
with the photometric redshifts is presented in Heymans, Van Waerbeke, et al. (2012),
with additional error analyses of the photometric redshift measurements presented in
Benjamin et al. (2013).
The BAO data set is the Data Release 9 (DR9) CMASS sample from the Baryon Oscillation
Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey III (SDSS-III) –
see Anderson et al. (2012). This contains 264,283 massive galaxies in a redshift range
0.43 < z < 0.7, whose correlation function and power spectrum both exhibit the features
of baryon acoustic oscillations. The quantity d(z) = rS(zd)/DV(z), i.e. the ratio of the
comoving sound horizon rS at the baryon drag epoch zd and the spherically volume-
averaged distance DV(z), is a probe of the underlying cosmological parameters – see
Percival, Cole, et al. (2007) for details.
To draw samples from the posterior distribution, we use the CosmoPMC software package1,
which uses Population Monte Carlo (PMC), an algorithm to approximate the target
distribution by a Gaussian mixture model. We compare three cosmological models:
standard flat ΛCDM, curved ΛCDM, flat wCDM, and curved wCDM. The first has a
four-dimensional parameter space spanned by matter density Ωm, power spectrum
normalisation σ8, baryon density Ωb, and the normalised Hubble parameter h100 – all
other parameters are set to their best fit values for flat ΛCDM, see Planck Collaboration
(2015c). The latter two contain a fifth model variable each – curvature parameter ΩK

and constant dark energy equation-of-state parameter w, respectively. For all of these
parameters, flat proper priors were chosen.The baseline model – flat ΛCDM is always
referred to as model 1, whereas model 2 is one of the two extensions. As a byproduct
of the sampling process, PMC provides the model evidence for the data set used – see
Kilbinger, Wraith, et al. (2010) for further details.

In the special situation where one model is nested inside the other, the evidence
ratio B12 = E1/E2 can be computed via the Savage-Dickey Density Ratio (SDDR) –
see Section 2.1.2, and citations therein. Under mild conditions on prior and posterior
densities for the full modelM2 and the submodelM1, the ratio can be derived to be

B12 =
P(ψ = ψsub|D,M2)

P(ψ = ψsub|M2)
, (93)

where ψ denotes the extra parameter (or parameters) contained in M2 but not in
M1, ψsub is the value of ψ that specifies the submodel M1, and P(ψ|D,M2) and
P(ψ|M2) are posterior and prior densities of the full model, marginalised over all model
parameters but ψ (see Section 2.1.2 for details).

1 See http://www2.iap.fr/users/kilbinge/CosmoPMC/.
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flat ΛCDM curved ΛCDM flat wCDM

dimension 4 5 5

ln E (G) 486.96 ± 0.01 485.79 ± 0.03 486.09 ± 0.05

ln E (PMC) 487.02 ± 0.03 485.84 ± 0.01 486.00 ± 0.04

ln B12 (G) n.a. 1.17 ± 0.04 0.87 ± 0.05

ln B12 (SDDR) n.a. 1.23 ± 0.04 0.93 ± 0.06

ln B12 (PMC) n.a. 1.19 ± 0.04 1.03 ± 0.05

Table 3: Values for evidence and Bayes factor for CFHTLenS+BOSS data set in three cosmological
models, as computed with Box-Cox Gaussianisation (G) of weighted samples with 10,000

points each. For comparison: evidence value ln E and Bayes factor ln B12 = ln Ebase −
ln Eextension from Population Monte Carlo (PMC), and Bayes factor from Savage-Dickey
Density Ratio (SDDR).

We find that the log-evidence values computed by CosmoPMC need to be offset by a factor
of n− 1 times the log-prior density, where n is the number of data sets used. This is due
to a non-standard interpretation of the prior density within CosmoPMC. Throughout this
work, we apply this correction to the log-evidence values produced by CosmoPMC as well
as the log-posterior values extracted from the CosmoPMC output. We follow the practice
of (Kilbinger, Wraith, et al., 2010; Kilbinger, Fu, et al., 2013) of accepting a CosmoPMC

run as soon as the built-in convergence diagnostic, called perplexity, exceeds a value of
p > 0.7. Sampling to even higher values for the perplexity, up to p ∼ 0.95, still changes
the CosmoPMC value for ln E by as much as ∼ 0.1 – this indicates a residual bias in the
statistic. However, since the exact same offset has to appear in the CosmoPMC output
values for the log-evidence ln E and for the non-normalised log-posterior ln Π(X), it is
not of relevance to demonstrating our method, so investigating its origin is beyond the
scope of this work.
Table 3 shows the log-evidences for the three models, and the Bayes factors of ΛCDM

compared to either of the two extended models. The numbers in the first line were
computed via one-pass Gaussianisation with ABC transformations, preceded by an un-
boxing transformation. To estimate the scatter of the CosmoPMC and SDDR values for ln E
and ln B12 in the second, fourth, and fifth lines, we rerun CosmoPMC ten times for each
model, and determine the mean and average for the CosmoPMC and SDDR estimators.
Like for the log-normal sample, 24 independent Gaussianisation runs were started for
each sample, and the one with the highest log-likelihood value chosen to transform the
sample, which is then subjected to the analytic evidence computation procedure. The
values in the first row of Table 3 are the weighted averages and standard deviations of
all ten values, where the weights are determined from the analytic error bars as wi = σ−2

i

(see Appendix B).
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The values show that the combined data favour ΛCDM over any of the extended models,
although the evidence is not strong against either of the two. To sharpen the discrim-
ination power of one model over the other, one might want to add further data sets,
e. g., CMB data from the Planck satellite (Planck Collaboration, 2015a). This is problem-
atic, since the posterior densities of Planck and CFHTLenS exhibit substantial tension in
the measured values of H0, Ωm, and σ8 (MacCrann et al., 2015; Spergel, Flauger, and
Hložek, 2015; Hildebrandt, Viola, et al., 2016). It is currently an unanswered question
whether this discrepancy is due to physics beyond the cosmological standard model
(or the standard model of particle physics, for that purpose), or due to unknown or
mis-modelled systematic effects in the data analysis. However, the addition of CMB data
can result in an increase of the evidence ratio, favouring ΛCDM over its extensions more
strongly than it does with the combination of weak lensing and BAO data. The reason is
that the normalised product of two discrepant probability densities will typically result
in a density with smaller spread than the individual posteriors, even if the credible
intervals for both original distributions are significantly removed from another. Since
this increase in evidence does not correspond to a reliable sharpening of the parameter
constraints, we will refrain from repeating this analysis including Planck data.
Our values agree with the numbers of SDDR and PMC within the spread between the
latter two estimators, but still small deviations remain, which are larger than the error
bars quoted. These may be due to residual non-Gaussianity in the transformed samples,
to which the evidence is a sensitive measure.
This demonstrates the efficiency and practicality of Gaussianisation in cosmological
model comparison, compared to existing algorithms.
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5
G A U S S I A N I S AT I O N O F C O N V E R G E N C E F I E L D S

“Come”, he said, sweeping through the door where Miss Janice Pearce sat
glaring at a pencil, “let us go. Let us leave this festering hellhole. Let us
think the unthinkable, let us do the undoable. Let us prepare to grapple with
the ineffable itself, and see if we may not eff it after all.”

Douglas Adams
Dirk Gently’s Holistic Detective Agency

5.1 introduction

The accurate description of random field distributions is an important and challenging
problem for observational cosmology, especially if the random fields have non-Gaussian
correlation properties. This is the case for the observables of weak gravitational lensing,
i. e., convergence and cosmic shear. These are two-dimensional weighted projections of
the dark matter density contrast δc, which is also non-Gaussian on small scales due to
late-time nonlinear structure formation introducing mode couplings. It is possible to
approximate these fields as Gaussian, and extract information only from the two-point
statistics, i. e., correlation functions or power spectra (Kaiser, 1992; P. Schneider, van
Waerbeke, et al., 2002; Kilbinger and P. Schneider, 2004; Joachimi, P. Schneider, and Eifler,
2008). However, the covariance matrix of a two-point estimator like the power spectrum
will contain trispectrum contributions that become large on nonlinear scales, hence
they need to be included into an accurate likelihood analysis of these scales. Modelling
these covariances including the non-Gaussian contributions can be achieved by directly
simulating the nonlinear collapse of cosmic structure and thus producing a large number
of independent realisations of the convergence field, from which the sample covariance
can be readily computed; these simulations, however, are computationally expensive
and involved.
Additionally, the non-Gaussian correlation between modes will diminish the potential
information gain from two-point estimators already on weakly nonlinear scales (Rimes
and Hamilton, 2005; Neyrinck, Szapudi, and Rimes, 2006; Rimes and Hamilton, 2006;
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Neyrinck and Szapudi, 2007; Carron and Szapudi, 2013; Carron, Wolk, and Szapudi,
2015), and potentially bias the power spectrum or correlation function estimates (Sato,
Hamana, et al., 2009; Sato, Takada, et al., 2011).
On the other hand, the cosmological information residing in non-Gaussian higher-point
observables promises to be comparable to the constraints from power spectra – works
that explore bispectrum estimation as a tool to constrain parameters include Takada and
Jain (2003, 2004, 2009).
It is therefore highly desirable for weak lensing inference to have a modelling toolbox
for non-Gaussian random fields – to accurately access the information on non-linear
scales from two-point statistics as well as higher orders. One strategy is to model the
convergence as a Gaussian-related random field, i. e., one that can be transformed into an
approximately Gaussian random field ζ via a smooth mapping T : κ 7→ ζ. A parametric
ansatz for such a Gaussianising map which has been motivated from physics is the
lognormal transformation; a non-parametric, data-driven mapping is provided by the
Rosenblatt transformation (see Section 2.3.3 for definition and discussion of both).
It is noteworthy that the shapes of both transformations are inspired by the one-point
distribution of convergence values, i. e., the histogram of κ-values. A priori it is not guar-
anteed that a mapping that approximately or even perfectly Gaussianises the one-point
distribution will also Gaussianise the full random field, including all higher-dimensional
marginal distributions. A well-known statistical tool to assess the higher-order correla-
tion structure is the sequence of n-point copulas – given a random field X with one-point
cumulative distribution function C(x), the random field Y = C(X) will have a uniform
one-point distribution on [0, 1]. The n-point distribution of Y is a probability density on
the n-dimensional hypercube, and known as copula. If X is a Gaussian field, then each
n-point copula has a fixed shape known as Gaussian copula (Nelsen, 1999).
Now, if there is any such mapping that Gaussianises κ perfectly, all copulas of nth order
(n ≥ 2) have to be of Gaussian shape – this is the content of the Gaussian Copula
Hypothesis (GCH) postulated by Scherrer et al. (2010). It is widely assumed to be valid,
although this has never been demonstrated convincingly for higher orders, and the
performance of lognormal and Rosenblatt transformation are limited (see Section 2.3.3
and Section 5.3 for details).
Therefore, it is of interest to choose a transformation based on its Gaussianising be-
haviour on the relevant higher-order statistics, rather than exclusively on the histogram.
The benefit would be twofold: using the transformed convergence field as the basis
for two-point statistic estimation increases the information content accessible to these
estimators, since Gaussianisation captures the information from the higher orders. Ad-
ditionally, the decorrelating effect on binned `-ranges for the covariance matrix of power
spectrum estimates more diagonal.
We propose a novel framework to search for parametric Gaussianising transformations
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for non-Gaussian random fields, inspired by the Gaussianisation procedure of Joachimi
and A. N. Taylor (2011) and Schuhmann, Joachimi, and Peiris (2016). The aim is to
find an optimally Gaussianising transformation based on its performance on higher-
point distributions, rather than just the histogram. This allows for efficient sampling
from the random field distribution, i. e., producing mock maps that contain the full
non-Gaussian correlation structure: the power spectrum of the Gaussianised maps can
be used to produce Gaussian convergence maps; applying the inverse transformation
to these yields independent realisations of the non-Gaussian convergence field, which
can subsequently be used for, e. g., the estimation of convergence matrices. While our
research was progressing, Y. Yu, Zhang, and Jing (2016) published this idea and demon-
strated it using the Rosenblatt procedure. They find that this does not lead to a perfectly
diagonal correlation matrix – especially on small scales, mode couplings remain, but the
power spectra and covariance matrices can nevertheless be reproduced reasonably in the
mildly nonlinear regime.
In contrast to their histogram-based approach, we will present a strategy that allows
us to pick a transformation based on the higher-order correlations as well. We consider
transformation families which are indexed by a sufficiently large parameter space; the
optimally Gaussianising transformation parameters are found by optimising a loss func-
tion over these parameters. As samples from the random field distribution, we use mock
convergence maps from N-body simulations. We will introduce these simulations in
Section 5.2, introduce the parametric transformation family in Section 5.3, and describe
two different approaches to finding a loss function for non-Gaussianity in Section 5.3.1
and Section 5.3.2. The results of our analysis will be detailed in Section 5.4, where
we present the transformations themselves (Section 5.4.1) and their performance in
simulating non-Gaussian mock maps (Section 5.4.2).

5.2 simulated convergence maps

We investigate the correlation properties of weak lensing convergence by studying two-
dimensional simulated pixelised κ-maps. These have been produced with the high-
performance CUBEP3M N-body simulation code1 (Harnois-Déraps, Pen, et al., 2013).
The Poisson equation of Newtonian gravity is solved on a mesh, tracking the three-
dimensional clustering of dark matter particles in a cubic simulation box with a co-
moving width of 505 Mpc/h. We use an extension of the simulation suite described in
Harnois-Déraps and van Waerbeke (2015): flat ΛCDM has been assumed as a fiducial
cosmological model, with the parameters Ωm = 0.2905, ΩΛ = 0.7095, Ωb = 0.0473,
nS = 0.969, h = 0.6898, and σ8 = 0.826. The 3D dark matter distribution is collapsed
into a discrete number of 2D mass sheets, which are subsequently used as thin lenses;

1 See https://github.com/jharno/cubep3m.
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Figure 21: Histograms of one simulated convergence map from N-body simulation (blue) and
one Gaussian mock map (red) – both fields have the same power spectrum and 60002

pixels each. The skewed deviation of the simulated map from Gaussianity in the one-
point distribution is clearly visible. The black line is the lognormal probability density,
rescaled to the normalisation of the histograms.

in the vacuum between these planes, light propagates along straight lines. The source
galaxies are located 126.25 Mpc/h behind each lens plane, the last one of which is at
z = 0.897. This discretised ray-tracing scheme to construct the past light cone of null
geodesics has been described in Martel, Premadi, and Matzner (2002), Harnois-Déraps,
Vafaei, and Van Waerbeke (2012), and Harnois-Déraps and van Waerbeke (2015); it is
a valid approximation to a fully three-dimensional approach (Couchman, Barber, and
P. A. Thomas, 1999; Cooray and Hu, 2001; Hirata and Seljak, 2003). It should be noted
that baryonic effects are absent from these mock maps since the simulated structure
formation contains only dark matter. Further, shape noise is absent, i. e., the intrinsic
scatter in the ellipticities of observed galaxies, which is an important modelling step for
cosmic shear estimation. In spite of missing baryonic feedback, this suite is adequate for
our purpose: the demonstration for our Gaussianisation method, which is not tied to a
specific form or shape of non-Gaussianity. However, the influence of shape noise, which
Joachimi, A. N. Taylor, and Kiessling (2011), Seo, Sato, Dodelson, et al. (2011), and Seo,
Sato, Takada, et al. (2012) have shown to have a significant detrimental impact upon the
Gaussianisation performance, needs to be investigated in further research.
Our simulation suite consists of 913 square maps of weak lensing convergence with an
area of 60 square degrees each (this is the solid opening angle at the apex of the light
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Figure 22: Convergence power spectrum estimates from N-body simulations (blue) and
Gaussian realisations (red); also shown is the theoretical prediction (black). To aid
visibility, the blue error bars have been offset slightly to the right.

cone), divided into 60002 quadratic pixels with an edge length of 4.648 arcseconds.
The histogram of κ values of a non-Gaussian convergence map is displayed in Figure 21,
alongside the histogram of a Gaussian mock convergence map of identical dimensions:
this has not been produced via an N-body simulation, but from the theoretically pre-
dicted convergence power spectrum for the fiducial cosmology cited above. The one-
point distribution of the simulated convergence map is deviating clearly from Gaus-
sianity, but also from a lognormal density especially in the region of large convergence
values (κ & 0.1).
Further, in Figure 22 we show power spectrum estimates averaged over all 913 non-
Gaussian maps, as well as from the same number of Gaussian realisations; we also
compare with the theoretical prediction for the power spectrum, including the nonlinear
fitting formula described by Takahashi et al. (2012); shown is an angular frequency range
of ` = 100 . . . 20, 000, logarithmically binned into 30 annulus-shaped radial bins.
A homogeneous random field has uncorrelated (but not necessarily independent) Fourier
modes. If additionally the random field is Gaussian, then the modes need to be inde-
pendent random variables. For band-averaged power spectrum estimates, this means
that the covariance matrix of power bins is diagonal; any deviation from Gaussianity
will correlate the power spectrum estimates in different bins. This is shown in the upper
two panels of Figure 23 – whereas the Gaussian convergence field realisations indeed
have a diagonal correlation matrix (upper right), the non-Gaussian maps show rich off-
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Figure 23: Sample correlation matrices of binned power spectra. Top left: untransformed N-
body simulations; top right: Gaussian realisations; bottom left: N-body simulations
after lognormal transformation; bottom right: N-body simulations after Rosenblatt
transformation.

diagonal contributions in the power spectrum bins 10 and above (upper left) – this bin
corresponds to a wave number of ` ∼ 600, i. e., an angular scale of roughly 36 arcminutes.
In Figure 22, this is slightly lower than the location of the nonlinear bump in the power
spectrum (Takahashi et al., 2012); this corresponds to the findings of Meiksin and White
(1999), Scoccimarro, Zaldarriaga, and Hui (1999), and Cooray and Hu (2001) that sizeable
and non-negligible cross-correlations will already plague the mildly non-linear scales.
We investigate the Gaussianisation performance of the transformations described in
Section 2.3.3, namely the lognormal map and the Rosenblatt map. We also show the cor-
relation matrices of power spectrum estimates of the transformed N-body simulations
in the lower half of Figure 23. To ensure that every value of κ can be transformed, the
parameter κ0 in Equation 80 is set to the absolute minimum of all maps. Both transfor-
mations succeed visibly in mitigating correlations between modes. The lognormal map
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pushes the strongly correlated regime to higher wavenumbers (` & 1500), at the price
of introducing weak anticorrelations between high-` and low-` bins. The Rosenblatt
map pushes the mode correlations higher, up to ` & 2000, but the anticorrelations in
the wings are even stronger. For both Gaussianisation transformations, the off-diagonal
terms in the correlation matrix between power spectrum bins become mitigated, but for
none of them does the matrix become fully diagonal.

5.3 the strategy : parametric transformations and loss function

Although widely assumed to be true in the literature, the status of the GCH is unclear.
It has been demonstrated for the one-point distribution (Scherrer et al., 2010; Clerkin
et al., 2016), but whether it holds even approximately for higher orders is less clear.
Mathematically, given that the equivalence class of Gaussian-related random fields is
only a vanishingly small subspace of the space of all random fields, it is unlikely to
be valid for all orders. Also, it is easy to prove that if it holds, then the Rosenblatt
transformation, which perfectly Gaussianises the one-point distribution, also must do
the same with all higher orders. Thus, if the GCH held, the residual deviations from
Gaussianity shown in the bottom right panel of Figure 23 should be absent, indicating
failure of the GCH at the critical fourth order – critical because it is the four-point
distribution which needs to be captured accurately for inference on two-point statistics.
Nevertheless, abandoning the hypothesis does not mean that the entire program of
Gaussianisation for random fields is altogether forfeit – it opens up new directions
for finding such transformations. So far, transformations have been motivated by their
action on the histogram exclusively; this is especially true for the lognormal transform or
the Rosenblatt transform. If the GCH holds only approximately, then it is worth searching
for transformations based on their performance on higher orders: Gaussianising the
histogram well is no longer an indicator for good Gaussianising performance on any
higher order, or vice versa – Gaussianising the one-point distribution and the four-point
distribution are different targets, and it is the latter that we aim for.
We will propose and investigate two different loss functions that have the potential to
quantify non-Gaussianity of a random field in a higher-order distribution than the his-
togram. We then proceed to consider parametric transformation families, and minimise
the non-Gaussianity of a convergence map over the transformation parameter space
with standard optimisation algorithms. The first transformation family is a modification
of the previously considered Box-Cox transformations

κ 7→ BCs
(κ0,λ)(κ) =


1
λ

[(
1 + κ

κ0

)λ
− 1
]

(λ 6= 0)

ln
(

1 + κ
κ0

)
(λ = 0).

(94)
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This Box-Cox-scaling transformation is, like the usual Box-Cox transformation (Equation 87),
regular across λ = 0, where it represents the mapping that perfectly Gaussianises a
lognormal random field. To avoid undefined behaviour, the parameter κ0 needs to be
constrained to κ0 > inf{κ}.
In principle, any family of bijective and smooth transformations T∆ : R→ R labelled by
real parameters ∆ = (δ1, . . . , δn) could be considered, and failure to achieve Gaussianity
can motivate the use of a more general family. The mapping is local, i. e., for every
point θ, the non-Gaussian and (approximately) Gaussian random fields are related as
ζ = T∆[κ(θ)]. In principle, the transformation parameters ∆ could vary from point
to point, but we choose to restrict ourselves to global transforms – i. e., those where
the same transformation parameters ∆ are applied at each point. The reason is that
this preserves the statistical homogeneity – if the n-point distributions of κ are shift-
invariant, and the transformation is global, then so will the n-point distributions of ζ.
Although this is not proven with mathematical rigour, we hypothesize that it is not
only desirable but necessary to restrict ourselves to global transformations if we wish to
preserve statistical homogeneity.
Parametric transformation families have been employed to Gaussianise the histogram
of weak lensing convergence: Seo, Sato, Dodelson, et al. (2011) and Seo, Sato, Takada,
et al. (2012) have demonstrated how the lognormal transformation can enhance the
information content of convergence maps accessible to inference on two-point statistics,
and tighten the constraints on dark energy. Joachimi, A. N. Taylor, and Kiessling (2011)
have used the Box-Cox transformation in its original form, in order to improve upon the
lognormal transform in reproducing the histogram. They found that freeing the parame-
ter λ allows for a better fit especially of the high-convergence regions, which skew the
distribution of untransformed κ values strongly to the right (see Figure 21). However,
when studying the power spectra correlations of convergence maps transformed with
the optimally histogram-Gaussianising Box-Cox transformations, significant residual
non-Gaussianities remain in the higher orders, including the trispectrum.

5.3.1 Projection-based Gaussianity test

We implement the procedure of Cuesta-Albertos et al. (2007) and Nieto-Reyes, Cuesta-
Albertos, and Gamboa (2009, 2014) (see Section 2.3.2) to devise a loss function quan-
tifying deviations of a random field ζ(θ) from Gaussianity, which takes as input a
pixelised version {ζij = ζ(θij)}N

i,j=1. To this end, we will draw a pixelised random field
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h = {hij}N
i,j=1 from a dissipative probability distribution, and convolve the random fields

to yield a new pixelised random field Y

Yij = (h ∗ ζ)ij =
N

∑
r,s=1

hrsζ(i−r) (j−s). (95)
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Figure 24: The probability density function of
the beta distribution for different
values of the shape parameters α1
and α2.

The collection of all its values {Yij} has
the same distribution as the projection
〈h|ζ〉; according to the theorem proven in
Cuesta-Albertos et al. (2007), a Gaussian-
ity test of this one-dimensional quantity
at significance level α yields a Gaussianity
test of the random field ζ at the same
significance.
To produce the random element h, we
follow Nieto-Reyes, Cuesta-Albertos, and
Gamboa (2014) and draw samples from
the Dirichlet distibution, which is the
multivariate generalisation of the univari-
ate Beta distribution, and dissipative in
the technical sense. We implement the
stick-breaking technique (Pitman, 2006) –
here, β(α1, α2) denotes the univariate Beta
distribution, which is supported on the
unit interval and depends on two fixed
positive shape parameters. Its probability density function is

fβ(x; α1, α2) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
xα1−1(1− x)α2−1, (96)

where Γ(z) =
∫ ∞

0 dx xz−1e−x is the Gamma function. Its mean is equal to α1
α1+α2

; choosing
α1 > α2 yields a distribution with its main mass in the lower half interval, and α1 = 1;
α2 � 1 will result in concentrating the distribution in a small neighbourhood of zero.
We implement the following algorithm:

• Draw h̃1 ∈ [0, 1] from β(α1, α2).

• For n = 2 . . . N2: draw rn ∈ [0, 1] from β(α1, α2) and set h̃n = rn

(
1−∑n−1

k=1 h̃k

)
.

• Let δ > 0 fixed – for us, δ = 10−16. If there is an integer t (1 < t < N2) such that

∑t
k=1 h̃k ≥ 1− δ, then find the smallest such t and set h̃T = 0 ∀T > t.

• Distribute the N2 numerical entries of
(
h̃1/2

n
)N2

n=1 randomly into the field (hij)
N
i,j=1.
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The third step is necessary to ensure that h is properly normalised: ||h||2 = 〈h|h〉 = 1.
Without this procedure, round-off errors can accumulate catastrophically and lead to
loss of significant digits.
The choice of the parameters α1 and α2 is crucial to the sensitivity of the test: if α2 � α1,
then there will be many entries in h that are distinct from zero – however, performing the
convolution Equation 95 means building a linear combination of many components of κ,
hence by the Central Limit Theorem our test can lose power to detect non-Gaussianity.
On the other hand, if we choose the parameters to be too close to avoid the CLT, then
there will be few entries in h, and the samples {Yij} and {ζij} will be too similar.
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Figure 25: Testing the sensitivity of the loss func-
tion p0 to non-Gaussianity. One Gaus-
sian random field is transformed
with a Box-Cox-Scaling transforma-
tion with varying λ (κ0 = 1 is con-
stant). Shown are mean and spread of
eight independent evaluations of the
loss function.

To avoid both pitfalls, Nieto-Reyes, Cuesta-
Albertos, and Gamboa (2014) recommend
producing K random fields h(1,r) with
(α1, α2) = (2, 7) and K fields h(2,r) with
(α1, α2) = (1, 100) (r = 1 . . . K). Then, for
each of these 2K random fields:

• Perform the convolution (Equa-
tion 95) by multiplying ha,r and κ in
Fourier space.

• Perform a Gaussianity test on the
one-dimensional marginal sample
{Y(a,r)

ij }N
i,j=1, which results in a p-

value p(a,r). Our test of choice is
Shapiro-Wilk – see Section 2.3.1.

The 2K p-values are combined with
the False Discovery Rate (Benjamini and
Hochberg, 1995; Benjamini and Yekutieli,
2001) into a global p-value p0 for the en-
tire test. Ranking the values in ascending
order: p(1) ≤ p(2) ≤ . . . ≤ p(2K), this is

p0 = 2K min
j=1...2K

(
j−1 p(j)

) 2K

∑
n=1

1
n

. (97)

We will use this value p0 as a loss function on the space of Gaussianising transformation
parameters ∆: ζ(θ) = T∆[κ(θ)] and apply to the modified BoxCox transformations
defined in Equation 94.
To investigate the dependence of the false discovery rate on the transformation
parameters, we choose K = 4, and proceed to compute p0 for different values of λ
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(κ0 = 1 is kept constant) as parameters of a Box-Cox-scaling transformation applied to
a single Gaussian mock convergence map with 60002 pixels; for each point in parameter
space we calculate the loss function eight times, each with new independent realisations
of h. In Figure 25, we show the mean and variance of these – whilst the average value
reaches its maximum for λ = 1, the loss function cannot, within the uncertainty of a
single evaluation, distinguish between a Gaussian (λ = 1) and a strongly non-Gaussian
random field (e. g., λ = 0).
We therefore cannot confirm the statement of Nieto-Reyes, Cuesta-Albertos, and
Gamboa (2009) that a Gaussianity test of the projection marginals, produced in the
described fashion, yields a Gaussianity test of the full random field at the same
significance threshold – at least not in our two-dimensional setting. We tried out other
values for α1, α2; for neither of them is the sensitivity to non-Gaussianity large compared
to the scatter. Increasing the number of projection directions per test might alleviate the
large amount of scatter. However, the growing need for computation time and/or hard
disk space does not make this method feasible, compared to the merit function we will
discuss next, and will from now focus on exclusively.

5.3.2 Likelihood-based Gaussianity test

To quantify the Gaussianity of a random field, we can apply a maximum-likelihood for-
malism in the spirit of Box and D. R. Cox (1964), Velilla (1993), Joachimi and A. N. Taylor
(2011), Joachimi, A. N. Taylor, and Kiessling (2011), and Schuhmann, Joachimi, and Peiris
(2016). These authors have devised a likelihood for the parameters of Gaussianising
transformations by inserting each point of a sample of a finite-dimensional random
vector into a suitably transformed probability density (see Section 3.2 for details), or
in the case of Joachimi, A. N. Taylor, and Kiessling (2011) following the same strategy
with the one-point distribution of a convergence map, i. e., all its entries pooled into one
data vector. Our likelihood formalism differs from these earlier works in two important
respects: the quantity whose Gaussianity is investigated is a pixelised random field
in a high-dimensional space – 60002 in our case, whereas the number of samples –
i. e., random field realisations – is significantly lower. Our log-likelihood is the logical
equivalent of Equation 85 for a pixelised random field κ(θ) instead of a low-dimensional
random vector X, hence we proceed in similar fashion: we apply a Gaussianising trans-
formation T∆ : R → R, which is a bijective map indexed by n real transformation
parameters ∆ = (δ1, . . . , δn), to the full random field κ at every point: ζ(θ) = T∆ [κ(θ)].
Particularly, if Λ = {θij}N

i,j=1 is the set of N× N grid points, we set up the likelihood for
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the transformed pixelised field ζ(θij) = T∆

[
κ(θij)

]
. Σ̃ shall denote the full covariance

matrix of the transformed convergence in all N2 pixels, i. e.

Σ̃(ij)(kl) = Cov
[
ζ(θij) ζ(θkl)

]
. (98)

Then, the full log-likelihood given one convergence map D = {κ(θij)} as the data is

Lfull(∆|D) = −1
2

ln det Σ̃ +
N

∑
i,j=1

ln
∣∣∣∣dT∆

dκ

[
κ(θij)

]∣∣∣∣ ; (99)

as in Equation 85, any term without explicit or implicit ∆-dependency has been dis-
carded. At first sight it seems difficult to estimate the Gaussianity of a distribution on
RN×N from a single data point D, or even a couple of hundred – but ergodicity of the
random fields allows us to assess the full correlation structure from only a few fields,
and judge its Gaussianity or deviations thereof.
In the task of estimating the determinant of the N2 × N2 covariance matrix Σ̃, we
make use of Plancherel’s theorem (Plancherel and Mittag-Leffler, 1910), which states that
the Fourier transform is a unitary map between functions – this directly relates the
covariance matrix Σ̃ in position space and the covariance matrix S̃ in Fourier space,

S̃(ab)(cd) = Cov [ζ(`ab) ζ(`cd)] , (100)

where {`rs} is the grid in the Fourier domain. As a consequence, there is an N2 × N2

unitary matrix U such that the two covariance matrices are related via

S̃ = U Σ̃ U†, (101)

where U† denotes the Hermitian adjoint of U. Therefore, the determinants of both
matrices S̃ and Σ̃ are identical. Since the random field is homogeneous, the covariance
matrix of the Fourier modes is diagonal, and its log-determinant can be found by
summing the logarithms of its eigenvalues:

ln det Σ̃ =
N

∑
i,j=1

ln
[
4π2Pζ(`ij)

]
. (102)

The evaluation of the full likelihood Equation 99, given a convergence map κ and one
point ∆ in parameter space proceeds as follows:

• Compute the value for the transformation Jacobian
∣∣∣dT∆

dκ (κij)
∣∣∣ on each grid point,

and sum their logarithms.

• Apply the transformation T∆ : κ → ζ.
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Figure 26: Negative log-likelihoods of one Gaussian random field with 60002 pixels, subjected
to a Box-Cox transformation. Left panel: full log-likelihood (Equation 99); Right panel:
histogram log-likelihood (Equation 103). The absolute values have been offset by
a constant such that the minima are at L = 0. The black lines are the linear
transformations (λ = 1).

• Transform the field to ζ(`) via a Fast Fourier Transform (Frigo and Johnson, 2005).

• Bin the power into logarithmically spaced radial bins; find a cubic spline through
these points which approximates the power spectrum Pζ(`).

• Evaluate Pζ(`) at each every grid point `rs, sum the logarithms of these numbers.

Any of these steps can be parallelised with ease; an implementation of this algorithm on
24 cores (2.7 GHz) with shared memory can evaluate the log-likelihood of Equation 99

for N = 6000 in under a minute.
It is instructive to contrast this loss function with the log-likelihood for the one-point
distribution of the convergence map κ – this has been used by Joachimi, A. N. Taylor, and
Kiessling (2011) to find the Box-Cox transformation which optimally Gaussianises the
histogram. It is the the one-dimensional form of Equation 85, where all grid information
is discarded and all κ-values are pooled into one data vector:

Lhist(∆|D) = −N2

2
ln σ̃2 +

N

∑
i,j=1

ln
∣∣∣∣dT∆

dκ

[
κ(θij)

]∣∣∣∣ , (103)

where the variance of the one-dimensional random quantity ζ is estimated via the
standard unbiased sample variance of the sample {ζij = ζ(θij)}:

σ̃2 =
1

N2 − 1

N

∑
i,j=1

(
ζij −

1
N2

N

∑
i,j=1

ζij

)2

. (104)
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Figure 27: Untransformed histograms (black), compared to probability densities derived from
assuming Gaussianity either for τ (red) or ζ (blue). The histograms have been
normalised to the probability densities. Left panel: with smoothing at `s = 30, 000;
bottom panel: no smoothing.

As a sanity check for our loss functions, we show the surface of the log-likelihoods
Equation 99 and Equation 103 for a single Gaussian convergence map in Figure 26.
Both are gridded over the transformation parameters ∆ = (κ0, λ) of the modified Box-
Cox transformation in Equation 94. Since we begin with a Gaussian field, the Box-Cox
transformations mapping a Gaussian into a Gaussian have to be located close to the
line λ = 1, where we expect the maxima of both likelihoods – see Figure 26. The full
likelihood appears to be slightly more sensitive to deviations from Gaussianity, and both
have the maximum ridge at the expected location.

100



smoothing # fields first: κ0 λ second: κ0 λ

`s = 30, 000 10 0.055 -0.811 0.437 10.851

`s = 30, 000 1 0.053 -0.771 0.312 7.909

none 10 0.062 -0.925 0.322 6.347

none 1 0.061 -0.898 0.230 4.637

Table 4: Optimal transformation values, with or without smoothing, for different numbers of
input convergence maps. The first transformation is found by optimising Lhist, the
second via Lopt.

5.4 results

5.4.1 Gaussianising transformations from N-body simulations

We locate the transformation parameters that maximise the log-likelihood with the well-
known Nelder-Mead amoeba algorithm (Nelder and Mead, 1965). Both loss functions
exhibit degeneracies in the optimal Box-Cox-scaling parameters – Joachimi, A. N. Taylor,
and Kiessling (2011) already explored these for Lhist in the context of the original Box-
Cox transformations (Equation 87). To break these, we add a penalty term of the shape
Equation 86, with the parameters p = 6 and ε = 1, to the negative log-likelihood and
minimize the combination of both over the transformation parameter space.
The convergence map will be Gaussianised with two subsequent transformations

κ
BCs

∆1→ τ
BCs

∆2→ ζ. (105)

The first transformation parameters ∆1 are chosen to optimise Lhist(∆|κ), and the second
parameters ∆2 such that they maximise Lfull(∆|τ). The first step removes the majority of
non-Gaussianity in the histogram – since the one-point distribution is close to Gaussian-
ity, this allows the second transformation to become more sensitive to the higher-point
distributions, and mitigate any vestigial non-Gaussianity located there. Therefore, we
expect the higher-than-first-order correlations of ζ to be more Gaussian in distribution
than those of τ, which may come at the price at making the histogram of ζ less Gaussian
than the histogram of τ.
To eliminate effects of the finite resolution of the N-body simulations, we apply Gaus-
sian smoothing to the convergence maps prior to the optimisation procedure. This is
performed by applying a fast Fourier transform, multiplying with a Gaussian kernel of
width `s = 30, 000, and transforming back. This mode corresponds to an angular scale
of about 22 arcseconds, which is the width of roughly five pixels.
Further, we test whether a single convergence map captures the random field distribu-
tion with sufficient accuracy, as postulated by ergodicity. To this end, we implement

101



or
ig

in
al

smoothed

200

500

1 000

2 000

5 000

10 000

20 000

ℓ

unsmoothed

hi
st

og
ra

m

200

500

1 000

2 000

5 000

10 000

20 000

ℓ

fu
ll

100 200 500 1000 2000 5000 10000

ℓ

100

200

500

1 000

2 000

5 000

10 000

20 000

ℓ

100 200 500 1000 2000 5000 10000 20000

ℓ

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

co
rr

el
at

io
n 

co
ef

fi
ci

en
t

Figure 28: Sample correlation matrices of power spectra through the two-step Gaussianising
transformation: top row: before the first transformation; middle row: after the histogram
optimisation; bottom row: after the full optimisation. The spectra have been computed
of 913 convergence maps, the optimisation procedure used ten. Shown are 30 power
bins, logarithmically spaced between ` = 100 and ` = 20, 000. Left column: Gaussian
smoothing at `s = 30, 000; right column: no smoothing.
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the log-likelihoods for multiple convergence maps and compare with the parameters
for a single map: the transformation values presented in Table 4 show that the optimal
parameter values do not differ significantly for the histogram Gaussianisation, whereas
for the second transformation the parameters do differ between one and ten maps.
Additionally, smoothing influences the optimal parameter values of both steps. From
now on, we shall discuss only the transformations found by jointly Gaussianising ten
maps, i. e., the first and third lines of Table 4.
In Figure 27 we show the histogram of the ten untransformed convergence maps (once
with and once without smoothing), and compare with the analytic one-point density
which can be derived from inverse-transforming a univariate Gaussian fitted to the
histogram of either τ (red) or ζ (blue). Whereas the agreement between the first density
and the histogram is excellent, the second one differs. This indicates the histogram of ζ

is not as well described by a Gaussian as τ – which is just what we expected from our
discussion above.
Further, Figure 28 shows the correlation matrices of the binned power spectra for 30

logarithmic bins between ` = 100 and ` = 20, 000, with Gaussian pre-smoothing (left
column), and without (right column). Top to bottom are the correlations of Pκ(`), of
Pτ(`), and of Pζ(`). The first Gaussianising transformation already removes a substantial
amount of non-Gaussianity – only above ` ∼ 1600 do off-diagonal cross-correlations
between bins remain. In the subsequent step, non-Gaussianities leak back into lower
power bins, but to the benefit of an overall reduction in the correlation coefficients:
strong correlations above r ∼ 0.8 remain only above ` ∼ 7500.

5.4.2 Fast generation of weak lensing covariances

This Gaussianisation procedure can be used to sample efficiently from the random field
distribution. The distribution of a Gaussian random field is fully prescribed by its one-
and two-point functions, i. e., mean and power spectrum. Given these two quantities,
it is easy to produce independent realisations of the field. Using this, we can generate
an arbitrary number of independent mock maps from a non-Gaussian random field κ

which can be mapped to a Gaussian ζ with a bijective smooth map T, following the
protocol:

• Measure the power spectrum Pζ and the mean µζ of the transformed field ζ.

• Produce N independent realisations of ζ in Fourier space, by drawing the real and
imaginary part of ζ(`) individually from a univariate Gaussian of mean zero and
width σ ∝

√
Pζ – with the exception of the zero mode ζ(` = 0);

• Apply an inverse Fourier transform to each set of modes, and shift every field by
the mean µζ . This will yield N independent realisations of ζ in the spatial domain.
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Figure 29: Estimated power spectra from back-transformed Gaussian mock convergence maps
(red) and original N-body simulations (blue), in comparison to the theoretical
prediction (black). Top panel: with Gaussian smoothing; bottom panel: no smoothing.
The blue error bars have been offset slightly to the right to aid visibility.

• Apply T−1, the inverse of the Gaussianising transformation, to each of theN maps.

A very similar idea has recently been published by Y. Yu, Zhang, and Jing (2016).
However, their quest for a Gaussianising transformation differs from ours in ansatz
and in scope: they do not directly Gaussianise the convergence field κ, but rather the
two-dimensional projected dark matter density contrast, projected onto the discrete
mass sheets. Further, they restrict themselves to only the Rosenblatt map, which is
histogram-based and non-parametric (see the lower right panel of Figure 23), whereas
we attempt to find a mapping that Gaussianises the higher-point distributions explicitly.
They find reasonable agreement between the power spectra of the N-body simulations
and the back-transformed Gaussian mocks, but deviations appear on scales where non-
Gaussianity becomes significant: their power spectrum estimates from mocks are biased
downwards on intermediate scales ` ∼ 500 . . . 1000, and biased upwards for ` & 1000.
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Figure 30: Comparison of the correlation matrix (top row) and covariance matrix (bottom row;
absolute values) of binned power spectra. Left panels: from the original N-body
simulations; middle panels: from our Gaussianisation method. Right panels: the absolute
difference between both. These fields underwent Gaussian smoothing at `s = 30, 000.

To investigate the performance of our transformations, we measure the power spectra
of the 913 convergence maps after applying the two-step transformation, find the mean
power in each bin, and produce an equal number of Gaussian random fields of the
same size and area. The inverse transformation is applied to these fields, and their
power spectra are computed. Figure 29 shows the power spectrum of the mock conver-
gence maps which have been produced in this fashion, and compares it to the power
spectrum of the original N-body simulations. With smoothing, the power spectra are
well reproduced on large scales. Above ` ∼ 5000 the reproduced power spectra are
slightly biased downwards. The deviations are more pronounced in the unsmoothed
case, where the reproduced power spectra have an overall multiplicative bias. This is
also present when comparing the width of the histograms – the reproduced convergence
maps (unsmoothed) have a standard deviation of 0.0172, whereas the original N-body
simulations have 0.0201. Note that the deviations between the measured spectra and the
theoretical prediction on the very high scales are due to a discrepancy of our simulation
suite and the fitting formula by Takahashi et al. (2012) – see also Figure 22. Furthermore
we show the covariance and correlation matrix of these fields in Figure 30 and Figure 31,
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Figure 31: Like Figure 30, but without Gaussian smoothing.

next to their N-body counterparts, and the differences between the two. In both cases –
smoothed and unsmoothed – the back-transformation method fails to reproduce the
correlation structure. It appears that the residual post-transformation non-Gaussianity
in the bottom row of Figure 28 is sufficient to cause these differences.

To find a transformation that accomplishes this, we propose the following modifications
of the optimisation procedure:

• Using other, more sophisticated minimisation algorithms, such as simulated an-
nealing (Černý 1985), or BOBYQA (Powell 2008).

• Using the log-likelihood of more than ten fields, to assure ergodicity.

• Introducing another Gaussianisation step by optimising Lhist once more, with the
field ζ as input. This may remove the vestigial non-Gaussianity in the bottom row
of Figure 28.
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• Employing more general transformation families, e. g., a modified version of the
ABC transforms defined in Equation 88:

κ 7→ ABCs
(κ0,λ,t)(x) =


κ0
t sinh

[
t

κ0
BCs

(κ0,λ)(x)
]

(t > 0)

BCs
(κ0,λ)(x) (t = 0)

κ0
t arcsinh

[
t

κ0
BCs

(κ0,λ)(x)
]

(t < 0).

(106)

Again, to avoid undefined behaviour, it is required to restrict the scaling parameter
κ0 > inf{κ}.

• The balance between log-likelihood and penalty term (which is necessary to break
the degeneracies in the likelihood) determines the numerical values of the optimal
transformation parameters. A smaller penalty than the one we have employed may
increase the sensitivity to the vestigial non-Gaussianity and thus result in better
performance. At the same time, this may jeopardise the stability of the transfor-
mation found, since the inverse transformation becomes increasingly singular for
growing values of λ.

• The computation of the log-likelihood Equation 99 can be restricted to the non-
Gaussian scales by applying a suitable filter to the Fourier-transformed conver-
gence maps or by a more general re-weighting scheme for different scales.

• It is possible to estimate the structure of the n-point copula empirically, i. e., from
the distribution of the random fields (Charpentier, Fermanian, and Scaillet, 2007).
This allows us to assess directly the quality of a transformation a posteriori.
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6
C O N C L U S I O N S A N D O U T L O O K

“An SEP”, [Ford] said, “is something that we can’t see, or don’t see, or our
brain doesn’t let us see, because we think that it’s somebody else’s problem.
That’s what SEP means. Somebody Else’s Problem. The brain just edits it
out, it’s like a blind spot. If you look at it directly you won’t see it unless you
know precisely what it is. Your only hope is to catch it by surprise out of the
corner of your eye.”

Douglas Adams
Life, the Universe, and Everything

In this thesis, we have discussed how to transform non-Gaussian random variates ap-
proximately into Gaussianity; these variates can be finite- or infinite-dimensional. This
has various applications in cosmological data analysis, which we subsequently intro-
duced. The strength of the method stems from the fact that it gives us a model for
the random variate in question, described by analytic expressions, which adequately
captures the non-Gaussian structure.

6.1 finite dimensions : posterior density modelling

It is one of the fundamental tenets of the Bayesian paradigm that an experiment is a
step from one probability distribution (the prior) to another (the posterior). To report
this resultant probability density, it is customary to distribute large point samples, and
to reconstruct the density from these – usually via KDE. Gaussianisation offers an elegant
alternative that does not share many of the disadvantages that kernel density estimates
exhibit.

6.1.1 Summary

Given a point sample from a posterior distribution, we describe how to find a Gaussian-
ising transformation of the underlying probability density. From the parameters of the
Gaussianised distribution and those of the transformation, we can reconstruct an ana-
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lytic expression for the original probability distribution; this facilitates the combination
of different data sets to obtain the joint posterior density. Further, this analytic posterior
can be used to display contours of the density in question or its marginals, without the
need for density estimates or smoothing procedures. Also, in reproducing the contours
of the probability density reliably, it outperforms kernel density estimates (KDE), the
standard tool in cosmology for reproducing a posterior density from a point sample.
We suggest that, instead of distributing lengthy point samples in the form of a Markov
chain, to use a Gaussianising transformation to disseminate a posterior density. Only the
transformation parameters and the first and second moments of the resulting Gaussian
are needed to reproduce the posterior density in its functional form; hence one can
achieve substantial data compression.
We have demonstrated the posterior reproduction algorithm (Chapter 3) with our imple-
mentation in C, which employs MCMC samples from Planck data. The optimal Gaussian-
ising transformation is found via a maximum-likelihood formalism. We employed Box–
Cox transformations, and more flexible generalisations thereof, to Gaussianise various
marginal distributions with distinctive non-Gaussian features, and showed the resulting
contours. To assess the quality of a Gaussianising transformation, we have introduced
the CC plot as a tool to decide whether one probability density reproduces the contours
of another, or if not, to detect where they deviate.
One distinctive application of Gaussianising transformations, which we discuss and
demonstrate in Chapter 4, is a novel method to compute the model evidence of a
posterior distribution, given a point sample from it. We have tested this method on
cosmological data from lensing and baryon acoustic oscillations, for different cosmolo-
gical models, and find slight preference for ΛCDM. Compared to the numerical results
from PMC and the SDDR, our new method of computing the evidence agrees well within
the spread of the other two.

6.1.2 Future work

There are several possible extensions of our method as applied to posterior reconstruc-
tion, and directions to advance its scope. To optimise the Gaussianisation algorithm
for speed and/or accuracy, it is possible to replace the Nelder-Mead minimum finder
with more sophisticated minimisation algorithms like, e. g., BOBYQA (Powell, 2008) or
simulated annealing (Černý, 1985). It is possible to engage new families of transforma-
tions, designed to cure a wider spectrum of non-Gaussian features that a multivariate
probability density may possess – in our code, new families can easily be included.
Gaussianisation may be employed for fast sampling from a non-Gaussian probabil-
ity density, in case that the Gaussianising parameters are either known exactly or to
sufficient accuracy. Afterwards, it is possible to quickly draw a point sample from a
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multivariate Gaussian distribution, and transform this sample with the inverse map.
To improve the accuracy of the evidence computation, it is possible to replace the log-
likelihood of Equation 85) with another loss function, which penalises deviations from
Gaussianity in a sharper manner.
So far, we have been working with unimodal probability densities. We require the
transformations to be bijective, hence we cannot map a multimodal distribution into
a unimodal Gaussian. However, we may be able to transform such a density into a
mixture of (possibly overlapping) Gaussians, where we now have to estimate the weight
factor for each constituent from the transformed sample, in addition to their respective
mean vectors and covariance matrices. The requisite number of components could be
determined with standard clustering algorithms.

6.2 infinite dimensions : gaussianisation of weak lensing convergence

Nonlinear structure formation results in random fields with non-Gaussian correlation
structure, which creates several obstacles for cosmological inference: a wealth of informa-
tion resides in the non-Gaussian order where it is inaccessible to two-point estimators
like the power spectrum; additionally, accurate inference via two-point estimators re-
quires knowledge of the four-point distribution – this is currently solved by simulating
gravitational collapse, which is computationally costly and demanding. Gaussianising
the convergence field has the potential to solve both problems. It should be noted that
this application of Gaussianisation differs from the previous implementation in that
we do not apply it to the posterior distribution of some model parameters, but rather
directly to the probability distribution of the data itself.

6.2.1 Summary

In Chapter 5, we present Gaussianising transformations for the distribution of simu-
lated convergence maps, and demonstrate how they transform the correlation matrix of
binned power spectra from one with rich non-Gaussian structure (represented by off-
diagonal terms) into one that is close to Gaussian. Our maximum-likelihood formalism
resembles the one used for posterior modelling, but is different in that we apply it to
pixelised random fields, and there is only one global set of transformations. We have
identified modified Box-Cox scaling transformations that bring the correlation matrix of
Gaussianised convergence maps closer to Gaussianity.
We outline how these transformations can be used to efficiently produce independent
mock convergence maps which capture the non-Gaussian structure. However, when the
inverse transformation is applied to Gaussian realisations of the field with the same
power spectrum of the Gaussianised maps, we find that the residual non-Gaussianity
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does not allow for a faithful reconstruction of the non-Gaussian covariance matrix. We
have listed modifications of the optimisation which can improve the performance.

6.2.2 Future work

Once a transformation is found which can reproduce the covariance matrix of the non-
Gaussian simulated fields, various refinements, extensions and applications open up:
The performance of log-normal and Rosenblatt transformations has been found to be
limited once shape noise was introduced into the random field distribution. Depending
on the level at which this noise is included in covariance and/or forward modelling, it
is important to check the behaviour of our transformations in the presence of a realistic
level of shape noise.
For a Gaussian random field with independent binned power spectrum estimates, the
Fisher information (Fisher, 1935; Tegmark, A. N. Taylor, and Heavens, 1997) residing
in the `-ranges grows linearly with the number of modes (and quadratic if the bin
spacing is logarithmic) – for the non-Gaussian convergence the information increase
stalls once the non-Gaussian scales are reached. Our transformation can potentially
push the location of this plateau further into the non-linear realm, or remove it altogether.
Again, it is therefore important to compare its performance to lognormal and Rosenblatt
models. This is tantamount to transporting information from higher-order distributions
into the two-point function, where it can be accessed with power spectrum estimators.
Another important check for the transformations is whether it can faithfully reproduce
the bispectrum of the untransformed mocks. Being a three-point statistic, this observable
is a vital part of the non-Gaussian correlation structure which is not directly accessible
through power spectrum estimation, but holds a comparable amount of information.
Provided that the information stems from scales that can be modelled accurately, a
likelihood that is sensitive to the non-Gaussian correlation structure can be a central
ingredient in a Bayesian hierarchical model.
We chose to restrict ourselves to the part of the four-point distribution that appears in
the covariance matrix of binned power spectra, but there are other observables known
to harbour non-Gaussian information, like weak lensing peak counts (Hamana, Takada,
and Yoshida, 2004; Pires, Leonard, and Starck, 2012; Lin and Kilbinger, 2015a,b; Lin,
Kilbinger, and Pires, 2016; Shirasaki, 2016). These can alternatively be used to assess the
quality of our transformation.
In analogy to the analytic expression for the posterior density in the finite-dimensional
case, it is possible to design a cosmological likelihood for the transformed conver-
gence fields which is sensitive to the non-Gaussian structure and the information stored
therein, and apply it to real data.
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“Every year is getting shorter, never seem to find the time.
Plans that either come to naught or half a page of scribbled lines
Hanging on in quiet desperation is the English way
The time is gone, the song is over,
Thought I’d something more to say ...”

Pink Floyd
Time (The Dark Side of the Moon)
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Part III

A P P E N D I X



A
U N B O X I N G T R A N S F O R M AT I O N S

The electronic I Ching calculator ... was much like an ordinary pocket
calculator, except that the LCD screen was a little larger than usual, in order
to accommodate the abridged judgements of King Wen on each of the
sixty-four hexagrams, and also the commentaries of his son, the Duke of
Chou, on each of the lines of each hexagram. These were unusual texts to see
marching across the display of a pocket calculator, particularly as they had
been translated from the Chinese via the Japanese and seemed to have
enjoyed many adventures on the way.
The device also functioned as an ordinary calculator, but only to a limited
degree. It could handle any calculation which returned an answer of
anything up to “4”. “1+1” it could manage (“2”), and “1+2” (“3”) and

“2+2” (“4 ”) or “tan 74” (“3.4874145”), but anything above “4” it
represented merely as “A Suffusion of Yellow”.
Dirk was not certain if this was a programming error or an insight beyond
his ability to fathom, but he was crazy about it anyway, enough to hand over
£20 of ready cash for the thing.

Douglas Adams
The Long Dark Tea-Time of the Soul

A single model parameter Z, which is assumed to be constrained to an open interval
(a, b), is redefined via the unboxing transformation U(a,b) : (a, b)→ R

X = U(a,b)(Z) =
a + b

2
+

b− a√
2π

Φ−1
(

Z− a
b− a

)
, (107)

where Φ−1 denotes the inverse of the cumulative distribution function of the Normal
distribution:

Φ(x) =
∫ x

−∞
dy

1√
2π

exp
(
−y2

2

)
. (108)

U(a,b), thus designed, has the following properties: it is bijective and smooth; the limits
are limZ→a U(a,b)(Z) = −∞; limZ→b U(a,b)(Z) = +∞. Further, the midpoint of the inter-
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val m = 1
2 (a + b) is fixed: U(a,b)(m) = m, U′(a,b)(m) = 1. Sending the interval boundaries

to infinity simultaneously will result in the identity transformation

lim
a→−∞
b→+∞

U(a,b)(Z) = Z. (109)

This is a generalisation of the widely used probit transformation, which maps the unit
interval onto the real numbers as p 7→ Φ−1(p). Our modified probit has one huge
advantage for the subsequent search for a Gaussianising transformation: If Z, as a
random variable, is uniformly distributed on (a, b), then X is normally distributed with
mean m and spread (b− a)/

√
2π.

In statistics, a frequently-used alternative to probit is the logit map p 7→ ln(p/1− p).
For our purposes, however, the probit is preferable, since a similarly rescaled version
of this logit-transformation would yield a distribution with excess kurtosis, instead of a
Gaussian.
For a d-dimensional vector of model parameters Z = (Z1, . . . , Zd), constrained to inter-
vals (ai, bi) 3 Zi, we unbox each dimension separately, with the appropriate boundaries:

Z 7→ X =
[
U(a1,b1)(Z1), . . . , U(ad,bd)(Zd)

]
. (110)

Before starting the search for the Gaussianisation parameters, every point in the original
sample is mapped through this transformation.
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B
E V I D E N C E R E G R E S S I O N

“Look”, said Arthur, “Would it save you a lot of time if I just gave up and
went mad now?” For a while the aircar flew on in awkward silence.

Douglas Adams
The Hitchhiker’s Guide to the Galaxy

We outline how the computation of the log-evidence (see Equation 92) can be performed
analytically, i.e. without numerical optimisation. Our data consist of a Gaussianised
weighted sample of N points in Rd, {(Ya, wa)}Na=1 and the values of the transformed log-
posterior on each of these points, {`a}Na=1. To fit a multivariate unnormalised Gaussian

Π̃(Y) = Π̂ exp
[
−1

2
(Y− µ̃)TΣ̃−1(Y− µ̃)

]
(111)

through the values of {exp(`a)}Na=1, we use the regression model

`model
A,B,C (Y) = YT A Y + BTY + C, (112)

which is linear in each of the d(d + 3)/2 + 1 regression parameters: the upper-diagonal
components of the symmetric matrix A, the components of vector B, and the scalar C.
Assuming independence and homoscedasticity, we arrive at our quantity to minimise,

χ2(A, B, C) =
N
∑
a=1

wa
[
`model

A,B,C (Y
a)− `a

]2
, (113)

which is quadratic in every regression parameter. Thus, we can write all normal equa-
tions of the regression problem,

dχ2

dϑ

!
= 0, ϑ ∈ {Aij, Bk, C} (114)
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as a [d(d + 3)/2 + 1]-dimensional linear inhomogeneous vector equation, and solve via
singular value decomposition. From the resulting values of (A, B, C), the parameters of
the multivariate Gaussian Equation 111 can readily be computed as

Σ̃ = −1
2

A−1; (115)

µ̃ = −1
2

A−1B; (116)

ln Π̂ = C− 1
4

BT A−1B. (117)

Furthermore, we can use the analytic regression procedure to find error bars on these
estimators, and thus on ln E. To this end, we can analytically find the covariance matrix
Cov of all parameters {Aij, Bi, C} from the form of χ2 and the transformed data set
{(Ya, wa, `a)}Na=1, and then approximate the variances of ln Π̂ and of ln det Σ̃ by standard
Gaussian error propagation. In particular:

Var [ln E] = Var
[
ln Π̂

]
+

1
4

Var
[
ln det Σ̃

]
' ΞTCov Ξ +

1
4

ΨTCov Ψ (118)

with

Ξ =

(
∂ ln Π̂

∂ϑi

)
=



...
1
4 B′mB′n(2− δmn) (m = 1...d,

... n = m...d)

...

− 1
2 B′k (k = 1...d)
...

1


(119)

and

Ψ =

(
∂ ln det Σ̃

∂ϑi

)
=



...
1
4 (A−1)mn(2− δmn) (m = 1...d,

... n = m...d)

...

0
...

0


, (120)

where B′ = A−1B.
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