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Abstract

Over the past a few decades, hyperspectral imaging has drawn significant attention

and become an important scientific tool for various fields of real-world applications.

Among the research topics of hyperspectral image (HSI) analysis, two major topics

– HSI classification and HSI target detection have been intensively studied. Statis-

tical learning has played a pivotal role in promoting the development of algorithms

and methodologies for the two topics.

Among the existing methods for HSI classification, sparse representation clas-

sification (SRC) has been widely investigated, which is based on the assumption that

a signal can be represented by a linear combination of a small number of redundant

bases (so called dictionary atoms). By virtue of the signal coherence in HSIs, a joint

sparse model (JSM) has been successfully developed for HSI classification and has

achieved promising performance. However, the JSM-based dictionary learning for

HSIs is barely discussed. In addition, the non-negativity properties of coefficients

in the JSM are also little touched.

HSI target detection can be regarded as a special case of classification, i.e.

a binary classification, but faces more challenges. Traditional statistical methods

regard a test HSI pixel as a linear combination of several endmembers with corre-

sponding fractions, i.e. based on the linear mixing model (LMM). However, due to

the complicated environments in real-world problems, complex mixing effects may

exist in HSIs and make the detection of targets more difficult. As a consequence,

the performance of traditional LMM is limited.

In this thesis, we focus on the topics of HSI classification and HSI target de-

tection and propose five new methods to tackle the aforementioned issues in the
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two tasks. For the HSI classification, two new methods are proposed based on

the JSM. The first proposed method focuses on the dictionary learning, which in-

corporates the JSM in the discriminative K-SVD learning algorithm, in order to

learn a quality dictionary with rich information for improving the classification per-

formance. The second proposed method focuses on developing the convex cone-

based JSM, i.e. by incorporating the non-negativity constraints in the coefficients

in the JSM. For the HSI target detection, three approaches are proposed based on

the linear mixing model (LMM). The first approach takes account of interaction ef-

fects to tackle the mixing problems in HSI target detection. The second approach

called matched shrunken subspace detector (MSSD) and the third approach, called

matched cone shrunken detector (MSCD), both offer on Bayesian derivatives of

regularisation constrained LMM. Specifically, the proposed MSSD is a regularised

subspace-representation of LMM, while the proposed MSCD is a regularised cone-

representation of LMM.

All the five methods proposed in this thesis are evaluated through extensive

experimental studies in the corresponding chapters.
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Chapter 1

Introduction

1.1 Scope of this thesis

Hyperspectral imaging, which links the remote sensing and signal processing, has

been widely investigated. Hyperspectral images (HSIs), with the presentation of

three-dimensional datacubes, provide rich spectral and spatial information and have

been illustrated to be significantly helpful for solving real world problems. With the

development of remote sensing technologies, hyperspectral imaging sensors mea-

sure the radiance of materials on the surface of the earth within a pixel area at a

big range of spectral wavelength bands. An HSI pixel is then collected and formed

into a high-dimensional vector, which represents the radiance at different wave-

lengths. The resulting high-dimensional representation by some means can provide

sufficient discriminative information to identify specific materials in a scene, and is

termed spectral signature [1]. On the other hand, HSI also inherits many charac-

teristics of the two dimensional images, so that a variety of traditional image pro-

cessing techniques can be immigrated and developed for HSI in terms of the spatial

continuity. In short, by incorporating rich spatial information as well as spectral

information, HSI analysis can provide rich information for solving real world prob-

lems.

Two research topics of hyperspectral imaging, termed HSI classification and

HSI target detection, attract much attention in the research of remote sensing. The

HSI classification aims to group similar HSI pixels into multiple classes. The dif-
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ficulty of HSI classification is to accurately assign an unknown HSI pixel to a spe-

cific class (e.g. forest, soil), but it often enjoys relatively abundant and balanced

examples for training. Typical applications include the agriculture management,

surveillance and etc. In contrast, HSI target detection focuses on identifying very

small objects sparsely scattered in a scene. Although it can be seen as a binary clas-

sification task, it has unique challenges such as extremely unbalanced training set

and sometimes unlabelled background data. Therefore, it often requires different

methodology than the HSI classification task. Typical target detection applications

include mineral detection and military defence. HSI target detection can be regarded

as a special case of HSI classification, i.e. a binary classification problem but with

more challenges.

1.2 Contributions and outline
In this thesis, we focus on these two main directions, i.e. HSI classification and HSI

target detection. For each direction, we propose several approaches. Accordingly,

these approaches are based on two general models with respect to HSI classification

and target detection, respectively as follows:

• joint sparse model (JSM) [4],

• linear mixing model (LMM) [5].

Firstly in Part I, we study the multi-classes classification problems of HSIs and

develop two new methods based on JSM [4]. The first method focuses on the dictio-

nary learning. Specifically, we propose to incorporate JSM [4] in the discriminative

K-SVD [6] learning algorithm, in order to learn a quality dictionary with rich infor-

mation for improving the classification performance. We call our proposed method

joint sparse model-based D-KSVD, shortened as JSM-DKSVD. The second meth-

ods on the other hand, focuses on developing the convex cone-based JSM, which

imposes the non-negativity constraints on the linear coefficients in the model. We

term the proposed model C-JSM.

Secondly in Part II, we study the target detection problems of HSI. In this

topic, we develop three methods based on LMM [5] for HSI target detection. We
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first propose a model based on matched subspace detector (MSD) [7], that in or-

der to take into account interaction effects to tackle the mixing problems in HSI

target detection. The proposed model is termed matched subspace detector with

interaction effects, shortened as MSDinter. By incorporating the Tikhonov regu-

larisation, i.e. the l2-norm regularisation constraint into MSD, we propose another

method called matched shrunken subspace detector (MSSD), which shrink the sizes

of coefficients in the model for better prediction. Equally important, we analyse

MSSD from the Bayesian perspective, showing that some certain prior distributions

are in fact assumed in the proposed models. Moreover, we develop MSD in the

non-negative coefficient space, and propose the third new method called matched

shrunken cone detector (MSCD). In this cone-based analysis, we give two imple-

mentations of MSCD, which incorporate the l1-norm regularisation term and the l2-

norm regularisation term in the cone-based representation, shortened as MSCD-l1

and MSCD-l2, respectively. We also derive the proposed MSCD from the Bayesian

perspective, showing that two certain prior distributions of coefficients vectors are

assumed in the proposed MSCD-l1 and MSCD-l2.
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Figure 1.1: The structure of this thesis.

The main contributions of this thesis are covered in Chapter 3-7. Five papers
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including two publications, one revised manuscript and two submissions have been

produced during the course of this thesis:

• Ziyu Wang, Jianxiong Liu and Jing-Hao Xue. Joint sparse model-based dis-

criminative K-SVD for hyperspectral image classification. Signal Processing,

133:144-155, 2017.

• Ziyu Wang, Rui Zhu, Kazuhiro Fukui and Jing-Hao Xue. Cone-based joint

sparse modelling for hyperspectral image classification. IEEE Transactions

on Image Processing, 2016, submitted.

• Ziyu Wang and Jing-Hao Xue. The matched subspace detector with interac-

tion effects, Pattern recognition, 68:24-37, 2017.

• Ziyu Wang and Jing-Hao Xue. Matched shrunken subspace detectors for

hyperspectral target detection, Neurocomputing, 2016, revised.

• Ziyu Wang, Rui Zhu, Kazuhiro Fukui and Jing-Hao Xue. Matched Shrunken

cone detector (MSCD): Bayesian derivations and case studies for hyperspec-

tral target detection. IEEE Transactions on Image Processing, 2017, submit-

ted.

The rest of thesis is organised as follows and summarised in Figure 1.1.

Background (Chapter 2)

This chapter gives a brief literature review of the relative works of HSI classification

and target detection. The process of how the hyperspectral images are collected is

introduced and followed by general overviews of HSI classification and HSI target

detection. The limitations of the current methods are also discussed.

HSI classification: joint sparse model-based discriminative K-

SVD (JSM-DKSVD) (Chapter 3)

Sparse representation classification (SRC) is being widely investigated on hyper-

spectral images (HSI). For SRC methods to achieve high classification performance,
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not only is the development of sparse representation models essential, the design-

ing and learning of quality dictionaries also plays an important role. That is, a

redundant dictionary with well-designated atoms is required in order to ensure low

reconstruction error, high discriminative power, and stable sparsity. In this chapter,

we propose a new method to learn such dictionaries for HSI classification. We bor-

row the concept of JSM [4] from SRC to dictionary learning. JSM assumes local

smoothness and joint sparsity and was initially proposed for classification of HSI.

We leverage JSM to develop an extension of discriminative K-SVD [6] for learning

a promising discriminative dictionary for HSI. Through a semi-supervised strategy,

the new dictionary learning method, termed JSM-DKSVD, utilises all spectra over

the local neighbourhoods of labelled training pixels for discriminative dictionary

learning. It can produce a redundant dictionary with rich spectral and spatial infor-

mation as well as high discriminative power. The learned dictionary can then be

compatibly used in conjunction with the established SRC methods, and can signifi-

cantly improve their performance for HSI classification.

• Ziyu Wang, Jianxiong Liu and Jing-Hao Xue. Joint sparse model-based dis-

criminative K-SVD for hyperspectral image classification. Signal Processing,

133:144-155, 2017.

HSI classification: cone-based joint sparse modelling (C-JSM)

(Chapter 4)

In JSM [4], it is assumed that neighbouring hyperspectral pixels can share sparse

representations. However, the coefficients of the endmembers used to reconstruct

a test HSI pixel is desirable to be non-negative for the sake of physical interpreta-

tion. Hence in this chapter, we introduce the non-negativity constraint into JSM.

The non-negativity constraint implies a cone-shaped space instead of the infinite

sample space for pixel representation. This leads us to propose a new model called

cone-based joint sparse model (C-JSM), to install the non-negativity on top of the

sparse and joint modelling. To solve the C-JSM problem, we also propose a new

algorithm through introducing the non-negativity constraint into the simultaneous

orthogonal matching pursuit (SOMP) [8] algorithm. The new algorithm is called
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non-negative simultaneous orthogonal matching pursuit (NN-SOMP). Experiments

and investigations show that the proposed C-JSM can produce a more stable, sparse

representation and a superior classification than other methods which only ensure

the sparsity, non-negativity or spatial coherence.

• Ziyu Wang, Rui Zhu, Kazuhiro Fukui and Jing-Hao Xue. Cone-based joint

sparse modelling for hyperspectral image classification. IEEE Transactions

on Image Processing, 2017, submitted.

HSI target detection: matched subspace detector with interaction

effects (MSDinter) (Chapter 5)

In this chapter, a new hyperspectral target-detection method termed the matched

subspace detector with interaction effects (MSDinter) is proposed. The MSDinter

introduces “interaction effects” terms into the popular matched subspace detector

(MSD [7], from regression analysis in multivariate statistics and the bilinear mixing

model in hyperspectral unmixing. In this way, the interaction between the target

and the surrounding background, which should have but not yet been considered by

the MSD, is modelled and estimated, such that superior performance of target de-

tection can be achieved. Besides deriving the MSDinter methodologically, we also

demonstrate its superiority empirically using two hyperspectral imaging datasets.

• Ziyu Wang and Jing-Hao Xue. The matched subspace detector with interac-

tion effects, Pattern recognition, 68: 24-37, 2017.

HSI target detection: matched shrunken subspace detectors

(MSSD) (Chapter 6)

In this chapter we propose a new approach, called the matched shrunken subspace

detector (MSSD), to target detection from hyperspectral images. The MSSD is

developed by shrinking the abundance vectors of the target and background sub-

spaces in the hypothesis models of the matched subspace detector (MSD) [7], a

popular subspace-based approach to target detection. The shrinkage is achieved

by introducing simple l2-norm regularisation (also known as ridge regression or

Tikhonov regularisation [9]). We develop two types of MSSD, one with isotropic
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shrinkage and thus termed MSSD-i and the other with anisotropic shrinkage and

termed MSSD-a. For these two new methods, we provide both the frequentist and

Bayesian derivations. Experiments on a real hyperspectral imaging dataset called

Hymap demonstrate that the proposed MSSD methods can outperform the original

MSD for hyperspectral target detection.

• Ziyu Wang and Jing-Hao Xue. Matched shrunken subspace detectors for

hyperspectral target detection, Neurocomputing, 2017, revised.

HSI target detection: matched shrunken cone detectors (MSCD)

(Chapter 7)

Hyperspectral images (HSIs) possess non-negative properties for both hyperspec-

tral signatures and abundance coefficients, which can be naturally modelled using

cone-based representation. However, in hyperspectral target detection, cone-based

methods are barely studied. In this chapter, we propose a new regularised cone-

based representation approach to hyperspectral target detection, as well as its two

working models by incorporating into the cone representation l2-norm and l1-norm

regularisations, respectively. We call the new approach the matched shrunken cone

detector (MSCD). Also important, we provide principled derivations of the pro-

posed MSCD from the Bayesian perspective: we show that MSCD can be derived

by assuming a multivariate half-Gaussian distribution or a multivariate half-Laplace

distribution as the prior distribution of the coefficients of the models. In the exper-

imental studies, we compare the proposed MSCD with the subspace methods and

the sparse representation-based methods for HSI target detection. Two real hyper-

spectral datasets are used for evaluating the detection performances on sub-pixel

targets and full-pixel targets, respectively. Results show that the proposed MSCD

can outperform other methods in both cases, demonstrating the effectiveness of the

regularised cone-based representation.

• Ziyu Wang, Rui Zhu, Kazuhiro Fukui and Jing-Hao Xue. Matched Shrunken

cone detector (MSCD): Bayesian derivations and case studies for hyperspec-

tral target detection. IEEE Transactions on Image Processing, 2017, submit-

ted.



Chapter 2

Background

In this chapter, the concept of hyperspectral imaging is firstly introduced. Then we

give a brief literature review of the relative works of HSI classification and HSI

target detection. Limitations of the current methods for solving the two problems

are finally identified.

2.1 Hyperspectral imaging
In general, hyperspectral imaging is the process of taking “photos” of objects at a

wide range of spectra. Different from the regular black-and-white photos, a hyper-

spectral image (HSI) is a collection of the objects’ radiance responses at each spec-

tral band, typically in the number of hundreds, and therefore is a three-dimensional

cube. To some extent, a colour photo can be seen as an overly simple example of

an HSI, with only three spectral bands.

In a hyperspectral imaging system, four typical components are included: the

illumination source, e.g. sun light, the atmospheric path, the region of interests

(ROIs) and the sensor [1]. In [1], Manolakis et al. summarise the whole process

as follows and illustrated in Figure 2.1: the hyperspectral sensor, typically on satel-

lites or aircraft, collects the spectral information with three parts: the sunlight, the

atmospheric attenuation, and the objects in the ROI. The energy reflected by the

surface materials are different; and the sensor can detect and measure the intensity

of the energy at different spectral bands. The information is then processed to be an

hyperspectal dataset.
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Figure 2.1: An illustration of a hyperspectral image scene [1].

Figure 2.2: An illustration of a hyperspectral image data-cube [1].

An obtained HSI is a three-dimensional data-cube, as shown in Figure 2.2. The

data-cube includes two spatial dimensions and one spectral dimension. If we regard

the spectral values as a function of wavelength, the resultant high-dimensional vec-

tor is termed a spectra or a spectral signature of an HSI pixel; if we extract the

pixel values at all coordinates at the same wavelength, a two-dimensional image is

obtained.

HSI classification and target detection are pixel-wise problems, which aim to

identify each HSI pixel in the given scene to a desired class. The resultant high-

dimensional vector of the HSI pixel can provide sufficient information to identify

the materials. However, due to the limitations of the sensors and the interruption of
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atmospheric attenuation, the obtained HSI pixel may be mixed by some uncertain

factors, such as the interaction between the neighbouring materials. To tackle this

issue, researchers have proposed a variety of machine learning and image process-

ing techniques, among which some representative methods are briefly reviewed in

the following sections.

2.2 HSI classification
In the HSI classification, sparse representation classification (SRC), proposed

in [10], is being widely investigated on HSI. It is based on the assumption that high-

dimensional data from the same class lie in a low-dimensional subspace. Therefore

a signal can be represented by a linear combination of a small number of redundant

bases (so-called dictionary atoms). In this thesis, we mainly focus on the SRC-based

methods for HSI classification.

2.2.1 Sparse model (SM)

Suppose a B-dimensional pixel, denoted by x∈RB, can be approximated by a linear

combination of ND training pixels:

x≈ Dα (2.1)

where D ∈ RB×ND denotes a dictionary constructed by the ND training pixels (also

termed atoms), and α is the ND-dimensional vector of coefficients in the linear

combination.

In a sparse model (SM), x can be approximated by only a few (e.g. at most

LC) atoms in D. That is, the coefficient vector α is sparse. The values of α can be

estimated by solving the following optimisation problem:

α̂ = argmin
α

‖x−Dα‖2
2 , s.t. ‖α‖0 ≤ LC (2.2)

where ‖α‖0 denotes a l0-pseudo-norm (i.e. the number of non-zero elements) of

α , LC (LC � ND) is defined as the upper bound of the sparsity level of the model.

The problem in (2.2) is NP-hard, but it can be approximately solved by greedy
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pursuit algorithms such as orthogonal matching pursuit (OMP) [11] or be relaxed

by replacing the l0-pseudo-norm with the l1-norm. When the problem is solved by

OMP, the dictionary D is column-wise normalised to have unit l2-norm.

For the SM, the class of x is determined by applying the obtained sparse coef-

ficient vector α̂ from (2.2). We define the class-wise residuals as

rm(x) = ‖x−Dm
α̂

m‖2
2 , m = 1, . . . ,M, (2.3)

where M is the total number of classes, α̂
m contains the Nm elements in α̂ that are

associated with sub-dictionary Dm of the mth class, with N = ∑
M
m=1 Nm. The label

of the test pixel x is determined by its minimal residual over all M classes:

Class(x) = argmin
m=1,...,M

rm(x). (2.4)

2.2.2 Joint sparse model (JSM)

In HSI, neighbouring pixels in a small area often consist of similar materials and

the classes of these materials are few. Hence, local smoothness and sparsity can

be assumed for HSI. In the joint sparse model (JSM) [4], it is assumed that all

neighbouring pixels around a central pixel share a common sparse pattern. The

modelling, learning and labelling for JSM can be described as follows.

Let X = [x1, . . . ,xTC ], a B× TC matrix, denote a small window consisting of

TC pixels and centring on a test pixel xc, with each pixel xt represented by a B-

dimensional vector for B spectral bands. The TC pixels are approximated by sparse

linear combinations of atoms from a given dictionary:

X = [x1, . . . ,xTC ]≈ D[α1, . . . ,αTC ] = DA (2.5)

where D ∈ RB×ND is a dictionary with ND known and labelled atoms, and A ∈

RND×TC is the matrix of unknown coefficients [α1, . . . ,αTC ]. Because of the local

smoothness and sparsity, we can assume that there are only LC (LC� ND) non-zero

rows in A. This leads to the so-called joint sparse model (JSM), where the non-
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zero rows form the support shared by coefficient vectors {α t}TC
t=1. That is, {α t}TC

t=1

are sparse vectors and A is a sparse matrix. An illustration of the JSM equation is

shown in Figure 2.3

Figure 2.3: An illustration of JSM, where X is a B× T matrix denoting a small window
consisting of T HSI pixels, D is a B×N matrix representing an over-complete
dictionary with N atoms; and A is an N×T coefficient matrix with only L non-
zero rows. The red lines in A indicate the non-zero rows and the blank areas
indicate zero rows of A.

The learning of JSM is to estimate A, which can be achieved by solving a joint

sparse recovery problem:

Â = argmin
A
‖X−DA‖2

F , s.t. ‖A‖row,0 ≤ LC (2.6)

where ‖·‖F denotes the Frobenius norm; ‖A‖row,0, the row-wise l0-norm, is the

number of non-zero rows of A. As with (2.2), problem (2.6) is NP-hard and it can

be approximately solved by greedy algorithms such as the Simultaneous Orthogonal

Matching Pursuit algorithm (SOMP) [8] or the Simultaneous Subspace Pursuit al-

gorithm (SSP) [4]. When solved by SOMP or SSP, the dictionary D is column-wise

normalised to have unit l2-norm.

For the JSM, once the sparse coefficient matrix Â is obtained from (2.6), we

calculate the class-wise residual of the matrix X from its class-wise approximation

similar to (2.3):

rm(X) =
∥∥X−DmÂm∥∥2

F , m = 1, . . . ,M. (2.7)

In (2.7), there are Nm rows in Â corresponding to a sub-dictionary Dm and ND =
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∑
M
m=1 Nm. Different from the SM, the label of the central test pixel xc in window X

is jointly determined by the minimal residual of X over all M classes, i.e.

Class(xc) = argmin
m=1,...,M

rm(X). (2.8)

2.2.3 Limitations of SRC-based HSI classification

• Lack of good quality of dictionary

For the SRC-based method for HSI classification, the dictionary D is often

constructed directly by the HSI pixels, so that the variety of the atoms are

limited. To achieve higher classification performance, a well-designed dictio-

nary would have good representation power over certain sparsity, as well as to

support optimal discrimination of class [6]. However, there are limited num-

ber of works on developing the dictionary learning algorithms specifically for

HSI classification problems. It is desirable to incorporate the spatially struc-

ture information into the training process to learn a more powerful dictionary.

To achieve this goal, we propose a new dictionary learning method in Chap-

ter 3.

• Lack of non-negativity constraints on coefficients

In the modelling of HSI pixels, an important property of hyperspectral sig-

nals is the non-negativity, for both the signal itself and the abundance coeffi-

cients. However, research of SRC-based methods particularly the JSM-based

methods have not incorporated the non-negativity properties in the HSI. The

non-negative constraints on the coefficients induce a cone-shape representa-

tion [12]. To fill the gap, we replace the signal representation of JSM by

cone representation, and incorporate the non-negativity constraints into the

HSI classification. The proposed method is detailed in Chapter 4.

2.3 HSI target detection
HSI target detection aims to detect small objects or anomalies in a hyperspectral im-

age. HSI target detection is essentially a binary classification problem, of which the
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task is to determine if an HSI pixel is a target spectrum or a background spectrum.

Hence, target detection can be conducted by a binary hypothesis model with two

competing hypotheses: the null hypothesis H0 for the absence of the target; and the

alternative hypothesis H1 for the presence of the target. Binary hypothesis models

for target detection have been nicely reviewed in [13, 14, 15, 16].

Figure 2.4: An illustration of a mixed pixel of an HSI [2].

2.3.1 Linear mixing model (LMM)

Target objects often appear as sub-pixels in an HSI. That is, the spectrum of an

HSI pixel can be a mixture of different component spectra of materials, as shown

in Figure 2.4. These component spectra are usually termed endmembers. To model

the mixture of an HSI pixel, the linear mixing model (LMM) [5] has been widely

adopted. The underlying assumption of LMM is that an HSI pixel can be approxi-

mated by a linear combination of endmembers with different fractions. The weight

(abundance) of each endmember spectrum is proportional to the fraction of the pixel

area covered by the endmember. If there are p spectral bands, the p-variate spectrum

x = [x1, . . . ,xp]
T of a mixed pixel can be expressed as a mixture of K endmembers

mk with additive noise:

x = Σ
K
k=1akmk +n = Ma+n, (2.9)

where M is a p×K matrix whose columns are the K endmember spectra mk =

[mk,1, . . . ,mk,p]
T for k= 1, . . . ,K, respectively; a= [a1, . . . ,aK]

T is the fraction abun-
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dance vector; and n = [n1, . . . ,np]
T represents the additive Gaussian white noise,

i.e. n∼N(0,C), where C is a p× p covariance matrix. Physical considerations dic-

tate that the abundances have to satisfy 1) the non-negative constraint, i.e. ak ≥ 0,

and 2) the sum-to-one constraint, i.e. ΣK
k=1ak = 1 [17]. Although the non-negative

constraint and the sum-to-one constraint are quite meaningful, they are not always

enforced because it significantly complicates the solving of detection problems. As

explained in [5] and as usually the case, both constraints can be relaxed in target

detection.

Based on LMM, several methods have been developed and can be summarised

into two directions: 1) subspace-based methods and 2) sparse-representation-based

methods.

2.3.1.1 Subspace-based methods

• Matched subspace detector (MSD) [7]

In the MSD, the target spectral signatures and background spectral signatures

are represented by the bases of a target subspace and the bases of a back-

ground subspace, respectively. The underlying assumption of the MSD is

that each basis vector of these subspaces represents an endmember, which is

formulated as follows:

H0 : x = Bβ +n0, x is a background pixel,

H1 : x = Tγ +Bβ +n1, x is a target pixel,
(2.10)

where T = [t1, . . . , trt ] is a p× rt matrix representing the target subspace, and

B = [b1, . . . ,brb ] is a p× rb matrix representing the background subspace;

T is derived from a training target matrix MT ∈ Rp×Nt whose columns are

the Nt target spectra, and B is derived from a training background matrix

MB ∈ Rp×Nb whose columns are the Nb background spectra; γ and β are the

corresponding abundance vectors of the subspaces T and B, respectively; and

n0 and n1 are p-dimensional vectors of Gaussian white noise: n0 ∼N(0,σ2
0 I)

and n1 ∼ N(0,σ2
1 I), respectively.
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The output detector of the MSD model is solved by least square estimates

(LSE) and is given by

DMSD(x) =
xT P⊥B x
xT P⊥V x

H1
≷
H0

νMSD, (2.11)

where P⊥B = I−PB with PB = B(BT B)−1BT being the projection matrix onto

the column space of B; and P⊥V = I−PV with PV = V(VT V)−1VT being the

projection matrix onto the column space of V, where V is a p× (rt + rb)

concatenated matrix of T and B, i.e. V = [T,B].

The value of DMSD(x) is compared to a threshold νMSD to make a final de-

cision of which hypothesis should be rejected for test pixel x. In general, any

set of orthogonal basis vectors that spans the corresponding subspace can be

used as the column vectors of B and T. In this thesis, the significant eigen-

vectors (normalised by the square roots of their corresponding eigenvalues)

of the background and target covariance matrices Cb and Ct are used to cre-

ate the column vectors of B and T, respectively. The MSD method will be

detailed in Chapter 5.

• Orthogonal subspace projection detector (OSP) [18]

OSP aims to maximise the signal-to-noise (SNR) ratio in the subspace that is

orthogonal to the background subspace. Given the spectral signature of the

target material t ∈ Rp and the LMM (2.9), the OSP detector is formulated as

DOSP(x) = tT P⊥B x. (2.12)

With the same notation in MSD (2.11), PB is the projection matrix derived

from the background subspace B.

• Constrained energy minimisation (CEM) [19, 20]

For the scenario where only the spectra signature of the target is known and

any background spectra are unknown, a method called constrained energy

minimisation (CEM) is developed. It is a finite-impulse response filter which
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minimise the output energy subject to a constrained imposed by desired target

spectrum t. The solution of the constrained problem is

DCEM = (tT R−1
r t)−1R−1

r t, (2.13)

where Rr = (1/q)∑
q
i=1 rirT

i is the data sample correlation matrix. In [19], it

has been shown that the CEM and the OSP are closely related. They are es-

sentially equivalent as long as the noise is white and its variance is negligible

compared to the signals.

• Adaptive coherence/cosine detector (ACE) [21, 22]

Adaptive coherence/cosine detector (ACE), also termed adaptive subspace

detectors (ASD) is based on the following competing hypotheses:

H0 : x = n, target absent,

H1 : x = Tγ +σn, target present.
(2.14)

Different from the formulae in MSD (2.10), the test HSI pixel x is assume be

a Gaussian white noise n∼ N(0,C) in the null hypothesis H0 and is assumed

to be a linear combination of target subspace signal and a scaled background

noise. Note that the background noise is assumed to have the same covariance

matrix C under H0 and H1. The ACE detector is formulated as

DACE(x) =
xT Ĉ−1T(TT Ĉ−1T)−1TT Ĉ−1x

xT Ĉ−1x

H1
≷
H0

νACE , (2.15)

where Ĉ is the maximum likelihood estimate (MSE) of the covariance C and

νACE is the threshold.

2.3.1.2 Sparse-representation-based methods

Sparse representation techniques have also been developed in HSI target detection

with the same motivation as that of SRC for HSI classification. Given an over-

complete dictionary including sufficient background atoms and target atoms, a tar-
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get HSI pixel is assumed to be represented by only a few atoms in the dictionary.

• Sparse target detection (STD) [23]

Given a dictionary that consists of background endmembers (samples) and

target endmembers (samples), STD employs reconstruction residuals to per-

form the target detection. The test HSI pixel x can be sparsely represented by

the linear combination of all endmembers( training samples) as follows:

x≈= Db
α

b +Dt
α

t = Dα, (2.16)

where Db and Dt are the p×Nb background dictionary and the p×Nt target

dictionary respectively; and αb and α t are the corresponding Nb-dimensional

and Nt-dimensional sparse coefficient vectors with only a few non-zero ele-

ments, respectively. The sparse coefficient vector α can be recovered by

α̂ = argmin‖Dα−x‖2
2 ,s.t. ‖α‖0 ≤ L0. (2.17)

As with the SM, ‖·‖0 denote a l0-pseudo-norm of α; L0 is the upper bound of

the sparsity level and can be solved by the OMP algorithm.

Once the sparse coefficient vector α̂ is obtained, it is then decomposed into α̂b

and α̂ t . The detection is performed based on two competing reconstructions

of residuals rb(x) and rt(x) using only the background dictionary and only

the target dictionary respectively:

rb(x) =
∥∥∥x−Db

α̂b
∥∥∥2

2
,

rt(x) =
∥∥x−Dt

α̂ t
∥∥2

2 .

(2.18)

The label of the test HSI pixel is finally determined by

DST D(x) = rb(x)− rt(x). (2.19)

• Sparse representation-based binary hypothesis model (SRBBH) [24]
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Different from STD, SRBBH adopts the binary hypothesis models and fol-

lows the same framework of MSD. When there is no target presenting, the

test HSI pixel x is only represented by the sparsely linear combination of all

background atoms in the dictionary Db. When a target presents, x is repre-

sented by both the background atoms from Db and target atoms from Dt . The

models of SRBBH are given by

H0 : x = Db
α

b +n0, target absent,

H1 : x = Dt
α

t +Db
α

b +n1, target present.
(2.20)

where n0 and n1 are approximated residuals. In H0 and H1, same upper-bound

of sparsity level L are employed.

As with STD, SRBBH models are also solved by the OMP algorithm. It shall

be noted that two sparse recovery problems shall be solved thus OMP shall

be employed twice in SRBBH rather than once in STD. The residuals of H0

model and H1 model are computed as follows

r0(x) =
∥∥∥x−Db

α̂b
∥∥∥2

2
,

r1(x) = ‖x−Dα̂‖2
2 ,

(2.21)

and the label of the test HSI pixel x is then determined by

DSRBBH(x) = r0(x)− r1(x). (2.22)

2.3.2 Limitations of the LMM for HSI target detection

• Complex mixing problems in an HSI pixel

The underlying assumption of the LMM is that target spectral signature in the

scene remains linearly mixed with the surrounding background spectra after

enter the hyperspectral sensor. However this is not always true in practice.

The exhibited target spectrum may be contaminated by the surrounding en-

vironments due to the multiple scattering effects during the image capturing
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process. As a result, the abundance vector of targets will be dependent on the

characteristics of their surrounding background. It is necessary to build a new

model to cope with the multiple scattering problems. To tackle this problem,

we propose a new approach to account for the effect interactions for the HSI

target detection and analyse it from the statistical point of view in Chapter 5.

• High variance of coefficients estimations

It is known that LMM-based methods may suffer from the problem of high

variance of coefficients estimations. To adjust the performance of a statistical

model, some prior domain knowledge about the model, particularly the co-

efficients, can be incorporated by imposing regularisation, i.e. a frequentist

fashion, or assuming the prior distribution, i.e. a Bayesian fashion. From the

Bayesian perspective, an improper uniform prior distribution is actually as-

sumed for the coefficients in the conventional LMM thus non-informative. It

is desirable to develop the shrinkage methods [9], such as the popular lasso,

i.e. l1-norm regularisation and the Tikhonov regularisation, i.e. l2-norm reg-

ularisation for the HSI target detection. To achieve this goal, we proposed

two new approaches by imposing the regularisation terms in the LMM-based

models. Particularly, we proposed a subspace-representation-based method,

called matched shrunken subspace detector (MSSD) (in Chapter 6) and a

cone-representation-based method, called matched shrunken cone detector

(MSCD) (in Chapter 7) respectively, and provide both of the frequentist and

Bayesian derivations for them.
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Chapter 3

HSI Classification: Joint Sparse

Modelling-based Discriminative

K-SVD (JSM-DKSVD)

3.1 Introduction

Sparse representation classification (SRC), proposed in [10], is being widely in-

vestigated on hyperspectral images (HSI). It is based on the assumption that high-

dimensional data from the same class lie in a low-dimensional subspace. Therefore

a signal can be represented by a linear combination of a small number of redun-

dant bases (so-called dictionary atoms). In [4], Chen et al. apply SRC and propose

a joint sparse model (JSM) to HSI classification. JSM assumes that all HSI pix-

els in a small spatial neighbourhood can be jointly approximated by sparse linear

combinations of a few common training samples, which can be solved by the si-

multaneous orthogonal matching pursuit (SOMP) algorithm [8]. However, in JSM

all neighbouring pixels make equal contributions to the sparse recovery of the cen-

tral pixel. To determine more effective neighbours for JSM, several appealing ideas

have been proposed [25, 26, 27, 28, 29]. In [25], Zhang et al. introduce a non-

local approach [26], which assumes that a candidate has its weight determined by

the similarity between its neighbourhood and the central pixel’s neighbourhood,

termed non local weighting (NLW). Tang et al. propose two manifold-based l1-norm
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methods, using locally linear embedding and Laplacian eigenmap to regularise lo-

cal structures of pixels [27]. In [28] and [29], Fang et al. and Li et al. propose to

adopt superpixel methods [30, 31] to integrate the spatial structures for JSM. The

superpixel is regarded as a small spatial local region which is adaptive in shape and

size.

To achieve high classification performance, not only is the development of

sparse representation models essential, the designing and learning of quality dictio-

naries also plays an important role. A well-designed dictionary would have good

representation power over a certain sparsity, as well as to support optimal discrim-

ination of classes [6]. Previous literatures have shown that dictionary learning is

beneficial to signal representation as well as to classification [6, 32, 33, 34]. In [32],

Aharon et al. propose K-SVD, a generalised K-means method, to minimise the sig-

nal reconstruction error. It alternates between sparse coding by orthogonal match-

ing pursuit (OMP) [11] and dictionary updating by singular value decomposition

(SVD). For face recognition, Zhang et al. introduce into sparse representation a

constraint to model classification error [6]. A K-SVD algorithm is then adopted to

minimise the sum of reconstruction error and classification error, named as discrim-

inative K-SVD (D-KSVD). In [33], Jiang et al. propose label consistent K-SVD,

which incorporates a label-consistent term into D-KSVD, leading to an explicit cor-

respondence between the dictionary atoms and labels. It also adopts the K-SVD

algorithm to solve the optimisation problem. Mairal et al. propose task-driven dic-

tionary learning (TDDL) [34], which is a general formulation for learning sparse

representations tuned for specific tasks. TDDL not only can be designed for classi-

fication, but also can be designed for regression and compressive sensing.

There have been a limited number of works on developing the dictionary learn-

ing algorithms specifically for HSI classification problems. In [28], Fang et al. pro-

pose to use a modified class-labelled OMP algorithm in D-KSVD to learn a dic-

tionary of better discriminative power. In [35], Soltani-Farani et al. partition given

pixels into contextual groups, and jointly model pixels inside the same contextual

group to be in a common subspace. Both methods endeavour to make a better
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use of the limited amount of labelled training data. Taking one step further, Wang

et al. utilise spatial context of a test pixel within its local neighbourhood to de-

velop a learning vector quantization (LVQ)-based dictionary learning method [36].

In [37], Sun et al. introduce the use of structure information into dictionary learn-

ing. They argue that the requirement of a redundant dictionary in sparse coding

can be lessened if simultaneous sparse approximation is employed. Therefore they

aim to produce a compact dictionary by using a joint or Laplacian sparsity prior

and the TDDL framework [34]. Wang et al. follow the same TDDL framework and

introduce a more explicitly formulated semi-supervised problem to the compact

dictionary learning [38].

In this context, we believe that, in order to develop a dictionary with high dis-

criminative power for HSI classification but from only a limited number of labelled

training samples, it is a promising direction to utilise the structure information as

much as possible. Considering the discriminative nature of D-KSVD and its im-

perfection of exploiting spectral signatures only, we think D-KSVD has substantial

room to be explored for improvement. Furthermore, we are highly impressed by

the recent progress in HSI classification made by the JSM-based algorithms from

its leveraging both spectral and spatial information in the representation of HSI

pixels. All these factors inspire us to develop a new dictionary learning approach

for HSI classification, by enforcing the JSM assumption, of local smoothness and

joint sparsity around the limited number of training sample, into D-KSVD through

a semi-supervised fashion. In this chapter, we propose a new approach called JSM-

DKSVD. It is able to capture and organise the rich spectral and spatial information

into the learned dictionary, thus offering higher discriminative power for HSI clas-

sification tasks.

Experiment results show that, when used in conjunction with established SRC

methods, the JSM-DKSVD-trained dictionary can significantly improve the SRC

methods’ classification performance, and can also outperform state-of-the-art dic-

tionary learning methods for HSI classification.

The main contribution of this research is that we introduce the structure in-
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formation around a limited number of training pixels into the dictionary learning

for HSI, establish a new discriminative optimisation function to jointly model the

enriched information, and develop a JSM-constrained D-KSVD algorithm to solve

the optimisation problem and produce a desired discriminative dictionary.

3.2 Joint sparse models for HSI classification
The sparse model (SM) and the joint sparse model (JSM) are reviewed in Chap-

ter 2. The work of this chapter mainly focuses on the JSM which is detailed in

section 2.2.2, and the notations are aligned with section 2.2.2.

3.3 Discriminative dictionary learning algorithms
JSM-based classification methods introduced in Chapter 2 have achieved improved

classification performance over the traditional (individual) sparse model, but most

of these methods leave the dictionary D simply as a stack of raw labelled pix-

els [4, 25, 27]. On the other hand, the focus of this work is on the learning of D.

Specifically, we propose to develop a new dictionary learning algorithm, termed

JSM-constrained discriminative K-SVD (JSM-DKSVD), to incorporate both the

spectral and spatial information into dictionary learning and to improve the per-

formance of HSI classification in the end.

3.3.1 K-SVD

In K-SVD [32], signals are also represented by their sparse coefficients. It aims to

learn a dictionary D with unit atoms (bases), which minimises the reconstruction

error:

{D̂, Âtrain}=argmin
D,Atrain

∥∥Xtrain−DAtrain∥∥2
F ,

s.t.
∥∥α

train
p
∥∥

0 ≤ LD, p = 1, . . . ,P ,

(3.1)

where D = [d1, . . . ,dND] ∈ RB×ND is a dictionary with ND atoms to be learned;

Xtrain = [xtrain
1 , . . . ,xtrain

P ] ∈ RB×P is a training sample set of P training samples;

Atrain = [α train
1 , . . . ,α train

P ] ∈ RND×P is the corresponding sparse coefficient matrix
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of Xtrain; and LD (LD � ND) is upper bound of the sparsity level of the model.

K-SVD consists of a sparse coding stage and a dictionary updating stage: it first

solves (3.1) with D fixed to compute sparse coefficient matrix Atrain by the OMP

algorithm. Once Atrain is obtained, a second stage is performed to update each

dictionary atom by SVD one at a time, fixing all other atoms. The two stages are

carried out iteratively till certain stopping criteria are met.

3.3.2 Discriminative KSVD (D-KSVD)

The discriminative K-SVD [6] is proposed to incorporate classification error into

the optimisation problem (3.1), allowing a linear classifier and a dictionary with

discriminative power to be learned at the same time.

Specifically, a classification constraint with loss function
∥∥Htrain−WAtrain

∥∥2
F +

β ‖W‖2
F is considered, where W = [w1, . . . ,wND ] ∈ RM×ND is an M-classes linear

classifier in the atom space, Htrain = [htrain
1 , . . . ,htrain

P ] ∈ RM×P is the class matrix

of P training pixels in Xtrain, and ‖W‖2
F is the regularisation term. Each class vec-

tor htrain
p = [0,0, . . . ,1, . . . ,0,0]T ∈ RM corresponds to the labelling of one training

sample xtrain
p and the non-zero position in htrain

p represents the class of xtrain
p . The

dictionary D and the linear classifier W are jointly learned by solving the following

optimisation problem:

{D̂, Âtrain,Ŵ}= argmin
D,Atrain,W

{
∥∥Xtrain−DAtrain∥∥2

F

+ γ
∥∥Htrain−WAtrain∥∥2

F +β ‖W‖2
F} ,

s.t.
∥∥α

train
p
∥∥

0 ≤ LD, p = 1, . . . ,P ,

(3.2)

where γ and β control the relative contributions of the corresponding terms. As
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described in [6], problem (3.2) can be rewritten as

{D̂, Âtrain,Ŵ}=

argmin
D,Atrain,W

{
∥∥∥∥( Xtrain
√

γHtrain

)
−
(

D
√

γW

)
Atrain

∥∥∥∥2

F

+β ‖W‖2
F} ,

s.t.
∥∥α

train
p
∥∥

0 ≤ LD, p = 1, . . . ,P .

(3.3)

Following [6], the constraint β ‖W‖2
F is omitted because during the K-SVD

process the joint matrix
( D√

γW
)

is always column-wise normalised, i.e. the l2-norm

constraint is implicitly enforced. Now we use the following notation:

X∗ =
(

Xtrain
√

γHtrain

)
, D∗ =

(
D
√

γW

)
; (3.4)

and problem (3.3) is approximated by the following optimisation problem:

{D̂∗, Âtrain}= argmin
D∗,Atrain

∥∥∥X∗−D∗Atrain
∥∥∥2

F
,

s.t.
∥∥α

train
p
∥∥

0 ≤ LD , p = 1, . . . ,P ,

(3.5)

which can then be solved by the K-SVD algorithm [32].

We note that the obtained matrix D̂∗ from K-SVD is not the actual dictionary

we are looking for. To extract the actual dictionary D′ and the classifier W′, a final

normalisation is needed. The dictionary D′ is to be extracted from D̂∗ and column-

wise normalised to have unit l2-norm; the rest of the matrix D̂∗, namely classifier

W′, is scaled by using the same normalisation constants accordingly:

D′ =
[

d1

‖d1‖2
,

d2

‖d2‖2
, . . . ,

dND

‖dND‖2

]
,

W′ =
[

w1

‖d1‖2
,

w2

‖d2‖2
, . . . ,

wND

‖dND‖2

]
,

(3.6)

where dk and wk denote the k-th column of D and W, respectively.
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3.3.3 Classification approach

Given the dictionary D′ and the linear classifier W′, the sparse coefficient vector

α test of a test HSI pixel xtest is computed by solving the following problem:

α̂
test = argmin

αtest

∥∥xtest−D′α test∥∥2
2 ,

s.t.
∥∥α

test∥∥
0 ≤ LC .

(3.7)

By applying the linear classifier W′ to α̂
test , the class label vector htest =

[htest
1 , . . . ,htest

M ]T of xtest is obtained as

ĥtest = W′α̂ test , (3.8)

and the class label of xtest is determined by the position of the maximum value

within ĥtest :

class(xtest) = argmax
m=1,...,M

ĥtest
m . (3.9)

3.4 JSM-DKSVD
Dictionary learning by K-SVD and D-KSVD only considers spectral signatures of

the HSI pixels. Recent developments in JSM-related algorithms show promising

results of using not only spectral but also spatial structure information in the rep-

resentation of pixels. Inspired by this progress, we propose to incorporate the HSI

structure information into the dictionary learning process and extend D-KSVD to

HSI classification. Specifically, we enforce the assumption of local smoothness of

images as well as sparsity of the representations of training HSI pixels into dictio-

nary learning. We name this new dictionary learning approach as JSM-DKSVD.

3.4.1 Motivation of JSM-DKSVD

The core idea of JSM-DKSVD is to embed the structure information into the rep-

resentation of dictionary training pixels by joint modelling. The sparse coefficients

of a pixel are determined jointly with those in its local neighbourhood, which is

a collection of pixels located in a small window centred on the pixel in question.
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Therefore the training set Xtrain = [xtrain
1 , . . . ,xtrain

P ] ∈ RB×P is extended as follows:

XJSM = [XJSM
1 , . . . ,XJSM

P ] ∈ RB×(TD×P) , (3.10)

where XJSM
p ∈ RB×TD , p = 1, . . . ,P, denotes a small window consisting of TD pix-

els and centred on the training pixel xtrain
p . Each of these neighbourhoods XJSM

p is

now as a whole to be jointly modelled, replacing the pixel xtrain
p in dictionary learn-

ing. Note that, although the training sample size is effectively increased from P to

TD×P, as JSM-DKSVD is working in a semi-supervised fashion, we only need P

labelled training pixels, which are those central pixels; that is, our JSM-DKSVD

method does not require more labelled training samples than K-SVD and D-KSVD.

The spectral and spatial structure information of a training pixel is therefore

exploited by enforcing local smoothness of natural signals, i.e. nearby pixels share a

common pattern. In our case, a certain degree of similarity is enforced on the sparse

representation patterns of the neighbouring pixels. This forms a new constraint, and

will be reflected by expanding the class matrix Htrain in D-KSVD correspondingly

to a larger matrix HJSM.

If, for example, the central pixel xtrain
p in the neighbourhood XJSM

p is labelled

class #4 out of five classes, its class vector hp in D-KSVD is

hp = [0,0,0,1,0]T , (3.11)

where the non-zero position is at the 4th element. In our JSM-DKSVD, by assuming

that the neighbouring pixels share the same class label, the class matrix of the 3×3

window centred on xp is as follows:

HJSM
p =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0


5×9

, (3.12)
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where the class vector of each pixel in the window shares the same non-zeros row,

i.e. the 4th row of the class matrix HJSM
p . Naturally, by concatenating the class

matrices of all training pixels XJSM, the overall class matrix HJSM is

HJSM = [HJSM
1 , . . . ,HJSM

P ] ∈ RM×(TD×P) . (3.13)

3.4.2 Formulation of JSM-DKSVD

In the proposed JSM-DKSVD, signals in a small neighbourhood are jointly repre-

sented by a common sparsity pattern, as in JSM. Meanwhile, a classification con-

straint with a new class matrix HJSM is reconstructed, leading to the following op-

timisation problem:

{D̂JSM,ÂJSM,Ŵ}=

argmin
DJSM ,AJSM ,W

{
∥∥∥XJSM−DJSMAJSM

∥∥∥2

F

+ γ

∥∥∥HJSM−WAJSM
∥∥∥2

F
+β ‖W‖2

F} ,

s.t.
∥∥∥AJSM

p

∥∥∥
row,0
≤ LD, p = 1, . . . ,P ,

(3.14)

where XJSM and HJSM are defined in (3.10) and (3.13), respectively; AJSM
p =

[αJSM
p,1 , . . . ,αJSM

p,TD
] ∈RND×TD is the corresponding joint sparse coefficient matrix of a

small window XJSM
p as defined in (3.10), and therefore AJSM = [AJSM

1 , . . . ,AJSM
P ] ∈

RND×(TD×P) is the corresponding sparse coefficient matrix of XJSM; DJSM ∈ RB×ND

and W ∈ RM×ND are the dictionary and classifier to be learned by JSM-DKSVD.

This problem can be solved by the K-SVD algorithm. Again, due to the column-

wise normalisation through the K-SVD process, the constraint β ‖W‖2
F can be omit-

ted to simplify the problem.

Similarly to (3.4) and (3.5), the optimisation problem (3.14) can be rewritten
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as

{D̂JSM∗,ÂJSM}=

argmin
DJSM∗,AJSM

∥∥∥XJSM∗−DJSM∗AJSM
∥∥∥2

F
,

s.t.
∥∥∥AJSM

p

∥∥∥
row,0
≤ LD, p = 1, . . . ,P ,

(3.15)

where

XJSM∗ =

(
XJSM
√

γHJSM

)
, and DJSM∗ =

(
DJSM
√

γW

)
. (3.16)

Therefore, XJSM∗ is a (B+M)× (TD×P) matrix and DJSM∗ is a (B+M)×ND

matrix.

3.4.3 Algorithm of JSM-DKSVD

The objective function (3.14) of JSM-DKSVD can be solved by adopting the orig-

inal K-SVD algorithm in [32], more specifically, by adopting the iterative updating

process for DJSM∗ and AJSM∗.

3.4.3.1 Initialisation

It is required that the dictionary DJSM and the classifier W are given initial values

to enable the iterative updating process to follow. Their initial values can be as

simple as randomised matrices; in this work we follow the initialisation process of

D-KSVD [6] which is explained as follows.

The initial dictionary matrix is denoted by D(0). As with in [6], D(0) should

have l2-normalised columns. Given the number of atoms ND, D(0) is designed to

be a B×ND matrix, and it can be initialised by the original K-SVD algorithm with

only a couple of iterations.

As a result, the coefficient matrix of XJSM for initialisation, denoted by A(0),

is computed by solving the first objective term of (3.14):

A(0) = (D(0)T
D(0))−1D(0)T

XJSM , (3.17)

where A(0) is an ND× (TD×P) matrix.
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The initial classifier, denoted by W(0), is computed by solving the problem of

argmin
W(0)

{
∥∥∥HJSM−W(0)A(0)

∥∥∥2

F
+
∥∥∥W(0)

∥∥∥2

F
}:

W(0) =
(
(A(0)A(0)T

+ I)−1A(0)HJSMT
)T

, (3.18)

where W(0) is an M×ND matrix.

After initialisation, we compose the objective function (3.15) with XJSM∗ ∈

R(B+M)×(TD×P) and DJSM∗ ∈ R(B+M)×ND , and the iterative updating process of

DJSM∗ and AJSM∗ can start.

3.4.3.2 Iterative updating - sparse coding stage

Fixing the dictionary DJSM∗, we compute the joint sparse coefficient matrix AJSM
p ∈

RND×TD for each training window XJSM∗
p ∈ R(B+M)×TD , where p = 1, . . . ,P, by ap-

proximating the following solution:

ÂJSM
p =argmin

AJSM
p

∥∥∥XJSM∗
p −DJSM∗AJSM

p

∥∥∥2

F
,

s.t.
∥∥∥AJSM

p

∥∥∥
row,0
≤ LD ,

(3.19)

which can be solved by the SOMP algorithm [4, 8, 39]. Then the sparse coefficient

matrix AJSM of all training window XJSM∗ (3.10) is concatenated as

AJSM = [AJSM
1 , . . . ,AJSM

P ] = [αJSM
1 , . . . ,αJSM

TD×P] . (3.20)

3.4.3.3 Iterative updating - dictionary updating stage

Following the similar idea of SVD in [32], the dictionary is updated atom by atom.

In the jth iteration, for the kth atom dJSM∗
k ∈ RB+M in the dictionary

DJSM∗( j−1), where j = 1, . . . ,J and k = 1, . . . ,ND; DJSM∗( j−1) is the dictionary ob-

tained from the previous iteration j− 1, the atom dJSM∗
k is updated to a new one,

denoted by d̃JSM∗
k , by the following steps:
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a. define a group of the instances that use atom dJSM∗
k ,

ωk = {p|1 6 p 6 TD×P,AJSM(k, p) 6= 0} , (3.21)

where AJSM(k, p) denotes the kth row and pth column of AJSM;

b. compute the overall representation error Ek without using the atom dJSM∗
k ,

Ek = XJSM∗−∑
i 6=k

dJSM∗
i AJSM(i, ·) , (3.22)

where AJSM(i, ·) denotes the ith row of AJSM and i = 1, . . . ,ND;

c. restrict Ek by choosing only the column corresponding to ωk, and obtain ER
k :

ER
k = Ek(·,ωk) , (3.23)

where Ek(·,ωk) denotes the columns of Ek corresponding to ωk;

d. apply SVD decomposition ER
k = U∆VT . The updated atom d̃JSM∗

k and its

corresponding sparse coefficients in the updated coefficient matrix ÃJSM∗ are

solved by

d̃JSM∗
k = U(·,1) ,

ÃJSM∗(k,ωk) = ∆(1,1)V(·,1) ,
(3.24)

where U(·,1) and V(·,1) denotes the first column of U and the first column

of V, respectively.

After J iterations, the desired dictionary D′ and the classifier W′ learned by

JSM-DKSVD should also be re-normalised as in (3.6).

Details of the proposed JSM-DKSVD are summarised in Algorithm 1.

3.4.4 Classification approach of JSM-DKSVD

Same as the D-KSVD, the dictionary D′ and the classifier W′ learned by JSM-

DKSVD can be used together with many established HSI classification methods. By
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Algorithm 1 JSM-DKSVD algorithm to solve (3.15).

Input:
Training HSI pixels Xtrain ∈ RB×P.
Window size TD for training.
Control parameter γ .
Sparsity level LD.
Number of atoms ND of the dictionary to be learned.
Maximum iteration number J.

Output: D′ , W′.

Initialisation:

• Generate training sample set XJSM by (3.10).

• Compose class matrix HJSM by (3.13).

• Initialise dictionary matrix D(0) with l2-normalised columns.

• Compute coefficient matrix A(0) by (3.17).

• Initialise classifier W(0) by (3.18).

• Compose XJSM∗ and DJSM∗ by (3.16).

while j 6 J do

Sparse coding stage:
Compute the sparse coefficient matrix AJSM

p for each training windows XJSM∗
p

by (3.19).
Concatenate the sparse coefficient matrix AJSM for all training windows

XJSM∗ by (3.20).

Dictionary updating stage:
for k = 1:ND in DJSM∗( j−1) do

Define the group of instances that use atom dJSM∗
k by (3.21).

Compute the overall representation error Ek by (3.22).
Restrict Ek to ER

k by (3.23).
Apply SVD decomposition to ER

k and solve the updated atom d̃JSM∗
k and

its corresponding sparse coefficients ÃJSM∗(k,ωk) by (3.24).
end for
Set j = j+1.

end while
Compute the desired dictionary D′ and classifier W′ by (3.6).
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embedding richer structure information from HSI in the dictionary and the classi-

fier, the proposed JSM-DKSVD aims to improve the overall classification accuracy

when used with these dictionary-based classification methods for HSI.

Specifically, when JSM-DKSVD is used in pair with the JSM-based SRC

method, given a test matrix Xtest = [xtest
1 , . . . ,xtest

TC
] with TC pixels centred on the

test pixel xtest , the JSM coefficient matrix Atest = [α test
1 , . . . ,α test

TC
] is computed by

solving the following problem:

Âtest =argmin
Atest

∥∥Xtest−D′Atest∥∥2
F ,

s.t.
∥∥Atest∥∥

row,0 ≤ LC .

(3.25)

Then, the classifier W′ is applied to Âtest to create the estimated class label

matrix Ĥtest for Xtest :

Ĥtest = W′Âtest . (3.26)

Finally, each row of Ĥtest ∈ RM×TC is summed together as a new class label

vector ĥtest ∈RM, and the class label of the central test pixel is determined by (3.9).

3.5 Experimental studies
The experiments are carried out on two real hyperspectral datasets: the AVIRIS

Indian Pines dataset and the ROSIS University of Paiva dataset, both of which are

publicly available [40]. We evaluate the proposed JSM-DKSVD and compare the

learned dictionary with two other types of dictionaries. The first comparison is

against the dictionary constructed by original labelled training pixels, denoted by

Draw, such as in [4, 25, 27]. The second comparison is against the direct application

of D-KSVD [6]. Dictionaries acquired from Draw, D-KSVD and the proposed JSM-

DKSVD are used with three different SRC methods: 1) SM (referred to as OMP),

2) JSM [4] (referred to as SOMP), and 3) NLW [25].

We employ three standard performance measures for HSI classification: the

overall accuracy (OA), the average accuracy (AA) and kappa coefficient κ [41].

The overall accuracy is defined as the ratio of correctly-classified test pixels over
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all classes; the average accuracy is defined as the average value of the M accuracies

of individual classes, where M is the total number of classes; and the kappa coeffi-

cient κ is defined as the percentage of classified test pixels corrected by the number

of agreements that would be expected purely by chance. The OA, AA and κ are

defined as follows:

OA =
Ncorr

Ntest
, AA =

1
M

M

∑
i=1

Ncorr
i

Nclass
i

, κ =
OA− pe

1− pe
, (3.27)

where Ncorr is the number of the correctly-classified test pixels, Ntest is the total

number of test pixels; Ncorr
i is the number of the correctly-classified test pixels of

class i, Nclass
i is the total number of test pixels of class i; and pe = ∑

M
i=1(Pi×Pt

i ), in

which Pi is the ratio of data assigned to class i by the classifier and Pt
i is the ratio of

data that belong to class i.

The SPAMS toolbox [39] is used to execute the sparse recovery process,

i.e. OMP and SOMP. MATLAB codes from [6] are used to perform the K-SVD

and D-KSVD algorithms, and MATLAB codes from [25] are used to perform the

NLW algorithm.

3.5.1 Parameter settings

The parameters involved in the whole evaluation process include those for both

the SRC methods and the dictionary learning methods. For the SRC methods, the

parameters include the sparsity level LC and the window size TC for SOMP and

NLW. For the dictionary learning methods, the parameters include the sparsity level

LD, the number of atoms ND, the regularisation parameter γ , the iteration number

J, and finally the window size TD for the proposed JSM-DKSVD method. It is too

costly to cross-validate through the entire design space. To simplify the problem,

we break it down into two steps:

• When the three SRC methods (OMP, SOMP and NLW) use Draw, we perform

the leave-one-out-cross-validation (LOOCV) to tune their parameters LC and

TC. Then the parameters of the three SRC methods are fixed and decoupled

from dictionary learning, providing a relatively fair testing platform for the
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dictionary learning methods.

• For the D-KSVD and JSM-DKSVD dictionary learning methods which pro-

duce dictionaries that are independent of and universally applicable to differ-

ent SRC methods, we define their parameters in the following way. Parameter

ND by the nature cannot be tuned by cross-validation. Therefore, we set ND

to be the maximum possible number of atoms, which is dataset-dependent

(see details in the following sections). Empirically and for simplicity, the reg-

ularisation parameter γ is set to be 1 and the iteration number J is set to be

30. The sparsity level LD for the matching pursuit algorithms is set to be 5

and 30 respectively for DKSVD and JSM-DKSVD due to the difference be-

tween OMP and SOMP. Finally, we evaluate JSM-DKSVD with two training

window sizes, 3×3 and 5×5, for illustrative purposes.

3.5.2 AVIRIS dataset: Indian Pines

Table 3.1: The Indian Pines dataset: Ground-truth labels, class material, the training set
and the test set. The middle two columns are for the case of 957 training pixels
(9% of all pixels) and 9,409 test pixels; the rightmost two columns are for the
case of 524 training pixels (5% of all pixels) and 9,842 test pixels.

Class Material Training Test Training Test
1 Alfalfa 5 49 3 51
2 Corn-notill 132 1302 72 1362
3 Corn-mintill 77 757 42 792
4 Corn 22 212 12 222
5 Grass-pasture 46 451 25 472
6 Grass-trees 69 678 38 709
7 Grass-pasture-mowed 3 23 2 24
8 Hay-windrowed 45 444 25 464
9 Oats 2 18 1 19

10 Soybean-notill 89 879 49 919
11 Soybean-mintill 227 2241 124 2344
12 Soybean-clean 57 557 31 583
13 Wheat 20 192 11 201
14 Woods 119 1175 65 122
15 Buildings-grass-trees-drives 35 345 19 361
16 Stone-steel-towers 9 86 5 90

Total 957 9409 524 9842

The AVIRIS Indian Pines dataset consists of 145×145 pixels from 224 spec-

tral bands with sixteen ground-truth labels. Similarly to [4] and [25], we use its 200
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1#. alfalfa
2. corn-notill
3. corn- mintill
4. corn
5. grass-pasture
6. grass-trees
7. #grass-pasture-mowed
8. hay-windrowed
9. oats
10. soybean-notill
11. soybean-montill
12. soybean-clean
13. wheat
14. woods
15. buildings-grass-trees-drives
16. stone-steel-towers

(a) (b) (c)

Figure 3.1: The Indian Pines dataset with 9% pixels randomly chosen for training: (a)
ground-truth labels; (b) training set; (c) test set.

bands after removing the water absorption bands. Following [25], we first randomly

choose 957 labelled pixels (9.23% of all pixels) for training, i.e. Xtrain ∈ R200×957.

The rest pixels are used for testing, i.e. Xtest ∈ R200×9409. A summary of the num-

bers of training and test pixels for individual classes is given in the middle two

columns in Table 3.1. The sixteen ground-truth classes, the training set as well as

the test set are shown in Figures. 3.1(a)-3.1(c).

For the three SRC methods, OMP, SOMP and NLW using Draw, the optimal

parameters obtained by LOOCV are LC = 5 for OMP, LC = 30 and TC = 7× 7 for

SOMP and LC = 30 and TC = 9×9 for NLW.

Regarding the number of atoms, we set ND = 957 for D-KSVD. For the JSM-

DKSVD dictionary learning method, due to the possible overlapping of the ex-

tended neighbourhoods, its training set XJSM, which is the extended Xtrain, may not

be full rank and as a result the K-SVD algorithm cannot be executed. The maximum

possible number of atoms for JSM-DKSVD is therefore defined to be the maximum

unique columns of XJSM. For the training window TD = 3×3, the unique number of

atoms is 5,145; and for TD = 5×5, the unique number of atoms is 8,764. Therefore

we set ND = 5,145 and ND = 8,764 under TD = 3×3 and TD = 5×5, respectively.

To have a reliable evaluation and fair comparison, we repeat the experiments

for 20 times under these parameter settings through performing 20 random training-

test splits. For each of the 12 combinations of four dictionary learning schemes and

three SRC methods with their optimal parameters, all of its 20 overall classification
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Figure 3.2: Boxplots of the overall classification accuracies for the Indian Pines dataset, for
12 combinations indexed by the horizontal axis: (1) Draw-OMP, (2) DKSVD-
OMP, (3) JSM-DKSVD-OMP under TD = 3×3, (4) JSM-DKSVD-OMP under
TD = 5×5, (5) Draw-SOMP, (6) DKSVD-SOMP, (7) JSM-DKSVD-SOMP un-
der TD = 3× 3, (8) JSM-DKSVD-SOMP under TD = 5× 5, (9) Draw-NLW,
(10) DKSVD-NLW, (11) JSM-DKSVD-NLW under TD = 3×3, and (12) JSM-
DKSVD-NLW under TD = 5×5. Each boxplot is constructed from the results
of 20 experiments, with panel (a) for the case that 9% pixels are randomly
chosen to train the dictionary; and panel (b) for the case that 5% pixels are
randomly chosen to train the dictionary.

accuracies are recorded and box-plotted in Figure 3.2(a). Moreover, for illustrative

purposes, the classification results for one experiment randomly selected from the

20 experiments are given in Table 3.2 and depicted in Figures. 3.3(a)-3.3(l), respec-

tively.

It can be observed that, firstly, the D-KSVD method does not improve the

classification performance significantly, compared with those simply using Draw for

HSI classification. Secondly, in contrast to D-KSVD, JSM-DKSVD is capable of

producing a dictionary-classifier combination of much better performance than the

other two dictionary learning methods in both cases of TD = 3×3 and TD = 5×5.

In Table 3.2, for OMP, the overall accuracy (OA) is improved the most, with an 11%

(78.63% to 89.94 %) increase under TD = 3×3 and with a 14% (78.63% to 92.99%)

increase under TD = 5×5. For SOMP and NLW, OAs are also improved, by around

4% (93.85% to 97.95% and 95.00% to 98.68%) under TD = 3× 3. JSM-DKSVD

combined with NLW reaches the highest accuracies, 98.68%.

To further demonstrate the benefit of using the JSM-DKSVD-trained dictio-
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.3: The classification maps of the Indian Pines dataset with 9% pixels randomly
chosen for training: (a) Draw-OMP; (b) DKSVD-OMP (c) JSM-DKSVD-OMP
(3×3); (d) JSM-DKSVD-SOMP (5×5); (e) Draw-SOMP; (f) DKSVD-SOMP
(g) JSM-DKSVD-SOMP (3× 3); (h) JSM-DKSVD-SOMP (5× 5); (i) Draw-
NLW; (j) DKSVD-NLW (k) JSM-DKSVD-NLW (3× 3); (l) JSM-DKSVD-
NLW (5×5).
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Table 3.2: The classification accuracy (%) for the Indian Pines dataset with 957 training
pixels (9% of all pixels) and 9409 test pixels, of four dictionary learning methods
(Draw, DKSVD, JSM-DKSVD (3×3), and JSM-DKSVD (5×5)) for three SRC
methods (OMP, SOMP, NLW). TD: training window size; ND: number of atoms;
OA: overall accuracy (%); AA: average accuracy (%); κ: kappa coefficient.

Draw DKSVD JSM-DKSVD
TD N/A N/A 3×3 5×5
ND 957 957 5145 8764

OMP SOMP NLW OMP SOMP NLW OMP SOMP NLW OMP SOMP NLW
1 61.22 79.59 93.88 63.27 77.55 91.84 87.76 91.84 97.96 95.92 100.00 97.96
2 70.35 92.93 94.62 70.28 92.32 94.01 87.17 97.85 98.31 96.08 98.62 98.77
3 65.65 85.73 87.71 65.39 86.79 88.38 86.92 97.62 98.55 91.94 98.02 97.49
4 54.25 89.15 85.38 53.77 89.62 84.43 73.11 99.06 98.58 84.43 97.17 97.64
5 94.24 96.45 98.45 94.46 96.67 98.67 98.23 99.78 99.78 98.89 98.23 100.00
6 94.99 99.26 99.85 94.99 99.85 99.85 97.20 99.56 99.71 97.79 98.53 99.56
7 56.52 56.52 30.43 56.52 56.52 26.09 91.30 82.61 86.96 78.26 73.91 43.48
8 96.62 100.00 100.00 96.40 100.00 100.00 99.32 100.00 100.00 99.77 100.00 100.00
9 55.56 16.67 16.67 55.56 16.67 16.67 77.78 44.44 50.00 61.11 0.00 5.56

10 63.82 77.82 82.48 63.82 79.64 82.82 85.89 93.86 96.36 86.58 94.43 94.65
11 79.43 95.67 98.39 79.70 96.97 98.62 86.93 98.30 99.06 89.60 97.72 98.88
12 72.53 93.00 97.13 72.35 96.23 97.85 86.54 97.49 99.10 91.92 95.69 97.13
13 99.48 98.96 99.48 99.48 100.00 99.48 98.96 99.48 98.96 85.94 84.90 95.31
14 94.47 97.19 97.45 94.47 97.36 97.36 97.62 99.15 99.23 98.30 99.40 100.00
15 57.39 97.68 97.97 57.68 98.55 99.71 85.22 100.00 99.71 93.91 99.71 98.84
16 82.56 98.84 98.84 83.72 98.84 98.84 89.53 93.02 97.67 81.40 83.72 87.21
OA 78.58 93.05 94.89 78.63 93.85 95.00 89.94 97.95 98.68 92.99 97.28 98.02
AA 74.94 85.97 86.17 75.12 86.47 85.91 89.34 93.38 95.00 89.49 88.75 88.28
κ 0.755 0.921 0.943 0.756 0.923 0.943 0.885 0.977 0.985 0.920 0.969 0.978

nary, the same test is performed again but with even fewer training pixels. For this

test, only around 5% of the total pixels are chosen as training pixels, i.e. Xtrain ∈

R200×524, and the rest of the pixels are used for testing, i.e. Xtest ∈ R200×9842. The

summarised dataset is shown in the rightmost two columns in Table 3.1. The num-

ber of atoms ND is set by the same process as that in the case of 9% training pixels,

and the results are 2,919 under TD = 3×3 and 5,831 under TD = 5×5, respectively.

Parameters LC, TC, LD, TD, γ and J are remained the same as those in 9% pixels for

training.

We randomly split the dataset into training-test pairs for 20 times. All of the

20 overall classification accuracies are shown in Figure 3.2(b). The classification

results for one experiment randomly selected from the 20 experiments are shown

in Table 3.3, excluding the classification accuracies of individual classes and the

classification maps to save space. Once again, JSM-DKSVD-trained dictionaries
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Table 3.3: The overall classification accuracy (%) on the Indian Pines dataset with 524
training pixels (5% of all pixels) and 9842 test pixels. The notation is as for
Table 3.2.

Draw DKSVD JSM-DKSVD
TD N/A N/A 3×3 5×5
ND 524 524 2919 5831

OMP SOMP NLW OMP SOMP NLW OMP SOMP NLW OMP SOMP NLW
OA 75.75 90.46 92.35 75.67 91.15 92.48 85.17 96.08 96.97 88.41 95.74 97.02
AA 70.12 82.37 84.04 70.28 82.33 83.46 83.56 93.31 91.52 87.01 93.46 93.47
κ 0.723 0.891 0.913 0.722 0.899 0.914 0.831 0.955 0.966 0.868 0.952 0.966

are still capable of improving the performance of the reference SRC methods to a

high standard, and can be much superior to the SRC methods with DKSVD-trained

dictionaries.

We also compare our proposed JSM-DKSVD method with state-of-the-art

method proposed in [37], which also incorporates the structure information into

their dictionary learning processes. Referenced directly from [37], the test environ-

ment is slightly different in that 997 pixels (10.64% of all 16-classes pixels) are used

for training (comparing to the 957 pixels in our case). Under the two similar test

settings, our proposed JSM-DKSVD outperforms (98.68% as shown in Table 3.2)

the best performance in [37] which is 94.20%. It is worth noting though: the method

proposed in [37] aims to train compact dictionaries and therefore is still expected to

have an edge on the computational cost.

The two parameters LD and ND in the dictionary learning process are essential

to the quality of the resultant dictionary. To better investigate this matter for the

proposed JSM-DKSVD, a sweep of the parameter space of ND and LD is performed,

using 5% pixels for training and the training window TD = 3× 3, for example.

The classification accuracies of OMP, SOMP and NLW with JSM-DKSVD-trained

dictionaries are depicted in Figure 3.4.

In all OMP (Figure 3.4(a)), SOMP (Figure 3.4(b)) and NLW (Figure 3.4(c))

settings, it can be seen that the performances of the learned dictionary are consis-

tently maximal when the number of atoms ND is approaching the maximum value.

In these cases, the dictionary is large and flexible enough to store the rich informa-

tion provided by the extended training neighbourhoods in JSM-DKSVD.
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Figure 3.4: The overall classification accuracies of using JSM-DKSVD with different num-
bers of atoms ND and training sparsity levels LD. The 5% pixels randomly cho-
sen from the Indian Pines dataset are used to train dictionaries under TD = 3×3.
The three SRC methods for testing are (a) OMP, (b) SOMP, and (c) NLW.

When ND drops below 1,800, the performance becomes unstable, with local

maximal observed in different places depending on LD. This is because: although

the dictionaries in these cases are not big enough to support excellent represen-

tation of the training neighbourhoods themselves, when the sparsity level LD is

appropriately matched, the resultant dictionary can still achieve a relatively good

performance.

Summarising all the LD dimensions, Figure 3.5 shows the best performance

that the dictionary can achieve under different ND. It can be seen that despite of the

local maximum mentioned above, the best performance remains at the places where

ND is close to the number of unique columns of XJSM.

Moreover, we can observe that the performance of the learned dictionary is not

sensitive to LD when ND is approaching the maximum value. Therefore, based on

the above discussion we can take the strategy of setting ND to be close to the number
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Figure 3.5: The optimal classification accuracies of OMP, SOMP, and NLW using the JSM-
DKSVD-trained dictionary with different numbers of atoms ND. The 5% pixels
randomly chosen from the Indian Pines dataset are used to train the dictionaries
under TD = 3×3.

of unique columns in XJSM and giving LD certain flexibility.

3.5.3 ROSIS dataset: University of Pavia

Table 3.4: The Pavia University dataset: Ground-truth labels, class material, the training
set and the test set.

Class materials Training Test
1 Asphalt 67 6564
2 Meadows 187 18462
3 Gravel 21 2078
4 Trees 31 3033
5 Painted metal sheets 14 1331
6 Bare soil 51 4978
7 Bitumen 14 1316
8 Self-blocking bricks 37 3645
9 Shadows 10 937

Total 432 42344

The ROSIS University of Pavia dataset consists of 610× 340 pixels from

103 spectral bands, with nine ground-truth labels. We randomly choose only 1%

of labelled samples for training, i.e. Xtrain ∈ R103×432 and the rest for testing,

i.e. Xtest ∈ R103×42344. A summary of this dataset is given in Table 3.4. The

nine ground-truth classes, the training set as well as the test set are shown in Fig-
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2. meadows

3. gravel

4. trees

5. painted metal sheets

6. bare oil

7. bitumen

8. self-blocking bricks

9. shadows

(a) (b) (c)

Figure 3.6: The University of Pavia dataset with 1% pixels randomly chosen for training:
(a) ground-truth labels; (b) training set; (c) test set.

ures. 3.6(a)-3.6(c).

For the three SRC methods, OMP, SOMP, NLW using Draw, the optimal pa-

rameters obtained by LOOCV are LC = 5 for OMP, LC = 10 and TC = 3× 3 for

SOMP and LC = 20 and TC = 5×5 for NLW.

For the D-KSVD and JSM-DKSVD algorithms, we set the number of atoms

ND = 432 for D-KSVD. For the JSM-DKSVD, the unique number of atoms is 3,604

under the training window TD = 3× 3, and 9,344 under the training window TD =

5× 5. Therefore ND is set as 3,604 and 9,344 under TD = 3× 3 and TD = 5× 5,

respectively.

As with section 3.5.2, we randomly split the dataset into training-test pairs

for 20 times. All of the 20 overall classification accuracies are box-plotted in Fig-

ure 3.7. The classification results for one experiment random selected from the

20 experiments are shown in Table 3.5 and Figures. 3.8(a)-3.8(l). Once again, we

can observe that the JSM-DKSVD-trained dictionary combined with the three SRC

methods outperforms the other two methods (Draw and D-KSVD) in both cases of

TD = 3×3 and TD = 5×5.

Again, we compare our results against those in [37] which is a state-of-the-art

dictionary learning method. Even with only 1% of the pixels used for training, the
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Figure 3.7: Boxplots of the overall classification accuracies the University of Pavia dataset:
(1) Draw-OMP, (2) DKSVD-OMP, (3) JSM-DKSVD-OMP under TD = 3× 3,
(4) JSM-DKSVD-OMP under TD = 5×5, (5) Draw-SOMP, (6) DKSVD-SOMP,
(7) JSM-DKSVD-SOMP under TD = 3× 3, (8) JSM-DKSVD-SOMP under
TD = 5×5, (9) Draw-NLW, (10) DKSVD-NLW, (11) JSM-DKSVD-NLW under
TD = 3× 3, and (12) JSM-DKSVD-NLW under TD = 5× 5. Each boxplot is
constructed from the results of 20 experiments and 1% pixels are randomly
chosen to train the dictionary.

Table 3.5: The classification accuracy (%) on the University of Pavia dataset with 432 train-
ing pixels (1% of all pixels) and 42344 test pixels. The notation is as for Ta-
ble 3.2.

Draw D-KSVD JSM-DKSVD
TD N/A N/A 3×3 5×5
ND 432 432 3604 9344

OMP SOMP NLW OMP SOMP NLW OMP SOMP NLW OMP SOMP NLW
1 74.21 78.63 83.27 78.47 86.11 90.65 83.68 90.33 93.19 85.33 90.36 93.95
2 92.32 97.82 98.02 91.12 97.36 98.02 91.63 98.00 98.44 92.40 98.34 98.40
3 52.21 63.72 61.50 51.68 61.79 56.79 65.69 76.23 77.33 71.22 79.79 83.16
4 84.54 88.39 88.99 83.42 86.84 84.01 85.86 89.45 89.55 89.28 92.78 92.09
5 99.55 100.00 100.00 95.94 99.02 99.25 98.42 99.85 99.62 98.87 99.92 99.47
6 58.54 63.00 60.81 58.28 64.34 62.56 68.74 74.93 74.89 74.21 81.86 82.74
7 73.25 88.83 89.21 72.64 88.15 86.85 72.64 88.91 87.84 77.20 90.58 91.19
8 65.54 76.19 75.23 59.34 72.18 69.66 67.54 80.80 76.87 71.22 81.59 78.68
9 81.00 81.75 81.96 92.53 97.01 94.77 95.73 98.40 98.51 92.32 97.55 97.65

OA 80.10 85.97 86.39 79.68 86.83 86.86 83.66 90.72 91.04 85.81 92.20 92.77
AA 75.69 82.04 82.11 75.94 83.65 82.51 81.10 88.54 88.47 83.56 90.31 90.82
κ 0.734 0.811 0.816 0.729 0.823 0.822 0.783 0.876 0.880 0.812 0.896 0.903
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(a) (b) (c) (d)
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Figure 3.8: The classification maps of the University of Pavia dataset with 1% pixels
randomly chosen for training: (a) Draw-OMP; (b) DKSVD-OMP (c) JSM-
DKSVD-OMP (3× 3); (d) JSM-DKSVD-SOMP (5× 5); (e) Draw-SOMP; (f)
DKSVD-SOMP (g) JSM-DKSVD-SOMP (3× 3); (h) JSM-DKSVD-SOMP
(5× 5); (i) Draw-NLW; (j) DKSVD-NLW (k) JSM-DKSVD-NLW (3× 3); (l)
JSM-DKSVD-NLW (5×5).



3.5. Experimental studies 67

proposed JSM-DKSVD method achieves higher OA (92.77% as shown in Table 3.5)

than that reported (85.70%) in [37], which is evaluated with 10% pixels as training

pixels.

3.5.4 Discussion

JSM-DKSVD utilises the JSM constraint in a fundamentally different way from

JSM-based classification methods (SOMP and NLW): JSM-DKSVD applies its

constraint to dictionary learning while SOMP and NLW apply their constraints to

classification. Moreover, the JSM constraint in classification is used to ensure sta-

ble sparse representation for the test pixels when they are classified, while the JSM

constraint in JSM-DKSVD is used to ensure richer spectral and spatial information

incorporated into the learned dictionary.

As dictionary learning can be treated as a pre-processing step for the subse-

quent classification process and the learned dictionary can be utilised by any sparse

representation-based classifiers, JSM-DKSVD can be compatibly utilised in con-

junction with existing JSM-based or non-JSM-based classification methods, such as

SOMP, NLW and OMP. Because of the difference in the use of the JSM constraint,

such a combination of dictionary learning and classification will not introduce un-

desirable over-smoothness.

Nevertheless, it is worth noting that the JSM constraint itself, be it executed in

the dictionary learning or classification process, is based on the grand assumption

of signal continuity in natural images. This assumption may be violated in certain

part of an image in practice. The violation might be caused by the low resolution

of capturing devices, by the very existence of pixels near the border of object re-

gions, or simply by the effect of random noises. This limits the performance of all

dictionary learning/classification methods that are based on this assumption.

For example, as is shown in Table 3.2 for class 7 and class 9 of the Indian

Pine dataset, the OMP method, which is not based on the JSM assumption, in fact

achieves higher classification accuracies than SOMP and NLW, which are JSM-

based. We note that both class 7 and class 9 are small regions with only 26 and 20

pixels in total, respectively (shown in Table 3.1).
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In fact, such a small class is prone to violate the smoothness assumption and

may prefer a small window for dictionary learning and classification. As we can ob-

serve, applying a stronger JSM-constraint during dictionary learning by switching

from TD = 3×3 to a larger window TD = 5×5 actually results in a drop of perfor-

mance of all three classification methods (OMP, SOMP, and NLW) for class 7 and

class 9. The optimal choice of the window size (e.g. TD) can be data-dependent, as is

the case for SOMP and NLW where the JSM-constraint is employed for classifica-

tion and for JSM-DKSVD where the constraint is employed for dictionary learning.

It is indeed of our research interests to further investigate and make the window

selection process data-adaptive for JSM-DKSVD.

Table 3.6: Execution time (sec/atom) spent on the University of Pavia dataset with 432
training pixels (1% of all pixels) for training dictionaries.

Draw D-KSVD JSM-DKSVD (3×3) JSM-DKSVD (5×5)
Time 0.014 0.245 0.512

Finally for reference purposes, we discuss the time cost for training dictionar-

ies. All experiments are performed on Xeon E5-1650 CPU (single thread). Ta-

ble 3.6 lists the execution time of training dictionaries by D-KSVD, JSM-DKSVD

(3× 3) and JSM-DKSVD (5× 5) conducted at their optimal parameters for the

Pavia dataset with 1% pixels randomly chosen for training. The execution time

(sec/atom) is normalised by the numbers of trained atoms, i.e. 432 in D-KSVD and

3604 in JSM-DKSVD, respectively. Firstly, it should be noted that there is no train-

ing phase on Draw since the atoms of the dictionary are constructed directly from the

training pixels. Secondly, JSM-DKSVD spends more time than D-KSVD for both

window sizes, i.e. TD = 3×3 and 5×5, and JSM-DKSVD (5×5) spends the most.

These are expected, as the extra cost comes from the neighbours involved with JSM

in the training phase. This time/dictionary quality trade-off is often preferred for

offline training, which is not uncommon in the literature of the HSI classification.
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3.6 Conclusion
In this chapter, we have proposed a novel dictionary learning method called JSM-

DKSVD for hyperspectral image classification. Based on the concept of joint sparse

modelling, we incorporate spectral and spatial structure information into the pro-

cess of discriminative K-SVD, which results in a more informative and discrimi-

native dictionary. Experiment results demonstrate that the proposed JSM-DKSVD

achieves better classification performance than those using established dictionary

construction methods, even when only a very small fraction (1% for example) of

the pixels from the benchmark HSI are used for training.



Chapter 4

HSI Classification: Cone-based Joint

Sparse Modelling (C-JSM)

4.1 Introduction

Sparse representation has been proven to be superiorly effective for a wide range of

applications in computer vision, pattern recognition and signal processing [42]. It is

based on the assumption that most natural signals can be compactly represented by

a linear combination of only a few basis vectors (aka atoms) from an over-complete

dictionary.

Recently, sparse representation has been extensively investigated in hyperspec-

tral imaging [4]. A hyperspectral image (HSI) is a 3-dimensional data cube with two

spatial dimensions and one spectral dimension. From the view of the spectral di-

mension, each HSI pixel is a vector, namely spectral signature whose elements cor-

respond to reflectances at different wavelengths (spectral bands). Different classes

of spectral signatures can have distinct reflectances at specific wavelengths and, as

a result, the spectral signatures can provide discriminative information for classifi-

cation. The sparse representation of an HSI pixel is accomplished by a linear com-

bination of atoms in a spectral dictionary. The sparse model can be approximately

solved by greedy algorithms such as orthogonal matching pursuit (OMP) [11] (l0-

norm based methods) or by convex optimisation problems such as the Lasso (l1-

norm based methods). In such sparse representation, the dictionary is usually con-
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structed by the training spectral signatures directly from HSIs or spectral libraries.

Note that, to achieve higher classification performance, dictionary learning has been

also investigated for HSI analysis. Details of how to design and learn quality dic-

tionaries for HSI classification can be found in [35, 36, 37, 38, 43], for example.

A step further, by virtue of the signal coherence in HSIs, a joint sparse model

(JSM) has been successfully developed for HSI classification and has achieved

promising performance [4]. The underlying assumption of JSM is that all HSI pix-

els in a small spatial neighbourhood can be jointly approximated by sparse linear

combinations of a few common training samples, i.e. the neighbourhood shares a

common sparse model. The original JSM proposed by [4] adopts a square win-

dow centred on a test pixel for joint modelling; a greedy algorithm, namely simul-

taneous orthogonal matching pursuit (SOMP) [8], is used to solve JSM. On top

of this JSM, some extensions have been proposed to overcome the limitations of

JSM [25, 27, 28, 29, 44, 45]. To extend JSM for linearly non-separable class sam-

ples, the kernel versions of SOMP have been studied in [44, 45]. To enhance JSM

with a more effective neighbourhood, the adaptive versions of JSM have been pro-

posed in [25, 27, 28, 29], which aim to produce shape/size adaptive local windows

for JSM.

An important property of hyperspectral signals is the non-negativity, for both

the signal itself and the abundance coefficients. It has been intensively considered

for problems of HSI unmixing [46, 47, 48, 49, 50, 51, 52]. A variety of reports have

been focused on the non-negative matrix factorisation (NMF), a typical decom-

position method for the HSI unmixing problems [46, 47, 48]. NMF decomposes

the sample data matrix into two low-dimensional matrices serving as endmembers

and coefficients, both of which are enforced to be non-negative. The underlying

assumption of the NMF-based unmixing is that mixed HSI pixels can be decom-

posed into a collection of endmembers and the corresponding proportions. Due to

the physical characteristics, the endmembers, which characterise the reflected elec-

tromagnetic energy of specific materials, should be non-negative. In addition, the

proportions of the underlying physical materials (endmembers) are non-negative for
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physical interpretations. In practice, as the standard NMF [46] is non-convex and

may fall into local minima, several enhancements have been proposed. A typical

constrained NMF algorithm called minimum-volume-constrained NMF [47] is pro-

posed to combine a geometry assumption with the NMF, enforcing the minimisation

of the simplex volume. Liu et al. [48] propose to add the abundance separation con-

straint and the smoothness constraint to the NMF to take the spatial and spectral

coherence into consideration. Other constraints are also considered, such as the

neighbourhood information of pixels [50] and the dissimilarity of signatures [51].

However, research of sparse representation for HSI classification, particularly

the JSM-based methods in [4, 25, 27, 28, 29], have not incorporated the non-

negativity properties of HSI. To fill in this gap, through replacing the signal rep-

resentation of JSM by cone representation, in this chapter we incorporate non-

negativity into HSI classification and propose a new HSI classification model called

cone-based joint sparse model (C-JSM).

Methodologically, inspired by the NMF for HSI unmixing, we devise the non-

negativity constraint on the coefficient matrix of JSM for HSI classification. Since

the given atoms of a dictionary are constructed directly by the HSIs or from spectral

libraries, it implies that the dictionary atoms can be regarded as endmemebers. In

this fashion, both endmembers and coefficients are non-negative, and thus the pro-

posed C-JSM considers both sparsity and non-negativity, making the joint sparsity

recovery problem more realistic in terms of interpretation. It will be illustrated to

have a more sparse and stable representation than the conventional JSM.

Computationally, we propose a new algorithm called non-negative simultane-

ous orthogonal matching pursuit (NN-SOMP) to solve the C-JSM problem. The

proposed NN-SOMP algorithm is developed on the basis of the SOMP algorithm

with an additional non-negative constraint on the coefficients, which will be illus-

trated easy to implement in this chapter.

In short, the main contribution of this chapter can be summarised as follows:

1) we incorporate the non-negativity constraints into JSM to consider more realistic

physical characteristics of the spectral signals and propose a new HSI classification
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model called C-JSM; 2) we also propose a new NN-SOMP algorithm to solve the

optimisation problem of C-JSM; and 3) C-JSM produces a stable sparse represen-

tation as well as a superior classification performance.

The rest of the chapter is organised as follows. Section 4.3 introduces the

cone-based model and the cone-based sparse model. In section 4.4 and section 4.5,

the proposed C-JSM, as well as the proposed algorithm NN-SOMP to solve the

C-JSM problem, are detailed. Experimental studies in section 4.6 demonstrates

the superior classification performance of C-JSM over the compared methods on

two real hyperspectral datasets. Finally this work is discussed and concluded in

section 4.7.

4.2 Joint sparse models for HSI classification
The sparse model (SM) and the joint sparse model (JSM) are reviewed in sec-

tion 2.2.1 and section 2.2.2 of Chapter 2, respectively. The notations in this chapter

also align with those in section 2.2.1 and section 2.2.2.

4.3 Cone-based sparse model

4.3.1 Cone-based model

A cone model (CM) to represent vectors x is defined as

C :

{
x|x =

N

∑
i=1

αidi = Dα,αi ≥ 0

}
, (4.1)

where αi is the non-negative coefficient of atom di, and α is an N-dimensional

vector of non-negative coefficients.

The non-negative coefficient vector α is estimated by solving the following

optimisation problem:

α̂ = argmin
α

‖x−Dα‖2
2 , s.t. α ≥ 0, (4.2)

where α ≥ 0 denotes that every single element of the vector α should be non-

negative. Problem (4.2) can be solved by the active-set methods, such as the typical
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non-negative least square method (NNLS) [53] (MATLAB function lsqnonneg) and

its extension fast-NNLS (fnnls) [54]. In this chapter, we use the CM (4.2) as a base-

line method for HSI classification. Specifically, (4.2) is used for the representation

of a single test HSI pixel. The label of a test pixel is determined by (2.4), as with

the rule used by the SM (2.2).

4.3.2 Cone-based sparse model

For the l0-pseudo-norm optimisation problem, the non-negative orthogonal match-

ing pursuit (NN-OMP) algorithm has been investigated in [55], which introduces the

non-negativity constraint into the conventional OMP algorithm. Technical details of

the algorithm vary, depending on different criteria such as fast implementation [56].

In [55, 56], a desired coefficient vector α is estimated by solving the following

optimisation problem:

α̂ = argmin
α

‖x−Dα‖2
2 , s.t. ‖α‖0 ≤ L and α ≥ 0, (4.3)

which is forced to be sparse and non-negative.

In this chapter, we term model (4.3) as the cone-based sparse model (CSM).

To our knowledge, CSM is first introduced and studied in this chapter for HSI clas-

sification. To align with the rule of SM (2.2), the classification of an HSI based on

CSM (4.3) is also determined by (2.4).

4.4 Cone-based joint sparse model (C-JSM) for HSI

classification
We notice that, on the one hand, SM (2.2), CM (4.2) and CSM (4.3) are all con-

structed for a single test HSI pixel and do not take the spatial coherence [57] into

consideration; while on the other hand, JSM accounts for the neighbouring spatial

information, but the coefficients estimated by JSM are only assumed to be sparse,

not necessarily non-negative. As with the underlying assumptions made for HSI un-

mixing, an HSI pixel can be decomposed into a collection of endmembers with non-

negative proportions. The endmembers are spectral signatures which characterise
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the reflect electromagnetic energy of specific materials and hence are non-negative.

In the case of HSI classification, the dictionary atoms are usually constructed di-

rectly from the HSI or from the spectral libraries, so the atoms can be assumed

acting as endmembers, which inspires us to devise a cone-based representation for

the joint models for a more realistic interpretation.

In the same notation as aforementioned in JSM (section 2.2.2), the cone-based

representation of a test window X ∈ RB×T can be formulated as follows:

X≈ DA, s.t. A≥ 0, (4.4)

where A is a non-negative coefficient matrix and A≥ 0 denotes that every element

of A should be non-negative. To estimate A, problem (4.4) can be reformulated as

Â = argmin
A
‖X−DA‖2

F , s.t. A≥ 0. (4.5)

In this chapter, we term model (4.4) as the joint cone model (shortened as JCM).

We also utilise it as a baseline method.

The optimisation problem (4.5) can be solved by two algorithms. Firstly, the

reconstruction of each column vector xt for t = 1, . . . ,T can be solved independently

by the conventional NNLS [53] or fast-NNLS [54]. Secondly, it can be solved by

an algorithm called fast combination NNLS (FC-NNLS) [58], which is proposed to

solve the large-scaled non-negativity-constrained least square problems. It solves a

set of linear reconstruction for X in a parallel fashion instead of solving a set of sin-

gle x in a serial fashion. Specifically, it rearranges the calculations in the standard

active-set NNLS on the basis of combinational reasoning and reduces the compu-

tation burden for NNLS problems when there are a large number of observations,

i.e. a large window size T in our case. The estimated coefficient matrices X̂s ob-

tained by these two methods are the same. So we can regard FC-NNLS as a fast

implementation of NNLS for solving the JCM problem (4.5).

Incorporating JCM (4.5) into the JSM for HSI classification (2.6), we propose
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a new method as

Â = argmin
A
‖X−DA‖2

F ,

s.t. ‖A‖row,0 ≤ L and A≥ 0.
(4.6)

We call this new model (4.6) as cone-based joint sparse model (shortened as C-

JSM). In short, the proposed C-JSM incorporates the non-negative constraints into

the sparse representation of a test window X by joint modelling. The coefficient ma-

trix A of the test window X is not only sparse, but also forced to be non-negative. On

top of these two desirable properties, the spatial coherence of HSI is also reflected

in that the coefficient vector of the central test pixel xc is jointly determined by those

HSI pixels in its local neighbourhood with the same non-negative and sparse con-

straints. As a result, HSI pixels in the local window X share the same basis vectors

of a cone, and the sparsity of the coefficients are determined only in the region of

the cone.

Same as JSM, the two cone-based sparse models, JCM and C-JSM, are also

joint models, hence we adopt the classification rule (2.8) for them. To solve the

C-JSM problem (4.6), we propose a new algorithm and detail it in the following

section 4.5.

4.5 Algorithm of NN-SOMP for solving C-JSM
We propose a new algorithm called non-negative simultaneous orthogonal matching

pursuit (NN-SOMP), to solve the C-JSM problem. It combines the NNLS-based

methods and the SOMP algorithm together to produce a non-negative and sparse

estimation of the coefficient matrix Â in (4.6). Before introducing the proposed

NN-SOMP, we first present the non-negative OMP to get an insight of the paradigm.

4.5.1 Algorithm of NN-OMP

The traditional SM in (2.2) with the l0-pseudo-norm constraint on the coefficient

vector is approximately solved by greedy algorithms, of which one of the most

popular algorithms is called orthogonal matching pursuit (OMP) [11]. We assume
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Algorithm 2 The OMP algorithm [11] to solve SM (2.2).

Input: • Dictionary D = [d1, . . . ,dN ] ∈ RB×N with ‖di‖2
2 = 1 for i = 1, . . . ,N.

• A test pixel x ∈ RB.

• Stopping criteria: sparsity level L or threshold τ .

Output: A sparse coefficient vector α̂ .

Initialisation:

• The residual vector r0 = x.

• Sparse index set Λ0 =∅.

• Iteration counter j = 1.

while j 6 L or
∥∥r j−1

∥∥2
2 < τ do

(1) Find an index λ j that solves the easy optimisation problem:

λ j = argmax
i=1,...,N

∣∣dT
i r j−1

∣∣ . (4.7)

(2) Update the index set Λ j = Λ j−1∪{λ j}.
(3) Compute the coefficient vector β j by the atoms of D indexed in Λ j:

β̂ j = (DT
Λ j

DΛ j)
−1DT

Λ j
x (4.8)

where DΛ j ∈ RB× j consists of the j atoms in D indexed in Λ j.

(4) Determine the new residual:

r j = x−DΛ j β̂ j. (4.9)

(5) j← j+1.

end while
Compute the sparse coefficient vector α̂ whose non-zero elements are indexed by
Λ and the corresponding L elements of vector β̂ L.
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Algorithm 3 The NN-OMP algorithm to solve CSM (4.3).

Input: • Dictionary D = [d1, . . . ,dN ] ∈ RB×N with ‖di‖2
2 = 1 for i = 1, . . . ,N.

• A test pixel x ∈ RB.

• Sparsity level L or threshold τ .

Output: A non-negative and sparse coefficient vector α̂ .

Initialisation:

• The residual vector r0 = r.

• Sparse index set Λ0 =∅.

• Iteration counter j = 1.

while j 6 L or
∥∥r j−1

∥∥2
2 < τ do

(1) Find an index λ j that solves the easy optimisation problem:

λ j = argmax
i=1,...,N

∣∣dT
i r j−1

∣∣ . (4.10)

(2) Update the index set Λ j = Λ j−1∪{λ j}.
(3) Determine non-negative coefficient vector β j by the NNLS algorithm in the

cone C whose basis vectors are the atoms of D indexed in Λ j:

β̂ j = argmin
β j

∥∥∥x−DΛ jβ j

∥∥∥2

2
,s.t. β j ≥ 0, (4.11)

where DΛ j ∈ RB× j consists of the j atoms in D indexed in Λ j.

(4) Determine the new residual:

r j = x−DΛ j β̂ j. (4.12)

(5) j← j+1.

end while
Compute the non-negative and sparse coefficient vector α̂ whose non-zero ele-
ments are indexed by Λ and the corresponding L elements of vector β̂ L.
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that the columns (atoms) of the dictionary D are normalised so that ‖di‖2 = 1 for

i = 1, . . . ,N. At the beginning of the algorithm, a residual vector r0 is initialised to

be the test HSI pixel x. The OMP iteratively selects at each step the column of D,

i.e. the atom di, which has not been selected but is most correlated with the residuals

r j−1, where j is the current iteration number. The maximal correlation is calculated

as
∣∣dT

i r j−1
∣∣, which is the absolute value of the projection of residual vector r j−1

onto the the atom di. The selected atom di is then added into the set of selected

atoms. The algorithm updates the residual vector by projecting the observed vector

x onto the linear subspace spanned by the atoms that have already been selected,

and then iterates. The termination of the OMP algorithm is either conducted by

setting the iteration number, i.e. the sparsity level L, or by setting a threshold τ of

the residual. The OMP algorithm is summarised in Algorithm 2.

Based on the OMP algorithm, the non-negative OMP (NN-OMP) is proposed

by incorporating the non-negativity constraint on the coefficients into the iterations.

The main difference between OMP and NN-OMP is the updating criteria of resid-

ual vector r j. In OMP, the residual vector is updated by (4.9), where the coefficient

vector β j is obtained by least squares (LS) (4.8) and has a closed-form solution.

However in NN-OMP, to guarantee non-negative coefficients, the coefficient vec-

tor β j at iteration j should be solved by NNLS-based methods instead of the LS

method, which is described in (4.11). Hence there is no closed-form solution for

β j. The algorithm of NN-OMP used in this chapter is summarised in Algorithm 3.

Other versions of NN-OMP can be found in [55, 56]. We note that there

is a slight difference between Algorithm 3 and the algorithms proposed in [55,

56]: we use the absolute value
∣∣dT

i r j−1
∣∣ instead of the maximal positive value

max(dT
i r j−1) > 0 used in [55, 56]. Although these two approaches may select

different atoms from iteration 2 (for iteration 1, r0 and di both are positive so the

produced results are same), the size of residuals
∥∥r j
∥∥

2 can be reduced iteratively

by both, which reflects the core idea of matching pursuit algorithms. It may not

be easy to claim which approach is more appropriate. To align with the original

framework of OMP and for a clearer comparison, we only change the updating of
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the coefficients by (4.11) and adopt Algorithm 3 as a representative of NN-OMP

algorithm in the following discussion.

4.5.2 Algorithm of NN-SOMP

Algorithm 4 The SOMP algorithm [4] to solve JSM (2.6).

Input: • Dictionary D = [d1, . . . ,dN ] ∈ RB×N with ‖di‖2
2 = 1 for i = 1, . . . ,N.

• A test window X = [x1, . . . ,xT ] ∈ RB×T .

• Sparsity level L.

Output: A non-negative and sparse coefficient matrix Â.

Initialisation:

• The residual matrix R0 = X.

• Sparse index set Λ0 =∅.

• Iteration counter j = 1.

while j 6 L or
∥∥R j−1

∥∥2
F < τ do

(1) Find an index λ j that solves the following easy optimisation problem:

λ j = argmax
i=1,...,N

∥∥RT
j−1di

∥∥
p , p≥ 1. (4.13)

(2) Update the index set Λ j = Λ j−1∪{λ j}.
(3) Determine coefficient matrix P j by the atoms of D indexed in Λ j:

P̂ j = (DT
Λ j

DΛ j)
−1DT

Λ j
X (4.14)

where DΛ j ∈ RB× j consists of the j atoms in D indexed in Λ j.

(4) Determine the new residual matrix:

R j = X−DΛ j P̂ j. (4.15)

(5) j← j+1.

end while
Compute the sparse coefficient matrix Â whose non-zero rows are indexed by Λ

and the corresponding L rows of matrix P̂L.

Following the derivation of NN-OMP from OMP, we propose a new algorithm

called NN-SOMP, which combines the SOMP algorithm [8] and the NNLS-based

methods together to solve the problem of C-JSM (4.6).
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Algorithm 5 The NN-SOMP algorithm to solve C-JSM (4.6).

Input: • Dictionary D = [d1, . . . ,dN ] ∈ RB×N with ‖di‖2
2 = 1 for i = 1, . . . ,N.

• A test window X = [x1, . . . ,xT ] ∈ RB×T .

• Sparsity level L.

Output: A non-negative and sparse coefficient matrix Â.

Initialisation:

• The residual matrix R0 = X.

• Sparse index set Λ0 =∅.

• Iteration counter j = 1.

while j 6 L or
∥∥R j−1

∥∥2
F < τ do

(1) Find an index λ j that solves the following easy optimisation problem:

λ j = argmax
i=1,...,N

∥∥RT
j−1di

∥∥
p , p≥ 1. (4.16)

(2) Update the index set Λ j = Λ j−1∪{λ j}.
(3) Determine non-negative coefficient matrix P j by the NNLS-based algorithm

in the cone C whose basis vectors are the atoms of D indexed in Λ j:

P̂ j = argmin
P j

∥∥X−DΛ jP j
∥∥2

F
,s.t. P j ≥ 0, (4.17)

where DΛ j ∈ RB× j consists of number of j atoms in D indexed in Λ j. Op-
timisation problem (4.17) can either determined in a serial fashion that
each column of X is treated independently and can be approximated by
NNLS [53] or fast-NNLS [54]; or in a parallel fashion by FC-NNLS [58].
The two approaches produce the same result.

(4) Determine the new residual matrix:

R j = X−DΛ j P̂ j. (4.18)

(5) j← j+1.

end while
Compute the non-negative and sparse coefficient matrix Â whose non-zeros rows
are indexed by Λ and the corresponding L rows of matrix P̂L.
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The SOMP algorithm [8] is a generalised OMP algorithm. It aims to find a

simultaneous approximation of several input signals, i.e. several columns of matrix

X, by using different linear combinations of the same atoms of the dictionary. The

algorithm balances the error in approximation against the total number of atoms that

participate. Specifically, the atoms supporting the sparse solution are sequentially

selected from the dictionary. At each iteration, the atom that simultaneously yields

the best yet simple approximation to all of the residual vectors is selected. Particu-

larly, at the jth iteration, we calculate an N×T correlation matrix Corr = DT R j−1,

where R j−1 is a residual matrix between the test window X ∈RB×T and its approx-

imation from the last iteration. The (i, t)th entry in Corr is the correlation between

the ith dictionary atom di and the residual vector for xt , where t = 1, . . . ,T at the

current iteration j. In the algorithm, the lp-norm, where p ≥ 1, for each of the N

rows of Corr is computed. The row index corresponding to the largest lp-norm is

then added into the sparse index set of selected atoms. As mentioned in [4], dif-

ferent values of p have been adopted in literatures, such as p = 1 is in [8], p = 2

in [59] and p = ∞ in [60]. In this chapter we use p = ∞ to align with [60]. Similarly

to OMP, the termination of the SOMP algorithm is either conducted by setting the

iteration number, i.e. the sparsity level L, or by setting a threshold τ of the size of

the residual. Details of the SOMP algorithm [4] is shown in Algorithm 4.

The proposed NN-SOMP algorithm is devised on the basis of the SOMP algo-

rithm; it incorporates non-negative constraints in the simultaneous approximation of

a test window X. We replace the LS-based estimates of the coefficient matrix P̂ j in

(4.14) of SOMP by the NNLS-based estimates in (4.17), as detailed in Algorithm 5.

We can see that the optimisation problem of (4.17) in our proposed algorithm is in

fact a standard JCM problem as in (4.5).

As aforementioned, the optimisation problem (4.17) can be solved by two

strategies both based on the NNLS methods. For a simple implementation, each

column of X can be treated independently. Specifically, problem (4.17) in the Al-

gorithm 5 is broken into T individual NNLS problems formulated by (4.2). These

T problems can be solved by conventional NNLS algorithm [53] or fast-NNLS
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algorithm [54]. Then the coefficient matrix P̂ j is obtained by concatenating the es-

timated coefficient vectors column by column. In this fashion, we need to use an

inner FOR loop to compute step (3) of the NN-SOMP algorithm (Algorithm 5). The

optimisation problem (4.17) can also be solved by the FC-NNLS algorithm [58],

which is a generalised NNLS algorithm. It aims to solve the non-negative least

squares with multiple input vectors. FC-NNLS rearranges the selection of the sup-

port set, and reduces substantially the computational burden required for the NNLS

problems which have large numbers of observation vectors.

The conventional NNLS algorithm utilises the active/passive set method to

solve an inequality-constrained least squares problem as a sequence of equality-

constrained problems, also termed “column-serial” [58]. FC-NNLS is also based

on this NNLS scheme. In general, the overall NNLS in the FC-NNLS is respon-

sible for defining the sequence, but sequentially solving the problem tends to be

computationally inefficient as it can result in redundant calculations. To this end,

FC-NNLS solves the problem in a “column-parallel” fashion. Specifically, the al-

gorithm firstly groups problems that share a common passive set and solve them

together, and then recognises that the passive sets vary from iteration to iteration.

Each NNLS iteration for all columns are performed in parallel rather than perform-

ing all iterations for each column in series. Note that columns will require different

numbers of iterations to achieve optimality. The algorithm of FC-NNLS is detailed

in Algorithm 6 in Appendix 4.8.

Although both the conventional NNLS and the FC-NNLS produce the same

estimation results, for a faster computation, we adopt the FC-NNLS algorithm to

solve (4.17). Details of the proposed NN-SOMP algorithm are summarised in Al-

gorithm 5.

4.6 Experimental studies

In this section, we investigate the performance of the proposed C-JSM method

on HSI classification. The experiments are carried out on two well-known real

HSI datasets: the AVIRIS Indian Pines dataset and the ROSIS University of Pavia
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dataset, both of which can be downloaded from [40].

4.6.1 Methods compared

Table 4.1: Compared methods and their corresponding algorithms: CM – cone model; SM
– sparse model; CSM – cone-based sparse model; JCM – joint cone model; JSM
– joint sparse model; C-JSM – cone-based joint sparse model.

Meth. CM SM CSM JCM JSM C-JSM
Alg. NNLS OMP NN-OMP FC-NNLS SOMP NN-SOMP

We evaluate the proposed C-JSM (4.6) and compare it with five baseline meth-

ods: the sparse model (SM) (2.2), the joint sparse model (JSM) (2.6), the cone

model (CM) (4.2), the cone-based sparse model (CSM) (4.3) and the joint cone

model (JCM) (4.5). Corresponding algorithms used to learn these models are listed

in Table 4.1: the proposed NN-SOMP (Algorithm 5), OMP (Algorithm 2), SOMP

(Algorithm 4), NNLS [53], NN-OMP (Algorithm 3) and FC-NNLS (Algorithm 6),

respectively.

From the point of view of models, these six methods can be grouped into two

types of models: single models (CM, SM, and CSM) and joint models (JCM, JSM

and C-JSM). The single models label a test HSI pixel by considering only the test

pixel, i.e. a vector x in (2.2), (4.2) and (4.3), whereas the joint models label a central

test HSI pixel xc by considering a local window around it, i.e. a matrix X in (2.6),

(4.5) and (4.6). The labelling by the single models is determined by (2.4), whereas

the labelling by the joint models is determined by (2.8). The compared methods

can also be grouped according to their constraints on non-negativity and sparsity:

CM and JCM are only with the non-negativity constraint; SM and JSM are only

with the sparsity constraint; and CSM and C-JSM both consider the non-negativity

and sparsity simultaneously. Details of the relationships among the methods, algo-

rithms, models and constraints are presented in the confusion matrices in Table 4.2

and Table 4.3.

4.6.2 Performance measures

We evaluate the performances of the compared methods by using three standard

measures for HSI classification: the overall accuracy (OA), the average accuracy



4.6. Experimental studies 85

Table 4.2: Compared methods and their groups.

Non-negative Sparse Non-negative + Sparse
Single model CM SM CSM

Joint model JCM JSM C-JSM

Table 4.3: Compared algorithms and their groups.

Non-negative Sparse Non-negative + Sparse
Single model NNLS OMP NN-OMP

Joint model FC-NNLS SOMP NN-SOMP

(AA) and kappa coefficient κ [41], which are widely used by the remote sensing

community.

The OA, AA and κ are defined as follows:

OA =
Ncorr

Ntest
, AA =

1
M

M

∑
m=1

Ncorr
m

Nclass
m

and κ =
OA− pe

1− pe
. (4.19)

In (4.19), the overall accuracy (OA) is defined as the ratio of the number of the

correctly-classified test pixels Ncorr over the total number of test pixels Ntest . The

average accuracy (AA) is defined as the average value of M accuracies of the M

individual classes, where Ncorr
m is the total number of test pixels of class m, and

Nclass
m is the number of the correctly-classified test pixels of class m. The κ coef-

ficients measures the percentage of classified test pixels corrected by the number

of agreements that would be expected purely by change [41]. In (4.19), we have

pe = ∑
M
m=1(Fm×F t

m), where Fm is the ratio of data assigned to class m by the clas-

sifier and F t
m is the ratio of data that belong to class m.

4.6.3 Parameter settings

Among the compared methods, in single models, only one unknown parameter

needs to be determined, i.e. the sparsity level L; in joint models, two unknown

parameters are involved, the sparsity level L and the window size T , except for FC-

NNLS in which only the window size T is involved. The values of the parameters

for all methods are determined via the leave-one-out cross validation (LOOCV) in

the training phase.
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4.6.4 Real dataset: Indian Pines
Table 4.4: The Indian Pines dataset: Ground-truth label, class material, training set and test

set. We use around (9% of all pixels) for training and the rest for testing.

Class Material Training Test
1 Alfalfa 5 49
2 Corn-notill 132 1302
3 Corn-mintill 77 757
4 Corn 22 212
5 Grass-pasture 46 451
6 Grass-trees 69 678
7 Grass-pasture-mowed 3 23
8 Hay-windrowed 45 444
9 Oats 2 18

10 Soybean-notill 89 879
11 Soybean-mintill 227 2241
12 Soybean-clean 57 557
13 Wheat 20 192
14 Woods 119 1175
15 Buildings-grass-trees-drives 35 345
16 Stone-steel-towers 9 86

Total 957 9409

The AVIRIS Indian Pines dataset consists of 145×145 pixels from 200 spec-

tral bands after removing the water absorption bands. There are sixteen classes of

materials in the scene. For each of the 16 ground-truth classes, we randomly choose

about 9% of labelled pixels as the dictionary, i.e. D ∈ R200×957. The rest pixels are

used for testing, i.e. Xtest ∈ R200×9409. Similar experiment settings can also be

found in [4, 35, 36, 37] and [44, 45, 25, 27, 28, 29] with different training/test

samples and accordingly non-identical performance.

A summary of the numbers of training and test pixels for individual classes is

given in Table 4.4. The false colour of the image averaging through all the bands, the

16 ground-truth classes, the training set and the test set are shown in Figures 4.2(a)-

4.2(d).

For a more reliable evaluation, we perform the experiments by 10 times of

random training/test splits. For illustration, the optimal parameters obtained by

LOOCV of one random training/test split are listed in Table 4.5. Note that the

NNLS has no parameter to be tuned and hence no training process is required. For

the OMP and NN-OMP, the tuned value of sparsity level L is 5; for the FC-NNLS,

the tuned value of window size T is 25 (5×5); for the SOMP, the values of L and
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T are tuned to be 30 and 81 (9×9), respectively; and for the proposed NN-SOMP,

the value of L and T are tuned to be 15 and 25 (5×5), respectively.

Table 4.5: Settings of parameters for the Indian Pines dataset in one random training/test
split. The values of parameters are determined by LOOCV. “NA” stands for “not
applicable”.

NNLS OMP NN-OMP FC-NNLS SOMP NN-SOMP
L NA 5 5 NA 30 15
T NA NA NA 25 81 25

4.6.4.1 Classification performances

Figure 4.1: Boxplots of the overall classification accuracies (%) of 3 single models (CM
(NNLS), SM (OMP), CSM (NN-OMP)) and 3 joint models (JCM (FC-NNLS),
JSM (SOMP), C-JSM (NN-SOMP)) on the Indian Pines dataset.

The 10 overall classification OAs of all six compared methods are recorded and

box-plotted in Figure 4.1. For illustration purposes, we also randomly choose one

of the 10 classification results and list the OA, AA and κ coefficient of all methods

in Table 4.6, and depict the classification maps of the corresponding methods in

Figure 4.2(e)-4.2(j), respectively.

From Figure 4.1, we can observe two patterns. Firstly, we can observe that

the proposed C-JSM (NN-SOMP) outperforms the other two joint models, JCM

(FC-NNLS) and JSM (SOMP). Also, among the three single models, CSM (NN-

OMP) performs the best, superior to CM (NNLS) and SM (OMP). These indicate

that incorporating the non-negativity constraints into HSI classification can help to

improve the performance of the sparse representation-based classifiers. Secondly,
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the proposed C-JSM (NN-SOMP) performs the best among all the compared meth-

ods. It indicates that combining the non-negativity constraints and the joint sparse

representation can improve the classification performance the most, compared with

the representation with any single constraint, i.e. joint representation, sparse repre-

sentation or non-negative representation.

Table 4.6: The Indian Pines dataset: Ground-truth label and the classification accuracies
(%) obtained by CM (NNLS), SM (OMP), CSM (NN-OMP), JCM (FC-NNLS),
JSM (SOMP) and C-JSM (NN-SOMP), respectively. The best performance is
indicated in bold.

Class CM SM CSM JCM JSM C-JSM
1 75.51 53.06 51.02 83.67 71.43 85.71
2 72.66 62.98 62.83 83.26 94.24 93.86
3 37.65 62.62 63.14 56.67 88.90 92.87
4 48.11 40.57 41.51 79.25 92.45 88.21
5 85.81 94.90 94.68 94.24 93.79 98.00
6 96.31 93.36 93.22 99.71 98.97 98.38
7 4.35 78.26 78.26 0 69.57 100
8 98.20 95.05 95.05 100 99.77 99.77
9 22.22 55.56 55.56 0 0 72.22

10 36.63 72.47 73.49 42.78 80.55 95.45
11 89.29 74.16 74.03 99.06 95.98 96.21
12 61.04 54.76 54.04 84.56 91.38 88.51
13 98.96 99.48 91.67 99.48 99.48 83.33
14 98.98 92.68 92.34 99.74 98.89 97.70
15 44.64 46.38 47.83 58.84 99.71 94.20
16 87.21 88.37 88.37 100 96.51 89.53

OA 75.42 74.79 74.83 84.88 93.79 95.19
AA 66.10 72.79 72.80 73.83 84.06 92.64

κ 0.714 0.713 0.713 0.824 0.929 0.945

The one time classification results listed in Table 4.6 also show that the pro-

posed C-JSM (NN-SOMP) outperforms other methods, which is aligned with our

findings from the 10 times repeated random splits (Figure 4.1). We also notice two

special cases, with class 7 and class 9, that the numbers of training samples are ex-

tremely small, i.e. 3 for class 7 and 2 for class 9, as listed in Table 4.4. All methods

except for C-JSM (NN-SOMP) do not perform very well on classifying these two

tiny classes of HSI pixels. For the single models, i.e. CM (NNLS), SM (OMP) and

CSM (NN-OMP), the bad performances may be due to the lack of training sam-
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ples. For the joint models of JCM (FC-NNLS) and JSM (SOMP), the performances

are even worse. Particularly in class 9, the classification accuracies of both models

are 0. This is because class 7 and class 9 cover narrow regions in the Indian Pines

HSIs (as shown in Figure 4.2). The label of the central test pixel can be dominated

by classes adjacent and thus misclassified. However, the proposed C-JSM (NN-

SOMP) relives this spatial-over-smoothness caused by the local window strategy

and outperforms the other five methods with substantial improvements: achieving

100% against the second best 78.26% for class 7 and achieving 72.22% against the

second best 55.56% for class 9.

4.6.4.2 Effects of parameters

We further investigate the effects of tuning parameters on the performance of our

proposed C-JSM (NN-SOMP). A sweep of the parameter space of sparsity level L

and window size T is performed during the training phase. The sparse level L is

tuned from 5 to 80 and the window size T ranges from 1 to 289 (17× 17). The

LOOCV result of C-JSM (NN-SOMP) is depicted in Figure 4.3(a). Within the

same parameter space (L and T ), we also show the LOOCV result of JSM (SOMP)

in Figure 4.3(b) for comparison.

As shown in Figure 4.3(a) and Figure 4.3(b), we can easily see that the surface

plot of OAs for C-JSM (NN-SOMP) is much smoother than that of JSM (SOMP).

It implies that C-JSM (NN-SOMP) is more stable than that of JSM (SOMP) in

terms of the performance sensitivity to L and T . More specifically, we split the

3-D view of the OA surface of C-JSM (NN-SOMP) into two 2-D views, which are

shown in Figure 4.4(a) and Figure 4.4(b). It can be observed that the window size T

dominates the performance of C-JSM whereas the effect of sparsity level L on the

classification performance is not as sensitive as T .

To further demonstrate the effect of sparsity level L, we perform classification

on one of the 10 randomly split test dataset, by fixing the window size T to be

25 (5× 5) as tuned by LOOCV. This test dataset is the same as the one used in

Table 4.6 and Figure 4.2. We set the level of sparsity L from 5 to 80 and depict the

obtained OAs in Figure 4.5(a). Accordingly, we record the real sparsity L′ obtained
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(a)
1#. alfalfa
2. corn-notill
3. corn- mintill
4. corn
5. grass-pasture
6. grass-trees
7. #grass-pasture-mowed
8. hay-windrowed
9. oats
10. soybean-notill
11. soybean-montill
12. soybean-clean
13. wheat
14. woods
15. buildings-grass-trees-drives
16. stone-steel-towers

(b)

(c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 4.2: The Indian Pines dataset: (a) mean image shown in the false colour; (b) ground-
truth labels; (c) training set (9% pixels randomly chosen); (d) test set. Classi-
fication maps of (e) CM (NNLS), OA = 75.42; (f) SM (OMP), OA = 74.79;
(g) CSM (NN-OMP), OA = 74.83; (h) JCM (FC-NNLS), OA = 84.88; (i) JSM
(SOMP), OA = 93.79; (j) C-JSM (NN-SOMP), OA = 95.19.
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Figure 4.3: Overall classification accuracies over window size T and sparsity level L for
(a) the proposed C-JSM (NN-SOMP) and (b) the JSM (SOMP) on the Indian
Pines training dataset via LOOCV.
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Figure 4.4: Effects of the sparsity L and window size T on the performance of the proposed
C-JSM corresponding to Figure 4.3(a).

in different settings of L. Since different test HSI pixels have different real sparsities

L′ under a defined L, we record and box-plot them in Figure 4.5(b).

It can be seen that, although the best OA occurs at L = 7 when T is fixed to

be 25, the performance only changes slightly with the defined sparsity L, where the

OA changes only from 95.11% to 95.21%. Therefore the OA = 95.19% of C-JSM

(NN-SOMP) listed in Table 4.6 with L = 5 is in the range of the stable performance,

where the parameters are tuned by LOOCV and the testing results are reliable.

On the other hand, we can observe that the obtained sparsity L′ ranges from 1

to 6, and the median value of them is around 2 no matter what values the defined

sparsity L are. Furthermore, the obtained maximal sparsity L′ converges to 6 when

the defined sparsity L is over 6, as shown in Figure 4.5(b). This explains why the

performance of C-JSM (NN-SOMP) is not so sensitive to the setting of sparsity L.
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Figure 4.5: Window size T = 5 on the test dataset of Indian Pines: (a) classification per-
formance (overall accuracies) with sparsity level L; (b) the real sparsity level L′

obtained from the test results with sparsity level L.

However, the setting of sparsity L still gives some room for each test HSI pixel to

adaptively choose their optimal sparsity level and hence can achieve a stable and

reliable classification performance.

4.6.4.3 Sparseness and non-negativity

We next demonstrate the effects of sparsity and non-negativity on all the compared

methods by adopting a similar presentation in [61] and depicting the results in

Figs. 4.7-4.8. The classification results of all methods are obtained in parameter

settings listed in Table 4.5. For comparative purposes, we randomly select two test

HSI pixels which belong to class 10 and are located in (48, 31) and (53, 88): one is

correctly classified by all six methods and the other is only correctly classified by

C-JSM (NN-SOMP).

For pixel (48, 31), the associated class-wise residuals obtained by all six meth-

ods are shown in Figure 4.6. We can observe that the pixel is correctly classified

by all six methods into class 10, which has the minimum residuals and is indeed

the ground-truth class. Among the six methods, CSM in Figure 4.6(c) and C-JSM

in Figure 4.6(f), both of which contains both sparse and non-negative constraints,

perform the best with the true class (with the smallest residual) and the most stable

relative to other classes (with all large residuals).

To investigate further, we plot the obtained coefficients of this pixel in Fig-
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Figure 4.6: Normalised residuals for each class for the pixel located at (48, 31) by (a) CM,
(b) SM, (c) CSM, (d) JCM, (e) JSM and (f) C-JSM. The ground-truth label is
class 10. The test pixel is correctly identified by all six methods.
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Figure 4.7: Estimated coefficients for the pixel located at (48, 31) by (a) CM, (b) SM, (c)
CSM, (d) JCM, (e) JSM and (f) C-JSM. The ground-truth label is class 10. The
test pixel is correctly identified by all six methods.
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ure 4.7. Because for the single models (CM, SM and CSM) there is only one coef-

ficient vector for the test HSI pixel x, there is only one colour shown in the plots of

coefficients; whereas for the joint models (JCM, JSM and C-JSM), the label of the

central test pixel xc is jointly determined by its local window X, hence we plot all

the coefficient vectors of the pixels in the window in different colours. In addition,

since the test HSI pixel actually belongs to class 10, we expect to see that the co-

efficients mainly lie within the sub-dictionary of class 10, where the atom indices

range from 402 to 490.

From Figure 4.7, we can observe that, although all methods can identify the

correct class 10 for pixel (48, 31), the coefficient vectors obtained by different meth-

ods are remarkably different, and again, the most neat (sparse) performances are

with C-JSM (Figure 4.7(f)) and CSM (Figure 4.7(c)). This also indicates that incor-

porating the non-negativity constraint into the sparse model is beneficial, which can

produce a more sparse representation.

However, the sparse and non-negative constraints are not the only two factors

that may ensure correct label identification for HSIs. As illustrated in Figure 4.8

and Figure 4.9, for a test HSI pixel located in (53, 88), only the proposed C-JSM

identifies its label as class 10 correctly (Figure 4.8(f)). In C-JSM, the non-zero

elements of the coefficients vectors of all pixels within the neighbourhood window

mainly lie in class 10 and the label of the central test pixel is jointly determined

by the minimal residuals, which belongs to class 10 (Figure 4.9(f). In contrast,

although the coefficient vector obtained by CSM in Figure 4.9(c) is non-negative

and most sparse, it lies in class 11, a wrong class (Figure 4.8(c)). This illustrates

that the joint representation of neighbouring pixels on top of the sparsity and non-

negativity can positively contribute to the classification performance for HSIs, and

hence the proposed C-JSM outperforms others.

4.6.5 Real dataset: University of Pavia

The ROSIS University of Pavia dataset consists of 610×340 pixels from 103 spec-

tral bands, with nine ground-truth labels. We randomly choose only 1% of labelled

samples from each class for constructing the dictionary, i.e. D ∈ R103×432, and use



4.6. Experimental studies 95

1 2 3 4 5 6 7 8 910111213141516
Class

0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 r
es

id
ua

ls

(a)

1 2 3 4 5 6 7 8 910111213141516
Class

0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 r
es

id
ua

ls

(b)

1 2 3 4 5 6 7 8 910111213141516
Class

0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 r
es

id
ua

ls

(c)

1 2 3 4 5 6 7 8 910111213141516
Class

0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 r
es

id
ua

ls

(d)

1 2 3 4 5 6 7 8 910111213141516
Class

0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 r
es

id
ua

ls

(e)

1 2 3 4 5 6 7 8 910111213141516
Class

0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 r
es

id
ua

ls

(f)

Figure 4.8: Normalised residuals for each class for the pixel located at (53, 88) by (a) CM,
(b) SM, (c) CSM, (d) JCM, (e) JSM and (f) C-JSM. The ground-truth label is
class 10. The test pixel is only correctly identified by our proposed C-JSM.
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Figure 4.9: Estimated coefficients for the pixel located at (53, 88) by (a) CM, (b) SM, (c)
CSM, (d) JCM, (e) JSM and (f) C-JSM. The ground-truth label is class 10. The
test pixel is only correctly identified by our proposed C-JSM.
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the rest HSI pixels for testing, i.e. Xtest ∈ R103×42344. A summary of this dataset

is given in Table 4.7. Again, a false colour image averaging across all spectral

bands, the nine ground-truth classes, the training set and the test set are shown in

Figs. 4.11(a)-4.11(d).

Table 4.7: The Pavia University dataset: Ground-truth labels, class material, the training
set and the test set.

Class materials Training Test
1 Asphalt 67 6564
2 Meadows 187 18462
3 Gravel 21 2078
4 Trees 31 3033
5 Painted metal sheets 14 1331
6 Bare soil 51 4978
7 Bitumen 14 1316
8 Self-blocking bricks 37 3645
9 Shadows 10 937

Total 432 42344

Table 4.8: Settings of parameters for the University of Pavia dataset in one random train-
ing/test split. The values parameters are determined by LOOCV. “NA” stands
for ”not applicable”.

NNLS OMP NN-OMP FC-NNLS SOMP NN-SOMP
L NA 5 5 NA 10 3
T NA NA NA 9 49 81

For a reliable evaluation, the experiments are also performed by 10 times ran-

dom train/test splits, as with the Indian Pines dataset in section 4.6.4. For illustra-

tion, the optimal values of parameters tuned by LOOCV using one time train/test

random spilt are listed in Table 4.8. The OAs of all six compared methods are box-

plotted in Figure 4.10; we also randomly select one of 10 classification results and

illustrate them in Table 4.9 and Figure 4.11(e)-4.11(j).

Once again, we can observe that the proposed C-JSM (NN-SOMP) outper-

forms other methods. We also note that in Figure 4.10 the performance of CM

(NNLS) is better than that of SM (OMP) and of CSM (NN-OMP), a pattern differ-

ent from the results shown for the Indian Pines dataset. As we have analysed in sec-

tion 4.6.4.3, sparse and non-negative representations only may still be insufficient to
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Figure 4.10: Boxplots of the overall classification accuracies (%) of CM (NNLS), SM
(OMP), CSM (NN-OMP), JCM (FC-NNLS), JSM (SOMP) and C-JSM (NN-
SOMP) on the University of Pavia dataset.

Table 4.9: The University of Pavia dataset: Ground-truth label and the classification accu-
racies (%) obtained by CM (NNLS), SM (OMP), CSM (NN-OMP), JCM (FC-
NNLS), JSM (SOMP) and C-JSM (NN-SOMP), respectively. The best perfor-
mance is indicated in bold.

Class CM SM CSM JCM JSM C-JSM
1 85.65 70.75 70.81 98.92 57.46 59.83
2 93.97 92.82 92.82 99.40 98.14 98.55
3 62.70 45.62 45.62 69.30 70.12 77.48
4 87.97 77.28 77.05 93.14 80.25 83.65
5 99.77 99.25 99.25 100.00 100.00 100.00
6 58.00 47.91 47.89 62.82 70.65 80.63
7 42.33 77.43 77.43 28.12 92.63 95.74
8 21.10 74.29 74.29 7.05 93.94 95.34
9 87.41 88.26 89.97 92.74 72.89 31.06

OA 78.65 78.72 78.75 82.81 84.91 86.53
AA 70.99 74.85 75.01 72.39 81.79 80.25

κ 0.712 0.714 0.714 0.765 0.798 0.820

produce a stable and correct classification. On the other hand, C-JSM incorporates

the sparse and non-negativity constraints into the joint modelling of neighbouring

pixels, and hence is capable of providing a more sparse representation and a more

stable classification performance.

4.6.6 Running time comparison

We present the time costs for executing the compared algorithms. All experiments

are performed by a Intel i7-3370 CPU using single thread on the platform of MAT-

LAB R2016b. Table 4.10 shows the running time of each method for the Indian
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Figure 4.11: The University of Pavia dataset: (a) mean image shown in the false colour;
(b) ground-truth labels; (c) training set (1% pixels randomly chosen); (d) test
set. Classification maps of (e) CM (NNLS), OA = 78.65; (f) SM (OMP), OA =
78.72; (g) CSM (NN-OMP), OA = 78.75; (h) JCM (FC-NNLS), OA = 82.81;
(i) JSM (SOMP), OA = 84.91; (j) C-JSM (NN-SOMP), OA = 86.53.
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Pines dataset. The time is recorded as second per HSI pixel.

Table 4.10: Running time (sec/pixel) spent on testing the Indian Pines dataset, settings of
which are shown in Table 4.4 and Table 4.5 for 9409 test pixels.

NNLS OMP NN-OMP FC-NNLS SOMP NN-SOMP
Time 0.0058 0.0175 0.0017 0.1195 0.0737 0.0392

First, we can observe that, among the single models, NN-OMP takes less time

than NNLS and OMP. In fact the obtained coefficients of NN-OMP are more sparse

than the others, as indicated by Figure 4.7(a)-4.7(c) and Figure 4.9(a)-4.9(c). It

implies that the computational burden is lessened by NN-OMP. Secondly, among

the joint models, our proposed NN-SOMP is more time-efficient than FC-NNLS

and SOMP. It is also because the obtained coefficients from NN-SOMP are more

sparse than the others, as indicated by Figure 4.7(d)-4.7(f) and Figure 4.9(d)-4.9(f),

and hence the computational costs are reduced.

4.6.7 Further remarks

It is worth noting that several literatures have studied the relationship between the

sparsity and non-negativity [55, 62]. It has been shown that the non-negative least

squares (NNLS) may be able to produce sufficient sparse recovery, without further

imposing the sparse regularisations. However, we remark that this does not imply

that the performances of NNLS and the sparsely regularised NNLS are the same,

particular for the classification problems that are the focus of this chapter. That

is, the distinct classification performances of the compared methods of different

constraints in this chapter do not conflict the existing findings in [55, 62].

4.7 Conclusion and future work
To sum up, by considering the non-negativity of coefficients for the jointly sparse

representation of HSI pixels, a new model called cone-based joint sparse model (J-

CSM) has been proposed in this chapter. To solve the C-JSM, a new algorithm,

called non-negative simultaneous orthogonal matching pursuit (NN-SOMP), has

also been proposed. The C-JSM incorporates the non-negativity of coefficients, as

well as the spatial coherence of the HSI pixels, into one model, yielding a more
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sparse and stable representation for the test HSI pixel whose label is jointly deter-

mined by its neighbouring pixels. As a result, the classification performance of the

JSM is enhanced by the proposed C-JSM.

We notice that the proposed C-JSM may not completely solve the problems

that are caused by the local window scheme. Specifically, the square shape of the

window adopted in this chapter indeed introduces bias into the joint models and

may cause spatial-over-smoothness. That is, the classification of the HSI pixel may

not have a promising edge-preserving performance. As aforementioned in the intro-

duction (section 4.1), several literatures have studied the improvement of the JSM

by adopting size/shape adaptive windows [25, 27, 28, 29]. The proposed C-JSM can

also be collaboratively conducted with the window adaptation strategies for enhanc-

ing the classification performance. On the other hand, it is also desired to exploit

the non-linearity representation, such as kernelisation [44, 45], of the HSIs together

with the non-negativity constraints for the joint sparse models. These two directions

are our future research on the proposed C-JSM.

4.8 Appendix
The FC-NNLS algorithm is summarised in Algorithm 6.
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Algorithm 6 The FC-NNLS algorithm [58] to solve (4.5).

Input: • Dictionary D = [d1, . . . ,dN ] ∈ RB×N .

• A test window X = [x1, . . . ,xT ] ∈ RB×T .

Output: An estimated non-negative coefficient matrix A∗ = [α∗nt ] ∈
RN×T , where n = 1, . . . ,N, and t = 1, . . . ,T .

Initialisation:

• Initialise the columns of solution matrix: M := {1, . . . ,T} and the rows of
the solution matrix N := {1, . . . ,N}.

• Pre-compute constant parts of the pseudo-inverse, e.g., W = [wnn] = DT D
and Q = [qnt ] = DT X.

• Compute
Â = argmin

A
‖X−DA‖F , (4.20)

where Â is the unconstrained estimate for A and Â = [αnt ] ∈ RN×T .

• Initialise the set of passive sets: P = [pnt ], where pnt = 1 if αnt > 0 and 0
otherwise.

• Find the set of columns that yet to be optimised: F = {t ∈M : ∑n pnt 6=N}.
• Compute the overwriting solution:

αnt ←
{

αnt if pnt = 1
0, otherwise. (4.21)

while F 6=∅ do

(1) PF = [p·F ] ∈ RN×|F |, QF = [q·F ] ∈ RN×|F |;

(2) Compute minAF
‖XF −DAF‖F using the CSSLS (Algorithm 7) and the

passive set PF ;

(3) Put indices of columns with negative variables into set H = {t ∈ F :
minn∈N {αnt}< 0}.

while H 6=∅ do
∀i ∈H , select the variables to move out of the passive set P;
PH = [p·H ] ∈ RN×|H|, QH = [q·H ] ∈ RN×|H|;
Compute minAH

‖XH −DAH ‖F using the CSSLS (Algorithm 7) and
the passive set PH ;

H = {t ∈F : minn∈N {αnt}< 0}.
end while
V = [vnt ] = QF −WAF , where AF = [α∗·F ].
Record the sets of columns whose solutions are optimal: Z = {t ∈ F :

∑n vnt(1−PF )nt = 0}.
Remove the optimised columns Z from F : F ←F \Z .

pnt =

{
1, if n = argmaxn{vnt(1−PF )nt},∀t ∈F

pnt , otherwise

}
.

end while
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Algorithm 7 The CSSLS algorithm [58].

Input: W ∈ RN×N ; Q ∈ RN×K; P ∈ RN×K .
Output: A.

M := {1, . . . ,K}; N := {1, . . . ,N}; P = [p1, . . . ,pK].
Find the set of S unique columns in P: U = [u1, . . . ,uS] = unique{P}.
Find the columns in A with identical passive sets g j = {t ∈M : pt = u j}.
for j = 1, . . . ,S do

Au j,g j = W−1
u j,u j

Qu j,g j .
end for
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Chapter 5

HSI Target Detection: Matched

Subspace Detector with Interaction

Effects (MSDinter)

5.1 Introduction

Hyperpsectral target detection aims to detect small objects from the background of

a hyperspectral image (HSI) by the use of known target spectra. The number of

target pixels is relatively very small compared with the total number of pixels in an

HSI, e.g. only a few target pixels in millions of pixels. Typical applications of the

HSI target detection include the detection of specific terrain features, minerals and

crops for resource management, the detection of military vehicles and aeroplanes

for defence, etc. Comprehensive overviews and gentle tutorials of the HSI target

detection can be found in [13, 14, 15, 16].

Target detection algorithms are typically derived from the binary hypothesis

model, which consists of two competing hypotheses: the H0 (absence of target)

hypothesis and the H1 (presence of target) hypothesis. The likelihood ratio or the

generalised likelihood ratio (GLR) of functions of target and background can be

used to construct a detector.

Some well-known detectors have been successfully applied to the HSI target

detection, including the matched subspace detector (MSD) [7], the orthogonal sub-
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space projection detector (OSP) [18], the spectral matched filter (SMF) [63, 64],

the adaptive coherence/cosine detectors (ACEs) [21, 22] and the constrained en-

ergy minimization (CEM) [19]. Kwon et al. [65] also extend the MSD, OSP,

SMF and ACEs to their corresponding kernel versions based on the kernel-based

learning theory. Several methods have been developed based on the CEM specif-

ically [66, 67, 68]. Yang et al. [66] utilise an inequality constraint on the output

detector to solve the spectral variability problems, instead of the equal constraint

on the CEM. A hierarchical structure of CEM [67] is proposed, which suppresses

the backgrounds while preserving the target spectra to boost the performance of

CEM. In a very recent work, Yang et al. [68] use total variation to constrain the spa-

tial smoothness and show a promising detection performance when only one single

target spectrum is available for training.

Sparse representation (SR)-based algorithms have also been applied to the HSI

target detection [23, 24, 69, 70, 71, 72]. Chen et al. [23] propose a sparsity-based

target detection (STD), linearly modelling a test pixel by the training background

samples and the training target samples. Zhang et al. [24] propose an SR-based

binary hypothesis model (SRBBH), which is in the similar fashion of the binary

hypothesis model of the MSD. The kernel versions of the STD and SRBBH can be

found in [69] and [70], respectively. Detailed reviews of SR algorithms for the HSI

classification and detection can be found in [71, 72].

The assumption of these well-known detectors [7, 18, 21, 22, 23, 24, 63, 64]

is the linear mixing model (LMM) [5]. The LMM assumes that the spectrum of a

mixed pixel can be represented as a linear combination of component spectra (end-

members). The weight (abundance) of each endmember spectrum is proportional to

the fraction of the pixel area covered by the endmember.

For the HSI target detection, the underlying physical assumption of the LMM

is that each incident photon interacts with one earth surface component only and

the reflected spectra do not mix before entering the sensor. Therefore, adopting the

LMM in [7, 18, 21, 22, 23, 24, 63, 64] assumes that the target spectral signature

in the scene remains linearly mixed with the surrounding background spectra after
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entering the sensor. However this is not true in practice, since the target spectral

signatures captured by the hyperspectral sensor can appear significantly different

from the true underlying spectrum. The exhibited target spectrum may be contam-

inated by the interaction effect of its true underlying spectrum and its surrounding

environments. The reasons can be, but not limited to, that the sensor picks up the

signal from multiple scattering of photons and as a result, the abundance vector of

targets will be dependent on the characteristics of their surrounding background.

To cope with multiple scattering problems and to model interaction effects,

the bilinear mixing model (BMM) has been proposed in the hyperspectral analysis,

particularly for the unmixing applications [73, 74, 75, 76, 77, 78]. Nascimento et

al. [73] and Fan et al. [74] address the HSI unmixing problem by taking into ac-

count of the second-order scattering interaction between endmembers, referred to

as “Nascimento model” and “Fan model” hereafter, respectively. The two models

are distinguished by different sum-to-one constraints imposed on the abundances.

Halimi et al. [75] propose a generalised bilinear model (GBM) to unmix an HSI

pixel and solve the problem by a hierarchical Bayesian algorithm. Practical analy-

sis [76, 77, 78] also demonstrate impacts of different orders of interactions in real

HSI mixing problems, such as tree cover estimates in orchards. It shows that the

second-order interaction has the most significant effect of nonlinear mixing and the

higher order interactions can be neglected. On top of the BMM, Heylen et al. [79]

derive a multilinear mixing model (MLM) which extends the BMM to an infinite

orders of interactions. Experimental studies in [73, 74, 75, 76, 77, 78, 79] have been

carried out and shown superior performance of the above-mentioned nonlinear mix-

ing models to conventional linear mixing models.

In this chapter, to account for the effect of interaction between the target and

their surrounding background on the target spectral signature captured by the sen-

sor, we propose to introduce interaction effects into the models for the HSI target

detection. Specifically, we propose a new model, termed the matched subspace de-

tector with interaction effects (MSDinter), by introducing the terms that describe

the interaction effects between the target and its surrounding background. To our
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knowledge, such model is the first one proposed for the HSI target detection. The

proposed MSDinter model is able to capture better the target-background mixing

effects within pixel spectrum and therefore can improve the performance of target

detection.

5.2 Matched Subspace Detector (MSD)

The matched subspace detector (MSD) [7] is a popular algorithm which explores

the idea of the LMM binary hypothesis model (2.10). The task is to determine if a

test pixel x contains materials characterised by exemplar target spectral signatures,

i.e. whether the test pixel can be represented by a linear combination of target spec-

tral signatures and background spectral signatures. In the MSD, the target spectral

signatures and background spectral signatures are represented by the bases of a tar-

get subspace and the bases of a background subspace, respectively. The underlying

assumption of the MSD in the HSI target detection is that each basis vector of these

subspaces represents an endmember, which follows the assumption in the LMM

(2.9).

When a target pixel presents, the spectrum of an observed pixel x ∈ Rp can be

decomposed into two components under the LMM assumption, as

x = Tγ +Bβ +n1, (5.1)

where T = [t1, . . . , trt ] is a p× rt matrix representing the target subspace, and B =

[b1, . . . ,brb] is a p× rb matrix representing the background subspace; T is derived

from a training target matrix MT ∈ Rp×Nt whose columns are the Nt target spectra

MT (·,nt) for nt = 1, . . . ,Nt , respectively; B is derived from a training background

matrix MB ∈ Rp×Nb whose columns are the Nb background spectra MB(·,nb) for

nb = 1, . . . ,Nb, respectively; γ and β are the corresponding abundance vectors of

the subspace T and the subspace B, respectively; and n1 is the additive Gaussian

white noise.

When the target is absent, the spectrum of the observed pixel is adequately
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described by

x = Bβ +n0, (5.2)

which is a reduced order model. Therefore, to decide whether a given target is

present or not, we can fit the full model and the reduced model to the test pixel

spectrum and check which model provides a better fitting according to certain cri-

terion. Formulated as a binary hypothesis test, the detection problem becomes a

decision between the two competing hypotheses H0 and H1 and has been shown

in (2.10),

H0 : x = Bβ +n0, target absent,

H1 : x = Tγ +Bβ +n1, target present.

Model (2.10) is defined as the MSD model. Using the generalised likelihood

ratio test (GLRT) [15], the output detector of the MSD model is given by (2.11)

DMSD(x) =
xT P⊥B x
xT P⊥V x

H1
≷
H0

ν ,

where P⊥B = I−PB with PB = B(BT B)−1BT being the projection matrix onto the

column space of B; and P⊥V = I−PV with PV = V(VT V)−1VT being the projection

matrix onto the column space of V, where V is a p× (rt + rb) concatenated matrix

of T and B, i.e. V = [T,B].

As explained in section 2.3.1.1, the value of DMSD(x) is compared to a thresh-

old ν to make a final decision of which hypothesis should be rejected for test pixel

x. In general, any set of orthogonal basis vectors that spans the corresponding sub-

space can be used as the column vectors of B and T. In this chapter, the significant

eigenvectors (normalised by the square roots of their corresponding eigenvalues)

of the background and target covariance matrices Cb and Ct are used to create the

column vectors of B and T, respectively.
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5.3 The Matched Subspace Detector with interaction

effects (MSDinter)

The linear model (5.1) in the MSD assumes that the abundance vector γ of the target

subspace T in composing a target pixel x will not change if the characteristics of

the background change. Specifically, the effect of one-unit change of T on x is the

marginal effect of targets T on x. The marginal effect is obtained by differentiating

the conditional expected value of x with respect to T, i.e.

∂E[x|T,B]
∂T

=


Γ1

Γ2
...

Γrt


(prt)×p

, (5.3)

where

Γi =


γi 0 . . . 0

0 γi . . . 0
...

... . . . ...

0 0 . . . γi


p×p

= γiIp, i = 1, . . . ,rt , (5.4)

and Ip denotes the p× p identity matrix. The details of the derivation are shown in

section 5.6 of Appendix.

That is, [Γ1, . . . ,Γrt ]
T ∈ R(prt)×p in (5.3) is the change of expected value of x

induced by one-unit change of T, which includes only the effect of T on x, ignoring

the effect of B on x. In other words, no matter whether or not background spectra

present in the subpixel x (i.e. β = 0 or β 6= 0), the marginal effect of T on the test

pixel x does not depend on the values of B.

However, in real applications of the HSI target detection, an observed HSI

pixel will also receive multiple scattering of photons between its material and its

neighbourhood materials, which the LMM cannot capture. The BMM has been in-

troduced in the hyperspectral unmixing problems to accounts for the presence of

multiple photon interactions [73, 74, 75, 76, 77, 78]. However, the interaction ef-
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fects have not been studied in the hyperspectral target detection. To this end, we

hypothesise that there are interaction effects of background spectra and the target

spectrum on the composition of the spectrum of an observed target pixel. There-

fore we introduce interaction terms into the LMM-based subspace model (2.9) and

propose a new method called matched subspace detector with interaction effects

(shortened as MSDinter).

5.3.1 The bilinear mixing model

As aforementioned, LMM (2.9) cannot deal with multiple scattering that often oc-

curs in the real applications. To this end, the bilinear model (BMM) [73, 74, 75, 76,

77, 78] is proposed to model interaction effects of each pair of endmembers, so as

to take account of the multiple scattering phenomena. A typical BMM called “Fan

model” [74] is given by

x = Ma+
K−1

∑
i=1

K

∑
j=i+1

αi, jmi�m j +n, (5.5)

where M is a p×K matrix whose columns are the K endmember spectra mk ∈ Rp

for k = 1, . . . ,K; � denotes the element-wise product operation between two vec-

tors. It is defined as that for two vectors, mi = [mi,1,mi,2, . . . ,mi,p]
T and m j =

[m j,1,m j,2, . . . ,m j,p]
T of the same length, in this case p×1, the element-wise prod-

uct is still a vector of the same dimension as the operands with elements given by

(mi�m j)l = mi,l ·m j,l, where l = 1, . . . , p. (5.6)

So the element-wise product of two endmembers mi and m j is

mi�m j =


mi,1

...

mi,p

�


m j,1
...

m j,p

=


mi,1m j,1

...

mi,pm j,p

 . (5.7)

There are various BMMs with different definitions on the sum-to-one con-

straint to account for the hyperspectral unmixing problems. In the “Fan model” [74],
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it is assumed that ∑
K
k=1 ak = 1 and αi, j = aia j, whereas in the “Nascimento

model” [73], the sum-to-one constraint is based on ∑
K
k=1 ak +∑

K−1
i=1 ΣK

j=i+1αi, j = 1.

In the following proposed method, since we only care about the presence of the

interactions terms, it does not matter whether the summation of abundance frac-

tions is 1. Again with the explanations in the HSI target detection [5], we will relax

the sum-to-one constraint as well as the non-negative constraint in the following

proposed method to simplify the solution to target detection problems.

5.3.2 Formulations of MSDinter

As with the BMM (5.5), we introduce terms of the interaction between basis vec-

tors of the background subspace B and the target subspace T into the MSD model

(5.1), and then revise the alternative hypothesis H1 of the MSD model (2.10). The

proposed model with interaction effects is defined as follows:

x = Tγ +Bβ +Hη +n1, (5.8)

where H is a matrix representing the interaction terms between T and B. We call

the matrix H the interaction matrix, and η is the abundance vector for H.

The interaction matrix H is obtained by the element-wise product of each basis

ti and b j, where i= 1, . . . ,rt and j = 1, . . . ,rb, of the subspace T and the subspace B,

respectively. Similar to the element-wise production� defined in (5.5), the element-

wise product of two basis vectors ti = [ti,1, . . . , ti,p]T and b j = [b j,1, . . . ,b j,p]
T is

defined as

ti�b j =


ti,1
...

ti,p

�


b j,1
...

b j,p

=


ti,1b j,1

...

ti,pb j,p

 . (5.9)

Hence, the interaction matrix H is formulated as

H = [t1�b1, . . . , t1�brb, t2�b1, . . . , t2�brb, . . . , trt �b1, . . . , trt �brb], (5.10)
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which is a p× (rtrb) matrix. As a result, the abundance vector corresponding to H

in (5.10) becomes

η = [η1,1, . . . ,η1,rb ,η2,1, . . . ,η2,rb, . . . ,ηrt ,1, . . . ,ηrt ,rb]
T , (5.11)

which is a (rtrb)×1 vector.

In model (5.8), each basis vector in T and B is still assumed to represent an

endmember. The column vectors in H, on the other hand, are assumed to represent

the interactions between the corresponding basis vectors in T and B, respectively.

The interaction matrix H in fact can be regarded as a generalisation of interaction

terms mi�m j defined in model (5.5).

Our proposed MSDinter is then modelled as follows:

H0 : x = Bβ +n0, target absent,

H1 : x = Tγ +Bβ +Hη +n1, target present.
(5.12)

For a simple representation, let U be the concatenated matrix of T, B and

H (5.10), i.e.

U = [T,B,H]

= [t1, . . . , trt ,b1, . . . ,brb, t1�b1, . . . , trt �brb],
(5.13)

which is a p× (rt + rb + rtrb) matrix. Then the abundance vectors γ , β and η of

model H1 in (5.12) can be concatenated into a single vector, denoted as υ , i.e.

υ = [γT ,β T ,ηT ]T , (5.14)

which is a (rt + rb + rtrb)-dimensional vector. Hence model H1 in the proposed

MSDinter (5.12) can be rewritten as

H1 : x = Uυ +n, target present, (5.15)
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and thus the MSDinter model (5.12) becomes

H0 : x = Bβ +n, target absent,

H1 : x = Uυ +n, target present.
(5.16)

To align with the MSD [7], we also adopt the least squares estimate (LSE) to

solve the abundance vector β in H0 and the abundance vector υ in H1, respectively.

Hence it is easily to see that the LSE of β is

β̂ = (BT B)−1BT x (5.17)

and the LSE of υ is

υ̂ = (UT U)−1UT x, (5.18)

respectively.

Based on (5.17) and (5.18), the residual sums of squares (RSS) e0 and e1 given

H0 and H1 of MSDinter (5.16) are computed as

H0 : e0 =
∥∥∥x−Bβ̂

∥∥∥2

2
= xT (I−B(BT B)−1BT )x, (5.19)

and

H1 : e1 = ‖x−Uυ̂‖2
2 = xT (I−U(UT U)−1UT )x, (5.20)

respectively, where I is a p× p identity matrix.

Therefore the generalised test ratio of the MSDinter model is then given by

DMSDinter(x) =
e0

e1
=

xT (I−B(BT B)−1BT )x
xT (I−U(UT U)−1UT )x

H1
≷
H0

ν . (5.21)

Referring to the final results of MSD (2.11), we reformulate the output detector

of the MSDinter model (5.21) by utilising the projection matrices. The numerator

of (5.21) is the same as that of the MSD (2.11), where PB = B(BT B)−1BT is the

projection matrix onto the subspace B spanned by the basis vectors b1, . . . ,brb and

P⊥B = I−PB is the orthogonal complement of PB. The denominator of (5.21) can
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be derived in the same way, where

PU = U(UT U)−1UT (5.22)

is the projection matrix onto the subspace U spanned by the column vectors in (5.13)

and

P⊥U = I−PU , (5.23)

is the orthogonal complement of PU. Hence the final output detector of the MSD-

inter is formulated as

DMSDinter(x) =
xT P⊥B x
xT P⊥U x

H1
≷
H0

ν . (5.24)

The value of DMSDinter(x) is compared with the threshold ν to make a final

decision of which hypothesis should be rejected for the test pixel x.

5.3.3 Underlying assumption of adding interaction terms in tar-

get detection

In the proposed MSDinter model (5.12), we assume that the marginal effect of tar-

gets T on x varies in different surrounding backgrounds. Specifically, the abundance

of target is not only γ when an interaction with the background presents. The abun-

dance of the target can be decomposed into the main effect of γ plus a contribution

from the interactions.

Differentiating the conditional expected value of x given model (5.8) with re-

spect to T, we can obtain the following result:

∂E[x|T,B]
∂T

=


Γ1

Γ2
...

Γrt


(prt)×p

+


Π1

Π2
...

Πrt


(prt)×p

, (5.25)
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where

Πi =


BT

1,·η i 0 . . . 0

0 BT
2,·η i . . . 0

...
... . . . ...

0 0 . . . BT
p,·η i


p×p

, i = 1, . . . ,rt , (5.26)

which is a diagonal p× p matrix; η i is an rb× 1 vector which is a segment of

η (5.11) with

η = [ηT
1 , . . . ,η

T
i , . . . ,η

T
rt
]T (5.27)

where

η i = [ηi,1, . . . ,ηi,rb]
T ; (5.28)

and Bl,· denotes a column vector representing the lth row of matrix B. The details

of the derivation are also presented in section 5.6 of Appendix.

In (5.25), when η = 0, the marginal effect of targets T on an observed test pixel

x is [Γ1, . . . ,Γrt ]
T ∈R(prt)×p only; when η 6= 0, the marginal effect is [Γ1, . . . ,Γrt ]

T +

[Π1, . . . ,Πrt ]
T ∈ R(prt)×p. In other words, the abundance of targets can be variable

and dependent on the values of B, when there are interactions between target spectra

and background spectra.

The underlying physical assumption of model (5.8) is that given an observed

target pixel, the hyperspectral sensor will not only receive the reflectance of the

target and the background independently (modelled by a linear combination of Tγ

and Bβ ), it will also receive the multiple scattering of the target and the background

(modelled by additional interaction effects Hη between the target and the back-

ground).

Similarly to the explanation of the model used for unmixing of HSIs [75],

for example, we assume that there are only two components “trees” and “vehicle”

presented in an observed target pixel, where the ‘vehicle” is the target to be detected

and “trees” are backgrounds. Illustrations of complex photons paths possible to

occur are shown in Figure. 5.1.
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(a) (b)

Figure 5.1: Examples of complex photon paths possible to occur: (a) LMM; (b) interaction
effects.

In the assumption of LMM, the hyperspectral sensor will receive signals

backscattered by the trees and the vehicle independently, which are represented by

the terms βb and γt, respectively as illustrated in Figure. 5.1(a). However, if a signal

is first backscattered by the vehicle to trees (or vice versa), and then backscattered

to the sensor, this will result in multiple scattering and the hyperspectral sensor will

receive interaction effects between endmembers “trees” and “vehicle”, which we

assume to be represented by the interaction term η(t�b). This multiple scattering

process is illustrated in Figure. 5.1(b). It is possible that higher order interactions

are also received by the hyperspectral sensor. However, as with the analysis of

unmixing of HSI [75, 76, 77, 78], these higher order terms can be neglected.

5.4 Experimental studies
We conduct comparative experiments on two publicly available hyperspectral

datasets. One is for synthetic target detection analysis and the other is for real

target detection analysis:

1) Synthetic targets: the Airborne Visible/Infrared Imaging Spectrometer

(AVIRIS) dataset was captured at the Lunar Crater Volcanic Field (LCVF) in

northern Nye County, Nevada, USA (http://aviris.jpl.nasa.gov/data/). It has

a total of 224 spectral bands covering the spectral range of 400nm-2500nm.
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The dataset has been widely used for simulated HSI target detection such

as in [80, 2]. We use a 200× 200 sub-image in our experiment. There is

no defined target in the scene. We manually implant target pixels into the

image and simulate the target detection process, to explore the capability of

the proposed method.

2) Real targets: the Hymap dataset contains ground-truth spectra of targets and

has the targets readily deployed in the scene. It was captured at the location

of a small town of Cook City, USA. This image is published by Rochester

Institute of Technology (RIT), Rochester, NY, USA [3]. The dataset comes

with the locations and pure spectra for all the desired targets. It has a total

of 126 spectral bands and is of size 280× 800, covering the spectral range

of 453nm-2496nm. The Hymap dataset serves as standard target detection

dataset and is widely used, such as in [2, 72, 80, 81, 82].

5.4.1 Synthetic targets: the AVIRIS dataset

In the AVIRIS image, five target pixels are manually implanted using two mixing

models that simulate the possible linear/multi-scattering behaviour of hyperspec-

tral sensors. This experiment focuses on exploring the capability of the proposed

method in capturing the interaction effects between the target spectrum and the

background spectra.

The AVIRIS image is shown in Figure. 5.2(a). The locations of the five im-

planted pixels are depicted in Figure. 5.2(b). The implanted target is a species of

mineral called almandine, which is not from the AVIRIS dataset. As with [2], the

spectrum of the target almandine is rescaled and resampled to match the AVIRIS

image wavelength. The target spectrum and five background spectra originally at

implanted locations are show in Figure. 5.3. In this simulation, we only conduct

comparative experiments on MSD and MSDinter, to explore the potential of MSD-

inter.
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(a) (b)

Figure 5.2: (a) The AVIRIS sub-image (200× 200) of the third spectral band. (b) Locations
of the implanted targets.
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Figure 5.3: (a) The locations of the representative background spectral samples. (b) The
pure target spectrum and the representative background spectra located in (a).
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5.4.1.1 Experimental settings

The implanted target pixel x is mixed with the prior target spectrum t and the origi-

nal background spectrum b at each implanted location shown in Figure. 5.2(b). Two

mixing models are used:

• Linear mixing model (LMM):

x = ftt+ fbb, (5.29)

• Bilinear mixing model (BMM):

x = ftt+ fbb+(1− ft− fb)t�b, (5.30)

where ft and fb are implanted fractions of the target spectrum and of the background

spectrum, respectively. The fractions of all terms are sum to 1 in LMM (5.29)

and BMM (5.30), respectively. We simulate four datasets for LMM and BMM,

respectively, and details of the implanted fractions are shown in Table 5.1.

Table 5.1: Details of the implanted fractions for the AVIRIS dataset.

LMM BMM
Fraction ft fb ft fb 1− ft− fb

Simulation 1 5% 95% 1% 5% 94%
Simulation 2 7% 93% 1% 7% 92%
Simulation 3 9% 91% 1% 9% 90%
Simulation 4 10% 90% 1% 10% 89%

As the spectra of the mixed target pixels may appear very different from the

spectra in the original image, the detection may become trivial and the performances

of both detectors are not distinguishable. Therefore we randomly add white noise

with mean 0 to the whole image after implanting the target pixels, which mimics the

distortion caused by the sensors in real applications. In this experiment, the added

white noise is measured in terms of the Signal-to-Noise Ratio (SNR). The SNR in

decibels is defined as

SNRdB = 10log10

(
σ2

i

σ2
noise

)
, (5.31)
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where σi is the standard deviation of the ith band image for i = 1, . . . ,224 and σnoise

is the standard deviation of the noise added to each band image. We set SNRdB =

20dB and therefore add white noise with σ2
noise = σ2

i /100 in each band image in the

following simulations.

We use the single target spectrum and five background spectra shown in Fig-

ure. 5.3 as the target subspace T and the background subspace B, respectively. The

receiver operating characteristic (ROC) curve is adopted to measure the detection

performances. The ROC is a threshold-free measurement. For each detector result,

the threshold varies in a range to obtain a set of pairs of the true positive rate and

the false positive rate, which is then used to plot the ROC curve. We also employ

the area under curve (AUC) statistics to measure the detection performance quanti-

tatively, in pair with the ROC curve.
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Figure 5.4: ROC curves of detecting implanted target pixels mixed by LMM: (a) ft = 5%,
fb = 95%; (b) ft = 7%, fb = 93%; (c) ft = 9%, fb = 91%; (d) ft = 10%,
fb = 90%.
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Figure 5.5: ROC curves of detecting implanted target pixels mixed by BMM: (a) ft = 1%,
fb = 5%, 1− ft − fb = 94% ; (b) ft = 1%, fb = 7%, 1− ft − fb = 92% ; (c)
ft = 1%, fb = 9%, 1− ft− fb = 90%; (d) ft = 1%, fb = 10%, 1− ft− fb = 89%.

The ROC curves of detecting the LMM-based implanted targets pixels and the
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Table 5.2: AUC statistics of MSD and MSDinter for the AVIRIS dataset.

LMM BMM
AUC MSD MSDinter MSD MSDinter

Simulation 1 1 0.945 0.860 0.961
Simulation 2 1 0.984 0.857 0.933
Simulation 3 1 0.998 0.839 0.931
Simulation 4 1 1 0.837 0.930

BMM-based implanted targets pixels by MSD and MSDinter are shown in Fig-

ure. 5.4 and Figure. 5.5, respectively. The AUC performances corresponding to

Figure. 5.4 and Figure. 5.5 are listed in Table 5.2.

5.4.1.2 Results on LMM-mixed targets

From the results listed in Table 5.2 and shown in Figure. 5.4, where implanted target

pixels are synthesised by LMM, we can observe at least two patterns. Firstly, MSD

achieves perfect performance for LMM-mixed targets, i.e. AUC = 1 on detecting

all implanted targets with enumerated fractions. That is, it implies that if target

pixels captured by the HSI sensor are mixed by the linear combination of the target

spectrum and the background spectrum, MSD can perform perfectly. Secondly, as

the implanted target fraction ft increases, e.g. slightly increasing from 5% to 10%,

the detection performance of MSDinter improves from 0.945 to 1. It implies that

MSDinter can also achieve nearly perfect to perfect performance even when targets

are linearly mixed without any interaction effect.

5.4.1.3 Results on BMM-mixed targets

In this simulation, the implanted target fraction ft is fixed to be 1%, and the im-

planted background fraction is ranged from 5% to 10%. The rest of fractions are

occupied by the interaction terms t�b. The performances of MSD and MSDinter

on detecting the BMM-based implanted targets are listed in Table 5.2 and shown

in Figure. 5.5. We can observe that MSDinter outperforms MSD on detecting all

BMM-based implanted targets with enumerated fractions. It reveals that if the in-

teraction between the background spectrum and the target spectrum does exist, MS-

Dinter can achieve better performance than that of MSD, as the latter fails to take
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the interaction effects into consideration.

5.4.1.4 Detection statistics of MSD and MSDinter

We further compare the test statistics of all pixels in the AIVRIS image processed

by MSD and MSDinter. The test statistics of 40,000 pixels in the LMM-based

simulation and BMM-based simulation are shown in Figure. 5.6 and Figure. 5.7,

respectively. Due to the nature of MSD and MSDinter, the test statistics are always

greater than 1 and the pixels with higher statistics are considered more likely to be

targets.
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Figure 5.6: Test statistics of the AVIRIS image implanted by LMM with mixing fractions
ft = 9%, fb = 91%: (a) MSD, AUC = 1; (b) MSDinter, AUC = 0.998.

In Figure. 5.6(a), we can observe that MSD has very distinguishable test statis-

tics of the implanted targets which are linearly mixed without interaction. However

in Figure. 5.7(a), the test statistics of MSD on targets not only largely decrease but

also become undistinguishable when the implanted targets are bilinearly mixed with

interaction, and the performance of MSD drops significantly, from AUC = 1 (5.6(a))

to AUC = 0.839 (5.7(a)). On the other hand, the test statistics of MSDinter are more

stable than those of MSD, whether or not the implanted pixels are mixed by LMM

or BMM, which are depicted in Figure. 5.6(b) and 5.7(b). It indicates that MSD-

inter can handle both simple and complex mixing effects, with much more stable

performance than MSD.
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Figure 5.7: Test statistics of the AVIRIS image implanted by BMM with mixing fractions
ft = 1%, fb = 9% 1− ft − fb = 90%: (a) MSD, AUC = 0.839; (b) MSDinter,
AUC = 0.931.

5.4.2 Real targets: the Hymap dataset

Figure 5.8: The Hymap image with a spatial size of 280× 800 [3]. We cropped a spatial
size of 100×300 sub-image for evaluation in this experiment.

For the real hyperspectral dataset, i.e. the Hymap dataset where targets

are deployed in the scene, the proposed MSDinter method is evaluated against

not only MSD but some other well-known detectors, such as OSP (2.12) [18],

CEM (2.13) [19] and ACE (2.14) [22]. We also compare the MSDinter method
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with an SR-based method termed STD (2.16) [23].

The Hymap image is shown in Figure. 5.8. As the desired targets are mainly

located in the central part of the whole image and the materials lie around the mar-

gin of the image are homogeneous which are mainly composed of trees, we cropped

a 100×300 sub-image from the central part of the original Hymap image for evalu-

ating the performances of detectors. Such a sub-image setting has been widely used

and well accepted by researchers, such as in [72, 83, 84]. Different experimental

settings for analysing the Hymap image can also be found in [2, 66, 68, 80, 81, 82]

for different illustrative purposes.

There are seven types of targets in the Hymap dataset, including four types of

fabric panels (F1, F2, F3, F4) and three types of vehicles (V1, V2, V3). There are

two samples with different sizes deployed in the scene for F3 and F4, termed F3a

and F3b, F4a and F4b, respectively. The rest of targets, i.e. F1, F2, V1, V2 and

V3, have only one sample each. When one type of target is to be detected, e.g.

F3a and F3b, the other targets, i.e. F1, F2, F4a, F4b, V1, V2 and V3, are regarded

as background pixels. The seven types of targets and their central coordinates of

region of interests (ROIs) are shown in Table 5.3. Since the spatial resolution of the

Hymap dataset is about 3m, we can infer that F1 (3m × 3m), F2 (3m × 3m) are

nearly full pixels, whereas all the other targets are smaller than a pixel and appear as

subpixels. Therefore a mixture model should be considered for all the targets, and

the interaction effects between the target and the background are likely to occur.

The cropped sub-image as well as ROIs of seven types of targets are shown in

Figure 5.9(a) and Figure 5.9(b), respectively.

The spectrum of each desired target (F1-F4 and V1-V3) is provided by

projected-equipped SPL files [3]. As with [2], we rescale and resample the SPL

spectra according to the Hymap HSI wavelength. Preprocessed target spectra are

given in Figure. 5.10. We randomly select one sample spectral signature of each

target in the scene, and plot them in Figure. 5.11. Comparing Figure. 5.10 with

Figure. 5.11, we can clearly see that target spectra signatures in the scene are very

different from those ground-truth spectra in Figure. 5.10, and the pattern of how the
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Table 5.3: List of the targets in the Hymap dataset

Target Description and pixel size of ROI Central coordinates
of ROI

Photo

F1
Red cotton (3m × 3m)
( 5×5 pixels) (138, 504)

F2
Yellow nylon (3m × 3m)
( 5×5 pixels) (122, 484)

F3 a&b
Blue cotton
(2m × 2m & 1m × 1m)
( 5×5 pixels &3×3 pixels )

(122, 494)
& (127, 490)

F4 a&b
Red Nylon
(2m × 2m & 1m × 1m)
( 5×5 pixels &3×3 pixels)

(144, 516)
& (152, 514)

V1
Green Chevy Blazer
( 3×3 pixels) (128, 339)

V2
White Toyota T100
( 3×3 pixels) (156, 353)

V3
Red Subaru GL
( 3×3 pixels) (186, 282)

sampled target spectra are mixed with the background spectra is complicated.

5.4.2.1 Experimental settings

In realistic target detection problems, the background statistics are usually un-

known. As explained in [1], the statistics of background can be estimated by all

pixels within the area of interest when detectors are applied in a sparse target en-

vironment. In our experiment, there are 30,000 pixels in the cropped Hymap sub-

image and among which there is only 1 target pixel to be detected for each desired

target. The number of target/image ratio is 1/30000, which means our detection

environment is sufficiently sparse. Therefore we can use all pixels of the cropped

Hymap image to estimate the mean µb and the covariance Cb of the background.

In this way, the detector of each test pixel has global and identical background

statistics (mean µb and covariance Cb). In addition, detectors used in this chapter,

including MSD, MSDinter, ACE, CEM, OSP, all adopt the same aforementioned

background samples for fair comparison. For the SR-based method STD, the back-
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(a)

0 F1 F2 F3 F4 V1 V2 V3

(b)

Figure 5.9: (a) The Hymap sub-image (100 × 300) of the 33th spectral band; (b) ROIs
of seven types of targets (F1, F2, F3, F4, V1, V2 and V3) in the Hymap sub-
image. There are two samples of targets F3 and F4 each, termed F3a and F3b,
and F4a and F4b, respectively. The pixel sizes of the ROI of targets F1, F2, F3a,
F3b, F4a, F4b, V1, V2 and V3 are 25, 25, 25, 9, 25, 9, 9, 9 and 9, respectively.
Different types of targets are shown in different colours.
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Figure 5.10: Rescaled prior spectra of all the targets in the SPL files: (a) fabric panels; (b)
vehicles.
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Figure 5.11: Rescaled sample spectra of all targets in the Hymap scene: (a) fabric panels;
(b) vehicles. The selected sample spactra are located in the central coordinates
of the ROIs of F1, F2, F3a, F4a, V1, V2 and V3, respectively, which are shown
in Table 5.3.

ground dictionary for each test pixel is constructed by 29,999 pixels of the cropped

image excluding the test pixel itself.

Among the compared detectors, MSD, MSDinter and OSP involve the con-

struction of background subspace B. We use the mean-centred HSI (removing the

estimated mean µb from the HSI) to compute the covariance matrix Cb and then

preserve significant eigenvectors of Cb to create columns of B. For MSD and MSD-

inter, we should also construct target subspace T. Since there is only one prior spec-

trum of each desired target mt , we actually do not need to do eigen-decomposition

on mt to obtained the target subspace T. Instead, we subtract the background mean

µb from the prior target spectrum mt , i.e. mt − µb, and then normalise mt − µb

to have a unit L2-norm as the target subspace T. As a result, the estimated back-

ground endmembers b and the target endmember t all have unit L2-norm and are

independent of each other. For STD, the union dictionary is constructed by the con-

catenation of 29,999 pixels and the single prior spectrum of each desired target for

each test pixel. Again, each column of the dictionary is normalised to have unit

L2-norm. In this chapter, the STD method is solved by a greedy algorithm called

orthogonal matching pursuit (OMP) [11].

We should note that each target deployed in the scene has an ROI [3], which
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means that the target may appear in any coordinates within the ROI. For example,

F1 has a 5×5 pixels size of ROI and the central coordinates of ROI are (138, 504).

It implies that if we detect at least one pixel as a target in the ROI, then this detection

is regarded as a 100% correct detection. As with [2] and [84], we use the false alarm

rate (FAR) to measure the detection performances of the compared methods. The

FAR in this experiment is defined as the number of pixels not in the target ROI but

have test statistic values equal to or greater than that of the pixel with the highest

statistic value within the target ROI, normalised by the total number of pixels in the

Hymap HSI (i.e. 30,000 pixels).

Among the methods to be compared, MSD, MSDinter, OSP and STD have pa-

rameters to tune. For MSD, MSDinter and OSP, the parameter is rb, which is the

number of eigenvectors to be preserved for the background subspace B. For STD,

the parameter is the sparse level, termed L, which is the number of HSI pixels to

be selected for the sparse representation. As ACE and CEM only use the target

endmembers and the whole HSI to construct detectors, no tuning parameters are

involved. Due to the limited number of target samples in the dataset, it is infeasi-

ble to tune parameters via cross validation. Hence as with most published works

of HSI target detections conducted on the Hymap dataset such as [2, 81, 82], the

parameter of each detector is manually tuned to show the optimal performance of

the algorithms for illustrative purposes. The number of preserved eigenvectors rb of

the background subspace B for MSD, MSDinter and OSP and the sparse level L of

representation for STD are listed in Table 5.4, respectively.

Table 5.4: The parameter rb of OSP, MSD and MSDinter and the parameter L of STD.

Target
rb L

OMP MSD MSDinter STD
F1 9 110 5 10
F2 118 111 5 12
F3 58 11 5 12
F4 118 88 6 10
V1 91 91 6 10
V2 43 43 2 4
V3 105 106 10 12
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5.4.2.2 Experimental results

The detection performances of all detectors are list in Table 5.5. We can observe that

the proposed MSDinter outperforms MSD, ACE, CEM, OSP and STD in detecting

all seven types of targets. Specifically, MSDinter can achieve the best detection

performance on detecting F1, F2, F3 with FAR equal to 0. Compared with MSD,

MSDinter significantly improves FARs for all targets. It implies that these observed

target pixels captured by the HSI sensor are more likely to contain the interaction

of background spectra and target spectra. In this sense, as MSDinter models the

interaction effects, it achieves better performance than MSD, which fails to model

the interaction effects.

Table 5.5: FAR under 100% detection of ACE, CEM, OSP, MSD, STD and MSDinter for
the Hymap dataset. Boldface indicates the best performance.

FAR ACE CEM OSP MSD STD MSDinter
F1 1.02e-02 1.19e-02 0.01e-02 0.76e-02 0.06e-02 0.00e-02
F2 8.55e-02 1.11e-02 0.01e-02 0.14e-02 0.53e-02 0.00e-02
F3 0.57e-02 1.35e-02 0.27e-02 0.0057e-02 0.08e-02 0.00e-02
F4 0.21e-02 0.51e-02 0.08e-02 0.0037e-02 0.31e-02 0.0027e-02
V1 1.37e-02 1.41e-02 0.86e-02 0.62e-02 24.76e-02 0.0013e-02
V2 1.34e-02 2.22e-02 0.85e-02 0.40e-02 0.52e-02 0.31e-02
V3 19.94e-02 24.87e-02 1.82e-02 1.48e-02 11.36e-02 0.54e-02

For illustration purposes, we select one of the seven types of targets, i.e. F1,

and plot prediction maps resulted from all compared methods. The prediction maps

are shown in Figure. 5.12, in which the test statistic of each HSI pixel is colour

coded. We can observe that the proposed MSDinter produces the most distinguish-

able detection results, as shown in Figure. 5.12(c). In the MSDinter prediction map

(Figure. 5.12(c)), the test statistics of pixels within the ROI of F1 have the high-

est values compared with the statistics of all the other pixels, which result in the

best detection performance with FAR equal to 0. On the other hand, the prediction

maps of MSD, ACE, CEM, OSP and STD are not easy to distinguish F1 and the

background, and their detection performances are not as good as that of MSDin-

ter. In addition, comparing the prediction maps of MSD and MSDInter shown in

Figure. 5.12(b) and Figure. 5.12(c), we can see that MSDinter eliminates the high
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statistics of background pixels and thus reduces FAR, which indicates that taking

the target-background interaction effects into account can significantly improve the

performance of the HSI target detection.

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.12: Test statistics for detecting F1 in the Hymap image. Brighter pixels have
higher test statistics and therefore are more likely to be targets. (a) Ground-
truth labels of F1; (b) MSD, FAR = 0.76e-02; (c) MSDinter, FAR = 0.00e-02;
(d) ACE, FAR = 1.02e-02; (e) CEM, FAR = 1.19e-02; (f) OSP, FAR = 0.01e-
02; (g) STD, FAR = 0.06e-02.

5.5 Conclusion
In this chapter we have proposed a new method called MSDinter for the hyperspec-

tral target detection. The MSDinter method introduces interaction terms into the

popular MSD to model and capture the interaction between target and background

spectra. Compared with MSD, the proposed MSDinter method produces superior
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detection performance on the synthetic dataset of AVIRIS and the real dataset of

Hymap, demonstrating the benefit of taking target-background interaction into mod-

elling for target detection.

It is worthwhile to mention that, besides the platform of MSD, the proposed

concept of interaction effects can also be applied to other target detection methods

which have not yet considered target-background interaction. It is of our research

interests to further work in this direction to investigate its potential of improving

other established algorithms of target detection from hyperspectral images.

5.6 Appendix

This section describes in detail how to differentiate the conditional expected value

of x with respect to T, i.e. ∂E[x|T,B]
∂T , for model (5.1) and model (5.8), respectively.

To start with, assume that matrix T contains only one vector t. Then the model

(5.1) of x is simplified as

x = Bβ + tγ +n, (5.32)

where γ is a scalar. It follows that the derivative ∂E[x|t,B]
∂ t effectively measures the

impact on the expected value of x from one-unit change of each element in t. Ac-

cording to the definition of the Jacobian matrix, the resultant derivative of ∂E[x|t,B]
∂ t

will be a p× p matrix, given a p×1 vector x and a p×1 vector t. That is:

∂E[x|t,B]
∂ t

=


γ 0 . . . 0

0 γ . . . 0
...

... . . . ...

0 0 . . . γ


p×p

= γIp, (5.33)

which turns out to be a diagonal p× p matrix γIp, where Ip denotes the p× p

identity matrix.

When matrix T contains multiple vectors ti for i = 1, . . . ,rt , which is the case

of model (5.1), the derivative of ∂E[x|T,B]
∂T measures the impact on the expected value
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of x from one-unit change of each element in T. Let us rewrite model (5.1) as

x = Bβ +Tγ +n = Bβ +[t1, . . . , trt ]γ +n, (5.34)

where γ is an rt-variate vector. Then the resultant derivative ∂E[x|T,B]
∂T will be a

(prt)× p matrix, with x being a p×1 vector and T being a p× rt matrix.

Based on the results in (5.33) and letting Γi denote the p× p diagonal matrix

with γi on the diagonal, i.e.

Γi =


γi 0 . . . 0

0 γi . . . 0
...

... . . . ...

0 0 . . . γi


p×p

= γiIp, (5.35)

it follows that the derivative in the case of model (5.1) is

∂E[x|T,B]
∂T

=


Γ1

Γ2
...

Γrt


(prt)×p

, (5.36)

which is a concatenated matrix.

For model (5.8), the addition of interaction term Hη introduces complexity to

the computation, but due to the nature of linear algebra, the derivative can be found

in a similar fashion. With the added interaction term, the model (5.8) of x,

x = Bβ +Tγ +Hη +n, (5.37)
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has the derivative as

∂E[x|T,B]
∂T

=


Γ1

Γ2
...

Γrt


(prt)×p

+
∂Hη

∂T
. (5.38)

For the derivation ∂Hη

∂T , we can follow the same steps by which we get results

(5.33) and (5.36). Firstly, recall that the interaction matrix H has been expanded in

(5.10):

H = [t1�b1, . . . , t1�brb, t2�b1, . . . , t2�brb, . . . , trt �b1, . . . , trt �brb].

Thus ∂Hη

∂ ti
, where i = 1, . . . ,rt , can be written as

∂Hη

∂ ti
=


∑

rb
j=1 b j,1ηi, j 0 . . . 0

0 ∑
rb
j=1 b j,2ηi, j . . . 0

...
... . . . ...

0 0 . . . ∑
rb
j=1 b j,pηi, j


p×p

=


∑

rb
j=1 B1, jηi, j 0 . . . 0

0 ∑
rb
j=1 B2, jηi, j . . . 0

...
... . . . ...

0 0 . . . ∑
rb
j=1 Bp, jηi, j


p×p

=


BT

1,·η i 0 . . . 0

0 BT
2,·η i . . . 0

...
... . . . ...

0 0 . . . BT
p,·η i


p×p

,

(5.39)

which is a diagonal p× p matrix, where η i is a segment of η with

η = [η1,1, . . . ,ηi, j, . . . ,ηrt ,rb]
T = [ηT

1 , . . . ,η
T
i , . . . ,η

T
rt
]T , (5.40)
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and Bl,· denotes a column vector representing the lth row of matrix B.

Let Πi denote the resultant derivative with respect to ti in (5.39):

Πi =


BT

1,·η i 0 . . . 0

0 BT
2,·η i . . . 0

...
... . . . ...

0 0 . . . BT
p,·η i


p×p

. (5.41)

The derivative of ∂Hη

∂T is then the concatenation of Πi:

∂Hη

∂T
=


Π1

Π2
...

Πrt


(prt)×p

. (5.42)

By substituting (5.42) back to (5.38), the derivative of the expected value of x

given the interaction model (5.8) is then

∂E[x|T,B]
∂T

=


Γ1

Γ2
...

Γrt


(prt)×p

+


Π1

Π2
...

Πrt


(prt)×p

. (5.43)



Chapter 6

HSI Target Detection: Matched

Shrunken Subspace Detectors

(MSSD)

6.1 Introduction

Target detection is an important task of hyperspectral image (HSI) analysis [14, 71,

15]. To target detection, the matched subspace detector (MSD) [7] is one of the

most widely-used subspace-based approaches, underlying which is the idea of the

linear mixing model (LMM) [5] shown in (2.9).

To achieve an HSI target detection, the MSD determines whether a test pixel

can be represented by a linear combination of target spectral signatures and back-

ground spectral signatures. To this end, two subspaces are constructed: the target

subspace and the background subspace. In each subspace, the MSD assumes that

each basis vector represents an endmember, which is in line with the assumption of

the LMM for HSI analysis.

To construct the two subspaces, the MSD usually acquires their basis vectors

from the eigen-decomposition of covariance matrices of the training samples [14,

85]. The eigenvectors with dominant eigenvalues, termed leading eigenvectors, are

selected as bases to span the subspaces, while those with small eigenvalues are

discarded. This is essentially a scheme of basis selection, or say 0/1 weighting,
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which extracts a subspace out of the full eigenspace.

In fact, the 0/1 weighting scheme of the MSD implicitly imposes a sparse-

ness constraint or say an l0-norm regularisation while building its LMM. However,

it is well known that such a “hard” selection may exhibit high variance on the se-

lected leading eigenvectors. Alternatively, explicit sparse representation (SR)-based

techniques have also been developed in hyperspectral target detection [23, 24, 86],

with selection of a small number of atoms from a large dictionary. That is, these

SR methods model a test HSI pixel as a linear combination of only few atoms

from an over-complete dictionary; atoms in the dictionary are usually also sam-

ples, hence these SR methods can be viewed as being developed in the original

sample space. Regarding the construction of the dictionary, [23] propose to con-

struct a background spectra dictionary and a target spectra dictionary separately; on

the other hand, [24, 86] propose to construct an over-complete dictionary including

both background spectra and target spectra.

To avoid the problem of high variance from such a “hard” selection, shrinkage

methods [9] have been developed in statistical learning, mainly due to such a prob-

lem in regression analysis. Among the shrinkage methods, the most popular one is

called ridge regression, also known as Tikhonov regularisation [87] in other disci-

plines; it shrinks the regression coefficients through imposing an l2-norm constraint.

In this way, the estimates of the coefficients become more stable and therefore can

improve the performance of regression.

The l2-norm regularisation has been investigated for analysing hyperspectral

imagery [61, 72, 83, 88, 89, 90]. For the HSI classification, [61] and [88] assume

that a test pixel can be collaboratively represented by raw spectral signatures. It is

shown that l2-norm constraints can actually improve the classification, instead of

the “competitive” nature imposed by sparseness constraints (as l1-norm or l0-norm

regularisation). For the HSI target detection, [72, 83, 89, 90] add a scaled identity

matrix to the background clutter covariance matrix before inverting it, in order to

avoid an ill-conditioned problem. It is worth noting that these l2-norm regularisation

methods are developed in the original sample space, rather than in the eigenspace
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as this work.

In this chapter, focusing on the popular MSD, we propose a new approach,

called the matched shrunken subspace detector (MSSD), to target detection from

hyperspectral images. Our MSSD is developed by shrinking the abundance vectors

of the target and background subspaces in the hypothesis models of the MSD. The

shrinkage is simply achieved by introducing l2-norm regularisation into the MSD.

We develop two types of the MSSD, one with isotropic shrinkage (and thus termed

MSSD-i) and the other with anisotropic shrinkage (and termed MSSD-a). For these

two new methods, we provide both the frequentist and Bayesian derivations. Exper-

iments on a real hyperspectral imaging dataset called Hymap demonstrate that the

proposed MSSD-i and MSSD-a can outperform the original MSD for hyperspectral

target detection.

The main contributions of this chapter are two-fold. 1) Through introducing

the l2-norm regularisation terms into the MSD, we shrink the abundance vectors so

that the variance in each basis direction of the subspaces is also reduced, leading to a

more stable estimation. 2) We derive the proposed MSSD-i and MSSD-a from both

the frequentist and Bayesian perspectives, with the latter showing how the proposed

methods preserve Gaussian prior distributions of the abundance vectors, instead of

the uniform prior distribution which is implicitly imposed by the original MSD.

The rest of this chapter is organised as follows. Section 6.2 reviews the original

MSD. In section 6.3.1 and section 6.3.2, detailed formulation of the two proposed

method, MSSD-i and MSSD-a, are introduced. Then the two proposed methods

are derived from the Bayesian perspective and shown in section 6.4. The links of

MSD, MSSD-i and MSSD-a are discussed in section 6.5. Section 6.6 presents the

experimental results, with the whole work concluded in section 6.7.

6.2 Matched subspace detector (MSD)

6.2.1 Overview of the binary hypothesis testing model

From a statistical perspective, target detection is typically derived from a binary

hypothesis testing problem [15]. It is based on the likelihood ratio of the conditional
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probability density functions (pdfs) of two competing hypotheses, given that the

spectral signature of an HSI pixel x ∈ Rp is treated a continuous random vector:

H0 : x is a background pixel,

H1 : x is a target pixel,

⇒ D(x) =
fx|H1(x)
fx|H0(x)

H1
≷
H0

ν ,

(6.1)

where fx|H0(x) and fx|H1(x) are two conditional pdfs of x under the null hypoth-

esis H0 and the alternative hypothesis H1, respectively; ν is the detection thresh-

old; and D(x) is an output detector. In reality, the conditional pdfs are usually not

available and expressed parametrically. Hence, the generalised likelihood ratio test

(GLRT) [91] is commonly used to replace the unknown parameters by their maxi-

mum likelihood estimates (MLEs):

DGLRT (x) =
fx|H1(x; ω̂1)

fx|H0(x; ω̂0)

H1
≷
H0

ν

=
maxω1{ fx|H1(x;ω1)}
maxω0{ fx|H0(x;ω0)}

H1
≷
H0

ν ,

(6.2)

where ω0 and ω1 are unknown parameters of pdf fx|H0(x;ω0) and pdf fx|H1(x;ω1),

respectively; and ω̂0 and ω̂1 are their MLEs. In this chapter, “ˆ” denotes the esti-

mates of unknown parameters.

6.2.2 Formulation of the matched subspace detector (MSD)

Following the idea of LMM (2.9) [5], the MSD models a test pixel by a linear

combination of target spectral endmembers and background spectral endmembers,

and these endmembers are represented by the basis vectors of the target subspace

and the background subspace, respectively.

That is, derived from the binary hypothesis model (6.1), the MSD model [7] is

formulated in (2.10) as follows:

H0 : x = Bβ +n0, x is a background pixel,

H1 : x = Tγ +Bβ +n1, x is a target pixel,
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where T = [t1, . . . , trt ] is a p× rt matrix representing the target subspace, and B =

[b1, . . . ,brb] is a p× rb matrix representing the background subspace; T is derived

from a training target matrix MT ∈ Rp×Nt whose columns are the Nt target spectra,

and B is derived from a training background matrix MB ∈ Rp×Nb whose columns

are the Nb background spectra; γ and β are the corresponding abundance vectors

of the subspaces T and B, respectively; and n0 and n1 are p-dimensional vectors of

Gaussian white noise: n0 ∼N (0,σ2
0 I) and n1 ∼N (0,σ2

1 I), respectively.

In general, a set of orthogonal basis vectors that spans the corresponding sub-

space are used as the column vectors of T or B. In common practice, the leading

eigenvectors of the target covariance matrix CT and those of the background covari-

ance matrix CB are used as the columns of T and B, respectively, as with [85][14].

In other words, when the test pixel x is a target pixel, it is decomposed into two

components by linear combinations of the bases of B and T, denoted by model H1.

When x is a background pixel, it is adequately described by model H0, which is a

reduced order model.

Let V be the concatenated matrix of T and B, i.e. V= [T B] = [t1, . . . , trt ,b1, . . . ,brb],

then the abundance vectors γ and β of model H1 can be concatenated into a single

vector, denoted as α , i.e. α =

γ

β

= [γ1, . . . ,γrt ,β1, . . . ,βrb ]
T . Hence model H1 can

be written as

H1 : x = Tγ +Bβ +n1

=
[
T B

]γ

β

+n1

= Vα +n1,

(6.3)

and thus the MSD model (2.10) becomes

H0 : x = Bβ +n0, x is a background pixel,

H1 : x = Vα +n1, x is a target pixel,
(6.4)

where now the unknown parameters are β , α , and those of n0 and n1.
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The corresponding estimate of the likelihood ratio is the generalised likelihood

ratio (GLR) of the MSD, formulated as

l̂(x) =
l(α̂, σ̂2

1 ;x)
l(β̂ , σ̂2

0 ;x)

=

(
σ̂2

1
σ̂2

0

)−p/2

exp
{
− 1

2σ̂2
1
‖n̂1‖2

2 +
1

2σ̂2
0
‖n̂0‖2

2

}
.

(6.5)

The MLEs σ̂2
0 and σ̂2

1 are equal to 1
p ‖n̂0‖2

2 and 1
p ‖n̂1‖2

2, respectively. Taking the

2/p power of (6.5), we have the following GLR of the MSD:

LMSD(x) = (l̂(x))2/p

=

(
σ̂2

1
σ̂2

0

)−1

=
σ̂2

0

σ̂2
1

=
‖n̂0‖2

2

‖n̂1‖2
2

=

∥∥∥x−Bβ̂

∥∥∥2

2

‖x−Vα̂‖2
2

.

(6.6)

The MLEs of β and α in (6.6) are given by

β̂ = argmax
β

{
fx|H0(x;β ,σ2

0 )
}
= argmin

β

{
1

2σ2
0
‖x−Bβ‖2

2

}
(6.7)

and

α̂ = argmax
α

{
fx|H1(x;α,σ2

1 )
}
= argmin

α

{
1

2σ2
1
‖x−Vα‖2

2

}
, (6.8)

and thus

β̂ = (BT B)−1BT x = BT x (6.9)

and

α̂ = (VT V)−1VT x. (6.10)

It is to be noted that the bases [b1, . . . ,brb ] of B are orthogonal, therefore

(BT B)−1 is an identity matrix and β̂ can be simplified to BT x, but the bases

[t1, . . . , trt ,b1, . . . ,brb ] of V are not orthogonal to each other.

Based on (6.9) and (6.10), the residual sums of squares (RSS) e0 and e1 given
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model H0 and model H1 are computed as

H0 : e0 = ‖n̂0‖2
2 =

∥∥∥x−Bβ̂

∥∥∥2

2
= xT (I−BBT )x, (6.11)

and

H1 : e1 = ‖n̂0‖2
2 = ‖x−Vα̂‖2

2 = xT (I−V(VT V)−1VT )x, (6.12)

where I is a p× p identity matrix. The final GLRT detector of the MSD model is

then given by

DMSD(x) =
e0

e1
=

xT (I−BBT )x
xT (I−V(VT V)−1VT )x

H1
≷
H0

ν . (6.13)

Equation (6.13) is the same as equation (2.11) shown in Chapter 2. The value of

DMSD is compared to a threshold ν to make the final decision of which hypothesis

should be rejected for the test pixel x. Two tuning parameters should be determined

for the MSD, which are the numbers of leading eigenvectors to be preserved in the

subspace B and T, i.e. rb and rt , respectively.

6.3 Matched shrunken subspace detector (MSSD)
In the MSD, the eigenvectors spanning the eigenspace are either preserved or dis-

carded to build the subspaces. Rather than applying this selection scheme, it is de-

sirable to adopt shrinkage schemes to reduce the variance induced by selection [9],

in order to develop a more stable statistical method like the MSD, in particular for

high-dimensional data like hyperspectral pixels. In the l2-norm regularised shrink-

age methods, all the available features/eigenvectors are preserved and their coef-

ficients are shrunk. In other words, rb and rt are fixed to the maximal numbers of

available features/eigenvectors. We propose to introduce l2-norm regularisation into

the MSD, to shrink the abundance vectors of the target and background subspaces

in the hypothesis models of the MSD. We call this approach the matched shrunken

subspace detector (MSSD).

It is worth noting that, in the hyperspectral target detection practice, we often

have only one target spectrum as a priori information for training, and this single
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target spectrum usually comes from the spectrum library. If this is the case, the

target training sample MT is a single vector, not a matrix, and thus the typical eigen-

decomposition cannot be applied on MT to get T. To this end and as usually the

case, we use the normalised mean-corrected target spectrum as the only basis vector

of the target subspace T. As a result, we have rt = 1 and T ∈ Rp×1, and the MSD

does not discard this basis vector. Similarly, we do not shrink the abundance γ for

the target subspace T when there is only one target spectrum available in practice,

as also discussed in section 6.6.

In the following sections, we shall develop two types of the MSSD, MSSD-i

with isotropic shrinkage and MSSD-a with anisotropic shrinkage, and provide both

the frequentist and Bayesian derivations of them.

6.3.1 MSSD with isotropic shrinkage (MSSD-i)

While persevering all available eigenvectors, we introduce l2-norm regularisation

terms θ0 ‖β‖2
2 and θ1 ‖α‖2

2 as constraints to the hypothesis models H0 and H1 of the

MSD, respectively. The shrunken estimates of β and α now become

β̂ iso = argmin
β

{‖x−Bβ‖2
2 +θ0 ‖β‖2

2} (6.14)

and

α̂ iso = argmin
α

{‖x−Vα‖2
2 +θ1 ‖α‖2

2}, (6.15)

where θ0 and θ1 are the parameters that control the degree of shrinkage imposed

on the size of abundance vectors β and α , respectively. In this sense, the same

shrinkage degree is applied to all eigenvectors, as done in (6.14) and (6.15), and we

call this new method the MSSD with isotropic shrinkage, shortened as MSSD-i.

The test likelihood ratio of the MSSD-i is thus given by

LMSSDiso(x) =
minβ{‖x−Bβ‖2

2 +θ0 ‖β‖2
2}

minα{‖x−Vα‖2
2 +θ1 ‖α‖2

2}

H1
≷
H0

ν , (6.16)
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and the estimates of β and α in the MSSD-i are readily given as

β̂ iso = ((1+θ0)I0)
−1 BT x (6.17)

and

α̂ iso = (VT V+θ1I1)
−1VT x, (6.18)

where I0 is a rb× rb identity matrix and I1 is (rt + rb)× (rt + rb) identity matrix.

Hence the RSS e0 and e1 given models H0 and H1 are computed as

H0 : eiso
0 =

∥∥∥x−Bβ̂ iso

∥∥∥2

2
= xT (I−B(1+θ0)

−1BT)x, (6.19)

and

H1 : eiso
1 = ‖x−Vα̂ iso‖2

2 = xT (I−V(VT V+θ1I1)
−1VT )x. (6.20)

As with (6.13), the detector of the MSSD-i model is finally given by

DMSSDiso(x) =
eiso

0

eiso
1

=
xT (I−B

(
(1+θ0)I0)

−1BT)x
xT (I−V(VT V+θ1I1)−1VT )x

H1
≷
H0

ν , (6.21)

To be noticed, the MSSD-i also has two tuning parameters, but not the rb and

rt of the MSD: this time the tuning parameters are the shrinkage parameters θ0 and

θ1.

6.3.2 MSSD with anisotropic shrinkage (MSSD-a)

Besides the directions represented by eigenvectors, the values of eigenvalues also

reflect the information about distributions, in particular variances, of the data in

the background and target subspaces. Therefore in addition to the MSSD-i, we

propose another new method which preserves not just the useful information from

all the available eigenvectors, but also the information of all the eigenvalues, while

constructing the l2-norm regularisation terms for the MSD.

Let ΛB denote the background eigenvalue matrix with the eigenvalues of the

background eigenvectors λ b
1 , . . . ,λ

b
rb

on the diagonal, i.e. ΛB = diag([λ b
1 , . . . ,λ

b
rb
]T );

and let ΛT denote the target eigenvalue matrix with the eigenvalues of the target
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eigenvectors λ t
1, . . . ,λ

t
rt

on the diagonal, i.e. ΛT = diag([λ t
1, . . . ,λ

t
rt
]T ).

It is known that small eigenvalues correspond to the eigenvectors having small

variances, therefore we aim to shrink these directions the most. To this end, we can

add the inverse of the eigenvalue matrix, Λ
−1
B , to the regularisation term β

T
β , for

example. The shrunken estimates of β and α now become

β̂ aniso = argmin
β

{
(x−Bβ )T (x−Bβ )+θ0β

T
Λ
−1
B β

}
(6.22)

and

α̂aniso = argmin
α

{
(x−Vα)T (x−Vα)+θ1α

T
Λ
−1
V α

}
, (6.23)

where θ0 and θ1 are again the parameters for the shrinkage degrees, and ΛV is a

concatenated matrix formed as:

ΛV =

ΛT 0

0 ΛB

 . (6.24)

Compared with (6.14) and (6.15) which shrink isotropically over features in

MSSD-i, both (6.22) and (6.23) shrink anisotropically over features. Hence we call

this new method the MSSD with anisotropic shrinkage, shortened as MSSD-a.

As with (6.16), the test likelihood ratio of the MSSD-a is given by

LMSSDaniso(x) =
minβ{‖x−Bβ‖2

2 +θ0β
T

Λ
−1
B β}

minα{‖x−Vα‖2
2 +θ1αT Λ

−1
V α}

H1
≷
H0

ν , (6.25)

and the estimates of β aniso and αaniso are

β̂ aniso = (I0 +θ0Λ
−1
B )−1BT x (6.26)

and

α̂aniso = (VT V+θ1Λ
−1
V )−1VT x. (6.27)
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The RSS eaniso
0 and eaniso

1 given models H0 and H1 are then computed as

H0 : eaniso
0 =

∥∥∥x−Bβ̂ aniso

∥∥∥2

2

= xT (I−B(I0 +θ0Λ
−1
B )−1BT )x

(6.28)

and

H1 : eaniso
1 = ‖x−Vα̂aniso‖2

2

= xT (I−V(VT V+θ1Λ
−1
V )−1VT )x.

(6.29)

As with (6.13) and (6.21), the detector of the MSSD-a model can be written as

DMSSDaniso(x) =
eaniso

0

eaniso
1

=
xT (I−B(I0 +θ0Λ

−1
B )−1BT )x

xT (I−V(VT V+θ1Λ
−1
V )−1VT )x

H1
≷
H0

ν ,

(6.30)

Similar to MSSD-i, only two tuning parameters are need to be determined in

the proposed MSSD-a: the shrinkage parameters θ0 and θ1.

6.4 Bayesian derivations of MSSD-i and MSSD-a
From the Bayesian perspective, the estimation of parameters β and α in the MSSD-

i and the MSSD-a can be translated as the maximisation of a posteriori probability

(MAP). Taking β for example, Bayes’ theorem [9] says

f (β |x) = f (x|β ) f (β )
f (x)

, (6.31)

where f (x|β ) is a likelihood function of x and f (β ) is a prior distribution of β .

Therefore the MAP estimate of β is

β̂ = argmax
β

f (β |x) ∝ argmax
β

f (x|β ) f (β ). (6.32)

As the noise term n0 is assumed to be a multivariate Gaussian distribution

n0 ∼N (0,σ2
0 I) in the LMM [5] and the MSD [7], the likelihood function f (x|β )
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can be formulated as

f (x|β ) ∝ exp
{
− 1

2σ2
0
‖x−Bβ‖2

2

}
. (6.33)

In the conventional MSD, an improper uniform (non-informative) prior distri-

bution is actually assumed for parameter β of the selected leading eigenvectors. In

the proposed MSSD-i and MSSD-a, adding l2-norm regularisation in fact imposes

Gaussian prior distributions on β .

6.4.1 Prior distributions of β and α in MSSD-i

For the MSSD-i, the prior distribution of β is in fact assumed to be

β ∼N (0,σ2
BI0), (6.34)

with equal variance σ2
B in each element βi of β for i = 1, . . . ,rb. Thus f (β ) is given

by

f (β ) ∝ exp
{
− 1

2σ2
B
‖β‖2

2

}
. (6.35)

Placing (6.33) and (6.35) into (6.32) and taking logarithm, we have

β̂ iso = argmax
β

log{ f (β |x)}

= argmax
β

log{ f (x|β ) f (β )}

= argmax
β

{
− 1

2σ2
0
‖x−Bβ‖2

2−
1

2σ2
B
‖β‖2

2

}
= argmin

β

{
‖x−Bβ‖2

2 +θ0 ‖β‖2
2

}
,

(6.36)

where θ0 = σ2
0/σ2

B. The estimate of β in (6.36) is exactly the same as the MSSD-i

estimate in (6.14). In this fashion, parameter θ0 effectively controls the degree of

shrinkage through the ratio of two variances σ2
0 and σ2

B.

Similarly, the prior distribution of γ is in fact assumed to be

γ ∼N (0,σ2
T It), (6.37)
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where It is a rt×rt identity matrix and therefore it results in a zero mean distribution

of α with an (rt + rb)× (rt + rb) diagonal covariance matrix

σ2
T It 0

0 σ2
BI0

 . (6.38)

Then f (α) is given by

f (α) ∝

rt+rb

∏
i=1

exp
{
− 1

2σ2
i

α
2
i

}
, (6.39)

where σi = σT for i = 1, . . . ,rt and σi = σB for i = rt +1, . . . ,rt + rb.

When σT = σB and we let both of them to be σα , (6.39) can be simplified to

f (α) ∝ exp
{
− 1

2σ2
α

‖α‖2
2

}
. (6.40)

Then the MAP estimate of α is then given by

α̂ iso = argmin
α

{
‖x−Vα‖2

2 +θ1 ‖α‖2
2

}
, (6.41)

where θ1 = σ2
1/σ2

α is the shrinkage parameter. This is also in the same form of the

MSSD-i estimate of α in (6.15), in particular if we assume σT = σB.

We can further generalise (6.41) to a slightly-adaptive shrinkage model:

α̂ iso = argmin
α

{
‖x−Vα‖2

2 +
rt+rb

∑
i=1

θ1iα
2
i

}
. (6.42)

In (6.42), when i = 1, . . . ,rt , we have θ1i = σ2
1/σ2

T , and when i = rt +1, . . . ,rt + rb,

we have θ1i = σ2
1/σ2

B.

6.4.2 Prior distributions of β and α in MSSD-a

For MSSD-a, the prior distribution of β is in fact assumed to be

β ∼N (0,θBΛB), (6.43)
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where ΛB is a rb× rb diagonal matrix with eigenvalues λ b
1 , . . .λ

b
rb

on the diagonal,

and θB is a parameter scaling the eigenvalue matrix ΛB. It means that each βi,

for i = 1, . . . ,rb, is assumed to have its own variance instead of an equal variance

assumed in the MSSD-i. Then f (β ) in MSSD-a is given by

f (β ) ∝ exp
{
−1

2
β

T (θBΛB)
−1

β

}
. (6.44)

Placing (6.33) and (6.44) into (6.32) and taking logarithm, we have the MAP esti-

mator of β in MSSD-a:

β̂ aniso = argmin
β

{
(x−Bβ )T (x−Bβ )+θ0β

T
Λ
−1
B β

}
, (6.45)

where θ0 = σ2
0/θB. This is the same as the MSSD-a estimate of β in (6.22).

The prior distribution of γ is assumed to be

γ ∼N (0,θT ΛT), (6.46)

where ΛT is a rt × rt diagonal matrix with different eigenvalues λ t
1, . . .λ

t
rt

on the

diagonal. Therefore the distribution of α is a zero mean distribution with an (rt +

rb)× (rt + rb) diagonal covariance matrix

θT ΛT 0

0 θBΛB

 , (6.47)

i.e. α ∼N (0,θvΛV), when θT = θB and both of them are equal to θv; and ΛV =ΛT 0

0 ΛB

.

Similar to (6.39), f (α) is given by

f (α) ∝ exp
{
−1

2
α

T (θvΛV )
−1

α

}
, (6.48)
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Then the MAP estimate of α becomes

α̂aniso = argmin
α

{
(x−Vα)T (x−Vα)+θ1α

T
Λ
−1
V α

}
, (6.49)

where θ1 = σ2
1/θv. This is also exactly the same as the MSSD-a estimate of α in

(6.23).

To sum up, in contrast to the improper uniform distributions assumed in the

MSD, two different prior distributions are assumed by the proposed MSSD-i and

MSSD-a for the abundance vectors β and γ for the background and target subspaces.

In the MSSD-i, a common variance is assumed on each coefficient in the form of

an scaled identity matrix (see (6.35) and (6.37)). In the MSSD-a, unequal variances

are assumed for individual coefficients in the form of an scaled eigenvalue matrix

(see (6.44) and (6.46)).

6.5 Underlying links among MSD, MSSD-i and

MSSD-a

The conventional MSD preserves the leading eigenvectors to form the subspaces B

and T, which is essentially a basis selection process. Specifically, it drops eigenvec-

tors of small eigenvalues, effectively forcing these eigenvalues to be 0. At the same

time, eigenvalues of the preserved eigenvectors are effectively forced to be equal

to each other. The proposed MSSD-i and MSSD-a on the other hand, preserve all

available eigenvectors and control the degrees of shrinkage of abundance by impos-

ing l2-norm regularisation. Specifically, MSSD-i imposes an isotropic shrinkage

over the full eigenspace, while MSSD-a is anisotropic using eigenvalues to adapt

the shrinkage for different directions.

From the Bayesian perspective, the conventional MSD implies a non-

informative uniform distribution for the coefficient vectors over infinite interval.

Different from the MSD, the proposed MSSD-i and MSSD-a imply Gaussian prior

distributions for the coefficient vectors. MSSD-i assumes an equal variance for

each coefficient, while MSSD-a assumes different variances for different coeffi-
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cients which are based on eigenvalues.

Nevertheless, it is readily seen that the MSSD-i method is equivalent to a ridge

regression on the eigenspace. Also, as a kind of dual representation, the proposed

MSSD-a can also be derived as a ridge regression on the original sample space.

Specifically regarding this derivation of MSSD-a, if we apply the LMM in the orig-

inal Nb-dimensional sample space of the p×Nb training sample matrix MB under

model H0 with mean-corrected measurement, i.e. MB is a mean-corrected matrix

and pixel x is represented as a linear mixture of Nb samples, we have

x = MBa+n, (6.50)

where a is an Nb×1 coefficient vector, and the ridge regression problem becomes

âiso = argmin
α

{‖x−MBa‖2
2 +θM ‖a‖2

2}, (6.51)

where âiso is the shrunken estimator of a and θM is the parameter controlling the

shrinkage. The solution of âiso is

âiso = (MT
BMB +θMIb)

−1MT
Bx, (6.52)

where Ib is a Nb×Nb identity matrix.

Following the notation in [9], if we perform the singular value decomposition

(SVD) on MB, saying p < Nb, we obtain

MB = UDVT , (6.53)

where U and V are p× p and Nb×Nb orthogonal matrices, with columns of U

spanning the column space of MB and columns of V spanning the row space of MB;

and D is a p×Nb rectangular diagonal matrix with singular values of MB on the

diagonal in descending order. Based on the relationship between this SVD and the

eigen-decomposition of covariance matrix CB in MSSD-a, we have:
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1) U = B (rb = p in this case) and

2) D2
p = NbΛB,

where Dp is a p× p diagonal matrix of the first p columns of D. Then the solution

of MBâiso has the following form:

MBâiso = MB(MT
BMB +θMIb)

−1MT
Bx

= UDp(D2
p +θMIp)

−1DpUT x

= B(NbΛB)(NbΛB +θMIp)
−1BT x

= B(Ip +
θM

Nb
Λ
−1
B )−1BT x

= B(Ip +θ0Λ
−1
B )−1BT x,

(6.54)

where Ip is a p× p identity matrix and θ0 = θM
Nb

. This is indeed the same as the

solution of Bβ̂ aniso, where β̂ aniso is given by (6.26) in the MSSD-a method. Similar

derivation can also be obtained for model H1, which we omit here.

6.6 Experimental studies
In the experimental studies, we compare the performances of the MSSD-i, MSSD-

a and MSD methods by applying them to a real HSI dataset call Hymap image,

which has been used for evaluation in section 5.4.2 of Chapter 5. To measure the

detection performances of the three methods, the receiver operating characteristic

(ROC) curve is used, in which a good detection curve should lie near to the top left.

In pair with ROC curve, we also employ the area under curve (AUC) statistics to

measure the detection results quantitatively.

Figure 6.1: The Hymap scene. Two sub-images are cropped for evaluation.
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Details of the Hymap dataset have been introduced in section 5.4.2. As shown

in Figure 6.1 in this chapter, we cropped two regions of interests (ROIs) into two

separate HSI cubes, with the pixel size of 100× 120 and 100× 150, respectively.

The ROIs of fabric panels (F1, F2, F3 and F4) and their corresponding target loca-

tions are shown in Figure 6.2, and the ROIs of three vehicles (V1, V2 and V3) and

their corresponding target locations are shown in Figure 6.3.

(a)
F1

F2

F3

F4

(b)

Figure 6.2: Target F1, F2, F3 and F4: (a) Hymap image scene of fabric panels; (b) locations
of fabric panels. Pixels in different colours indicate different targets. The pixels
sizes of ROIs of F1, F2, F3 and F4 are 25, 25, 34 and 34, respectively.

(a)
V1

V2

V3

(b)

Figure 6.3: Target V1, V2, V3: (a) Hymap image scene of vehicles; (b) locations if vehi-
cles. Pixels in different colours indicate different targets. The pixels sizes of
ROIs of V1, V2,and V3 are 9, 9 and 9, respectively.

There are two widely accepted experiment settings regarding the target pixels

in the Hymap scene: 1) In [81, 2, 82, 92], only one target pixel of each desired target

is assumed to be in the HSI as we have done in Chapter 5; 2) whereas in [80], pixels

within the ROIs of desired targets are all regarded as target pixels. In the setting

1), no target pixels are available for training. As a consequence, the parameters of
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the models have to be manually set. While in the setting 2), the target pixels can

be randomly split into a training set and a test set and we can tune parameters for

models. The setting 2) is believed to be a tougher condition for target detection

than the setting 1). In this chapter, we adopt the setting 2) in the evaluation of the

compared methods for fair comparison.

We randomly choose 2-3 labelled target pixels for training and the rest target

pixels for testing; and randomly choose around 10% background pixels for training

and the rest background pixels for testing. Summaries of the numbers of training

and test pixels of sub-images which are used for detecting fabrics and vehicles are

given in Table 6.1 and Table 6.2, respectively.

Table 6.1: Target fabrics: the number of target pixels for training and test in the sub-image
shown in Figure 6.2.

Target pixels Background pixels
Target training test total training test total

F1 2 23 25 1197 10778 11975
F2 2 23 25 1197 10778 11975
F3 3 31 34 1196 10770 11966
F4 3 31 34 1196 10770 11966

Table 6.2: Target vehicles: the number of target pixels for training and for test in the sub-
image shown in Figure 6.3.

Target pixels Background pixels
Target training test total training test total

V1 2 7 9 1499 13492 14991
V2 2 7 9 1499 13492 14991
V3 2 7 9 1499 13492 14991

6.6.1 Parameter settings

In real target detection problems, training examples of background pixels are not

available. It is often assumed that the target presence in the scene is so sparse that

if we extract neighbourhood pixels around a test pixel but not close to the test pixel,

this neighbourhood can be seen as a replacement for background samples. There-

fore as with [83, 15, 23, 24], we adopt the double concentric sliding window [23],
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a local and adaptive approach to extract the background pixels from the neighbour-

hood of each test pixel. Specifically, the concentric window separates the local area

around each pixel into two regions, an inner window region (IWR) and an outer

window region (OWR). The IWR is used to enclose the target of interest to be de-

tected. The OWR is used to model the local backgrounds around the target region.

An illustration of the double concentric window is shown in Figure 6.4. The de-

termination of the window sizes is difficult therefore as with [24][93], the window

sizes are set empirically. In our cases, the sizes of OWR and of IWR are set as

17×17 and 7×7 for detecting fabrics panels, and 15×15 and 5×5 for detecting

vehicles, respectively. Therefore, for each test pixel x in Figure 6.2, the number

of training background pixels is Nb = 240; for each test pixel x in Figure 6.3, the

number of training background pixels is Nb = 200, which are all greater than the

dimension of the spectra p = 126.

Figure 6.4: An illustration of the dual window adopted for sampling background adap-
tively.

For each target pixel xi in an HSI, we use the mean-centred background sam-

ples extracted by double concentric window to compute the covariance matrix Ci,

where i = 1, . . . ,N and N is the total number of test pixels in the HSI. Then the

columns of the subspace B are created by the eigen-decomposition of Ci. Since we

only have one prior spectrum for each desired target, we subtract the background

mean µ i of the local adaptive background samples around the test pixel xi from the

target spectrum mt , i.e. mt − µ i, then normalise mt − µ i to have a unit l2-norm as

the target subspace T. As a result, the columns in B and T all have unit l2-norms
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and are independent of each other.

Regarding the variance σT of γ defined in MSSD-i (6.37) and the eigenvalue

matrix ΛT of γ defined in MSSD-a (6.46), we set both σT and ΛT to be ∞, since

we only have one target spectrum to construct T and there is no variance can be

estimated in the target subspace. It means that in the real application of target

detection where only one target spectrum is available, we actually do not shrink the

size of abundance γ corresponding to the target basis vector in the H1 model in both

MSSD-i and MSSD-a, and let the projection of a test pixel onto the target basis

vector to be as much as possible.

In the conventional MSD to be evaluated on the Hymap image, there is only

one unknown parameter to be tuned, which is the number of preserved leading

eigenvectors rb(rb 6 p) for the subspace B. For each desired target, there is only

one target spectrum, i.e. Nt = rt = 1. In the propose MSSD-i and MSSD-a, two

unknown parameters in (6.16) and (6.25) need to be tuned: the shrinkage parameters

θ0 and θ1. The optimal values of rb of MSD, θiso0 and θiso1 of MSSD-i and θaniso0

and θaniso1 of MSSD-a tuned by the training dataset are listed in Table 6.3.

Table 6.3: Parameter settings of MSD, MSSD-i and MSSD-a.

MSD MSSD-i MSSD-a
rb θiso0 θiso1 θaniso0 θaniso1

F1 2 1e-09 1e-07 1e-03 1e-03
F2 2 1e-09 3e-07 7e-07 1e-09
F3 14 1e-09 1e-08 1e-08 3
F4 2 1e-09 1e-08 3e-03 3e-03
V1 124 1e-09 1e-09 3e-07 1e-09
V2 6 1e-09 1e-07 1e-07 1e-06
V3 124 1e-09 1e-07 3 5e+1

6.6.2 Detection performance

The detection performances of MSD, MSSD-i and MSSD-a are listed in Table 6.4

and shown in Figure 6.5 and Figure 6.6. Firstly, we can observe that both MSSD-i

and MSSD-a can outperform MSD in detecting F2, V1, V2 and V3. Specifically,

MSSD-a can improve the detection performance significantly, compared with the

conventional MSD method. Among the seven types of targets, MSSD-a improves
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Table 6.4: Detection performance of MSD, MSD-i and MSSD-a measured in the AUC
statistics. The best performance is indicated in boldface.

MSD MSSD-i MSSD-a
F1 0.974 0.662 0.968
F2 0.706 0.713 0.888
F3 0.679 0.506 0.801
F4 0.711 0.656 0.784
V1 0.673 0.845 0.726
V2 0.647 0.752 0.778
V3 0.643 0.664 0.676
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Figure 6.5: ROC curves of detecting fabric panels: (a) F1; (b) F2; (c) F3; (d) F4. The x-axis
and y-axis are false positive rate and true positive rate, respectively.
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Figure 6.6: ROC curves of detecting vehicles: (a) V1; (b) V2; (c) V3. The x-axis and y-axis
are false positive rate and true positive rate, respectively.

six of them, F2, F3, F4, V1, V2 and V3, from MSD. Secondly, MSSD-i improves

the performance on detecting F2, V1, V2 and V3, compared with MSD. These

results suggest that introducing l2-norm regularisation terms into MSD can improve

the detection performance.

We shall note that MSD has better performance on detecting F1 than MSSD-

i and MSSD-a. However, MSSD-a still has competitive performance as MSD on

detecting F1 (0.9680 vs. 0.9742); it also illustrates that preserving the information

from the eigenvalues in the prior distribution of abundance by MSSD-a can have a

more stable detection performance than MSSD-i, which assumes an equal variance

in the prior distribution.
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Figure 6.7: Effects of window sizes on detecting V3: (a) MSD; (b) MSSD-i; (c) MSSD-
a. The IWR size is fixed to be 5× 5, and the OWR size varies from 15× 15,
13×13 to 11×11.

6.6.3 Discussion on effects of parameters

We further investigate the effects of parameters on the performances of detectors.

Firstly, the effects of window sizes on the performances of MSD, MSSD-i and

MSSD-a for detecting target V3 are illustrated in Figure 6.7; the results for de-

tecting other targets are of a similar pattern. It is true that all parameters, such as

window sizes of OWR and IWR and shrinkage parameters θ0 and θ1, jointly affect

the performances of detectors. Here for simplicity of exploring the effect of window

sizes alone, we fix the values of other parameters (rb, θ0 and θ1) of corresponding

detectors as those in Table 6.3, and fix the size of IWR. The ROC curves of the

detectors under three different sizes of OWR are plotted in Figure 6.7. We can ob-

serve that MSD and MSSD-i are sensitive to OWR, whilst MSSD-a is more stable.

This indicates that MSSD-a is more robust to the variation of background samples,

and preserving variances of the original data is beneficial in terms of the stability of

detection performance.

Secondly, we investigate the effects of shrinkage parameters by sweeping the

parameter spaces of θiso0 and θiso1 of MSSD-i and θaniso0 and θaniso1 of MSSD-

a. Here due to much higher computational complexity for the large number of

test pixels, we show the results for the training pixels as illustration. We show the

results of MSSD-i and MSSD-a for detecting V3 under two sets of window sizes in

Figure 6.8 and Figure 6.9, respectively. Again, the results for detecting other targets

are of a similar pattern.



6.6. Experimental studies 159

0.2

1e1

0.4

9e-1
3e-2

0.6

1e1

A
U

C

7e-2 9e-1

0.8

3e-2

θ
iso0

5e-3 7e-23e-4

θ
iso1

5e-3

1

1e-5 3e-4
1e-51e-5 1e-59e-7 9e-71e-9 1e-9

(a)

0.2

1e1

0.4

9e-1
3e-2

0.6

1e1

A
U

C

7e-2 9e-1

0.8

3e-2

θ
aniso0

5e-3 7e-23e-4

θ
aniso1

5e-3

1

1e-5 3e-4
1e-51e-5 1e-59e-7 9e-71e-9 1e-9

(b)

Figure 6.8: For OWR of size 15× 15 and IWR of size 5× 5. (a) MSSD-i: effects of θiso0
and θiso1 on detecting V3; (b) MSSD-a: effects of θaniso0 and θaniso1 on detect-
ing V3.
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Figure 6.9: For OWR of size 11× 11 and IWR of size 5× 5. (a) MSSD-i: effects of θiso0
and θiso1 on detecting V3; (b) MSSD-a: effects of θaniso0 and θaniso1 on detect-
ing V3.

We can observe that the AUC surface of MSSD-i is smoother than that of

MSSD-a in both sets of window sizes. This pattern is particularly clear in the setting

that OWR is of size 15×15 and IWR is of size 5×5, where MSSD-i is not sensitive

to θiso0, as shown in Figure 6.8(a). Technically, the reason for this ‘extreme’ pattern

is because the number of training background pixels Nb = 200 is greater than the

pixel dimension p = 126, which leads to the result that rb = p and the p× p matrix

B represents a full space. Therefore for each pixel x j, the RSS eiso
0 (x j) in (6.19) can
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be simplified to

eiso
0 (x j) = xT

j (I−B
(
(1+θiso0)I0)

−1BT)x j

= xT
j x j−

1
1+θiso0

xT
j BBT x j

= xT
j x j−

1
1+θiso0

xT
j x j

=
θiso0

1+θiso0
xT

j x j .

(6.55)

In (6.55), eiso
0 (x j) is equivalent to scaling the l2-norm of every pixel x j with a scaler

θiso0
1+θiso0

. The detection ratio (6.21) is then scaled by θiso0
1+θiso0

as well when θiso1 is

fixed. As a result, the AUC of MSSD-i does not depend on θiso0, as shown in

Figure 6.8(a). However, in Figure 6.9(a) when the OWR size reduces to 11× 11,

the number of background samples Nb becomes 96 and thus Nb < p, and the AUC

becomes dependent on θiso0, because now eiso
0 (x j) cannot be simplified to (6.55)

and θiso0 affects the AUC.

As a by-product, the above analysis suggests a guideline on the use of MSSD-i:

when Nb < p, both shrinkage parameters θiso0 and θiso1 should be tuned during the

training phase; when Nb > p, only θiso1 needs to be tuned and θiso0 can be arbitrary.

For example, the values of θiso0 in Table 6.3 are in the case of Nb > p and are not

necessary to be 1e-09; instead, they can be any values.

For MSSD-a, the detection performance varies with both θaniso0 and θaniso1, as

shown in Figure 6.8(b) and Figure 6.9(b).

Finally, it is worth discussing why MSSD-a is more favourable than MSSD-i,

as indicated by the test results listed in Table 6.4. We believe a big reason for this

is that MSSD-a considers both eigenvectors and eigenvalues to preserve the infor-

mation of the data for the shrinkage, while MSSD-i considers only eigenvectors.

MSSD-i essentially assumes an equal variance in the prior distribution of each co-

efficient in the eigenspace, while MSSD-a assumes different variances for different

coefficients based on eigenvalues. Hence the latter preserves the variances of the

original data and can adapt to the shrinkage in different directions in the eigenspace

better than the former.
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6.7 Conclusion
We have proposed a new approached to hyperspectral target detection, called the

matched shrunken subspace detector (MSSD), and its two implementations, MSSD-

i with isotropic shrinkage and MSSD-a with anisotropic shrinkage. The MSSD

introduces the l2-norm regularisation into the popular matched subspace detec-

tor (MSD), seeking more reliable projection for the hypothesis models H0 and

H1. From the Bayesian perspective, the added regularisation terms preserve non-

uniform prior distributions of the coefficient vectors in the models. Both MSSD-i

and MSSD-a can reduce the variances of the coefficients and result in more stable

estimators. The links among MSD, MSSD-i and MSSD-a have also been discussed

in detail, and the two proposed methods have shown superior detection performance

compared with the conventional MSD on the real dataset of Hymap.



Chapter 7

HSI Target Detection: Matched

Shrunken Cone Detectors (MSCD)

7.1 Introduction

With the help of remote sensors, hyperspectral imaging has become an important

scientific tool for various fields of real-world applications. In the analysis of hyper-

spectral images (HSIs), target detection is a major task, which aims to detect small

objects or anomalies in a hyperspectral image. Typical target detection applications

include military defence, agricultural management and mineral detection.

Target detection is essentially a binary classification problem, of which the

task is to determine if an HSI pixel is a target spectrum or a background spectrum.

Hence, target detection can be regarded as a binary hypothesis model with two

competing hypotheses: the null hypothesis H0 for the absence of the target; and the

alternative hypothesis H1 for the presence of the target. Binary hypothesis models

for target detection have been nicely reviewed in [13, 14, 15, 16].

Target objects often appear as sub-pixels in an HSI. That is, the spectrum of

an HSI pixel can be a mixture of different component spectra of materials. These

component spectra are usually termed endmembers. To model the mixture of an

HSI pixel, the linear mixing model (LMM) [5] has been widely adopted. The un-

derlying assumption of LMM is that an HSI pixel can be approximated by a linear

combination of endmembers with different fractions. When a target pixel presents,
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its spectrum is decomposed as a linear combination of background endmembers and

target endmembers; in contrast, when a background pixel presents, its spectrum is

fully represented by background endmembers.

Within the framework of binary hypothesis modelling, researches have ex-

plored a variety of techniques and extensions on the basis of LMM. Since it is

difficult to obtain comprehensive spectral libraries to serve as the endmembers for

all desired targets, many methods focus on extract endmembers directly from HSIs.

On the one hand, provided with a large number of background samples, subspace

methods have been widely developed for target detection. Typical methods, such

as the orthogonal subspace projection detector (OSP) [18] and matched subspace

detector (MSD) [7], adopt the leading eigenvectors (with dominant eigenvalues) as

the subspace bases and implicitly the endmembers. On the other hand, sparse rep-

resentation (SR) techniques [10] originating from compressed sensing have been

recently studied in the HSI analysis [4]. For HSI target detection, SR-based meth-

ods, such as sparse target detection (STD) [23], sparse representation-based binary

hypothesis model (SRBBH) [24] and hybrid sparsity and statistics detector [94],

model a test HSI pixel as a linear combination of only a few training samples (aka

atoms of an over-complete dictionary). It implicitly regards the atoms as endmem-

bers, hence the SR-based methods can be viewed as being developed in the original

sample space.

These methods can be further extended to nonlinear mixing models. The kernel

methods, which aim to define a model in a high-dimensional feature space associ-

ated with a nonlinear mapping of input data, have also been studied for HSI target

detection [65, 69, 70]. In [65], subspace methods such as MSD, OSP have been

extended to their kernel versions. Kernelisation of the SR-based methods has been

also developed, such as kernel-based STD [69] and kernel-based SRBBH [70].

For the sake of physical interpretations, HSIs as instances of natural signals

possess non-negative properties for both hyperspectral signatures and the abundance

coefficients. A number of investigations have focused on the non-negative matrix

factorisation (NMF) [49, 52] for HSI unmixing problems. NMF factorises a sample
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data matrix into two low-dimensional matrices in terms of bases and corresponding

coefficients, and explicitly enforces the non-negative constraints on both of them.

However, in the past researches of HSI target detection [7, 18, 4, 23, 24, 94, 65, 69,

70], the non-negativity properties have not been considered yet, particularly for the

abundance coefficients. If we use the samples directly from HSIs as endmembers,

it is desirable to impose the non-negative constraints on the coefficients. In this

way, both endmembers and coefficients are non-negative, such that this physical

characteristic of hyperspectral signatures are modelled.

Statistically, the estimation of non-negatively-constrained coefficients in the

LMM is often termed non-negative least squares (NNLS) [53]. Geometrically, the

NNLS estimation induces a cone-shape representation [12]. Suppose that a hyper-

spectral spectrum x is a p-dimensional vector, and that there are K types of materi-

als, i.e. K endmembers potentially constituting an HSI pixel, which are represented

by m1, . . . ,mK with each mk also a p-dimensional vector. Then the cone-based

representation of pixel x expresses the spectral signature of x as a non-negative

linear combination of endmembers m1, . . . ,mK with corresponding non-negative

abundance fractions a1, . . . ,aK , such that ak ≥ 0 for k = 1, . . . ,K. More specifically,

a convex cone C is defined as

C :

{
x|x =

K

∑
k=1

akmk = Ma,ak ≥ 0

}
, (7.1)

where M is a p×K matrix whose columns are the K endmembers spectra mk =

[mk,1, . . . ,mk,p]
T ; and a = [a1, . . . ,aK]

T denotes the abundance vector. For the non-

negative LMM, an additional noise term is also considered:

x = Ma+n,ak ≥ 0, (7.2)

where the vector n is assumed to be the Gaussian white noise, i.e. n ∼ (0,σ2Ip),

where Ip is the p× p identity matrix.

It is worth noting that, LMM-based methods may suffer from the problem

of high variance of coefficients estimations. To this end, shrinkage methods [9]
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have been developed in statistical learning. Typical shrinkage methods include l2-

norm regularisation, also known as ridge regression or Tikhonov regularisation, and

l1-norm regularisation, also known as lasso. For the convex cone analysis, these

regularisations have also been studied, mainly on the computational efficiency of

the algorithms developed based on the NNLS [95, 96, 97, 98].

In this chapter, to account for the non-negativity as well as the shrinkage of

the coefficients of the convex cone model (7.2) for HSI target detection, we pro-

pose a new approach called the matched shrunken cone detector (MSCD). Specifi-

cally, on the cone representations we propose to shrink the abundance coefficients

of target endmembers and background endmembers by imposing constraints; we

propose two working models with the l2-norm and l1-norm regularisations, respec-

tively. We call these two methods MSCD-l2 and MSCD-l1. Equally important, we

derive the proposed MSCD from the Bayesian perspective, showing that MSCD-

l2 and MSCD-l1 can be derived if a multivariate half-Gaussian distribution [99]

and a multivariate half-Laplace distribution [100] are assumed as the prior distri-

butions of the coefficient vectors. To our knowledge, it is the first time that the cone

representations with the l2-norm and l1-norm regularisations are derived from the

Bayesian perspective, as well as the prior distributions identified.

The main contributions of this chapter are summarised as follows: 1) we pro-

pose a regularised cone-based representation approach called MSCD for HSI tar-

get detection; 2) we propose two working models of MSCD, namely MSCD-l2

and MSCD-l1, by incorporating l2-norm and l1-norm regularisations into the cone-

based representation (7.2); 3) we derive the proposed MSCD-l2 and MSCD-l1 from

the Bayesian perspective, showing they imply a multivariate half-Gaussian distri-

bution and a multivariate half-Laplace distribution as the prior distributions for the

coefficients; 4) and we illustrate the superior detection performance of the proposed

models, compared with the typical subspace and SR-based methods, on two real

hyperspectral datasets for sub-pixel and full-pixel target detections, respectively.

In the rest of the chapter, section 7.2 reviews the binary hypothesis model in

terms of the LMM-based likelihood ratio test. Section 7.3 introduces the propose
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MSCD. Section 7.4 shows the derivations of the proposed MSCD-l2 and MSCD-l1

from the Bayesian perspective with the prior distributions of the coefficients iden-

tified. Section 7.5 illustrates the superior performance of MSCD to other subspace

and SR-based methods; and section 7.6 gives the conclusion of this work.

7.2 Formulation of LMM-based binary hypothesis

models

In the framework of LMM [5] (2.9), a test pixel x is modelled by a linear combina-

tion of target endmembers and background endmembers. Specifically, the LMM-

based binary hypthesis models for HSI target detection are constructed as follows:

H0 : x = MBβ +n0, x is a background pixel,

H1 : x = MT γ +MBβ +n1, x is a target pixel,
(7.3)

where MT = [t1, . . . , tNt ] is a p×Nt matrix whose columns t1, . . . , tNt are Nt target

spectra; MB = [b1, . . . ,bNb] is a p×Nb matrix whose columns are Nb background

spectra; γ and β are the abundance vectors of MT and MB, respectively; and n0

and n1 are assumed to be p-dimensional vectors of Gaussian white noise: n0 ∼

N (0,σ2
H0

Ip) and n1 ∼N (0,σ2
H1

Ip), where Ip is the p× p identity matrix.

For a more convenient representation, we let M be the concatenated matrix of

MT and MB: M = [MT ,MB] = [t1, . . . , tNt ,b1, . . . ,bNb ] ∈ Rp×(Nt+Nb). Accordingly,

we concatenate the abundance vectors γ and β of model H1 into one vector α:

α =

γ

β

 = [γ1, . . . ,γNt ,β1, . . . ,βNb]
T ∈ R(Nt+Nb). Then model H1 can be rewritten

as

H1 : x = MT γ +MBβ +n1

=
[
MT MB

]γ

β

+n1

= Mα +n1,

(7.4)
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and the LMM-based binary hypothesis model becomes

H0 : x = MBβ +n0, x is a background pixel,

H1 : x = Mα +n1, x is a target pixel,
(7.5)

where now the unknown parameters are β , α , σH0 and σH1 .

7.2.1 Derivations of LMM-based GLR

Based on (6.2), the generalised likelihood ratio (GLR) of LMM for target detection

is formulated as

l̂(x) =
l(α̂, σ̂2

H1
;x)

l(β̂ , σ̂2
H0

;x)

=

(
σ̂2

H1

σ̂2
H0

)−p/2

exp

{
− 1

2σ̂2
H1

‖n̂1‖2
2 +

1
2σ̂2

H0

‖n̂0‖2
2

}
.

(7.6)

The MLEs σ̂2
0 and σ̂2

1 are equal to 1
p ‖n̂0‖2

2 and 1
p ‖n̂1‖2

2, respectively. Taking

the 2/p power of (7.6), we have

LLMM(x) = (l̂(x))2/p

=

(
σ̂2

H1

σ̂2
H0

)−1

=
σ̂2

H0

σ̂2
H1

=
‖n̂0‖2

2

‖n̂1‖2
2

=

∥∥∥x−MBβ̂

∥∥∥2

2

‖x−Mα̂‖2
2

.

(7.7)

The MLEs of β and α in (7.7) are given by

β̂ = argmax
β

{
fx|H0(x;β ,σ2

0 )
}

= argmin
β

{
1

2σ2
H0

‖x−MBβ‖2
2

} (7.8)
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and

α̂ = argmax
α

{
fx|H1(x;α,σ2

H1
)
}

= argmin
α

{
1

2σ2
H1

‖x−Mα‖2
2

}
,

(7.9)

and thus

β̂ = (MT
BMB)

−1MT
Bx and (7.10)

α̂ = (MT M)−1MT x, (7.11)

by least square estimates. Based on solutions (7.10) and (7.11), the residual sums

of squares (RSS) e0 and e1 for models H0 and H1 are computed as

H0 : e0 = ‖n̂0‖2
2 =

∥∥∥x−MBβ̂

∥∥∥2

2

= xT (Ip−MB(MT
BMB)

−1MT
B)x

(7.12)

and

H1 : e1 = ‖n̂1‖2
2 = ‖x−Mα̂‖2

2

= xT (Ip−M(MT M)−1MT )x,
(7.13)

respectively. The final GLR detector of LMM is then

DLMM(x) =
e0

e1
=

xT (Ip−MB(MT
BMB)

−1MT
B)x

xT (Ip−M(MT M)−1MT )x
H1
≷
H0

ν . (7.14)

The value of DLMM(x) is compared to a threshold ν to make the final decision

of which hypothesis should be rejected for the test pixel x. It is worth noting that the

over-fitting problem may happened in (7.14), and to this end the matched subspace

detector (MSD) [7] can be used instead. In MSD, the endmembers of background

spectra and target spectra, MB and MT , are represented by the leading eigenvectors

of the background and target subspaces, respectively.

We shall note that the derivation of section 7.2.1 is different from that shown

in section 6.2.2. Section 6.2.2 derives the GLR-based MSD while in this section
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the derivation is based on LMM. The main difference is that matrix B and T are

subspaces in section 6.2.2 and the basis vectors of B or T should be orthogonal

to each other; while MB and MT are the sets of spectra and the spectra are not

necessarily orthogonal to each other in either of MB or MT .

7.3 Matched shrunken cone detector (MSCD)
Rather than using an unconstrained LMM, it is desirable to adopt the non-negative

linear model for modelling a mixed HSI pixel, so as for a reasonable physical inter-

pretation. On top of that, we also introduce the regularisation to the non-negative

representation to control the variance of estimates, and derive the whole new model

from the Bayesian perspective. Particularly, we introduce the popular l2-norm and

l1-norm regularisations to the cone-based representation. We call the proposed ap-

proach matched shrunken cone detector (MSCD) with two specific models MSCD-

l2 and MSCD-l1.

7.3.1 Regularised cone

Figure 7.1: Illustration of cone-representation methods in a 2-D case with different con-
straints on coefficient vector a: (a) cone (7.15); (b) cone representation with
l2-norm regularisation (7.16); and (c) cone representation with l1-norm regu-
larisation (7.17).

The cone representation of a mixed pixel and its l2-norm and l1-norm regu-

larised models are formulated as follows.

Cone representation:

argmin
a≥0

‖x−Ma‖2
2 ; (7.15)



7.3. Matched shrunken cone detector (MSCD) 170

l2-norm regularised cone representation:

argmin
a≥0

‖x−Ma‖2
2 +λ ‖a‖2

2 ; (7.16)

l1-norm regularised cone representation:

argmin
a≥0

‖x−Ma‖2
2 +λ ‖a‖1 . (7.17)

To illustrate the relationship among (7.15), (7.16) and (7.17), we show a two-

dimensional cone with different constraints in Figure 7.1. It is easily to see that

the non-negative linear combination of two endmembers m1 and m2 will always lie

in the cone. With additional l2-norm or l1-norm regularisations, the regions of the

constructed vectors are down-sized to be a fan or a triangle, respectively. In other

words, l2-norm and l1-norm regularisations shrink the value of the coefficient vector

a for the representation of an HSI pixel.

In the following sections, we shall derive the cone-based binary hypothesis

models corresponding to the optimisation problems of (7.15), (7.16) and (7.17),

respectively.

7.3.2 Regularised cone-based estimators of coefficient vectors

The cone-based binary hypothesis models for target detection can be formulated as

the model in (7.5) but with additional constraints. Then we call such models cor-

responding to (7.15), (7.16) and (7.17) matched cone detector (MCD), matched

shrunken cone detector with l2-norm regularisation (MSCD-l2) and matched

shrunken cone detector with l1-norm regularisation (MSCD-l1), respectively.

MCD: given the non-negative constraints (7.15), the MLEs of β and α for

models H0 and H1 of (7.5) are given by

β̂ = argmin
β≥0

{
‖x−MBβ‖2

2

}
and (7.18)

α̂ = argmin
α≥0

{
‖x−Mα‖2

2

}
. (7.19)
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MSCD-l2: given the l2-norm regularised cone representation in (7.16), the

estimators of β and α of (7.5) are given by

β̂ = argmin
β≥0

{
‖x−MBβ‖2

2 +λ0 ‖β‖2
2

}
and (7.20)

α̂ = argmin
α≥0

{
‖x−Mα‖2

2 +λ1 ‖α‖2
2

}
. (7.21)

MSCD-l1: given the l1-norm regularised cone representation in (7.17), the

estimators of β and α of (7.5) are given by

β̂ = argmin
β≥0

{
‖x−MBβ‖2

2 +λ0 ‖β‖1

}
and (7.22)

α̂ = argmin
α≥0

{
‖x−Mα‖2

2 +λ1 ‖α‖1

}
. (7.23)

7.4 Bayesian Derivations of MSCD

Given the cone representation under the null hypothesis H0 of (7.5) and Bayes’

theorem

f (β |x) = f (x|β ) f (β )
f (x)

, (7.24)

the maximum a posteriori (MAP) estimate of β is

β̂ = argmax
β

f (β |x) = argmax
β

f (x|β ) f (β ). (7.25)

As the noise n0 ∼N (0,σ2
H0

Ip), the likelihood function f (x|β ) can be formulated

as

f (x|β ) ∝ exp

{
− 1

2σ2
H0

‖x−MBβ‖2
2

}
. (7.26)

Similarly, the MAP estimate of α in the alternative hypothesis model H1 is

α̂ = argmax
α

f (α|x) = argmax
α

f (x|α) f (α), (7.27)

and as the noise n1 ∼N (0,σ2
H1

Ip), the likelihood function f (x|α) can be formu-
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lated as

f (x|α) ∝ exp

{
− 1

2σ2
H1

‖x−Mα‖2
2

}
. (7.28)

In the ordinary cone representations (7.18) and (7.19) of the MCD model, im-

proper uniform (non-informative) prior distributions are actually implied for pa-

rameters β and α , with β ≥ 0 and α ≥ 0. However, in the proposed regularised

MSCD-l2 and MSCD-l1, multivariate folded distributions are in fact utilised as the

priors for the estimation of β in (7.20) and (7.22) and α in (7.21) and (7.23), as we

shall show below.

7.4.1 Folded distributions

Suppose that the pdf of a random variable Y is g(y) with y ∈R. The folding of g(y)

over to the non-negative line is accomplished via transform

X = |Y |, (7.29)

where X is a random variable on the non-negative real line R+ = [0,∞) with pdf

f (x) [100]:

f (x) = g(x)+g(−x), x ∈ R+. (7.30)

If we treat coefficients βi and αi in (7.5) as random variables, then the non-

negative constraints on them imply that their pdf are on R+. We shall identify

that a multivariate folded Gaussian distribution and a multivariate folded Laplace

distribution are the prior distributions of coefficients in the proposed MSCD-l2 and

MSCD-l1, respectively.

7.4.2 Prior distributions of β and α in MSCD-l2

A univariate half-Gaussian distribution is defined as follows. If Y ∼ N(0,σ2) with

mean zero, then X = |Y | follows a half-Gaussian distribution

f (x) =
2√

2πσ
exp
(
− x2

2σ2

)
,x≥ 0, (7.31)
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Figure 7.2: Illustration of a half-Gaussian distribution.

with mean

E(X) =
√

2/πσ , (7.32)

and variance

var(X) = σ
2(1−2/π). (7.33)

An illustration of the half-Gaussian distribution is shown in Figure 7.2. The half-

Gaussian distribution is a special case of the folded version of Gaussian distribution

N(µ,σ2) when µ = 0.

We shall identify that, if two multivariate half-Gaussian distributions are im-

posed on the coefficients α and β , respectively, as the prior distributions, then the

estimators (7.20) and (7.21) of MSCD-l2 can be derived in a Bayesian way.

In the model of the null hypothesis H0 of the proposed MSCD-l2, let us as-

sume a multivariate half-Gaussian distribution as the prior for the coefficient vec-

tor β . Specifically, suppose that a vector s = [s1, . . . ,sNb]
T follows a multivariate

Gaussian distribution N(0,σ2
β

INb), where INb is the Nb×Nb identity matrix, then

β = [β1, . . . ,βNb]
T follows a multivariate half-Gaussian distribution with βi = |si|

and βi ≥ 0, where i = 1, . . . ,Nb. The expectation of β is

E(β ) =
√

2/πσβ 1Nb ∈ RNb,

where 1Nb = [1, . . . ,1]T is an Nb-dimensional vector of all ones; the covariance ma-
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trix

COV (β ) = σ
2
β
(1−2/π)INb ∈ RNb×Nb ,

and the pdf is

f (β ) =
1

(1
2πσ2

β
)Nb/2

exp

(
−
||β ||22
2σ2

β

)
. (7.34)

In MSCD-l2, placing the likelihood function f (x|β ) (7.26) and the prior distri-

bution f (β ) (7.34) into the MAP estimate f (β |x) (7.25) and taking a logarithm, we

have

β̂ = argmax
β≥0

log{ f (β |x)}

= argmax
β≥0

log{ f (x|β ) f (β )}

= argmax
β≥0

{
− 1

2σ2
H0

‖x−MBβ‖2
2−

1
2σ2

β

‖β‖2
2

}
= argmin

β≥0

{
‖x−MBβ‖2

2 +λ0 ‖β‖2
2

}
,

(7.35)

where λ0 = σ2
H0
/σ2

β
. In this way, parameter λ0 effectively controls the degree of

shrinkage via the ratio of two variances σ2
H0

and σ2
β

. Equation (7.35) is exactly the

same as model (7.20).

Similarly, let us assume the prior distribution of coefficients γ of the target

endmembers in the alternative hypothesis H1 is a multivariate half-Gaussian distri-

bution, with the expectation

E(γ) =
√

2/πσγ1Nt ∈ RNt ,

where 1Nt = [1, . . . ,1]T is an Nt-dimensional vector; the covariance matrix

COV (γ) = σγ(1−2/π)INt ∈ RNt×Nt ,
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where INt is the Nt×Nt identity matrix; and the pdf is

f (γ) =
1

(1
2πσ2

γ )
Nt/2

exp

(
−
||γ||22
2σ2

γ

)
. (7.36)

Then the concatenated α in model H1 is actually assumed to follow a half-

Gaussian distribution with mean

E(α) =
√

2/π[σγ , . . . ,σγ ,σβ , . . . ,σβ ]
T ∈ R(Nt+Nb). (7.37)

Let Σ denote an (Nt +Nb)×(Nt +Nb) diagonal matrix equal to diag
(
[σγ , . . . ,σγ ,σβ , . . . ,σβ ]

T).
Then the covariance matrix of α is

COV (α) = (1−2/π)Σ, (7.38)

which is an (Nt +Nb)× (Nt +Nb) matrix; and the pdf is

f (α) =
Nt+Nb

∏
i=1

2√
2πσi

exp
(
− α2

i

2σ2
i

)
, (7.39)

where σi = σγ for i = 1, . . . ,Nt and σi = σβ for i = Nt +1, . . . ,Nt +Nb.

When σγ = σβ and we let both of them be σα , (7.39) can be simplified to

f (α) =
1

(1
2πσ2

α)
(Nt+Nb)/2

exp

(
−‖α‖

2
2

2σ2
α

)
. (7.40)

Then placing the likelihood function f (x|α) (7.28) and the prior distribution (7.40)
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into the MAP estimate f (α|x) (7.27), we have

α̂ = argmax
α≥0

log{ f (α|x)}

= argmax
α≥0

log{ f (x|α) f (α)}

= argmax
α≥0

{
− 1

2σ2
H1

‖x−Mα‖2
2−

1
2σ2

α

‖α‖2
2

}
= argmin

α≥0

{
‖x−Mα‖2

2 +λ1 ‖α‖2
2

}
,

(7.41)

where λ1 = σ2
H1
/σ2

α is the shrinkage parameter. Equation (7.41) is exactly the same

as model (7.21).

We can further generalise (7.41) to a slightly-adaptive shrinkage model:

α̂ = argmin
α≥0

{
‖x−Mα‖2

2 +
Nt+Nb

∑
i=1

λ1iα
2
i

}
. (7.42)

In (7.42), when i = 1, . . . ,Nt , we have λ1i = σ2
H1
/σ2

γ , and when i = Nt +1, . . . ,Nt +

Nb, we have λ1i = σ2
H1
/σ2

β
.

7.4.3 Prior distributions of β and α in MSCD-l1

Figure 7.3: Illustration of a half-Laplace distribution.

A Laplace distribution is defined as follows. If a random variable Y has a
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Laplace distribution L (µ,b), then it has mean µ , variance 2b2, and pdf

g(y) =
1

2b
exp
(
−|y−µ|

b

)
, y ∈ R. (7.43)

A folded Laplace distribution is also accomplished via transform (7.29), and the pdf

of the transformed random variable X becomes (7.30). Placing (7.43) in (7.30), we

have the pdf of a folded Laplace distribution [100]:

f (x) =
1
b

exp(−µ

b )cosh( x
b) for 0 6 x < µ,

exp(− x
b)cosh(µ

b ) for µ 6 x.
(7.44)

Specifically, when µ = 0, (7.44) reduces to

f (x) =
1
b

exp
(
−x

b

)
, x ∈ R+, (7.45)

which is the pdf of a half-Laplace distribution with mean b.

We shall also identify that, if two multivariate half-Laplace distributions are

imposed on the coefficients α and β , respectively, as the prior distributions, then

the estimators (7.22) and (7.23) of MSCD-l1 can be derived in a Bayesian way.

Let a random multivariate vector v = [v1, . . . ,vNb]
T have a multivariate Laplace

distribution L (0,ϕβ INb). For model (7.22), coefficient vector β = [β1, . . . ,βNb]
T

follows a multivariate half-Laplace distribution if βi = |vi| for i = 1, . . . ,Nb. In this

case, the mean of β is E(β ) = ϕβ 1Nb and the pdf is

f (β ) =
1

ϕ
Nb
β

Nb

∏
i=1

exp
(
− βi

ϕβ

)
, for βi ≥ 0. (7.46)

Then placing the likelihood function f (x|β ) (7.26) and the prior distribution
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f (β ) (7.46) into the MAP function f (β |x) (7.25) and taking the logarithm, we have

β̂ = argmax
β≥0

log{ f (β |x)}

= argmax
β≥0

log{ f (x|β ) f (β )}

= argmax
β≥0

{
− 1

2σ2
H0

‖x−MBβ‖2
2−

1
ϕβ

Nb

∑
i=1

βi

}

= argmax
β≥0

{
− 1

2σ2
H0

‖x−MBβ‖2
2−

1
ϕβ

‖β‖1

}
= argmin

β≥0

{
‖x−MBβ‖2

2 +λ0 ‖β‖1
}
,

(7.47)

where λ0 = 2σ2
H0
/ϕβ controls the degree of shrinkage through the ratio of 2σ2

H0
and

ϕβ . Equation (7.47) is exactly the same as model (7.23).

In the same fashion, the prior distribution of coefficients γ of the target end-

members in the alternative model H1 is also assumed to be a multivariate half-

Laplace distribution with pdf

f (γ) =
1

ϕ
Nt
γ

Nt

∏
i=1

exp
(
− γi

ϕγ

)
, for γi ≥ 0. (7.48)

As a result, the concatenated coefficients α in model H1 is in fact assumed to

follow a multivariate half-Laplace distribution as well, with pdf

f (α) =
Nt+Nb

∏
i=1

1
ϕi

exp
(
−αi

ϕi

)
, for αi ≥ 0, (7.49)

where ϕi = ϕγ for i = 1, . . . ,Nt and ϕi = ϕβ for i = Nt +1, . . . ,Nt +Nb.

As with the derivations in section 7.4.2, when we have ϕγ = ϕβ and let both of

them to be ϕα , (7.49) can be rewritten as

f (α) =
1

ϕ
Nt+Nb
α

exp
(
−||α||1

ϕα

)
, for αi ≥ 0. (7.50)

Then placing the likelihood function f (x|α) (7.28) and the prior distribution
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f (α) (7.50) into the MAP estimate of α (7.27) and taking the logarithm, we have

α̂ = argmax
α≥0

log{ f (α|x)}

= argmax
α≥0

log{ f (x|α) f (α)}

= argmax
α≥0

{
− 1

2σ2
H1

‖x−Mα‖2
2−

1
ϕα

‖α‖1

}
= argmin

α≥0

{
‖x−Mα‖2

2 +λ1 ‖α‖1
}
,

(7.51)

where λ1 is a shrinkage parameter equal to 2σ2
H1
/ϕα . Equation (7.51) is exactly the

same as model (7.23).

Again, (7.51) can be generalised as

α̂ = argmin
α≥0

{
‖x−Mα‖2

2 +
Nt+Nb

∑
i=1

λ1iαi

}
, (7.52)

where λ1i = 2σ2
H1
/ϕγ for i= 1, . . . ,Nt and λ1i = 2σ2

H1
/ϕβ for i=Nt +1, . . . ,Nt +Nb.

It is worth noting that there is often only one target spectrum available in prac-

tice for HSI target detection. In such case, the target training sample MT is a p×1

single vector instead of a p×Nt matrix. Then the variance σγ defined in MSCD-l2

and the diversity ϕγ in MSCD-l1 are both have to be set as ∞, since there is no σγ

and φγ can be estimated from the target samples. In other words, we actually do

not shrink the coefficient γ ∈ R for the target subset MT so long as Nt = 1, and let

non-negative projection of a test HSI pixel x onto the target endmember to be as

much as possible.

7.4.4 Regularisation and prior distributions of MSCD

To adjust (and often improve) the performance of a statistical model like MSD or

MCD, some prior domain knowledge about the model, particularly the coefficients,

can be incorporated by imposing regularisation (a frequentist fashion) or assuming

the prior distributions (a Bayesian fashion). These two ways, although from differ-

ent statistical schools of thinking and inference, can often achieve the same effect,
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in particular if we can find the pair of a regularisation term and a prior distribu-

tion. That is, deriving the corresponding prior distribution to a regularisation term

can not only provide a theoretical justification of the latter, but also assist a deeper

understanding of the latter; and vice versa. This inspires our derivation of MSCD

from the Bayesian perspective.

Specifically, the benefit from proposing MSCD-l2 and MSCD-l1 can be under-

stood from both regularisation and Bayesian points of view.

In MSCD-l2, an l2-norm regularisation term is added to impose constraints on

the combination coefficients in the model of MCD. This will shrink the value of

the coefficients and thus reduce the variances of the estimated coefficients, as usu-

ally achieved by a shrinkage methods [9]. From the Bayesian perspective, as the

coefficients are non-negative, such an l2-norm regularisation can be derived as cor-

responding to a multivariate half-Gaussian prior distribution for the coefficients, as

we have shown in section 7.4.2. Equivalently, using such a prior will reduce the

posterior variances of the coefficients, in a Bayesian sense. On the one hand, the

original MCD models (7.18) and (7.19) are equivalent to (7.35) and (7.41) when λ0

and λ1 are zeros, which implies the use of prior distributions of infinite prior vari-

ance. In contrast, the non-zero shrinkage parameters λ0 and λ1 in (7.35) and (7.41)

imply a finite prior variances for the coefficients. On the other hand, with such

a prior, the posterior variance of a coefficient will be smaller than the variance of

the estimator inferred from the likelihood only. Provided with the lower variance,

MSCD-l2 can provide more stable classification performance than MCD.

The case of MSCD-l1 is similar to MSCD-l2, in terms of shrinkage, though the

l1-norm regularisation on the coefficients of the cone representation-based MCD

implies a multivariate half-Laplace prior distribution for the coefficients, as we have

shown in section 7.4.3. In fact, as well known, l1-norm regularisation (like lasso) or

a Laplace prior distribution can induce not only shrinkage of the values of the coef-

ficients, but also zero values of some coefficients, i.e. the sparsity of the coefficient

vectors. This actually implies an endmember selection in the cone representation

for HSI target detection.
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7.5 Experimental studies
We conduct target detection experiments on two real hyperspectral datasets for sub-

pixel target detection and full-pixel target detection, respectively. For sub-pixel

target detection, a target appearing in an HSI is smaller than an HSI pixel. In this

case we compare the target detection methods on the Hymap dataset [3] which

has been used in Chapter 5 and Chapter 6. For full-pixel target detection, a target

appearing in an HSI can occupy more than one HSI pixel. We use the dataset

collected by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) from San

Diego, CA, USA to evaluate the performance of detecting the full-pixel targets.

We compare the proposed methods MSCD-l2 and MSCD-l1 with three types

of target detectors: 1) the cone representation-based detector MCD in (7.18)

and (7.19); 2) the subspace detectors OSP (2.12) [18] and MSD (2.10) [7]; and 3)

the sparse representation-based detectors STD (2.16) [23] and SRBBH (2.20) [24].

For the proposed MSCD-l2 and MSCD-l1, we adopt the MATLAB codes provided

by [97] and on http://www.yelab.net/software/SLEP/ to solve the l2-

norm regularised cone model (7.16) and the l1-norm regularised cone model (7.17),

respectively.

As with [15, 23, 24, 83] and our work shown in section 6.6 of Chapter 6, we

adopt the dual window scheme to obtain the background pixels for each test HSI

pixel in a local approach. An illustration of a dual window is shown in Figure 6.4,

which separates a local area of a test HSI pixel into two regions: an inner window

region (IWR) and an outer window region (OWR). Also as with [24, 93, 94], we

empirically set OWR and IWR to be 15×15 and 9×9 respectively for all compared

methods, in order to detect targets appearing in both of Hymap and AVIRIS datasets.

7.5.1 The Hymap dataset

7.5.1.1 Data description

The descriptions of the Hymap dataset have been detailed in section 5.4.2 of Chap-

ter 5. In this experiment, we adopt the same data settings in section 5.4.2 for evalu-

ating the proposed MSCD. The data settings are summarised as follows:

http://www.yelab.net/software/SLEP/
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• only one target pixel of each desired target is assumed to be in the HSI;

• the seven types of targets and their central coordinates of ROIs are shown in

Table 5.3;

• a spatial size of 100× 300 sub-image is cropped for evaluation as shown in

Figure 5.9(a);

• the ROIs of seven types of target are shown in Figure 5.9(b);

• the spectrum of each desired target (F1-F4 and V1-V3) are plotted in Fig-

ure 5.10(a) and Figure 5.10(b), respectively; and the sampled spectral sig-

nature with each ROI of target in the scene are shown in Figure 5.11(a) and

Figure 5.11(b), respectively.

7.5.1.2 Experimental settings

The ROIs mean that a target pixel may appear in any coordinates within the ROIs,

and the exact number of pixels of a type of target is unknown. As with the experi-

mental settings in [2, 84], the criterion for measuring the correct detection is that if

at least one pixel in the ROIs is identified as target, then this detection is regarded as

a correction detection. Moreover, since the predefined threshold of each compared

detector is unknown, we also adopt the false alarm rate (FAR) defined in [2, 84]

for measuring the detection performance. The FAR is equal to the number of pixels

that are not in the target ROIs but have the test values equal to or greater than the

highest test value of pixels within the ROIs, over the total number of pixels in the

Hymap HSI, i.e. 30,000 in the example of Figure 5.9. Hence we expect to see the

lower the FAR, the better the detection performance.

Parameters of the compared methods should be determined. For the subspace

methods OSP and MSD, parameter rb, which is the number of leading eigenvec-

tors of background subspace, should be determined. For the sparse representation

methods STD and SRBBH, parameter L, which is the sparsity level, should be de-

termined. We shall also determine the parameter λ0 and λ1, which are the shrink-

age parameters of models H0 and H1, respectively, for both the proposed MSCD-l1
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Table 7.1: Parameter settings: the number rb of leading eigenvectors of OSP and MSD; and
the sparsity level L of STD and SRBBH.

Target
rb L

OSP MSD STD SRBBH
F1 104 116 10 7
F2 119 76 10 10
F3 117 117 4 7
F4 119 116 8 5
V1 119 1 10 4
V2 119 8 4 4
V3 119 7 5 7

Table 7.2: Parameter settings: λ0 and λ1 of MSCD-l1 and MSCD-l2.

Target
MSCD-l1 MSCD-l2
λ0 λ1 λ0 λ1

F1 1e-04 1e-04 1e-03 1e-01
F2 1e-04 1e-04 1e-02 1e-01
F3 1e-01 1e-03 1e-02 1e-02
F4 1e-00 1e-01 1e-00 1e-00
V1 1e-03 1e-04 1e-02 1e-00
V2 1e-03 1e-04 1e-02 1e-00
V3 1e-01 1e-01 1e+01 1e-00

and MSCD-l2. Due to the limited size of training samples, we are unable to do

cross-validation for tuning parameters. Specifically, we have only one ground-truth

spectrum of each type target and we do not even have the ground-truth spectra of

background samples within the Hymap HSI. Therefore for illustration purposes,

we manually tune the parameters of each compared method to their optimal values

when the FARs of each method are the lowest, as done by most published works on

the Hymap dataset [2, 81, 82]. The range of rb is [1, 119]; the range of L is [1, 30].

For the proposed MSCD-l1 and MSCD-l2, we also manually tune the parameters λ0

and λ1 to their optimal values by sweeping the value in [1e-05, 1e-04, 1e-03, 1e-02,

1e-01, 1e-00, 1e+10, 1e+02]. The optimal values of rb for OSP and MSD and of L

for STD and SRBBH are listed in Table 7.1. The optimal values of λ0 and λ1 for

the proposed MSCD-l1 and MSCD-l2 are listed in Table 7.2.
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Table 7.3: False alarm rate (FAR) of compared methods for the Hymap dataset. The OWR
and IWR are set to be 15× 15 and 9× 9, respectively, for OSP, MSD, STD,
SRBBH, MSCD, MSCD-l1 and MSCD-l2. The minimum FARs are in boldface.

Target
Subspace representation Sparse representation Cone representation

OSP MSD STD SRBBH MCD MSCD-l1 MSCD-l2
F1 5.64e-02 1.64e-02 0.04e-02 0.00e-02 0.00e-02 0.00e-02 0.00e-02
F2 0.56e-02 0.01e-02 0.30e-02 0.05e-02 0.24e-02 0.31e-02 0.19e-02
F3 2.53e-02 0.00e-02 1.84e-02 0.34e-02 0.79e-02 0.00e-02 0.02e-02
F4 0.13e-02 0.26e-02 0.32e-02 0.11e-02 0.45e-02 0.35e-02 0.04e-02

F1-F4 8.86e-02 1.91e-02 2.5e-02 0.5e-02 1.48e-02 0.66e-02 0.25e-02
V1 0.52e-02 1.17e-02 0.89e-02 0.36e-02 0.04e-04 0.03e-02 0.02e-02
V2 3.50e-02 6.73e-02 1.14e-02 2.04e-02 5.18e-02 5.22e-02 3.00e-02
V3 7.74e-02 2.75e-02 0.66e-02 9.56e-02 21.9e-02 7.26e-02 1.85e-02

V1-V3 11.76e-02 10.65e-02 2.69e-02 11.95e-02 27.12-02 12.51e-02 4.87e-02
Sum 20.63e-02 12.56e-02 5.19e-02 12.46e-02 28.60e-02 13.17e-02 5.12e-02

7.5.1.3 Experimental results and analysis

The FARs of all compared methods for detecting each type of targets are listed in

Table 7.3. Firstly, for the cone-based detectors, MCD, MSCD-l2 and MSCD-l1, we

can observe that the proposed MSCD-l2 (FAR 5.12e-02) and MSCD-l1 (13.17e-02)

outperform MCD (28.60e-02) for detecting different types of targets. This illus-

trates the effectiveness of incorporating the regularisations into the optimisation of

non-negative problems. Furthermore, MSCD-l2 performs significantly better than

MSCD-l1, which implies that the l2-norm regularised cone representation is more

effective than the l1-norm regularised cone representation for detecting the targets

in the Hymap dataset.

Secondly, comparing all the methods listed in Table 7.3, we can clearly see that

our proposed MSCD-l2 outperforms OSP, MSD, STD, SRBBH, MCD and MSCD-

l1 for detecting targets F1, F4 and V1, and it performs the best in terms of the sum

of FARs of detecting fabric targets F1-F4 with FAR as 0.25e-02. More importantly,

MSCD-l2 also outperforms others in detecting all types of targets, i.e. F1-F4 and

V1-V3, with the smallest sum of FARs as 5.12e-02. This indicates that the proposed

MSCD-l2 is more effective than the subspace and sparse representation methods.

Last but not least, we shall note that, among the compared methods, the sub-
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space method MSD and the sparse representation method STD perform relatively

better than each of their cohort methods, i.e. MSD is better than OSP and STD

is better than SRBBH in terms of the sum of FARs of all targets. STD also has

competitive performance for detecting the vehicle targets, particularly V2 and V3.

However, both of MSD and STD are not as good as the proposed MSCD-l2 in terms

of the sum of FARs for detecting all targets. This also implies that MSCD-l2 is more

stable than other methods, whatever the types of targets and the sizes of them.

To further illustrate the detection performances of the compared methods, we

display the prediction maps of all methods in Figure 7.4 for detecting target F4. Fig-

ure 7.4(b) shows the ground-truth map of target F4. The value of each pixel shown

in Figure 7.4(c)-7.4(i) represents the test statistic value of the pixel: the brighter the

pixel, the higher the test statistic value, and thus the more likely a target. That is, we

expect a good prediction map to show a clear pattern for detecting F4 that the bright-

nesses of the pixels located within the ROIs of F4 are higher than those outside.

From these prediction maps, we can visually observe that 1) OSP (Figure 7.4(c))

and MSD (Figure 7.4(d)) have no such a clear pattern; 2) STD (Figure 7.4(e)),

SRBBH (Figure 7.4(f)), MCD (Figure 7.4(g)) and MSCD-l1(Figure 7.4(h)) look

better, but we can easily spot many outside pixels brighter than the pixels within the

ROIs of F4; 3) among all the maps, MSCD-l2 in Figure 7.4(i) looks the best, though

it still does not provide a zero FAR (FAR = 0.04e-02 in Table 7.3), where the bright

pixels largely stick around the ground-truth of F4, rather than spread over the scene

as in other prediction maps.

7.5.2 The AVIRIS dataset

7.5.2.1 Data description

The AVIRIS data was captured at an airport in the San Diego, CA, USA with the

planes as targets. We select an sub-image that spatially covers a region of 100×100.

As with [24, 94], we remove some bad spectral bands and preserve 189 spectral

bands for evaluation. In the AVIRIS scene, there are three planes need to be de-

tected, consisting of 58 HSI pixels that are labelled as target pixels. The hyper-

spectral image scene and the ground-truth maps are shown in Figure 7.5(a) and
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(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 7.4: Prediction maps of test statistics for detecting F4 in the Hymap image. (a) The
Hymap HSI of the 33rd spectral band; (b) ground-truth labels of F4; (c) OSP,
FAR = 0.13e-02; (d) MSD, FAR = 0.26e-02; (e) STD, FAR = 0.32e-02; (f)
SRBBH, FAR = 0.11e-02; (g) MCD, FAR = 0.45e-02; (h) MSCD-l1, FAR =
0.35e-02; (i) MSCD-l2, FAR = 0.04e-02.
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(a) (b)

Figure 7.5: (a) The AVIRIS sub-image (100 × 100) of the 45th spectral band; (b) the
ground-truth labels of targets including 58 target pixels.

Figure 7.5(b), respectively. It is clear that each target plane covers more than one

HSI pixel. Hence the AVIRIS dataset adopted here is suitable for evaluating the

full-pixel target detection performance of the compared methods.

7.5.2.2 Experimental settings
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Figure 7.6: Spectra of targets in the AVIRIS dataset: (a) all target spectra in the hyperspec-
tral scene; (b) spectra of three training target pixels, which are the central pixels
of the three planes, respectively.

Because the labels for individual HSI pixels are available in the AVIRIS

dataset, we select the three central HSI pixels of each plane as the prior spectra

of target signatures, as with [24] and [94]. The rest of target HSI pixels are used to

evaluate the detection performances of methods. The 58 target spectra and the three

training target spectra are shown in Figure 7.6(a) and Figure 7.6(b), respectively.

We can observe that the spectra of the target HSI pixels still look different from
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each other. However, compared with Figure 5.10 and Figure 5.11 for the Hymap

dataset, the spectral pattern of the AVIRIS targets may be clearer and the targets

may be easier to be detected, as the training target pixels are from the HSI rather

than from spectral libraries.

As with [24] and [94], we use the receiver operating characteristic (ROC)

curves to measure the detection performances for the AVIRIS dataset. The reason

of using ROC instead of FAR is that now we have the labelling information for every

single target HSI pixel, instead of the only available ROIs in the Hymap dataset. We

expect that an ROC curve goes to the top left of the plot, if the detection performance

of a method is good. Additionally, we adopt the area under curve (AUC) statistics

to quantitatively measure the detection performance in pair with the ROC curves.

Table 7.4: Parameters and AUC statistics of the compared methods for the AVIRIS dataset.
The OWR and IWR are set to be 15×15 and 9×9, respectively for OSP, MSD,
STD, SRBBH, MSCD, MSCD-l1 and MSCD-l2. The maximal AUC is in bold-
face.

Subspace
representation

Sparse
representation

Cone
representation

Detector OSP MSD STD SRBBH MCD MSCD-l1 MSCD-l2
Parameter rb rb L L NA λ0 λ1 λ0 λ1

157 7 9 11 NA 1e-03 1e-02 1e-04 1e-02
AUC 0.9527 0.9091 0.9647 0.9547 0.9616 0.9713 0.9632

Similarly, the parameters of each compare method should be determined: the

number of leading eigenvectors rb for the subspace methods OSP and MSD; the

sparsity level L for the SR-based methods; and the shrinkage parameters λ0 and λ1

for both of the proposed MSCD-l1 and MSCD-l2. Again, for illustration purposes,

the parameters are empirically determined and the values are listed in Table 7.4,

with the same tuning ranges of values as for the Hymap dataset.

7.5.2.3 Experimental results and analysis

The ROC curves of all the compared methods are shown in Figure 7.7 and the cor-

responding AUC statistics are listed in Table 7.4. Once again, we can observe that

the proposed MSCD-l1 and MSCD-l2 both outperform MCD, which indicates the

benefit of incorporating the l1-norm and l2-norm regularisations into the cone-based
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Figure 7.7: The ROC curves of the compared methods: OSP, MSD, STD, SRBBH, MCD,
MSCD-l1 and MSCD-l2.

representation for HSI target detection. Moreover, the proposed MSCD-l1 has the

best performance among all the compared method. This implies that, for detecting

full-size target HSI pixels, introducing the sparsity constraints on the coefficients

into the MCD can achieve better performance than the l2-norm constraints on the

coefficients. Generally speaking, the cone representation methods are better than

the sparse representation methods; and the sparse representation methods are better

than the subspace methods for detecting full-size target HSI pixels in the AVIRIS

dataset.

We also plot the prediction maps for all the methods and display them in

Figure 7.8. It can be seen that the cone representation methods, i.e. MCD (Fig-

ure 7.8(f)), MCD-l1 (Figure 7.8(g)) and MCD-l2 (Figure 7.8(h)), look relatively

better than the others. The difference among these three prediction maps are not so

much. Among the other four methods (OSP, MSD, STD and SRBBH), MSD (Fig-

ure 7.8(c)) looks the worst, as it is badly affected by the dual window scheme (Fig-

ure 6.4); and STD looks better than OSP, MSD and SRBBH. However, the colour

contrast in Figure 7.8(d) of STD is not as large as those in Figure 7.8(f)-7.8(h) of

the cone-representation methods. This means that the test statistics of background

pixels and target pixels of MCD, MSCD-l1 and MSCD-l2 are more different than

those of STD, which further illustrates the stable performances of the cone-based
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methods for detecting targets in the AVIRIS dataset.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7.8: Prediction maps for detecting planes in the AVIRIS image. The brighter the
pixels, the more likely to be targets. (a) Ground-truth labels of targets; (b) OSP,
AUC = 0.9527; (c) MSD, AUC = 0.9091; (d) STD, AUC = 0.9647; (e) SRBBH,
AUC = 0.9547; (f) MCD, AUC = 0.9616; (g) MSCD-l1, AUC = 0.9713; (h)
MSCD-l2, AUC = 0.9632.

7.6 Conclusion
In this chapter, we have proposed a new approach called matched shrunken cone de-

tector (MSCD) for hyperspectral target detection. Two working models of MSCD,

namely MSCD-l2 and MSCD-l1, have also been proposed, with the l2-norm and l1-

norm regularisations incorporated into the MSCD, respectively. Geometrically, we

have analysed the underlying effectiveness of MSCD. The values of the coefficients
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are shrunken within a cone either by the l2-norm regularisation or the l1-norm reg-

ularisation, which form two different constrained regions for the coefficients. Sta-

tistically, we have derived MSCD from the Bayesian perspective. We have shown

that if a multivariate half-Gaussian distribution or a multivariate half-Laplace dis-

tribution is assumed as the prior distribution of the coefficients, then MSCD-l2 or

MSCD-l1 can be derived. In our experiments, cases studies on two real hyperspec-

tral datasets have been conducted, with the Hymap dataset to illustrate the sub-pixel

target detection and the AVIRIS dataset to illustrate the full-pixel target detection.

We have compared three categories detectors including the subspace methods, the

sparse representation methods and the cone representation methods. Experimental

results on both of the two datasets have showed the superior performance of the

proposed MSCD.

We would like to make two further notes about the Bayesian derivations. One

the one hand, in the Bayesian paradigm, the half-Gaussian or half-Laplace prior

distribution can be assumed on the basis of our prior knowledge that the model co-

efficients are positive. In principle any distribution of a positive random variable

can be assumed as the prior for such a coefficient; in our case, half-Gaussian and

half-Laplace distributions match the l2-norm and l1-norm regularisations, respec-

tively. That is, the half-Gaussian and half-Laplace priors provide us with a princi-

pled Bayesian interpretation of the two regularised models. On the other hand, if

the practitioners hold some specific prior domain knowledge which prefers to be

modelled by other positive prior distributions, such as log-normal distributions or

gamma distributions, a Bayesian derivation like ours can open a door to different

new regularised models, which fit their practice better. This can be an interesting

and practically valuable direction to further our principled work presented in this

chapter.



Chapter 8

Conclusions and Future Work

In this thesis, we have discussed on the problems of HSI classification and HSI

target detection. Five new methods covered in Chapter 3-7 have been proposed to

solve the corresponding problems. For the HSI classification, we focus on the joint

sparse model (JSM), and have proposed a dictionary learning method called JSM-

based discriminative K-SVD (JSM-DKSVD) (Chapter 3) and a cone-based JSM,

called C-JSM (Chapter 4), respectively. For the HSI target detection which is a

special case of HSI classification, we have developed three new works based on

the linear mixing model (LMM) from the statistical point of view. Specifically, we

first tackle the mixing problem in the target detection, and have proposed a method

called matched subspace detector with interaction effects (MSDinter) (Chapter 5).

Secondly, to solve the problems of high variances of coefficients estimations, we

have proposed two new methods called the matched shrunken subspace detector

(MSSD) (Chapter 6) and the matched shrunken cone detector (MSCD) (Chapter 7),

respectively to shrink the coefficients in the linear model by imposing constraints.

Equally important, we have derived both of MSSD and MSCD from the Bayesian

perspective and have showed that the certain prior distributions are in fact assumed

for the coefficients.

8.1 Relation between chapters
The five works in Chapter 3-7 can be categorised into three groups according to

general concepts: JSM, LMM and cone-representation-based methods. The relation
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between chapters has been briefly illustrated in Figure. 1.1.

8.1.1 JSM-based approaches (Chapter 3 and Chapter 4 )

The two works proposed for HSI classification are based on the JSM. Typical clas-

sification problem consists of two phases: the training phase and the test phase.

The proposed JSM-DKSVD focuses on the training phase, i.e. to train a powerful

dictionary for classification. The proposed C-JSM focuses on the test phase, i.e.

modelling a test HSI pixel so long as a pre-defined dictionary is given. On the one

hand, the proposed C-JSM shares the same application of the JSM, i.e. to model

an HSI pixel. On the other hand, C-JSM can also be incorporated in the dictionary

learning process, so as to learn a dictionary with additionally rich spatial informa-

tion.

8.1.2 LMM-based approaches (Chapter 5, Chapter 6 and Chap-

ter 7)

The three works proposed for HSI target detection are based on the LMM. Let EB

and ET be the sets of background endmembers and target endmembers, respec-

tively. Then no matter we use spectral signatures or eigenvectors to represent the

endmembers, all three works can be regarded as the developments of the following

model:

H0 : x = EBβ +n0,

H1 : x = ET γ +EBβ +n1.
(8.1)

Thus the proposed MSDinter (Chapter 5), MSSD (Chapter 6) and MSCD (Chap-

ter 7) in fact make different contributions to (8.1) with respect to different factors

in (8.1):

• MSDinter: Interaction effects

H0 : x = EBβ +n0,

H1 : x = ET γ +EBβ +Hη +n1.
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• MSSD: l2-norm regularisation on coefficient vectors β and γ

H0 : x = EBβ +n0,

H1 : x = ET γ +EBβ +n1.

• MSCD: Non-negativity and l1, l2-norm regularisation constraints on coeffi-

cient vectors β and γ

H0 : x = EBβ +n0,

H1 : x = ET γ +EBβ +n1.

MSDinter aims to change the linearity of model (8.1) to take into account the

interaction effects between the target and its surrounding background. MSSD and

MSCD on the other hand, aim to make additional constraints on the coefficient

vectors γ and β . Specifically, MSSD conducts the regularisations on the subspace-

representation-based method, i.e. MSD, while MSCD conducts the regularisations

on the cone-representation-based linear model. All in all, the proposed three meth-

ods focus on improvment of the detection performance.

8.1.3 Cone-representation-based approaches (Chapter 4 and

Chapter 7)

For the sake of physical interpretations, HSIs as examples of natural signals have

the non-negative properties for both the hyperspectral signature and the abundance

coefficients of linear models. Geometrically, the non-negativity constraints on JSM

and LMM induce a cone-shape representation. The proposed C-JSM (Chapter 4)

and MSCD (Chapter 7) incorporate the non-negativity constraints in the conven-

tional models JSM and LMM for HSI classification and HSI target detection, re-

spectively. C-JSM and MSCD aim to improve the performances of JSM and LMM

by giving more reasonable assumptions with respect to physical interpretations.
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8.2 Future work

8.2.1 C-JSM based dictionary learning

Despite the dictionaries learned in the baseline method D-KSVD [6] as well as the

proposed JSM-DKSVD (Chapter 3) can provide discriminative power for classifica-

tion, the learned atoms lose the semantic information. Specifically, labels of learned

atoms are lost and the resultant synthetic learned atoms cannot be used to repre-

sent real hyperspectral pixels, even materials. In addition, the learned atom vectors

may also have negative values, which violates the physical properties, i.e. the non-

negativity of hyperspectral signals. Therefore it is desirable to learn a dictionary

with clear physical meaning, where the atoms have labels and are non-negative.

To achieve these goals, the combination of cone-based JSM and the discriminative

dictionary learning will be a promising direction.

8.2.2 Extension of MSSD

In the proposed MSSD (Chapter 6), we have incorporated the l2-norm regularisation

in MSD [7] with two implementations: MSSD with isotropic shrinkage and MSSD

with anisotropic shrinkage. As with the work we have done in MSCD (Chapter 7),

it is interested to investigate the l1-norm regularised MSD. The work in [9] shows

that incorporating the l1-norm regularisation in fact assumes a multivariate Lapla-

cian prior distribution on the coefficient vectors. The l1-norm regularised MSD

is essentially a sparse-representation version of LMM but in the eigenspace. The

sparseness constraints will be incorporated on top on the MSD, which induces an

eigenvector-based sparse representation. It is worth studying the detection perfor-

mance of sparse-based MSD, compared with those of STD [23] and SRBBH [24],

which are typical sparse-representation-based methods but adopt the original spec-

tral signatures for dictionaries.

8.2.3 Some other directions

Beyond the topics we discussed in this thesis, we realise that there are several other

approaches that can be developed in terms of optimisation problems that we pro-

posed, such as the estimation of dictionary in the JSM-DKSVD model (chapter 3)
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and the estimations of coefficient vectors in the proposed MSSD (chapter 6) and

MSCD (chapter 7). Instead of the constrained optimisation approach that we used

to solve the coefficients, the unconstrained optimisation approach is also our interest

in the future.

Regarding the statistical distributions involved in the thesis, we have discussed

about the prior distributions of coefficient vectors in the proposed MSSD (chap-

ter 6) and MSCD (chapter 7). We are also interested in the distribution of the

response in the LMM, i.e. the test HSI pixel x. To study the distribution of the

HSI pixels in terms of different classes can help us to understand deeper about the

properties of data and therefore to develop better classifier/detector in terms of clas-

sification/detection performance.



Bibliography

[1] Dimitris Manolakis, David Marden, and Gary A Shaw. Hyperspectral image

processing for automatic target detection applications. Lincoln Laboratory

Journal, 14(1):79–116, 2003.

[2] Lefei Zhang, Liangpei Zhang, Dacheng Tao, Xin Huang, and Bo Du. Hy-

perspectral remote sensing image subpixel target detection based on super-

vised metric learning. IEEE Transactions on Geoscience and Remote Sens-

ing, 52(8):4955–4965, 2014.

[3] David Snyder, John Kerekes, Ian Fairweather, Robert Crabtree, Jeremy

Shive, and Stacey Hager. Development of a web-based application to evalu-

ate target finding algorithms. In Geoscience and Remote Sensing Symposium,

2008. IGARSS 2008. IEEE International, volume 2, pages II–915. IEEE,

2008.

[4] Yi Chen, Nasser M Nasrabadi, and Trac D Tran. Hyperspectral image clas-

sification using dictionary-based sparse representation. Geoscience and Re-

mote Sensing, IEEE Transactions on, 49(10):3973–3985, 2011.

[5] Dimitris Manolakis, Christina Siracusa, and Gary Shaw. Hyperspectral sub-

pixel target detection using the linear mixing model. Geoscience and Remote

Sensing, IEEE Transactions on, 39(7):1392–1409, 2001.

[6] Qiang Zhang and Baoxin Li. Discriminative K-SVD for dictionary learning

in face recognition. In Computer Vision and Pattern Recognition (CVPR),

2010 IEEE Conference on, pages 2691–2698. IEEE, 2010.



Bibliography 198

[7] Louis L Scharf and Benjamin Friedlander. Matched subspace detectors. Sig-

nal Processing, IEEE Transactions on, 42(8):2146–2157, 1994.

[8] Joel A Tropp, Anna C Gilbert, and Martin J Strauss. Algorithms for simul-

taneous sparse approximation. Part I: Greedy pursuit. Signal Processing,

86(3):572–588, 2006.

[9] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The Elements of

Statistical Learning, volume 1. Springer, Berlin, 2001.

[10] John Wright, Allen Y Yang, Arvind Ganesh, Shankar S Sastry, and Yi Ma.

Robust face recognition via sparse representation. Pattern Analysis and Ma-

chine Intelligence, IEEE Transactions on, 31(2):210–227, 2009.

[11] Joel A Tropp and Anna C Gilbert. Signal recovery from random measure-

ments via orthogonal matching pursuit. IEEE Transactions on information

theory, 53(12):4655–4666, 2007.

[12] David G Luenberger. Optimization by Vector Space Methods. John Wiley &

Sons, 1969.

[13] Dimitris Manolakis, Eric Truslow, Michael Pieper, Thomas Cooley, and

Michael Brueggeman. Detection algorithms in hyperspectral imaging sys-

tems: An overview of practical algorithms. Signal Processing Magazine,

IEEE, 31(1):24–33, 2014.

[14] Nasser M Nasrabadi. Hyperspectral target detection: An overview of cur-

rent and future challenges. Signal Processing Magazine, IEEE, 31(1):34–44,

2014.

[15] Stefania Matteoli, Marco Diani, and Giovanni Corsini. A tutorial overview

of anomaly detection in hyperspectral images. Aerospace and Electronic

Systems Magazine, IEEE, 25(7):5–28, 2010.



Bibliography 199

[16] Stefania Matteoli, Marco Diani, and James Theiler. An overview of back-

ground modeling for detection of targets and anomalies in hyperspectral re-

motely sensed imagery. Selected Topics in Applied Earth Observations and

Remote Sensing, IEEE Journal of, 7(6):2317–2336, 2014.

[17] Daniel C Heinz and Chein-I Chang. Fully constrained least squares linear

spectral mixture analysis method for material quantification in hyperspectral

imagery. IEEE transactions on geoscience and remote sensing, 39(3):529–

545, 2001.

[18] Joseph C Harsanyi and Chein-I Chang. Hyperspectral image classification

and dimensionality reduction: an orthogonal subspace projection approach.

Geoscience and Remote Sensing, IEEE Transactions on, 32(4):779–785,

1994.

[19] Qian Du, Hsuan Ren, and Chein-I Chang. A comparative study for orthogo-

nal subspace projection and constrained energy minimization. IEEE Trans-

actions on Geoscience and Remote Sensing, 41(6):1525–1529, 2003.

[20] Jeff Settle. On constrained energy minimization and the partial unmixing of

multispectral images. IEEE Transactions on Geoscience and Remote Sens-

ing, 40(3):718–721, 2002.

[21] Shawn Kraut and Louis L Scharf. The CFAR adaptive subspace detec-

tor is a scale-invariant GLRT. Signal Processing, IEEE Transactions on,

47(9):2538–2541, 1999.

[22] Shawn Kraut, Louis L Scharf, and L Todd McWhorter. Adaptive subspace

detectors. Signal Processing, IEEE Transactions on, 49(1):1–16, 2001.

[23] Yi Chen, Nasser M Nasrabadi, and Trac D Tran. Sparse representation for

target detection in hyperspectral imagery. Selected Topics in Signal Process-

ing, IEEE Journal of, 5(3):629–640, 2011.



Bibliography 200

[24] Yuxiang Zhang, Bo Du, and Liangpei Zhang. A sparse representation-based

binary hypothesis model for target detection in hyperspectral images. Geo-

science and Remote Sensing, IEEE Transactions on, 53(3):1346–1354, 2015.

[25] Hongyan Zhang, Jiayi Li, Yuancheng Huang, and Liangpei Zhang. A non-

local weighted joint sparse representation classification method for hyper-

spectral imagery. Selected Topics in Applied Earth Observations and Remote

Sensing, IEEE Journal of, 7(6):2056–2065, 2014.

[26] Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro, and Andrew Zis-

serman. Non-local sparse models for image restoration. In Computer Vision,

2009 IEEE 12th International Conference on, pages 2272–2279. IEEE, 2009.

[27] Yuan Yan Tang, Haoliang Yuan, and Luoqing Li. Manifold-based sparse rep-

resentation for hyperspectral image classification. Geoscience and Remote

Sensing, IEEE Transactions on, 52(12):7606–7618, 2014.

[28] Leyuan Fang, Shutao Li, Xudong Kang, and Jon Atli Benediktsson.

Spectral–spatial classification of hyperspectral images with a superpixel-

based discriminative sparse model. Geoscience and Remote Sensing, IEEE

Transactions on, 53(8):4186–4201, 2015.

[29] Jiayi Li, Hongyan Zhang, and Liangpei Zhang. Efficient superpixel-level

multitask joint sparse representation for hyperspectral image classification.

Geoscience and Remote Sensing, IEEE Transactions on, 53(10):5338–5351,

2015.

[30] Ming-Yu Liu, Oncel Tuzel, Srikumar Ramalingam, and Rama Chellappa. En-

tropy rate superpixel segmentation. In Computer Vision and Pattern Recog-

nition (CVPR), 2011 IEEE Conference on, pages 2097–2104. IEEE, 2011.

[31] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal

Fua, and Sabine Susstrunk. SLIC superpixels compared to state-of-the-art

superpixel methods. Pattern Analysis and Machine Intelligence, IEEE Trans-

actions on, 34(11):2274–2282, 2012.



Bibliography 201

[32] Michal Aharon, Michael Elad, and Alfred Bruckstein. K-SVD: An algo-

rithm for designing overcomplete dictionaries for sparse representation. Sig-

nal Processing, IEEE Transactions on, 54(11):4311–4322, 2006.

[33] Zhuolin Jiang, Zhe Lin, and Larry S Davis. Label consistent K-SVD: Learn-

ing a discriminative dictionary for recognition. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 35(11):2651–2664, 2013.

[34] Julien Mairal, Francis Bach, and Jean Ponce. Task-driven dictionary learn-

ing. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

34(4):791–804, 2012.

[35] Ali Soltani-Farani, Hamid R Rabiee, and Seyyed Abbas Hosseini. Spatial-

aware dictionary learning for hyperspectral image classification. IEEE Trans-

actions on Geoscience and Remote Sensing, 53(1):527–541, 2015.

[36] Zhaowen Wang, Nasser M Nasrabadi, and Thomas S Huang. Spatial–spectral

classification of hyperspectral images using discriminative dictionary de-

signed by learning vector quantization. Geoscience and Remote Sensing,

IEEE Transactions on, 52(8):4808–4822, 2014.

[37] Xiaoxia Sun, Nasser M Nasrabadi, and Trac D Tran. Task-driven dictio-

nary learning for hyperspectral image classification with structured spar-

sity constraints. Geoscience and Remote Sensing, IEEE Transactions on,

53(8):4457–4471, 2015.

[38] Zhangyang Wang, Nasser M Nasrabadi, and Thomas S Huang. Semisuper-

vised hyperspectral classification using task-driven dictionary learning with

Laplacian regularization. Geoscience and Remote Sensing, IEEE Transac-

tions on, 53(3):1161–1173, 2015.

[39] Mairal Julien. SPAMS toolbox. http://spams-devel.gforge.

inria.fr/.

http://spams-devel.gforge.inria.fr/
http://spams-devel.gforge.inria.fr/


Bibliography 202

[40] Purdue Research Foundation. A freeware multispectral image data

analysis system. https://engineering.purdue.edu/˜biehl/

MultiSpec/hyperspectral.html, 2014. [Online; accessed 22-July-

2014].

[41] John A Richards and Xiuping Jia. Remote Sensing Digital Image Analysis:

An Introduction. New York: Springer-Verlag, 2006.

[42] John Wright, Yi Ma, Julien Mairal, Guillermo Sapiro, Thomas S Huang,

and Shuicheng Yan. Sparse representation for computer vision and pattern

recognition. Proceedings of the IEEE, 98(6):1031–1044, 2010.

[43] Ziyu Wang, Jianxiong Liu, and Jing-Hao Xue. Joint sparse model-based

discriminative K-SVD for hyperspectral image classification. Signal Pro-

cessing, 133:144–155, 2017.

[44] Yi Chen, Nasser M Nasrabadi, and Trac D Tran. Hyperspectral image classi-

fication via kernel sparse representation. IEEE Transactions on Geoscience

and Remote sensing, 51(1):217–231, 2013.

[45] Jianjun Liu, Zebin Wu, Zhihui Wei, Liang Xiao, and Le Sun. Spatial-spectral

kernel sparse representation for hyperspectral image classification. IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sens-

ing, 6(6):2462–2471, 2013.

[46] V Paul Pauca, Jon Piper, and Robert J Plemmons. Nonnegative matrix fac-

torization for spectral data analysis. Linear Algebra and Its Applications,

416(1):29–47, 2006.

[47] Lidan Miao and Hairong Qi. Endmember extraction from highly mixed data

using minimum volume constrained nonnegative matrix factorization. IEEE

Transactions on Geoscience and Remote Sensing, 45(3):765–777, 2007.

[48] Xuesong Liu, Wei Xia, Bin Wang, and Liming Zhang. An approach based

on constrained nonnegative matrix factorization to unmix hyperspectral data.

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html


Bibliography 203

IEEE Transactions on Geoscience and Remote Sensing, 49(2):757–772,

2011.

[49] Zuyuan Yang, Guoxu Zhou, Shengli Xie, Shuxue Ding, Jun-Mei Yang, and

Jun Zhang. Blind spectral unmixing based on sparse nonnegative matrix

factorization. IEEE Transactions on Image Processing, 20(4):1112–1125,

2011.

[50] Junmin Liu, Jiangshe Zhang, Yuelin Gao, Chunxia Zhang, and Zhihua Li.

Enhancing spectral unmixing by local neighborhood weights. IEEE Jour-

nal of Selected Topics in Applied Earth Observations and Remote Sensing,

5(5):1545–1552, 2012.

[51] Nan Wang, Bo Du, and Liangpei Zhang. An endmember dissimilarity con-

strained non-negative matrix factorization method for hyperspectral unmix-

ing. IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing, 6(2):554–569, 2013.

[52] Cédric Févotte and Nicolas Dobigeon. Nonlinear hyperspectral unmixing

with robust nonnegative matrix factorization. IEEE Transactions on Image

Processing, 24(12):4810–4819, 2015.

[53] Charles Lawson and Richard Hanson. Solving Least Squares Problems. So-

ciety for Industrial and Applied Mathematics, 1995.

[54] Rasmus Bro and Sijmen De Jong. A fast non-negativity-constrained least

squares algorithm. Journal of Chemometrics, 11(5):393–401, 1997.

[55] Alfred M Bruckstein, Michael Elad, and Michael Zibulevsky. On the unique-

ness of nonnegative sparse solutions to underdetermined systems of equa-

tions. IEEE Transactions on Information Theory, 54(11):4813–4820, 2008.

[56] Mehrdad Yaghoobi, Di Wu, and Mike E Davies. Fast non-negative orthog-

onal matching pursuit. IEEE Signal Processing Letters, 22(9):1229–1233,

2015.



Bibliography 204

[57] Qian Shi, Bo Du, and Liangpei Zhang. Spatial coherence-based batch-mode

active learning for remote sensing image classification. IEEE Transactions

on Image Processing, 24(7):2037–2050, 2015.

[58] Mark H Van Benthem and Michael R Keenan. Fast algorithm for the solution

of large-scale non-negativity-constrained least squares problems. Journal of

Chemometrics, 18(10):441–450, 2004.

[59] Dany Leviatan and Vladimir N Temlyakov. Simultaneous approximation by

greedy algorithms. Advances in Computational Mathematics, 25(1-3):73–90,

2006.

[60] Shane F Cotter, Bhaskar D Rao, Kjersti Engan, and Kenneth Kreutz-Delgado.

Sparse solutions to linear inverse problems with multiple measurement vec-

tors. IEEE Transactions on Signal Processing, 53(7):2477–2488, 2005.

[61] Jiayi Li, Hongyan Zhang, Yuancheng Huang, and Liangpei Zhang. Hyper-

spectral image classification by nonlocal joint collaborative representation

with a locally adaptive dictionary. IEEE Transactions on Geoscience and

Remote Sensing, 52(6):3707–3719, 2014.

[62] Martin Slawski and Matthias Hein. Non-negative least squares for high-

dimensional linear models: Consistency and sparse recovery without regu-

larization. Electronic Journal of Statistics, 7:3004–3056, 2013.

[63] Dimitris G Manolakis, Gary A Shaw, and Nirmal Keshava. Comparative

analysis of hyperspectral adaptive matched filter detectors. In AeroSense

2000, pages 2–17. International Society for Optics and Photonics, 2000.

[64] Daniel R Fuhrmann, Edward J Kelly, and Ramon Nitzberg. A CFAR adap-

tive matched filter detector. Aerospace and Electronic Systems, IEEE Trans-

actions on, 28(1):208–216, 1992.



Bibliography 205

[65] Heesung Kwon and Nasser M Nasrabadi. A comparative analysis of kernel

subspace target detectors for hyperspectral imagery. EURASIP Journal on

Applied Signal Processing, 2007(1):193–193, 2007.

[66] Shuo Yang, Zhenwei Shi, and Wei Tang. Robust hyperspectral image target

detection using an inequality constraint. IEEE Transactions on Geoscience

and Remote Sensing, 53(6):3389–3404, 2015.

[67] Zhengxia Zou and Zhenwei Shi. Hierarchical suppression method for hy-

perspectral target detection. IEEE Transactions on Geoscience and Remote

Sensing, 54(1):330–342, 2016.

[68] Shuo Yang and Zhenwei Shi. Hyperspectral image target detection improve-

ment based on total variation. IEEE Transactions on Image Processing,

25(5):2249–2258, 2016.

[69] Yi Chen, Nasser M Nasrabadi, and Trac D Tran. Kernel sparse representa-

tion for hyperspectral target detection. In SPIE Defense, Security, and Sens-

ing, pages 839005–839005–9. International Society for Optics and Photon-

ics, 2012.

[70] Yuxiang Zhang, Liangpei Zhang, Bo Du, and Shugen Wang. A nonlinear

sparse representation-based binary hypothesis model for hyperspectral tar-

get detection. Selected Topics in Applied Earth Observations and Remote

Sensing, IEEE Journal of, 8(6):2513–2522, 2015.

[71] Wei Li and Qian Du. A survey on representation-based classification and de-

tection in hyperspectral remote sensing imagery. Pattern Recognition Letters,

83:115–123, 2016.

[72] Wei Li, Qian Du, and Bing Zhang. Combined sparse and collabora-

tive representation for hyperspectral target detection. Pattern Recognition,

48(12):3904–3916, 2015.



Bibliography 206
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