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Graphical Abstract 

 

Reversible C-H bond activation at a triosmium centre: A comparative study 

of the reactivity of unsaturated triosmium clusters Os3(CO)8(µ-dppm)(µ-H)2 

and Os3(CO)8(µ-dppf)(µ-H)2 with activated alkynes  

 

Md. Arshad H. Chowdhury, Mohd. Rezaul Haque, Shishir Ghosh, Shaikh M. Mobin, 

Derek A. Tocher, Graeme Hogarth, Michael G. Richmond,  Shariff E. Kabir, Herbert W. 

Roesky 

 

The reactivity of two unsaturated triosmium clusters Os3(CO)8(µ-dppm)(µ-H)2 and Os3(CO)8(µ-

dppf)(µ-H)2 toward activated alkynes has been investigated. 
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ABSTRACT 

Heating a benzene solution of the unsaturated cluster Os3(CO)8(µ-dppm)(µ-H)2 (1) [dppm = 

bis(diphenylphosphino)methane] with MeO2CC≡CCO2Me (DMAD) or EtO2CC≡CCO2Et 

(DEAD) at 80 °C furnished the dinuclear compounds Os2(CO)4(µ-dppm)(µ-η2;η1;к1-

RO2CCCHCO2R)(µ-H) (3a, R = Me, 3b, R = Et) and the saturated trinuclear complexes 

Os3(CO)7(µ-dppm)(µ3-η
2;η1;η1-RO2CCCCO2R)(µ-H)2 (4a, R = Me, 4b, R = Et). In contrast, 

similar reactions using unsaturated Os3(CO)8(µ-dppf)(µ-H)2 (2) [dppf = 
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bis(diphenylphosphino)ferrocene] afforded only the trinuclear complexes Os3(CO)8(µ-dppf)(µ-

η2;η1-RO2CCHCCO2R)(µ-H) (5a, R = Me; 5b, R = Et) and Os3(CO)7(µ-dppf)(µ3-η
2;η1;η1-

RO2CCCCO2R)(µ-H)2 (6a, R = Me; 6b, R = Et). Control experiments confirm that 5a and 5b 

decarbonylate at 80 °C to give 6a and 6b, respectively. Both 5a and 5b exist as a pair of isomers in 

solution, as demonstrated by 1H NMR and 31P{1H} NMR spectroscopy. DFT calculations on cluster 5a (as 

the dppf-Me4 derivative) indicate that the isomeric mixture derives from a torsional motion that promotes 

the conformational flipping of the cyclopentadienyl groups of the dppf-Me4 ligand relative to the metallic 

plane. VT NMR measurements on clusters 6a and 6b indicate that while the hydride ligand associated with 

the dppf-bridged Os-Os bond is nonfluxional at room temperature, the second hydride rapidly oscillates 

between the two non-dppf-bridged Os-Os edges. DFT examination of this hydride fluxionality confirms a 

“windshield wiper” motion for the labile hydride that gives rise to a time-average coupling of this hydride 

to both phosphorus centers of the dppf ligand. Thermolysis of 6a and 6b in refluxing toluene yielded 

Os3(CO)7(µ-dppf)(µ-η2;η1;к1-CCHCO2R) (7a, R= Me; 7b, R= Et). The vinylidene moieties in 7a 

and 7b derive from the carbon-carbon bond cleavage of coordinated alkyne ligands, and these two 

products exhibit high thermal stability in refluxing toluene. 

 

Keywords: Unsaturated osmium clusters; Diphosphines; Reversible C-H bond activation; 

Aactivated alkynes; C-C bond scission; DFT. 

 

1. Introduction  

 Over the past three decades, the chemistry of triosmium complexes bearing a bridging 

bis(diphenylphosphino)methane (dppm) ligand has received considerable attention because of 

their interesting chemistry, giving rise to many novel and potentially useful compounds [1-12]. 

In contrast, fewer examples of triosmium carbonyl cluster complexes containing the more 

flexible backbone functionalized derivative, 1,1'-bis(diphenylphosphino)ferrocene (dppf), have 

been reported [12-14]. The high reactivity associated with electronic and coordinative 

unsaturation in mononuclear transition metal complexes has been extensively studied due to their 

potential catalytic applications and interesting chemistry [15]. In comparison and 

notwithstanding the widespread interest in cluster chemistry, the number of unsaturated clusters 

is limited [1, 15-17]. Among these, the most studied example of electronically unsaturated 
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cluster is Os3(CO)10(µ-H)2 [17, 18] which is unsaturated based on its 46e count, and it exhibits 

rich and diverse chemistry that includes fundamental bond activation processes at a wide range 

of substrates. The reactivity of this unsaturated cluster towards alkynes was studied with 

particular interest since coordinatively unsaturated hydride complexes play an important role in 

various homogeneous catalytic processes [19].  

 

The coordination of an alkyne to trinuclear metal complexes depends on both the metal 

and the substituents on the alkyne [20]. Such reactions lead to a number of different products, 

with hydrometalation to yield alkenyl complexes being the most prevalent. As early as 1984, 

Mays and Dawoodi [18i] demonstrated that Os3(CO)10(µ-H)2 reacts with the activated alkyne 

CF3C≡CCF3 to give the zwitterionic alkenyl complex Os3CO)10[µ3-CF3CCC(H)CF3](µ-H) in 

which the hydrocarbyl fragment caps the osmium triangle. Smith and coworkers reported that the 

reaction of the orthometalated dppm derivative Os3(CO)8[µ-Ph2PCH2P(Ph)C6H4](µ-H), another 

example of an interesting 46-electron triosmium hydride cluster, with diphenylacetylene led to 

the formation of the 46e cluster Os3(CO)7(PhC≡CPh)(µ-dppm), in which the alkyne was bonded 

in a µ3-η
2(┴) mode. They also reported that the addition of CO to the latter resulted in 

Os3(CO)7(µ-CO)(PhC≡CPh)(µ-dppm) in which the alkyne is bonded in a µ3-η
2(ǁ) mode [3a,b]. 

Recently, we also reported the reactions of Os3(CO)9(µ3-benzoheterocycle)(µ-H), another type of 

electronically unsaturated triosmium cluster, with alkynes which yielded various products via 

insertion of alkynes into the metal-hydride bond [21].  

 

Although the reactivity of the unsaturated cluster Os3(CO)10(µ-H)2 has extensively been 

investigated [17, 18], few studies have hitherto been published involving the dppm and  dppf 

derivatives Os3(CO)8(µ-dppm)(µ-H)2 (1) and Os3(CO)8(µ-dppf)(µ-H)2 (2). In a recent 

contribution, we reported the reactivity of the unsaturated compounds 1 and 2 towards Ph3SnH, 

which is highly dependent on the nature of diphosphines [12]. With the rigid dppm ligand in 1, 

the stannylene complex Os3(CO)7(µ-SnPh2)2(µ-dppm)(H)2 was the major product, resulting from 

both Sn-H and Sn-C bond activation in addition to the minor products Os3(CO)8(SnPh3)2(µ-

dppm)(µ-H)2 and Os3(CO)8(SnPh3){µ-Ph2PCH2P(Ph)C6H4}(µ-H)2. Cluster 2 containing the 

highly flexible dppf ligand gives a mixture of mono-, di- and triosmium complexes that include 
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Os(CO)4(SnPh3)H, Os2(CO)4(SnPh3)2(µ-HSnPh2)(µ-dppf)(µ-H) and Os3(CO)8(SnPh3)(µ-

dppf)H(µ-H)2 [12]. 

 

Exposing the previously reported reactivity of electron-deficient triosmium clusters 

toward alkynes and the reactivity of the resulting alkyne derivatives, we thought it would be 

useful to perform a similar study of the reactions of activated alkynes with unsaturated triosmium 

hydride clusters Os3(CO)8(µ-dppm)(µ-H)2 (1) and Os3(CO)8(µ-dppf)(µ-H)2 (2). These show 

significant difference in reactivity depending on the flexibility of diphosphine. Herein we report 

our results on the reactions of the activated alkynes DMAD and DEAD with 1 and 2 which are 

quite different as expected. New modes of cluster reactivity are demonstrated, and the resulting 

products characterized by a combination of spectroscopic methods and X-ray diffraction 

analyses. 

 

2. Experimental Section 

 

2.1. General procedures 

 

Unless otherwise stated, all reactions were carried out under a dry nitrogen atmosphere 

using standard Schlenk techniques. Reagent-grade solvents were dried using appropriate drying 

agents and distilled prior to use by standard methods. Infrared spectra were recorded on a 

Shimadzu FTIR 8101 spectrophotometer, and NMR spectra were recorded on a Varian Unity 

Plus 500 spectrometer. All chemical shifts are reported in δ units and are referenced to the 

residual protons of the deuterated solvents (1H) and to external H3PO4 (
31P). Elemental analyses 

were performed by the Microanalytical Laboratories of the Wazed Miah Science Research 

Center at Jahangirnagar University. DMAD and DEAD were purchased from Aldrich Chemical 

Co. and used without further purification. Clusters Os3(CO)8(µ-dppm)(µ-H)2 [22] and 

Os3(CO)8(µ-dppf)(µ-H)2 [13] were prepared according to the literature procedures. Product 

separations were performed by TLC in air on 0.5 mm silica gel (GF254-type 60, E. Merck, 

Germany) glass plates. 
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2.2. Reaction of Os3(CO)8(µ-dppm)(µ-H)2(1) with DMAD at 80 °C  

 

A benzene solution (20 mL) of 1 (50 mg, 0.042 mmol) and DMAD (30 mg, 0.21 mmol) 

was heated to reflux for 4 h. The solvent was removed under reduced pressure and the residue 

separated by TLC on silica gel. Elution with cyclohexane/CH2Cl2 (3:2, v/v) developed four 

bands. The first band was unreacted 1 (trace) and the second band afforded Os2(CO)4(µ-

dppm)(µ-η2;η1;к1-MeO2CCCHCO2Me)(µ-H) (3a) (18 mg, 24%) as pale yellow crystals, while 

the third band gave Os3(CO)7(µ-dppm)(µ3-η
2;η1;η1-DMAD)(µ-H)2 (4a) (15 mg, 27%) as red 

crystals after recrystallization from hexane/CH2Cl2 at 4 °C. The fourth band was too small for 

complete characterization. Spectral data for 3a: Anal. Calcd for C35H30O8Os2P2·2CH2Cl2: C, 

37.32; H, 2.88. Found: C, 37.63; H, 2.95. IR (νCO, CH2Cl2): 2031 s, 1997 vs, 1963 vs,1925 s 

cm-1. 1H NMR (CDCl3): δ 7.68 (m, 2H), 7.54 (m, 2H), 7.48 (m, 1H), 7.39 (m, 2H), 7.26 (m, 3H), 

7.18 (m, 3H), 7.07 (m, 2H), 7.01 (m, 3H), 6.86 (m, 2H), 5.32 (s, CH2Cl2), 4.75 (d, J 24, 15 Hz, 

1H), 4.43 (d, J 5 Hz, 1H), 4.01 (d, J 24, 15 Hz, 1H), 3.77 (s, 3H), 3.66 (s, 3H), -12.92 (dd, J 9, 7 

Hz, 1H). 31P{1H} NMR(CDCl3): δ -2.3 (d, J 52 Hz, 1P), -11.9 (d, J 52 Hz, 1P). Spectral data for 

4a: Anal. Calcd for C38H30O11Os3P2: C, 35.24; H, 2.34. Found: C, 35.41; H, 2.53. IR (νCO, 

CH2Cl2): 2070 vs, 2035 s, 2013 s, 1990 vs cm-1. 1H NMR (CDCl3): δ 7.58 (m, 2H), 7.49 (m, 2H), 

7.43 (m, 1H), 7.35 (m, 2H), 7.21 (m, 3H), 7.13 (m, 3H), 7.02 (m, 2H), 6.96 (m, 3H), 6.81 (m, 

2H), 4.71 (m, 1H), 3.97 (m, 1H), 3.73 (s, 3H), 3.63 (s, 3H), -15.90 (t, J 11.5 Hz, 1H), -19.85 (d, J 

33 Hz, 1H). 31P{1H} NMR(CDCl3): δ -21.5 (d, J 45 Hz, 1P), -23.4 (d, J 45 Hz, 1P). 

 

2.3. Reaction of 1 with DEAD at 80 °C 

 

The reaction of 1 (50 mg, 0.042 mmol) and DEAD (36 mg, 0.21 mmol) followed a 

protocol similar to that described in the above procedure. Here the workup afforded Os2(CO)4(µ-

dppm)(µ-η2;η1;к1-EtO2CCCHCO2Et)(µ-H) (3b) (13 mg, 29%) as pale yellow crystals and 

Os3(CO)7(µ-dppm)(µ3-η
2;η1;η1-DEAD)(µ-H)2 (4b) (9 mg, 16%) as red crystals from 

hexane/CH2Cl2 at 4 °C. Spectral data for 3b: Anal. Calcd. for C37H34O8Os2P2: C, 42.36; H, 3.27. 

Found: C, 42.50; H, 3.41%. IR (νCO, CH2Cl2): 2031 s, 1996 vs, 1962 vs, 1924 s cm-1. 1H NMR 

(CDCl3): δ 7.68 (m, 2H), 7.54 (m, 2H), 7.47(m, 1H), 7.40 (m, 2H), 7.26 (m, 3H), 7.17(m, 3H), 
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7.03 (m, 5H), 6.86 (m, 2H), 4.82 (m, 1H), 4.47 (d, J 8 Hz, 1H), 4.35 (m, 1H), 4.08 (m, 4H), 1.29 

(t, J 6 Hz, 3H), 1.23 (t, J 8 Hz, 3H), -12.93 (dd, J 12, 8 Hz). 31P{1H} NMR(CDCl3): δ -2.1 (d, J 

52 Hz, 1P), -11.8 (d, J 52 Hz, 1P). Spectral data for 4b: Anal. Calcd. for C40H34O11Os3P2: C, 

36.31; H, 2.59. Found: C, 36.82; H, 2.65. IR (νCO, CH2Cl2): 2069 vs, 2035 s, 2012 s, 1989 s cm-

1. 1H NMR (CDCl3): δ 7.56 (m, 5H), 7.38 (m, 6H), 7.22 (m, 9H), 4.41 (m, 2H), 4.25 (m, 1H), 

4.13 (m, 1H), 3.94 (m, 2H), 1.31 (t, J 7.5 Hz, 3H), 1.0 (t, J 7.5 Hz, 3H), -15.77 (dd, J 16, 12 Hz, 

1H), -19.81 (d, J 32 Hz, 1H). 31P{1H} NMR (CDCl3): δ -22.1 (d, J 44 Hz, 1P), -23.7 (d, J 44 Hz, 

1P). 

 

2.4. Reaction of 1 with DMAD at 110 °C 

 

A toluene solution (20 mL) of 1 (50 mg, 0.042 mmol) and DMAD (30 mg, 0.21 mmol) was 

heated to reflux for 3 h. A similar chromatographic separation and work up described above 

afforded only 3a (26 mg, 35%). 

 

2.5. Reaction of 1 with DEAD at 110 °C 

 

A mixture of 1 (50 mg, 0.042 mmol) and DEAD (36 mg, 0.21 mmol) was heated in boiling 

toluene (20 mL) for 3h. A similar chromatographic separation and work up described above 

furnished only 3b (19 mg, 42%). 

 

2.6. Thermolysis of 4a and 4b 

 

A toluene solution (15 mL) of 4a (15 mg, 0.012 mmol) was heated for 2 h maintaining the bath 

temperature 80 °C. The reaction mixture did not show any significant change during this period. 

The bath temperature was then raised to 110 °C and heating was continued for further 2 h which 

led to unspecific decomposition. A similar chromatographic separation described above led to 

the recovery of unreacted 4a (7 mg) only. Thermal treatment of 4b following the 

abovementioned protocol showed similar results i.e., only led to the recovery of unreacted 4b (5 

mg).    
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2.7. Reaction of Os3(CO)8(µ-dppf)(µ-H)2 (2) with DMAD 

 

A benzene solution (30 mL) of 2 (0.10 g, 0.075 mmol) and DMAD (45 µL, 0.37 mmol) was 

heated to reflux for 2.5 h, during which time the color of the solution changed from green to 

yellow. The solvent was removed under reduced pressure and the residue chromatographed by 

TLC on silica gel. Elution with cyclohexane/CH2Cl2 (1:1, v/v) developed two bands which 

afforded, in order of elution, Os3(CO)8(µ-dppf)(µ3-η
2;η1-MeO2CCHCCO2Me)(µ-H) (5a) (17 mg, 

30%) and Os3(CO)7(µ-dppf)(µ3-η
2;η1;η1-DMAD)(µ-H)2 (6a) (25 mg, 46%) as yellow crystals 

after recrystallization from hexane/CH2Cl2 at -4 °C. Spectral data for 5a: Anal. Calcd. for 

C48H36FeO12Os3P2·CH2Cl2: C, 37.29; H, 2.43. Found: C, 37.65; H, 2.54.IR (νCO, CH2Cl2): 2077 

s, 2037 vs, 2013 vs, 1990 vs, 1966 w cm-1. 1H NMR (CDCl3): both isomer, δ 7.74 (m, 6H), 7.61-

7.56 (m, 12H), 7.46 (m, 3H), 7.37 (m, 8H), 7.29 (m, 3H), 7.14 (m, 2H), 7.07 (m, 6H), 5.30 (s, 

CH2Cl2), 5.01 (s, 1H), 4.83 (s, 1H), 4.38 (s, 1H), 4.35 (s, 1H), 4.30 (s, 1H), 4.26 (s, 2H), 4.13 (s, 

1H), 3.97 (s, 1H), 3.85 (s, 1H), 3.77 (s, 2H), 3.70 (s, 1H), 3.67 (s, 3H), 3.64 (s, 3H), 3.60 (s, 1H), 

3.56 (s, 2H), 3.41 (s, 3H), 2.98 (s, 3H), -17.67 (t, J 10 Hz, 1H), -17.81 (dd, J 15, 10 Hz). 31P{1H} 

NMR (CDCl3): both isomer, δ 3.1 (s, 1P), -6.0 (s, 1P), -8.3 (s, 1P), -9.0 (s, 1P). Spectral data for 

6a: Anal. Calcd. for C47H36FeO11Os3P2: C, 38.53; H, 2.48. Found: C, 38.75; H, 2.66. IR (νCO, 

CH2Cl2): 2076 vs, 2035 s, 2011 s, 1970 w, 1941 w cm-1. 1H NMR (25 °C, CDCl3): δ 7.53 (m, 

4H), 7.42 (m, 16H), 4.34 (s, 2H), 4.18 (s, 2H), 4.07 (s, 2H), 3.98 (m, 2H), 3.41 (s, 6H), -16.65 (t, 

J 10 Hz, 1H), -19.80 (t, J 10 Hz, 1H). 31P{1H} NMR (CDCl3, -40 oC): δ 3.2 (s, 1P), -9.7 (s, 1P). 

 

2.8. Reaction of 2 with DEAD 

 

A solution of 2 (0.10 g, 0.075 mmol) and DEAD (59 µL, 0.37 mmol) in benzene (30 mL) 

was heated to reflux for 3 h. The solvent was removed under reduced pressure and the residue 

chromatographed by TLC on silica gel. Elution with cyclohexane/CH2Cl2 (1:1, v/v) afforded two 

bands, which gave the following compounds in order of elution, Os3(CO)8(µ-dppf)(µ-η2;η1-

EtO2CCHCCO2Et)(µ-H) (5b) (15 mg, 26%) and Os3(CO)7(µ-dppf)(µ3-η
2;η1;η1-DEAD)(µ-H)2 

(6b) (24 mg, 63%) as yellow crystals after recrystallization from hexane/CH2Cl2 at -4 °C. 
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Spectral data for 5b: Anal. Calcd for C50H40FeO12Os3P2: C 39.46; H 2.65. Found: C 39.62; H, 

2.78%. IR (νCO, CH2Cl2): 2077 vs, 2036 vs, 2012 vs, 1990s, 1967w cm-1. 1H NMR (CDCl3): 

both isomer (aromatic protons), δ 7.76 (m, 5H), 7.60 (m, 5H), 7.55 (m, 6H), 7.46-7.37 (m, 16H), 

7.29 (m, 2H), 7.14 (m, 1H), 7.07 (m, 5H); major isomer (Cp and Et protons), 4.30 (s, 1H), 4.25 

(s, 1H), 4.14 (m, 3H), 3.96 (s, 1H), 3.91 (m, 4H), 3.90 (s, 1H), 3.78 (s, 1H), 3.70 (s, 1H), 1.24 (t, 

10 Hz, 3H), 0.85 (t, 10Hz, 3H), minor isomer (Cp and Et protons), 4.83 (s, 1H), 4.34 (s, 1H), 

4.27 (s, 1H), 3.94 (s, 1H), 3.87 (s, 1H), 3.82 (m, 2H), 3.75 (s, 1H), 3.61 (s, 1H), 3.51 (s, 1H), 

3.46 (m, 2H), 1.00 (t, 10 Hz, 3H), 0.72 (t, 10 Hz, 3H); major isomer (hydride), -17.69 (t, J 10 Hz, 

1H), minor isomer (hydride), -17.76 (t, J 10 Hz, 1H). 31P{1H} NMR (CDCl3): major isomer, δ 

3.0 (s, 1P), -8.4 (s, 1P); minor isomer, δ -6.0 (s, 1P), -8.9 (s, 1P). Spectral data for 6b: Anal. 

Calcd. for C49H40FeO11Os3P2: C, 39.41; H, 2.70. Found: C, 39.61; H, 2.85%. IR (νCO, CH2Cl2): 

2076 vs, 2035 vs, 2010 vs, 1970 m, 1941m cm-1. 1H NMR (CDCl3): δ 7.56 (br, m, 4H), 7.42 (m, 

16H), 4.08 (br, 2H), 3.94 (overlapping singlets, 6H), 3.83 (m, 4H), 1.00 (t, J 10 Hz, 6H), -16.70 

(t, J 10 Hz, 1H), -19.12 (t, J 10 Hz, 1H). 31P{1H} NMR (CDCl3, 25 °C): δ -6.5(br, s). 

 

2.9. Conversion of 5a to 6a 

 

A benzene solution (20 mL) of 5a (20 mg, 0.075 mmol) was heated to reflux for 3 h. The 

solvent was removed under reduced pressure and the residue was chromatographed by TLC on 

silica gel. Elution with cyclohexane/CH2Cl2 (1:1, v/v) developed two bands. The major band 

afforded 6a (18 mg, 89%), while the minor band gave unreacted 5a (trace). 

 

2.10. Conversion of 5b to 6b 

 

A similar thermolysis of 5b (20 mg, 0.075 mmol), following the above mentioned protocol, at 

80 °C for 3.5 h afforded 6b (18 mg, 90%) after chromatographic separation and workup. 

 

2.11. Thermolysis of 6a 
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A toluene solution (20 mL) of 6a (25 mg, 0.017 mmol) was heated to reflux for 3.5 h. 

The solvent was removed under reduced pressure and the residue chromatographed by TLC on 

silica gel. Elution with cyclohexane/CH2Cl2 (1:1, v/v) developed two bands. The major band 

gave Os3(CO)7(µ-dppf)(µ-η2;η1;к1-CCHCO2CH3) (7a) (24 mg, 50%) as yellow crystals after 

recrystallization from hexane/CH2Cl2 at -4 °C, and the minor band (trace) was not characterized. 

Spectral data for 7a: Anal. Calcd for C45H32FeO9Os3P2: C, 38.46; H, 2.30. Found: C, 38.65; H, 

2.48. IR (νCO, CH2Cl2): 2038 vs, 1989 s, 1959 w, 1942 sh cm-1. 1H NMR (CDCl3): δ 8.07 (m, 

2H), 7.76 (m, 3H), 7.58 (m, 4H), 7.51 (m, 4H), 7.32 (m, 3H), 7.20 (m, 4H), 7.01 (m, 1H), 5.33 

(s, 1H), 5.04 (s, 1H), 4.32 (s, 1H), 4.25 (s, 1H), 4.09 (s, 1H), 3.81 (s, 1H), 3.73 (s, 1H), 3.70 (s, 

1H), 3.33 (s, 1H), 2.83 (s, 3H). 31P{1H} NMR (CDCl3): δ 14.5 (s, 1P), 7.1 (s, 1P). 

 

2.12. Thermolysis of 6b 

 

A similar thermolysis of 6b (25 mg, 0.016 mmol) at 110 °C for 3.5 h gave Os3(CO)7(µ-

dppf)(µ-η2;η1;к1-CCHCO2Et) (7b) (12 mg, 48%) as yellow crystals after recrystallization from 

hexane/CH2Cl2 at -4 °C. Spectral data for 7b: Anal. Calcd. for C46H34FeO9Os3P2·CH2Cl2: C, 

37.53; H, 2.41. Found: C, 37.76; H, 2.65. IR (νCO, CH2Cl2): 2038 vs, 1989 s, 1959 m, 1943 sh 

cm-1. 1H NMR (CDCl3): δ 8.07 (m, 2H), 7.74 (m, 3H), 7.58 (m, 4H), 7.48 (m, 5H), 7.32 (m, 1H), 

7.19 (m, 3H), 7.01 (m, 2H), 5.33 (s, 1H), 5.30 (s, CH2Cl2), 5.28 (s, 1H), 5.04 (s, 1H), 4.32 (s, 

1H), 4.24 (s, 1H), 4.10 (s, 1H), 3.81 (s, 1H), 3.70 (s, 1H), 3.34 (s, 1H), 3.19 (m, 1H), 2.93 (m, 

1H), 0.96 (t, J 10 Hz, 3H). 31P{1H} NMR (CDCl3): δ 14.2 (s, 1P), 6.8 (s, 1P). 

 

2.13. X-ray crystallography 

 

Single crystals of 3a, 4b, 5a, 6a, 6b, and 7b suitable for single-crystal X-ray diffraction analyses 

were mounted on Nylon loops with inert oil or Apiezon grease. For compound 3a, data were 

collected on a Bruker D8 SMART APEX CCD diffractometer. For compound 4b, data were 

collected on a Rigaku XtaLab mini bench-top diffractometer. Data for compounds 5a, 6a, 6b and 

7b were measured on an Agilent Technologies Super Nova diffractometer. Data collection 

temperatures and X-ray sources are reported in Table 1 together with other crystallographic 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

10 

 

details. Data reduction and absorption corrections were carried out using SAINT+ and SADABS 

[23] for 3a and with Crystal Clear [24] for 4b. For compounds 5a, 6a, 6b and 7b, data reduction 

and absorption corrections were carried out with Crysalis Pro [25]. Structures were solved by 

direct methods and refined by difference fourier synthesis using the SHELX [26] suite of 

programs within either the WinGX [27] or Olex 2 [28] graphical user interfaces. Non-hydrogen 

atoms were refined anisotropically and hydrogens included using a riding model. Hydride 

ligands were located as weak features in the final electron density maps. The quality of the single 

crystals of 5a available for XRD analysis was relatively poor which led to the collection of low 

quality data hence the resolution of the data set for this complex is poor. 

 

2.14. Computational Methodology 

 

The DFT calculations were carried out with the Gaussian 09 package of programs [29] 

using the B3LYP hybrid functional. This functional is comprised of Becke's three-parameter 

hybrid exchange functional (B3) [30] and the correlation functional of Lee, Yang, and Parr 

(LYP) [31]. The iron and osmium atoms were described with the Stuttgart-Dresden effective 

core potential and SDD basis set [32], and the 6-31G(d’) basis set [33] was employed for the P, 

O, C, and H atoms. To facilitate the calculations, the phenyl groups on the dppf ligand were 

replaced with methyl groups (dppf-Me4). 

 

The reported geometries for clusters A-D_alt were fully optimized, and the analytical 

Hessian was evaluated at each stationary point to confirm that the geometry was an energy 

minimum (no negative eigenvalues). Intrinsic reaction coordinate (IRC) calculations were 

performed on TSDD_alt in order to establish the reactant and product species associated with 

this transition-state structure. Unscaled vibrational frequencies were used to make zero-point and 

thermal corrections to the electronicenergies and the resulting free energies are reported in 

kcal/mol relative to the specified standard. Standard state corrections were applied to all species 

to convert concentrations from 1 atm to 1 M according to the treatise of Cramer [34]. The 

geometry-optimized structures have been drawn with the JIMP2 molecular visualization and 

manipulation program [35]. 
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3. Results and discussion  

 

3.1. Reactions of Os3(CO)8(µ-dppm)(µ-H)2 (1) with DMAD and DEAD 

 

Refluxing cluster 1 with DMAD or DEAD in benzene afforded the dinuclear compounds 

Os2(CO)4(µ-dppm)(µ-η2;η1;к1-RO2CCCHCO2R)(µ-H) (3a, R = Me, 24%; 3b, R = Et, 29%) and 

the saturated trinuclear complexes Os3(CO)7(µ-dppm)(µ3-η
2;η1-RO2CCCCO2R)(µ-H)2 (4a, R = 

Me, 27%; 4b, R = Et, 16%) after chromatographic separation. Scheme 1 highlights the results of 

the reaction of cluster 1 with the two alkynes. The formation of dinuclear products in this 

reaction is consistent with that observed from the photochemical reaction of Os3(CO)12 with 

DMAD [36]. Compounds 3a and 3b were the only products isolated when the same reactions 

were carried out in toluene at 110 °C. Heating compounds 4a and 4b at 80-110 °C did not 

produce any of 3a and 3b indicating that these trinuclear clusters do not serve as precursor for 

the dinuclear products i.e., they are formed via different reaction pathways. Both the dinuclear 

compounds were characterized by a combination of elemental analyses, infrared and 1H and 
31P{1H} NMR spectroscopy, together with a single crystal X-ray diffraction analysis for 3a. 

 

 

 

Scheme 1 

An ORTEP diagram of the molecular structure of 3a is depicted in Fig. 1 and selected 

bond distances and angles are quoted in the caption. The molecule has 34 valence electrons and 

consists of a dinuclear framework of two osmium atoms where the Os-Os bond is spanned by 
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edge-bridging hydride and dppm ligands. Each osmium center contains two terminal CO groups 

and bonded to “flyover” µ-η2;η1;к1-MeO2CCCHCO2Me ligandwhich functions as a 5e donor. It 

is coordinated to the dimetallic centre through the alkenyl functionality in a σ,π-vinyl fashion in 

such a way that the C(5) carbon is coordinated to Os(1) through an Os-C σ-bond [Os(1)-C(5) 

2.143(8) Å)] and a π interaction between C(5)-C(6) and Os(2) [Os(2)C(5) 2.141(8) Å and Os(2)-

C(6) 2.177(9) Å]. The alkenyl carbon, C(6), is also bonded to a hydrogen atom. A similar 

bonding mode of the alkenyl ligand was reported in the diiron compound Fe2(CO)4(µ-PPh2)(µ-

dppm)(µ-η2;η1-MeO2CCCHCO2Me), obtained from the reaction of Fe2(CO)4(µ-H)(µ-CO)(µ-

PPh2)(µ-dppm) with DMAD [37]. There is also an additional bonding interaction between a 

carbonyl oxygen, O(5), of one of the carboxylate groups and the Os(1) atom. The C(5)-C(6) 

bond distance in 3a [1.460(11)] is significantly shorter than the expected sp3-sp3 carbon-carbon 

single bond distance and is very similar to the carbon-carbon bond distance in Os3(CO)9(µ-

η2;η1;к1-MeO2CCCHCO2Me)(µ-C7H4NS) [21a]. The conversion of the alkyne to an alkenyl 

moiety is facilitated by the transfer of one of the original hydride ligands in 1 to the DMAD 

substrate. The Os-Os distance of 2.9254(6) Å in 3a is slightly longer that found in Os2(CO)8(µ-

η1;η1-DMAD) [36] [2.8975(1)Å] and Os2(CO)8(µ-η1;η1-CH2CHCO2Me) [38] (2.8850(1) Å). The 

Os-P bond lengths in 3a, while are asymmetrical in nature, [Os(1)-P(1) 2.303(2), Os(2)-P(2) 

2.346(2) Å] agree with those Os-P bond distances reported for the parent compound 1 [1b] 

[2.336(5) and 2.337(5) Å] whose Os-P bond distances that are highly symmetrical. 

 

Place Figure One Here 

 

 The spectroscopic data for 3a are consistent with the solid-state structure. Moreover, the 

spectral data for 3b closely parallel the data recorded for 3a, confirming that both products 

possess a similar structure. The IR spectra recorded for 3a and 3b in the carbonyl region show 

four strong bands, whose frequencies and intensities are virtually identical as expected for this 

genre of tetracarbonyl complexes. In addition to the well-separated resonances associated with 

the dppm ligand and ester groups, the 1H NMR spectra display a doublet at δ 4.43 (J 5 Hz) for 3a 

and 4.47 (J 8 Hz) for 3b due to the C-H proton of the alkynyl ligand which couples to one of the 

phosphorus atoms of the dppm ligand. The hydride region in the 1H NMR spectra shows a 
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doublet of doublets at δ -12.92 (J 9, 7 Hz) for 3a and -12.93 (J 8, 12 Hz) for 3b, each integrating 

for 1H, confirming the presence of an edge-bridging hydride ligand coupled toboth phosphorus 

atoms.The 31P{1H} NMR spectra recorded for 3a and 3b reveal two doublets [δ -2.3 and -11.9 (J 

52 Hz) for 3a; δ -2.1 and -11.8 (J 52 Hz) for 3b], reaffirming the presence of inequivalent 

phosphorus atomsin the formulated structures of 3a and 3b. 

 

Compounds 4a and 4b were characterized by analytical and spectroscopic methods, 

together with a single crystal X-ray diffraction analysis for 4b. An ORTEP diagram ofthe 

molecular structure of 4b is shown in Fig. 2 with selected bond distances and angles contained in 

the caption. Compound 4b is electronically saturated and contains 48 valence electrons. The 

three  osmium atoms display a scalene triangular array based on three distinctly different metal-

metal bond lengths [Os(1)-Os(3) 2.7881(17), Os(1)-Os(2) 2.8729(19), Os(2)-Os(3) 3.0128(13) 

Å] and the dppm ligand bridges the Os(1)-Os(2) bond. The presence of seven terminal carbonyl 

ligands, two edge-bridging hydride ligands, and a face-capping DEAD ligand complete the 

ligand coordination sphere. The µ3-DEAD ligand, which acts as a 4e donor, interacts with all 

three metal atoms through an η2(π)-interaction between C(8)-C(9) and Os(1) [Os(1)-C(8) 

2.251(8) and Os(1)-C(9) 2.060(7) Å] and through two formal Os-C σ-bonds to Os(2) and Os(3) 

[Os(2)-C(8) 2.153(8) and Os(3)-C(9) 2.063(8) Å]. The C(8)-C(9) bond distance in 4b 

[1.408(10)] compares well to the C-C bond distance of 1.40(2)Å in the related alkyne-substituted 

cluster Os3(CO)10(µ3-η
2;η1;η1-DMAD) [39]. The two Os-P bond distances are nearly equal in 

length [Os(1)-P(1) 2.355(3), Os(2)-P(2) 2.340(2) Å] and comparable to the Os-P distances in the 

parent cluster 1 [2.336(5) and 2.337(5) Å] [1a]. The hydrides in 4b could not be located from the 

structural studies, but are assumed to span Os(1)-Os(2) and Os(2)-Os(3) edges based on the 

disposition of the ancillary ligands about the three osmium centers. 

 

Place Figure 2 Here 

 

The spectroscopic recorded for 4b are consistent with the solid-state structure. Given the 

similarity of the IR and NMR data of 4a and 4b, we conclude that these products are 

isostructural. The spectroscopic data for 4a and 4b are summarized in the experimental section. 
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Important features displayed by both products include two distinct hydride resonances that 

appear as a triplet and doublet. The former represents the hydride that shares the Os-Os edge 

with the bridging dppm ligand while the doublet is assigned to an adjacent Os-Os bond whose 

splitting is attributed to the vicinal phosphorus atom of the dppm ligand. The observed 2JPH 

coupling in the latter hydride confirms that the hydrides are non-fluxional under these conditions. 

Finally, the two doublets recorded in the 31P NMR spectrum for the dppm ligand in each product 

are consistent with the formulated structure. 

 

3.2. Reactions of Os3(CO)8(µ-dppf)(µ-H)2 (2) with DMAD and DEAD 

 

Two sets of new triosmium complexes, Os3(CO)8(µ-dppf)(µ-η2;η1-RO2CCHCCO2R)(µ-

H) (5a,R = Me,30%; 5b, R = Et, 46%) and Os3(CO)7(µ-dppf)(µ3-η
2;η1;η1-RO2CCCCO2R)(µ-H)2 

(6a, R = Me, 26% 6b, R = Et, 63%), were obtained when 2 was reacted with DMAD and DEAD, 

respectively, in refluxing benzene. Scheme 2 shows these reactions leading to the new triosmium 

clusters 5a,b and 6a,b. 
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Scheme 2 

Clusters 5a and 5b have been characterized by a combination of IR, and 1H and 31P{1H} 

NMR spectroscopy, and the solid-state structure of 5a has been established by single-crystal X-

ray diffraction analysis. The molecular structure of 5a, which is depicted in Fig. 3 and whose 

caption includes pertinent bond distances and bond angles, confirms the formal insertion of the 

alkyne into one of the hydride bonds in cluster 1 to yield an edge-bound alkenyl moiety. The 

closed triangular array of osmium atoms exhibitsthree distinctly different metal-metal bond 

lengths that range from 2.8156(5) Å [Os(1)-Os(3)] to 3.1191(5) Å [Os(1)-Os(2)] with a mean 

distance of 2.9514 Å. There are eight terminal carbonyl groups in 5a and one of the CO groups at 

the Os(CO)4 center in 1 has migrated to the adjacent Os(2) atom in 5a. The dppf ligand bridges 

the Os(1)-Os(2) edge, and while the position of the hydride ligand in 5a could not be located 

crystallographically, its association with the Os(1)-Os(2) edge is confirmed 1) by the disposition 

of the ancillary ligands about this Os-Os bond and 2) the fact that it is split into a triplet due to 

equal coupling with both phosphorus atoms of the dppf ligand [40]. The µ-MeO2CCHCCO2Me 

ligand asymmetrically spans the Os(1)-Os(3) edge and displays a formal σ bond to Os(1) [Os(1)-

C(9) 2.097(9) Å] and a π-bond interaction to Os(3) [Os(3)-C(9) 2.212(8) Å, Os(3)-C(10) 

2.274(9) Å]. The σ-η2vinyl-type interaction observed here is in keeping with the bond lengths 

found in other trimetallic systems with similar alkyne-derived ligands [41, 42]. The bridging 

alkenyl ligand acts as a 3e electron donor, and theπ-coordinated C(9)-C(10) double bond 

[1.453(13) Å]is elongated ca. 0.1 Å with respect to a free C=C double bond of an alkene. 

 

Place Figure 3 Here 

 

The recorded IR spectra in the ν(CO) region for 5a and 5b are similar, and the two 

clusters are assumed to be isostructural with respect to the distribution of their ligands about the 

Os3 framework. Aside from the phenyl, cyclopentadienyl and RO2CCHCCO2R (R = Me, Et) 

proton resonances in the 1H NMR spectra, the hydride region of each product exhibits a triplet 

and a doublet of doublets at δ –17.67 (major) and –17.81 (minor) for 5a and δ –17.69 (major) and 

–17.76 (minor) for 5b, respectively, suggesting that each cluster exists as two isomers in 

solution. The existence of isomers is mirrored in the 31P{1H} NMR spectra of 5a and 5b based 
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on two sets of singlets for the inequivalent phosphorus atoms, as summarized in the experimental 

section. 

 

The possible composition of the 5a isomers was investigated by DFT, and here we 

employed the X-ray diffraction structure of 5a as our starting point. Geometry optimization of 5a 

using an ancillary dppf-Me4 ligand furnished species C whose structure is shown in Fig. 4. The 

calculated structure for C shows good agreement with the solid-state structure of 5a and 

reinforces the proposed location of the edge-bridging hydride across the dppf-Me4-bridged 

Os-Os edge. We also optimized the structures of the starting cluster 2 (species A) and DMAD 

(species B) in order to evaluate the thermodynamics for the formation of C. The reaction of A 

with B to give C is exergonic, and the product lies 19.7 kcal/mol below the reactants. The 

potential energy (∆G) surface for the reaction is shown in Fig. 5. Species C_alt was confirmed as 

the minor component of the isomers that constitute 5a, and the main difference between C and 

C_alt concerns the disposition of the cyclopentadienyl rings of the dppf-Me4 ligand relative to 

the metallic plane. We have described a similar torsional motion of the cyclopentadienyl ligands 

in the parent cluster 2 in our earlier report [13]. The free energy difference between the two 

species is small (∆G = 0.7 kcal/mol) and favors C. The computed Keq value of 0.30 for the C⇌ 

C_alt is somewhat greater than the experimentally found value of 0.53 for the isomer pair. This 

difference between the measured value of Keq (0.53) and the computed value (0.30) can be 

attributed to the fact that DFT calculations were performed in the gas phase and no solvent 

correction has been applied. 

 

Place Figures 4 and 5 Here 

 

 Independent control experiments established that compounds 5a,b are precursors to 6a,b. 

Thermolysis of 5a and 5b cluster in refluxing toluene leads to CO loss and the formation of the 

corresponding product 6a and 6b, respectively. This conversion of alkenyl complexes (5a,b) to 

alkyne and hydride complexes (6a,b) is quite unusual as normally an alkyne inserts into the 

metal-hydride bond to give an alkenyl complex [20, 21]. However, an alkyne-hydride 

intermediate has been proposed to form during α-β isomerisation of alkenyl ligands at binuclear 
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centers via this kind of conversion (Scheme 3) [43, 44]. The only difference between the two 

systems is that the alkenyl to alkyne conversion is reversible during α-β isomerisation of alkenyls 

at the binuclear centers, whereas the alkyne is ‘trapped’ here due to loss of CO which requires a 

change in coordination mode of the alkyne to preserve the EAN count of 48 at the trinuclear 

centers. 

 

M M

R

H

alkenyl

H

M M

H

H R

alkyne and hydride
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H

 

Scheme 3.  

 

Both 6a and 6b were isolated by chromatography and structurally characterized by X-ray 

crystallography. The molecular structures of 6a and 6b are depicted in Figs. 6 and 7, 

respectively. Compounds 6a and 6b consist of a closed triangular array of osmium atoms 

whereone of the polyhedral faces is capped by the alkyne ligand. The transformation from 5a,b 

to 6a,b confirms that the original edge-bridging alkenyl moiety undergoes a C-H bond activation 

during the reaction. The Os-Os bond common to the bridging dppf and hydride ligands [Os(1)-

Os(2) 3.0719(6) Å for 6a; Os(1)-Os(3) 3.0685(6) Å for 6b] is longer than the other hydride-

bridged Os-Os edge [Os(2)-Os(3) 2.8726(17) Å for 6a;and Os(2)-Os(3) 2.8649(5) for 6b]. The 

mean Os-Os bond distance in 6a and 6b is similar to that in 4b. The coordinated alkyne in each 

product displays the expected σ,π model of ligand bonding where the Os-C distances for the σ 

bonds [Os(1)-C(11) 2.080(3) Å, Os(2)-C(8) 2.129(3) Å for 6a; Os(1)-C(9) 2.084(3) Å, Os(3)-

C(8) 2.146(3) Å for 6b] are shorter than the associated Os-C π distances [Os(3)-C(8) 2.215(3) Å, 

Os(3)-C(11) 2.300(3) Å for 6a; Os(2)-C(8) 2.235(3) Å, Os(2)-C(9) 2.308(3) Å for 6b].The Os-P 

bond distances [Os(1)-P(2) 2.3437(8) Å, Os(2)-P(1) 2.3588(8) Å for 6a; Os(1)-P(1)2.3498(10)Å, 

Os(3)-P(2) 2.3653(8) Å for 6b] are similar to those distances found in the starting cluster 2 [13]. 

Both products are electron precise based on an electron count of 48 valence electrons. 
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Place Figures 6 and 7 Here 

 

 The IR spectra recorded for clusters 6a and 6b are identical in the terminal ν(CO) region 

and consistent with a common distribution of the ancillary ligands about each Os3 polyhedron. 

Both clusters exist as a mixture of two isomers in CDCl3 solution that are in rapid equilibrium. 

Since the NMR spectral data for the two clusters are similar in nature, we will only discuss the 

properties of 6a in detail. The 31P NMR spectrum of 6a at room temperature reveals a broad 

resonance at δ -3.8 that is barely distinguishable from the baseline, and the visible absence of 

inequivalent phosphorus nuclei confirms the existence of a fluxional process. The exchange 

process creates a time-average environment for the dppf ligand and the nature of the broadened 
31P resonance allows us to approximate the temperature of coalescence (Tc) as 298 K. The 1H 

NMR spectrum exhibits two triplets at δ -16.65 and -19.80 at 298 K whose splitting pattern 

indicates that the two hydrides are coupled to both phosphorus atoms of the dppf ligand. 

Identical splitting patterns for the hydrides signal a rapid exchange of the hydride associated with 

the Os-Os bond that is adjacent to the dppf-bridged Os-Os bond. While a triplet resonance is 

expected for the hydride that shares the Os-Os edge common to the dppf ligand, the second 

hydride is situated asymmetrically to the dppf ligand (see the solid-state structure) and should 

display either a doublet or a doublet of doublets instead of a triplet resonance. Figs. 8 and 9 show 

the VT 31P and 1H NMR spectra, respectively recorded for cluster 6a over the temperature range 

318-233 K. 

 

Place Figures 8 and 9 Here 

 

 Lowering the temperature to 233 K leads to two sharp singlets at δ -9.7 and 3.2 in the 31P 

NMR spectrum, and while the high-field triplet at δ -19.80 does not exhibit any appreciable 

change in the 1H NMR spectra as the temperature is lowered, the triplet at δ -16.65 transforms to 

a doublet with JPH = 20 Hz as the slow-exchange limit is approached. These data support a 

fluxional process that serves to equilibrate the latter hydride between the two Os-Os edges that 

are not bridged by the dppf ligand. Hydride mobility about polynuclear metal clusters is a well-
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established phenomenon [45]. At 233 K, two distinct 31P and 1H resonances are expected, with 

one hydride effectively coupled to only one of the 31P centers. The ∆Gǂ value for the 

equilibration of the hydride between adjacent Os-Os vectors is estimated as 11.9 kcal/mol based 

on a separation frequency of the 31P resonances (∆ν = 2363 Hz) and a Tc of 298 K [46]. Scheme 

4 illustrates the hydride exchange process that is consistent with the VT NMR data. 

 

 

Scheme 4 

 

 To better understand the observed ligand fluxionality in 6a, we have investigated 

different possible hydride exchange schemes employing species D as a starting point. 

Equilibration of the hydride between the two non-dppf supported Os-Os bonds proceeds via the 

transition state TSDD_alt that contains a triply bridged hydride ligand (Chart). The computed 

∆Gǂ value for the forward motion of the hydride is 7.2 kcal/mol in agreement with the 

experimentally estimated value for hydride fluxionality. The motion exhibited by the migratory 

hydride is analogous to the windshield-wiper effect displayed by related ligands across the 

polyhedral face of other metal clusters [45b,e, 47]. The product of hydride transit is D_alt, and it 

lies 1.1 kcal/mol lower in energy than D due to slight differences in the disposition of the dppf-

Me4 and carbonyl ligands about the cluster. Under conditions of rapid exchange, the hydride 

would exhibit a time-average environment between the Os-Os bonds and display mutual 

coupling to both phosphines, giving rise to the observed triplet resonance at δ -16.65. 
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3.3. Carbon-carbon bond cleavage of the coordinated alkyne ligand in 6a and 6b 

 

The cleavage of carbon-carbon bonds is a potentially useful way of generating reactive 

organic fragments at a metal center [48]. To this end, we have been exploring the reactions of 

coordinated alkynes at different metal clusters and can report that the coordinated alkyne ligands 

in 6a,b yield new clusters containing a vinylidene moiety when heated at elevated temperatures. 

Thermolysis of 6a and 6b in toluene at 110 °C, followed by the usual chromatographic 

separation, afforded Os3(CO)7(µ-dppf)(µ3-η
2;η1;κ1-CCHCO2R) (7a, R = Me, 50%; 7b, R = Et, 

48%) (Scheme 2). While we have not been able to identify the missing alkyne-derived atoms in 

these reactions, we can confirm that corresponding formates HCO2Me and HCO2Et are not 

observed in those reactions that are monitored by NMR. The cluster products are relatively stable 

under the reaction conditions and show no evidence of decomposition when heated in refluxing 

toluene over the course of several hours. Compounds 7a and 7b have been characterized 

spectroscopically in solution and by X-ray diffraction analysis in the case of 7b, whose structure 

is shown in Fig. 10. 

 

Place Figure 10 Here 
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 The Os-Os bond distances in 7b range from 2.7740(11) Å [Os(1)–Os(3)] to 3.0481(11) Å 

[Os(1)–Os(2)], leading to a triangular array of osmium similar in nature to that found in clusters 

6a and 6b. The most noteworthy feature in 7b is the face-capping CCHCO2Et ligand that derives 

from the coordinated DEAD ligand in 6b. The CCHCO2Et ligand, which functions as a 6e donor, 

is coordinated to the cluster in a µ3-η
2;η1;к1 fashion, where the C(8) and C(9) atoms exhibit Os-C 

distances consistent with a σ,π model of bonding common to other vinylidene ligands [49]. Here 

the two σ bonds are represented by the Os(1)-C(8) [2.131(11) Å] and Os(2)-C(8) [1.963(15) Å] 

vectors and the π interaction is defined by Os(3)-C(8) [2.187(12) Å] and Os(3)-C(9) [2.331(14) 

Å] vectors. There is also an additional donation of 2e to the Os(1) center from the O(8) carbonyl 

oxygen of the ester moiety. Cluster 7b contains 48 valence electrons and be viewed as an 

electron-precise cluster containing three metal-metal bonds. The dppf ligand bridges the Os(1) 

and Os(2) centers, and of the seven terminal carbonyl groups, three are located at the Os(3) 

center with the remaining four CO groups distributed pair wise at the other two metal centers. 

 

The spectroscopic data recorded for 7a is consistent with the formulated structure 

containing an ancillary CCHCO2Me vinylidene ligand, and this premise is underscored by the 

near identical IR spectra displayed by 7a and 7b. In addition to the phenyl proton resonances in 

the aromatic region, the 1H NMR spectrum of each product also contains nine equal intensity 

singlets [δ 5.33, 5.04, 4.32, 4.25, 4.09, 3.81, 3.73, 3.70, 3.33 for 7a and δ 5.33, 5.28, 5.04, 4.32, 4.24, 

4.10, 3.81, 3.70, 3.34 for 7b] ascribed to the eight distinct cyclopentadienyl protons and one 

unique vinylic proton. The methyl group in the CCHCO2Me moiety appears as a singlet at δ 2.83 in 7a, 

while the ethyl group associated with the CCHCO2Et ligand exhibits a triplet at δ 0.96 for the methyl 

group and two multiplets at δ 3.19 and 2.93, the latter two assigned to the diastereotopic 

methylene hydrogens. Each cluster exhibits a pair of 31P singlets [δ 14.5 and 7.1 for 7a; δ 14.2 and 

6.8 for 7b] due to the nonequivalent 31P nuclei. 

 

4. Conclusions 

 

The reactions of the unsaturated triosmium clusters Os3(CO)8(µ-dppm)(µ-H)2 (1) and 

Os3(CO)8(µ-dppf)(µ-H)2 (2) with activated alkynes DMAD and DEAD are examined. Cluster 1 
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reacts with these alkynes to furnish the dinuclear Os2(CO)4(µ-dppm)(µ-η2;η1;к1-

RO2CCCHCO2R)(µ-H) (3a, R = Me; 3b, R = Et) and the trinuclear Os3(CO)7(µ-dppm)(µ3-

η2;η1;η1-RO2CCCCO2R)(µ-H)2 (4a, R = Me; 4b). In contrast, no cluster fragmentation has been 

observed when 2 is allowed to react with these alkynes under comparable conditions, instead 

yields the trinuclear Os3(CO)8(µ-dppf)(µ-η2;η1-RO2CCHCCO2R)(µ-H) (5a, R = Me; 5b, R = Et) 

and Os3(CO)7(µ-dppf)(µ3-η
2;η1;η1-RO2CCHCCO2R)(µ-H)2 (6a, R = Me; 6b, R = Et). 

Independent control experiments reveal that 5a and 5b serve as precursors to 6a and 6b, 

respectively. These data are interesting insomuch that the latter products are not formed as the 

initial products of ligand substitution and that alkyne insertion into an Os-H bond precedes the 

formal π coordination of the alkyne by the cluster in the present examples. The computed 

thermodynamics for the reaction reinforce this claim. However, this observation strengthened the 

reversible alkenyl to alkyne and hydride conversion proposed for the α-β isomerisation of 

alkenyl ligands at binuclear centers [43, 44]. Both 5a and 5b exist as a pair of isomers in solution due 

to a torsional rotation within the cyclopentadienyl rings of the dppf ligandwith respect to the 

osmium triangle. This fluxionality has been computationally evaluated for 5a and the energy 

difference between the two isomers is small (∆G = 0.7 kcal/mol). CO loss in 5a and 5b is facile, 

and the accompanying unsaturated clusters facilitate the C-H bond activation of the alkenyl 

moiety to yield the π-coordinated clusters 6a and 6b. Thermolysis of the latter two clusters leads 

to alkyne activation and formation of the vinylidene-substituted clusters 7a and 7b. The alkyne 

activation observed here is related to the carbon-carbon cleavage reported for triruthenium 

compound [(η5-C5Me5)Ru]3(µ-H)3(µ3-H)2 in its reaction with methylmethacrylate to furnish [(η5-

C5Me5)Ru]3(µ3-CH=CCO2Me)(µ3-CH)(µ-H)2 together with 2 equivalents of 2-methylbutanoic 

acid [48e]. In contrast, formation of such vinylidene-substituted clusters via alkyne activation 

was not observed upon heating of 4a and 4b. Overall, the present work shows that the flexibility 

of substituted-diphosphine plays key role in the reactivity of unsaturated Os3(CO)8(µ-

diphosphine)(µ-H)2 towards alkynes. Experiments designed to elucidate the mechanism of 

carbon-carbondouble bond cleavage and further investigation using a wider range of alkynes are 

underway, and the results willbe reported in due course. 
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Figs. S1-S3, showing CH2Cl2 proton resonance in the 1H NMR spectrum of compounds 

3a, 5a and 7b, can be found in Electronic Supplementary Information (ESI). Crystallographic 

data for the structural analyses have been deposited with the Cambridge Crystallographic Data 

Centre. CCDC 1517049 (for 3a), CCDC 1517050 (for 4b), CCDC 1517051 (for 5a), CCDC 

1517052 (for 6a), CCDC 1517053(for 6b) and CCDC 1517054(for 7b) contain supplementary 

crystallographic data for this paper. These data can be obtained free of charge from the Director, 

CCDC, 12 Union Road, Cambridge, CB2 1 EZ, UK (fax: +44-1223-336033; Email: 

deposit@ccdc.cam.ac.uk or www: http://www.ccdc.ac.uk). Atomic coordinates for all optimized 

structures reported here are available from MGR upon request. 
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Table 1. Crystallographic data and structure refinement for 3a, 4b, 5a, 6a, 6b, and 7b. 

 

Compound  3a       4b    5a 

Empirical formula                  C37H34Cl4O8Os2P2 C40H32O11Os3P2 C49H36Cl2FeO12Os3P2 

Formula weight                     1190.78 1321.20 1576.07 

Temperature (K)    150(2)  293(2)  150(2)  

Wavelength (Å)  0.71073 0.71075 1.5418 

Crystal system       Orthorhombic Triclinic  Triclinic  

Space group       Pbca P-1 P-1 

a (Å) 18.641(3)  10.432(7) 11.2207(5)  

b (Å) 18.670(3)     11.409(7) 11.8314(5)      

c (Å) 23.229(4)   19.735(12) 21.2863(8)      

α (o) 90 101.741(5) 79.282(3) 

β (o) 90 98.724(7) 83.351(4) 

γ (o) 90 109.420(2) 69.020(4) 

Volume  (Å-3)      8085(2)  2107(2) 2588.79(19)  

Z              8 2 2 

Calculated density  (mg/m3)           1.957 2.083 2.022  

Absorption coefficient (mm-1)           6.673 9.157 17.793 

F(000) 4560 1236 1488 

Crystal size (mm)                     0.20 x 0.08 x 0.03  0.23x 0.18 x 0.09 0.32 x 0.28 x 0.23  

θ range for data collection (o)   2.80 to 28.30 1.08 to 27.59 4.05 to 50.00  

Reflections collected 65432 21038 11409 

Independent reflections(Rint)     9667[0.1263] 9641 [0.0453] 5305 [0.0194] 

Data / restraints / parameters     9667/0/448 9641/0/500 5305/4/624 

Goodness-of-fit on F2 0.904 1.087 1.103 

Final R indices [I >2σ(I)]      R1 = 0.0551, wR2 = 

0.1141 

R1 = 0.0450, wR2 = 

0.0918 

R1 = 0.0327, wR2 = 

0.0884 

Largest diff. peak/ hole (e.Å-3)     2.443 and -3.258 1.403 and -1.980 1.491 and -0.965 
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Table 1. (Continued)  

 

6a 6b 7b 

C47H36FeO11Os3P2 C49H40FeO11Os3P2 C47H35Cl2FeO9Os3P2 

1465.15 1493.20 1503.04 

105(4)  150(2)  150(2)  

0.71073 0.71073 1.5418 

Monoclinic Monoclinic Orthorhombic 

P21/c P21/n Pca21 

 15.5899(3)  11.191(5) 16.5301(8)  

 11.7929(2)     19.701(5) 11.4243(4)      

 24.9054(5)   22.186(5) 25.4610(14)      

 90 90 90 

 102.090(2) 94.631(5) 90 

90 90 90 

4477.30(16)  4875(3) 4808.2(4)  

4 4 4 

2.174 2.034 2.076  

8.937 8.209 19.070 

2760.0 2824 2828 

0.24 x 0.16 x 0.1  0.23 x 0.17 x 0.13 0.32 x 0.28 x 0.21  

5.832 to 58.802 2.95 to 25.00 3.87 to 73.53  

71723 44666 33755 

11441 [0.0391] 8574 [0.0313] 9350 [0.0474] 

11441/0/587 8574/0/605 9350/3/579 

1.115 1.046 1.038 

R1 = 0.0224, wR2 = 

0.0460 

R1 = 0.0163, wR2 = 

0.0361 

R1 = 0.0549, wR2 = 

0.1471 

1.08 and -1.22 0.534 and -0.499 3.436 and -3.035 
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Fig. 1. ORTEP drawing of the molecular structure of Os2(CO)4(µ-dppm)(µ-η2;η1;к1-

MeO2CCCHCO2Me)(µ-H) (3a) showing 50% probability thermal ellipsoids. Selected bond 

lengths (Å) and angles (o): Os(1)-Os(2) 2.9254(6), Os(1)–P(1) 2.303(2), Os(2)–P(2) 2.346(2), 

Os(1)–C(5)  2.143(8), Os(1)–O(5) 2.170(6), Os(2)–C(5)  2.141(8), Os(2)–C(6)  2.177(9), C(5)–

C(6)  1.460(11),  C(6)–C(7)  1.437(12), C(5)–C(9) 1.455(12), O(5)–C(7) 1.237(10), Os(2)–C(5)–

Os(1) 86.1(3),  C(5)–Os(2)–C(6) 39.5(3), O(5)–Os(1)–P(1)  175.98(17), O(5)–Os(1)–Os(2) 

85.42(16), P(1)–Os(1)–Os(2) 90.58(6), P(2)–Os(2)–Os(1) 92.55(6), P(1)–C(11)–P(2) 113.4(5), 

C(5)–C(6)–Os(2) 68.9(5),  C(7)–O(5)–Os(1) 109.6(6). 
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Fig. 2. ORTEP drawing of molecular structure of Os3(CO)7(µ-dppm)(µ3-η
2;η1;η1-

EtO2CCCCO2Et)(µ-H)2 (4b) showing 50% probability thermal ellipsoids. Selected bond lengths 

(Å) and angles (o): Os(1)-Os(3) 2.7881(17), Os(1)-Os(2) 2.8729(19), Os(2)-Os(3) 3.0128(13), 

Os(1)-P(1) 2.355(3), Os(2)-P(2) 2.340(2), Os(1)-C(8)  2.251(8) Os(1)-C(9)  2.260(7), Os(2)-C(8)  

2.153(8), Os(3)-C(9) 2.063(8), C(8)-C(9) 1.408(10), C(8)-C(10) 1.478(11), C(9)-C(13) 

1.493(11); Os(1)-Os(2)-Os(3) 56.49(4), Os(1)-Os(3)-Os(2) 59.22(4), Os(3)-Os(1)-Os(2) 

64.288(14), C(8)-Os(1)-C(9) 36.4(3), C(8)-Os(1)-Os(3) 70.70(19), C(8)-Os(1)-Os(2) 47.82(19), 

C(9)-Os(1)-Os(2) 68.8(2), C(9)-Os(1)-Os(3) 46.8(2), Os(3)-C(9)-Os(1) 80.2(3). 
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Fig. 3. ORTEP drawing of molecular structure of Os3(CO)8(µ-dppf)(µ2-η
2;η1;η1-

CH3O2CCHCCO2CH3)(µ-H) (5a) showing 50% probability thermal ellipsoids. Selected bond 

lengths (Å) and angles (o): Os(1)-Os(3) 2.8156(5), Os(1)-Os(2) 3.1191(5), Os(2)-Os(3) 

2.9195(5), Os(1)-C(9) 2.097(9), Os(3)-C(9) 2.212(8), Os(3)-C(10) 2.274(9), Os(1)-P(1) 2.338(2), 

Os(2)-P(2) 2.377(2), C(9)-C(10) 1.435(13), C(9)-C(11) 1.495(13), C(10)-C(13) 1.509(14); 

Os(3)-Os(1)-Os(2) 58.670(13), Os(1)-Os(3)-Os(2) 65.865(14), Os(3)-Os(2)-Os(1) 55.464(12), 

C(9)-Os(3)-C(10) 37.3(3), P(1)-Os(1)-Os(2) 114.06(6), P(2)-Os(2)-Os(1) 117.57(6), C(9)-Os(1)-

Os(2) 90.4(2), C(9)-Os(1)-Os(3) 51.0(2), C(9)-Os(3)-Os(1) 47.4(2), C(10)-Os(3)-Os(1) 75.8(2),  

C(10)-Os(3)-Os(2) 86.0(2), Os(1)-C(9)-Os(3) 81.6(3). 
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Fig. 4. B3LYP-optimized structures for cluster compounds A-D_alt and the transition state TSDD_alt. The structures for the alkyne 

DMAD (B) and liberated CO are not shown. 
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Fig. 5. Potential energy surface for the conversion of A and B to give D_alt and CO. Energy 

values are ∆G in kcal/mol with respect to A and B. 
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Fig. 6. ORTEP drawing of molecular structure of Os3(CO)7(µ-dppf)(µ2-η
2;η1;η1-CH3O2CCC-

CO2CH3)(µ-H)2 (6a) showing 50% probability thermal ellipsoids. Selected bond lengths (Å) and 

angles (o): Os(1)-Os(2) 3.07188(17), Os(1)-Os(3) 2.79180(17), Os(2)-Os(3) 2.87256(17), Os(1)-

P(2) 2.3437(8), Os(2)-P(1) 2.3588(8), Os(1)-C(11) 2.080(3), Os(3)-C(11) 2.300(3), Os(3)-C(8)  

2.215(3), C(8)-C(11)  1.421(4), Os(2)-C(8) 2.129(3);Os(1)-Os(3)-Os(2) 65.665(4), Os(3)-Os(1)-

Os(2) 58.433(4), Os(3)-Os(2)-Os(1) 55.902(4), Os(2)-C(8)-Os(3) 82.77(10), P(2)-Os(1)-Os(2) 

115.944(19), P(1)-Os(2)-Os(1) 114.702(19), C(8)-Os(3)-C(11) 36.62(11), Os(1)-C(11)-Os(3) 

79.03(10), C(8)-C(11)-Os(1) 114.9(2), C(8)-C(11)-Os(3) 68.44(16). 
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Fig. 7. ORTEP drawing of the molecular structure of Os3(CO)7(µ-dppf)(µ3-η
2;η1;η1-

EtOOCCCCOOEt)(µ-H)2 (6b) showing 50% probability thermal ellipsoids. Selected bond 

lengths (Å) and angles (o): Os(1)-Os(2) 2.7849(6), Os(1)-Os(3) 3.0685(6), Os(2)-Os(3) 

2.8649(5), Os(1)-P(1) 2.3498(10), Os(3)-P(2) 2.3653(8), Os(1)-C(9) 2.084(3), Os(2)-C(8) 

2.235(3), Os(2)-C(9) 2.308(3), Os(3)-C(8) 2.146(3), C(8)-C(9) 1.417(4), Os(1)-Os(2)-Os(3) 

65.774(16), Os(2)-Os(1)-Os(3) 58.368(8), Os(2)-Os(3)-Os(1) 55.858(13), P(1)-Os(1)-Os(3) 

117.71(2), C(8)-Os(2)-C(9) 36.29(11), C(9)-Os(2)-Os(1) 47.16(7), C(8)-Os(2)-Os(3) 47.82(8), 

P(2)-Os(3)-Os(1) 115.63(3),  Os(3)-C(8)-Os(2) 81.66(10), Os(1)-C(9)-Os(2)  78.53(9). 
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Fig. 8. VT 31P{1H} NMR spectra of 6a recorded over the temperature range 298-233 K.  

 

 

Fig. 9. VT 1H NMR spectra of 6a recorded over the temperature range 298-233 K. 
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Fig. 10. ORTEP drawing of the molecular structure of Os3(CO)7(µ-dppf)(µ3-η
2;η1;η1;κ1-

CCHCOOEt)] (7b) showing 50% probability thermal ellipsoids. Selected bond lengths (Å) and 

angles (o):Os(1)-Os(3) 2.7740(11), Os(1)-Os(2) 3.0481(11), Os(2)-Os(3) 2.8082(11), Os(1)-P(1) 

2.390(5), Os(2)-P(2) 2.339(4),Os(1)-C(8) 2.138(15), Os(2)-C(8) 1.98(2), Os(3)-C(8) 2.185(17), 

Os(3)-C(9) 2.341(19),C(8)-C(9) 1.42(2), Os(1)-O(8) 2.134(12),Os(3)-Os(1)-Os(2) 57.45(3), 

Os(3)-Os(2)-Os(1) 56.37(3), Os(1)-Os(3)-Os(2) 66.19(3), Os(1)-C(8)-Os(3) 79.8(6), Os(2)-C(8)-

Os(1) 95.4(8), Os(2)-C(8)-Os(3) 84.6(7), C(8)-Os(3)-C(9) 36.4(7), O(8)-Os(1)-Os(3) 82.2(2), 

O(8)-Os(1)-Os(2) 117.6(2), P(1)-Os(1)-Os(2) 116.00(11), P(2)-Os(2)-Os(1) 116.12(11). 
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