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Abstract

We prove well-posedness for doubly nonlinear parabolic stochastic partial differ-
ential equations of the form dXt−div γ(∇Xt) dt+β(Xt) dt 3 B(t,Xt) dWt, where γ
and β are the two nonlinearities, assumed to be multivalued maximal monotone op-
erators everywhere defined on Rd and R respectively, and W is a cylindrical Wiener
process. Using variational techniques, suitable uniform estimates (both pathwise and
in expectation) and some compactness results, well-posedness is proved under the
classical Leray-Lions conditions on γ and with no restrictive smoothness or growth
assumptions on β. The operator B is assumed to be Hilbert-Schmidt and to satisfy
some classical Lipschitz conditions in the second variable.
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1 Introduction

In this work, we consider the boundary value problem with homogeneous Dirichlet con-
ditions associated to a doubly nonlinear parabolic stochastic partial differential equation
on an smooth bounded domain D ⊆ Rd of the type

dXt − div γ(∇Xt) dt+ β(Xt) dt 3 B(t,Xt) dWt in D × (0, T ) , (1.1)
X(0) = X0 in D , (1.2)

X = 0 on ∂D × (0, T ) , (1.3)

where γ and β are two maximal monotone operators everywhere defined on Rd and R,
respectively,W is a cylindrical Wiener process, andB is a random time-dependent Hilbert-
Schmidt operator (we will state the complete assumptions on the data in the next section).

∗Acknowledgments. The author is very grateful to Carlo Marinelli for suggesting the problem and
for his expert advice and fundamental support throughout this project.



2 Well-posedness for doubly nonlinear SPDEs of divergence type

We prove existence of global solutions as well as a continuous dependence result using vari-
ational techniques (see e.g. the classical works [17, 22, 23] about the variational approach
to SPDEs).

The problem (1.1)–(1.3) is very interesting from the mathematical point of view: as
a matter of fact, the equation presents two strong nonlinearities. The first one is repre-
sented by γ within the divergence operator: in this case, we will need to assume some
classical growth assumptions (the so-called Leray-Lions conditions) in order to recover a
suitable coercivity on a natural Sobolev space. The other nonlinearity is represented by
the operator β: this is treated as generally as possible, with no restriction on the growth
and regularity. Because of this generality, the concept of solution and the appropriate
estimates are more difficult to achieve, as we will see. We point also out that dealing with
maximal monotone graphs makes our analysis absolutely exhaustive. As a matter of fact,
in this way we include in our treatment any continuous increasing function β (with any
order of growth), as well as every increasing function with a countable number of jumps:
indeed, it is a standard matter to see that if β is an increasing function on R with jumps in
{xn}n∈N, one can obtain a maximal monotone graph by setting β(xn) = [β−(xn), β+(xn)].
Finally, very mild assumptions on the noise are required, so that our results fit to any rea-
sonable random time-dependent Hilbert-Schmidt operator B; in the case of multiplicative
noise, only classical Lipschitz continuity hypotheses are in order.

The noteworthy feature of this paper is that problem (1.1)–(1.3) is very general and
embraces a wide variety of specific sub-problems which are interesting on their own: con-
sequently, we provide with our treatment a unifying analysis to several cases of parabolic
SPDEs. Let us mention now about some of these and the main related literature.

If γ is the identity on Rd, the resulting equation is the classical semilinear SPDE
driven by the Laplace operator dX −∆X dt + β(X) dt 3 B dWt, which has been widely
studied. For example, in [21], global existence results of solutions are provided in the
semilinear case, with the laplacian being generalized to any suitable linear operator: here,
the idea is to doubly approximate the problem, in order to recover more regularity on β
and B, to find then appropriate estimates on the approximated solutions and finally to
pass to the limit in the equation. Moreover, in [13], mild solutions are obtained under the
strong hypotheses that β is a polynomial of odd degree m > 1 and B can be written as
(−∆)−

s
2 for a suitable s; in [3], existence of mild solutions is proved with no restrictive

hypotheses on the growth of β, but imposing some strong continuity assumptions on the
stochastic convolution. In [20], well-posedness is established for the semilinear problem
in a Lq setting, with β having polynomial growth.

If γ is the monotone function on Rd given by γ(x) = |x|p−2x, x ∈ Rd, for a certain
p ≥ 2, then the term represented by the divergence in (1.1) is the usual p-laplacian: in this
case, our equation becomes dX−∆pX dt+β(X) dt 3 B dWt, where ∆p· := div(|∇·|p−2∇·).
This problem is far more interesting and complex than the semilinear case since −∆p is
nonlinear for any p > 2 and consequently (1.1) becomes doubly nonlinear in turn. Among
the great literature dealing with this problem, we can mention [18] for example, where the
stochastic p-Laplace equation is studied in the singular case p ∈ [1, 2), and [19] as well.

Let us now briefly outline the structure of the paper and the results that we present.

In section 2, we state the precise assumptions of the work and we accurately describe



Luca Scarpa 3

the general setting: here, the main hypotheses are stated and the variational setting is
presented. Furthermore, we outline the four main results: the first theorem ensures that
problem (1.1)–(1.3) admits global solutions in a suitable weak variational way in the case
of additive noise, the second one is the very natural continuous dependence property with
respect to the initial datum and B, the third is the existence result in case of multiplicative
noise and the last one states the continuous dependence property with respect to the initial
datum in case of multiplicative noise.

Section 3 contains the proof of the existence theorem with additive noise: the main idea
is to introduce two approximations on the problem. The first approximation depends on a
parameter λ and it is made on the maximal monotone operators β and γ, considering the
Yosida approximations, as usual; moreover, a correction term is added in order to recover
a suitable coercivity when λ is fixed, and that is going to vanish when taking the limit as
λ↘ 0. The second approximation depends on a parameter ε and is made on the operator
B in order to gain more regularity on the noise. The double approximation is very similar
to the one performed in [21]. The general idea is that given a fixed approximation in ε, the
approximated noise is regular enough to allow us to pass to the limit pathwise in λ: once
this first step is carried out, suitable probability estimates allow us to pass to the limit also
in ε. More specifically, the proof of existence consists in obtaining uniform estimates on
the approximated solutions, independently of the approximations, and then passing to the
limit in the approximated problem. To this purpose, we will recover pathwise estimates
which are uniform in λ (but not in ε), and global estimates also in expectation which are
uniform both in λ and in ε. The passage to the limit is carried out in two steps: the first
is on λ and it is made pathwise, while the second is made on ε and is made globally also
in probability. The main idea is to use Itô’s formula and some sharp testings to obtain L1

estimates on the nonlinear terms in β and rely on the Dunford-Pettis theorem to recover
a weak compactness, being inspired in this sense by some calculations performed in [3,21].

Section 4 is devoted to proving the continuous dependence result for the additive
noise case, which easily follows from the definition of solution itself and a generalized Itô
formula, which is accurately proved in the Appendix B.

Section 5 contains the proof of the main result, which ensures that the problem with
multiplicative noise is well-posed: here, we build the global solutions step-by-step, proving
at each iteration accurate contraction estimates and using classical fixed-points arguments.
The continuous dependence follows from the generalized version of Itô’s formula contained
in Appendix B.

The appendixes A and B contain a version of a variational integration-by-parts formula
and the generalized Itô formula, which are widely used throughout the paper: the first
one is made pathwise and it is used when passing to the limit on λ in order to identify the
limit of the nonlinearity in γ, while the second is a direct generalization of the classical
Itô formula in a variational setting, and it is needed in the passage to the limit on ε
and in the proof of the continuous dependence. The idea of the proof is to identify
accurate approximations on the processes which have to satisfy appropriate conditions,
such as linearity, smoothness properties and suitable asymptotical behaviours: in this
sense, appropriate elliptic approximations are performed.
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2 Setting and main results

In this section we state the precise assumptions on the data of the problem and the
concept of solution. Moreover, we present the main results which will be proved in the
subsequent sections.

In the entire work, (Ω,F ,F,P) is a filtered probability space, where the filtration
F = (Ft)t∈[0,T ] is assumed to satisfy the so-called "usual conditions" (i.e. it is saturated and
right continuous) and T > 0 is the fixed final time; moreover, D ⊆ Rd is a smooth bounded
domain and Q := D × (0, T ) is the corresponding space-time cylinder. Furthermore, we
set

H := L2(D) (2.1)

and we use the symbol (·, ·) for the standard inner product of H. Moreover, if U is a
Banach space, we simply write Lp(Ω;U) (without specifying the σ-algebra) to indicate
the usual class of Bochner-integrable functions Lp(Ω,F ,P;U); when we are referring to the
measure space with respect to a particular σ-algebra of the filtration, we write explicitly
Lp(Ω,Ft,P;U) for any given t ∈ [0, T ]. The symbol C0

w([0, T ];U) denotes the space of
continuous functions from [0, T ] to the space U endowed with the weak topology: this
means that u ∈ C0

w([0, T ];U) if for any t ∈ [0, T ] and (tn)n ⊆ [0, T ] with tn → t, then
u(tn) ⇀ u(t) in U . Furthermore, if U is a separable Hilbert Space, we will use the
symbols L (U,H) and L2(U,H) to indicate the spaces of the linear continuous operators
and Hilbert-Schmidt operators from U to H, respectively.

We write "·" for the usual scalar product in Rd, while the symbols ↪→ and
c
↪→ indicate

a continuous and a compact-continuous inclusion between Banach spaces, respectively.
Moreover, for any constant appearing in the paper, we indicate in the subscript any
quantity on which the constant depends: for example, we may use the notation Ca,b to
stress that the constant C only depends on a and b.

We can now specify the main hypotheses of our work. First of all, we introduce

γ : Rd → 2Rd

maximal monotone , D(γ) = Rd , 0 ∈ γ(0) (2.2)
β : R→ 2R maximal monotone , D(β) = R , 0 ∈ β(0) (2.3)

W cylindrical Wiener process on U , (2.4)

where U is a suitable separable Hilbert space. Now, thanks to definition (2.3), the function

j : R→ [0,+∞) proper, convex, lower semicontinuous , ∂j = β , j(0) = 0 (2.5)

is well defined; furthermore, we make the assumption that also γ is a subdifferential,
i.e. that there exists

k : Rd → [0,+∞) proper, convex, lower semicontinuous , ∂k = γ , k(0) = 0 . (2.6)

We denote by k∗ and j∗ the convex conjugate functions of k and j, respectively, i.e.

k∗ : Rd → [0,+∞] , k∗(r) := sup
y∈Rd

{r · y − k(y)} , (2.7)

j∗ : R→ [0,+∞] , j∗(r) := sup
y∈R
{ry − j(y)} . (2.8)
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The following facts from convex analysis are well-known (see for example [4, 11]):

k(z) + k∗(s) = s · z ⇐⇒ s ∈ ∂k(z) , j(y) + j∗(r) = ry ⇐⇒ r ∈ ∂j(y) , (2.9)
k(z) + k∗(s) ≥ s · z , j(y) + j∗(r) ≥ ry for all y, r ∈ R , z, s ∈ Rd . (2.10)

Throughout the paper, we will also assume that j is even, i.e.

j(x) = j(−x) for every x ∈ R. (2.11)

Remark 2.1. Hypothesis (2.11) is needed in order to prove the generalized Itô formula for
the solutions of our problem, which will be strongly used throughout the proofs. However,
(2.11) can be weakened: the main point is that we only need j to grow at the same rate
both at +∞ and at −∞ (cf. [5, p. 429]). In order to simplify the treatment we assume
(2.11), but for sake of completeness we mention that we could have required a slightly
weaker condition, namely

lim sup
|x|→+∞

j(x)

j(−x)
< +∞ .

Now, for every δ ∈ (0, 1), we introduce the resolvents and the Yosida approximations
of γ and β as

Jδ := (Id + δγ)−1 , Rδ := (I1 + δβ)−1 , (2.12)

γδ :=
Id − Jδ
δ

, βδ :=
I1 −Rδ

δ
, (2.13)

where the symbol Im stands for the identity in Rm for any m ∈ N. Then, for every
δ ∈ (0, 1), Jδ, Rδ, γδ and βδ are single-valued, with the latter two being 1

δ
-Lipschitz

continuous, and

|Jδx| ≤ |x| for all x ∈ Rd , |Rδx| ≤ |x| for all x ∈ R , (2.14)
γδ(x) ∈ γ (Jδx) for all x ∈ Rd , βδ(x) ∈ β (Rδx) for all x ∈ R (2.15)

(see for example [1, 11]).

As we have anticipated, we need to make some assumptions on the growth of γ, namely
the so-called Leray-Lions conditions, which are widely required in the classical literature
on elliptic and parabolic PDEs (the reader can refer here to [7–9] for classical examples).
More in detail, we suppose that there are positive constants K, D1, D2 and an exponent
p ∈ [2,+∞) such that

sup{|y| : y ∈ γ(r)} ≤ D1

(
1 + |r|p−1

)
for every r ∈ Rd , (2.16)

y · r ≥ K|r|p −D2 for every r ∈ Rd , y ∈ γ(r) . (2.17)

In the sequel, we will write q := p
p−1
∈ (1, 2] for the conjugate exponent of p.

Finally, we set
V := W 1,p

0 (D) (2.18)

and define the divergence operator in the variational sense:

− div : Lq(D)d → V ∗ , 〈− div u, v〉 :=

∫
D

u · ∇v , u ∈ Lq(D)d , v ∈ V , (2.19)
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where we have used the symbol 〈·, ·〉 for the duality pairing between V and V ∗. Here
and in the sequel, we make the natural identification H ∼= H∗, so that H is continuously
embedded in V ∗: for every u ∈ H and v ∈ V , we have 〈u, v〉 = (u, v). Taking these
remarks into account, we have

V
c
↪→ H ↪→ V ∗ , (2.20)

where the first inclusion is also dense. Moreover, we set

V0 := Hk
0 (D) , k :=

[
max

{
d

2
, 1 +

d

2
− d

p

}]
+ 1 : (2.21)

note that with this particular choice of k, the classical results on Sobolev embeddings
(see [4, Thm. 1.5] and [16, Thm. 219]) ensure that

V0 ↪→ V densely , V0 ↪→ L∞(D) ,

so that we have
V0 ↪→ V ∩ L∞(D) , V ∗, L1(D) ↪→ V ∗0 . (2.22)

We can now state the four main results of the paper, which ensure that problem
(1.1)–(1.2) is well-posed, both with additive and multiplicative noise.

Theorem 2.2. In the setting (2.1)–(2.22), assume that

X0 ∈ L2 (Ω,F0,P;H) , (2.23)
B ∈ L2 (Ω× (0, T ); L2(U,H)) progressively measurable , (2.24)

γ is single-valued ; (2.25)

then there exist

X ∈ L2 (Ω;L∞(0, T ;H)) ∩ Lp (Ω× (0, T );V ) , X ∈ C0
w ([0, T ];H) P-a.s. , (2.26)

η ∈ Lq (Ω× (0, T )×D)d , (2.27)
ξ ∈ L1 (Ω× (0, T )×D) , (2.28)

where X and ξ are predictable, η is adapted, and the following relations hold:

X(t)−
∫ t

0

div η(s) ds+

∫ t

0

ξ(s) ds =X0 +

∫ t

0

B(s) dWs in L1(D) ∩ V ∗ ,

for every t ∈ [0, T ] , P-almost surely ,
(2.29)

η ∈ γ(∇X) a.e. in Ω× (0, T )×D , (2.30)
ξ ∈ β(X) a.e. in Ω× (0, T )×D , (2.31)
j(X) + j∗(ξ) ∈ L1 (Ω× (0, T )×D) . (2.32)

Furthermore, if hypothesis (2.25) is not assumed, then the same conclusion is true replac-
ing conditions (2.26) and (2.29) with, respectively,

X ∈ L∞
(
0, T ;L2(Ω;H)

)
∩ Lp (Ω× (0, T );V ) ∩ C0

w

(
[0, T ];L2(Ω;H)

)
, (2.33)

X(t)−
∫ t

0

div η(s) ds+

∫ t

0

ξ(s) ds =X0 +

∫ t

0

B(s) dWs in L1(D) ∩ V ∗ ,

P-almost surely , for every t ∈ [0, T ] .

(2.34)
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Remark 2.3. The integral equation (2.29) is satisfied in the dual space V ∗0 , but X is
not V0-valued, so that the results provided are not a direct generalization of the classical
concept of variational solution (cf. [24]): we can define them as a weaker type of variational
solution, in which the integral expression holds in a dual space V ∗0 , but the solution takes
values only in a space larger than V0 (V in our case). Nevertheless, the integral formulation
(2.29) can be seen as an identity in L1(D), so that the choice of V0 turns out to be only
a technical device a posteriori. The fact that one cannot expect classical variational
solutions for this type of problem is due to fact that no hypotheses on the growth of β
are assumed (in contrast to a large part of the literature).

Remark 2.4. Let us comment on hypothesis (2.25). The fact that γ is single-valued (thus
a continuous function) is needed in order to prove uniqueness for our problem, which in
turn ensures some reasonable measurability properties for the processes X, η and ξ, as
we will show later on. On the other side, if we do not require (2.25), the measurability of
the solutions cannot be shown using the same argument, but it has to be recovered in a
different way: however, in this case, the formulation that one obtains is weaker than the
previous one, since the passage to the limit has to be carried out in Ω×D, with t ∈ [0, T ]
fixed, and the solution X is found is a larger space.

Theorem 2.5. In the setting (2.1)–(2.22), assume that

X1
0 , X

2
0 ∈ L2 (Ω,F0,P;H) , (2.35)

B1, B2 ∈ L2 (Ω× (0, T ); L2(U,H)) progressively measurable . (2.36)

If hypothesis (2.25) holds and (X1, η1, ξ1), (X2, η2, ξ2) are any two corresponding solu-
tions satisfying (2.26)–(2.32), then there is a constant C > 0 (independent of the above
quantities) such that

‖X1 −X2‖L2(Ω;L∞(0,T ;H)) ≤ C
∥∥X1

0 −X2
0

∥∥
L2(Ω;H)

+C ‖B1 −B2‖L2(Ω×(0,T );L2(U,H)) . (2.37)

In this setting, if X1
0 = X2

0 and B1 = B2, then X1 = X2, η1 = η2 and ξ1 = ξ2. Moreover,
if hypothesis (2.25) is not assumed and (X1, η1, ξ1), (X2, η2, ξ2) are any two corresponding
solutions satisfying (2.27)–(2.28) and (2.30)–(2.34), then

‖X1 −X2‖L∞(0,T ;L2(Ω;H)) ≤
∥∥X1

0 −X2
0

∥∥
L2(Ω;H)

+ ‖B1 −B2‖L2(Ω×(0,T );L2(U,H)) . (2.38)

In this setting, if X1
0 = X2

0 and B1 = B2, then X1 = X2 and − div η1 + ξ1 = − div η2 + ξ2.

Remark 2.6. The uniqueness result strongly depends on the assumption (2.25). Indeed,
if (2.25) is in order, uniqueness holds for the three solution components, separately; on
the other side, if we do not assume (2.25), we can only recover uniqueness for X and
the joint process − div η + ξ. Moreover, note that the nonlinearity γ prevents us from
finding a continuous dependence estimate also in the space Lp(Ω×(0, T );V ) for any p > 2.
Nevertheless, if p = 2 and γ is the identity, the operator −∆ is linear and we can recover
continuous dependence also in L2(Ω× (0, T );V ), for which we refer to [21].
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Theorem 2.7. In the setting (2.1)–(2.22), assume that

X0 ∈ L2 (Ω,F0,P;H) , (2.39)
B : Ω× [0, T ]×H → L2(U,H) progressively measurable , (2.40)
∃ LB > 0 : ‖B(ω, t, x1)−B(ω, t, x2)‖L2(U,H) ≤ LB ‖x1 − x2‖H

for every (ω, t) ∈ Ω× [0, T ] , x1, x2 ∈ H ,
(2.41)

∃ RB > 0 : ‖B(ω, t, x)‖L2(U,H) ≤ RB (1 + ‖x‖H) ∀ (ω, t, x) ∈ Ω× [0, T ]×H . (2.42)

If hypothesis (2.25) holds, then there exists a triplet (X, η, ξ) satisfying conditions (2.26)–
(2.28), (2.30)–(2.32) and

X(t)−
∫ t

0

div η(s) ds+

∫ t

0

ξ(s) ds =X0 +

∫ t

0

B(s,X(s)) dWs in L1(D) ∩ V ∗ ,

for every t ∈ [0, T ] , P-almost surely .
(2.43)

If hypothesis (2.25) is not assumed, then the same conclusion is true replacing (2.26) with
(2.33), and condition (2.43) with

X(t)−
∫ t

0

div η(s) ds+

∫ t

0

ξ(s) ds =X0 +

∫ t

0

B(s,X(s)) dWs in L1(D) ∩ V ∗ ,

P-almost surely , for every t ∈ [0, T ] .

(2.44)

Theorem 2.8. In the setting (2.1)–(2.22), let X1
0 , X

2
0 satisfy condition (2.35). If hypothe-

sis (2.25) holds and (X1, η1, ξ1), (X2, η2, ξ2) are any two corresponding solutions satisfying
(2.26)–(2.28), (2.30)–(2.32) and (2.43), then there is a constant C > 0 (independent of
the above quantities) such that

‖X1 −X2‖L2(Ω;L∞(0,T ;H)) ≤ C
∥∥X1

0 −X2
0

∥∥
L2(Ω;H)

. (2.45)

In this setting, if X1
0 = X2

0 , then X1 = X2, η1 = η2 and ξ1 = ξ2. Moreover, if hypothesis
(2.25) is not assumed and (X1, η1, ξ1), (X2, η2, ξ2) are any two corresponding solutions
satisfying (2.27)–(2.28), (2.30)–(2.33) and (2.44), then there is a constant C > 0 (inde-
pendent of the above quantities) such that

‖X1 −X2‖L∞(0,T ;L2(Ω;H)) ≤ C
∥∥X1

0 −X2
0

∥∥
L2(Ω;H)

. (2.46)

In this setting, if X1
0 = X2

0 , then X1 = X2 and − div η1 + ξ1 = − div η2 + ξ2.

Remark 2.9. It is worth recalling the classical approach to problem (1.1)–(1.3) in the
deterministic case and the main differences with the stochastic case. The corresponding
deterministic problem is

∂u

∂t
− div γ(∇u) + β(u) 3 f , u(0) = u0 ,

with homogeneous boundary conditions for u: here, the classical approach consists in
proving that the sum of the two operators − div(∇·) and β(·) is m-accretive in a suitable
space. To this end, it is well-known that if (i) E is a Banach space with uniformly convex
dual E∗, (ii) A and B are two m-accretive sets in E × E, (iii) D(A) ∩ D(B) 6= ∅, (iv)
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〈Au, J(Bλu)〉E ≥ 0 for every u ∈ D(A) and λ ∈ (0, 1) (where J : E → E∗ is the duality
mapping of E and Bλ is the Yosida approximation of B), then A + B is m-accretive
in E × E (see [4, Prop. 3.8]). If we take for example E = Ls(D) for 1 < s < +∞,
A = − div γ(∇·), B = β(·) with their natural domains, we only need to check (iv), since
(i)–(iii) are clearly satisfied. To this aim, we need to handle the term∫

D

− div γ(∇u)φ(βλ(u)) ,

where φ(r) = |r|s−2r, r ∈ R, using integration by parts. The first problem occurs if s < 2,
since in this case the derivative of φ explodes at 0; if s ≥ 2, we can proceed formally and
recover ∫

D

φ′(βλ(u))β′λ(u)γ(∇u) · ∇u ≥ 0 .

The main difficulty is that βλ is not differentiable, so that one needs to rely on some
generalized chain-rules for Lipschitz functions or suitable mollifications of βλ. The problem
can be seen then as a particular case of the general one

∂u

∂t
+ Au 3 f ,

with A purely nonlinear (multivalued) operator, for which one can rely on several classical
well-posedness results. However, the corresponding general problem in the stochastic case,
i.e.

du+ Audt 3 B dWt ,

does not have a direct counterpart in terms of existence and uniqueness: as a consequence,
in our case the proof of m-accretivity is not sufficient to ensure well-posedness, so that
one needs to deal with the problem "by hand". To this end, the variational approach is
in order.

3 Existence with additive noise

In this section we prove the two existence results contained in Theorem 2.2: as already
mentioned, we are going to approximate the problem using two different parameters.
Uniform estimates are then proved and we obtain global solutions to the original problem
by passing to the limit in a suitable topology.

3.1 The approximated problem

Thanks to (2.24), for every ε ∈ (0, 1) there exists an operator

Bε ∈ L2 (Ω× (0, T ); L2(U, V0)) (3.1)

such that:
Bε → B in L2 (Ω× (0, T ); L2(U,H)) as ε↘ 0 , (3.2)

‖Bε‖L2(Ω×(0,T );L2(U,H)) ≤ ‖B‖L2(Ω×(0,T );L2(U,H)) for every ε ∈ (0, 1) . (3.3)
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Indeed, if k is chosen as in (2.21), then the operator (I − ε∆)−k maps H into V0 for every
ε > 0, so that it suffices to take Bε := (I − ε∆)−kB. With this particular choice, using
the fact that the operator (I − ε∆)−k : H → H is a linear contraction converging to the
identity in the strong operator topology as ε↘ 0 and the ideal property of L2(U ;H) in
L (U,H), we have that (3.1)–(3.3) are satisfied.

For every λ ∈ (0, 1) and ε ∈ (0, 1), let us consider the approximated problem

dXε
λ − div[γλ(∇Xε

λ) + λ∇Xε
λ] dt+ βλ(X

ε
λ) dt = Bε dWt in D × (0, T ) , (3.4)

Xε
λ(0) = X0 in D , (3.5)

whose integral formulation is given by

Xε
λ(t)−

∫ t

0

div[γλ(∇Xε
λ(s))] ds− λ

∫ t

0

∆Xε
λ(s) ds+

∫ t

0

βλ(X
ε
λ(s)) ds

= X0 +

∫ t

0

Bε(s) dWs in H−1(D) , for every t ∈ [0, T ] , P-almost surely ,
(3.6)

where here− div : L2(D)d → H−1(D) and the laplacian is intended in the usual variational
way, i.e.

−∆ : H1
0 (D)→ H−1(D) , 〈−∆u, v〉H1

0 (D) :=

∫
D

∇u · ∇v , u, v ∈ H1
0 (D) .

A unique solution to the approximated problem (3.6) can be easily obtained using the
classical results contained in [17] (see also [24, Thm. 4.2.4]). In fact, the operator

Aλ : H1
0 (D)→ H−1(D) , Aλ : φ 7→ − div[γλ(∇φ) + λ∇φ] + βλ(φ) , (3.7)

is well-defined thanks to the Lipschitz continuity of βλ and γλ, and problem (3.6) is the
variational formulation with respect to the Gelfand triple H1

0 (D) ↪→ H ↪→ H−1(D) of the
following:

dXε
λ + AλX

ε
λ dt = Bε dWt in (0, T )×D , (3.8)
Xε
λ(0) = X0 in D . (3.9)

In this setting, we need to check that the operator Aλ satisfies the classical properties of
hemicontinuity, monotonicity, coercivity and boundedness, in order to recover solutions
of (3.6). The following lemma is straightforward.

Lemma 3.1. The following conditions are satisfied for every λ ∈ (0, 1).

(H1) (Hemicontinuity). For all u, v, x ∈ H1
0 (D), the following map is continuous:

s 7→ 〈Aλ(u+ sv), x〉H1
0 (D) , s ∈ R .

(H2) (Monotonicity). For all u, v ∈ H1
0 (D),

〈Aλu− Aλv, u− v〉H1
0 (D) ≥ 0 .
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(H3) (Coercivity). There exists C1 > 0 such that, for all v ∈ H1
0 (D),

〈Aλv, v〉H1
0 (D) ≥ C1 ‖v‖2

H1
0 (D) .

(H4) (Boundedness). There exists C2 > 0 such that, for all v ∈ H1
0 (D),

‖Aλv‖H−1(D) ≤ C2 ‖v‖H1
0 (D) .

Proof. For all u, v, x ∈ H1
0 (D) we have

〈Aλ(u+ sv), x〉H1
0 (D) =

∫
D

γλ(∇(u+ sv)) · ∇x+ λ

∫
D

∇(u+ sv) · ∇x+

∫
D

βλ(u+ sv)x ,

so that (H1) is satisfied thanks to the Lipschitz continuity of γλ and βλ. Secondly, (H2)
trivially holds using the monotonicity of γλ and βλ. Moreover, for all v ∈ H1

0 (D), thanks
to the monotonicity of γλ and βλ, and the fact that γ(0) 3 0 and β(0) 3 0, we have

〈Aλv, v〉H1
0 (D) =

∫
D

γλ(∇v) · ∇v + λ

∫
D

|∇v|2 +

∫
D

βλ(v)v ≥ λ

∫
D

|∇v|2 ,

so that (H3) holds true thanks to the Poincaré inequality. Finally, using the Lipschitz
continuity of βλ and γλ and the Hölder inequality, we have for all u, v ∈ H1

0 (D)

〈Aλv, u〉H1
0 (D) =

∫
D

γλ(∇v) · ∇u+ λ

∫
D

∇v · ∇u+

∫
D

βλ(v)u

≤
(

1

λ
+ λ

)
‖∇v‖H ‖∇u‖H +

1

λ
‖v‖H ‖u‖H ≤

(
2

λ
+ λ

)
‖v‖H1

0 (D) ‖u‖H1
0 (D) ,

from which (H4) follows.

Lemma 3.1 ensures that, for all ε, λ ∈ (0, 1), there exists a unique adapted process

Xε
λ ∈ L2

(
Ω;C0 ([0, T ];H)

)
∩ L2

(
Ω× (0, T );H1

0 (D)
)

(3.10)

such that

Xε
λ(t)−

∫ t

0

div[γλ(∇Xε
λ(s))] ds− λ

∫ t

0

∆Xε
λ(s) ds+

∫ t

0

βλ(X
ε
λ(s)) ds

= X0 +

∫ t

0

Bε(s) dWs in H−1(D) , for every t ∈ [0, T ] , P-almost surely .
(3.11)

3.2 A priori estimates I

Here we prove uniform pathwise estimates on Xε
λ, independent of λ (but not of ε), which

will allow us to pass to the limit as λ ↘ 0 in the approximated problem (3.11) with ε
fixed.

Let us define, for any ε ∈ (0, 1),

W ε
B(t) :=

∫ t

0

Bε(s) dWs , t ∈ [0, T ] . (3.12)
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Thanks to the Burkholder-Davis-Gundy inequality and condition (2.24) we deduce

W ε
B ∈ L2 (Ω;L∞(0, T ;V0)) . (3.13)

In particular, recalling (2.22), we have that

W ε
B(ω) ∈ Lp(0, T ;V ) ∩ L∞(Q) for P-almost every ω ∈ Ω . (3.14)

Equation (3.11) can be rewritten as

∂t (Xε
λ −W ε

B) (t)− div [γλ(∇Xε
λ(t)) + λ∇Xε

λ(t)] + βλ(X
ε
λ(t)) = 0 in H−1(D)

for every t ∈ [0, T ], for any ω out of a set of probability 0 (the symbol ∂t for the derivative
with respect to time makes sense only if applied to the difference Xε

λ −W ε
B). Fix now ω

and test by Xε
λ(t)−W ε

B(t) (see [2, §1.3]): we obtain

1

2
‖Xε

λ(t)−W ε
B(t)‖2

H +

∫ t

0

∫
D

γλ(∇Xε
λ(s)) · ∇(Xε

λ(s)−W ε
B(s)) ds

+ λ

∫ t

0

∫
D

∇Xε
λ(s) · ∇ (Xε

λ(s)−W ε
B(s)) ds

+

∫ t

0

∫
D

βλ(X
ε
λ(s))(X

ε
λ(s)−W ε

B(s)) ds =
1

2
‖X0‖2

H .

(3.15)

Using the identity Id = λγλ + Jλ and rearranging terms in the previous relation, we have

1

2
‖Xε

λ(t)−W ε
B(t)‖2

H +

∫ t

0

∫
D

γλ(∇Xε
λ(s)) · Jλ (∇Xε

λ(s)) ds+ λ

∫ t

0

∫
D

|γλ (∇Xε
λ(s))|

2 ds

+ λ

∫ t

0

∫
D

|∇Xε
λ(s)|2 ds+

∫ t

0

∫
D

βλ(X
ε
λ(s))(X

ε
λ(s)−W ε

B(s)) ds

=
1

2
‖X0‖2

H +

∫ t

0

∫
D

γλ (∇Xε
λ(s)) · ∇W ε

B(s) ds+ λ

∫ t

0

∫
D

∇Xε
λ(s) · ∇W ε

B(s) ds .

Using the generalized Young inequality of the form ab ≤ δ p−1
p
a

p
p−1 + Cδ,pb

p (for any
a, b, δ > 0 and a certain Cδ,p > 0) on the second term on the right-hand side, thanks also
to hypotheses (2.16)–(2.17) and condition (2.15) we deduce for every t ∈ [0, T ] that

1

2
‖Xε

λ(t)−W ε
B(t)‖2

H +K

∫ t

0

‖Jλ (∇Xε
λ(s))‖

p
Lp(D) ds+ λ

∫ t

0

‖γλ (∇Xε
λ(s))‖

2
H ds

+ λ

∫ t

0

‖∇Xε
λ(s)‖

2
H ds+

∫ t

0

∫
D

βλ(X
ε
λ(s))(X

ε
λ(s)−W ε

B(s)) ds

≤ C ′ +
1

2
‖X0‖2

H + δ
(p− 1)D1

p

∫ t

0

‖Jλ (∇Xε
λ(s))‖

p
Lp(D) ds+ Cδ,p

∫ t

0

‖∇W ε
B(s)‖pLp(D) ds

+
λ

2

∫ t

0

‖∇Xε
λ(s)‖

2
H ds+

λ

2

∫ t

0

‖∇W ε
B(s)‖2

H ds

for a positive constants C ′ independent of λ and ε. Hence, choosing δ = Kp
2D1(p−1)

, we get
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that, for every t ∈ [0, T ],

‖Xε
λ(t)‖

2
H +

K

2

∫ t

0

‖Jλ (∇Xε
λ(s))‖

p
Lp(D) ds+ λ

∫ t

0

‖γλ (∇Xε
λ(s))‖

2
H ds

+
λ

2

∫ t

0

‖∇Xε
λ(s)‖

2
H ds+

∫ t

0

∫
D

βλ(X
ε
λ(s))(X

ε
λ(s)−W ε

B(s)) ds

≤ C ′ +
1

2
‖X0‖2

H + Cp ‖W ε
B‖

p
Lp(0,T ;V ) +

1

2
‖W ε

B‖
2
L∞(0,T ;H) +

1

2
‖W ε

B‖
2
L2(0,T ;H1

0 (D))

(3.16)

for a positive constant Cp independent of λ and ε. Denoting by jλ : R → [0,+∞) the
proper, convex, lower semicontinuous function such that βλ = ∂jλ and jλ(0) = 0, one has
that jλ ≤ j and jλ(x)↗ j(x) for every x ∈ R (recall that R = D(β) ⊆ D(j)). Hence, for
every x, y ∈ R we have that

βλ(x)(x− y) ≥ jλ(x)− jλ(y) ≥ jλ(x)− j(y) .

Applying this inequality to the last term on the left-hand side of (3.16), we deduce that,
for every t ∈ [0, T ],

‖Xε
λ(t)‖

2
H +

K

2

∫ t

0

‖Jλ (∇Xε
λ(s))‖

p
Lp(D) ds+ λ

∫ t

0

‖γλ (∇Xε
λ(s))‖

2
H ds

+
λ

2

∫ t

0

‖∇Xε
λ(s)‖

2
H ds+

∫ t

0

∫
D

jλ(X
ε
λ(s)) ds

≤ C

(
1 + ‖X0‖2

H + ‖W ε
B‖

2
Lp(0,T ;V ) + ‖W ε

B‖
2
L∞(0,T ;H) + ‖W ε

B‖
2
L2(0,T ;H1

0 (D)) +

∫
Q

j(W ε
B)

)
for a certain constant C > 0. Note that all the terms on the right-hand side are finite
P-almost surely: for the first five, this is immediate thanks to (2.23) and (3.14), while
j(W ε

B) ∈ L1(Q) since W ε
B ∈ L∞(Q). Using the positivity of jλ we deduce that for P-

almost every ω ∈ Ω there exists a positive constant M = Mω,ε, independent of λ, such
that, for every λ ∈ (0, 1),

‖Xε
λ(ω)‖L∞(0,T ;H) ≤Mω,ε , (3.17)

‖Jλ (∇Xε
λ(ω))‖Lp(Q) ≤Mω,ε , (3.18)

λ1/2 ‖γλ (∇Xε
λ(ω))‖L2(Q) ≤Mω,ε , (3.19)

λ1/2 ‖∇Xε
λ(ω)‖L2(Q) ≤Mω,ε . (3.20)

Finally, by (2.17) and (2.15) we also have∫
Q

|γλ(∇Xε
λ)|

q ≤ D1

∫
Q

(1 + |Jλ(∇Xε
λ)|)

p ,

so that by (3.18) it follows (possibly redefining Mω,ε) that, for every λ ∈ (0, 1),

‖γλ(∇Xε
λ(ω))‖Lq(Q) ≤Mω,ε . (3.21)
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3.3 A priori estimates II

In this section we prove some estimates in expectation on Xε
λ independent both of λ and

ε. The main tool is a version of Itô’s formula in a variational framework.

Thanks to conditions (2.23)–(2.24) and (3.10)–(3.11), we can apply Itô’s formula (see
[24, Thm. 4.2.5]), obtaining

1

2
‖Xε

λ(t)‖
2
H +

∫ t

0

∫
D

γλ(∇Xε
λ(s)) · ∇Xε

λ(s) ds+ λ

∫ t

0

∫
D

|∇Xε
λ(s)|

2 ds

+

∫ t

0

∫
D

βλ(X
ε
λ(s))X

ε
λ(s) ds

=
1

2
‖X0‖2

H +
1

2

∫ t

0

‖Bε(s)‖2
L2(U,H) ds+

∫ t

0

(Xε
λ(s), B

ε(s) dWs)

(3.22)

for every t ∈ [0, T ], P-almost surely, which yields, by definition of γλ and conditions (2.17)
and (2.15),

1

2
‖Xε

λ(t)‖
2
H +K

∫ t

0

‖Jλ (∇Xε
λ(s))‖

p
Lp(D) ds+ λ

∫ t

0

‖γλ (∇Xε
λ(s))‖

2
H ds

+ λ

∫ t

0

‖∇Xε
λ(s)‖

2
H ds+

∫ t

0

∫
D

βλ(X
ε
λ(s))X

ε
λ(s) ds

≤ C ′′ +
1

2
‖X0‖2

H +
1

2
‖Bε(s)‖2

L2(0,T ;L2(U,H)) + sup
t∈[0,T ]

∣∣∣∣∫ t

0

(Xε
λ(s), B

ε(s) dWs)

∣∣∣∣
for a constant C ′′ > 0, independent of ε and λ. Thanks to Davis’ inequality, the Hölder
and Young inequalities, and condition (3.3), we have for some c, c̃ > 0

E sup
t∈[0,T ]

∣∣∣∣∫ t

0

(Xε
λ(s), B

ε(s) dWs)

∣∣∣∣ ≤ cE

[(∫ T

0

‖Xε
λ(s)‖

2
H ‖B

ε(s)‖2
L2(U,H) ds

)1/2
]

≤ cE
[
‖Xε

λ‖L∞(0,T ;H) ‖B
ε‖L2(0,T ;L2(U,H))

]
≤ 1

4
‖Xε

λ‖
2
L2(Ω;L∞(0,T ;H)) + c̃ ‖B‖2

L2(Ω×(0,T );L2(U,H)) ;

consequently, taking the supremum in t ∈ [0, T ] and expectations, we obtain
1

4
‖Xε

λ‖
2
L2(Ω;L∞(0,T ;H)) +K ‖Jλ (∇Xε

λ)‖
p
Lp(Ω×(0,T )×D) + λ ‖γλ (∇Xε

λ)‖
2
L2(Ω×(0,T )×D)

+ λ ‖∇Xε
λ‖

2
L2(Ω×(0,T )×D) +

∫
Ω×Q

βλ(X
ε
λ)X

ε
λ

≤ C ′′ +
1

2
‖X0‖2

L2(Ω;H) +
3

2
‖B‖2

L2(Ω×(0,T );L2(U,H)) .

(3.23)

We infer that there exists a constant N > 0, independent of λ and ε, such that

‖Xε
λ‖L2(Ω;L∞(0,T ;H)) ≤ N , (3.24)

‖Jλ (∇Xε
λ)‖Lp(Ω×(0,T )×D) ≤ N , (3.25)

λ1/2 ‖γλ (∇Xε
λ)‖L2(Ω×(0,T )×D) ≤ N , (3.26)

λ1/2 ‖∇Xε
λ‖L2(Ω×(0,T )×D) ≤ N , (3.27)
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for every ε, λ ∈ (0, 1). Finally, by (2.17) and (2.15) we also have∫
Ω×Q
|γλ(∇Xε

λ)|
q ≤ D1

∫
Ω×Q

(1 + |Jλ(∇Xε
λ)|)

p ,

so that by (3.25) it follows (possibly redefining N) that, for every ε, λ ∈ (0, 1),

‖γλ(∇Xε
λ)‖Lq(Ω×(0,T )×D) ≤ N . (3.28)

3.4 A priori estimates III

In this section we prove uniform estimates on the term βλ(X
ε
λ), independent of λ (with

ε fixed), which are useful to recover a suitable weak compactness. We rely on some
computations performed in [3] to obtain some L1 estimates, the classical results by de la
Vallée-Poussin about uniform integrability and on the Dunford-Pettis theorem.

Firstly, let us fix ω ∈ Ω. Property (2.9), conditions (2.14)–(2.15) and the monotonicity
of βλ imply that

j(RλX
ε
λ) + j∗(βλ(X

ε
λ)) = βλ(X

ε
λ)RλX

ε
λ ≤ |βλ(Xε

λ)| |Xε
λ| = βλ(X

ε
λ)X

ε
λ .

Consequently, from inequality (3.16) evaluated at time T and the previous relation, re-
calling (3.14) and using the generalized Young inequality of the form ab ≤ j(2a) + j∗(b/2)
for any a, b ∈ R (see (2.10)), we deduce that P-almost surely we have∫

Q

j∗(βλ(X
ε
λ)) ≤

∫
Q

βλ(X
ε
λ)X

ε
λ ≤ C ′ +

1

2
‖X0‖2

H + Cp ‖W ε
B‖

p
Lp(0,T ;V )

+
1

2
‖W ε

B‖
2
L∞(0,T ;H) +

1

2
‖W ε

B‖
2
L2(0,T ;H1

0 (D)) +

∫
Q

βλ(X
ε
λ)W

ε
B

≤ C ′ +
1

2
‖X0‖2

H + Cp ‖W ε
B‖

p
Lp(0,T ;V ) +

1

2
‖W ε

B‖
2
L∞(0,T ;H)

+
1

2
‖W ε

B‖
2
L2(0,T ;H1

0 (D)) + ‖j (2W ε
B)‖L1(Q) +

1

2

∫
Q

j∗ (βλ(X
ε
λ)) .

All the terms on the right hand side are finite thanks to (2.23) and (3.14): hence, since
j∗ is even by assumption, we have proved that

‖j∗ (|βλ(Xε
λ(ω))|)‖L1(Q) = ‖j∗ (βλ(X

ε
λ(ω)))‖L1(Q) ≤

∫
Q

βλ(X
ε
λ(ω))Xε

λ(ω) ≤Mω,ε (3.29)

for P-almost every ω ∈ Ω; moreover, since D(β) = R by (2.3), we have that

lim
|r|→+∞

j∗(r)

|r|
= +∞

(see for example [4, 11]). Hence, using then the criterion by de la Vallée-Poussin for
uniform integrability combined with the Dunford-Pettis theorem, we deduce that, for
P-almost every ω ∈ Ω and for every ε ∈ (0, 1),

{βλ(Xε
λ)(ω)}λ∈(0,1) is weakly relatively compact in L1 (Q) . (3.30)
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Finally, let us obtain the corresponding information also in expectation. It easily
follows from (3.23) that there exists a constant N > 0, independent of λ and ε, such that

‖βλ(Xε
λ)X

ε
λ‖L1(Ω×(0,T )×D) ≤ N for every ε, λ ∈ (0, 1) ;

hence, in analogy to the derivation of (3.29), we get∫
Ω×Q

j∗(βλ(X
ε
λ)) ≤ ‖βλ(Xε

λ)X
ε
λ‖L1(Ω×(0,T )×D) ≤ N for every ε, λ ∈ (0, 1) . (3.31)

Since j∗ is even and superlinear at infinity, the criterion by de la Vallée-Poussin and the
Dunford-Pettis theorem imply that

{βλ(Xε
λ)}ε,λ∈(0,1) is weakly relatively compact in L1(Ω× (0, T )×D) . (3.32)

3.5 Passage to the limit as λ↘ 0

In this section, we pass to the limit as λ ↘ 0 in the approximated problem (3.11) with
ε ∈ (0, 1) being fixed: the idea is to pass to the limit pathwise as λ↘ 0. Throughout the
section, ε ∈ (0, 1) and ω ∈ Ω are fixed.

First of all, conditions (3.17)–(3.21) and (3.30) ensure that there exist

Xε(ω) ∈ L∞ (0, T ;H) , (3.33)
Y ε(ω) ∈ Lp(Q)d , (3.34)
ηε(ω) ∈ Lq(Q)d , (3.35)
ξε(ω) ∈ L1 (Q) (3.36)

and a sequence {λn}n∈N (which clearly depends on ε and ω as well) such that as n→∞

Xε
λn(ω)

∗
⇀ Xε(ω) in L∞ (0, T ;H) , (3.37)

Jλn
(
∇Xε

λn(ω)
)
⇀ Y ε(ω) in Lp(Q)d , (3.38)

γλn(∇Xε
λ(ω)) ⇀ ηε(ω) in Lq(Q)d , (3.39)

βλn(Xε
λn(ω)) ⇀ ξε(ω) in L1 (Q) (3.40)

and also as λ↘ 0 that

λγλ(∇Xε
λ(ω))→ 0 in L2(Q)d , (3.41)

λ∇Xε
λ(ω)→ 0 in L2(Q)d . (3.42)

In particular, since λ2|γλ(∇Xε
λ)|2 = |∇Xε

λ − Jλ(∇Xε
λ)|2, from (3.41) we have that∫

Q

|∇Xε
λ − Jλ(∇Xε

λ)|
2(ω)→ 0 as λ↘ 0 ,

which together with (3.38) implies that ∇Xε
λn

(ω) ⇀ Y ε in L2(Q)d; hence, we deduce

Xε(ω) ∈ Lp (0, T ;V ) , (3.43)
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Y ε = ∇Xε and as a consequence (possibly renominating {λn}n∈N)

Jλn
(
∇Xε

λn(ω)
)
⇀ ∇Xε(ω) in Lp(Q)d , (3.44)

∇Xε
λn(ω) ⇀ ∇Xε(ω) in L2(Q)d . (3.45)

The second step is to prove a strong convergence for Xε
λ. To this purpose, equation

(3.11) can be rewritten on the path starting from ω as

∂t (Xε
λ −W ε

B) (t)− div γλ(∇Xε
λ(t))− λ∆Xε

λ(t) + βλ(X
ε
λ(t)) = 0 in H−1(D)

for every t ∈ [0, T ]: we estimate the different terms of the previous relation in the
larger space L1(0, T ;V ∗0 ). Recalling that L1(D), H−1(D), V ∗ ↪→ V ∗0 , using the fact that
‖− div v‖V ∗ ≤ ‖v‖Lq(D) for every v ∈ Lq(D)d (thanks to definition (2.19)) and that
‖−∆v‖H−1(D) ≤ ‖∇v‖L2(D) for every v ∈ H1

0 (D), using conditions (3.20)–(3.21) and
(3.30), we deduce that for every λ ∈ (0, 1)

‖− div γλ(∇Xε
λ(ω))‖L1(0,T ;V ∗0 ) ≤ c ‖γλ(∇Xε

λ(ω))‖Lq(Q) ≤Mω,ε ,

‖−λ∆Xε
λ‖L1(0,T ;V ∗0 ) ≤ cλ ‖∇Xε

λ‖L2(Q) ≤Mω,ε ,

‖βλ(Xε
λ(ω))‖L1(0,T ;V ∗0 ) ≤ c ‖βλ(Xε

λ(ω))‖L1(Q) ≤Mω.ε ,

for a certain constant c > 0 and renominating the constant Mω,ε at each passage. Hence,
we deduce by difference that

‖∂t (Xε
λ −W ε

B) (ω)‖L1(0,T ;V ∗0 ) ≤Mω,ε for every λ ∈ (0, 1) . (3.46)

At this point, we can recover a strong convergence using some classical compactness results
with ω ∈ Ω being fixed. The proposition that we are going to use is the following (the
reader can refer to [25, Cor. 4, p. 85]).

Proposition 3.2. Let A1
c
↪→ A2 ↪→ A3 be three Banach spaces and let F ⊆ Lr(0, T ;A1)

be a bounded set such that ∂F
∂t

:= {∂tf : f ∈ F} is bounded in L1(0, T ;A3) for a given
r ≥ 1. Then F is relatively compact in Lr(0, T ;A2).

In our setting, we make the natural choices A1 = H1
0 (D), A2 = H, A3 = V ∗0 , r = 2

and F = {(Xε
λn
−W ε

B)(ω)}n∈N: since by (3.45) the family {Xε
λn

(ω)}n∈N is bounded in
L2(0, T ;H1

0 (D)), thanks also to (3.46) we can apply Proposition 3.2 to recover that the
set F is relatively compact in L2(0, T ;H). Hence, there exists Xε

B(ω) ∈ L2(0, T ;H) such
that

(Xε
λn −W

ε
B)(ω)→ Xε

B(ω) in L2(0, T ;H) as n→∞ ,

possibly updating the sequence {λn}n∈N. Using condition (3.37) and the fact that W ε
B is

fixed with respect to λ, we infer that

(Xε
λn −W

ε
B)(ω)

∗
⇀ (Xε −W ε

B)(ω) in L∞(0, T ;H) as n→∞ ,

and for uniqueness of the weak limit we have Xε
B(ω) = (Xε −W ε

B)(ω) a.e. in Q. As a
consequence, we have that

Xε
λn(ω)→ Xε(ω) in L2(0, T ;H) as n→∞ . (3.47)
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We are now ready to pass to the limit as λ↘ 0 in (3.11): in particular, we are going
to show that for every ε ∈ (0, 1) we have

Xε(t)−
∫ t

0

div ηε(s) ds+

∫ t

0

ξε(s) ds = X0 +

∫ t

0

Bε(s) dWs in V ∗0 ,

for every t ∈ [0, T ] , P-almost surely ,
(3.48)

ηε ∈ γ(∇Xε) a.e. in Q , P-almost surely , (3.49)
ξε ∈ β(X) a.e. in Q , P-almost surely , (3.50)
j(Xε) + j∗(ξε) ∈ L1(Q) , P-almost surely . (3.51)

Firstly, let ε ∈ (0, 1) and ω ∈ Ω be fixed as usual. Let w ∈ V0 and recall the fact
that V0 ↪→ L∞(D)∩ V : then, thanks to (3.37), (3.39), (3.42) and (3.40), for almost every
t ∈ (0, T ) we have ∫

D

Xε
λn(t)w →

∫
D

Xε(t)w ,∫ t

0

∫
D

γλn(∇Xε
λn(s)) · ∇w ds→

∫ t

0

∫
D

ηε(s) · ∇w ds ,

λn

∫ t

0

∫
D

∇Xε
λn(s) · ∇w ds→ 0 ,∫ t

0

∫
D

βλn(Xε
λn(s))w ds→

∫ t

0

∫
D

ξε(s)w ds ,

as n → ∞. Hence, taking these remarks into account, letting n → ∞ in equation (3.11)
evaluated with λn, we obtain exactly

Xε(t)−
∫ t

0

div ηε(s) ds+

∫ t

0

ξε(s) ds = X0 +

∫ t

0

Bε(s) dWs in V ∗0

for almost every t ∈ (0, T ) , P-almost surely .

Since all the terms except the first are continuous with respect to time, we deduce a
posteriori that Xε(ω) ∈ C0 ([0, T ];V ∗0 ) P-almost surely. Recall now that for any two
Banach spaces E1, E2 with E1 reflexive and E1 ↪→ E2 continuously and densely, we have
L∞(0, T ;E1) ∩ C0

w([0, T ];E2) = C0
w([0, T ];E1) (see [26, Thm. 2.1]). Hence, since also

Xε(ω) ∈ L∞(0, T ;H), we deduce that

Xε ∈ C0
w ([0, T ];H) P-almost surely . (3.52)

Hence, the last integral relation holds for every t ∈ [0, T ] and (3.48) is proved.

Secondly, let us show (3.50): to this end, we will need the following lemma, due to
Brezis (see [10, Thm. 18, p. 126] for a detailed reference).

Lemma 3.3. Let α be a maximal monotone graph in R×R with D(α) = R and 0 ∈ α(0).
Assume that the sequences (yn)n∈N, (gn)n∈N of real-valued measurable functions on a finite
measure space (Y,A , µ) are such that yn → y µ-a.e. as n→∞, gn ∈ α(yn) µ-a.e. for all
n ∈ N, and (gnyn) is a bounded subset of L1(Y,A , µ). Then there exists g ∈ L1(Y,A , µ)
and a subsequence n′ such that gn′ → g weakly in L1(Y,A , µ) as n′ → ∞ and g ∈ α(y)
µ-almost everywhere.
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By (3.47) we can assume that Xε
λn

(ω)→ Xε(ω) a.e. in Q as k →∞, from which, since Rλn

is a contraction, we deduce also that RλnX
ε
λn

(ω)→ Xε(ω) a.e. in Q. Moreover, by (2.15)
and (3.40), we also know that βλn(Xε

λn
(ω)) ∈ β(RλnX

ε
λn

(ω)) and βλn(Xε
λn

(ω)) ⇀ ξε(ω)
in L1(Q). Consequently, since {βλn(Xε

λn
(ω))Xε

λn
(ω)}n∈N is bounded in L1(Q) thanks to

(3.29), we can apply the result contained in Lemma 3.3, with the choices Y = Q, µ the
Lebesgue measure on Q, yn = Xε

λn
and gn = RλnX

ε
λn
, to infer (3.50).

Furthermore, by definition of βλn we have Xε −RλnX
ε
λn

= (Xε −Xε
λn

) + λnβλn(Xε
λn

),
so that thanks to (3.40) and (3.47) we deduce that RλnX

ε
λn

(ω)→ Xε(ω) in L1(Q): hence,
by the weak lower semicontinuity of the convex integrals and conditions (3.40), (2.15),
(2.9) and (3.29), we have that∫

Q

[j(Xε(ω)) + j∗(ξε(ω))] ≤ lim inf
n→∞

∫
Q

[
j(RλnX

ε
λn(ω)) + j∗(βλn(Xε

λn)(ω))
]

= lim inf
n→∞

∫
Q

RλnX
ε
λn(ω)βλn(Xε

λn(ω)) ≤ lim inf
n→∞

∫
Q

Xε
λn(ω)βλn(Xε

λn(ω)) ≤Mω,ε ,

so that also (3.51) is proved. Let us also point out that conditions (3.50) and (2.9) imply
ξεXε = j(Xε) + j∗(ξε) almost everywhere on Q, so that from the very last calculations,
using the fact that Rλn is a contraction and the monotonicity of βλ, we have

ξε(ω)Xε(ω) ∈ L1(Q) ,

∫
Q

ξε(ω)Xε(ω) ≤ lim inf
n→∞

∫
Q

βλn(Xε
λn(ω))Xε

λn(ω) . (3.53)

Finally, let us show that (3.49) holds: in the next passages, we will omit to write ω to
simplify notations. From equation (3.15) evaluated at time T , recalling conditions (3.37),
(3.39), (3.40), (3.42), (3.53) and (3.13), we get that

lim sup
n→∞

∫
Q

γλn(∇Xε
λn) · ∇Xε

λn =
1

2
‖X0‖2

H + lim
n→∞

∫
Q

γλn(∇Xε
λn) · ∇W ε

B

+ lim
n→∞

λn

∫
Q

∇Xε
λn · ∇W

ε
B + lim

n→∞

∫
Q

βλn(Xε
λn)W ε

B

− 1

2
lim inf
n→∞

∥∥Xε
λn(T )−W ε

B(T )
∥∥2

H
− lim

n→∞
λn
∥∥∇Xε

λn

∥∥2

H
− lim inf

n→∞

∫
Q

βλn(Xε
λn)Xε

λn

≤ 1

2
‖X0‖2

H +

∫
Q

ηε · ∇W ε
B +

∫
Q

ξεW ε
B −

1

2
‖Xε(T )−W ε

B(T )‖2
H −

∫
Q

ξεXε .

At this point, thanks to conditions (3.48)–(3.51), we can prove that the following testing
formula holds:

1

2
‖Xε(T )−W ε

B(T )‖2
H +

∫
Q

ηε · ∇(Xε −W ε
B) +

∫
Q

ξε(Xε −W ε
B) =

1

2
‖X0‖2

H . (3.54)

Remark 3.4. The proof of (3.54) relies on sharp approximations of elliptic type and is
very technical: hence, we omit it here in order not to make the treatment heavier. The
reader can refer to Appendix A for a complete and rigorous proof of (3.54).

Hence, thanks to (3.54), the last set of inequalities can be read as

lim sup
n→∞

∫
Q

γλn(∇Xε
λn) · ∇Xε

λn ≤
∫
Q

ηε · ∇Xε ,
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from which, using the definition of γλn and condition (3.41) we deduce that

lim sup
n→∞

∫
Q

γλn(∇Xε
λn) · Jλn

(
∇Xε

λn

)
= lim sup

n→∞

∫
Q

[
γλn(∇Xε

λn) · ∇Xε
λn − λn|γλn(∇Xε

λn)|2
]

= lim sup
n→∞

∫
Q

γλn(∇Xε
λn) · ∇Xε

λn − lim
n→∞

λn

∫
Q

∣∣γλn(∇Xε
λn)
∣∣2 ≤ ∫

Q

ηε · ∇Xε .

This last inequality together with (3.38) and (3.39) implies condition (3.49) thanks to the
usual tools of monotone analysis.

3.6 Measurability properties of the solutions

In this section, we show that the solution components Xε, ηε and ξε constructed in the
previous section have also some regularity with respect to ω. Moreover, we prove uniform
estimates with respect to ε: to this purpose, we will use the results of Sections 3.3 and
3.4, as well as natural lower semicontinuity properties.

First of all, note that, a priori, Xε, ηε and ξε are not even measurable processes,
because of the way they have been build (the sequence λn could depend on ω as well).
To show measurability, we need to prove uniqueness for problem (3.48)–(3.51). Hence,
let (Xε

1 , η
ε
1, ξ

ε
1) and (Xε

2 , η
ε
2, ξ

ε
2) satisfy conditions (3.48)–(3.51): taking the difference of

(3.48) and setting Y ε := Xε
1 −Xε

2 , ζε := ηε1 − ηε2 and ψε := ξε1 − ξε2 we have

Y ε(t)−
∫ t

0

div ζε(s) ds+

∫ t

0

ψε(s) ds = 0 for every t ∈ [0, T ] , P-almost surely .

Now, by convexity we have j(Y ε/2) + j∗(ψε/2) ≤ 1
2

(j(Xε
1) + j(Xε

2) + j∗(ξε1) + j∗(ξε2)),
where the right-hand side is in L1(Q): hence, using the same argument as in Appendix A
with X0 = 0 and B = 0, we infer that

1

2
‖Y ε(t)‖2

H +

∫ t

0

∫
D

ζε(s) · ∇Y ε(s) ds+

∫ t

0

∫
D

ψε(s)Y ε(s) ds = 0 .

The monotonicity of γ and β implies that Y ε = 0. Moreover, in view of (2.25), γ is a
continuous function. This implies that ζε = 0 and the first integral expression becomes∫ t

0
ψε(s) ds = 0 for every t ∈ [0, T ], so that also ψε = 0 and uniqueness is proved.

At this point, we are ready to prove that the sequence {λn}n∈N constructed in the
previous section can be chosen independent of ω: more precisely, we can prove that for any
sequence {λn}n∈N decreasing to 0, conditions (3.37)–(3.40) and (3.44)–(3.45) hold. Indeed,
let {λn}n∈N be any sequence decreasing to 0 and fix ω ∈ Ω: then, for every subsequence of
{λn}n∈N (which we still denote with the same symbol for sake of simplicity), the estimates
(3.17)–(3.21) hold. Proceeding as in Section 3.5 and invoking the uniqueness, we can
then extract a further sub-subsequence (depending on ω) along which the same weak
convergences to Xε, ηε and ξε hold. This implies that the convergences (3.37)–(3.40) and
(3.44)–(3.45) are true for the original sequence {λn}n∈N, which does not depend on ω.

Now, let us prove some measurability properties of the processesXε, ηε and ξε. First of
all, since Xε

λn
→ Xε in L2(0, T ;H) P-almost surely, it is clear that Xε is predictable (since
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so are Xε
λn

for every n ∈ N). Secondly, let us focus on ξε: we prove that βλn(Xε
λn

) ⇀ ξε

in L1(Ω× (0, T )×D). To this aim, for any g ∈ L∞(Q), setting

F ε
λn :=

∫
Q

βλn(Xε
λn)g , F ε :=

∫
Q

ξεg ,

we know that F ε
λn
→ F ε P-almost surely: let us show that F ε

λn
⇀ F ε in L1(Ω). Indeed,

for any h ∈ L∞(Ω), if we define

j∗0(·) := j∗ (·/M) , M :=
1

(1 ∨ ‖g‖L∞(Q))(1 ∨ ‖h‖L∞(Ω))
,

by the Jensen inequality we have that

E
[
j∗0(F ε

λnh)
]

= E
[
j∗0

(∫
Q

βλn(Xε
λn)gh

)]
≤ CT,|D|E

∫
Q

j∗0(βλn(Xε
λn)gh) ≤

∫
Ω×Q

j∗(|βλn(Xε
λn)|) ,

where the last term is bounded uniformly in n by (3.31). Consequently, since j∗0 is still
superlinear at infinity, by the de la Vallée-Poussin criterion, we deduce that {F ε

λn
h}n∈N

is uniformly integrable on Ω: taking also into account that F ε
λn
h→ F εh P-almost surely,

Vitali’s convergence theorem ensures that F ε
λn
h → F εh in L1(Ω). Since this is true for

any h and g, this implies that βλn(Xε
λn

) ⇀ ξε in L1(Ω× (0, T )×D). By Mazur’s Lemma
there is a sequence made up of convex combinations of βλn(Xε

λn
) which converge strongly

ξε in L1(Q), P-almost surely. This ensures that ξε is predictable (since so are βλ(Xε
λ) for

every n). Finally, using a similar argument, one can show also that ηε is adapted.

It is now time to prove some uniform estimates with respect to ε. By (3.37)–(3.40),
(3.44) and the estimates (3.24)–(3.28), using the lower semicontinuity of the norm, we
have

‖Xε(ω)‖L∞(0,T ;H) ≤ lim inf
n→∞

∥∥Xε
λn(ω)

∥∥
L∞(0,T ;H)

,

‖∇Xε(ω)‖Lp(Q) ≤ lim inf
n→∞

∥∥Jλn (∇Xε
λn(ω)

)∥∥
Lp(Q)

,

‖ηε(ω)‖Lq(Q) ≤ lim inf
n→∞

∥∥γλn (∇Xε
λn(ω)

)∥∥
Lq(Q)

,

‖ξε(ω)‖L1(Q) ≤ lim inf
n→∞

∥∥βλn(Xε
λn(ω))

∥∥
L1(Q)

.

Taking expectations and using (3.24)–(3.28) and (3.32), the Fatou’s lemma implies

E ‖Xε‖2
L∞(0,T ;H) ≤ E

[(
lim inf
n→∞

∥∥Xε
λn

∥∥
L∞(0,T ;H)

)2
]
≤ lim inf

n→∞

∥∥Xε
λn

∥∥2

L2(Ω;L∞(0,T ;H))
≤ N ,

E ‖∇Xε‖pLp(Q) ≤ E
[(

lim inf
n→∞

∥∥Jλn (∇Xε
λn

)∥∥
Lp(Q)

)p]
≤ lim inf

n→∞

∥∥Jλn (∇Xε
λn

)∥∥p
Lp(Ω×Q)

≤ N ,

E ‖ηε‖qLq(Q) ≤ E
[(

lim inf
n→∞

∥∥γλn (∇Xε
λn

)∥∥
Lq(Q)

)q]
≤ lim inf

n→∞

∥∥γλn (∇Xε
λn

)∥∥q
Lq(Ω×Q)

≤ N ,

E ‖ξε‖L1(Q) ≤ E
[
lim inf
n→∞

∥∥βλn(Xε
λn)
∥∥
L1(Q)

]
≤ lim inf

n→∞

∥∥βλn(Xε
λn)
∥∥
L1(Ω×Q)

≤ N ,
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for a certain positive constant N independent of ε. Hence, we have also proved that

Xε ∈ L2 (Ω;L∞(0, T ;H)) ∩ Lp (Ω× (0, T );V ) , (3.55)

ηε ∈ Lq (Ω× (0, T )×D)d , ξε ∈ L1 (Ω× (0, T )×D) (3.56)

and that the following estimates hold:

‖Xε‖L2(Ω;L∞(0,T ;H))∩Lp(Ω×(0,T );V ) ≤ N for every ε ∈ (0, 1) , (3.57)

‖ηε‖Lq(Ω×(0,T )×D) ≤ N for every ε ∈ (0, 1) , (3.58)

‖ξε‖L1(Ω×(0,T )×D) ≤ N for every ε ∈ (0, 1) . (3.59)

Moreover, since βλn(Xε
λn

) ⇀ ξε in L1(Q) as n → ∞, P-almost surely, by the weak
lower semicontinuity of the convex integral we have∫

Q

j∗(ξε) ≤ lim inf
n→∞

∫
Q

j∗
(
βλn(Xε

λn)
)

P-almost surely :

hence, thanks to the Fatou lemma and condition (3.31), we deduce that∫
Ω×Q

j∗(ξε) ≤ lim inf
n→∞

∫
Ω×Q

j∗
(
βλn(Xε

λn)
)
≤ N ,

where N is independent of ε. Consequently, since j∗ is even thanks to (2.11), we have that
{j∗(ξε)}ε∈(0,1) is bounded in L1(Ω×Q): hence, since j∗ is superlinear at ∞, the classical
results by de la Vallée-Poussin and the Dunford-Pettis theorem ensure that

{ξε}ε∈(0,1) is weakly relatively compact in L1(Ω× (0, T )×D) . (3.60)

Similarly, RλnX
ε
λn
→ Xε in L1(Q) and j(RλX

ε
λ) ≤ j(RλX

ε
λ) + j∗(βλ(X

ε
λ)) = βλ(X

ε
λ)X

ε
λ:

hence, the weak lower semicontinuity of the convex integrals, Fatou’s lemma and condition
(3.31) imply∫

Ω×Q
j(Xε) ≤ lim inf

n→∞

∫
Ω×Q

j
(
RλnX

ε
λn

)
≤ sup

ε,λ∈(0,1)

‖βλ(Xε
λ)X

ε
λ‖L1(Ω×Q) ≤ N .

Taking these remarks into account, we have also obtained that

‖j(Xε)‖L1(Ω×(0,T )×D) + ‖j∗(ξε)‖L1(Ω×(0,T )×D) ≤ N for every ε ∈ (0, 1) . (3.61)

3.7 Passage to the limit as ε↘ 0

In this section, we pass to the limit as ε ↘ 0 in the sub-prolem (3.48)–(3.51) and we
recover global solutions to the original problem: to this end, the passage to the limit
takes place also in probability, as we have already anticipated.

First of all, thanks to (3.57)–(3.59), we deduce that there exist

X ∈ L∞
(
0, T ;L2(Ω;H)

)
∩ Lp (Ω× (0, T );V ) , (3.62)

η ∈ Lq (Ω× (0, T )×D)d , ξ ∈ L1 (Ω× (0, T )×D) , (3.63)
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and a sequence {εn}n∈N with εn ↘ 0 as n→∞ such that

Xεn ∗
⇀ X in L∞

(
0, T ;L2(Ω;H)

)
, (3.64)

Xεn ⇀ X in Lp (Ω× (0, T );V )) , (3.65)

ηεn ⇀ η in Lq (Ω× (0, T )×D)d , (3.66)
ξεn ⇀ ξ in L1 (Ω× (0, T )×D) . (3.67)

Let us prove a strong convergence for Xε: given ε, δ ∈ (0, 1), consider equation (3.48)
evaluated for ε and δ. Then, taking the difference we have

Xε(t)−Xδ(t)−
∫ t

0

div(ηε(s)− ηδ(s)) ds+

∫ t

0

(
ξε(s)− ξδ(s)

)
ds

=

∫ t

0

(Bε(s)−Bδ(s)) dWs in V ∗0 for every t ∈ [0, T ] , P-a.s .

Now, notice that thanks to (2.11) and the convexity of j and j∗, we have

j

(
Xε −Xδ

2

)
+ j∗

(
ξε − ξδ

2

)
≤ 1

2

(
j(Xε) + j(Xδ) + j∗(ξε) + j∗(ξδ)

)
,

where the term on the right hand side is in L1(Ω × (0, T ) ×D) thanks to (3.61): hence,
recalling also condition (3.52) we can apply Proposition B.1 with the choices Y = Xε−Xδ,
f = ηε − ηδ, g = ξε − ξδ, T = Bε −Bδ and α = 1/2 to infer that

1

2

∥∥Xε(t)−Xδ(t)
∥∥2

H
+

∫ t

0

∫
D

(
ηε(s)− ηδ(s)

)
·
(
∇Xε(s)−∇Xδ(s)

)
ds

+

∫ t

0

∫
D

(
ξε(s)− ξδ(s)

) (
Xε(s)−Xδ(s)

)
ds

=
1

2

∫ t

0

∥∥Bε(s)−Bδ(s)
∥∥2

L2(U,H)
ds+

∫ t

0

(
(Xε −Xδ)(s), (Bε −Bδ)(s) dWs

)
for every t ∈ [0, T ], P-almost surely. Now, proceeding exactly as in Section 3.3, we
take the supremum in t and expecations, use the monotonicity of γ and β together with
(3.49)–(3.50) and the Davis inequality, so that we have∥∥Xε −Xδ

∥∥2

L2(Ω;L∞(0,T ;H))
≤ c

∥∥Bε −Bδ
∥∥2

L2(Ω×(0,T );L2(U,H))

for every ε, δ ∈ (0, 1), for a positive constant c independent of ε: taking into account
(3.2), this implies that the sequence {Xε}ε∈(0,1) is Cauchy in L2(Ω;L∞(0, T ;H)), so that
by (3.64) we deduce

X ∈ L2 (Ω;L∞(0, T ;H)) (3.68)

and
Xε → X in L2 (Ω;L∞(0, T ;H)) , as ε↘ 0 . (3.69)

We are now ready to pass to the limit in equation (3.48): to this purpose, fix w ∈ V0

(recall that V0 ↪→ L∞(D)∩ V ). Then, thanks to (3.69), (3.65)–(3.67) and (3.2), for every
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t ∈ [0, T ] we have as n→∞ that

E

[
ess sup

t∈(0,T )

∣∣∣∣∫
D

Xεn(t)w −
∫
D

X(t)w

∣∣∣∣
]
→ 0 ,

E
[∫ t

0

∫
D

ηεn · ∇w ds
]
→ E

[∫ t

0

∫
D

η · ∇w ds
]
,

E
[∫ t

0

∫
D

ξεn(s)w ds

]
→ E

[∫ t

0

∫
D

ξ(s)w ds

]
,

E
[∫ t

0

(w,Bεn(s) dWs)

]
→ E

[∫ t

0

(w,B(s) dWs)

]
,

so that evaluating (3.48) with εn and letting n→∞, we deduce

X(t)−
∫ t

0

div η(s) ds+

∫ t

0

ξ(s) ds =X0 +

∫ t

0

B(s) dWs in V ∗0 ,

for almost every t ∈ (0, T ) , P-almost surely .

Since all the terms except the first have P-almost surely continuous paths in V ∗0 , we have
a posteriori that X ∈ C0 ([0, T ];V ∗0 ) P-almost surely. Moreover, it is not difficult to check
that the fact that Xε ∈ C0

w([0, T ];H) for every ε together with (3.69) readily implies

X ∈ C0
w ([0, T ];H) P-almost surely , (3.70)

so that the integral relation holds for every t ∈ [0, T ] and (2.26)–(2.29) are proved. Fur-
thermore, for every t ∈ [0, T ] and P-almost surely, all the terms in (2.29) except

∫ t
0
η(s) ds

are in L1(D) and all the terms except
∫ t

0
ξ(s) ds are in V ∗, so that by difference the integral

relation holds in L1(D) ∩ V ∗.
At this point, let us focus on (2.31) and (2.32). By (3.69), we may assume that

Xεn → X almost everywhere in Ω×Q; moreover, by (3.50), (3.61) and (2.15) we have∫
Ω×Q

ξεXε =

∫
Ω×Q

(j(Xε) + j∗(ξε)) ≤ N ,

where N > 0 is independent of ε. Hence, {ξεXε}ε∈(0,1) is bounded in L1(Ω × Q), and
recalling also (3.67) we can apply the result contained in Lemma 3.3, with the choices
Y = Ω×Q, µ = P⊗ LebQ, yn = Xεn and gn = ξεn , to infer that (2.31) holds. Moreover,
thanks to conditions (3.69), (3.67) and (3.61), using the weak lower semicontinuity of the
convex integrals we have that∫

Ω×Q
(j(X) + j∗(ξ)) ≤ lim inf

n→∞

∫
Ω×Q

(j(Xεn) + j∗(ξεn)) ≤ N ,

so that (2.32) is proved. Let us also point out that from the last inequality, thanks to
(2.31), (3.50) and (2.9) we obtain∫

Ω×Q
ξX ≤ lim inf

n→∞

∫
Ω×Q

ξεnXεn . (3.71)
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The next thing that we need to prove is condition (2.30). To this end, thanks to
(3.33)–(3.36), (3.43), (3.48)–(3.51) and (3.52), we can apply Proposition B.1 to infer that
for every t ∈ [0, T ]

1

2
‖Xεn(t)‖2

L2(Ω;H) +

∫ t

0

∫
Ω×D

ηεn(s) · ∇Xεn(s) ds+

∫ t

0

∫
Ω×D

ξεn(s)Xεn(s) ds

=
1

2
‖X0‖2

L2(Ω;H) +
1

2

∫ t

0

‖Bεn(s)‖2
L2(Ω;L2(U,H)) ds ,

from which, thanks to (3.69), (3.71) and (3.3), we have P-almost surely that

lim sup
n→∞

∫
Ω×Q

ηεn · ∇Xεn =
1

2
‖X0‖2

L2(Ω;H) +
1

2
lim
n→∞

‖Bεn‖2
L2(Ω×(0,T );L2(U,H))

− 1

2
lim inf
n→∞

‖Xεn(T )‖2
L2(Ω;H) − lim inf

n→∞

∫
Ω×Q

ξεnXεn

≤ 1

2
‖X0‖2

L2(Ω;H) +
1

2
‖B‖2

L2(Ω×(0,T );L2(U,H)) −
1

2
‖X(T )‖2

L2(Ω;H) −
∫

Ω×Q
ξX .

Now, thanks to conditions (3.62)–(3.63), (3.70), (2.29) and (2.32), we can apply a second
time Proposition B.1 with the choices Y = X, f = η, g = ξ and T = B: hence, the right
hand side of the last set of inequality is exactly

∫
Ω×Q η · ∇X, so that we have

lim sup
n→∞

∫
Ω×Q

ηεn · ∇Xεn ≤
∫

Ω×Q
η · ∇X .

This condition together with (3.65)–(3.66) and (3.49) implies exactly (2.30).

Finally, let us show that X and ξ are predictable processes, and η is adapted. At the
end of Section 3.6 we checked that Xε and ξε are predictable, and ηε is adapted, for every
ε ∈ (0, 1). Now, from (3.69) it immediately follows that also X is predictable. Moreover,
by conditions (3.66)–(3.67) and Mazur’s Lemma we can recover strong convergences for
some suitable convex combinations of {ηεn} and {ξεn}: since these are still adapted and
predicable, respectively, we can easily infer that η is adapted and ξ is predictable. This
completes the proof.

3.8 The further existence result

In this section we prove the last part of Theorem 2.2, in which condition (2.25) is not
assumed anymore. The idea is to to pass to the limit in a different way, using only the
estimates in expectations and avoiding the pathwise arguments.

For any λ ∈ (0, 1), consider the approximated problem

dXλ − div γλ(∇Xλ) dt− λ∆Xλ dt+ βλ(Xλ) dt 3 B dWt :

the classical variational approach in the Gelfand triple H1
0 (D) ↪→ H ↪→ H−1(D) ensures

the existence of the approximated solutions

Xλ ∈ L2
(
Ω;C0([0, T ];H)

)
∩ L2

(
Ω× (0, T );H1

0 (D)
)
.
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Using Itô’s formula and proceeding as in Sections 3.3 and 3.4, it is not difficult to prove
that there exist a positive constant N , independent of λ, such that

‖Xλ‖L2(Ω;L∞(0,T ;H)) ≤ N , ‖Jλ(∇Xλ)‖Lp(Ω×(0,T )×D) ≤ N ,

‖γλ(∇Xλ)‖Lq(Ω×(0,T )×D) ≤ N ,

{βλ(Xλ)}λ∈(0,1) is weakly relatively compact in L1(Ω× (0, T )×D) ,

‖j(Xλ)‖L1(Ω×(0,T )×D) + ‖j∗(βλ(Xλ))‖L1(Ω×(0,T )×D) ≤ N ,

λ1/2 ‖∇Xλ‖L2(Ω×(0,T );H) ≤ N ,

λ1/2 ‖γλ(∇Xλ)‖L2(Ω×(0,T )×D) ≤ N .

We deduce that there exist

X ∈ L∞
(
0, T ;L2(Ω;H)

)
∩ Lp (Ω× (0, T );V ) ,

η ∈ Lq (Ω× (0, T )×D)d , ξ ∈ L1 (Ω× (0, T )×D) ,

and a sequence {λn}n∈N decreasing to 0 such that, as n→∞,

Xλn
∗
⇀ X in L∞

(
0, T ;L2(Ω;H)

)
, Jλn (∇Xλn) ⇀ ∇X in Lp (Ω× (0, T )×D)d ,

γλn(∇Xλn) ⇀ η in Lq (Ω× (0, T )×D)d , βλn(Xλn) ⇀ ξ in L1 (Ω× (0, T )×D) .

Fix w ∈ L∞(Ω;V0): then, since the four last convergences imply that Xλn(t) ⇀ X(t) in
L2(Ω;H) for almost every t ∈ (0, T ), we have, as n→∞,∫

Ω×D
Xλn(t)w →

∫
Ω×D

X(t)w ,∫ t

0

∫
Ω×D

γλn(∇Xλn) · ∇w →
∫ t

0

∫
Ω×D

η · ∇w ,
∫ t

0

∫
Ω×D

βλn(Xλn)w →
∫ t

0

∫
Ω×D

ξw

for almost every t ∈ (0, T ). Hence, letting n→∞, we get, for almost every t ∈ (0, T ),

X(t)−
∫ t

0

div η(s) ds+

∫ t

0

ξ(s) ds = X0 +

∫ t

0

B(s) dWs in V ∗0 , P-almost surely :

since all the terms except the first are continuous with values in L1(Ω;V ∗0 ), we infer
also that X ∈ C0([0, T ];L1(Ω;V ∗0 )) and the integral relation holds for every t ∈ [0, T ].
Moreover, since we also have X ∈ L∞(0, T ;L2(Ω;H)), by [26, Thm. 2.1] we can infer that
X ∈ C0

w([0, T ];L2(Ω;H)).

Secondly, using the weak lower semicontinuity of the convex integrals and the estimates
on j(Xλ) and j∗(βλ(Xλ)), it is immediate to check that j(X) + j∗(ξ) ∈ L1(Ω × Q).
Furthermore, as we did at the end of Section 3.7, using Mazur’s lemma, we deduce also
that X and ξ are predictable, and η is adapted.

The last thing that we have to check is that η ∈ γ(∇X) and ξ ∈ β(X) a.e. in Ω×Q.
To this aim, by the second part of Proposition B.1, using the notation ηλ := γλ(∇Xλ),
we have that, for every t ∈ [0, T ],

1

2
‖Xλ(t)‖2

L2(Ω;H) +

∫ t

0

∫
Ω×D

ηλ(s) · ∇Xλ(s) ds+

∫ t

0

∫
Ω×D

βλ(Xλ)(s)Xλ(s) ds

=
1

2
‖X0‖2

L2(Ω;H) +
1

2

∫ t

0

‖B(s)‖2
L2(Ω;L2(U,H)) ds
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and

1

2
‖X(t)‖2

L2(Ω;H) +

∫ t

0

∫
Ω×D

η(s) · ∇X(s) ds+

∫ t

0

∫
Ω×D

ξ(s)X(s) ds

=
1

2
‖X0‖2

L2(Ω;H) +
1

2

∫ t

0

‖B(s)‖2
L2(Ω;L2(U,H)) ds .

We deduce that

lim sup
n→∞

[∫
Ω×Q

ηλn · ∇Xλn +

∫
Ω×Q

βλn(Xλn)Xλn

]
=

1

2
‖X0‖2

L2(Ω;H) +
1

2

∫ T

0

‖B(s)‖2
L2(Ω;L2(U,H)) ds−

1

2
lim inf
n→∞

‖Xλn(T )‖2
L2(Ω;H)

≤ 1

2
‖X0‖2

L2(Ω;H) +
1

2

∫ T

0

‖B(s)‖2
L2(Ω;L2(U,H)) ds−

1

2
‖X(T )‖2

L2(Ω;H)

=

∫
Ω×Q

η · ∇X +

∫
Ω×Q

ξX .

Let us identify Rd×R with Rd+1, indicate the generic element in Rd+1 as a couple (x, y),
where x ∈ Rd and y ∈ R, and use the symbol • for the usual scalar product in Rd+1.
Consider the proper, convex and lower semicontinuous function Φ : Rd+1 → [0,+∞)
given by Φ(x, y) := k(x) + j(y), (x, y) ∈ Rd+1: then the subdifferential of Φ is the
operator Ξ : Rd+1 → 2Rd+1 given by Ξ(x, y) = {(u, v) ∈ Rd+1 : u ∈ γ(x), v ∈ β(y)}.
Hence, recalling that βλ(Xλ)RλXλ = βλ(Xλ)Xλ − λ|βλ(Xλ)|2 ≤ βλ(Xλ)Xλ and similarly
ηλ · Jλ(∇Xλ) = ηλ · ∇Xλ − λ|ηλ|2, we have proved that

lim sup
n→∞

∫
Ω×Q

(ηλn , βλn(Xλn)) • (Jλn(∇Xλn), RλnXλn) ≤
∫

Ω×Q
(η, ξ) • (∇X,X) ,

allowing us to infer that (η, ξ) ∈ Ξ(∇X,X), i.e. that η ∈ γ(∇X) and ξ ∈ β(X) a.e. in
Ω×Q, thanks to the classical results of convex analysis.

4 Continuous dependence on the initial datum with ad-
ditive noise

This section is devoted to the proof of the continuous dependence and uniqueness results
contained in Theorem 2.5. The main tool that we use is the generalized Itô formula
contained in Proposition B.1.

We start assuming (2.25): let (X1
0 , B1), (X2

0 , B2), (X1, η1, ξ1), (X2, η2, ξ2) be as in
Theorem 2.5. Then, writing relation (2.29) for (X1, η1, ξ1, X

1
0 , B1) and (X2, η2, ξ2, X

2
0 , B2)

and taking the difference, P-almost surely we obtain

X1(t)−X2(t)−
∫ t

0

div [η1(s)− η2(s)] ds+

∫ t

0

(ξ1(s)− ξ2(s)) ds

=X1
0 −X2

0 +

∫ t

0

(B1(s)−B2(s)) dWs for every t ∈ [0, T ] .
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Now, we note that thanks to (2.32) and (2.11), for i = 1, 2 we have

j

(
X1 −X2

2

)
+ j∗

(
ξ1 − ξ2

2

)
≤ 1

2
[j(X1) + j(X2) + j∗(ξ1) + j(ξ2)] ,

where the right hand side is in L1(Ω× (0, T )×D): hence, we can apply Proposition B.1
with the choices Y = X1 − X2, f = η1 − η2, g = ξ1 − ξ2, T = B1 − B2 and α = 1/2 in
order to infer that for every t ∈ [0, T ]

1

2
‖X1(t)−X2(t)‖2

H +

∫ t

0

∫
D

(η1(s)− η2(s)) · (∇X1(s)−∇X2(s)) ds

+

∫ t

0

∫
D

(ξ1(s)− ξ2(s)) (X1(s)−X2(s)) ds

=
‖X1

0 −X2
0‖

2
H

2
+

∫ t

0

‖(B1 −B2)(s)‖2
L2(U,H)

2
ds+

∫ t

0

((X1 −X2)(s), (B1 −B2)(s) dWs) .

Hence, taking into account (2.30)–(2.31) and the monotonicity of γ and β, we obtain

‖X1(t)−X2(t)‖2
H ≤

∥∥X1
0 −X2

0

∥∥2

H
+

∫ t

0

‖B1(s)−B2(s)‖2
L2(U,H) ds

+ 2 sup
t∈[0,T ]

∣∣∣∣∫ t

0

((X1 −X2)(s), (B1 −B2)(s) dWs)

∣∣∣∣ ;

moreover, proceeding exactly as in Section 3.3, taking the supremum in t ∈ [0, T ] in
the last expression and then expectations, thanks to the Davis inequality and the Young
inequality, we easily obtain

‖X1 −X2‖2
L2(Ω;L∞(0,T ;H)) ≤

∥∥X1
0 −X2

0

∥∥2

L2(Ω;H)
+ c ‖B1 −B2‖2

L2(Ω×(0,T );L2(U,H))

+
1

2
‖X1 −X2‖2

L2(Ω;L∞(0,T ;H))

for a positive constant c, from which (2.37) follows. Finally, if X1
0 = X2

0 and B1 = B2,
we immediately get X1 = X2: substituting in the difference of the respective equations
(2.29) we have

∫ t
0

(− div(η1(s)− η2(s)) + (ξ1(s)− ξ2(s))) ds = 0 for every t. Relying now
on hypothesis (2.25) and proceeding as in Section 3.6, we easily get also η1 = η2 and
ξ1 = ξ2.

Let us prove now the second part of Theorem 2.5, in which condition (2.25) is not
assumed. By the second part of Theorem 2.2, we have that, for every t ∈ [0, T ],

X1(t)−X2(t)−
∫ t

0

div [η1(s)− η2(s)] ds+

∫ t

0

(ξ1(s)− ξ2(s)) ds

=X1
0 −X2

0 +

∫ t

0

(B1(s)−B2(s)) dWs P-almost surely :

hence, using the second part of Proposition B.1, we infer that, for every t ∈ [0, T ],

1

2
‖X1(t)−X2(t)‖2

L2(Ω;H) +

∫ t

0

∫
Ω×D

(η1(s)− η2(s)) · (∇X1(s)−∇X2(s)) ds

+

∫ t

0

∫
Ω×D

(ξ1(s)− ξ2(s)) (X1(s)−X2(s)) ds

=
1

2

∥∥X1
0 −X2

0

∥∥2

L2(Ω;H)
+

1

2

∫ t

0

‖(B1 −B2)(s)‖2
L2(Ω;L2(U,H)) ds ,
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which together with the monotonicity of γ and β implies (2.38). Finally, if X1
0 = X2

0

and B1 = B2, we have X1 = X2 and
∫ t

0
(− div(η1(s)− η2(s)) + (ξ1(s)− ξ2(s))) ds = 0 for

every t, as before, so that − div η1 + ξ1 = − div η2 + ξ2.

5 Well-posedness with multiplicative noise

In this section, we prove the main theorem of the work, which ensures that the original
problem is well-posed also with multiplicative noise. Let us describe the approach that
we will follow.

The main idea is to prove existence of solutions proceeding step-by-step: we introduce
a parameter τ > 0, we prove using contraction estimates that we are able to recover some
solutions on each subinterval [0, τ ], [τ, 2τ ], . . . [nτ, (n + 1)τ ], . . . provided that τ is chosen
sufficiently small, and finally we paste together each solution on the whole interval [0, T ].
In this sense, the main point of the argument is to prove that such a value of τ can be
chosen uniformly with respect to n, so that the procedure stops when we reach the final
time T (in a finite number of steps).

5.1 Existence

In this section we prove the two existence results contained in Theorem 2.7. We start
from the first one, i.e. assuming (2.25). First of all, for every a, b ∈ [0, T ] with b > a and
for any progressively measurable process Y ∈ L2(Ω× (0, T )×D), condition (2.42) implies
that B(·, ·, Y ) ∈ L2(Ω × (a, b); L2(U,H)): hence, for every Xa ∈ L2(Ω,Fa,P;H), thanks
to Theorem 2.2 we know that there exist

Xa,b ∈ L2 (Ω;L∞(a, b;H)) ∩ Lp (Ω× (a, b);V ) , (5.1)

ηa,b ∈ Lq (Ω× (a, b)×D)d , ξa,b ∈ L1 (Ω× (a, b)×D) , (5.2)

such that Xa,b is adapted with P-almost surely weakly continuous paths in H and the
following relations hold:

Xa,b(t)−
∫ t

a

div ηa,b(s) ds+

∫ t

a

ξa,b(s) ds =Xa +

∫ t

a

B(s, Y (s)) dWs in V ∗0 ,

for every t ∈ [a, b] , P-almost surely ,
(5.3)

ηa,b ∈ γ(∇Xa,b) a.e. in Ω× (a, b)×D , (5.4)
ξa,b ∈ β(Xa,b) a.e. in Ω× (a, b)×D , (5.5)
j(Xa,b) + j∗(ξa,b) ∈ L1 (Ω× (a, b)×D) , (5.6)

where Xa,b is unique in the sense of Theorem 2.5. Now, we need the following lemma.

Lemma 5.1. For every τ > 0 and n ∈ N fixed, consider Xnτ ∈ L2(Ω,Fnτ ,P;H) and
Y1, Y2 ∈ L2(Ω × (nτ, (n + 1)τ) × D) progressively measurable: then, if (X1, η1, ξ1) and
(X2, η2, ξ2) are any respective solutions to (5.1)–(5.6) with a = nτ , b = (n+ 1)τ and same
initial value Xa = Xnτ , we have the following estimate:

‖X1 −X2‖L2(Ω×(nτ,(n+1)τ)×D) ≤
√
τLB ‖Y1 − Y2‖L2(Ω×(nτ,(n+1)τ)×D) . (5.7)
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Proof. Taking the difference of equations (5.3) evaluated with i = 1, 2 and recalling the
generalized Itô formula (B.29), setting X := X1 −X2, η := η1 − η2 and ξ := ξ1 − ξ2, we
easily get that for every t ∈ [mτ, (m+ 1)τ ]

1

2
‖X(t)‖2

L2(Ω×D) +

∫ t

0

∫
Ω×D

η(s) · ∇X(s) ds+

∫ t

0

∫
Ω×D

ξ(s)X(s) ds

=
1

2
‖B(Y1)−B(Y2)‖2

L2(Ω×(mτ,(m+1)τ);L2(U,H)) .

Hence, using the Lipschitz continuity of B and the monotonicity of γ and β we have

1

2
‖X1 −X2‖2

L∞(mτ,(m+1)τ ;L2(Ω×D)) ≤
LB
2
‖Y1 − Y2‖2

L2(Ω×(mτ,(m+1)τ)×D) ,

from which (5.7) follows.

Now, let us build some solutions X, η and ξ in each sub-interval. To this purpose, we
choose τ > 0 such that the constant appearing in (5.7) is less than 1, for example

τ :=
1

2LB
. (5.8)

Firstly, we focus on [0, τ ]: taking into account the remarks that we have just made, it
is well defined the function

Φ0 : L2 (Ω× (0, τ)×D)→ L2 (Ω× (0, τ)×D) , Φ0(Y ) := X , (5.9)

where X is the unique solution to (5.1)–(5.6) with the choices a = 0 and b = τ , with
X0 given by (2.39). It is clear that X is a solution of problem (2.43) in [0, τ ] if and only
if it is a fixed point for Φ0. Thanks to the estimate (5.7) and the choice (5.8), Φ0 is a
contraction: hence, it has a fixed point

X(0) ∈ L2 (Ω;L∞(0, τ ;H)) ∩ Lp (Ω× (0, τ);V ) ,

with P-almost surely weakly continuous paths in H, which solves (2.43) with certain

η(0) ∈ Lq (Ω× (0, τ)×D)d , ξ(0) ∈ L1 (Ω× (0, τ)×D) .

Secondly, let us focus on [τ, 2τ ], set Xτ := X(0)(τ) (which is in L2(Ω,Fτ ,P;H) since
X(0) is adapted) and define the function

Φ1 : L2 (Ω× (τ, 2τ)×D)→ L2 (Ω× (τ, 2τ)×D) , Φ1(Y ) := X , (5.10)

where X is the solution to (5.1)–(5.6) with the choices a = τ and b = 2τ . As we have
already done, thanks to the estimate (5.7) and the choice (5.8), Φ1 is a contraction: hence,
it has a fixed point

X(1) ∈ L2 (Ω;L∞(τ, 2τ ;H)) ∩ Lp (Ω× (τ, 2τ);V ) ,

with P-almost surely weakly continuous paths in H, which is a solution of (2.43) with
certain

η(1) ∈ Lq (Ω× (τ, 2τ)×D)d , ξ(1) ∈ L1 (Ω× (τ, 2τ)×D) .
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Suppose by induction that we have built (X(0), η(0), ξ(0)), . . . , (X(m−1), η(m−1), ξ(m−1))
and let us show how to obtain (X(m), η(m), ξ(m)). We focus on the interval [mτ, (m+ 1)τ ],
set Xmτ := X(m−1)(mτ) (which is in L2(Ω,Fmτ ,P;H) since X(m−1) is adapted) and define
the function

Φm : L2 (Ω× (mτ, (m+ 1)τ)×D)→ L2 (Ω× (mτ, (m+ 1)τ)×D) , (5.11)

which maps Y into X, where X is the solution to (5.1)–(5.6) with the choices a = mτ
and b = (m + 1)τ . Now, Φm is a contraction thanks to (5.7) and (5.8), so it has a fixed
point

X(m) ∈ L2 (Ω;L∞(mτ, (m+ 1)τ ;H)) ∩ Lp (Ω× (mτ, (m+ 1)τ);V ) :

with P-almost surely weakly continuous paths in H, which is a solution of (2.43) with
certain

η(m) ∈ Lq (Ω× (mτ, (m+ 1)τ)×D)d , ξ(m) ∈ L1 (Ω× (mτ, (m+ 1)τ)×D) .

In this way, we can define the triplet (X, η, ξ) by setting (X, η, ξ) := (X(m), η(m), ξ(m))
in Ω× [mτ, (m+1)τ)×D for every m ∈ N until we reach T : bearing in mind how we have
built (X(m), η(m), ξ(m)), it is clear that X, η and ξ are well-defined and satisfy conditions
(2.26)–(2.28), (2.30)–(2.32) and (2.43).

Finally, if we do not assume (2.25), it is clear that, using the same argument, the
respective solutions constructed in this way are well-defined and satisfy conditions (2.33)
and (2.44) instead of (2.26) and (2.43), respectively.

5.2 Continuous dependence on the initial datum

We present here the proof of the proof of the continuous dependence results contained in
the last part of Theorem 2.7. Here, we repeat exactly the same argument of Section 4
with the choices B1 := B(·, X1) and B2 := (·, X2).

If (2.25) is assumed, for any given τ > 0, the same computations on the interval (0, τ)
get us to

‖X1 −X2‖2
L2(Ω;L∞(0,τ ;H)) ≤ c

∥∥X1
0 −X2

0

∥∥2

L2(Ω;H)
+ c ‖B(X1)−B(X2)‖2

L2(Ω×(0,τ);L2(U,H))

for a constant c > 0 independent of τ ; using the Lipschitz continuity of B we obtain

‖X1 −X2‖2
L2(Ω;L∞(0,τ ;H)) ≤ c

∥∥X1
0 −X2

0

∥∥2

L2(Ω;H)
+ cτ ‖X1 −X2‖2

L2(Ω;L∞(0,τ ;H)) .

Hence, choosing for example τ = c
2
, we get the desired relation on the interval [0, τ ]. The

idea is clearly to iterate the procedure on the following intervals [τ, 2τ ], [2τ, 3τ ], . . . until
we reach the final time T , so that (2.45) is proved. The important point that we have to
check is that the choice of τ can be made uniformly with respect to each sub-interval, but
this is not difficult: as a matter of fact, for any n ≥ 1, performing the same computations
on [nτ, (n+ 1)τ ] we obtain

‖X1 −X2‖2
L2(Ω;L∞(nτ,(n+1)τ ;H)) ≤ c ‖X1(nτ)−X2(nτ)‖2

L2(Ω;H)

+ cτ ‖X1 −X2‖2
L2(Ω;L∞(nτ,(n+1)τ ;H)) ,
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for the same constant c, from which we deduce that the choice of τ is independent of n,
and one can easily conclude by induction on n. As we did in Section 4, if X1

0 = X1
0 , then

by (2.45) we have X1 = X2, and hypothesis (2.25) also ensures η1 = η2 and ξ1 = ξ2.

Secondly, if (2.25) is not assumed, proceeding as in the final part of Section 4 we get
for every t ∈ [0, T ] that

‖X1(t)−X2(t)‖2
L2(Ω;H) ≤

∥∥X1
0 −X2

0

∥∥2

L2(Ω;H)
+

∫ t

0

‖(B(X1)−B(X2))(s)‖2
L2(Ω;L2(U,H)) ds ,

from which (2.46) follows using the Lipschitz continuity of B and the Gronwall lemma.
Finally, ifX1

0 = X1
0 , then by (2.46)X1 = X2 and consequently − div η1+ξ1 = − div η2+ξ2.

A An integration-by-parts formula

The aim of this Appendix is to give a complete proof of the generalized testing formula
contained in equation (3.54): throughout the section, we assume to work with the nota-
tions and setting of Section 3.5. Here, ε ∈ (0, 1) and ω ∈ Ω are fixed as usual.

The main point is that we cannot directly test equation (3.48) by Xε−W ε
B, as we did

in Section 3.2, since the regularity of Xε is not enough: more specifically, ∂t(Xε−W ε
B) is

only intended in V ∗0 and we would need that Xε−W ε
B takes values in V0, but this is not the

case. However, by condition (3.53) and the regularities of Xε, W ε
B and ηε, all the terms

in (3.54) make sense: hence, the intuitive idea is that (3.54) holds at least in a formal
way. To give a rigorous proof of it, a natural way could be to try to pass to the limit as
λ↘ 0 in (3.15): however, it is not necessarily true in our framework that equation (3.15)
converges to (3.54) as λ ↘ 0, so this approach does not work. Hence, the idea is to see
(3.54) as a limit problem as δ ↘ 0, for another parameter δ, such that the approximations
in δ have good smoothing properties and behave better that the approximations in λ. In
this sense, a similar approach was presented in [5] and [21], where the approximations
were built using suitable powers of the resolvent of the laplacian. However, in our case we
have to approximate also elements inW−1,q(D) (namely, − div ηε) and the resolvent of the
laplacian does not work since −∆ is not coercive on V : the idea is thus to identify another
suitable space, in which (3.48) can be intended, and to define appropriate approximations
on it. To this purpose, we need some preparatory work.

First of all, note that the operator − div : Lq(D)d → V ∗ is linear, continuous and
satisfies ‖− div u‖V ∗ ≤ ‖u‖Lq(D) for every u ∈ Lq(D)d. Let us define the space

V ∗div :=
{
− div u : u ∈ Lq(D)d

}
⊆ V ∗ .

Secondly, we introduce the space V ∗div ⊕ L1(D) as the subspace of V ∗0 given by all
the formal linear combinations of elements in V ∗div and L1(D). With this notations, we
can note that equation (3.48) actually holds in V ∗div ⊕ L1(D): in other words, for every
t ∈ [0, T ], we have

(Xε −W ε
B) (t) +

∫ t

0

(− div ηε(s) + ξε(s)) ds = X0 in V ∗div ⊕ L1(D) . (A.12)
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Hence, the idea is that it is sufficient to identify a way to approximate only elements in
V ∗div ⊕ L1(D), and not any element of V ∗0 , which would be much more demanding.

To this end, for every δ ∈ (0, 1), let Rδ := (I − δ∆)−1 be the resolvent of the Laplace
operator. It is well-known that for every r ∈ [1,+∞), Rδ : Lr(D) → Lr(D) is a linear
contraction converging to the identity as δ ↘ 0 in the strong operator topology (the
reader can refer to [4,6,12]). In this setting, we define the operator Rδ : Lr(D)d → Lr(D)d

extending Rδ component-by-component: consequently, we easily deduce that also Rδ is
a linear contraction on Lr(D)d converging to the identity as δ ↘ 0. With this notations,
we have the following result.

Lemma A.1. For every u ∈ Lq(D)d such that − div u ∈ L1(D) (in the distributional
sense), we have

− divRδu = Rδ (− div u) .

Moreover, for every f ∈ H1(D), we have

∇Rδf = Rδ∇f .

Proof. Let us first assume that u ∈ (C∞c (D))d: then, using the definition of Rδ and Rδ,
integration by parts and the fact that Rδ commutes with ∆, for every ϕ ∈ C∞c (D) we
have∫
D

(− div u)ϕ =

∫
D

u · ∇ϕ =
d∑
i=1

∫
D

ui
∂ϕ

∂xi
=

d∑
i=1

∫
D

(Rδui − δ∆Rδui)
∂ϕ

∂xi

=

∫
D

Rδu · ∇ϕ+ δ

∫
D

∆(divRδu)ϕ =

∫
D

[− divRδu− δ∆(− divRδu)]ϕ .

Hence, by definition of the resolvent, we deduce that − divRδu = Rδ(− div u) for every
u ∈ (C∞c (D))d. At this point, if u ∈ Lq(D)d and − div u ∈ L1(D), the first thesis follows
by approximating u with a sequence {un}n∈N ⊆ (C∞(D))d such that un → u in Lq(D)d

and − div un → − div u in L1(D). Finally, in a similar way, the second assertion is
clearly true for every f ∈ C∞(D): hence, given f ∈ H1(D), we can conclude by density
approximating f with a sequence {fn}n∈N ⊆ C∞(D).

Now, for every δ ∈ (0, 1), we introduce the operator

Λ1
δ : V ∗div → V ∗div

in the following way: for any given f ∈ V ∗div, with f = − div u for a certain u ∈ Lq(D)d,
we set Λ1

δf := − divRδu. Note that Λ1
δ is well-defined: indeed, if f = − div u1 = − div u2,

we have − div(u1−u2) = 0 and by Lemma A.1 we deduce that 0 = Rδ(− div(u1−u2)) =
− div(Rδ(u1 − u2)), so that − divRδu1 = − divRδu2. Secondly, we set

Λ2
δ : L1(D)→ L1(D) , Λ2

δ := Rδ .

The first part of Lemma A.1 ensures that Λ1
δ = Λ2

δ on the intersection V ∗div∩L1(D): hence,
it is well-defined the operator

Λδ := Λ1
δ ⊕ Λ2

δ : V ∗div ⊕ L1(D)→ V ∗div ⊕ L1(D) (A.13)
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such that

Λδ(− div u) = − divRδu , Λδ(f) = Rδf for every u ∈ Lq(D)d , f ∈ L1(D) , (A.14)

which is automatically linear.

We are now ready to build the approximations. First of all, we choose k ∈ N as in
(2.21), so that the k-th power Rk

δ maps H into V0 ⊆ V ∩L∞(D). At this point, we define

Xε
δ := Rk

δX
ε , W ε

δ := Rk
δW

ε
B , ηεδ := Rk

δη
ε , ξεδ := Rk

δξ
ε , Xδ

0 := Rk
δX0 : (A.15)

then, taking into account the properties of Rδ and Rδ and the second part of Lemma A.1,
thanks to conditions (3.35)–(3.36), (3.43) and (3.52) we have as δ ↘ 0 that

Xε
δ (t)→ Xε(t) in H for every t ∈ [0, T ] , Xε

δ → Xε in Lp (0, T ;V ) (A.16)
W ε
δ (t)→ W ε(t) in H for every t ∈ [0, T ] , W ε

δ → W ε
B in Lp (0, T ;V ) , (A.17)

ηεδ → ηε in Lq (Q)d , ξεδ → ξε in L1(Q) , (A.18)
Xδ

0 → X0 in H . (A.19)

Now, applying the operator Λk
δ to equation (A.12), we get for every t ∈ [0, T ] that

(Xε
δ −W ε

δ ) (t)−
∫ t

0

div ηεδ(s) ds+

∫ t

0

ξεδ(s) ds = Xδ
0 . (A.20)

With our choice of k, it now makes sense to test by Xε
δ −W ε

δ : it easily follows that

1

2
‖Xε

δ (T )−W ε
δ (T )‖2

H +

∫
Q

∇ηεδ · ∇ (Xε
δ −W ε

δ ) +

∫
Q

ξεδ (Xε
δ −W ε

δ ) =
1

2

∥∥Xδ
0

∥∥2

H
, (A.21)

from which, taking into account (A.16)–(A.19), we deduce that

lim
δ↘0

∫
Q

ξεδ (Xε
δ −W ε

δ ) =
1

2
‖X0‖2

H−
1

2
‖(Xε −W ε

B)(T )‖2
H−
∫
Q

∇ηε · ∇ (Xε −W ε
B) . (A.22)

In order to evaluate the limit in the previous expression, we take advantage of Vitali
convergence theorem: to this purpose, thanks to (A.16)–(A.18), we can assume with no
restriction that ξεδ → ξε and Xε

δ −W ε
δ → Xε −W ε

B almost everywhere in Q. Let us show
that {ξεδ(Xε

δ −W ε
δ )}δ∈(0,1) is uniformly integrable in Q: by conditions (2.10)–(2.11) and

thanks to the generalized Jensen inequality for the positive operator Rδ (see [14, 15] for
references), we have

±ξεδ(Xε
δ −W ε

δ ) ≤ j (±(Xε
δ −W ε

δ )) + j∗(ξεδ) = j (Xε
δ −W ε

δ ) + j∗(ξεδ)

≤ Rk
δ [j (Xε −W ε

B) + j∗(ξε)] a.e. in Q .

Now, since j(Xε −W ε
B), j∗(ξε) ∈ L1(Q) thanks to (3.51) and (3.14), the right hand side

of the previous expression converges in L1(Q) and consequently it is uniformly integrable
in Q: we deduce that also {ξεδ(Xε

δ −W ε
δ )}δ∈(0,1) is uniformly integrable in Q. Hence, by

Vitali convergence theorem, we infer that

ξεδ (Xε
δ −W ε

δ )→ ξε (Xε −W ε
B) in L1(Q) as δ ↘ 0 ,

so that passing to the limit in (A.22) we recover exactly (3.54).
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B The generalized Itô formula

In this appendix, we prove a generalized Itô formula, which is widely used in Sections 3.7
and 4: we collect the general result in the following proposition. Throughout the section,
we assume the general setting (2.1)–(2.22).

Proposition B.1. Assume the following conditions:

Y0 ∈ L2 (Ω,F0,P;H) , (B.23)
T ∈ L2 (Ω× (0, T ); L2(U,H)) progressively measurable , (B.24)

Y ∈ L2 (Ω;L∞(0, T ;H)) ∩ Lp (Ω× (0, T );V ) , Y ∈ C0
w ([0, T ];H) P-a.s. , (B.25)

f ∈ Lq (Ω× (0, T )×D)d , g ∈ L1 (Ω× (0, T )×D) , (B.26)
∃ α > 0 : j(αY ) + j∗(αg) ∈ L1 (Ω× (0, T )×D) , (B.27)

Y (t)−
∫ t

0

div f(s) ds+

∫ t

0

g(s) ds = Y0 +

∫ t

0

T (s) dWs in V ∗0 (B.28)

for every t ∈ [0, T ], P-almost surely. Then, the following Itô formula holds

1

2
‖Y (t)‖2

H +

∫ t

0

∫
D

f(s) · ∇Y (s) ds+

∫ t

0

∫
D

g(s)Y (s) ds

=
1

2
‖Y0‖2

H +
1

2

∫ t

0

‖T (s)‖2
L2(U,H) ds+

∫ t

0

(Y (s), T (s) dWs)

(B.29)

for every t ∈ [0, T ], P-almost surely. Furthermore, if hypothesis (B.25) is replaced by the
weaker condition

Y ∈ L∞
(
0, T ;L2(Ω;H)

)
∩ Lp (Ω× (0, T );V ) ∩ C0

w

(
[0, T ];L2(Ω;H)

)
, (B.30)

then instead of (B.29) we have the following for every t ∈ [0, T ]:

1

2
‖Y (t)‖2

L2(Ω;H) +

∫ t

0

∫
Ω×D

f(s) · ∇Y (s) ds+

∫ t

0

∫
Ω×D

g(s)Y (s) ds

=
1

2
‖Y0‖2

L2(Ω;H) +
1

2

∫ t

0

‖T (s)‖2
L2(Ω;L2(U,H)) ds .

(B.31)

Proof. We proceed exactly in the same way as in Appendix A. If k is given by (2.21) and
for every δ ∈ (0, 1), Rδ and Rδ are as in Appendix A, we define

Yδ := Rk
δY , Tδ := Rk

δT , fδ := Rk
δf , gδ := Rk

δg , Y δ
0 := Rk

δY0 :

hence, thanks to (B.23)–(B.26) and Lemma A.1 we have as δ ↘ 0

Yδ(t)→ Y (t) in H for every t ∈ [0, T ] , P-almost surely , (B.32)
Yδ → Y in Lp (Ω× (0, T );V ) (B.33)

Tδ → T in L2 (Ω× (0, T ); L2(U,H)) , (B.34)

fδ → f in Lq (Ω×Q)d , gδ → g in L1(Ω×Q) , (B.35)
Y δ

0 → Y0 in L2(Ω;H) . (B.36)
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Consequently, if we apply the operator Λk
δ to (B.28), taking definition (A.13)–(A.14) into

account, we have P-almost surely that

Yδ(t)−
∫ t

0

div fδ(s) ds+

∫ t

0

gδ(s) ds = Y δ
0 +

∫ t

0

Tδ(s) dWs in H , for every t ∈ [0, T ] .

Now, with our choice of k, we can apply the classical Itô formula (see [24, Thm. 4.2.5] for
example) to recover that P-almost surely, for every t ∈ [0, T ],

1

2
‖Yδ(t)‖2

H +

∫ t

0

∫
D

fδ(s) · ∇Yδ(s) ds+

∫ t

0

∫
D

gδ(s)Yδ(s) ds

=
1

2

∥∥Y δ
0

∥∥2

H
+

1

2

∫ t

0

‖Tδ(s)‖2
L2(U,H) ds+

∫ t

0

(Yδ(s), Tδ(s) dWs) .

(B.37)

Now, let us focus on the stochastic integral: we have∫ t

0

(Yδ(s), Tδ(s) dWs)−
∫ t

0

(Y (s), T (s) dWs)

=

∫ t

0

(Yδ(s), (Tδ − T )(s) dWs) +

∫ t

0

((Yδ − Y )(s), T (s) dWs) ,

where thanks to the Davis inequality and (B.33)–(B.34) we have (renominating the posi-
tive constant c)

E sup
t∈[0,T ]

∣∣∣∣∫ t

0

(Yδ(s), (Tδ − T )(s) dWs)

∣∣∣∣ ≤ cE

[(∫ T

0

‖Yδ(s)‖2
H ‖(Tδ − T )(s)‖2

L2(U,H) ds

)1/2
]

≤ c ‖Tδ − T‖L2(Ω×(0,T );L2(U,H)) → 0

and, by the dominated convergence theorem, also

E sup
t∈[0,T ]

∣∣∣∣∫ t

0

((Yδ − Y )(s), Ts dWs)

∣∣∣∣2 ≤ cE

[(∫ T

0

‖(Yδ − Y )(s)‖2
H ‖Ts‖

2
L2(U,H) ds

)1/2
]
→ 0 .

Hence, we deduce that
∫ ·

0
(Yδ(s), Tδ(s) dWs) →

∫ ·
0
(Y (s), T (s) dWs) in L2(Ω;L∞(0, T )), so

that consequently (at least for a subsequence)∫ t

0

(Yδ(s), Tδ(s) dWs)→
∫ t

0

(Y (s), T (s) dWs) for every t ∈ [0, T ] , P-almost surely .

Hence, letting δ ↘ 0 and taking into account (B.32)–(B.36), P-almost surely we have

lim
δ↘0

∫
(0,t)×D

gδYδ =
1

2
‖Y0‖2

H +
1

2

∫ t

0

‖T (s)‖2
L2(U,H) ds+

∫ t

0

(Y (s), T (s) dWs)

− 1

2
‖Y (t)‖2

H −
∫

(0,t)×D
fδ · ∇Y for every t ∈ [0, T ] :

(B.38)

we evaluate the limit on the left hand side using Vitali’s convergence theorem. To this
purpose, by (B.32) and (B.35) we can assume with no restriction that Yδ → Y and gδ → g
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almost everywhere in Ω× (0, t)×D; moreover, thanks to conditions (2.10)–(2.11) and the
generalized Jensen inequality for positive operators (see [14,15]), we have

±α2gδYδ ≤ j (±αYδ) + j∗ (αgδ) = j (αYδ) + j∗ (αgδ) ≤ Rk
δ [j(αY ) + j∗(αg)] .

Thanks to (B.27) and the properties of Rδ, the term on the right hand side converges in
L1(Ω × (0, t) × D), hence it is uniformly integrable: consequently, we deduce that also
{gδYδ}δ∈(0,1) is uniformly integrable, and Vitali’s convergence theorem implies that

gδYδ → gY in L1 (Ω× (0, t)×D) , as δ ↘ 0 ,

so that passing to the limit in (B.38) we obtain (B.29).
To show (B.31), we proceed in a very similar way: note that since (B.25) is replaced by
(B.30), then instead of (B.32) we have

Yδ(t)→ Y (t) in L2(Ω;H) , for every t ∈ [0, T ] .

Once we have obtained (B.37) as before, we observe that the stochastic integral in (B.37)
is a local martingale, so that there exists a sequence of increasing stopping times {τn}n∈N
such that τn ↗ ∞ and the corresponding stopped processes are martingales: hence,
stopping (B.37) at time τn, taking expectations and then letting n → ∞, thanks to
dominated convergence theorem we directly obtain for every t ∈ [0, T ]

1

2
‖Yδ(t)‖2

L2(Ω;H) +

∫ t

0

∫
Ω×D

fδ(s) · ∇Yδ(s) ds+

∫ t

0

∫
Ω×D

gδ(s)Yδ(s) ds

=
1

2

∥∥Y δ
0

∥∥2

L2(Ω;H)
+

1

2

∫ t

0

‖Tδ(s)‖2
L2(Ω;L2(U,H)) ds .

At this point, (B.31) follows as before letting δ ↘ 0 in the previous equation.
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