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Abstract

This thesis consists of three chapters on the empirical analysis of demand for a
preventive healthcare good in a context where externality or spillover effects are
relevant. The application in all three chapters focuses on household adoption of
sanitation in the developing world and uses a unique dataset on sanitation take-up
from rural India. Research in public health has shown sanitation adoption to generate
significant positive externalities that affect health, economic and social ‘well-being’
of individuals. Failure to internalize such public benefits generates a divergence in
the social and private value from sanitation leading to sub-optimal adoption.

In Chapter 2, I formulate a simple static model with interdependent adoption
decisions to analyse the impact of externalities on household demand for sanitation. I
estimate the model and propose an extension to the Hotz & Miller two-stage
estimator to account for limitations of using sample survey data with strategic
interaction models. Chapter 3 quantifies the subsequent welfare effects generated by
policy interventions in the presence of spillover effects. I extend earlier work by
Dagsvik & Karlstrom (2005) for welfare analysis under discrete choice to strategic
interaction models, so as to decompose the impact of a subsidy intervention into its
direct and indirect effects. I find that between 41%− 86% effect of a subsidy is
propagated through the externality channel. Positive externality effects also imply a
welfare gain and an increase in a household’s willingness-to-pay for a policy that
subsidises sanitation.

Chapter 4 analyses the extent of under-adoption of sanitation and the appropriate
choice of policy between sanitation loans and price subsidies to increase sanitation
coverage. I formulate a dynamic equilibrium model of household sanitation demand
to investigate the role of two distinct sources of market failures: liquidity constraints
and externalities, which both lead to under-adoption. I find price subsidies to be more
cost effective at increasing sanitation coverage. But the policy effects are
heterogeneous with coverage levels, where loans are found to be equally, if not
marginally more, effective in villages with no sanitation coverage.
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Chapter 1

Introduction

In the field of development and health economics a large portion of the literature
focuses on studying the impact of policy interventions that seek to improve the health
outcomes of poor households in developing countries. The provision of preventive
healthcare technologies, such as water purification, immunization and sanitation, are
especially a challenge in rural developing economies where markets either fail or are
missing and as a result goods are under-adopted. In this thesis I study household
demand for one such healthcare technology; access to sanitation. Close to 2.5 billion
people on the planet do not have access to a basic sanitation facility (WHO-UNICEF
2014) which has made sanitation a topic of concern on the global public health
agenda.1 Research in public health has shown poor sanitation prevalence to
contribute to morbidity and mortality, especially among children.

Despite large consensus on the benefits from adoption, there is substantial
disagreement on what policies can increase/improve sanitation coverage. The crux of
the disagreement on choice of policy stems from differing hypothesis on which
market failure drives a household’s lack of demand. The lack of sanitation in the
developing world is primarily concentrated amongst the poorest sections of urban
and rural societies. Thus without institutions that would provide loans for sanitation
adoption, a poor liquidity constrained household may otherwise find it difficult or
impossible to adopt. In addition to lack of access to credit markets, adoption of
sanitation has also been found to generate significant positive health externalities that
benefit a larger group of individuals than the individual choosing to adopt.
Household are unlikely to fully internalize the benefits their adoption decision
generates on others, generating a divergence in the private and social value from

1By sanitation facility I mean having access to a toilet and/or a bathroom facility at home
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sanitation adoption. With positive health externalities the privately chosen adoption
level is below the socially optimal.

In line with this research agenda, this thesis comprises of three chapters that each
investigate the role of externalities and borrowing constraints on household demand
for sanitation, as well as the impact of different policy interventions to tackle the
inefficiencies that generate sub-optimal adoption behaviour. Examples of the policy
tools implemented in practice include the use of subsidies: conditional (price) and
unconditional (income transfers), sanitation loans (through microfinance credit),
direct provision of the good and even provision of information on the health benefits
from sanitation adoption. A key feature of such goods is that though in most cases
the intervention targets individual agents the benefits that are realized from take-up
are not restricted to the targeted individual. The presence of such public good
externalities may justify intervening with subsidies but they also play a role in
determining the efficacy of the implemented policy. One of the main objectives of
this thesis is to understand the impact and role of policy interventions when
externalities are relevant.

Chapter 2, analyses the impact of externalities on household demand for sanitation
and the subsequent welfare effects generated from a subsidy program towards its
provision. I formulate a simple static household demand model with interdependent
adoption decisions. A decision making household maximises its utility from
adoption, where the adoption of sanitation generates a degree of ‘private’ utility
along with a ‘social’ utility which in turn depends on the level of sanitation adoption
within the village.

Using a dataset on sanitation take-up from rural India, I estimate a static demand
model keeping into account the interdependence of household decisions which imply
an equilibrium level of adoption. The structure is closely related to a random utility
model with the addition of strategic interactions similar to Brock & Durlauf (2001)
and allows for possible multiplicity of equilibria. The model is estimated using a
Hotz & Miller two-stage procedure that circumvents the computational burden
associated with repeatedly solving and estimating the model for the fixed point.
However, to obtain consistent estimates the procedure relies on being able to observe
the entire vector of household decisions within the relevant reference group. To
account for this limitation, common to most datasets from developing countries
where data collection is expensive, I propose an extension to the standard two-stage
estimator by adapting the correction method from Chesher (1991) to the context of
strategic interaction models and games.
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The estimated model is used to perform different price and income subsidy
simulations. I find that the equilibrium levels attained under a price subsidy regime
are substantially higher than those obtained under a pure income transfer. The large
demand response to a price subsidy is found to be largely driven by the underlying
externality effects. Where the social multiplier effect under a price subsidy is
computed to be around 5.6 while for an income subsidy is estimated to be closer to
≈ 1.

To evaluate the welfare impact of subsidy interventions in Chapter 3, I formulate
analytical expressions to quantify substitution and income effects generated by a
price subsidy and compute Compensating variation (CV ) measures for a household’s
willingness-to-pay for the policy. Specifically, I extend earlier work by Dagsvik &
Karlstrom (2005) for welfare analysis under discrete choice to the case of strategic
interaction models, so as to decompose the impact of a subsidy intervention firstly
along price and income effect components. Furthermore, both price and income
effects can be further decomposed into the impact of the policy on private incentives
(direct) as well as through the feedback effects generated by underlying externalities
(indirect).

Using this tool under different subsidy simulations, I find that substitution effects are
significantly larger than income effects, and a substantial amount of this price effect
between 41%− 86% is propagated through the indirect channel. The presence of
positive externalities implies a larger welfare gain, while the Deadweight Loss
(DWL) generated from the subsidy intervention is realised instead as a Net-Gain
(NetG), as the society shifts towards a socially optimal level of adoption. A
household’s willingness-to-pay for the subsidy policy increases once externality
effects are accounted for. The analysis shows that policy evaluations that fail to
incorporate for the additional spillover effects of the policy would underestimate the
impact and true effectiveness of the intervention.

Chapter 4 further analyses the problem of under-adoption of sanitation in the
developing world by addressing the current policy debate on the choice between
loans and price subsidy policies to increase sanitation coverage in the developing
world. I formulate a dynamic equilibrium model of household sanitation demand to
investigate the role of two distinct market failures: liquidity constraints and
externalities that both lead to under-adoption of sanitation.

The model is also estimated using the dataset from rural India. In addition to the
baseline cross section in Chapter 2, I observe household choices over a two period
panel. I use the model to compute equilibrium adoption levels under both loans and
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price subsidy policies to study the optimal design of interventions in an equilibrium
setting. Counterfactual analysis reveals existing sanitation level to be below the
social planner solution, implying under-adoption of sanitation by as much as 53%.
Price subsidies are found to be more cost effective at increasing sanitation coverage.
But the policy effects are heterogeneous with coverage levels, where loans are found
to be equally, if not marginally more, effective in villages with no sanitation
coverage. A price subsidy has a high social rate of return where the presence of
externalities accounts for a substantial fraction (between 33%− 72%) of its impact.
While a sanitation loan policy generates smaller social returns is found to be cost
efficient under targeted delivery.
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Chapter 2

Household Demand for Sanitation in
the presence of Externalities

2.1 Introduction

In this chapter I analyse the impact of externalities on household demand for
sanitation by formulating and estimating a simple static demand model for sanitation.
In the model, an individual household’s sanitation choice also depends on adoption
decisions of other households within the village. The interdependence of choice is
modelled as an incomplete information game where a household observes only
partial information on the states and decisions of it’s neighbours. A pervasive feature
of such strategic interaction models is the presence of multiple equilibria which
makes solving for equilibrium and estimation computationally burdensome.

The model is estimated using a two-stage method that bypasses the burden associated
with having to repeatedly solve the fixed point for each candidate vector of
parameters. The chapter also discusses a key limitation of existing two-step
estimation methods related to the use of sample data where only a subset of
household choices and states are observed by the econometrician. I propose an
amended two-step method to account for this problem, which can be treated as a
‘presence of measurement error’ in the data. The method implemented builds on
Chesher (1991, 2000) which proposes a method for bias reduction in estimation of
parameters of regression models with covariates subject to classical measurement
error in a non linear framework. The correction method is general in its applicability
and contributes to the larger literature of two-step estimation of incomplete
information games and strategic interaction models under clustered sample data.
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The chapter is organized as follows: Section 2.2 presents an overview of the
application considered, data and descriptives. Section 2.3 specifies the model.
Section 2.4 describes the estimation procedure including the correction method
employed. Section 2.5 presents the baseline results and evaluates the model fit.
Section 2.6 provides a summary and concluding remarks. The results from the
estimated model are further analysed in Chapter 3 where I first specify the tools for
counterfactual analysis and welfare measures and then use the estimated model to
simulate the impact of hypothetical policy interventions in the context of
externalities. All relevant Tables and Figures are provided in the chapter appendix in
Section (2.7).

2.2 Background

The application considered in this chapter looks at household sanitation adoption in
India. The idea however is more generally applicable to the context of preventive
healthcare goods in developing countries when externalities are relevant. The
presence and importance of health externalities has previously been identified and
documented in the literature. Key examples include, Cohen & Dupas (2010) with
bed-nets as prevention against malaria, and Miguel & Kremer (2004) where the
provision of de-worming pills was found to generate significant positive spillover
effects amongst non-treated students. In most cases, the issue of externality is
discussed ex-post policy intervention. In contrast, the idea of incorporating the
impact of underlying externalities in investigating the impact of potential subsidy
interventions ex-ante has not yet been extensively studied.

2.2.1 Sanitation in India

Understanding the barriers to sanitation adoption (and preventive healthcare in
general) has become a critical issue in public health policy. In a recent paper, Dupas
(2012) provides a selective review of the recent microeconomic evidence on this
issue. The paper provides key stylized facts on household adoption behaviour and
health in low-income countries which includes low levels of preventive healthcare
expenditures. For example, malaria and diarrhoea1 account for 8% and 18% of
under-5 mortality in India (World Bank 2008-2011).2 The mortality rates are

1disease prevalence largely attributed to poor or lack of basic sanitation infrastructure.
2World Bank Development Indicators - http://databank.worldbank.org/ddp/home.do
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primarily concentrated in rural/slum regions where under-5 mortality attributed to
diarrhoeal diseases is close to 86%. In contrast, the percentage of population in India
with access to improved sanitation facilities is only 34% in 2010.3 India is not only
among the top 15 countries, that account for 73% of all under-5 diarrhoeal deaths
occurring worldwide, but it also ranks at the top of the list with more than half a
million diarrhoeal deaths yearly (WHO 2006).

So far policy interventions in sanitation have had limited success (e.g. Guiteras et al
2015) in creating sanitation densities and social change. Several factors have been
put forth as possible explanations – some of them being: (a) the size of the monetary
policy being inadequate to construct a functional sanitation facility; (b) the policy
beneficiaries are not correctly identified i.e., families living below the poverty line
being ambiguous, resulting in low sanitation densities with insignificant
improvements in health status; and (c) the sustainability of such interventions given
the resources and the potential implementation leakages. A key feature of sanitation
like other preventive healthcare goods is that benefits from adoption are not restricted
to the household that chooses to adopt. Adoption of sanitation can be viewed as a
choice that generates both private as well as social returns, where the social returns
capture benefits that display a degree of non-rivalry and non-excludability associated
with adoption. This can be thought of as an externality problem, where the returns
that a household realises not only depends on its own sanitation adoption but also
depends on the adoption behaviour of the overall community in which it lives.
Though the exact mechanism of the externality is not clear, for example, it could be a
contagion or public good externality, lack of information or simply a preference
household have to conform to the norm.

The analysis in this paper is unable to ascertain the precise mechanism that generates
the externality, for example, it could be a health externality, information spillovers or
simply a preference households have to conform to the norm. However, I am able to
characterize the nature and magnitude of such spillover effects i.e., whether the
interdependence generates a positive or negative externality for an individual
household. The policy implications are consistent with this characterization, and thus
are independent of the mechanism or channel of externality itself. One possible
approach to disentangle and identify the relevant channels through which the
spillover effects propagate, would be through field experiments (RCTs)4 that are
designed to capture the impact of different types of policies, for example provision of

3The urban population access is around 58% while the rural population percentage is only 23%
4An interesting avenue for future work would be to combine the structural analysis with results from

a randomised experiment that could disentangle the various mechanisms that lead to an interdependence
in household sanitation decision.
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loans, health insurance, health information etc.5

2.2.2 Data and Descriptive Statistics

The data used for the estimation comes from a household survey (2009-10)
conducted by a policy institution in India called FINISH (Financial Inclusion
Improves Sanitation and Health). The institution targets poor rural households with
the objective to encourage and provide subsides for the purpose of building sanitation
facilities within their home. The data comes from the outlying rural and urban slums
around a city in the north of the state of Madhya Pradesh located in central India.
This chapter does not aim to assess the impact of any field policy experiment.
Instead, I use the cross sectional data to estimate a model of household adoption
decision and layout an ex-ante welfare evaluation of hypothetical policy
interventions.

The baseline sample comprises of 1,475 households across 44 villages. Table (2.1)
provides a descriptive summary of the sample for the main variables of interest. In
the sample on average 37.8% of households have a sanitation facility in their homes.
Across the 44 villages, this includes villages were the adoption level is 0% and also
where there is 100% sanitation levels. Household characteristics include age,
education of household head. In the model the household is assumed to be a single
decision making unit. The underlying assumption being that household head is the
primary decision maker. On average household heads are in their mid 40s this age is
slightly lower for female household heads that comprise of 18% of the sample and
have at least primary school education. Information on current household wealth,
which includes current income and liquid assets which includes savings in the bank
account, along with the cost of acquiring sanitation (price) which varies across
villages are included as variables in decision making process. Details on construction
of the cost of sanitation is provided in Appendix (2.7.3.1)

The impact of externality is assumed to be captured by average prevalence of
sanitation in the village. A major limitation of this measure of externality as captured
by the average level of adoption within the village is that the data only comprises of a
sub sample of total households within the village.6 This limitation introduces a

5 As an avenue for future work I aim to combine the analysis with the results from field experiments
to first identify the exact mechanism that generate the externality and to further improve of the efficiency
of the suggested policy predictions.

6Between 10%−20% of the total village population was surveyed in the sample
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specific source of measurement error; the average adoption level observed by the
econometrician may not be an accurate portrayal of the true sanitation coverage level.
This mis-measurement introduces a form of classical measurement error that is not
restricted to the standard attenuation bias on the parameter estimate. I employ a
correction procedure to the estimation methodology described in section (2.4) for the
presence of this measurement error. This is crucial as the classical nature of the error
under a non linear structure not only implies an attenuation bias but also a potential
upward bias resulting in an overestimate of the parameter that captures the impact of
the externality.

2.3 Model

In this section, I present a static demand model of sanitation adoption with
externalities. The model builds on the interaction structure presented in Brock &
Durlauf (2001). I start by defining a simple environment, where a finite number of
decision making households, who belong to a village/group, choose whether or not to
adopt a health improving technology. In this case, the technology offered is to build a
sanitation facility in one’s home.7 The interdependence of sanitation adoption
choices and its impact on an individual household’s return from adoption is captured
by the average sanitation prevalence within the village.

2.3.1 Setup

In order to incorporate the presence of externalities, the interdependent adoption
choice of households is modelled as a simultaneous move game of incomplete
information. The incomplete information structure provides a tractable framework to
model the sanitation adoption behaviour in which a trade-off exists between
desirability of having sanitation at home and the social returns from adoption.8 The
externality arises as each household incorporates the actions of others within its
payoff, but does not necessarily account for the impact of it’s own choice on the
well-being of others. At the aggregate, this unaccountability results in a divergence

7Sanitation facility refers to a household building a bathroom/toilet facility in their house.
8A household may derive social returns from presence of health and/or information externalities.

The prevalence of which is driven by the sanitation coverage level within the village.
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in the private and socially optimal adoption levels. The model translates the discrete
actions of households into a smooth adoption choice probability that represents the
likelihood of a household’s decision to adopt sanitation.

Environment: A household is assumed to be a single decision making unit, making
a discrete decision on whether or not to adopt sanitation. There are a finite number
of decision making households i = 1, ...,N each belonging to a group. The population
is partitioned into non-overlapping sub-populations (groups/villages) indexed by g =

1, ...,G and represented by Ig such that ∪G
g=1Ig = N.

Choice: Households face a finite choice set Di = {0,1} and each household i simul-
taneously makes a decision which has a realization di ∈ Di = {0,1} where:

di =

{
1 Household adopts sanitation

0 no adoption

Let D = {0,1}Ig denote a vector of possible actions for all households in village g

and let dg = (d1g,d2g, .....,dIg) denote a generic element of D. While,
d−ig = (d1g, ...,d(i−1)g,d(i+1)g, ...,dIg) denotes the choices of all other households
belonging to village g excluding household i.

States & Information: Each household belongs to a group g and is endowed with a
set of state variables (xig,zg,εi(di)) that include household xig and village zg specific
characteristics, wig = (xig,zg).9 It is assumed that wg = (wig,w−ig) is a vector of
common knowledge variables (information set) observable to all households within
village g as well as to the econometrician. In addition, each household is also endowed
with a set of taste/preference shocks εi(di) that are private information, known only to
household i and unobservable to all other households within the group including the
econometrician. Let εi denote the 1× 2 vector of the individual taste shocks εi (di).
The density of εi is denoted by g(εi) , εi = [εi (1) ,εi (0)].

9The implicit assumption being all relevant village level characteristics are included in the
observable vector zg and there are no group level unobservables.
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Thus the information available to each household is incomplete and restricted to the
set of observable variables wg.

[A1] : The observable variables wg is common knowledge possessed by all
households i within a village/group g

[A2] : The unobserved taste shocks εi are private information possessed only by
a household i and are distributed i.i.d across households and choice alternatives

The model allows for village specific observables zg however there is no allowance
for village level unobservable effects. This limitation may lead to an overestimation
of the impact of spillovers. A possible solution to account for this limitation would
be estimate a village specific fixed effect by estimating the mean of the taste shock
ε. This idea is further explored in Chapter 4 to allow for a similar concern of village
level unobservables.

2.3.2 Utility and beliefs

The utility function is similar to a standard random utility model with the additional
inclusion of d−ig choices of other households within the village. The per period utility
function for household i is denoted by:

Vi
(
di,d−ig,wig,εi;θ

)
= u(di,xig,zg;κ,β,δ)+ s

(
di,d−ig;γ

)
+ εi (di) (2.3.1)

which comprises of three additively separable components: private utility u(·), social
utility s(·) and an unobserved private preference component εi (·) associated with
choice di. Utility depends on a vector of state variables (wig, εi), own choice di and a
function of choice of other households d−ig. The vector of preference parameters is
denoted by θ = [κ,β,δ,γ]. The social utility is a function of the average level of
adoption d−ig assumed to capture the presence of externalities within the village.

d−ig =
1

Ig−1 ∑
j 6=i

1
{

d jg = 1
}

The social utility is parametrized by γ, it captures the importance of the externality or
social returns from adoption relative to the private utility from adoption. The
externality is generated by the fact that d−ig affects the utility derived by household i,
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but the household does not consider the effect its own choice has on the utility of all
other households j 6= i. The deterministic component of the utility which includes
both private and social utility is assumed to have a linear specification:

vd(di,wig,d−ig;θ) = κ+βxig +δzg + γdid−ig (2.3.2)

The partition of the observable state space into household specific and village
specific characteristics (xig,zg) imposes an exclusion restriction that allows for the
identification of the primitive utility function of interest discussed further in section
(2.3.3). In addition to assumption [A2], G(ε) is assumed to have a parametric form of
distribution from a known family. The private taste shock terms εi are distributed
Type 1 Extreme value and the difference (εi (0)− εi (1)) is distributed logistic.

Decision rules: Household i′s decision rule is a function δi (wg,εi) = di. Note that
under assumption [A2] i′s decision does not depend on ε−i since these taste shocks are
private information of the other households in the village and thus are unobservable to
household i. The conditional choice probability pi (di|wg,θ) is defined as:

pi (di = 1|wg,θ) =

ˆ
1
{

δi (wg,εi;θ) = 1
}

g(εi) dεi (2.3.3)

where 1
{

δi (wg,εi;θ) = 1
}

is an indicator function that household i′s choice is di = 1
(adoption) given the vector of state variables (wg, εi). Thus pi (di = 1|wg,θ) denotes
the probability that household i chooses to adopt sanitation (di = 1) conditional on
the common knowledge state variables wg (information set) which is derived by
integrating i′s decision rule over the region of εi for which δi (wg,εi;θ) = 1. The
distribution of dg given wg is given by p(dg|wg,θ) = ∏

Ig
i=1 pi (di|wg,θ).

Expected Choice-specific Utility: Under incomplete information a household forms
expectations about the adoption decision undertaken by its fellow neighbours. The
expected utility received by household i from choosing di is denoted by:

Ṽdi (di = 1,wg,εi;θ) = ∑
d−i

[
κ+βxig +δzg + γ1{di = 1} 1

Ig−1 ∑
j 6=i

1
{

d jg = 1
}]

p−i (d−ig|wg,θ)︸ ︷︷ ︸
ṽd(di,wg;θ)

+εi (di)

where p−i (d−i|wg,θ) = ∏ j 6=i p j (d j|wg,θ)
(2.3.4)
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Since household i does not have information on ε j taste preference of other
households, it constructs beliefs about the expected choice of other households using
all relevant observable information. The term p−i (d−ig|wg,θ) denotes the conditional
probability measure household i places on the choices of others at the time of making
its own decision. The first term on the R.H.S of Equation (2.3.4) denotes the
expected value of vd(di,wig,d−ig;θ) by marginalizing out the decisions of other
households using expectations p−i (d−ig|wg). The deterministic part of the expected
utility is defined as:

ṽd (di,wg;θ) = ∑
d−i

vd(di,wig,d−ig;θ) p−i (d−ig|wg,θ) (2.3.5)

Given that the average level of adoption enters into a households utility the
corresponding expected social utility depends on the expected average level of
adoption:

pg =
1

Ig−1 ∑
j 6=i

pi, j(d jg = 1|wg,θ) (2.3.6)

where pi, j(d j = 1|wg,θ) denotes the expected value from the perspective of household
i of household j’s choice. Under rational expectations, a household makes a choice so
as to maximize its expected utility by following a decision rule which depends on its
own choice di as well as on the expectation of the choices made by other households.

di =

{
1 i f Ṽ1 ≥ Ṽ0

0 otherwise
(2.3.7)

δi (wg,εi;θ) = argmax
d∈D

[ṽd (di,wg;θ)+ εi (di)] (2.3.8)

Ṽ ∗(di,wg,εi(di);θ) = max
di∈D

{
Ṽ1(di = 1,wg,εi(1);θ), Ṽ0(di = 0,wg,εi(0);θ)

}
(2.3.9)

Ṽ1 and Ṽ0 denote the expected choice-specific utility functions and Ṽ ∗ in Equation
(2.3.9) denotes the optimal indirect utility.10

10Similar to the random utility model, adding or multiplying all utilities by a constant will not change
the probability that a given alternative is chosen. Hence normalizations for level and scale or required.
These normalizations are satisfied by setting the deterministic component of utility from non-adoption
to zero and further normalizing the variance of the difference of the unobserved taste heterogeneity i.e.,
η = ε(0)− ε(1) to var (η) = 1
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2.3.3 Equilibrium

Equilibrium: Under the assumption that each household makes its choice given an
expectation pg of the average level of sanitation adoption which is independent of the
realisations of εi(di) for all households i. Under the extreme-value assumption for
εi(di) and the normalization of the deterministic expected utility from non-adoption to
zero, utility maximization by household i implies:

pi(di = 1|wg,θ)=
exp
(

κ+βxig +δzg + γ
1

(Ig−1) ∑ j 6=i pi, j(d j = 1|wg,θ)
)

1+ exp
(

κ+βxig +δzg + γ
1

(Ig−1) ∑ j 6=i pi, j(d j = 1|wg,θ)
) for all i and all wg

(2.3.10)

where pi(di = 1 | wg;θ) denotes the Conditional Choice Probability (CCP) of
adoption for household i.11 Equation (2.3.10) represents a system of equations for
each village g that can be solved to determine equilibrium probabilities of adoption.
Under a Bayesian Nash equilibrium, households maximize expected utility and
household i has consistent beliefs about the choices of other households in the village
i.e., the household knows the equilibrium probabilities p∗g. The Bayesian Nash
equilibrium to the household adoption problem is a collection of beliefs
p∗i (di = 1|wg,θ) defined by Equation (2.3.10) for each household i = 1, ...., Ig

belonging to a village g = 1, ...,G. The term p−i (d−ig|wg,θ) in Equation (2.3.5)
represents the equilibrium probabilities that choices d−ig are observed, and the
summation marginalizes household i′s uncertainty about the choices of other
households to compute the expected return from choosing di = 1 given available
information wg. For a fixed wg, the definition of equilibrium (2.3.10) and the
definition of the choice-specific value function in Equation (2.3.5) implies Ig

equilibrium probabilities p∗i (di = 1|wg,θ) which can be viewed as the solution to the
following system of Ig equations per village.

Given that the average level of adoption of other households matter in an individual
household’s returns from adoption. It is convenient to represent the system of
equations in (2.3.10) as a fixed point problem at the village or group level instead.

1
Ig

∑
Ig
i=1 p∗i (di = 1|xi,zg;θ) = 1

Ig
∑

Ig
i=1

{
exp(κ+βxig+δzg+γp∗g)

1+exp(κ+βxig+δzg+γp∗g)

}

p∗g = 1
Ig

∑
Ig
i=1

{
exp(κ+βxig+δzg+γp∗g)

1+exp(κ+βxig+δzg+γp∗g)

} (2.3.11)

11The Conditional Choice Probability (CCP) denote the reduced form objects of the model
observable in the data.
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Equation (2.3.11) denotes the equilibrium conditions as a fixed point problem at the
village level where p∗g denotes the equilibrium probability of adoption in a village g.
In general there maybe more than one solution to the fixed point problem in Equation
(2.3.11) further implications of this multiplicity are discussed in (2.3.4).

Identification: Before discussing the properties of the equilibria, I briefly discuss the
identification of the utility function. Abstracting away from parametric assumptions,
complications induced by the presence of multiple equilibria and by taking the
equilibrium choice probabilities pi (di|wg) as given. The question of identification is
whether it is possible to reverse engineer the structural parameters vd(di,wig,d−ig)

from the observed data. Using Equation (2.3.10) and performing the Hotz & Miller
(1993) inversion by taking logs on both sides of the equation, yields the familiar
result:12

ṽd (di = 1,wg) = ln [pi (di = 1|wg)]− ln [1− pi (di = 1|wg)] (2.3.12)

This equation demonstrates that it is possible to obtain the expected choice-specific
value function for any wg from the observed reduced form choice probabilities. Thus
by treating ṽd (di = 1,wg) as known and using Equation (2.3.5) it is possible to derive
a system of equations for a fixed wg:

ṽd (di,wg)︸ ︷︷ ︸
known

= ∑
d−i

vd(di,wg,d−ig) p−i (d−ig|wg)︸ ︷︷ ︸
data

for i = 1, ..., Ig (2.3.13)

In order to highlight the identification issue, I have removed the partition of the state
space into (xig,zg) household and village specific characteristics in vd(di,wg,d−ig) in
Equation (2.3.13). Identification requires finding a unique set of vd(di,wg,d−ig)

primitives that solves this system of Equations (2.3.13). A necessary condition for
identification is that there are at least as many equations as free parameters
ṽd (di = 1,wg). For a fixed wg, there are Ig × Ig unknowns corresponding to the
vd(di,wg,d−ig) after imposing the normalization for non-adoption and the
assumption of average level of adoption.13 However, there are only Ig equations,
which implies that without additional restrictions, the structural parameters of model
are not identified. Similar to the approach in simultaneous equation models, I impose
exclusion restrictions. The partition of the state space of a household wig = (xig,zg)

imposes an exclusion restriction, i.e., it is possible to find a set of covariates xig that
shift the utility of household i independently of the utilities of the other households in

12Note: ṽd (di = 0,wg;θ) = 0 and its primitive vd(di = 0,wig,d−ig;θ) = 0 are normalized
13Note: If in the model the identity of the households mattered in the adoption decision in this case

the degree of under identification would be even greater Ig×2Ig−1
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the model. Unlike Equation (2.3.13), in Equation (2.3.5) w−ig = (x−ig,zg) enters
expectations p−i but is excluded from vd(di,wig,d−ig). Holding xig fixed, and by
varying x−ig it is possible to increase the number of equations that vd(di,wig,d−ig)

must satisfy. If there are at least Ig points in the support of the conditional distribution
of x−ig given xig, it is possible to generate more equations than free parameters.
Furthermore, in the application considered x−ig includes continuous variables with a
rich support, thus the requirement of at least Ig points of support is easily met.

2.3.4 Existence and Multiplicity of Equilibria

The existence of equilibria in this setting corresponds to ensuring that the fixed point
problem described in (2.3.11) has at least one solution. Given Assumption [A2]
household beliefs are monotonic, continuous and strictly bounded inside the set (0,1)
and so the existence of a solution to the fixed point follows immediately from
Brower’s fixed point theorem.14

Multiple Equilibria are possible in this model. For a given set of parameters there
could be more than one solution for the expression (2.3.11). The multiplicity in the
structure arises because of the dependence of a household’s choice on the choices
made by other households within the village. Intuitively, the stronger the dependence
as captured by the social utility component parametrized by γ relative to the private
utility component, multiplicity arises. These multiple solutions imply the existence
of distinct expected sanitation prevalence levels which are each compatible with
individually optimal decisions. With the possibility of multiple equilibria the model
is incomplete without the specification of an equilibrium selection mechanism. This
“incompleteness” makes it difficult to construct a proper likelihood and objective
function which has implications for the estimation of the model.

One way of dealing with the multiplicity would be to develop a theory of the
underlying equilibrium selection mechanism and thus complete the model. For
example, one can make an assumption about the equilibrium played or more formally
model (i.e., parametrically) an equilibrium selection mechanism such as
implemented by Bajari, Hong & Ryan (2010). The use of an appropriate equilibrium
selection rule assures the existence of a well-defined likelihood function for the entire
space of observable outcomes as discussed in the next section. However, the problem
with this approach is that the consistency of the estimation procedure crucially
depends on the validity of the assumed selection rule, which is not always testable.

14See Brock & Durlauf (2001) for a detailed description
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An alternative strategy would be to abstract away from imposing an ad-hoc
equilibrium selection rule and instead make an assumption on the data observed. In
order to obtain consistent parameter estimates I employ assumption [A3] below. In
each village, I assume that the data observed is generated from only one of the
possible equilibria.

[A3] : Given a value of primitives of the model Ψ = (wg,θ) households in a
group g select only one equilibria from the set of possible equilibria and they do
not switch to other equilibria and long as Ψ does not change.

Sometimes also referred to as the single-equilibrium-in-data assumption, assumption
[A3] provides a 1 : 1 mapping between the observed data and the structural primitives
of the model. This assumption is frequently employed in the context of estimating
incomplete information games and is independent of the choice of estimation
method.15 The assumption is also less restrictive than explicitly assigning ex-ante an
equilibrium selection rule the group/village might be at. Under the
single-equilibrium-in-data assumption, the multiplicity of the equilibria in the model
does not play a role in the identification of the structural parameters.16

2.4 Estimation

In this section, I discuss the estimation of the model. In theory, the estimation of the
static model of strategic interaction could follow the same methods as the estimation
of single agent discrete choice models with the addition of a fixed point condition.
The strategic nature of the model imposes an additional restriction, that the strategies
or choice probabilities of the households should be in equilibrium. It is possible to
use an algorithm similar to the one suggested by Rust (1987). The nested fixed point
algorithm could be used to maximize a sample criterion function over the space of
structural parameters, and to solve for the equilibrium of the model, for each candidate
value of the parameters. For a given equilibria and value of parameters, the remaining

15See for example Aguirregabiria & Mira 2007, Bajari et al. 2007, Pakes et al. 2007 & Pesendorfer
& Schmidt-Dengler 2008

16The single-equilibrium-in-the-data assumption is a sufficient condition for identification but it is
not necessary. De Paula (2013), Sweeting (2009) and Aguirregabiria & Mira (2009) present conditions
for point-identification of static games of incomplete information when there are multiple equilibria in
the data.
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structure simplifies to a single agent discrete choice problem for which deterministic
decision rules for adoption as a function of state variables and unobserved random
shocks can be obtained. Thus under an assumption for the distribution of these shocks,
it is possible to derive a likelihood of observing each household’s decision conditional
on states.

However, with the possibility of multiple equilibria, this full solution maximum
likelihood approach would require the repeated solution of the model for each
candidate value of the parameters to be estimated. Explicitly solving for the
equilibrium proves to be computationally burdensome even for the simple model
proposed here. Furthermore, the possible multiplicity of fixed points may render this
method impractical without the specification of the underlying equilibrium selection
mechanism.

The alternative two-step approach, widely used in the literature, bypasses the
computational burden of repeatedly solving for the fixed point. The estimation is
broken down into two parts where, under assumption [A3] the equilibrium choice
probabilities or beliefs are estimated directly from the observed data in the first stage.
While in the second stage, first stage estimates are used to further estimate the
structural parameters of the model using maximum likelihood or least squares
procedure. The two step method has been shown to preserve the large sample
properties of the direct method while being computationally straightforward.17 The
following section introduces a general two-step pseudo log-likelihood estimation
procedure and briefly discusses one of its key limitations frequently encountered in
practice due to data restrictions. I further propose an amended two-step estimation
procedure to account and correct for this source of limitation.

2.4.1 Two-Step Estimator

The first stage of the estimator attempts to recover a consistent estimate p̂i for the
equilibrium choice probabilities or beliefs p∗i (di = 1|wg) from the data.18 This is
used to further obtain an estimate p̂g for the equilibrium average level of adoption in
the village p∗g.

17See Aguirregabiria & Mira 2002, 2007
18Ideally, we would like to implement a nonparametric method to estimate choice probabilities in

order to reduce the noise from the first stage. However, I employ a parametric approach in order to
tackle a more serious source of bias in the resulting parameter estimates explained further.
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In this simple model, the first stage simply comprises of computing sample averages
of the adoption level in each village as p∗g = E

(
d−ig|wg

)19 and as Ig → ∞⇒ dg →
E
(
d−ig|wg

)
p̂g = d−ig =

1
(Ig−1) ∑

j 6=i
1{d j = 1} (2.4.1)

which gives fitted choice probabilities:

p̂i(di = 1|xig,zg,dg,θ) =
exp
(
κ+βxig +δzg + γdg

)
1+ exp

(
κ+βxig +δzg + γdg

) (2.4.2)

which are substituted, in place of the equilibrium choice probabilities, into the log-
likelihood objective function and maximized in the second stage. Estimate θ̂ as the
solution of

θ̂ argmax L(θ|d−ig,xig,zg,di) (2.4.3)

where the pseudo log Likelihood is given by

L(θ|d−ig,xig,zg,di) = 1
N ∑

N
i=1{di log

[
p̂i(di = 1|xig,zg,d−ig,θ)

]
+ (1−di) log

[
1−
(

p̂i(di = 1|xig,zg,d−ig,θ)
)]
}

Note that this estimation procedure does not require the computation of all possible
equilibria as a function of θ. The estimator discussed above relies on obtaining
consistent estimates of the equilibrium choice probabilities in the first stage.
However, the nature of the data raises a key issue in the estimation procedure. The
data observed is a small sample of the entire village population and thus the first
stage estimate of belief dg may not be a consistent estimate of the true equilibrium
levels of average adoption in the village. This not only compromises the consistency
of the second stage estimates but also generates a bias in the parameter estimates
given the non linear structure. This issue can be treated as the presence of
measurement error, where the econometrician observes a value of dg contaminated
by noise. In practice, measurement error can result in an imprecise initial first step
estimate p̂i which can generate large finite sample biases in the two-step estimator of
structural parameters in the second stage. The larger the bias in the first step in the
estimate p̂i, the larger the bias of the two-step estimator for θ. In the following

19In the case of large groups d−ig ≈ dg
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subsection I implement an approximation approach to correct for the presence of
‘measurement’ error in the choice probabilities given by Equation (2.4.2). I amend
the standard two-step procedure to account for this potential source of error and
correct for the bias in the resulting second stage parameter estimates.

2.4.2 Measurement Error Correction

The presence of measurement error causes the data generating distribution to differ
from the distribution that is of substantive interest. In order to understand the effect of
mis-measurement on the information produced by statistical procedures it is necessary
to understand the distortions induced by the error.

The two-step estimation procedure above relies on obtaining consistent estimates of
pg and pi in the first step. However, in the presence of measurement error the observed
distribution of the estimators may differ from true distributions. The principal source
of error in this model lies in the estimate for pg given by the average level of adoption
in the village dg. The error exists as dg is constructed using only a small sample of
households that are observed within each village.20

In a linear model, the impact of measurement error, relates to the familiar attenuation
effect of the contaminated covariates on the response variates. This is where the
presence of measurement error causes covariates to appear to vary over a wider range
than they in fact do. Essentially, there is a change in the scale of variation of the
covariates but no effect on the variation of the response variate itself. Consequently
in a linear model, the effect of a unit marginal change in the error contaminated
covariate on a response variate, is smaller than the effect of the same unit change in
the error free covariate. In contrast, for a non linear model such as the one considered
here, the impact of measurement error is no longer restricted to a simple attenuation
of the parameter estimates. There is an added reduction of the curvature of the
response function which is driven by the underlying non-linearity.

The bias reduction method outlined below follows from the small error variance
approximation to the effect of measurement error on regression functions formulated
in Chesher (1991). The approximations provide the basis for the analysis of the
properties of estimators when measurement error is present, particularly in the case
of a non linear model. Intuitively, the method exploits a small measurement error
variance approximation of the conditional density. This allows for a consistent
estimation of θ in Equation (2.4.2) in the sense that the inconsistency is of a smaller
order than the variance of the measurement error itself.

20The survey sample comprises approximately 10%-15% of the entire population of a village
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The key intuition is as follows, the presence of measurement error causes the true data
generating distribution to differ from the observed data distribution. The small error
variance approximation method treats the observed density to be a distorted version
of the true density of interest. The method constructs this distorted density by taking a
Taylor series approximation of the density around the point of no measurement error.
The mean regression function of interest is derived using the distorted density which
corrects for the presence of measurement error through correction parameters in the
first step of the estimation.

2.4.2.1 Setup & Assumptions

A brief account of the problem is outlined below followed by the main result using the
approximation method. While a detailed derivation of the approximations adapted to
the context of the model is deferred to the Appendix (2.7.3.2).

Following the model presented in Section (2.3). The outcome variable d = [di] is a
vector of random variables and χ = χig = (xig,zg,dg) denotes a matrix of covariates
for each household. Let D = [Dg] and u = [uig] be vectors of error free covariates
and measurement error, with absolute continuous joint distribution and with u and
D independently distributed. As previously stated the observed error contaminated
covariate is denoted by dg, if dg = Dg +uig.

var(dg) = var
(
Dg +uig

)
var(dg) = var(Dg)+ var(uig)+2cov(Dg,uig)

with u and D independently distributed:

var(dg) = var(Dg)+ var(uig)

and var(Dg) = 0 which gives

var(dg) = var(uig)
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The main result for the mean regression function21 of interest is given by:

Ed|d{ f (d)|d}=Ed|D{ f (d)|d}+E(1)
d|D{ f (d)|d}ΣG(1)

D (d)+
1
2

tr
[
ΣE(2)

d|D{ f (d)|d}
]
+o(Σ)

(2.4.4)

where o(Σk) = o(σ2) denotes a scalar function of Σ with the property:

lim
σ2→0

o(σ2)

σ2 = 0

The function G(1)
D (d) is the derivative of the logarithm of the marginal density of D,

in practice however the function is rarely known. However, it is possible to replace
G(1)

D (d) with G(1)
d
(d) by knowing the way in which marginal densities of the ‘error

free’ and ‘error contaminated’ variates are related

gd(d) = gD(d)+
1
2

tr
[
Σ∇

dd
′ loggD(d)

]
+o(Σ)

this implies that E(1)
d|D{ f (d)|d}Σ

(
G(1)

D (d)−G(1)
d
(d)
)

is o(Σ) and hence G(1)
D (d) can

be replaced by G(1)
d
(d) without affecting the order of approximation error. Since

realisations of d are observed, it is possible to estimate G(1)
d
(d) and using the

amended mean regression function given by Equation (2.4.4) correct for the
detrimental effect of measurement error on the parameter estimates θ̂. In non linear
regression models such as the binary choice model considered, measurement error
induces an additional non linear effect through the third term on the right hand side
of Equation (2.4.4) which depends on the curvature of the regression of f (d) on χig,
where χig = (xig,zg,dg). At values of dg for which the function Ed|χ{ f (d)|d} is
convex this term is positive and measurement error causes the regression of f (di) on
dg to be higher at such points than the regression of f (di) on Dg. At points where the
regression of f (di) on Dg is concave the effect is in the opposite direction (upward
bias). It is important to note that the implementation considered in the following
section rests on the assumption that the functional form of the regression of di on D

and on χ is known.

21For derivation refer to Appendix (2.7.3.2)
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2.4.2.2 Practical Implementation

For binary choice models, such as in the application considered, where di is the
binary outcome variable the conditional distribution given covariates
χig = (xig,zg,dg) is given by:

gdi|χig(di|χig,θ) = p{u(χig}di[1− p{u(χig)}](1−di) (2.4.5)

where under the logit specification, u(χig) = χ
′
igθ is the linear index, and

p(u) = eu

(1+eu) .
22 Using Equation (2.4.4) the approximation under the logit

specification reduces to:

u(χig) = κ+βxig +δzg + γd−ig + γ(ξσ
2
g)G

(1)
d
(dg)+

1
2

γ
2(ξσ

2
g)

1−2
eχigθ̂1(

1+ eχigθ̂1

)


(2.4.6)

where Σg = ξσ2
g = ξ

dg(1−dg)
Ig

23 and eχθ̂1(
1+eχθ̂1

) is the probability of adoption choice for

a given household and θ̂1 are the naive first stage parameter estimates from the logit
regression on the error contaminated data. The vector of estimates θ̂1 comes from the
original maximum likelihood estimation. The function p(.) remains unchanged, and
ξσ2

g = ξ
dg(1−dg)

Ig
. The function G(1)

d
(dg) =

∂ log f (dg|wig)

∂dg
which is the derivative of the

conditional log density, where wig = (xig,zg) are all co-variates except the error
contaminated covariate dg. As noted earlier it is possible to produce a non-parametric
estimate of G(1)

d
(dg). However, given the small sample size and potential curse of

dimensionality implied by the conditional density f (dg|wig) a semi-parametric
approach is adopted instead.24 The method above employs the observed response,
the error contaminated covariate data and an assumed functional form for the error
free regression function. The approximation method establishes a direct link between
the regression functions with conditioning on in turn the error free and the error
contaminated covariates and employs as an additional regressor, a nonparametric
estimate of derivatives of the logarithm of the joint density of the error contaminated
covariates.

22If Λ(x) denotes the logit function, the first derivative is given by Λ(1)(x)=Λ(x)[1−Λ(x)]while the
second derivative is given by Λ(2)(x)=Λ(x)[1−Λ(x)] [1−2Λ(x)]. The logit specification follows from
the Type 1 Extreme value assumption of the taste shocks εi(di) in the structural model.

23ξ is a parameter to account for differences across villages/groups g. The estimate ranges between
σ̂2

g = [0.0008, 0.032]
24See Appendix (2.7.3.3) for construction of G(1)

d
(dg)
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2.4.2.3 Second Stage: Bias Corrected Maximum Likelihood Estimator

The approximate densities (2.7.7) and mean regression function (2.4.4) and (2.4.6)
provide the basis for the approximations to the likelihood functions in which there is
an allowance for measurement error. By taking one Newton step towards the
maximum of such an approximation a ‘bias corrected’ maximum likelihood
estimator is obtained.25

In the presence of error contaminated covariates in a non linear model, it is possible
to account for the impact of this source of error by incorporating additional correction
variables to the original choice probability expression. A new set of estimates is given
by θ̂2:

θ̂2 argmax L(θ|dg,xig,zg,Ωig,di) (2.4.7)

where the bias corrected log likelihood function26 is given by:

L(θ|dg,xig,zg,Ωig,di) = 1
N ∑

N
i=1{di log

[
pcorrected

i (di = 1|xig,zg,dg,Ωig,θ)
]

+ (1−di) log
[
1−
(

pcorrected
i (di = 1|xig,zg,dg,Ωig,θ)

)]
}

(2.4.8)

and the modified first step choice probability is given by:

pcorrected
i (di = 1|xig,zg,dg,Ωig,θ)=

exp

κ+βxig +δzg + γdg +G(1)
d (dg)(ξσ2

g)γ+
1
2 γ2(ξσ2

g)

1−2 eχig θ̂1(
1+eχig θ̂1

)


1+ exp

κ+βxig +δzg + γdg +G(1)
d (dg)(ξσ2

g)γ+
1
2 γ2(ξσ2

g)

1−2 eχig θ̂1(
1+eχig θ̂1

)


(2.4.9)

The vector of parameter estimates θ̂2 obtained from the second stage are the
arguments that maximize the log likelihood given the distribution of variates. The
new set of parameters are given by θ̂2 = [κ̂, β̂, δ̂, γ̂, γ̂ξ, γ̂2ξ,Σ(2)]. The first four
parameter estimates are the parameters of interest from the model, followed by two
correction term estimates γ̂ξ and γ̂2ξ controlling for attenuation and the degree of

25Chesher, Lancanter & Irish (1985) describe such a procedure in the context of correcting for the
effects of random parameter variation.

26where Ωig = G(1)
d (dg)(ξσ2

g)γ+
1
2 γ2(ξσ2

g)

1−2 eχig θ̂1(
1+eχig θ̂1

)

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curvature, respectively and Σ(2) denotes the variance-covariance matrix after
correction. A bootstrap procedure is employed to construct standard errors.

2.5 Empirical Results

2.5.1 Parameter Estimates

Table (2.2) provides the parameter estimates from the two step estimation procedure.
Column [1] lists the parameter estimates from the ‘naive’ two-step estimation while
Column [2] lists the parameter estimates obtained after correcting for the presence of
measurement error in the first stage. I start by discussing the results for the correction
method first captured by the two additional parameter estimates in column [2]. As
derived in Section (2.7.3.2) CorrectionFactor (1) denoted by G(1)

d
(dg)(ξσ2

g)γ

corrects for the first order effect of measurement error which generates the
attenuation effect. While CorrectionFactor (2) denoted by

1
2γ2(ξσ2

g)

1−2 eχigθ̂1(
1+eχigθ̂1

)
 captures the second order effect given the non linear

structure; the term reduces the curvature of the response curve with the increase in
mis-measurement error. It is interesting to note that, for the parameter capturing the
externality effect, the estimate indicates a slight upward bias due to the presence of
measurement error which, as mentioned in Section (2.4.2), is possible in the case of a
non linear model. However, this difference is not found to be significant with the
correction terms. Overall, the estimates for the correction term parameters were not
found to be significant. This result is checked for robustness to sample size using
Monte Carlo simulations and no significant difference was found. To study the
accuracy of the approximations, simulation exercises are conducted for different
bandwidths and sample sizes.

The estimates in Table (2.2) denote log odds coefficients and thus it is easier interpret
the magnitudes by looking at marginal effects in Table (2.3). The average sanitation
presence in the village captures the impact of the externality on household demand
probability which is found to have a positive and significant impact on an individual
household’s sanitation adoption decision. The cost of sanitation which varies across
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villages27 has a significant impact on the probability of demand. The magnitude of
the price effect is six times the effect of wealth (cash-in-hand) that households have
available on the sanitation adoption decision. The impact of other household’s
adoption decision, which captures the externality effect, has the largest impact on
adoption probability close to 2.5 times the impact of cost of sanitation and nearly 5
times the impact of cash-in-hand.

In addition, household level characteristics such as age and education of the
household head and size of the household are found to have a significant positive
impact on the adoption decision. Village level characteristics include presence of
facilities that are complements or substitutes to a private household sanitation
facility. The presence of drainage facility is found to be complimentary to a
household’s adoption decision. While, the availability of substitutes captured by
availability of public sanitation facility within the village has a negative coefficient
though not found to be significant. Using these parameter estimates and the village
level fixed point condition, it is possible to simulate the response probability so as to
back out the equilibrium levels of sanitation adoption within each village.

2.5.2 Model Fit

To assess if the estimated model captures the essential features of the data, the
observed and the predicted choice distributions are compared. Table (2.4) provides
results from simulating the sanitation adoption behaviour from the model at baseline.
For each village, I compare the model predicted average level of sanitation adoption
with the mean observed in the data. The last column in Table (2.4) computes the
percent difference of the model predicted equilibria from the data. Noting a few
exceptions the model fit is close to the observed data. Figure (2.1) provides a
graphical representation of Table (2.4) for four villages. The average prevalence of
sanitation in the village is plotted on the horizontal axis. While the vertical axis plots
the probability of sanitation adoption for an individual household as a function of
sanitation adoption. The vertical dashed black line denotes the observed mean
adoption in the data and the diagonal plots the 45o line. The blue line plots the
second order response curve which is determined from the simulation of the village
level fixed point described in Equation (2.3.11) for a fine grid of d which denotes the

27Note: Price of sanitation is a variable constructed using supply side information. It includes the
cost of raw materials and the cost of labour for average number of days required to build sanitation.
Raw material include bricks, mortar, cement, tin, and tiles. These materials are produced and are readily
available as they constitute the basic ingredients in industrial and domestic construction. The demand
of these products for the purpose of building sanitation constitutes a very small proportion of the overall
demand.
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prevalence of sanitation in the village.

2.5.3 Policy Effects

With the structural parameter estimates , it is possible to simulate village level
equilibrium response under different subsidy policies that affect the probability of
sanitation adoption. Table (2.5) and (2.6) provide counterfactual simulations for
provision of unconditional (income) and conditional (price) subsidies at 25% and
50% of the cost of sanitation, respectively. The price subsidy subsidizes the cost of
sanitation and is provided conditional on a household adopting while the
unconditional subsidy has no such requirement and is essentially an income transfer
to each household. Similar to baseline, Figure (2.2) and (2.3) provide graphical
representations of the policy effects of both the unconditional and conditional
subsidies respectively. The effect of the policy can be viewed as an upward shift of
the probabilistic response curves of adoption. The provision of the subsidy increases
the probability of adoption at any given level of sanitation coverage in the village.

There are two points of observation to note from Figures (2.2) and (2.3). Firstly, I
find the emergence of multiple equilibria in some village under the counterfactual
simulated environment. The analysis in this chapter does not extend to determining
which one of the three equilibria would the society actually move to under the
counterfactual scenario if multiplicity occurs. This is because both the model
specification and estimation procedure abstracted away from specifying an
Equilibrium Selection Mechanism. A thorough examination of this problem and a
possible solution is reserved for proceeding work in Chapter (4).28 Secondly, I find
that the household response to the sanitation price subsidy is significantly larger
compared to the case of an income transfer. This lack of demand response under an
income transfer is driven by the preference estimates where a household is found to
be more responsive to changes in price of sanitation compared to the change in
household wealth levels.

28 When implementing policy simulations, it is important to deal with the potential multiplicity
of equilibria that may arise under counterfactual scenarios. Without having specified the equilibrium
selection mechanism in the baseline model, it is not possible to determine which equilibria will be
selected by the society in the counterfactual scenario. However, in Chapter (4) I propose to bound the
set of possible equilibria by an upper and lower limit, under a new policy environment. This approach
allows for the impact of the policy to be bounded by a region within which the actual impact of the
policy lies determined by the ‘true’ equilibrium selection mechanism that is otherwise unobserved by
the econometrician.
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The impact of externalities under a subsidy intervention is depicted clearly in Figure
(2.3). Consider the village of Baretha in Figure (2.3) which at baseline is at
approximately 19% level of sanitation adoption. Under a price subsidy the response
curve shifts up crossing the 45−degree line at a new equilibrium that is close to 84%
coverage under a 25% price subsidy , and 92% coverage under a 50% price subsidy
respectively. In this case the vertical upward shift would be attributable to the direct
effect of the subsidy while the subsequent movement along the response curve to the
higher equilibrium is generated by the social multiplier driven by the underlying
externalities. The social multiplier under a 50% subsidy is close to a factor of 5.6,
where in isolation a 50% subsidy generates a 13 percentage point increase in the
probability of adoption while in equilibrium generates a 73 percentage point increase
(73

13 ≈ 5.6). In contrast the social multiplier under an income transfer for the same
village is close to ≈ 1.

In Chapter (3), I focus solely on the price subsidy policy and examine the individual
household response due to a change in price that may explain the large changes in
response to a price subsidy intervention found in this analysis. In order to achieve
this, the objective is to quantify household response in terms of demand elasticities
and decompose the subsidy policy effect along four dimensions; specifically,
substitution v. income effects and direct v. indirect effects.I also compute a
household’s willingness-to-pay for a policy that subsidises sanitation adoption.

2.6 Conclusion

There is a large literature on identifying and estimating social multiplier effects in a
context where social interactions and/or externalities are relevant. This has included
topics of peer effects in classrooms, spillover in the workplace as well as a few
examples in healthcare. Most studies have focused on quantifying the magnitude and
nature of this effect and conclude by suggesting that policy interventions may seek to
exploit such underlying interaction to improve the efficiency of interventions. What
has not been clear is, how subsidy interventions affect household choice/demand
when externalities are found to be relevant ? In this chapter, I address this question in
the existing literature by providing a tractable framework to analyse potential impacts
of subsidy policies in the presence of externalities. I formulate a simple model to
investigate the impact of subsidy policy interventions on sanitation adoption choices
in the presence of demand externalities. The model estimates reveal a presence of a
positive externality associated with adoption of sanitation. Using the estimated
parameter values I simulate adoption behaviour at village level to generate
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probability response curves as a function of the average level of adoption at baseline
and under different subsidy monetary amounts. I show that, even under provision of a
relatively small subsidy amount (25% of cost of sanitation) activates the social
multiplier which results in large shifts in the level of sanitation coverage.

Without taking into account the underlying positive externality the ‘actual’ impact of
subsidy interventions are likely to be underestimated. In addition, if the policy maker
aims to achieve an aggregate level of adoption, it is perhaps possible to achieve this
target with more efficient allocation for example, smaller subsidy allocations per
household. Conversely, a fixed total subsidy allocation could be distributed amongst
many more beneficiary households in order to achieve a higher target level of
sanitation coverage. I further tackle the question of optimal policy choice in Chapter
4 to investigate the role of two key market failures: liquidity constraints and
externalities. The current model does not fully incorporate the fact that households
maybe potentially liquidity constrained in their adoption choice. Thus the large
response to price subsidies could be generated from potential relaxation of the
liquidity constraints, faced by households that are otherwise unable to borrow funds
to finance adoption. I explicitly model the presence of externalities and liquidity
constraints within a life-cycle structure where households face a dynamic trade-off
between adopting sanitation today or saving for future consumption under uncertain
income. The structure is used to address a debate among policy makers on the
appropriate choice between loans and price subsidies to increase sanitation coverage.
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2.7 Appendix for Chapter 2

2.7.1 Tables

Table 2.1: Descriptives

Mean min max
Panel A: Sample Size and Number of Groups (Villages)
Sample Size 1475
Nr. Of groups (Villages) 44
Average Nr. Of respondents per group 55.9 [37.01] 5 131

Panel B: Variables used in Estimation
Dependent Variable
Household has adopted sanitation 0.378 [0.485]

Individual HH Controls
Age of Household Head (years) 42.56 [13.22] 20 91
Forward Caste (yes=1) 0.134 [0.34]
Nr of years of Education 4.61 [4.73] 0 18
Nr. Of Female HH members 2.54 [1.29] 0 9
Dwelling owned by HH (yes=1) 0.889 [0.314]
Wealth Amount (Rs.) 57,112 [16,167] 12,660 93,142
Savings Amount (Rs.) 4,482 [5,073] 562 15,593

Group level Controls
Drainage Infrastructure in village (yes=1) 0.428 [0.495]
Community sanitation Units available (yes=1) 0.507 [0.501]
Price of Sanitation (Rs.) 8,628 [1,550] 5,712 11,425
Post office in village (yes=1) 0.353 [0.478]
Externality (Village Average)
Average sanitation prevalence excl HH(i) 0.378 [0.304] 0.027 0.933

Notes: Standard deviation in parentheses. IndianRs.1000≈ GBP10
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Table 2.2: Parameter Estimates

[1] [2]
Variable Coef. Std. Dev Coef. Std. Dev
Age of Household Head (yrs) 0.014 [0.006]** 0.014 [0.006]**
Forward Caste 0.760 [0.252]*** 0.766 [0.260]***
Education of Household Head (yrs) 0.099 [0.015]*** 0.104 [0.018]***
Nr. of Female Household members 0.130 [0.044]*** 0.131 [0.044]***
House Owned 0.165 [0.340] 0.108 [0.353]
Wealth Amount (per Rs. 1000) 0.013 [0.005]** 0.013 [0.006]**
Drainage Infrastructure in village 0.242 [0.096]** 0.338 [0.155]**
Community Sanitation available -0.007 [0.134] -0.049 [0.146]
Post office in village 0.011 [0.119] 0.032 [0.130]
Price of Sanitation (per Rs. 1000) -0.079 [0.041]** -0.082 [0.045]*
Average sanitation presence excl HH(i) 4.683 [0.305]*** 4.580 [0.369]***
Correction Factor (1) -1.698 [1.408]
Correction Factor (2) 16.061 [44.049]
Constant -3.617 [0.523] -3.589 [0.563]

Notes: Bootstrapped standard error estimates. * denotes signf at 0.10, ** at 0.05, *** at 0.01.
IndianRs.1000≈ GBP10

Table 2.3: Estimates: Marginal Effects

Variable Marg Effect Std. Dev Odds Coef. Std. Dev
Age of Household Head (yrs) 0.003 [0.001]** 1.014 [0.006]**
Forward Caste* 0.179 [0.063]*** 2.151 [0.558]***
Education of Household Head (yrs) 0.023 [0.004]*** 1.110 [0.020]***
Nr. of Female Household members 0.028 [0.010]*** 1.139 [0.050]***
House Owned* 0.023 [0.074] 1.114 [0.393]
HH Wealth Amount (per Rs.1000) 0.003 [0.001]** 1.014 [0.006]**
Drainage Infrastructure in village* 0.074 [0.034]** 1.401 [0.217]**
Community Sanitation available* -0.011 [0.006]* 0.952 [0.119]*
Post office in village* 0.007 [0.028] 1.032 [0.135]
Price of Sanitation (per Rs. 1000) -0.018 [0.010]* 0.922 [0.041]*
Average sanitation presence excl HH(i) 0.997 [0.073]*** 97.533 [35.954]***

Predicted probability of adoption 0.320
Notes: Bootstrapped standard error estimates. * denotes signf at 0.10, ** at 0.05, *** at 0.01.
IndianRs.1000≈ GBP10
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Table 2.4: Baseline Simulation by Village: Fraction of Household Adopters

Model Simulation
Village Ig γ̂ Estim. Data Equil.1 Equil.2 Pct Diff.
vill ID 1 52 4.58 0.81 0.89 -0.08
vill ID 2 47 4.58 0.00 0.05 -0.05
vill ID 3 118 4.58 0.14 0.22 -0.08
vill ID 4 95 4.58 0.26 0.20 0.06
vill ID 5 (Baretha) 27 4.58 0.19 0.17 0.02
vill ID 6 20 4.58 0.35 0.12 0.23
vill ID 7 11 4.58 0.18 0.11 0.07
vill ID 8 15 4.58 0.20 0.21 -0.01
vill ID 9 19 4.58 0.00 0.09 -0.09
vill ID 10 14 4.58 1.00 0.92 0.08
vill ID 11 5 4.58 0.20 0.05 0.15
vill ID 12 (Harirarm Ka
Pura)

18 4.58 0.00 0.10 -0.10

vill ID 13 34 4.58 0.71 0.19 0.52
vill ID14 33 4.58 0.45 0.43 0.71 0.02
vill ID 15 16 4.58 0.00 0.06 -0.06
vill ID 16 16 4.58 0.94 0.72 0.22
vill ID 17 32 4.58 0.50 0.24 0.26
vill ID 18 45 4.58 0.00 0.11 -0.11
vill ID 19 21 4.58 0.05 0.05 0.00
vill ID 20 8 4.58 0.63 0.22 0.61 0.41
vill ID 21 42 4.58 0.19 0.17 0.02
vill ID 22 24 4.58 0.00 0.07 -0.07
vill ID 23 16 4.58 0.69 0.26 0.43
vill ID 24 131 4.58 0.11 0.10 0.01
vill ID 25 5 4.58 0.20 0.12 0.08
vill ID 26 62 4.58 0.63 0.83 -0.20
vill ID 27 (Raipur Kala) 12 4.58 0.50 0.55 -0.05
vill ID 28 8 4.58 0.38 0.19 0.19
vill ID 29 68 4.58 0.66 0.16 0.50
vill ID 30 55 4.58 0.65 0.83 -0.18
vill ID 31 12 4.58 0.50 0.35 0.80 0.15
vill ID 32 28 4.58 0.46 0.48 -0.02
vill ID 33 47 4.58 0.89 0.88 0.01
vill ID 34 32 4.58 0.88 0.24 0.64
vill ID 35 38 4.58 0.05 0.11 -0.06
vill ID 36 14 4.58 0.71 0.74 -0.03
vill ID 37 46 4.58 0.15 0.06 0.09
vill ID 38 32 4.58 0.47 0.75 -0.28
vill ID 39 16 4.58 0.88 0.29 0.59
vill ID 40 36 4.58 0.08 0.09 -0.01
vill ID 41 10 4.58 1.00 0.80 0.20
vill ID 42 41 4.58 0.80 0.75 0.05
vill ID 43 7 4.58 0.71 0.87 -0.16
vill ID 44 (Utila) 47 4.58 0.30 0.35 -0.05

Notes: Column (1) & (2) village ID and village sample size, Column (3) social interaction parameter
estimate, Column (4) sanitation coverage observed in the data. Column (5) & (6) Model predicted
equilibrium sanitation level. Column (7) Percent difference between data and model predicted lowest
sanitation level in every village. 48



Table 2.5: Policy Simulation by Village: Unconditional (Income) Subsidy

Subsidy: 25% Cost of Sanitation Subsidy: 50% Cost of Sanitation
Village Data Equil.1 Equil.2 Equil.3 Equil.1 Equil.2 Equil.3
vill ID 1 0.81 0.90 0.92
vill ID 2 0.00 0.06 0.06
vill ID 3 0.14 0.27 0.61 0.38 0.76
vill ID 4 0.26 0.23 0.27
vill ID 5 (Baretha) 0.19 0.19 0.23
vill ID 6 0.35 0.13 0.14
vill ID 7 0.18 0.12 0.13
vill ID 8 0.20 0.77 0.81
vill ID 9 0.00 0.10 0.11
vill ID 10 1.00 0.93 0.94
vill ID 11 0.20 0.05 0.06
vill ID 12 (Harirarm Ka
Pura)

0.00 0.11 0.13

vill ID 13 0.71 0.21 0.24
vill ID14 0.45 0.78 0.81
vill ID 15 0.00 0.07 0.08
vill ID 16 0.94 0.76 0.80
vill ID 17 0.50 0.41 0.73 0.78
vill ID 18 0.00 0.12 0.14
vill ID 19 0.05 0.06 0.07
vill ID 20 0.63 0.28 0.64 0.78
vill ID 21 0.19 0.19 0.22
vill ID 22 0.00 0.07 0.08
vill ID 23 0.69 0.49 0.75
vill ID 24 0.11 0.10 0.11
vill ID 25 0.20 0.13 0.14
vill ID 26 0.63 0.85 0.87
vill ID 27 (Raipur Kala) 0.50 0.67 0.74
vill ID 28 0.38 0.21 0.64 0.36
vill ID 29 0.66 0.18 0.20
vill ID 30 0.65 0.85 0.87
vill ID 31 0.50 0.83 0.85
vill ID 32 0.46 0.76 0.80
vill ID 33 0.89 0.88 0.90
vill ID 34 0.88 0.50 0.76
vill ID 35 0.05 0.13 0.15
vill ID 36 0.71 0.76 0.80
vill ID 37 0.15 0.07 0.07
vill ID 38 0.47 0.79 0.82
vill ID 39 0.88 0.52 0.74
vill ID 40 0.08 0.10 0.11
vill ID 41 1.00 0.82 0.85
vill ID 42 0.80 0.78 0.81
vill ID 43 0.71 0.89 0.90
vill ID 44 (Utila) 0.30 0.62 0.74

Notes: Column (1) village ID and Column (2) sanitation coverage observed in the data. Column (3), (4),
(5) Model predicted equilibrium sanitation level under 25% (cost of sanitation) unconditional subsidy.
Column (6), (7), (8) Model predicted equilibrium sanitation level under 50% (cost of sanitation)
unconditional subsidy. 49



Table 2.6: Policy Simulation by Village: Conditional (Price) Subsidy

Subsidy: 25% Cost of Sanitation Subsidy: 50% Cost of Sanitation
Village Data Equil.1 Equil.2 Equil.3 Equil.1 Equil.2 Equil.3
vill ID 1 0.81 0.94 0.96
vill ID 2 0.00 0.10 0.19 0.68
vill ID 3 0.14 0.88 0.93
vill ID 4 0.26 0.83 0.91
vill ID 5 (Baretha) 0.19 0.84 0.92
vill ID 6 0.35 0.28 0.61 0.88
vill ID 7 0.18 0.25 0.56 0.70 0.90
vill ID 8 0.20 0.89 0.94
vill ID 9 0.00 0.18 0.84
vill ID 10 1.00 0.96 0.97
vill ID 11 0.20 0.09 0.17 0.67
vill ID 12 (Harirarm Ka
Pura)

0.00 0.23 0.63 0.89

vill ID 13 0.71 0.82 0.91
vill ID14 0.45 0.89 0.94
vill ID 15 0.00 0.12 0.28 0.49 0.75
vill ID 16 0.94 0.88 0.93
vill ID 17 0.50 0.88 0.93
vill ID 18 0.00 0.24 0.88
vill ID 19 0.05 0.10 0.21 0.58 0.73
vill ID 20 0.63 0.88 0.93
vill ID 21 0.19 0.81 0.91
vill ID 22 0.00 0.12 0.38 0.78
vill ID 23 0.69 0.87 0.93
vill ID 24 0.11 0.17 0.83
vill ID 25 0.20 0.37 0.80 0.91
vill ID 26 0.63 0.91 0.95
vill ID 27 (Raipur Kala) 0.50 0.85 0.92
vill ID 28 0.38 0.88 0.93
vill ID 29 0.66 0.79 0.90
vill ID 30 0.65 0.92 0.95
vill ID 31 0.50 0.91 0.94
vill ID 32 0.46 0.89 0.93
vill ID 33 0.89 0.93 0.96
vill ID 34 0.88 0.87 0.92
vill ID 35 0.05 0.27 0.87
vill ID 36 0.71 0.89 0.94
vill ID 37 0.15 0.11 0.27 0.47 0.76
vill ID 38 0.47 0.89 0.93
vill ID 39 0.88 0.87 0.92
vill ID 40 0.08 0.17 0.83
vill ID 41 1.00 0.91 0.94
vill ID 42 0.80 0.89 0.93
vill ID 43 0.71 0.93 0.96
vill ID 44 (Utila) 0.30 0.86 0.92

Notes: Column (1) village ID and Column (2) sanitation coverage observed in the data. Column (3), (4),
(5) Model predicted equilibrium sanitation level under 25% (cost of sanitation) price subsidy. Column
(6), (7), (8) Model predicted equilibrium sanitation level under 50% (cost of sanitation) price subsidy.
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2.7.2 Figures

Baseline and Policy Simulations

Figure 2.1: Baseline Simulation: Probabilistic response curves
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Unconditional (Income) Subsidy: (a) Baseline [Blue] (b) 25% Cost of Sanitation
[Green] & (c) 50% Cost of Sanitation [Red]

Figure 2.2: Unconditional Subsidy: Probabilistic response curves
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Conditional (Price) Subsidy: (a) Baseline [Blue] (b) 25% Cost of Sanitation
[Green] & (c) 50% Cost of Sanitation [Red]

Figure 2.3: Conditional Subsidy: Probabilistic response curves
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2.7.3 Estimation

2.7.3.1 Cost of Sanitation

The information used to construct a measure for the cost of sanitation was collected
independently of the household survey.29 The price measure is based on the cost of
building the most common type of sanitation facility in the local region i.e., ’Twin
Pit Pour Flush’ (TPPF) unit. The price measure comprises of two components: the
total cost of raw material and the cost of labour required to build the facility itself.
The price measure collected at the group level varies across the villages in both cost
components. All households within a village face the same price. Following was
the formula applied to collect the necessary information based on local knowledge
provided by the local municipality authorities..

Price variation across villages g:

• wageg : Approximate daily (informal) wage rate which varies across villages.

• days: Approximate time to construct a ‘Twin Pit Pour Flush’ (TPPF) variation
between 3− 4 days. TPPF is the standard and most popular sanitation design
unit implemented by the government under the Total Sanitation Campaign
(T.S.C)

• costg (rawmaterials): Approximate cost of raw material (cost of five principle
materials used in the construction of a sanitation unit) which include — Bricks,
Mortar, Tiles, Ceramic fixtures & Tin sheets.

priceg = wageg ∗days+ costg (rawmaterials)∗quantity(kilogram/piece/unit)

(2.7.1)

The main source of variation arises from the cost of raw materials which varies
across villages and comprises close to 70% of the total cost of sanitation incurred. A
point to note here is that the raw materials used in sanitation are widely produced and
demanded in the region on a large scale for other domestic and commercial
construction. The demand for these products for the purpose of building sanitation
constitutes a very small proportion of the overall demand.

29Data on the cost measure was collected in July/August 2012 across all villages. I received helpful
advice and assistance from the Gwalior Nagar Nigam Seva municipal authorities in the collection
process.
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2.7.3.2 Measurement Error

Deriving Small Error Variance Approximations to Probability Distributions

Defining the outcome variable di as a binary choice of adoption of sanitation and
covariates for household i belonging to village g as χig =

(
xig,zg,Dg

)
where variable

Dg represents the average choice of all other households excluding household i

belonging to group g.

The joint density function is given by:

gdi,χig(di,χig) = gdi|χig(di | χig)gχig(χig)

However, data on Dg is not observable, instead realizations on a variate dg are
observed:

dg = Dg +σiguig (2.7.2)

The variable uig is assumed to be continuously distributed independently of di

(outcome) and Dg (error free covariate) with mean zero and variance one and
correlations corr(uig,u jg) = ρi j(g) and joint density function gu(u). Realizations of
σiguig, Dg and dg correspond to measurement error, error free covariate and error
contaminated covariate, respectively.

For exposition purposes, a simplification in notation is adopted - consider a case where
the only covariate is Dg. Under these assumptions the joint density of d, D, d is given
by

gd,D,d(d, D, d) = gd|D(d | D)gD(D)

Using Equation (2.7.2)

gd,D,d(d, D, d) = gd|D(d | d−σu)gD(d−σu)gu(u) (2.7.3)

where σ = diag(σi) and D and d are column vectors. The joint density in Equation
(2.7.3) and its associated conditional and marginal densities are approximated by
taking a Taylor series approximation30 around the point σ = 0, retaining the terms up
to the second order in the σ′is

30The Taylor series of a function f (x) that is infinitely differentiable in a neighbourhood of a real or

complex number a is given by the power series f (a)+ f (1)(a)
1! (x−a)+ f (2)(a)

2! (x−a)2+ f (3)(a)
3! (x−a)3+

....
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gd,D,d(d,D,d) = gu(u)[gd|D(d|d)gD(d)−σiui{gd|D(d|d)g(1)D (d)+g(1)d|D(d|d)gD(d)}

+ 1
2σiσ juiu j{gd|D(d|d)g(2)D (d)+2g(1)d|D(d|d)g(1)D (d)+g(2)d|D(d|d)gD(d)}]

+ o(σ2)
(2.7.4)

Given E(u) = 0 the terms multiplying the linear terms in the ui disappear and the joint
density can be simplified to:

gd,d(d,d)= gd|D(d|d)gD(d)+
1
2

Σ

{
gd|D(d|d)g(2)D (d)+2g(1)d|D(d|d)g(1)D (d)+g(2)d|D(d|d)gD(d)

}
+o(Σ)

(2.7.5)

While the marginal density is given by the approximation:

gd(d) = gD(d)+
1
2

Σg(2)D (d)+o(Σ) (2.7.6)

The corresponding approximation to the conditional density in Equation (2.7.3) is
given by

gd|d(d|d) = gd|D(d|d)+
1
2

Σ

{
2g(1)d|D(d|d)G

(1)
D (d)+g(2)d|D(d|d)

}
+o(Σ) (2.7.7)

Using Equation (2.7.7) it is possible to derive the approximation to the mean
regression function highlighted in section (2.4.2).

Ed|d{ f (d)|d}=Ed|D{ f (d)|d}+E(1)
d|D{ f (d)|d}ΣG(1)

D (d)+
1
2

tr
[
ΣE(2)

d|D{ f (d)|d}
]
+o(σ2)

(2.7.8)

The expression given by Equation (2.7.8) is studied in detail in Chesher (1991). It
suffices to note the following

1. The first term on the right hand side of Equation (2.7.8) is just the regression
function of f (d) given D evaluated at d. While the second and the third terms
give the first order effects of measurement error on the form of the regression
function.

2. The second term on the right hand side of Equation (2.7.8) is what generally
produces the attenuation effect of measurement error. The behaviour of this
term depends crucially on the first derivatives of the logarithm of the density of
the error free covariates.
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3. The third term on the right hand side of Equation(2.7.8) vanishes when the
regression of f (d) on D is linear. In other cases it tends to reduce the curvature
of the non-linear regressions as conditioning moves from D to d. This term
does not depend upon the distribution of the error free covariate.

The small variance approximation method above is used to produce an
approximation to the error contaminated regression which, when the error free
covariates and the measurement error are independently distributed, is invariant with
respect to the distribution of measurement error, depending only on an estimable
functional of the marginal density of the error contaminated covariates, namely the
derivatives of their log density and the functional form of the error free regression
denoted by G(1)

D (d).

The first order effect of measurement error on the level of a linear regression function
is smaller near the mode of the distribution of the error free variate and the effect on
its slope is small where the curvature of the log density of the error free variate is
slight. There is an additional non linear effect in non linear regression models, raising
the error contaminated regression function when the error free regression function is
convex and lowering it where it is concave.

2.7.3.3 Construction of G(1)
d
(dg)

1. Regress dg = ϕwig +υig where wig are all covariates except dg and υig is resid-
ual/error

2. Estimate ϕ̂

3. Construct fitted residuals υ̂ig = dg− ϕ̂
′
wig where f (υ̂ig)≈ f (dg|xig,zg)

31

4. Construct kernel density for f̂ (υ̂ig) =
1

Nh ∑
N
i=1 K

(
υ̂ig−υ̂0g

h

)
32

31Alternatively: Plot υ̂ig and calculate for every point a and a small distance 4-(
f (a+4)− f (a)

4

)[
1(

f (a+4)+ f (a)
2

)
]

, Note, this method is problematic at the tails of the distribution.

32where N is the total sample size and h is the smoothing parameter or bandwidth, Note: the density
and its derivative would be sensitive to the bandwidth specification h, see appendix for results that take
bandwidth sensitivity into account.
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where

∂ log f (dg|wig)

∂dg
=

1
f (dg|wig)

.
∂ f (dg|wig)

∂dg
=

[
1

f̂ (υ̂ig)

](
∂ f̂ (υ̂ig)

∂υ̂ig

)
(2.7.9)

The potential disadvantage of this method that G(1)
d
(dg) is essentially a ratio of kernel

estimators and problems may arise when the denominator kernel estimator is close to
zero. This is more likely to occur in the tails of the distribution.

Figure 2.4: Density Plot: υ̂ig

Notes: Kernel= Gaussian, bwidth=0.0262
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Figure 2.5: Impact of Measurement Error on Response Probability

Notes: Policy simulations are performed on a counterfactual village where the initial sanitation
coverage is at 20%. Blue Line (Dashed): Response probability without correction. Red Line (Solid):
Response probability with measurement error correction.
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Chapter 3

Welfare Analysis with Discrete
Choice: An Ex-ante Evaluation of a
Sanitation Intervention

3.1 Introduction

In this chapter, I quantify a household’s willingness-to-pay for a policy that
subsidises the cost of sanitation adoption, by computing Compensating Variation
(CV ) and Equivalent Variation (EV ) welfare measures. To compute welfare I employ
the notion of the expenditure function and compensated demand in a discrete choice
setting. The structure is then applied to the estimated model and results from Chapter
(2) to perform welfare analysis of subsidy policies under different hypothetical
interventions with externalities.

Counterfactual policy evaluations are performed by computing demand elasticities
for different subsidy policies using the estimated model from Chapter 2. With
externalities, the impact of a price subsidy on a household’s behaviour can be
decomposed into four effects. Firstly, the price subsidy not only changes the relative
price of the subsidised good but also changes (increases) the “effective” budget
available for consumption. In addition, the subsidy policy has a direct effect on the
recipient household as well as an indirect effect driven by the underlying externality.
Thus in order to study the demand response to a policy, I first disentangle the
substitution or compensated effect of the subsidy from the income effect and further
decompose into the direct and indirect effect of the policy. The analysis depends on
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being able to characterize the compensated or Hicksian choice probability which is
also key for computing Compensating and Equivalent Variation measures.1

Under a random utility framework it follows that the expenditure function2 would
have a random component and a corresponding distribution. In this case the standard
Slutsky equation per se does not exist and therefore the uncompensated (Marshallian)
choice probability cannot be used to back out the compensated (Hicksian) effect. The
theoretical framework developed by Dagsvik & Karlstrom (2005) first outlined the
random expenditure function and its distribution. In this chapter, I adapt their
theoretical framework to derive compensated choice probabilities and further extend
the analysis to account for additional feedback effects due to the presence of
externalities. In addition, the analytical characterization of compensated demand
provides a tool to measure welfare through the computation of Compensating
Variation (CV ), Equivalent Variation (EV ) and corresponding Deadweight Loss
(DWL). This contribution, provides a formalization to the structural evaluation of the
impact of subsidy interventions in the presence of externalities.

I find that the provision of a relatively small price subsidy, 25% of the cost, generates
substitution effects that are significantly larger than the income effects. On average, a
minimum of 58% and a maximum of 83% of the total effect of a subsidy is attributed to
the substitution effect. In addition, a substantial amount of this substitution or ‘pure ’
price effect is found to be propagated through the indirect channel, from a minimum of
75% to a maximum of 90%. Under positive externalities, the socially optimal level of
adoption is larger than the privately chosen equilibrium adoption level. The presence
of externalities implies a larger welfare gain computed in terms of both Compensating
and Equivalent Variation. Lastly, in the presence of a positive externality the provision
of a price subsidy generates a Net Gain (NetG) instead of a Deadweight Loss (DWL)
which is a gain realised by each household as the village/society shifts towards a
socially optimal level of adoption.

The chapter is organised as follows, I first discuss the related literature in Section
3.2. Followed by the theoretical exposition of the problem in Section 3.3, parts of
which follow from Dagsvik & Karlstrom (2005). Section 3.4 discusses the analytical
derivation of the main components to compute policy effects and extends the results to
account for spillover effects generated by interdependent choice. Section 3.5 provides

1The area under the compensated or Hicksian demand curve for a change in price with utility
held fixed at original level, quantifies the Compensating Variation (CV ). The Compensating variation
quantifies the maximum amount a household/agent is willing-to-pay of the price change (policy).

2The indirect utility function which gives the maximal attainable utility given constraints is also the
inverse of the Expenditure function. It is thus possible to derive the expenditure function by inverting
the function, or in this case the inverse distribution generated under the random indirect utility.
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counterfactual policy results for the sanitation application and Section 3.6 computes
welfare by calculating a household’s willingness-to-pay for sanitation. Section 3.7
concludes with a discussion on the policy implications resulting from the analysis.
All relevant Tables and Figures are provided in the chapter appendix in Section 3.8.

3.2 Related Literature

There exists a large literature on the identification and estimation of welfare
measures using individual level data for continuous and discrete choice. Hausman’s
(1981) paper formulated the nonparametric identification and parametric estimation
of exact welfare effects of a price change for a good consumed in continuous
quantities. Hausman & Newey (1995) extended the analyses by formulating
semiparametric estimation of the welfare effects and developing the corresponding
theory of statistical inference. However, these methods cannot directly be
implemented in discrete choice settings where the effect of the price change on
individual utilities depends in a fundamental way on the discrete nature of the good
and the unobserved taste heterogeneity.

Though the main point of reference of this chapter is Dagsvik & Karlstrom (2005)
there are many earlier and subsequent papers on the topic that form the existing
literature for welfare analysis under discrete choice. Domencich & McFadden (1975)
first tackled the welfare measurement problem in the discrete choice setting under the
assumption that utility is quasi-linear i.e., additively separable in income. Under this
strong assumption that the conditional indirect utility is linear in income, there are no
income effects and the Marshallian and Hicksian measures are identical. In
subsequent work, Small & Rosen (1981) investigated the measurement of welfare
effects of price and quality change for discrete choice with allowance for additive
scalar heterogeneity. However in the empirical formulation Small & Rosen (1981)
assume that the income effects generated by price changes are infinitesimally small3

which then allows them to equate the Marshallian and Hicksian measures. With a
utility formulation that is non linear in income, obtaining an analytic formula for
welfare distributions proved to be a challenge. An alternative approach in the
literature proposed different approximations to characterize the welfare distribution.
For example, McFadden (1999a) proposed a Monte Carlo simulator for
approximating Compensating Variation (CV ) in random utility models which would

3Under the assumption that the resulting budget share for an agent from the consumption of a
discrete good is sufficiently small.
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converge to the true distribution of the Compensating Variation (CV ). Using this
simulation method, Herriges and Kling (1999) investigated the empirical
consequences of non linear income effects based on a particular empirical
application.

More recently, Dagsvik and Karlstrom (2005) allowed for utility to be non linear in
income. They also incorporated additively separable taste heterogeneity that is
assumed to follow a known parametric distribution for identifying and estimating
welfare effects. In a follow up paper Dagsvik, Strom and Locatelli (2013)4 employ
the structure from Dagsvik and Karlstrom (2005) to quantify income and substitution
effects of labour supply under wage rate changes.

The most recent contribution to the literature include Bhattacharya (2015) which
establishes nonparametric point-identification of the distribution of the welfare
effects of price change in a discrete choice setting, incorporating unobservable
heterogeneity in the utility function and assuming no knowledge of the dimension
and distribution of the unobservables. The approach undertaken in this chapter
significantly differs from Bhattacharya (2015). Specifically, under nonparametric
welfare analysis the environment change under a proposed policy intervention, such
as different price subsidies would need to be observed in the data. For example, the
econometrician would need to observe demand under a price that would equate to
being the ‘subsidised equivalent’ of the original price. In contrast, the approach taken
in this chapter as well as by Dagsvik and Karlstrom (2005), does not require for the
policy effect to lie within the observed data and thus can be viewed as an
extrapolative approach. A nonparametric approach though more flexible on model
specification does make demands on observed data. While a more structural
approach to welfare reduces data requirement by trading off against additional
assumptions on the demand specification, for e.g., additive separability of taste
shocks. I would argue that the optimal choice between the two approaches should be
made by comparing the gains and losses given the available data at hand for each
application.

The existing literature has so far focused on welfare analysis in the context of a
single agent/individual framework. One of the main contributions of this chapter to
the existing literature is the extension of the framework to a context where household
choices are strategic or interdependent. Though the structure does employ specific
parametric assumptions to preserve empirical tractability, that are discussed in detail.

4The research that forms this chapter was independently developed in a timeline parallel with
Dagsvik, Strom and Locatelli (2013)
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The gains of having a simple approach is an easily applicable tool to perform welfare
analysis in most applied problems which study spillover, peer effects and
externalities within a discrete choice setting.

3.3 Theoretical Framework

In this section, I first provide a brief exposition of the theoretical framework described
in Dagsvik and Karlstrom (2005). This is followed by a description of the approach
I take to make the structure empirically tractable in order to compute substitution and
income effects. Lastly, I extend the existing theoretical framework to account for the
presence of externalities and to further disentangle the direct and indirect effect of
subsidy policies in Section (3.4).

The intuition behind the theory discussed below is as follows, under the random
utility model (RUM) framework the standard Slutsky Equation per se does not exist.
In which case, the uncompensated (Marshallian) choice probabilities can not be used
to back out the corresponding compensated (Hicksian) probability using the Slutsky
Equation. Instead, the compensated demand probability is derived from the random
expenditure function and its distribution. The joint distribution of expenditure,
ex-ante and ex-post policy change choices are used to derive an analytical expression
for the compensated (Hicksian) choice probability. Another useful consequence of
characterizing the Hicksian choice probability is the ability to quantify standard
welfare measures such as Compensating Variation (CV) and Equivalent Variation
(EV) as well as the resulting Net Gain that arises from the implementing/providing a
subsidy policy.5

Using the model outlined in Chapter 2 section (2.3), recall that a household’s
conditional indirect utility from choosing option j where D = { j,k} is assumed to
have the form:

Vj(y, p j,wig,ε j) = v j(y, p j,wig)+ ε j (3.3.1)

while the unconditional indirect utility is given by:

VD(y, p j,wig,ε j) = max
r∈D

(vr(y, pr,wig)+ εr) (3.3.2)

5 such welfare computations are further discussed in Section (3.6)
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For exposition purposes, in equations (3.3.1) and (3.3.2), component y and p j which
denote household wealth and price of sanitation are explicitly represented in the
indirect utility function, and wig denotes all other household and good (sanitation)
characteristics. Just as before the utility function is additively separable in its
deterministic v(y, p j,wig) and random utility components ε j. If the ε′js are distributed
i.i.d Type 1 Extreme value for each alternative. The Marshallian (uncompensated)
choice probability takes a familiar form:

PD( j, p,y,wig) = P
(

Vj = max
r∈D

Vr

)
=

exp(v j(p j,y,wig))

∑
r∈D

exp(vr(pr,y,wig))
(3.3.3)

Dagsvik and Karlstrom (2005) demonstrate that under standard assumptions on the
indirect utility function VD(y, p j,wig,ε j) the function can be inverted to derive an
expenditure function YD(p,u)

u =VD(p,YD(p,u)) (3.3.4)

Appendix (3.8.1) provides a proof for the existence of the expenditure function and
characterizes its distribution. Using the result in Equation (3.8.5) it is possible to
derive the compensated choice probability. The compensated choice probability, given
that utility is held constant, is given by:

Ph
D( j, p,u) = P

(
v j(p j,YD(p,u))+ ε j = max

r∈D
(vr(pr,YD(p,u))+ εr)

)
(3.3.5)

where Ph
D( j, p,u) is the probability of choosing j given that the utility level is held

constant and equal to u.

3.4 Implementation and Extension

In this section, I focus on the conditional price subsidy simulations results from
Chapter 2 section (2.5.3) and attempt to answer: What impact do subsidy
interventions have on household demand for sanitation in the presence of
externalities? In order to capture the effect on demand, I compute demand elasticities
and decompose the effect of the subsidy along four separate dimensions. First, I
divide the total subsidy effect into a substitution and income effect. The provision of
the subsidy changes (decreases) the effective price of sanitation that a household
faces. The subsequent change in demand is attributable to:
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1. Substitution Effect: The relative price of sanitation drops compared to the
price of other consumption which results in an increase (or decrease) in the
probability of adoption of sanitation depending on whether households attribute
sanitation to be a normal (or inferior) good.

2. Income Effect: The decrease in price generates an increase in available income
(wealth) that a household can use to consume more of both sanitation and other
consumption.

The computation of such substitution and income effects is not standard in the context
of a discrete choice as it requires characterizing the compensated or Hicksian demand.
In the section below, I formulate and discuss a structure that allows me to analytically
characterize the Hicksian demand and thus separate the two effects in a discrete choice
random utility model. Second, I further decompose the substitution and income effects
generated by the subsidy into its direct and indirect components. In the presence of
externalities, a subsidy intervention generates two additional effects:

1. Direct Effect: A primary effect on household demand, characterized by an
individual recipient household’s isolated response to a subsidy.

2. Indirect Effect: A secondary ‘feedback’ effect generated by the dependence of
a household’s adoption choice on the adoption behaviour of other households,
who in equilibrium also respond to the subsidy.

3.4.1 Compensated Choice Probabilities

I now discuss how I make Equation (3.3.5) empirically tractable in order to compute
compensated demand elasticities. The key here is to divide Equation (3.3.5) which
represents a marginal probability into its joint probability components. In the case of
a binary discrete choice the marginal probability in Equation (3.3.5) comprises of two
joint transitional probabilities:

Ph
D( j, p,u) = Ph

D( j, j, p,u)+Ph
D(k, j, p,u) (3.4.1)

where Ph
D( j, j, p,u) is the probability of choosing choice alternative j both ex-ante and

ex-post price change and Ph
D(k, j, p,u) denotes the transitional probability of choosing
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alternative k ex-ante while moving to alternative j ex-post policy intervention. To
characterize each of the joint transitional choice probabilities described in Equation
(3.4.1), a counterfactual two period setting is considered. In the first period (ex-ante)
the price and wealth are (pB,yB). In the second (ex-post) period the price and wealth
are given by (pA,yA). Given that the analysis focuses on providing a price subsidy
this implies, pA < pB. As above, the present analysis assumes that the random terms
εi(di) remain unchanged in the ex-post and ex-ante period of intervention.6

The intuition behind the steps of derivation is akin to driving a probabilistic version
of Shephard’s Lemma.7 Unlike standard consumer theory, both the indirect utility
and expenditure functions are instead distributions that can be defined over the joint
ex-ante and ex-post choice. To compute each joint transitional probability requires
computing an integral over the expenditure distribution. The bounds of the integral
are derived by defining the amount of monetary compensation required to maintain
the same level of utility ex-ante and ex-post.

STEP 1: Characterize the Joint Distribution

If Ph(k, j) denotes the joint compensated probability of choosing alternative k ex-ante
and alternative j ex-post, under the condition that the respective utility levels of the
chosen alternatives before and after the policy intervention are the same. The joint
distribution is defined by:

Ph(k, j) = P

 V B
j ≤V B

k︸ ︷︷ ︸
ex−ante(pB,yB)

,V A
k (ϒ)≤V A

j (ϒ)︸ ︷︷ ︸
ex−post (pA,yA)

, maxrV B
r = maxrV A

r (ϒ)

 (3.4.2)

Since the expenditure is a distribution, the amount of income compensation ϒ required
to maintain the original utility level is stochastic and can take a set of values over a
well defined upper and lower limit.

6One particular scenario not explicitly covered in this chapter is with regards to welfare evaluation
in a ’dynamic’ context i.e., when some time has elapsed from when the policy is introduced. In this
case tastes may change from their initial values. Dagsvik (2002) considers discrete choice behaviour
in this setting by formulating an explicit representation of the dependence between the error terms at
two points of time from an inter temporal version of the IIA (Independence of Irrelevant Alternatives)
assumption. This extended version of IIA accommodates serially dependent error terms due to what
can be interpreted as taste persistence.

7Shephard’s Lemma: ∂e(p,u)
∂ p j

= h j (p,u), the derivative of the expenditure function with respect to
price of relevant good equals the compensated demand for that good
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STEP 2: Bounds for Stochastic Compensation ϒ

The bounds for the stochastic compensation ϒ are derived by defining yr as a
deterministic amount of ex-post income that equates the ex-ante and ex-post utility
for alternative r = j or k.

v j(pB
j ,y

B) = v j(pA
j ,y j) (3.4.3)

In Equation (3.4.3) y j is defined as the deterministic ex-post income that ensures that
ex-ante and ex-post utility of alternative j are held equal. Using these deterministic
income amounts its possible to derive upper and lower bounds for the stochastic
compensation ϒ. These bounds provide upper and lower limits of the integral over
which the joint distribution defined in Equation (3.4.2) is integrated.

Bounds: Joint Probability Ph(k, j)

For k to be the most preferred alternative ex-ante and j to be the most preferred
alternative ex-post:

vk(pB
k ,y

B)+ εk ≥ v j(pB
j ,y

B)+ ε j

v j(pA
j ,ϒ)+ ε j = vk(pB

k ,y
B)+ εk ≥ v j(pA

j ,y j)+ ε j

⇒ ϒ≥ y j

Similarly for j to be the most preferred alternative ex-post

v j(pA
j ,ϒ)+ ε j ≥ vk(pA

k ,ϒ)+ εk

vk(pB
k ,y

B)+ εk ≥ vk(pA
k ,ϒ)+ εk

vk(pA
k ,yk)+ εk ≥ vk(pA

k ,ϒ)+ εk

⇒ ϒ≤ yk

Hence for transitions from k to j to take place holding constant indirect utility level it
must be the case that:

y j ≤ ϒ≤ yk (3.4.4)
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Conversely, if j and k are distinct choices and yk ≤ y j

Ph(k, j) = 0

Using Equation (3.4.2) and (3.4.4) the transition probability of switching is denoted
by:

Ph(k, j) =

ykˆ

y j

exp(vk(pB
k ,y

B))exp(v j(pA
j ,y))v

′
j(pA

j ,y)dy

{∑m
r=1 exp(max(vr(pB

r ,yB),vr(pr,y)))}2 (3.4.5)

Ph(k, j) = exp(vk(pB
k ,y

B))

ykˆ

y j

exp(v j(pA
j ,y))v

′
j(pA

j ,y)dy

{∑m
r=1 exp(max(vr(pB

r ,yB),vr(pr,y)))}2

Bounds: Joint Probability Ph( j, j)

Similarly for Ph( j, j), for j to be the most preferred alternative ex-ante and ex-post:

v j(pB
j ,y

B)+ ε j = v j(pA
j ,ϒ)+ ε j

v j(pA
j ,y j)+ ε j = v j(pA

j ,ϒ)+ ε j

⇒ ϒ = y j

If the ex-post choice is equal to the ex-ante choice the stochastic compensation amount
is instead defined as a deterministic amount.

ϒ = y j (3.4.6)

Using Equation (3.4.2) and (3.4.6) the joint probability of remaining in the same
alternative is denoted by:

Ph( j, j) =
exp(v j(pB

j ,y
B))

∑
m
r=1 exp

(
max

(
vr(pB

r ,yB),vr(pA
r ,y j)

)) (3.4.7)

Ph( j, j) =
exp(v j(pB

j ,y
B))

v j(pB
j ,yB)+∑

m
r 6= j exp

(
max

(
vr(pB

r ,yB),vr(pA
r ,y j)

))
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The marginal compensated choice probability is given by the sum of the two joint
probabilities defined above:

Ph
D( j, p,u) =

exp(v j(pB
j ,y

B))

v j(pB
j ,y

B)+∑
m
r 6= j exp(max(vr(pB

r ,yB),vr(pA
r ,y j)))

+exp(vk(pB
k ,y

B))
´ yk

y j

exp(v j(pA
j ,y))v

′
j(pA

j ,y)dy

{∑
m
r=1 exp(max(vr(pB

r ,yB),vr(pr,y)))}2

(3.4.8)

It is possible to separate the substitution and income effects of a subsidy policy using
the expressions for both compensated (Hicksian) and uncompensated (Marshallian)
choice probability in Equation (3.4.8) and Equation (3.3.3) respectively.

3.4.2 Direct and Indirect Policy Effect

STEP 3: Incorporate Externality

In the last step, I modify the compensated choice probability derived in Equation
(3.4.8) to take into account the additional impact of price propagated through the
externality channel.8 The ‘direct effect’ isolates the ‘pure price’ effect of a subsidy
on a household’s choice probability. While the indirect effect quantifies the
secondary impact of price through the externality channel. If externalities do affect
individual household decisions, the computation of the overall substitution effect for
a price change must distinguish between the ‘pure price’ and consequent ‘feedback
price’ effect. Without this distinction, the direct price effect of the policy would be
overestimated which could result in an inefficient and expensive allocation of
subsidies.

Ph(u, p,d(p)) = Pm(Y (u, p,d(p)), p,d(p)) (3.4.9)

8A similar modification also follows for the uncompensated (Marshallian) choice probability
derived in Equation (3.3.3)
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Unpacking the direct and indirect effect of a change in price on both sides of Equation
(3.4.9) yields:

∂Pm(p,d(p),Y (u, p,d(p)))
∂p j

=

A′︷︸︸︷
∂Pm

∂p j
+

B′︷ ︸︸ ︷
∂Pm

∂d(p)
.

D′︷ ︸︸ ︷
∂d

m
(p)

∂p j︸ ︷︷ ︸
C′

+
∂Pm

∂y


A
′′︷︸︸︷

∂Y
∂p j

+

B
′′︷ ︸︸ ︷

∂Y
∂d(p)

.
∂d

m
(p)

∂p j


(3.4.10)

from the R.H.S, where A
′

denotes the direct impact of the price on household
uncompensated choice, while B

′
denotes the indirect effect as a result of interactions

within the group. The total uncompensated (Marshallian) price effect, denoted by C
′
,

would comprise of this additional feedback effect. Similarly, the L.H.S of Equation
(3.4.9) yields:

∂Ph(u, p,d(p))
∂p j

=

A︷︸︸︷
∂Ph

∂p j
+

B︷ ︸︸ ︷
∂Ph

∂d(p)
.

D︷ ︸︸ ︷
∂d

h
(p)

∂p j︸ ︷︷ ︸
C

(3.4.11)

where A, B and C constitute the direct, indirect and total compensated response to a
price change, which are different from the uncompensated counterparts described in
Equation (3.4.10) due to the additional non zero income effect. The computation of
object A follows directly from the analytical expressions for the Hicksian choice
probabilities derived in Equation (3.4.8). However, in order to compute the indirect
effect B and B

′
, the equilibrium condition for each village g has to be taken into

account to quantify term D and D
′
respectively. Using the village level equilibrium

condition9 it is possible to back out term D denoted by:

∂d(p)
∂pg

=

[
1
Ig

∑
Ig
i=1 Λ′(di = 1|xig,zg, pg,d(pg),θ).δp

]
[
1− 1

Ig
∑

Ig
i=1 Λ′(di = 1|xig,zg, pg,d(pg),θ).γ

]
where δp and γ denote the parameter value for price and externality term
respectively.10 Each household i within a given village g, will face the same ∂d(p)

∂pg

while this effect will differ across different villages g. Also ∂d(p)
∂pg

will differ

9For derivation see Appendix (3.8.2)
10Note: Λ

′
(x) = ∂Λ(x)

∂x
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depending on whether Λ(di = 1|xig,zg, pg,d(pg),θ) denotes a compensated or an
uncompensated probability function.

3.5 Application: Sanitation Elasticity Estimates

I use the analytical results derived in Equation (3.4.8) and (3.4.11) to compute
demand elasticity estimates for each household affected by the counterfactual policy
intervention.

The elasticity estimates are provided in Table (3.1) for a representative household
at different points of the wealth and price distribution. For a given price level, the
uncompensated and compensated price elasticity are found to be negative with small
positive income effects. The estimates reveal that the uncompensated elasticity is
larger than the compensated elasticity for a change in price. This fits in with the
predictions from a standard demand model where the Slutsky equation implies that
substitution and income effects for a change in price of a ‘normal’ good move in
the same direction. Both the uncompensated and compensated own price elasticities
tend to increase with the price level and decrease with individual wealth level for a
representative household.

The elasticity measures also indicate that both uncompensated and compensated
price elasticity measures vary considerably between households. Thus, heterogeneity
seems to be an important issue in determining household sanitation choice. Table
(3.2) provides elasticity measures under different education levels. For a fixed level
of wealth and price demand becomes inelastic for higher levels of education.

Table (3.3) provides the uncompensated and compensated elasticities for a
representative household further separated into the direct and indirect effects from
the price change respectively. There are two key takeaways from Table (3.3). First,
the total compensated and uncompensated response as measured by demand
elasticities are significantly larger once the indirect effect of the policy, driven by the
underlying externalities, is taken into account. Second, total uncompensated effect is
primarily determined by the indirect effect from the substitution channel. The
proportion of the impact of subsidy attributable to the indirect effect varies over the
distribution of price and wealth. However, at the lower limit it constitutes 41% of the
total effect to an upper limit of 86%. This effect is better visualised in Figure (3.1)
that plots the absolute value of the elasticities against the average prevalence of
sanitation on the horizontal axis for both uncompensated (Marshallian) and
compensated (Hicksian) elasticities. The curve for the uncompensated effect lies
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above the compensated, the positive distance between the two quantifying the
remaining income effect of the policy intervention. The relative magnitude of the
income effect is significantly smaller than the substitution effect.

The solid black line plots the total effect while the blue and the red plots depict the
direct and indirect effect respectively. Though the inverted ‘U’ shape is driven by the
functional form assumptions of the model, the large magnitude still points towards a
non linear indirect effect of price change. In contrast, the direct effect is linear and
decreases (marginally) as the average prevalence in the village increases. Both set
of graphs also demonstrates how the social multiplier mechanism operates. At low
levels of adoption prevalence in the village the direct effect is larger than the indirect
effect. As each additional household adopts sanitation and the average prevalence of
sanitation increases, the indirect effect overtakes the direct effect resulting in the total
effect to be strongly driven by the indirect channel.

3.6 Welfare and Willingness-To-Pay

To quantify the welfare effects generated by the subsidy, I continue with the
theoretical framework outlined in Section (3.3) to derive Compensating Variation
(CV ), Equivalent Variation (EV ) as well as Net Gain (NetG) measures.

Similar to the expenditure function, the calculation of the CV is not straightforward
in a random utility model in particular when utility is non linear in household
income. A random utility structure implies that CV is also random with a
distribution. In contrast to demand for a good consumed in continuous quantities, in
a discrete choice setting the effect of a price change on individual utilities depends in
a fundamental way on the discreteness of choice possibilities as well as on individual
heterogeneity. The method of Dagsvik & Karlstrom (2005) provides tractable
formulas for calculating mean and higher order moments of CV for observationally
homogeneous populations. However in this application, without an observational
homogeneous population, aggregation across different population sub-groups needs
to be taken into account. The distributions of the welfare are expressed as simple
closed-form transformations of the choice probabilities, enabling easy computation
and inference.

The goal is to estimate exact, rather than approximate, impact on individual household
welfare, measured in terms of income compensation, of a change in price brought
about by subsidies and the associated net gain generated. Results from section (3.5)
indicate a small yet positive income effect and by computing exact welfare measures I
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incorporate this additional effect into the welfare calculation. The model incorporates
unobserved individual heterogeneity in utility functions and focuses on recovering the
distribution and average values of the impact of price change on individual welfare
arising from this heterogeneity distribution.

I briefly review the definition of both Compensating (CV ) and Equivalent (EV )
variation in the context of random utility models with particular focus on the
challenge of calculating the distribution of CV and EV measures. The Compensating
Variation is defined as the area under the compensated (Hicksian) demand curves
holding the utility level fixed. In order to bring out the essentials of the approach, I
shall first go through the argument in a simplified but general setting in the next
sub-section.

3.6.1 Compensating and Equivalent Variation

Under a price subsidy, the Compensating Variation (CV ) quantifies the maximum
amount a household is willing-to-pay for the subsidy provided that utility is held
constant at the pre-intervention level. Similarly, the Equivalent Variation (EV )
quantifies the maximum amount a household is willing-to-pay for the subsidy with
utility fixed at the post-intervention level.11 The larger is this monetary compensation
amount, the larger are the welfare gains realised by a household from the policy. The
Compensating Variation (CV ) is defined implicitly as the value that solves:

max
r∈D

Vr(pB,yB) = max
r∈D

Vr(pA,yA−CV )

max
r∈D

(
vr(pB,yB)+ εr

)
= max

r∈D

(
vr(pA

r ,y
A−CV )+ εr

)
From this definition it follows that the CV measure becomes a random variable that
may depend on all attributes, initial income and on all random terms {εr}. From an
analytic point of view the difficulty of deriving a formula for the distribution of CV

stems from the fact that when price pr for choice alternative r changes, the alternative
that yields maximum utility may be different from the one that maximized utility
initially.12 In other words, the individual household may switch from the alternative
chosen initially to a new one, as a result of the change in price or policy introduction.
In this analysis, it is assumed that the random terms εr which reflect taste shocks are

11Under a price drop, subsidy EV ≥CV ≥ 0
12That is, the maximum of the left-hand side of above equation may not be attained at the same

discrete alternative as the maximum of the right-hand side except in special cases. Thus the random
terms on each side will not cancel
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not affected by the policy interventions.13 Using the distribution of the expenditure
function in the previous section it is possible to derive the distribution of CV and its
moments:

CV = yA−YD(p,V (pB,yB)) (3.6.1)

where the first moment; the mean compensating variation is given by

E[CV ] = yA−EYD(p,V (pB,yB)) (3.6.2)

where

E
[
P
(

YD(pA,VD(pB,yB))> y
)]

= ∑
j∈D

1 j(pB
j ,y

B, pA
j ,y)
ˆ y j

0

exp(v j(pA
j ,yr))

exp(v j(pB
j ,yB))+ exp(v j(pA

j ,yr))

(3.6.3)

From (3.6.2), the estimated, point-wise average CV ,averaged over heterogeneity, is
given by

ĈV (pA, pB;y) =
ˆ pB

pA
Ph(p,y)d p (3.6.4)

while the EV measure is given by:

ÊV (pA, pB;y) =
ˆ pB

pA
Ph(p,y+ p− pA)d p (3.6.5)

where price14 pA = (1− τ)pB and τ denotes the subsidy amount, Ph(p,u) is the com-
pensated probability of households in the sample who would buy at price p and have
utility level u.

13In general, the initial error terms ε0
k may differ from the error terms εk after policy. The dependence

between ε0
k and εk will of course depend on the interpretation and modelling assumptions. This

extension will be explored further in future work.
14Note that the notation pA and pB denotes the lower and upper limits of the integral.
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3.6.2 Net Gain

The results from Chapter 2 indicate the presence of externality to have a positive effect
on a household’s sanitation adoption decision. This implies that if households do not
internalize the spillover effects while making their decision the socially optimal level
of adoption is higher than (to the right of) the privately chosen equilibrium adoption
level. With this level of under adoption the provision of subsidy generates a Net Gain
(NetG) instead of the standard Deadweight Loss (DWL). The Net Gain (NetG) can be
interpreted as the additional welfare generated for all households within the village.
By providing monetary incentives, a subsidy internalises some of the externality by
inducing additional households to adopt sanitation. The corresponding average Net
Gain from a subsidy amount τ is given by:

NetG(CV ) = τpB×Ph(pB(1− τ),y)−
ˆ pB

pA
Ph(p,y)d p (3.6.6)

NetG(EV ) = τpB×Ph(pB(1− τ),y)−
ˆ pB

pA
Ph(p,y+ p− pA)d p (3.6.7)

Both the Compensating Variation and Net Gain measures are distributions and as such
it is possible to compute different moments of the distribution. I present results in
this chapter for the first moment of the distribution, computing mean CV and average
NetG. Table (3.5) provides estimates for both mean Compensating and Equivalent
Variation and the corresponding Net Gain values generated once externality effects
are taken into account and without. The welfare values are denoted in money metric
INR (Indian Rs.).

Table (3.5) provides welfare measures for a 25% price subsidy at the village level.
This calculation is performed by aggregating over each individual household’s welfare
measure in the village, thus incorporating the effect of unobserved heterogeneity. The
village welfare calculations are in increasing order of sanitation prevalence. I find
that CV increases with the average adoption levels in the village, this is driven by the
positive externality parameter estimate. Instead the NetG measure follows a non linear
shape also seen with the indirect elasticity effect where the largest NetG is associated
at the point of inflection of the response curves usually found at mid levels of adoption.
The NetG increases with the demand elasticity, where households most responsive to
the policy, i.e., at the margin of adopting sanitation, experience the largest gains in
welfare. A comparison of Net Gain measures with and without externalities reveals
that the effective Net Gain realised is larger once the full extent of the externality effect
is taken into account.
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The application results reveal that a 25% price subsidy produces an overall average
CV of about Rs.1,238.16 and a net gain (NetG) of about Rs.85.40 per household.
However, once the feedback effects are taken in account the NetG generated is in fact
larger Rs.138.48 while the average CV per household increases to Rs.1,919.15. With
positive externalities a household’s willingness-to-pay for a policy increase by 55%,
and the effective gain realised by the household is 62% higher. This welfare gain
is comparable to 32% of the average monthly income15 received by the households
within the region denoting a non-trivial gain in welfare. I find that in the presence of
externalities, the welfare impact of subsides are less ‘distortionary’ as they generate a
larger net gain for each individual household. The use of subsidy intervention can be
justified to move the society as a whole to a level of sanitation adoption closer to the
socially optimum.

3.7 Conclusion

The consumption of healthcare goods, education and environmental amenities are all
examples of goods that comprise non-marketable aspects not reflected in the market
price, thus generating externalities and spillover effects. A policy issue of some
importance is measuring surplus/welfare realised from such non-marketed aspects,
e.g., health and ascertaining whether these goods are consumed optimally, i.e., at or
close to a socially optimal level. The contribution of this chapter is to compute the
true/effective net gain and welfare from a subsidy policy once the underlying
externalities are taken into account.

For the application considered, the adoption of the sanitation is found to generate
large positive externalities because households do not necessarily internalise the
impact of their own choice on the entire society. In such a scenario, the privately
chosen adoption level does not coincide with the socially optimal adoption level
which is higher if the adoption of the good generates positive externalities. This is
true for most examples for provision of preventive healthcare products e.g., water
purification, malaria prevention bed-nets, de-worming pills. If the healthcare policy
intervention in question, specifically targets a good with significant externality
effects, there is a strong incentive to subsidise adoption of such goods.

The counterfactual analysis above with respect to the compensated demand and its
elasticities allows me to quantify the “substitution effect” or pure price effect
generated by a subsidy policy. Which maybe of interest to a policy maker who is

15equivalent to 2.67% of annual household income
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deciding on the appropriate choice of policy to implement for e.g., price or income
subsidies. The calculations of the compensated price elasticities for different
demographic characteristics reveals a large heterogeneity in response. It maybe
possible/desirable to use this heterogeneity to target certain groups of community
members. For example, if the objective of the policy is to maximize coverage across
the entire village, it maybe worth targeting households who are at the margin of
adopting i.e., large price elasticity estimates with small/marginal subsidy amounts. If
instead the objective of the policy is to maximize welfare, a larger subsidy amount
maybe better targeted to a low income household in the village. I explore and expand
the welfare analysis along such different welfare criterion and objectives in Chapter 4

These findings provide important implications towards understanding the impact of
policy interventions when externalities are relevant. By including the externality
component, I find that a significant amount of the change in response to a subsidy
policy is mediated through the indirect feedback effect, between 41%− 86%. If the
impact of the externality is not taken into account the overall direct effect of the
policy would be overestimated. Failure to take such indirect impacts into account,
can cause targeted polices to be unnecessarily expensive or to be incorrectly targeted.
This can also lead to inaccurate concerns on the relative impact of health improving
policy measures.

The usefulness of this analysis also depends on the policy objectives. In order to
address this I would need to ask questions such as: What constitutes a socially
optimal adoption level? and, What is the optimal subsidy amount to achieve the
social optimal? The answer to these questions entails computing points on the Pareto
frontier which would require assumptions on the Pareto weights assigned to each
household demographic. Though the policy analysis tools in this chapter allow for
computation of welfare at any point on the Pareto frontier the choice of weights is
less clear. Therefore, in this chapter I abstract away from making assumptions on the
optimal choice of Pareto weights. Having said so, if a policy maker has a target
population in mind,16 the tools developed in this chapter can be used to compute any
point on the Pareto frontier given weights and thus the optimal subsidy amount to
achieve that socially optimal level.

16 For example, households at the bottom tail on the wealth distribution that are liquidity constrained
and most likely would not able to adopt independently of the presence of externality.
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3.8 Appendix for Chapter 3

3.8.1 Expenditure Function

Dagsvik (1995) defines the expenditure function as follows

YD(p,u) = {z : VD(p,z) = u} (3.8.1)

and defines Yk(pk,u− εk) as:

vk(pk,Yk(pk,u− εk))+ εk = u (3.8.2)

vk(pk,Yk(pk,u− εk)) = u− εk (3.8.3)

using vk(pk,y) strictly increasing in y, implies that Yk(pk,u − εk) is uniquely
determined. Yk(pk,u− εk) denotes the expenditure required to achieve utility level u,
given choice k with price pk

Expenditure function

YD(p,u) = min
k∈D

Yk(pk,u− εk) (3.8.4)

With vk(pk,y) strictly increasing in y, using (3.8.2) if

vk(pk,y)+ εk < u

vk(pk,y)+ εk < vk(pk,Yk(pk,u− εk))+ εk

cancel εk on both sides and take inverse holding pk fixed

v−1
k (vk(pk,y)) < v−1

k (vk(pk,Yk(pk,u− εk)))

y < Yk(pk,u− εk)

which implies that
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{Yk(pk,u− εk)> y}⇔ {vk(pk,y)+ εk < u}

{Yk(pk,u− εk)> y}⇔ {vk(pk,y)+ εk < u}

so if yk > 0 k ∈ D

P

(⋂
k∈D

(YD (pk,u− εk)> yk)

)
= P

(⋂
k∈D

(vk(pk,yk)+ εk < u)

)

= FD (u− v1(p1,y1),u− v2(p2,y2), ....,u− vm(pm,ym))

if yk = y for k ∈ D, the distribution of the expenditure function

P(YD(p,u)≤ y) = 1−FD (u− v1(p1,y1),u− v2(p2,y2), ....,u− vr(pr,yr))

The event {Yk(pk,u− εk)≤ y} implies that the amount y is higher than or equal to the
expenditure required to achieve utility u. This is equivalent to the event
{vk(pk,y)+ εk ≥ u} where the utility implied by income y is higher than or equal to
u, using (3.8.4)

P(YD(p,u)≤ y) = P(VD(p,y)≥ u) (3.8.5)

Expenditure Function

P(YD(p,u)≤ y) = 1−FD (u− v1(p1,y),u− v2(p2,y), ....,u− vm(pm,y)) = H(x)

Using integration by parts

ˆ y

0
1 [1−H(x)]dx = x(1−H(x)) |y0−

ˆ y

0
x(−)h(x)dx

ˆ y

0
1 [1−H(x)]dx = y [1−H(y)]−0 [1−H(0)]+

ˆ y

0
xh(x)dx
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ˆ y

0
1 [1−H(x)]dx = y.0−0+

ˆ y

0
xh(x)dx

ˆ y

0
1 [1−H(x)]dx =

ˆ y

0
xh(x)dx

EYD(p,u) =

∞̂

0

FD (u− v1(p1,y),u− v2(p2,y), ....,u− vm(pm,y)) dy (3.8.6)

Using result (3.8.6)

∂EYD(p,u)
∂p1 j

=
∂
[´

∞

0 FD (u− v1(p1,y),u− v2(p2,y), ....,u− vm(pm,y)) dy
]

∂p1 j

=

∞̂

0

FD
j (u− v1(p1,y),u− v2(p2,y), ....,u− vm(pm,y))−

∂v j(p j,y)
∂p1 j

dy

=

∞̂

0

FD
j (u− v1(p1,y),u− v2(p2,y), ....,u− vm(pm,y))

∂v j(p j,y)
∂y

dy

=

∞̂

0

FD
j (u− v1(p1,y),u− v2(p2,y), ....,u− vm(pm,y))dv j(p j,y) (3.8.7)

= Ph
D( j, p,u)

3.8.2 Incorporating Externality

The equilibrium condition for a village described in Section (2.3) was given by:

1
Ig

Ig

∑
i=1

pi(di = 1|xig,zg, pg,d(pg),θ) =
1
Ig

Ig

∑
i=1

Λ(di = 1|xig,zg, pg,d(pg),θ) (3.8.8)
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denote Fi = pi(di = 1|xig,zg, pg,d(pg),θ) and F = 1
Ig

∑
Ig
i=1 Fi

1
Ig

Ig

∑
i=1

Fi =
1
Ig

Ig

∑
i=1

Λ(di = 1|xig,zg, pg,d(pg),θ)

differentiating with respect to price, pg

∂F
∂pg

=
1
Ig

Ig

∑
i=1

{
∂

∂pg

(
Λ(di = 1|xig,zg, pg,d(pg),θ)

)
+

∂

∂d(p)

(
Λ(di = 1|xig,zg, pg,d(pg),θ)

)
.
∂d(p)
∂pg

}
(3.8.9)

in equilibrium F = d(p), replacing ∂F
∂pg

with ∂d(p)
∂pg

∂d(p)
∂pg

=
1
Ig

Ig

∑
i=1

∂

∂pg

(
Λ(di = 1|xig,zg, pg,d(pg),θ)

)
+

1
Ig

Ig

∑
i=1

∂

∂d(p)

(
Λ(di = 1|xig,zg, pg,d(pg),θ)

)
.
∂d(p)
∂pg

rearranging

∂d(p)
∂pg

[
1− 1

Ig

Ig

∑
i=1

∂

∂d(p)

(
Λ(di = 1|xig,zg, pg,d(pg),θ)

)]
=

1
Ig

Ig

∑
i=1

∂

∂pg

(
Λ(di = 1|xig,zg, pg,d(pg),θ)

)

∂d(p)
∂pg

=

[
1
Ig

∑
Ig
i=1

∂

∂pg

(
Λ(di = 1|xig,zg, pg,d(pg),θ)

)][
1− 1

Ig
∑

Ig
i=1

∂

∂d(p)

(
Λ(di = 1|xig,zg, pg,d(pg),θ)

)]

also written as where δp and γ denote the parameter for price and externality term

∂d(p)
∂pg

=

[
1
Ig

∑
Ig
i=1 Λ′(di = 1|xig,zg, pg,d(pg),θ).δp

]
[
1− 1

Ig
∑

Ig
i=1 Λ′(di = 1|xig,zg, pg,d(pg),θ).γ

] (3.8.10)
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3.8.3 Tables and Figures

Table 3.1: Elasticities: Representative Household

Wealth Elasticity Price: 10th %ile Price:50th %ile Price: 90th %ile
M -0.222 -0.355 -0.452

10th %ile H -0.194 -0.308 -0.390
I 0.006 0.007 0.007

M -0.215 -0.345 -0.440
50th %ile H -0.188 -0.299 -0.380

I 0.029 0.032 0.035
M -0.199 -0.321 -0.411

75th %ile H -0.174 -0.277 -0.354
I 0.079 0.090 0.097

M -0.160 -0.268 -0.341
90th %ile H -0.139 -0.226 -0.291

I 0.171 0.196 0.214
Notes: M: Uncompensated Price Elasticity (Marshallian), H: Compensated Price Elasticity (Hicksian),
I: Income Elasticity. Elasticity estimates computed under a 5% change in prices
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Table
3.3:D
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ffectPrice
C
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H
ousehold

W
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E
l.

Price:10th
%

ile
Price:50th

%
ile

Price:90th
%

ile
D

irect
Indirect

Total
D

irect
Indirect

Total
D

irect
Indirect

Total
10th

%
ile

M
-0.222

-0.673
-0.895

-0.355
-2.009

-2.364
-0.452

-4.863
-5.315

H
-0.194

-0.522
-0.716

-0.308
-1.373

-1.680
-0.390

-2.731
-3.121

50th
%

ile
M

-0.215
-0.573

-0.788
-0.345

-1.626
-1.971

-0.440
-3.562

-4.002
H

-0.188
-0.449

-0.637
-0.299

-1.138
-1.437

-0.380
-2.135

-2.515
75th

%
ile

M
-0.199

-0.400
-0.599

-0.321
-1.039

-1.360
-0.411

-1.967
-2.379

H
-0.174

-0.318
-0.492

-0.277
-0.754

-1.031
-0.354

-1.308
-1.661

90th
%

ile
M

-0.160
-0.182

-0.342
-0.268

-0.432
-0.701

-0.341
-0.708

-1.048
H

-0.139
-0.146

-0.285
-0.226

-0.322
-0.548

-0.291
-0.515

-0.806

N
otes:M
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Price
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E
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Table 3.4: Direct & Indirect Effect Price Change: Village

Marshallian Hicksian
Village Avg level Price (Rs.) Wealth(Rs.) Direct Indirect Total Direct Indirect Total
vill ID 12 0.000 9,823 34,333 -0.723 -0.394 -1.117 -0.647 -0.388 -1.035
vill ID 15 0.000 10,243 50,625 -0.768 -0.283 -1.051 -0.688 -0.278 -0.966
vill ID 9 0.000 9,725 43,252 -0.720 -0.344 -1.065 -0.645 -0.338 -0.983
vill ID 2 0.000 11,337 48,996 -0.855 -0.284 -1.139 -0.766 -0.282 -1.048
vill ID 18 0.000 10,975 41,442 -0.807 -0.445 -1.252 -0.722 -0.442 -1.163
vill ID 22 0.000 10,016 43,375 -0.749 -0.287 -1.037 -0.671 -0.282 -0.953
vill ID 19 0.048 10,427 28,549 -0.777 -0.255 -1.033 -0.696 -0.252 -0.948
vill ID 35 0.053 10,280 41,130 -0.737 -0.443 -1.180 -0.658 -0.436 -1.094
vill ID 40 0.083 10,273 62,121 -0.738 -0.440 -1.177 -0.659 -0.433 -1.092
vill ID 24 0.115 9,510 49,131 -0.673 -0.466 -1.139 -0.601 -0.456 -1.057
vill ID 3 0.136 7,800 35,849 -0.518 -0.778 -1.297 -0.462 -0.764 -1.226
vill ID 37 0.152 9,788 33,739 -0.699 -0.483 -1.182 -0.624 -0.478 -1.102
vill ID 7 0.182 7,738 43,163 -0.522 -0.722 -1.244 -0.465 -0.710 -1.175
vill ID 5 0.185 9,801 51,061 -0.630 -1.444 -2.074 -0.559 -1.486 -2.045
vill ID 21 0.190 10,475 66,079 -0.673 -1.424 -2.097 -0.596 -1.455 -2.052
vill ID 8 0.200 7,938 64,404 -0.495 -1.496 -1.991 -0.440 -1.517 -1.957
vill ID 25 0.200 11,175 43,640 -0.735 -1.367 -2.102 -0.651 -1.423 -2.075
vill ID 11 0.200 10,055 45,720 -0.716 -0.534 -1.249 -0.639 -0.532 -1.170
vill ID 4 0.263 8,795 89,533 -0.526 -1.979 -2.505 -0.466 -2.045 -2.512
vill ID 44 0.298 9,913 88,217 -0.541 -3.306 -3.847 -0.477 -3.472 -3.949
vill ID 6 0.350 8,313 60,091 -0.482 -3.513 -3.996 -0.427 -3.921 -4.348
vill ID 28 0.375 8,131 121,363 -0.413 -7.175 -7.588 -0.363 -5.151 -5.514
vill ID 14 0.455 8,882 49,082 -0.382 -7.132 -7.514 -0.334 -5.951 -6.285
vill ID 32 0.464 7,155 67,463 -0.305 -5.682 -5.987 -0.268 -4.788 -5.056
vill ID 38 0.469 6,775 86,293 -0.264 -5.682 -5.946 -0.232 -4.788 -5.019
vill ID 27 0.500 8,181 35,873 -0.307 -6.791 -7.098 -0.269 -5.406 -5.675
vill ID 31 0.500 6,900 70,320 -0.276 -2.612 -2.888 -0.242 -2.345 -2.587
vill ID 17 0.500 7,915 49,077 -0.321 -3.875 -4.197 -0.281 -3.418 -3.700
vill ID 20 0.625 8,113 61,725 -0.247 -3.875 -4.122 -0.214 -3.418 -3.632
vill ID 26 0.629 6,030 55,376 -0.160 -1.987 -2.147 -0.140 -1.424 -1.564
vill ID 30 0.655 6,662 63,721 -0.165 -1.651 -1.816 -0.143 -1.166 -1.309
vill ID 29 0.662 7,844 61,159 -0.239 -1.651 -1.890 -0.208 -9.596 -9.803
vill ID 23 0.688 8,875 70,181 -0.234 -2.709 -2.943 -0.202 -1.792 -1.993
vill ID 13 0.706 9,924 48,968 -0.280 -5.831 -6.111 -0.240 -3.283 -3.523
vill ID 26 0.714 6,113 79,764 -0.134 -0.642 -0.776 -0.117 -0.497 -0.614
vill ID 43 0.714 6,113 93,143 -0.113 -0.330 -0.443 -0.098 -0.259 -0.357
vill ID 42 0.805 9,012 78,966 -0.147 -0.279 -0.426 -0.125 -0.212 -0.338
vill ID 1 0.808 5,713 65,686 -0.067 -0.068 -0.135 -0.058 -0.055 -0.113
vill ID 39 0.875 6,350 53,752 -0.085 -0.108 -0.193 -0.074 -0.087 -0.160
vill ID 34 0.875 7,963 52,465 -0.109 -0.143 -0.253 -0.094 -0.112 -0.206
vill ID 33 0.894 7,168 64,653 -0.067 -0.047 -0.114 -0.058 -0.037 -0.095
vill ID 16 0.938 11,425 73,850 -0.125 -0.104 -0.229 -0.104 -0.078 -0.182
vill ID 41 1.000 7,050 58,080 -0.053 -0.026 -0.079 -0.045 -0.021 -0.066
vill ID 10 1.000 6,170 63,711 -0.027 -0.007 -0.034 -0.024 -0.006 -0.029
Total 0.378 8,610 59,208 -0.423 -1.798 -2.220 -0.375 -1.711 -2.086

Notes: M: Uncompensated Price Elasticity (Marshallian), H: Compensated Price Elasticity (Hicksian).
Elasticity estimates computed under a 5% change in prices. Rs.1000≈GBP 10
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Table 3.5: Welfare Measure: Village

Equivalent Variation Compensating Variation
Village Avg

Adopt
Price
(Rs.)

Wealth
(Rs.)

Avg NetG Avg
(Ext)

NetG
(Ext)

Avg NetG Avg
(Ext)

NetG
(Ext)

vill ID 12 0.000 9,823 34,333 197.69 31.60 243.16 39.60 192.31 36.99 236.54 46.34
vill ID 15 0.000 10,243 50,625 151.19 25.35 187.48 32.04 146.90 29.64 182.16 37.47
vill ID 9 0.000 9,725 43,252 185.84 29.24 230.81 37.02 180.85 34.23 224.61 43.34
vill ID 2 0.000 11,337 48,996 141.11 26.78 175.40 33.94 136.66 31.23 169.87 39.58
vill ID 18 0.000 10,975 41,442 215.53 38.35 268.98 48.82 209.08 44.81 260.93 57.03
vill ID 22 0.000 10,016 43,375 155.71 25.36 194.64 32.33 151.40 29.67 189.25 37.83
vill ID 19 0.048 10,427 28,549 167.96 29.04 210.28 37.09 163.07 33.93 204.16 43.34
vill ID 35 0.053 10,280 41,130 286.84 46.07 359.98 58.99 278.96 53.95 350.09 69.08
vill ID 40 0.083 10,273 62,121 330.42 50.25 415.33 64.45 321.74 58.92 404.43 75.58
vill ID 24 0.115 9,510 49,131 324.56 43.40 408.62 55.76 317.05 50.91 399.17 65.41
vill ID 35 0.136 7,800 35,849 430.27 48.35 542.14 62.18 421.65 56.97 531.28 73.27
vill ID 37 0.152 9,788 33,739 285.14 44.43 384.94 61.54 277.53 52.04 374.66 72.08
vill ID 7 0.182 7,738 43,163 453.69 50.42 635.17 72.61 444.69 59.42 622.56 85.57
vill ID 5 0.185 9,801 51,061 580.38 82.91 841.55 123.95 565.90 97.39 820.56 145.59
vill ID 21 0.190 10,475 66,079 737.42 97.91 1143.01 161.46 720.20 115.13 1116.32 189.85
vill ID 8 0.200 7,938 64,404 684.92 69.67 1066.42 115.46 672.30 82.29 1046.77 136.38
vill ID 25 0.200 11,175 43,640 556.93 93.99 868.25 155.99 540.88 110.05 843.22 182.64
vill ID 11 0.200 10,055 45,720 315.20 50.50 492.03 83.94 306.58 59.13 478.57 98.27
vill ID 40 0.263 8,795 89,533 841.31 84.66 1312.44 140.60 826.04 99.93 1288.62 165.97
vill ID 44 0.298 9,913 88,217 1233.46 116.62 1973.53 199.19 1212.32 137.76 1939.71 235.29
vill ID 6 0.350 8,313 60,091 870.43 85.97 1410.10 148.86 854.80 101.60 1384.78 175.93
vill ID 28 0.375 8,131 121,363 1077.87 104.70 1832.38 191.18 1058.67 123.90 1799.74 226.24
vill ID 14 0.455 8,882 49,082 1582.72 133.17 2706.45 244.74 1557.84 158.05 2663.90 290.47
vill ID 32 0.464 7,155 67,463 1401.22 87.02 2424.11 161.99 1384.79 103.45 2395.69 192.56
vill ID 38 0.469 6,775 86,293 1537.40 72.90 2644.33 134.84 1523.52 86.78 2620.45 160.51
vill ID 27 0.500 8,181 35,873 1765.89 111.64 2949.04 199.90 1744.55 132.98 2913.40 238.11
vill ID 31 0.500 6,900 70,320 1424.65 90.67 2307.93 157.00 1407.42 107.89 2280.02 186.83
vill ID 17 0.500 7,915 49,077 1608.55 115.86 2493.26 191.05 1586.66 137.76 2459.32 227.16
vill ID 20 0.625 8,113 61,725 2063.96 127.08 3157.85 206.55 2039.42 151.61 3120.32 246.43
vill ID 26 0.629 6,030 55,376 1782.81 66.19 2638.55 101.77 1769.86 79.14 2619.39 121.69
vill ID 30 0.655 6,662 63,721 2022.09 81.63 2891.59 120.94 2006.07 97.65 2868.68 144.67
vill ID 29 0.662 7,844 61,159 2025.15 115.09 2875.71 169.23 2002.94 137.31 2844.17 201.90
vill ID 23 0.688 8,875 70,181 2551.84 140.85 3496.02 199.21 2524.37 168.31 3458.39 238.06
vill ID 13 0.706 9,924 48,968 2609.79 182.20 3523.21 253.63 2574.59 217.40 3475.70 302.62
vill ID 26 0.714 6,113 79,764 1994.05 64.38 2632.15 87.45 1981.35 77.08 2615.38 104.70
vill ID 43 0.714 6,113 93,143 2159.31 60.65 2763.92 79.67 2147.21 72.75 2748.42 95.57
vill ID 42 0.805 9,012 78,966 3285.22 117.23 4132.80 151.10 3261.53 140.91 4103.01 181.63
vill ID 1 0.808 5,713 65,686 2314.30 36.37 2897.50 46.63 2306.94 43.73 2888.28 56.07
vill ID 39 0.875 6,350 53,752 2466.86 53.34 3083.58 68.28 2456.11 64.09 3070.14 82.04
vill ID 34 0.875 7,963 52,465 3026.76 87.47 3777.40 111.77 3008.98 105.26 3755.21 134.49
vill ID 33 0.894 7,168 64,653 2995.39 54.00 3723.27 68.70 2984.31 65.09 3709.49 82.80
vill ID 16 0.938 11,425 73,850 4506.54 156.63 5588.11 198.73 4473.97 189.20 5547.72 240.06
vill ID 41 1.000 7,050 58,080 3052.10 45.36 3723.56 56.54 3042.71 54.75 3712.10 68.24
vill ID 10 1.000 6,170 63,711 2847.27 20.87 3388.25 25.31 2842.95 25.19 3383.12 30.55
Total 0.378 8,610 129,752 1251.61 71.95 1939.99 116.67 1238.16 85.40 1919.15 138.48

Notes: Compensating Variation (CV) and Equivalent Variation (EV) computed under a 25% (cost of
sanitation) price subsidy.
Rs.1000≈GBP 10
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Chapter 4

Household Demand for Sanitation:
Importance of Externalities and
Borrowing Constraints

4.1 Introduction

Close to 2.5 billion people on the planet (≈ 35% of the population) do not have
access to basic sanitation (WHO-UNICEF 2014).1 Lack of sanitation has detrimental
effects on individual health, economic and social well-being (Mara, Lane, Scott &
Trouba 2010).2 In recent years there has been significant policy interest in the
developing world to increase sanitation adoption amongst households.3 Finding
strategies to tackle under-adoption has become a policy imperative. Governments
have used many different policies to incentivize adoption. However, there is
substantial disagreement as to which policies are effective at increasing coverage and
at an affordable cost to developing countries. The disagreement arises from
contrasting views on which market failure generates under-adoption of sanitation.

Two often cited market failures are borrowing constraints and externalities. First, in
developing countries with limited or non-existent credit markets, a liquidity
constrained household may find it difficult or impossible to purchase sanitation.

1Basic sanitation refers access to a toilet/bathroom facility
2The World Bank estimates that increase in sanitation coverage can reduce diarrhoeal disease related

child mortality by more than a third.
3Over the period 2008−2015 the Gates Foundation has allocated approx USD. $650 million under

the water, sanitation and hygiene (WaSH) program towards increasing sanitation coverage Bill &
Melinda Gates Foundation (2011).

91



Second, sanitation generates positive externalities (Duflo, Greenstone, Guiteras &
Clasen 2015). For example, in a similar manner to vaccination; an increase of
sanitation adoption amongst neighbouring households reduces the risk of infection
and likelihood of being sick for an individual (Geruso & Spears 2015, Hammer &
Spears 2013, Spears 2012, 2013, Augsburg & Rodriguez 2015). Such spillover
effects are not necessarily internalised by an individual resulting in inefficient
adoption.

This paper analyses if there is under-adoption and its extent using data from India,
where only 37% of the population has access to sanitation. Having established under-
adoption, I ask: If the objective of the policy makers is to maximize coverage subject
to government budget constraints, are sanitation loans or price subsidies more effective
at increasing adoption? Moreover, I also study the welfare implications of the two
policies.

To answer these questions, I develop and estimate a dynamic equilibrium model of
sanitation choices of households. The model has two key features. First, it allows for
households to be borrowing constrained in their consumption and sanitation adoption
choice. Second, to capture the externalities households make interdependent adoption
choices. I model the household decisions to adopt sanitation and to save over the life-
cycle within a strategic setting of an incomplete information game. Interdependent
adoption captures numerous possible channels that can generate externalities.4

The challenge of solving and estimating the model arises because agents do not
optimise in isolation but instead solve an inter-related system of dynamic
programming problems. As is typical of many strategic decision models, multiple
equilibria may arise depending on the strength of the externality. This poses
challenges in estimation and counterfactual analysis, especially when one is
unwilling to specify an arbitrary selection rule.

First, this paper builds on the estimation methodology in Hotz, Miller, Sanders &
Smith (1994) and Bajari, Benkard & Levin (2007) by combining a two stage and full
solution estimation methods. I demonstrate that by making a small trade-off under the
two-step approach; by numerically solving a part of the model, it is possible to have
an estimation method that can accommodate a richer set of strategic demand models
for a small increase in computational cost.

4The framework allows for externalities to arise from different channels. For example, there is a
biological contagion channel which affects health but there may also be information spillovers with
neighbours sharing knowledge on the benefits from adoption. In addition social norms and peer
pressure may also play a role.
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Second, this paper proposes a method to conduct counterfactual policy analysis that
circumvents the typical issues of multiplicity. Specifically, the burden of solving for
all possible equilibria and an additional challenge with simulation ensues when the
existing selection rule is not policy invariant and is no longer valid under different
counterfactuals. This affects the validity of the policy implications derived which are
a function of the underlying selection mechanism. A common approach, undertaken
in applied work, is to specify an equilibrium selection rule under estimation with the
implicit assumption that the selection rule does not change in counterfactual
scenarios.5 This paper takes an alternative route where I instead bound the set of
counterfactual policy outcomes that could be sustained under different selection
rules. I do this by first characterizing the conditions under which the model implies
strategic complementarity in the sanitation adoption decisions. This allows me to
establish an order over the set of equilibria thereby bounding the set using the highest
and lowest equilibrium. The equilibrium bounds are used to characterize the region
of the policy impact that could be sustained in equilibrium under counterfactual
scenarios.

There is an active literature on estimating both static and dynamic games that
explicitly address the issue of multiple equilibria. This paper is related to the
extensive literature on the estimation of dynamic models using the Hotz & Miller
(1993) two-step Conditional Choice Probability (CCP) approach. The literature
comprises of numerous extensions to the original two-step estimator for both
single-agent and strategic interaction models. More recently, Aguirregabiria & Mira
(2007), Bajari, Benkard & Levin (2007), Pakes, Ostrovsky & Berry (2007) and
Pesendorfer & Schmidt-Dengler (2008) have developed estimation procedures that
allow one to recover the primitives that underlie dynamic choice games. In contrast
to the estimation literature, there is a smaller body of work on the problem of
conducting counterfactual policy simulations under multiple equilibria. The idea to
bound the set of equilibria has previously been exploited in the literature both for the
purpose of estimation and simulation. This includes work by Jia (2008), De Paula
(2009), Lee & Pakes (2009), Björkegren (2014) and Reguant (2015).6 In terms of
counterfactual simulation, Björkegren’s (2014) study of mobile handset adoption in
Rwanda is closest to this paper. However, differently from Bjorkegren the simulation
method in this paper does not employ the assumption of perfect foresight.

5For example in a recent working paper by Fu & Gregory (2016) study household rebuilding be-
haviour post Katrina hurricane where the neighbour’s rebuilding decisions induces amenity spillovers.
The paper assumes a specific equilibrium selection rule under which the model is both estimated and
simulated for counterfactual policies.

6Jia (2008) establishes bounds for the possible set of fixed points under specific selection rules in
order to ease the burden of estimating the model.
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The model is estimated using a two period household panel data from India. In
addition to sanitation adoption, I observe a rich set of household characteristics
including asset accumulation, earnings, household demographics and cost of
sanitation. The survey covers time periods 2009/10 and 2012/13 and includes
information on key demographic features at the village level. Additional information
on the cost of sanitation measure was collected at across villages in 2012.

By comparing the existing sanitation levels in the data with the socially optimal level
of adoption from the estimated model, I quantify the extent of under-adoption. First,
I compare the cost effectiveness of providing sanitation price subsidies differently
from loan policies to increase coverage and compute welfare gains under each policy.
Second, I decompose the policy effect into its direct and indirect components i.e.,
externality on an individual household’s demand response. Lastly, I use the structural
framework to derive implications about optimal policy design and cost efficiency.

An advantage of a structural approach is to be able to simulate the impact of
counterfactual policies on adoption decision from changing the direct costs of
sanitation, for example through the provision of price subsidies or loans that
incentivize adoption. Compared with a utilitarian social planner solution, existing
coverage levels are on average 53% below the socially optimal level, implying
under-adoption. This wedge is induced by the under valuation by each household of
the total benefits derived from adoption. Under cost effectiveness considerations, I
find price subsidies to be, in general, more effective at increasing sanitation coverage.
However, the policy effects are heterogeneous where loans are found to be equally, if
not marginally more, effective in villages with no sanitation coverage. In contrast, I
find that price subsidies compared with sanitation loans are more effective at
increasing sanitation coverage within villages with mid to low initial sanitation
levels. This is because a subsidy policy generates a larger feedback effect in the
presence of externalities which propagates through the entire village resulting in a
larger shift in the equilibrium sanitation level. Instead sanitation loans are found to
be more cost effective in villages with close to zero initial sanitation prevalence.

I find that the additional adoption induced by a price subsidy policy generated positive
externalities equivalent to Rs.3,181 (lower bound) and Rs.6,253 (upper bound) of
welfare gain for households whose adoption choice was not directly affected by the
program. While the policy generated a larger gain equivalent to Rs.10,008 (lower)
and Rs.12,511 (upper) for the recipient household directly affected by the policy.
The impact of the subsidy policy shifted bounds on net welfare upwards by Rs.1,380
(lower) and Rs.3,883 (upper). A significant proportion of this gain 33% (lower) to
72% (upper) in surplus is accrued indirectly through the spillover effects.
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These findings highlight the fact that, with the presence of externalities, accounting
for and quantifying the effect of equilibrium interactions among households is
essential to understand the impact of policies. This paper argues that subsidies affect
household welfare both directly by reducing the relative price for sanitation but also
indirectly through an externality that affects the relative cost faced by an individual
household. This analysis is consistent with evidence from field experiments on
sanitation demand and contributes to the literature on the topic of sanitation. In
particular, it complements a recent study by Guiteras, Levinsohn & Mobarak (2015)
which analyses the impact of different policy interventions on sanitation take-up
behaviour among households in Bangladesh using a randomized experiment. The
experiment contrasts between policies that provide information on the benefits of
having sanitation at home and policies that directly subsidize the cost of adoption
through price subsidies along with a control group. Their analysis finds evidence of
positive spillover effects from adoption on households other than the recipient
beneficiary both in adoption decisions and health outcomes.

The remainder of the paper is organized as follows. Section 4.2 provides a
background and description of the data. Section 4.3 presents the model of household
sanitation choice and the identification assumptions on which my results are based.
Section 4.4 describes the estimation strategy and discusses the parameter estimates
and model fit. Section 4.5 describes how the estimated model is used to simulate the
equilibrium sanitation adoption behaviour under counterfactual policy interventions.
Results are presented in Section 4.6 with an analysis of counterfactual policies.
Section 4.7 concludes. All relevant Table and Figures are provided in the chapter
appendix on Section (4.8).

4.2 Context and Data

4.2.1 Sanitation in India

Despite substantial evidence on the importance of sanitation for health and human
capital development, progress towards increasing access to sanitation in India has been
extremely slow. For example, in rural areas, the fraction of households without a
toilet decreased by only 8.8 percentage points between 2001 and 2011, from 78.1%
to 69.3% (Ministry of Rural Development 2012). While a number of innovative and
successful approaches have increased access to sanitation on a small scale, the national
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average of 37% sanitation coverage is well below the global average of 64%.7 The
topic of sanitation provision has also garnered important political interest within the
country. The current Prime Minister Narendra Modi launched the “Swachh Bharat
Abhiyan” (Clean India Mission) initiative which proposed to provide toilets/sanitation
to all 110 million rural households that currently do not have one, at a cost of USD

22.0 billion (Ministry of Rural Development India, 2014).

Poor sanitation has been linked with causes of intestinal diseases which reduce the
absorption of calories and nutrients, and leads to malnutrition and impaired cognitive
development among children. There is also a growing body of work within the
economic literature, that quantifies the impact of sanitation prevalence on individual
health outcomes especially for children. For example, a recent working paper by
Geruso & Spears (2015) investigates the impact of poor sanitation coverage on infant
mortality in India. By instrumenting for local sanitation prevalence with the religious
composition of neighbourhoods to account for endogeneity of sanitation coverage,
they find evidence of large infant mortality externalities associated with the lack of
sanitation amongst neighbours. Specifically, their analysis finds a decline in 2.6−2.9
infant deaths per 1000 with a 10% increase in sanitation adoption levels. Augsburg &
Rodriguez (2015) use the data on sanitation price variation as an instrument for the
sanitation prevalence across village.8 Their instrumental approach suggest a
significant increase in child height for age z− scores by 0.15 standard deviations
with a 10% increase in sanitation prevalence.

In contrast, there are few examples that study demand for sanitation and the
factors/market failures that affect household choice. An exception to this is a recent
paper by Guiteras, Levinsohn & Mobarak (2015) based on a randomized policy
experiment conducted in Bangladesh. The experiment measures the impact of
different policies: price subsidies, supply-side and information provision, on
household sanitation adoption. The findings suggest that lack of information, about
the benefits of improved sanitation, or lack of access to markets for sanitation
components are not the key deterrents to a household’s investment in sanitation.
Instead, the significant increase in sanitation ownership and usage among subsidy
(price subsidy) recipients suggests that financial constraints might be an important
limiting factor in their context. The increased probability of sanitation ownership

7The national average of 37% is across rural and urban populations. Sanitation coverage in rural
India is estimated at 21.1% while the number for urban population is close to 54% (data.worldbank.org)

8The analysis in Augsburg & Rodriguez (2015) also makes use of the dataset employed in the
empirical analysis in this paper. They additionally use variation in the cost (price) of sanitation,
collected independently in Gautam (2015) and this paper as an instrument. Their analysis provides
constructive evidence on the presence of significant positive externalities on child health in the data
used.
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among non-recipients also suggests that purchasing decisions of one’s neighbours
affect a household’s own purchasing decisions - even without a subsidy incentive.
Furthermore, the increase in sanitation adoption rates as the proportion of subsidy
voucher recipients suggests the presence of spillover effects and inter-linked adoption
decision. My analysis reveals the extent of under-adoption accrued due to
externalities as well as induced by binding financial constraints.

4.2.2 Data

The data for the empirical analysis comes from a household panel survey conducted
under the FINISH program (Financial Inclusion Improves Sanitation & Health) in
India during the periods 2009− 10 and 2012− 2013. The program aims to improve
the living standards of poor communities by implementing projects that improve
sanitation, hygiene and waste management across the country. The overall objective
is to increase sanitation access and coverage and thereby improve the living and
economic conditions for poor households that otherwise lack access to basic
sanitation. Under its sanitation and hygiene program, FINISH provides sanitation
facilities at the household level through a combination of micro-credit lent by
Microfinance Institutions (MFIs) or local banks, and/or price subsidies (subsidize the
cost of adoption). In addition to the provision of financial incentives, the
interventions also include a self-contribution component and health insurance
incentives. It is important to mention that though the data was collected under the
FINISH program, it does not include the impact of any policy intervention
implemented.

Descriptive Statistics.

The data used in this project comes from the regional locality of Gwalior located in
the state of Madhya Pradesh, India. With only 28% of population with access to
sanitation, Madhya Pradesh ranks 30 out of a total of 36 states in the country in order
of sanitation coverage. The sample size comprises of 1451 households observed over
the two survey periods 2009− 10 and 2012− 2013 from 42 village groups. The
FINISH sample comprises of a detailed household survey which includes a rich set
of information on household demographics, household members and household
head, education, earnings, asset accumulation and consumption values as well as
information on sanitation adoption. The dataset also comprises of village level
demographics which includes information on daily wage rate for labour, presence of
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drainage infrastructure and availability of public sanitation facilities within the
village.

Table (4.1) provides descriptive statistics for a few variables of interest across the two
period panel. The household head is on average 43 years of age with primary school
education.9 A typical family consists of 5 household members half of whom are
female. Home ownership rates are high with close to 90% of household heads owning
their house. Cash-in-hand refers to the total annual income and liquid assets available
to the household for consumption. The stock of assets which also includes savings
in the bank is between 8% and 10% of the total available resources for consumption.
Income earnings and stock of asset values are deflated to 2010 values.

Cost of Sanitation.

Data on the cost of sanitation was collected in July/August 2012 across all villages.10

The price measure is based on the cost of building the most common type of sanitation
facility in the local region i.e., ’Twin Pit Pour Flush’ (TPPF) unit. All households
within a village face the same price. The price measure comprises of two components:
the total cost of raw material and the cost of labour required to build the facility itself.
The price measure varies across villages in both components. The formula applied to
construct the price measure is as follows:

Price variation across villages g:

• wageg : Daily (informal) wage rate which varies across villages.

• days: Approximate time to construct a ‘Twin Pit Pour Flush’ (TPPF) variation
between 3− 4 days. TPPF is the standard and most popular sanitation design
unit implemented by the government under the Total Sanitation Campaign
(T.S.C)

• costg (rawmaterials): Cost of raw material (cost of five principle materials used
in the construction of a TPPF unit) which include — Bricks, Mortar, Tiles,
Ceramic fixtures & Tin sheets.

priceg =wageg×days+costg (rawmaterials)×quantity(kilogram/piece/unit)

(4.2.1)
9Primary School in India is up to year 5 with a total of 12 years of primary and secondary education.

10The information used to construct a measure for the cost of sanitation was collected independently
of the household survey. I received helpful advice and assistance from the Gwalior Nagar Nigam Seva
municipal authorities in the collection process.
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The main source of variation arises from the cost of raw materials which varies
across villages and comprises close to 70% of the total cost of sanitation incurred. A
point to note here is that the raw materials used in sanitation are widely produced and
demanded in the region on a large scale for other domestic and commercial
construction. The demand for these products for the purpose of building sanitation
constitutes a very small proportion of the overall demand for the goods in the
region.11

Age profiles. The life-cycle profiles of interest include sanitation adoption and asset
accumulation by age of household head. Figure (4.1) depicts the dynamics that the
model should be able to replicate. Appendix (4.8.1) describes the way in which life-
cycle profiles are obtained using data from different age cohorts. Sanitation adoption
varies over the life-cycle of a household head with 37% prevalence among 20 year
household heads to just over 70% prevalence by the age of 75. There is a relatively
steeper increase in the proportion of adoption between the age of 20 and 26 while
adoption tapers off to be flat past the age of 55. The asset stock profile (per Rs. 1000)
depicts a hump shaped profile with a steady accumulation of assets up to the age of
55, past which the household de-cumulates to almost it’s initial stock of assets by the
age of 75.

11Table (4.7) in the appendix provides details on variation of price and sanitation prevalence by
village.
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4.3 Model

This section describes the model which provides a framework to evaluate the impact
of different policy interventions on household demand for sanitation. A household is
taken to be a single decision making unit where the household head is identified as
the primary decision maker. The model closely matches the observed adoption
behaviour over the life-cycle, and is designed to capture the key trade-offs faced by a
decision making household. Specifically, the structure incorporates features that
influence a household’s net utility from adoption: (i) the cost of building sanitation,
(ii) the impact of binding liquidity constraints, (iii) the strength of the idiosyncratic
taste shocks for having sanitation at home and, (iv) the impact of changes in the
sanitation coverage within the village. The increase in sanitation coverage within a
village can generate spillover effects that are not necessarily internalized by
individual households. The impact of such externalities is captured through an
interdependence in household demand for sanitation, where the gains derived from
having sanitation also depend on the adoption decision of the village as a whole.12

The interdependence is modelled as a strategic interaction among households under
incomplete information.13 An individual household evaluates it’s private utility from
adoption against the social benefits it derives through the spillover effects. The key
difference of the structure from a single agent model is that instead of acting in
isolation households solve an inter related system of dynamic programming
problems given expectations about adoption decision of other households. Under
rational expectations, in equilibrium a household’s actions must be optimal given
their beliefs and their beliefs must be correct on average. In addition, households are
also restricted from borrowing against their future income. Thus, the present decision
to buy sanitation induces an inter temporal trade-off with savings that could instead
be used to insure future consumption against income shocks.

This section describes the primitives of the model, including household’s information
set and choices, state variable transitions and the timing of choices along with a
specification of the household problem. I also describe the Markov Perfect
Equilibrium within the model and possible multiplicity of equilibria. Lastly, I discuss
the identification of the primitives and the assumptions employed to identify the
parameters of interest.

12Externalities in the model can be generated from different underlying mechanisms for e.g. health
externalities, information spillovers, amenity agglomeration effects as well as peer conformism effects.

13Under incomplete information the information set of a decision making household is only partially
observed by other households including the econometrician.
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4.3.1 Model Specification

There are a finite number of village groups indexed by g = 1, ...,G and each village is
the relevant reference group for a household. Let N denote the set of households that
belong to each village indexed by i = {1,2, ...,N}.

Choice Set. A household head makes decisions based on his or her age a over a
finite horizon, where a = 20, ...,75 and A denotes terminal decision making age. In
addition, within a village different ’aged’ households interact with each other where
the dynamics evolves over calendar time t = 1, ...,∞.14 At each age a until terminal
age A , a household who is alive at time t can choose a pair (dit ,cit), where dit ∈Dit =

{0,1} denotes choice to adopt sanitation today or wait until the next period:

dit =

0 Nonadoption

1 HH adoptssanitation

and cit ∈ Cit denotes the consumption choice today which determines the amount
saved for tomorrow Ait+1. A household’s choice to adopt sanitation is an absorbing
state where kit = kit−1 + dit denotes status of sanitation adoption.15 In each period t,
different ‘aged’ households simultaneously decide whether or not to adopt sanitation.
The vector of all household actions in period t is given by dt = (d1t ,d2t , ...,dNt) and
ct = (c1t ,c2t , ...,cNt).

State variables. Each household i is characterized by a vector of state variables that
affect utility: xit and εit . A household’s decisions are based on the age of the
household head ait , stock of assets Ait , income yit , state of adoption kit−1, cost of
sanitation adoption price and the level of existing sanitation coverage kt−1 within the
village it resides. Decisions are also based on a household specific idiosyncratic taste
for sanitation εit =

[
εd=1

it , εd=0
it
]

which is a private information shock possessed by
household i and unobservable to all other households −i and the econometrician.
Household i specific state vector is denoted by(
xit ,ε

d
it
)
=
(
ait ,Ait ,yit ,kit−1,kt−1, price,εd

it
)
. An augmented state space is given by(

x̃it ,ε
d
it
)
=
(
ait ,Ait ,yit ,kit−1,kt−1,ξit , price,εd

it
)

where ξit ∈ xit is an allowance for

14The village economy can be viewed as an overlapping generations framework of household heads
aged between 20−75 years old.

15I do not observe destruction of sanitation units over the two samples in the data. Also treating
sanitation adoption as a binary choice is reasonable in the context of rural India where almost all
household have at most one toilet/sanitation facility per household.
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measurement error in income.16 Both taste shocks εit and measurement error ξit are
assumed to be independently distributed (i.i.d) across households and time periods.

Information Set, Expectations and Timing. In addition to its own states a
household’s decision to adopt also depends on the adoption decision of other
households in the village. Under private information a household forms expectations
about the sanitation adoption behaviour of others based on the common knowledge
information set xt = (xit ,x−it).17 A household learns taste shock εi prior to making
it’s own choices, but other households’ taste shock ε−it remain unknown to i.

ASSUMPTION COMMON INFORMATION: The state vector xt = (x1t ,x2t , ...,xNt) de-

notes the common knowledge information set at time t observable to all house-

holds that belong to the same village.

ASSUMPTION PRIVATE INFORMATION: The choice specific taste parameter εd
it are

private information shocks and are assumed to be distributed i.i.d across

households and time.

Though a household receives instantaneous utility from its consumption choice in
period t, it only enjoys utility from its sanitation decision in the following period.
This is because it takes time to build a sanitation facility at home which results in a
delay between when an adoption choice is made and when the facility can be used
and enjoyed at home. Similarly, the level of sanitation coverage kt−1 which is a state
observable to all households at the start of period t captures the impact of underlying
externalities generated by the level of adoption up to period t−1.

ASSUMPTION TIME TO BUILD: A household that chooses to adopt sanitation in

period t may only realise gains from choice dit = 1 in the following period.

16In addition to the taste shock ε the econometrician also observes a noisy measure of income. The
notation

(
x̃it ,ε

d
it
)

will be used extensively when the model is taken to data and estimated in the following
section.

17Since the household problem is defined over its life-cycle, where choices are made over age a the
state vector denoted by xat = (xit ,x−it |ait) is used when describing the household problem, where xat
indexes the household i′s information set at age a.
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Household Income. The earnings function is modelled as an exogenous process for
the household unit.18 The log earnings in the current period id given by:

ln yit = f (ageit ,edui)+ zit

zit = zit−1 +uit , ut ∼ N
(
0,σ2

u
) (4.3.1)

where f (·) is a function of the age and education of the household head.19 The
permanent component follows an A.R.(1) process with variance σ2

u for innovations.
In taking the model to the data measurement error shocks in income ξit are added to
allow for a non degenerate model. The shocks ξit assumed to be identically
distributed across time and households with mean zero and variance σ2

ξ
. See

Appendix (4.8.2) for further details on specifications.

Budget Constraint. The main motive for asset accumulation in the model is to
finance the purchase of a sanitation facility, insure future consumption against
income fluctuations and respond to preference shocks. I assume a standard inter
temporal budget constraint augmented for the cost of sanitation (price) to relate
future assets to the current stock of asset Ait , income yit , and consumption cit .

Ait+1 = R(Ait + yit− cit− price∗1 [dit = 1]) (4.3.2)

All households in the same village face the same sanitation purchase price i.e., the
cost of building sanitation at home.20 The initial stock of assets for household i is
assumed to equal Ai0 = A0 (edui). The real interest rate r, R = (1+ r) is the rate at
which a household saves and accumulates wealth.21 Households are allowed to save
and accumulate assets but are unable to borrow against their future income.

Ait ≥ 0 (4.3.3)

18The model does not include the employment decisions of the household head or other members.
Each household observed in the data derives a collective annual income amongst all household members
where the head is the primary earner.

19In northern India the role of household head is culturally assigned to eldest working male (female,
if widowed) who is also the primary earner and/or highest educated member within the household. It
is assumed that household heads acquire all relevant education by the age 20. Thus edui refers to the
education level at ait = 20 with no further evolution in education attainment.

20The model does not allow for dynamics or uncertainty in the price process.
21The real rate of interest is set to r = 0.02 based on an approximation from interest rate data over

the past 50 years from the Reserve Bank of India (RBI)
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The exogenous borrowing constraint restricts households from holding debt at any
age a and time t and thus affects the inter temporal allocation of resources over the
lifetime. The constraint may bind for a liquidity constrained household that would
otherwise borrow against future income to smooth consumption and/or to purchase
sanitation. Given preferences, the constraint may differentially bind over consumption
and sanitation adoption choices. In practice the income distribution is modelled as
a truncated normal governed by a lower bound parameter. In this case borrowing
constraints may bind in a household’s decision process.

Sanitation Coverage. Within a village the level of sanitation coverage is denoted by
the average level of adoption and evolves according to:

kt = kt−1 +
1
N

N

∑
j=1

d jt j = 1, ...,N (4.3.4)

where state k denotes the existing level of sanitation each period and ∑
N
j=1 d jt is the

sum of the adoption choices made by households in each period. The sanitation
coverage k captures the level of externality generated by the cumulative actions of all
households within the village.

4.3.2 Strategies and Utility

Strategies. The strategy space σ of each household consists of a tuple
σit (xt ,εit) = [δit (xt ,εit) ,co

it (xt .εit)] where δ denotes the adoption decision rule and co

denotes the policy function for consumption.22 Let σt = {σit (xt ,εit)}N
i=1 be a set of

strategy functions which are associated with a set of conditional choice probabilities
(CCPs) for sanitation adoption Pσt =

{
pσt

i (dit |xt)
}N

i=1 such that:

pσt
i (dit |xt) =

ˆ
1{dit = δit (xt ,εit)} g(εit)dεit (4.3.5)

which represents the expected adoption behaviour of household i from the point of
view of other households −i, when household i follows strategy profile σit and other
households follow σ−it , and σt = [σit ,σ−it ] denotes a strategy profile. The choice
probability is conditioned on all relevant observable information summarized by xt at
time t.

22The policy function for the optimal consumption co
it (xit ;σt) is given by the maximization of the

household problem described in the next section.
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Preferences. A household derives utility from consumption cit , state of adoption kit−1

and the level of sanitation coverage kt−1 and evaluates the benefits from sanitation
against the cost of purchase. The per period utility for household i below the age
a< A at time t is specified as:

u
(

cit ,dit ,xit ,ε
d
it ;θ

)
= cν

it
[
1+ηkit−1 +φkt−1

]
+αagei s(agei,kit−1)+ γkit−1kt−1 + ε

d
it

(4.3.6)

The private preference for sanitation εd
it enters as an additively separable shock. The

first term on the right hand side of Equation (4.3.6) represents individual utility from
consumption (cit) and parameter 1 − ν denotes the coefficient of relative risk
aversion. A household also enjoys direct utility from having sanitation at home in the
form of convenience and other salient benefits, captured by αage which may vary by
the age of household head.23 The non-separability between sanitation and
consumption choice is captured by parameter η. Interacting the utility from
consumption with adoption status captures potential complementarities that arise
from sanitation adoption that improves latent health status and increases utility from
food consumption. In addition to private convenience a household also derives
additional benefits from the level of sanitation coverage. For example, a household
may derive health benefits from residing in a village with a higher level of sanitation
coverage and thus a lower degree of environmental pollution. Sanitation coverage
level kt−1 denotes the fraction of households who have adopted sanitation by the end
of the last period. The level of adoption in a village affects an individual household’s
utility through it’s own adoption status captured by γ as well as through the impact on
private consumption denoted by φ. The utility function u(·)→−∞ for cit → 0 which
restricts adoption for households whose present cash-in-hand does not cover the cost
of purchase i.e., Ait +yit < price∗1 [dit = 1]. The preference specification reflects the
time to build assumption where utility for i in period t depends on

(
cit ,kit−1,kt−1

)
instead of present choice dit .

Since the adoption decision is a function of the sanitation prevalence within a village,
aggregate village level characteristics may also affect the utility from sanitation and
thus are an important feature to incorporate. For example, households in villages
with drainage infrastructure and piped water supply are collectively more likely to

23A report from the World Bank noted that female members of the household also enjoy a degree of
personal safety from having a sanitation facility at home. The outside alternatives e.g. open fields or
public sanitation facilities are associated with a higher degree of risk to personal safety especially for
women.
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adopt, and these villages are also where the existing sanitation coverage is high
compared with villages with no drainage or water supply. To capture unobservable
group level effects, I allow for a village specific ‘fixed effect’ by allowing the the
location parameter µ(mean) of the difference of the taste shock εit to vary across
villages. These location parameters act like ‘fixed effects’ capturing the impact of
village specific characteristics not explicitly modelled or observed by the
econometrician.24 Under discrete choice, only the relative flow utility of sanitation
adoption relative to non-adoption are identified and the parameter µg shifts this
difference in values across villages.

4.3.3 Household Problem

Households are forward looking and make decisions so as to maximize the present
discounted value of the expected future utility subject to a set of constraints:
(4.3.1),(4.3.2),(4.3.3) and (4.3.4). At each age from a = 20− 75 a decision making
household who is alive at time t chooses how much to consume cit and save for the
future. In addition, households that have not adopted sanitation kit−1 = 0, also choose
whether or not to adopt dit after observing their current period cash-in-hand, given
cost of adoption (price) and level of sanitation coverage kt−1. Using the Bellman
principle, the dynamic problem of maximizing the expected lifetime utility under a
given strategy σt for household that have yet to adopt i.e., kit−1 = 0 can be
formulated as:

V k=0
i (xt ;σt) =

ˆ
max

dit∈Dit ,cit∈Cit

{
vσt

i (dit ,cit ,xt)+ ε
d
it

}
g(εit)dεit (4.3.7)

The function Vi denotes i′s ex-ante value or EMAX function which reflects expected
utility at the beginning of the period before private shocks are realized. While vi (·;σt)

denotes the choice-specific value functions:

vi (dit ,xt ;σt)= max
cit∈Cit

uσt
i (cit ,dit ,xit)+β ∑

d−it

∑
xt+1

Vi (xt+1;σt+1) fi
(
xit+1|xit ,dit ,cit ,d−it

) (
∏
j 6=i

pσt
j (d−i [ j] |xt)

)
︸ ︷︷ ︸

∑xt+1
Vi(xt+1;σt+1) f σt

i (xit+1|xt ,dit ,cit)

24This modelling assumption allows me to relax the independence of ε shocks across households
within a village in a specific way which yields as estimable parameter without loosing the tractability
of the structure under the i.i.d assumption. Details on the variation in the data that identifies µ are
discussed in the following section.
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For households that have already adopted sanitation i.e., kit−1 = 1 the value function
is given by:

V k=1
i (xt ;σt)= max

cit∈Cit
uσt

i (cit ,xit)+β ∑
d−it

∑
xt+1

Vi (xt+1;σt+1) fi
(
xit+1|xit ,cit ,d−it

) (
∏
j 6=i

pσt
j (d−i [ j] |xt)

)

where β is the discount factor and the expectation is over realizations of future states,
choices and shocks given the information set available to the household at time t. Also,
f σt
i (xt+1|xt ,dit ,cit) denotes the expected transition probability of observable states x

conditional on household i choosing (cit ,dit) integrated over the expected adoption
decisions of other household j 6= i. Households make decisions until terminal age A
with V (xt ,εit |ait = A ,σt) = 0.

Adoption Decision Rule. The household decision rule for sanitation adoption is given
by:

δit (xt ,εit ;σt)=

 1 i f vi (dit = 1,xt ;σt)− vi (dit = 0,cit ,xt ;σt)−µg ≥ ε0
it− ε1

it

0 i f vi (dit = 1,xt ;σt)− vi (dit = 0,xt ;σt)−µg < ε0
it− ε1

it
(4.3.8)

Consumption Policy Function. If kit−1 = 0, the policy function for the optimal con-
sumption is given by:

co
it (xt ,εit ;σt) = {δit (xt ,εit ;σt) = 1}cd=1

it (xt ;σt)+{δit (xt ,εit ;σt) = 0}cd=0
it (xt ;σt)

cd
it (xt ;σt) = arg max

cit∈Cit

{
uσt

i (dit ,cit ,xit)+β ∑
xt+1

Vi (xt+1;σt+1) f σt
i (xit+1|xt ,dit ,cit)

}
(4.3.9)

Solution. Given a strategy profile {σt}, a household’s maximization problem can be
cast as a finite horizon dynamic programming problem which can be solved via
backward recursion from the terminal age a = A . The solution to the household
problem would be a function of the underlying strategy profile. However, to ensure
consistency with the strategy played i.e., a household’s expectation about sanitation
prevalence and its future evolution are consistent, also requires the solution to a fixed
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point. The choice probabilities pσt
i (dit |xt) solve the coupled fixed point problem

defined by:

If households have yet to adopt sanitation i.e.,kit−1 = 0:

V k=0
i (xt ;σt) =

ˆ
max

dit∈Dit ,cit∈Cit

{
vσt

i (dit ,cit ,xt)+ ε
d
it

}
g(εit)dεit

and

Λi (dit |xt ;σt) =

ˆ
1
{

dit = arg max
dit∈Dit

{
vσt

i (dit ,cit ,xt)+ ε
d
it

}}
g(εit)dεit

and for households that have yet to adopt sanitation i.e., kit−1 = 1

V k=1
i (xt ;σt)= max

cit∈Cit
uσt

i (cit ,xit)+β ∑
d−it

∑
xt+1

Vi (xt+1;σt+1) fi
(
xit+1|xit ,cit ,d−it

) (
∏
j 6=i

pσt
j (d−i [ j] |xt)

)

and

Λi (dit |xt ;σt) =

ˆ
1
{

dit = arg max
dit∈Dit

{
vσt

i (dit ,cit ,xt)+ ε
d
it

}}
g(εit)dεit

Given a set of adoption probabilities Pσt =
{

pσt
i (dit |xt)

}N
i=1, the value functions

V k
i (xt ;σt) are solutions to the N Bellman equations and the function Λi (dit |xt ;σt)

denotes the best response probability function for each household i for a given
strategy σt .

4.3.4 Equilibrium

Expectations over the adoption decisions of other households, conditional on observed
states, allows an individual household to infer how the adoption coverage level will
update in the next period. Since the time t states and expectations summarize all
relevant information about other households in the village, a household’s behaviour
depends only on the current state xt and own current private shock. An equilibrium
under this markovian structure can be defined as follows:

The strategy profile σt = (σ1t ,σ2t , ...,σNt) is a Markov perfect equilibrium if and only
if, given the opponents profile σ−it , each household prefers the strategy σit to all
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alternative Markov strategies σ
′
it . That is, σt is a MPE for all households i, at all states

xt and all alternative Markov strategies σ
′
it .

Vi (xt ; σit ,σ−it ,θ)≥Vi

(
xt ; σ

′
it ,σ−it ,θ

)
for all i, xt , σ

′
it (4.3.10)

A household’s expected value under an alternative Markov profile σ
′
it given states can

be written recursively as:

Vi

(
xt ;σ

′
t ,θ
)
=Eε

[
ui

(
σ
′
it (xt ,εit) ,xit ;θ

)
+ εi (di)+β

ˆ
Vi (xt+1;σt+1,θ) f

(
xt+1|xt ,σ

′
it (xt ,εit) ,σ−it (xt ,ε−it)

)
dxt+1|xt

]

Existence of this equilibrium is a direct consequence of the finite horizon and finite
action-space following Maskin & Tirole (2001). Equation (4.3.10) describe a set of
inequalities which form the moment conditions constructed in the estimation
procedure in the following section.

Multiplicity of Equilibria. In general, there may exist more than one solution
to the system of equations in Equation (4.3.10). The multiplicity of the equilibria
arises due to the interdependence of household adoption decisions that are consistent
with distinct levels of sanitation coverage in equilibrium. At this stage the model
is incomplete without the specification of an equilibrium selection rule (ESR). This
‘incompleteness’ introduces a challenge with respect to the estimation of the model
where without an ESR the objective function is not well defined. This further adds
to the computational burden of having to repeatedly solve the model for all possible
equilibria under the dual specification above, for each candidate vector of parameters.
Even if it would be possible to solve for the entire set of equilibria there is still an open
question about the underlying equilibrium selection rule played, on which observed
behaviour does not provide any additional information. In order to move forward with
the estimation of the model, I impose the following assumption on the observed data.

ASSUMPTION EQUILIBRIUM SELECTION (SingleMPE): The data observed is

generated by a single Markov perfect equilibrium profile σ.

Under this assumption there exists a 1 : 1 mapping between the observed behaviour
in the data and the structural objects of the model which is discussed further in the
identification section below. The main assumption here is that for each village, the
data is generated by the same Markov perfect equilibrium profile. In practice, I pool
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data from multiple villages in which case Assumption SingleMPE, which requires
for the equilibrium selection to be consistent across villages, can prove to be
restrictive. The assumption that the data observed is generated from one of the
possible equilibrium affects the estimation of the reduced form objects i.e.,
conditional choice probabilities (CCPs). In order to consistently estimate the CCPs, I
divide the villages into subgroups based on village level observables and geographic
proximity. The underlying assumption being that villages close in geographic
distance and similar in village specific demographics may play the same equilibrium
selection rule which is consistent within that subgroup of villages.

4.3.5 Identification

Identification of preference parameters and village shocks. This section discusses
how specific elements of the state transitions and flow utility are identified from the
empirical moments. In the data, each period t choice and state combination implies a
probability distribution over period t + 1 states and these moments identify
parameters that govern state-to-state transitions f(·), including those for the income
earnings function.

Parameter vector θ in the flow utility function25 and the discount factor β are
identified through observed state dependent choice distributions. The CRRA
coefficient 1− ν, which measures the curvature in consumption utility function is
identified using the state dependent asset accumulation distribution. The variation in
the mean asset accumulation level by age of the household head traces out the
marginal utility of consumption. In addition, the change in the asset accumulation
(variance) across different age groups helps identify the degree of impatience
denoted by the discount factor β.

Similarly, the variation in the proportion of adoption by age of the household head
captures α(age). While variation in asset accumulation conditional on sanitation
adoption status helps identify η. Across village variation in the sanitation coverage
and asset accumulation conditional on adoption status provides identification of
parameters that govern the impact of the externality γ and φ. The exclusion restriction
provides exogenous variation in the sanitation coverage across villages. Unobserved
group effects are identified by observing the aggregate adoption choice within a
village that is consistently different from the choice distribution in another village

25utility function parametrized by θ = [ν,η,φ,α(age) ,γ,µg]where µg denotes mean of the taste
shocks capturing village level fixed effects.
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given the same set of states. Thus the residual variation from the adoption and asset
accumulation distribution of households conditional on coverage levels across
villages identifies village level fixed effects denoted by the location (mean) parameter
of the taste shock µg.
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4.4 Estimation

The model is estimated using a two step procedure that closely follows Bajari,
Benkard & Levin (2007)26 which extends the simulation based two-step approach of
Hotz, Miller, Sanders & Smith (1994) to the estimation of dynamic games. In
addition to the standard discrete choice, BBL (2007) also allows for continuous
choices. The estimation is divided into two steps. In the first step, I recover the
household’s policy functions for adoption and consumption, along with estimates for
the state transitions. Under rational expectations, households are assumed to have
correct expectations about their environment and the behaviour of other households.
As a consequence, by estimating the probability distributions for decisions and states,
under the SingleMPE assumption, I effectively recover a household’s equilibrium
expectation for sanitation adoption in the first stage. In the second stage, I recover the
structural parameters that rationalize the observed equilibrium choices as a set of
optimal decisions. Following BBL (2007), the conditions for optimality are
represented as a system of inequalities that require each household’s observed
behaviour to be weakly preferred to feasible alternatives at each state.

In this section, I describe the estimation procedure undertaken which differs from
BBL (2007) in the first stage. The key difference is the way in which the policy
function for the continuous consumption choice is obtained. The approach can be
viewed a hybrid of a two-step and full solution method to accommodate the
challenges that arise with limited data size.27 Instead of estimating the policy
function of consumption off the observed data, I instead incorporate the single-agent
(SA) model dynamic programming numeric solution to back out the consumption (or
savings) policy function. This is discussed in further detail below.

4.4.1 First-stage: Policy Functions & State Transitions

Decision Rule. The decision rule for sanitation adoption in Equation (4.3.8) is a
function of the choice specific value functions v(dit ,xt ;σt). Using the Hotz and

26From now on referred to as BBL (2007)
27Under a full solution approach, each household’s dynamic problem is numerically solved at all

possible states subject to the fixed point equilibrium condition to obtain the policy functions. The
two-step procedure bypasses the computational burden associated with solving the model, by directly
estimating the policy function off the conditional variation in the choices observed in the data. Though
the two-step eases the computational burden it instead places a burden, especially with continuous
choice, on the amount of observations required to consistently estimate policy functions from the
variation in the data.
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Miller (1993) inversion it is possible to recover the choice specific value functions by
inverting the observed choice probabilities at each point in the state space. Under the
Type 1 extreme value distribution assumption on the taste shocks the inversion takes
the familiar form for a binary discrete choice:

vi (dit = 1,xt ;σt)− vi (dit = 0,xt ;σt)−µg = ln [pi (dit = 1|xt)]− ln [1− pi (dit = 1|xt)]

It is sufficient to recover the difference in the choice-specific value functions to recover
the decision rule:

δ̂it (xt ,εit ;σt)=

 1 i f ln [p̂i (dit = 1|xt ; ψ̂)]− ln [1− p̂i (dit = 1|xt ; ψ̂)]≥ ε0
it− ε1

it

0 i f ln [p̂i (dit = 1|xt ; ψ̂)]− ln [1− p̂i (dit = 1|xt ; ψ̂)]< ε0
it− ε1

it

where p̂i (dit = 1|xt) is an estimate of the choice probability of adoption conditional
on the state variable xt and ψ̂ denotes a vector of first stage parameters employed in the
estimation of the choice probabilities. In general the estimation of conditional choice
probabilities (CCPs) would require a fairly flexible specification. However, with a
state space that includes continuous variables and restricted sample size, flexibility
is difficult to achieve in practice. In addition, the CCP estimates are divided into
groups based on village level observables and geographic proximity to account for the
underlying equilibrium selection rule. Table (4.5) in the appendix provides first stage
CCP estimates. In addition to the chosen parametric specification in Table (4.5) other
alternative specifications were tried beforehand.

Consumption Policy Function. In principle, the consumption (or savings) policy
function is directly estimable from the observed distribution of consumption (or
saving) conditional on the adoption decision.28 However, to obtain consistent
estimates for either consumption or savings from observed conditional variation
makes further demands from the existing dataset on the amount of observations
within each state partition cell. Instead, I propose to solve for the consumption policy
function using the numeric solution for a single-agent dynamic problem.

Hybrid. Given that the strategic element is with respect to the sanitation decision
and the consumption decision is affected indirectly through adoption it is possible to
decompose the model into smaller individual maximization problems. This parallels

28Provided that, for all adoption choice and states, the policy function co (x,ξ) is strictly increasing
in the measurement error shock in income ξ. Under this monotonicity assumption, the policy function
co provides a 1 : 1 mapping from the space of shocks ξ ∈ K to the space of continuous consumption
choice C for all adoption choices and states. For additional details refer to Appendix (??)
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the second feature of equilibrium models, namely that household’s maximize expected
discounted utility given their expectations about the decisions of other households and
the evolution of the relevant states.

A point of note is that the hybrid procedure follows naturally from the structure of
the model which allows me to divide it into smaller parts. Conditional on the
probability of adoption the model can be viewed as a single agent dynamic
programming problem which can be estimated using a variety of standard techniques
such as the nested fixed point approach Rust (1997). Instead of fully solving the
model given the fixed point, I only solve an individual household’s problem
conditional on the strategy played in the village. Given expectations on the adoption
decision of other households, an individual household solves its own life-cycle
problem of sanitation adoption and consumption. To take an expectation over future
income, the integral is approximated by discretizing the income process and
approximating it with a discrete state Markov process like in Tauchen (1986).

The single-agent sanitation adoption and consumption problem is solved at all
possible state realizations. The consumption (or saving) policy function is obtained
by maximizing the value function. In practice, an NLOPT procedure is used under a
variant of Nelder-Mead method. The continuation value is obtained using an
Interpolation approach. The initial conditions are imputed from the observed data at
age a = 20. The solution also builds the evolution of the deterministic state transition
functions. The inter temporal budget constraint governing asset stock evolution
depends on the consumption and adoption decisions made. Both the budget
constraint and the liquidity constraint faced by an individual household are built into
the SA solution which determines the optimal consumption and saving policy at each
point in the state space.

Exogenous State Transitions. The income process described in Equation (4.3.1) is
estimated directly from the observed data. Income is modelled to be a function of
age, education and education-squared. Table (4.3) lists the parameter estimates for the
income process. Income increases with human capital (as measured by education) but
at a decreasing rate. Age effects vary, with lower wage predicted for households with
older household heads.

Evolution of Sanitation Coverage. In addition, the SA solution is also solved over a
grid of sanitation coverage states k at all points. I discretize the realizations of
sanitation prevalence over a 100 grid points in the numeric solution. The law of
motion for sanitation coverage within a village k is generated/determined in
conjunction with the forward simulation procedure in the next stage. I also assume
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that an individual household’s adoption choice today (t) has an infinitesimal change
on the level of sanitation prevalence tomorrow (t + 1) given that households interact
in relatively large village groups.

4.4.2 First-stage: Value Functions

The first stage estimates of the policy and transition functions are used to construct
estimates of the value functions which form the moment conditions employed in the
second stage. A forward simulation procedure is used to estimate the ex-ante value
function Vi (xt ;σt ,θ) for each household i at state xt . The procedure allows me to
obtain an estimate of the value functions for different strategy profiles σt given a
parameter vector θ. It is important to note that the forward simulation relies on the
assumption that each household i has perfect foresight on the states of its neighbours
in the future periods i.e., average assets, income and age.29 A single simulated path is
obtained as follows:30

V̂i (x̃t ; σ,θ) =
1
S

S

∑
s=1

T=A

∑
τ=t

β
τui (x̃τ,στ (x̃τ,ετs) ;θ)+ ε

d
iτs

1. Starting at state x0 = xt = (xit ,x−it)

2. Draw shocks
(
ε1

i0s,ε
0
i0s,ui0s,ξi0s

)
for each household i

(a) By drawing measurement error shocks in income the state space augments
to x̃i0s = (x0,ξi0s)

3. Using the policy function estimate
σ̂i (x̃0,εi0s;ψ1) =

[
δ̂i (x̃0,εi0s;ψ11) , ĉo

i (x̃i0;ψ12)
]

compute the specified choices(
di0s,co

i0s
)

for each household i and the resulting per period utility
ui
(
di0s,co

i0s,xi0;θ
)
+ ε

di0s
i0s

4. Using the estimated transition functions f̂
(
·|di0s,co

i0s, x̃i0s,ψ2
)

draw a new state
x̃i1s for each one of the households i and move forward to the next period

• Hybrid: The evolution for k is determined by aggregating the adoption
decisions for all households, k1s = k0s +

1
N ∑i di0s

29In future work an idea would be to relax reliance on the somewhat strong assumption of perfect
foresight.

30The forward simulation to construct Vi for each household is performed village by village using
the relevant conditional choice probability estimates.

115



5. Forward simulation entails repeating steps 2-4 for each household i, t = T peri-
ods forward i.e., till each household reaches terminal age A

6. Steps 1-5 generates a single path of play for each one of the households

7. The entire process is repeated for S draws of shocks and average i’s discounted
sum of utilities over the S simulated paths.

Averaging over the S simulated paths gives an estimate V̂i for the value function
Vi (xt ;σt ,θ). Such an estimate can be obtained for any (σ,θ) pair, including the (σ̂,θ)

where σ̂ is the policy estimate from the first-stage estimation. It follows that
V̂i (x; σ̂,θ) is an estimate of household i′s sum of discounted utility from σ̂i given the
strategy of other households σ̂−i, where σ̂ = (σ̂i, σ̂−i). Note that under the optimal
strategy σ∗, Vi (x; σ∗,θ) denotes the solution to the bellman equation while for an
arbitrary strategy σ, Vi (x; σ,θ) denotes the value function at an arbitrary strategy σ.

4.4.3 Second-stage: Structural Parameters

The second stage combines first stage estimates with the necessary conditions for
equilibrium from the model, to recover the structural parameters that rationalize the
observed policies as a set of optimal decisions. The equilibrium inequalities in
Equation (4.3.10) define a set of parameters that rationalize the underlying strategy
profile σ as a Markov perfect equilibrium (MPE) of the game.31 Under the
assumption of Assump : SingleMPE and Assump : Excl.Rest the second stage
estimator discussed in BBL (2007) yields standard point estimates of the parameters.
Following the notation of BBL (2007) I define an equilibrium condition as:

gi

((
i, x, σ

′
i

)
λ

; θ,ψ
)
=Vi(λ)

(
x(λ); σi,σ−i,θ,ψ

)
−Vi(λ)

(
x(λ); σ

′
i(λ),σ−i,θ,ψ

)
where λ ∈ Λ indexes the equilibrium conditions denoted by a combination

(
i, x, σ

′
i

)
and ψ denotes parameters from the first-stage process. Each inequality indexed by λ is
satisfied at θ,ψ if gi

((
i, x, σ

′
i

)
λ

; θ,ψ
)
≥ 0. The model’s parameters are estimated as

the solution to this system of inequalities by employing a minimum distance estimator

31BBL(2007) denote Θ0 as the set:

Θ0 (σ, f ) :=
{

θ : θ, σ, f satisfy (4.3.10) for all x, i, σ
′
i

}
The goal of the second stage is to recover Θ0 using the first stage estimates of the policy functions σ

and transitions functions f . Depending on the model and its parametrization, the set Θ0 may or may
not be a singleton.
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that minimizes violations of these optimality conditions. The objective function that
is minimized is given by:

Q(θ,ψ) =

ˆ (
min

{
g
((

i, x, σ
′
i

)
λ

; θ,ψ
)
,0
})2

dH (λ)

where H (·) is the distribution over the set Λ of inequalities.32 Under the assumptions
that ensure the model is point identified and that H (·) has a sufficiently large support,
Q(θ,ψ)> 0 for all θ 6= θ0.

Parameter θ is estimated by minimizing the sample analogue of the objective function
at ψ = ψ̂.33

Qn (θ, ψ̂) := 1
nI

∑
nI
k=1

(
min

{
ĝi

((
i, x, σ

′
i(k)

)
λk

; θ, ψ̂

)
,0
})2

θ̂ argminθ∈Θ Qn (θ, ψ̂)

(4.4.1)

where ĝi (·) is the empirical counterpart to g(·)

ĝi

((
i,x,σ

′
i(k)

)
λk

; θ, ψ̂

)
= V̂i(λ)

(
x(λ); σ̂i, σ̂−i,θ, ψ̂

)
−V̂i(λ)

(
x(λ); σ

′
i(λk)

, σ̂−i,θ, ψ̂
)

By constructing empirical counterparts to all or a subset of the equilibrium
inequalities using the forward simulation procedure described in section (4.4.2) the
idea is to search for values of θ that minimizes the violations of these inequalities.
Standard errors are computed using a bootstrap procedure. Further details are
provided in Appendix (4.8.2).

4.4.4 Parameter Estimates

The model has a total of 74 parameters. I focus here on a subset, in particular on the
estimates describing preferences obtained in the second stage in Table (4.2).34

Utility in the model is derived from consumption and having sanitation at home.
Everything else equal, households derive higher utility from having sanitation at
home with the differential effects based on the age of the household head. The
estimate of ν indicates a decreasing marginal utility of consumption. While the

32The true parameter vector θ0 satisfies Q(θ0,ψ0) = 0 = minθ∈Θ Q(θ,ψ0) where Θ contains θ0.
33The Nelder Mead algorithm was employed to minimize the objective function. Monte Carlo

simulations were performed using simulated data to understand the properties of the BBL (2007)
estimator.

34A complete list of the parameters estimates is provided in Appendix (4.8.4), which includes first
stage estimates in Tables (4.3) -(4.5) and the estimates for the village level fixed effects µ̂g in Table
(4.6).
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parameter η indicates a marginally higher return derived from food/other
consumption by having sanitation at home. Households also derive additional utility
from the aggregate coverage of sanitation within the village. This effect is captured
by the positive parameter estimates for γ and φ which capture the non-separable
effect of average sanitation coverage on the additional gains a household derives
from it own consumption and sanitation.

4.4.5 Model Fit

The fit of the model is evaluated along two dimensions: life cycle profiles and
aggregate sanitation coverage observed in the data. The model closely matches the
observed behaviour for sanitation adoption choices as well as asset accumulation
over the life-cycle. Figure (4.2) plots the empirical and model generated profiles for
the fraction of sanitation adoption (4.2.a) and mean assets (4.2.b) by age of the
household head. The estimation procedure does not directly employ the empirical
age profiles as moments in the estimation of the structural parameters and thus the fit
can be viewed as one ‘non targeted’ moments. Overall the model replicates
household behaviour over the life cycle in terms of sanitation adoption fairly well.
There exists discrepancy at older ages, the model predicts higher adoption levels than
observed in the data past the age of 55. Additional discussion of the model fit with
respect to the sanitation coverage across villages observed in the data is included in
Section (4.5.2).

Impact of Liquidity Constraints. As a robustness check, I also look at how the
simulated sanitation adoption behaviour would change if the underlying model were
to be re-estimated without restricting households from borrowing against their future
income. I re-estimate the model where under the forward simulation procedure
differently from before I allow households to have negative asset holdings (debt)
based on optimization of their consumption and sanitation choice subject to the
natural borrowing constraint and terminal age conditions.35 The re-estimated
preference parameters are provided in Table (4.4) in the appendix.

Figure (4.3) plots the simulated sanitation adoption profile under the re-estimated
model along with the empirical profile. Under relaxation of the liquidity constraints
the model simulation predicts a marginal increase in the proportion of sanitation
adoption at each age. Though small, the gap between the two model generated
profiles decreases with age. This is driven by the model feature where conditional on

35Each household must leave terminal age A without debt i.e., AA+1 ≥ 0.
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not being liquidity constrained households find it optimal to adopt sanitation earlier
rather than later in life so as to enjoy the utility from sanitation over a longer time
horizon. The maximum difference between the two simulated profiles is less than
7% and the profile generated under relaxed borrowing constraints is well within the
95% confidence interval bounds estimated under the model with liquidity
constraints. Overall, it is possible to conclude that the household sanitation adoption
behaviour under the model where borrowing is fully restricted is robust under this
assumption. Though the model where borrowing is fully restricted is taken as a good
fit of the data, this exercise does not necessarily conclude that the observed
households are indeed liquidity constrained, as the constraint At ≥ 0 may not
necessarily bind for all households. Further analysis of this issue is included with the
counterfactual policy simulations in Section (4.6).

4.5 Simulation of Sanitation Adoption

In this section, I outline the simulation method to determine sanitation equilibrium
levels under different counterfactual environments. Under single agent models the
underlying assumption is that each household’s outcome varies only with its own
policy treatment. To accommodate the presence of externalities, I need to allow a
household’s outcome to also depend on the outcomes of other households impacted
by the policy thereby allowing for multiple equilibria in counterfactual environments.
In order to conduct counterfactual experiments in models with multiple equilibria,
one approach would be to define the Equilibrium Selection Mechanism (ESM) and to
compute the full set of equilibrium under estimated parameter values. However, even
if it would be possible to compute the full set equilibria,36 observed behaviour does
not provide any additional guidance on the underlying equilibrium selection rule
played.

Most examples in the literature instead impose an equilibrium selection rule ex-ante
under which the model is both estimated and simulated for counterfactual policies. A
key limitation of this approach is that it does not allow for the possibility that the
equilibrium selection mechanism may itself change under counterfactual

36Iskhakov, Rust & Schjerning (2016) propose an algorithm, Recursive Lexiographic Search (RLS)
that attempts to solve for all Markov Perfect Equilibria for a class of Markovian Games that they
define as Directional Dynamic Games (DDG). The directional property of the game is defined over the
stochastic evolution of certain state variables other than the passage of calendar time or age. Under
certain conditions the model in this paper also satisfies directionality in the evolution of the sanitation
coverage within a village.
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environments. Thus the policy simulation given a selection rule may not be valid
under a different counterfactual environment.

My approach here differs, instead of solving and simulating for all possible equilibria
I instead bound the set of possible equilibria by an upper and lower limit. To evaluate
the effect of counterfactual policies on equilibrium sanitation prevalence, I focus on
the resulting shifts in the upper and lower bounds based on changes to the underlying
environment.37 The approach of bounding the equilibrium set is appealing as it allows
for changes in the underlying equilibrium selection rules played under counterfactual
environments. However, a trade-off for this advantage is that it only allows one to
bound the region where the impact of the policy may lie. If the estimated bounds
under a policy simulation are too wide this would affect the precision of the policy
implications derived.

4.5.1 Strategic Complementarity

To ascertain household behaviour under counterfactual policies, I propose the
following approach. First, I characterize the conditions under which the model
implies strategic complementarity in the adoption decisions. Specifically, I verify
whether the household objective function displays the properties of a supermodular
game with respect to the adoption decision, i.e., the household preferences satisfy
Increasing Differences over the sanitation adoption dimension. Then I derive
conditions under which such a condition is sufficient to ensure that the set of
equilibria satisfies the ordinal properties that characterize supermodular games, i.e.
there is a highest and a lowest pure strategy equilibrium with respect to a household’s
sanitation adoption. I then exploit the properties of such a structure to characterize
the upper and lower bound of the equilibrium sanitation adoption level at village
level. The interpretation of the bounds obtained under the iteration procedure
depends the properties of the model described in this paragraph. The approach
extends a traditional result of supermodular games by employing a notion of
separability of the objective function over the choice set similar to Topkis (1978).38

A detailed derivation of the result is provided in Appendix (4.8.3). The argument is
arranged in three steps and is greatly simplified by the choice of timing employed in
the model i.e., ‘time to build’ sanitation.

37The idea of bounding the equilibrium set has previously been employed by Jia (2008), De Paula
(2009) and Bjorkegren (2014) in different contexts to solve and simulate the model under multiple
equilibria.

38Ref. Topkis (1978) Theorem (3.3)
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The intuition behind the main result is as follows. If household sanitation adoption
decisions are strategic complements, then a larger average level of adoption in the
village makes adoption - ceteris paribus - more attractive for every household. This
is the case if the household’s objective function satisfies Increasing Differences with
respect to the adoption decision. I prove that this condition is satisfied by the model
under weak assumptions. On the other hand, a larger average level of sanitation
adoption may change the trade-off of the consumption and saving decisions of a
household and this may, in turn, affect household adoption decisions. I show that, if
the parameter capturing the interaction between private consumption and average
level of sanitation coverage in the village: φ is sufficiently close to zero, then the
second channel vanishes. As a consequence, the existence of a highest and a lowest
equilibrium with respect of household sanitation adoption is ensured. This result
dramatically simplifies the counterfactual analysis, because in order to bound the set
of equilibria of the game with respect to the average level of adoption in equilibrium
it is sufficient to simulate bounds for two specific upper and lower equilibria.

4.5.2 Simulation Method

To compute the bounds for the set of equilibrium sanitation adoption levels, I use an
iterated best response algorithm to search for the fixed points. As explained above
the procedure does not attempt to recover all possible equilibria, but instead only the
upper and lower limits characterizing the set of possible equilibria. The algorithm can
be divided into two steps. I first construct a candidate adoption path using the forward
simulation procedure described in section (4.4.2) under estimated parameter values.
There are an initial set of households {ki0}N

i=1 who made their sanitation adoption
decision before my data begins, I hold their decision fixed. For baseline simulations,
the initial adoption level k0 is set equal to the sanitation level observed in the first
period of the data, such that at the first step of the algorithm households expect the
level of sanitation observed in the data.

In the second step, an iterative procedure is used on each candidate adoption path
to obtain a fixed point. The index τ denotes an iteration. Each candidate adoption
path and equilibrium identified depends on the initial adoption level k0 along with the
vector of observed states and taste shocks ε = {εi0}N

i=1 drawn. To locate the lower
and upper limits

(
k

L
, k

U
)

, assumptions are imposed on the future adoption path of
all households within a village. For the lower limit, I assume that each household i

believes that the level of sanitation in each subsequent period until i reaches terminal
age A remains at the initial level k0 under each iteration. Similarly for the upper limit,
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each household i believes that the level of sanitation in each subsequent period until
A is close to ≈ 100% coverage.

122



For the lower bound k
L:

1. Under the assumption that the future level of adoption remains at observed k
τ=1
0

till terminal age A (given iteration τ = 1)

2. Draw set of private taste shocks εi0 for each household i = 1, ...,N and allow
each household to optimize their decision, holding fixed the adoption path of
other households given assumptions about the future evolution of k

3. Compute utility and choices (dit ,cit) for each household i using the estimated
policy and transitions functions

4. Forward simulate each household’s choice problem until each household i

reaches A terminal age

5. With each move one period forward update the sanitation level k by averaging
over the adoption decisions for all households each period: k

τ=1
1 ,k

τ=1
2 ,k

τ=1
3 etc.

6. Continue forward simulation for each household updating the sanitation level k

till k
τ=1
M = 1.0 i.e., all household have adopted and obtain a candidate adoption

path denoted by vector
−→
k τ=1 =

(
k

1
0,k

1
1, ...,k

1
M

)
7. Repeat steps 1-6 under the same εi0 draws to obtain another candidate adoption

vector
−→
k τ=2 =

(
k

2
0,k

2
1, ...,k

2
M

)
• Where initial k

τ=2
0 level (starting point) is obtained by computing the

adoption decision rules for all households i under the assumption that−→
k τ=1 is the relevant adoption path played.

8. Iterate, using the path from the previous step to form the next adoption path.

9. Repeat until
−→
k τ+1 =

−→
k τ i.e., the adoption path vector in each iteration

converges to obtain the fixed point.

• The first element of this convergent vector
−→
k τ+1 is obtained as the lower

bound k
L

Similarly for the upper bound k
U the convergent vector is obtained by repeating the

process starting at the observed level of k0 but under the assumption that next period
onwards the level of sanitation adoption is ≈ 100%. In this way the sanitation
adoption path vector converges with each subsequent iteration. The first element of
this convergent vector is obtained as the upper bound of the set. Since a candidate
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adoption path and the fixed point obtained is a function of εi0 shock drawn the
iteration procedure is repeated for multiple draws s of {εi0s}S

s=1 and the lower and
upper bounds are computed as the midpoints of the resulting distributions.39

Baseline Simulation

Under the estimated model, I run the simulation procedure on the same environment as
the data observed to get a sense of the model ‘fit’ at the aggregate village level. Using
data from the first period the model is simulated one period forward for the predicted
upper and lower bounds of the equilibrium level of sanitation. The upper and lower
bound simulations are computed for each of the 42 village groups observed in the
sample data. Figure (4.6) plots the model simulated bounds for the observed data
points in period two Data : S2 of the sample panel where the horizontal axis denotes
different villages in order of increasing sanitation prevalence.40 Though the model
simulated bounds are wide at certain points in most cases the sanitation prevalence
observed in the data lies within the bounds predicted by the model.

Properties of the Model. A key condition for the strategic complementarity in
sanitation adoption result in appendix (4.8.3), is that the parameter φ which captures
the effect of the externality on private consumption in the utility function is
sufficiently close to zero, φ ≈ 0. The parameter estimates from Table (4.2) show φ to
be a small positive value yet significantly different from zero.

Figure (4.7) overlays the simulated bounds under φ = 0.41 The simulated bounds
under the model where the value of φ is restricted to zero, are very close to the model
where φ is set equal to the estimated value. The simulated bounds in the figure show
a monotonic shift in the bounds, under the estimated model, with a deviation in the
value from φ = 0→ φ = 0.00514. Further robustness checks are performed in Table
(4.9) Since the bounds simulated under estimated parameter values θ̂ are close to the
bounds simulated under θ̃ : φ = 0 for which the theoretical result ensures existence of
a highest and lowest equilibria , I use the model estimated values under θ̂ to simulate
policy effects. Given that the upper bound predicted under θ̂ lies above the upper
bound under φ = 0, emphasis is placed on the lower bound of the policy effect.

39In practice, the iteration procedure is performed for 250 independent draws for the set of taste
shocks ε.

40Table (4.8) in the appendix provides a complete list of the simulated bounds at baseline for the
observed data in period two.

41Table (4.8) also computes the simulated bounds at baseline under the assumption that parameter
φ = 0.

124



4.5.3 Household Valuation of Sanitation

The estimated model can be used to place a valuation on sanitation for a given
household over its lifetime under a simulated equilibrium path. This section
describes the method used to convert the value of the having sanitation into a
monetary valuation by the household (in 2009 INR). To do this, I compute the
expected lifetime utility of being in state xit at each point in the state space after
having adopted sanitation at the first period. Similarly, it is possible to compute the
expected lifetime utility at each point in the state space under the scenario where
household does not adopt sanitation. In order to obtain the compensating variation, I
add income under the non-adoption scenario as a transfer into available cash-in-hand
at each possible state and then recompute the value. This procedure is repeated until
the household’s expected lifetime utility with the additional income transfer is equal
to its expected lifetime utility under sanitation adoption but without the hypothetical
income transfer. With externality effects I compute the present value of utility from

sanitation under each simulated equilibrium adoption path
(−→

k L,
−→
k U
)

. The

compensating variation or the willingness-to-pay amounts can be computed at
different points of the life cycle for a household given an adoption path.

Figure (4.8) plots the household valuation of sanitation in Indian Rs. (INR) as a
function of age of the household head. Figure (4.8) shows that younger household
heads place a higher valuation of sanitation since the gains from early adoption
persist over time. Similarly older household heads value sanitation less since the time
horizon to enjoy the benefits from having sanitation is shorter. The figure also plots a
valuation driven by the underlying spillover effects. The solid black line plots the
household valuation of sanitation without the endogenous effects driven by the
underlying externality. While the dashed plots the household valuation with the
endogenous effects incorporated at the upper and lower bound adoption paths
respectively. On average household valuation for sanitation ranges between
Rs.2,75,250 (lower) and Rs.4,30,500 (upper) which denotes a non-trivial amount
when compared with the average household lifetime income value of
Rs.23,76,000.42 The upper and lower bound for the valuation with spillover effects
lie above the valuation of sanitation made by a household acting in isolation. On
average the difference in valuation is 52% (lower bound) and 71% (upper bound)
higher once externality effects are accounted for.

42Lifetime income value approximated using survey data from the Gwalior Nagar Nigam Seva
information drive 2010-11.
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4.6 Policy Experiments

In this section, I examine the impact of different policy interventions on equilibrium
sanitation coverage and welfare. In the first exercise, the question of under-adoption
of sanitation is addressed by computing the socially optimal level of sanitation and
comparing it with observed levels in the data. The second application focuses on the
cost effectiveness of two specific policy interventions: sanitation loans and price
subsidies. If a policy maker’s objective is to maximize sanitation coverage? I
examine which of the two policies are more cost effective. The simulations show
how policy implications differ once externality effects are taken into account. In
order to quantify the effect of the externality, the impact of a policy is decomposed
into the private incentives (direct) from adoption and it’s impact through the spillover
effects (indirect). To contrast the policy implications based on maximizing coverage,
I compute changes in bounds of welfare based on maximizing total welfare instead of
coverage. Lastly, I study the dynamics of the age effects with potential implications
for policy targeting. The impact of a policy is measured by reporting changes in the
bounds of equilibrium adoption levels along with the household’s willingness-to-pay
for the policy under counterfactual scenarios.

4.6.1 Under-adoption of Sanitation

To determine if empirical sanitation coverage levels imply under-adoption, I compute
the socially optimal level of sanitation adoption by solving the social planner
problem for each village. I consider the problem of a constrained social planner
whose objective is to allocate sanitation along to households so as to maximize utility
subject to the total fixed endowment of resources. To compute the welfare under the
social planner’s regime, the following procedure is implemented: the total
endowment is computed by aggregating the total consumption and sanitation value
within a village. The marginal rate of technical substitution between consumption
and sanitation is given by the market cost of sanitation by village (priceg). The
planner induces households to solve the optimal adoption problem by re-allocating
the total endowment between food consumption and sanitation, so as to maximize
utility. I assume the planner maximizes a utilitarian Social Welfare Function (SWF)
with equal pareto weights assigned to each household within the village.43 By
changing the allocation of sanitation, moving resources between sanitation and

43The socially optimal level of sanitation depends on the choice of pareto weights used in the Social
Welfare Function (SWF).
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consumption, the algorithm searches for the policy functions that maximize total
household welfare until there is no other higher value attainable.

Results for a representative village are shown in Table (4.14). The total surplus
attained is equal to Rs.36 million with 81% sanitation coverage. Compared with the
baseline this reflects a 295.5% increase in household welfare and a 43.7% increase in
sanitation coverage. This exercise reveals that the existing sanitation levels observed
in villages are inefficient in the sense that households under-adopt sanitation and
instead allocate a larger share of resources to private food consumption. This
systematic under-adoption is driven by the under valuation of sanitation made by
each household that fails to internalize the total benefit generated from sanitation.
The difference in welfare attained between the baseline and social planner’s regime
reflects the cost of the externality induced by the divergence in the private and social
valuation of sanitation.

Table (4.10) computes the utilitarian planner problem for each of the villages based
on adoption level and endowment values in the first sample period. Based on the
sanitation coverage observed in the data and determined under the social planner
solution, the extent to which sanitation is under-adopted is computed for each of the
villages. On average, the privately chosen adoption levels in the data are 53% below
the socially optimal based on a utilitarian Social Welfare Function (SWF). In the
subsequent counterfactual exercises, the equilibrium levels achieved under different
policies are compared with the socially optimal adoption levels under the planner’s
problem.

4.6.2 Cost Effective Policy: Sanitation Loans and Price Subsidies

The social planner solution finds the observed sanitation levels to be below the
socially optimal and highlights the potential role of policy interventions to increase
sanitation coverage so as to increase total welfare. With a policy maker potentially
constrained by the total funds available for allocation it is important to understand if
the implemented policy is cost effective. The aim of this exercise is to understand
whether specific policies are more cost effective than others at maximizing sanitation
coverage. Specifically, I compare the simulated equilibrium coverage levels attained
under sanitation loans and price subsidy policies of different sizes for a fixed cost of
the policy. The objective under each policy is to correct the suboptimal allocation of
sanitation by targeting the underlying market failures faced by individual households.
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This analysis also relates to the current debate among policy makers in the field on
the appropriate choice of policy to tackle the under-adoption.

To evaluate cost effectiveness I benchmark each loan and subsidy policy against the
total cost of the policy to the government to allocate the respective policy. Both loans
and price subsidy policies can be allocated as a fraction (0,1] of the cost of sanitation
(priceg), where 1 denotes a 100% price subsidization or loan allocation. This
determines a grid of potential policy structures for which a series of policy cost
schedules and corresponding equilibrium adoption levels can be generated for each
village.

Figure (4.11) plots the policy cost schedules and sanitation coverage curves for both
price subsidies and loans across a grid of counterfactual monetary structures for a
representative village. As a conservative estimate of the policy impact the figure plots
only the lower bound response. The lower panel displays the relationship between a
gird of loans and subsidy policy structures and the corresponding total cost of policy
to the government body. The upper panel determines the sanitation coverage levels
attained over the same grid of policy structures. To calculate the present cost of a
loan I take an estimate of the rate of loan repayment in the local region of ≈ 60% to
simulate loan repayment by the village population in my model.

This allows me to interpolate the relationship between the total cost of the policy and
the sanitation coverage level attained for that cost of intervention in Figure (4.12). The
figure plots the lower bound response. Figure (4.12.a) plots the response for a village
that is initially at 0% coverage level and in the next period moves to a coverage level of
9%. I find that in villages with close to zero coverage sanitation loans are as effective,
if not marginally more, at achieving maximum coverage for a fixed cost of the policy.
As the cost of the policy increases the the effectiveness of the loan declines. The curve
for the loan stops past a certain total cost value beyond which households do not find
it optimal to adopt sanitation with the take-up of a loan, at which point there is no
incentive to provide a loan policy.

Figure (4.12.b) plots the same relationship except that the initial sanitation level is set
higher at 22%. The equilibrium cost curves show a very different pattern to panel
(4.12.a) where the subsidy policy is found to be more cost effective for all policy cost
values. There is also a sharp jump in the response from 0.22 to 0.69 for the price
subsidy evaluated at a policy cost value of Rs.5000(×1000 Rs). This is driven by
the social multiplier generated by the underlying externality effect. With a low initial
level of sanitation prevalence a relatively small subsidy amount induces a lot more
households to adopt sanitation this effect then multiplies generating further adoption.
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In contrast the sanitation loan policy generates a much more modest increase in the
adoption levels from 0.22 to 0.31 for the same cost of policy. Using the graph in
Figure (4.11) to extrapolate, a Rs.5000(×1000 Rs) total cost of policy is associated
with providing a price subsidy of 8% subsidization of the cost, to all households within
the village. This exercise demonstrates heterogeneity in the impact of the policy with
the initial sanitation coverage levels.

4.6.3 Price Subsidies: Direct and Indirect Effects

The policy exercise in the previous section reveals sanitation price subsidies to be in
general more cost effective in villages with some existing sanitation coverage. To
quantify the importance of externality effects in the demand response for a
household, I compare the full equilibrium impact a price subsidy with the impact
generated treating the household response in isolation.

Figure (4.9) simulates the equilibrium bounds under different price subsidy amounts
as a fraction of the cost for each of the village observed in the data.44 The impact of
the subsides is highly non linear with the initial sanitation coverage and the shape of
the response curve changes as a function of the amount of the subsidy given out.
Comparing the equilibrium adoption levels under lower bounds with the socially
optimal adoption level in Table (4.10), a uniform price subsidy achieves on average
62% (under 5% subsidy), 77% (under 15% subsidy) and 92% (under 25% subsidy)
of a social planner’s welfare outcome and sanitation allocation.45

With positive externalities, the sanitation coverage levels are inefficient where each
household does not fully internalize the total benefit derived from adoption. To
understand the welfare gain derived for the village economy from a small shift
towards the socially optimal level I compute the net welfare gain (loss) generated for
a single household that is on the margin of adopting and receives a price subsidy on
the full cost of sanitation.46 I find that provision a subsidy to a single household also
produces a marginal increase in the welfare for the entire village community. The
present cost of the subsidy is at Rs.8,628 but the policy shifts the bounds on welfare
for the recipient household by Rs.10,008 (lower bound) and Rs.12,511 (upper
bound) from the combination of direct value of having sanitation as well as the
increased utility derived from the spillover effects generated. This results in a

44See ref Table (4.11)
45Since the true impact of the policy lies between the upper and lower bound, I compare with the

lower bound of the policy as a conservative estimate.
46The welfare calculations are for a household on the margin of adopting in a representative village.

129



increase in the bounds on net welfare by Rs.1,380 (lower equilibrium) and Rs.3,883
(upper equilibrium) of which 33% (lower bound) to 72% (upper bound) are attributed
to the indirect effect. In addition to the gain for the recipient household the subsidy
also generated a subsequent gain for other households in the village which amounted
to Rs.3,181 (lower) and Rs.6,253 (upper) on aggregate or an equivalent of Rs.19.1
(lower) and Rs.37.2 (upper) gain per non recipient household. It is important to note
that without the presence of externalities, a price distorting subsidy policy would not
improve net household welfare relative to an unconditional subsidy policy.

Overall, the impact of the price subsidies on sanitation adoption is consistent with
the evidence from Guiteras, Levinsohn & Mobarak (2015) under experimental policy
intervention. The subsidy not only induces a greater demand response from targeted
households (relative to a pure information provision intervention), but also has a non
trivial impact on the adoption decision of non-targeted households within the village.
This reinforces the opinion that the design of subsidy policies, for goods with spillover
effects, should not be based on targeting individuals but instead be based on targeting
groups of households.

4.6.4 Dynamics over age

A price subsidy generates a substitution effect as well as an income effect on the
demand response of a recipient household. Figure (4.14) decomposes the impact of
a subsidy into its income and substitution effect components. The figure plots the
absolute value of the Marshallian (uncompensated) and Hicksian (compensated) price
elasticities at a lower equilibrium bound for a representative household over its life-
cycle. The Hicksian elasticity measures the pure price effect of the good keeping the
utility level fixed. While the vertical difference between the two curves is the residual
income effect generated from the increase in the effective budget that a household has
available to spend.

Both the Marshallian and Hicksian elasticity (in absolute value) decrease over the
life-cycle as marginal utility from adoption decreases with age, this feature is driven
by the life-cycle structure subject to terminal value assumptions. The income effect
which also diminishes with age is relatively larger at younger ages. The excess
sensitivity of the demand response earlier in the life-cycle maybe driven by binding
liquidity constraints faced by younger households. This is particularly relevant at
younger ages where a larger fraction of the total demand response is attributed to the
income effect relative to older ages. Unable to borrow against their future income,
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younger households who have yet to accumulate sufficient assets respond more on
the income effect margin than the price effect, upon receiving the price subsidy.
Figure (4.8) also shows that a household’s valuation of sanitation decreases with age.
With a loan policy a household is able to move resources across time and borrow
against future realizations of income to bring forward sanitation adoption. A
household’s decision to take a sanitation loan compares the value generated from the
sanitation between today and tomorrow. Since a household’s private valuation from
sanitation declines with age, loans would be a preferred policy for targeting younger
cohorts who place a higher valuation on sanitation adoption.

4.7 Conclusion

To understand the effectiveness of interventions that aim to maximize sanitation
coverage, requires the capability of predicting and comparing outcomes under
alternative counterfactual policies. This paper examines the impact of two specific
policy interventions: loans v. price subsidies, on sanitation adoption behaviour in a
context where household decisions interrelate due to externality effects. I formulate
and estimate a dynamic household demand for sanitation that incorporates
interdependence of sanitation adoption choice. To identify the model’s parameters, I
use a combination of household panel dataset along with exclusion restrictions that
provide identifying variation at the household and village level. The model is used to
compute equilibrium adoption levels and simulate the effect of loans and subsidy
policies for sanitation where the recipient household’s adoption decision imposes
externalities on others.

I illustrate how the framework can be informative about the effectiveness and
efficiency of different policies, where otherwise distorting policies instead lead to
higher welfare gains when the household decision is no longer treated in isolation. A
sanitation adoption subsidy to a single household costing Rs.8,628 improved net
welfare in a low case by Rs.1,380 and a high case by Rs.3,883. A large fraction of
the impact, between 33% (lower bound) to 72% (upper bound), accrues to
non-recipient households. These spillover effects suggest that adoption subsidies for
sanitation should not be thought of as targeting individual households, but instead as
targeting the whole village or groups of households.

While a significant proportion of sanitation prevalence is driven by price incentives, a
small number of households do face binding liquidity constraints for whom targeted
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loans is a cost effective policy. The ultimate choice of policy is strongly driven by
the trade-off between the total cost considerations and the targeting objectives as well
as level of sanitation coverage in the targeted village. If the objective of the policy
is to ‘reach’ the maximum number of households, in most cases it is cost effective to
provide price subsidies to incentivize adoption of sanitation. In contrast, sanitation
loans are found to be cost effective in villages with close to zero initial coverage.

One of the main predictions of the model is that subsidizing the cost of sanitation is a
cost effective policy with the presence of externalities. An important extension of this
paper would be to combine the structural analysis with field experiment results to
disentangle and identify the exact mechanisms that generates this externality. There
are still open questions on the precise mechanism that drives the interdependence of
sanitation adoption. Other than a health externality other suggested mechanisms
include, the presence of information externalities as well as infrastructure and
amenity spillovers generated from collective adoption. A better understanding of the
mechanisms will not only improve our understanding of the nature of the gains
derived from adoption but could also provide insights on improving the efficiency of
future policy interventions.

Although the empirical application focuses on the specific topic of sanitation, the
structure developed in this paper can be used to study other applications where
household/individual decisions interrelate due to spillover effects. The findings in
this paper highlight the fact that, when externalities exist, accounting for equilibrium
interactions and quantifying its effect has important policy implications. The
structure can also be extended to study adoption patterns of other preventive
healthcare goods in the developing world for e.g. vaccinations. The size and nature
of the externality depends on the specific characteristics of different healthcare
goods. The degree of ‘social benefit’ associated with vaccination adoption may differ
from sanitation and thus would provide different policy implications. The analysis in
this paper finds subsidies to be a more ‘favoured’ policy the larger is the impact of
the externality or the degree of ‘social benefit’ associated with the healthcare good.
These extensions can provide useful information that can help poor communities as a
whole to minimize inefficiencies and absorb the overall benefits thus tackling poverty
and mitigating its detrimental effects.
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4.8 Appendix for Chapter 4

4.8.1 Data

Estimation of age profiles

I control for cohort effects to obtain the life-cycle profiles using data from different
household cohorts. The age profiles of interest such as, sanitation adoption and asset
accumulation by age of household head depicts dynamics that the model should be
able to replicate. The main concern, when constructing age profiles that account for
cohort effects, is with effect of family size, year effects and household specific effects.
To account for cohort effects, which is just the average fixed-effect of all households in
a single cohort, I follow the approach discussed in French (2005) to obtain age profiles
for both sanitation adoption and asset accumulation over a household head’s lifetime.
The smooth age profiles are obtained by employing a local polynomial regression.

4.8.2 Estimation

Conditional Choice Probability (CCP). The conditional choice probabilities are
estimated from the observed data. The underlying assumption to obtain consistent
equilibrium choice probability estimates relies on the data being generated from the
same Markov profile. This assumption however may not hold true when data is
pooled across multiple villages. The overall sample of 42 villages are divided into
four groups based on village level observables and geographic proximity to one
another.

Partially observed sample. To account for the fact that only part of the entire village
household behaviour is observed. I implement the correction method from Chesher
(1991) extended in Gautam (2015) to account for this source of measurement error in
the data and its impact on the choice probability estimates.

Income Process. The function relating age and education to income earnings is given
by:

ln yit = f (ageit ,edui)+ zit +ξit

f (ageit ,edui) = ψ
y
0 +my

a (ageit)+ψ
y
edu1edui(yrs)+ψ

y
edu2 (edui(yrs))2 +ψ

y
3 [ageit× edui(yrs)]

zit = ρzit−1 +uit , ut ∼ N
(
0,σ2

u
)
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where my
a (ageit) are piecewise linear functions in age of the household head with

nodes at 20, 25 and 50. The education of the primary earner (household head) is
measured in years edui(yrs) along with an interaction term between age and
education. The permanent income also includes an A.R.(1) component with
persistence parameter calibrated at ρ = 1 and the variance of the permanent shocks
σ2

u. Measurement error ξit shocks are distributed i.i.d with mean zero and variance
σ2

ξ
.

Equilibrium Condition Inequalities. To estimate ĝi (·), defined in sub section
(4.4.3), I compute estimates for V̂i

(
x;σ

′
i(k), σ̂−i,θ,ψ

)
for a set of alternatives policies

σ
′
i. To implement this, let {λk}k=1,...,nI

be a set of chosen inequalities from Λ indexed

by
(

i, x, σ
′
i

)
which represent i.i.d draws from H (·). BBL (2007) prescribe a variety

of ways to choose inequalities. The method of selecting inequalities will have
implications for efficiency, but for consistency the only requirement is that H (·) has
sufficient support to yield identification.

I draw households i (εi) and states x at random and then consider alternative
strategies σ

′
i that are slight perturbations of the estimated policy σi (x,εi; ψ̂) i.e.,

σ
′
i (x,εi) = σi (x,εi; ψ̂) + ω. Given that the strategy σi is a tuple consisting of[
δ
′
i (x,εi) , co′

i (xi)
]

the perturbation is on both the discrete decision rule{
δ
′
i (x,εi) = 0, i f δi (x,εi) = 1

}
as well as the continuous consumption policy

co′
i (xi) = co′

i (xi)+ω for each household. Note that to check for profitable deviations
would entail checking one step deviations on either side of the optimal strategy.
Given a binary discrete choice there would be four perturbed strategies for each
estimated strategy σ. However as the household’s maximization problem is not
concave it is important to check further than one step deviations. Thus for each
chosen inequality, λk the next step is to use the forward simulation procedure from
section (4.4.2) to construct sample analogues for each of the Vi

(
x; σ

′
i(k),σ−i,θ,ψ

)
value functions at the perturbed policy σ

′
i(k), with ω drawn from a normal distribution

with mean zero and variance related to the variance of the measurement error shocks
in the income process. In practice, two different sizes for the inequality draws was
used nI = 500 and nI = 1000. No discernible difference in magnitude of final
estimates was found as nI increased from 500 to 1000.

Standard Errors. The standard errors are computed using bootstrap re-sampling. The
villages to which households belong are the unit of re-sampling over which repeated
samples of 42 villages are drawn with replacement. Bootstrap is performed over both
estimation stages. The first stage elements of the estimation are repeated over each
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bootstrap sample followed by the second stage. A total of 250 bootstrap samples were
drawn to construct standard errors.

4.8.3 Simulation

Supermodular Objective Function.

The objective function of a household i at time t can be expressed as:

vi (dit ,cit ,xt ;σt) = uσt
i (cit ,dit ,xit)+β ∑

xt+1

Vi (xt+1;σt+1) f σt
i (xt+1|xt ,dit ,cit)

Define the following notation:

ĉ1
it = (1+ r)Ait−Ait+1 + yit− pricet

ĉ0
it = (1+ r)Ait−Ait+1 + yit

xit =
(
ait ,Ait ,yit ,kit−1,kt−1, pricet ,ξit

)
ûd

it,c =
∂

∂cit

[
uσt

i (cit ,dit ,xit)
]

ûd
it,cc =

∂2

∂c2
it

[
uσt

i (cit ,dit ,xit)
]

vd
it = vi (dit ,cit ,xt ;σt)

Denote the objective functions of an individual household with states xt , that adopts
at time t (i.e dit = 1) with v1

it = vi
(
dit = 1, ĉ1

it ,xt ;σt
)

and of a household that does
not adopt (i.e dit = 0) with v0

it = vi
(
dit = 0, ĉ0

it ,xt ;σt
)
. The conditional choice-specific

value functions are expressed as:

vi
(
dit = 1, ĉ1

it ,xt ;σt
)
=
(
ĉ1

it
)ν

(1+ηkit−1 +φk̄t−1)+αkit−1 + γkit−1k̄t−1

+β ∑xt+1 Vi (xt+1;σt+1) f σt
i
(
xt+1|xt ,1, ĉ1

it
)

vi
(
dit = 0, ĉ0

it ,xt ;σt
)
=
(
ĉ0

it
)ν

(1+ηkit−1 +φk̄t−1)+αkit−1 + γkit−1k̄t−1

+β ∑xt+1 Vi (xt+1;σt+1) f σt
i
(
xt+1|xt ,0, ĉ0

it
)
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Therefore, the unconditional value function is given by:

Vi(xt ;σt) =
´

maxdit∈Di,t ,cit∈Ci,t ,{vi (dit ,cit ,xt ;σt)+ εit}g(εit)dεit

Vi(xt ;σt) = pσt
i (dit = 1|xt)·

[
vi(dit = 1,cit ,xt ;σt)+ ε1

it
]
+[1− pσt

i (dit = 1|xt ,σt)]·
[
vi(dit = 0,cit ,xt ;σt)+ ε0

it

]
The expected value of the continuation value at time t−1 is:

pσt (dit = 1|xt) = Pr
(
vi
(
dit = 1, ĉ1

it ,xt ;σt
)
+ ε1

it ≥ vi
(
dit = 0, ĉ0

it ,xt ;σt
)
+ ε0

it
)

=

P
(
vi(dit = 1, ĉ1

it ,xt ;σt)− vi(dit = 0, ĉ0
it ,xt ;σt)

)
kit−1 = 0

0 kit−1 = 1

where P is a twice continuously differentiable and weakly increasing function. Integ-
rating over the space of possible states xt+1 one gets the expected utility:

Et−1[Vi(xt ;σt)] = ∑xt

{
vi
(
dit = 0, ĉ0

it ,xt ;σt
)
[1− pσt (dit = 1|xt)] +

+ vi(dit = 1, ĉ1
it ,xt ;σt) [pσt (dit = 1|xt)]

}
f σt
i (xt+1|xt ,dit , ĉit)

where pσt (dit = 1|xt) is the probability that a household facing states xt decides to
adopt. The functions vi(dit = 1, ĉ1

it ,xt ;σt),vi(dit = 0, ĉ0
it ,xt ;σt) - if the solution for

Ait+1 is interior - have derivatives with respect to state Ait equal to:

∂

∂Ait

[
vi
(
dit = 1, ĉ1

it ,xt ;σt
)]

= ν
[
ĉ1

it
]ν−1

(1+ r)(1+ηkit−1 +φk̄t−1)

∂

∂Ait

[
vi
(
dit = 0, ĉ0

it ,xt ;σt
)]

= ν
[
ĉ0

it
]ν−1

(1+ r)(1+ηkit−1 +φk̄t−1)

because of the Envelope condition. Specifically,

∂

∂Ait

[
vi
(
dit = 0, ĉ0

it ,xt ;σt
)]

= ν
[
ĉ0

it
]ν−1

(1+ r)(1+ηkit−1 +φk̄t−1)+

+
dA∗it+1
dAit

[
−ν
[
ĉ0

it
]ν−1

(1+ηkit−1 +φk̄t−1)+β
∂

∂Ait+1
∑xt+1 Vi (xt+1;σt+1) f σt

i (xt+1|xt ,dit , ĉit)
]
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Notice that the second line (in the equation above) is equal to zero if the household is
in an interior solution for Ait+1 at time t because of the FOCs with respect to A∗it+1.
This is also true in a corner solution, because in such a case dA∗it+1

dAit
= 0. Thus it is true

for any optimal level of Ait+1.

∂

∂Ait
∑xt Vi(xt ;σt) f σt−1

i (xt |xt−1,dit−1, ĉit−1) =

∑xt

{
∂

∂Ait

[
vi
(
dit = 0, ĉ0

it ,xt ;σt
)]
[1− pσt (dit = 1|xt)]+

∂

∂Ait

[
vi
(
dit = 1, ĉ1

it ,xt ;σt
)]
[pσt (dit = 1|xt)]

+ ∂

∂Ait
[pσt (dit = 1|xt)]

[
vi
(
dit = 1, ĉ1

it ,xt ;σt
)
− vi

(
dit = 0, ĉ0

it ,xt ;σt
)]}

f σt−1
i (xt |xt−1,dit−1, ĉit−1)

= ∑xt

{
uc(ĉ0

it ,xt)[1− pσt (dit = 1|xt)]+uc(ĉ1
it ,xt) [pσt (dit = 1|xt)]

+P′
(
v1

it− v0
it
)
[vi(dit = 1, ĉ1

it ,xt ;σt)− vi(dit = 0, ĉ0
it ,xt ;σt)](1+ηkit−1 +φk̄t−1)ν

[(
ĉ1

it
)ν−1−

(
ĉ0

it
)ν−1

]}
· f σt−1

i (xt |xt−1,dit−1, ĉit−1)

Now update time to t:

∂

∂Ait+1
∑xt+1 Vi(xt+1;σt+1) f σt

i (xt+1|xt ,dit , ĉit) =

∑xt+1

{
û0

c(1+ r)[1− pσt+1(dit+1 = 1|xt+1)]+ û1
c(1+ r) [pσt+1(dit+1 = 1|xt+1)]

+P′
(
v1

it+1− v0
it+1
)
)[vi(dit+1 = 1, ĉ1

it+1,xt+1;σt+1)− vi(dit+1 = 0, ĉ0
it+1,xt+1;σt+1)]

·(1+ηkit +φk̄t)ν
[(

ĉ1
it+1
)ν−1−

(
ĉ0

it+1
)ν−1

]}
f σt
i (xt+1|xt ,dit , ĉit)
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REQUIREMENTS

4.8.3.1 i-Constant Differences in Ait+1, σt

Consider two strategy set σ′t and σt such that σ′t
dt
≥ σt if and only if d′t(xt ,εt)≥ dt(xt ,εt)

for all xt ,εt . Notice that σ′t
dt
≥ σt implies:

k̂tˆ

0

f σt
i (xt+1|xt ,dit , ĉit)− f σ′t

i (xt+1|xt ,dit , ĉit)dk̄t ≥ 0

for all k̂t ∈ [0,1]. This is equivalent to saying that Pr(k̄t < k̂t |xt ,dit , ĉit ;σt) ≥ Pr(k̄t <

k̂t |xt ,dit , ĉit ;σ′t). In other words, the distribution of kt under strategy set σ′t first order
stochastically dominates the distribution of kt under strategy set σt . In other words,
higher levels of kt become more likely and lower levels of kt become less likely. Notice
that no restrictions are imposed on the distribution of the remaining part of vector xt+1.

I aim to show that at constant dit ∈ {0,1} and at any possible choice Ait+1, for any λ>

0, there exists a threshold ϕ > 0 such that, for |φ| ≤ ϕ, then the following inequality
holds:

∣∣∣∣∣∂vi
(
dit ,cd

it ,xt ;σ′t
)

∂Ait+1
−

∂vi
(
dit ,cd

it ,xt ;σt
)

∂Ait+1

∣∣∣∣∣≤ λ

for all states xt and all σ′t , σt . Define the vector
zt+1 =

{
at+1,,A−it+1,yt+1,kt ,kt , pricet+1,ξt+1

}
where Ait+1 /∈ zt+1. Now rewrite

vi
(
dit ,cd

it ,xt ;σt
)

as follows:

vi

(
dit ,cd

it ,xt ;σt

)
= ud

it +β

ˆ

zt+1

ˆ

Ait+1

V (xt+1;σt+1) f σt
i (xt+1|xt ,dit , ĉit)dAit+1 dzt+1

because Ait+1 is deterministic, i.e., f σt
i (xt+1|xt ,dit , ĉit) > 0 if Ait+1 = Âit+1 and zero

otherwise, and it does not affect the transition probability of any state in zt+1, it is
possible to show that:
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vi

(
dit ,cd

it ,xt ;σt

)
= ud

it +β

ˆ

zt+1

V (x̂t+1;σt+1) f σt
i (x̂t+1|xt ,dit , ĉit)dzt+1

where x̂t+1 = {at+1, Ât+1,yt+1,kt ,kt , pricet+1,ξt+1} and
Ât+1 = {A1t+1,A2t+1, ..., Âit+1, ...An,t+1}. Now taking the partial derivative with
respect to Ait+1 at Ait+1 = Âit+1:

∂vi
(
dit ,cd

it ,xt ;σt
)

∂Ait+1

∣∣∣∣∣
Âit+1,dit

= ud
it,c+β

ˆ

zt+1

[
∂

∂Ait+1
V (x̂t+1;σt+1)

]
f σt
i (x̂t+1|xt ,dit , ĉit) dzt+1

It is useful to show how this formula differs in the case when dit = 0 and dit = 1:

∂vi(dit=0,cd
it ,xt ;σt)

∂Ait+1

∣∣∣∣
Ait+1,dit=0

=−ν [(1+ r)Ait−Ait+1 + yit ]
ν−1 (1+ηkit−1 +φk̄t−1)

+β
´

xt+1

{
û0

it+1,c(1+ r)[1− pσt+1(dit+1 = 1|xt+1)] + û1
it+1,c(1+ r) [pσt+1(dit+1 = 1|xt+1)]

+P′(v1
it+1− v0

it+1)[vi(dit+1 = 1, ĉ1
it+1,xt+1;σt+1)− vi(dit+1 = 0, ĉ0

it+1,xt+1;σt+1)]

·(1+ηkit +φk̄t)(1+ r)ν
[(

ĉ1
it+1
)ν−1−

(
ĉ0

it+1
)ν−1

]}
f σt
i (xt+1|xt ,0, ĉit)dxt+1

and similarly for v1
it (dit = 1):

∂vi(dit=1,cd
it ,xt ;σt)

∂Ait+1

∣∣∣∣
Ait+1,dit=1

=−ν [(1+ r)Ait−Ait+1− pricet + yit ]
ν−1 (1+ηkit−1 +φk̄t−1)+

+β
´

xt+1
û1

it+1,c(1+ r) f σt
i (xt+1|xt ,1, ĉit)dxt+1

Now consider the derivative of vi
(
dit ,cd

it ,xt ;σt
)

with respect to Ait+1:

∂vi
(
dit ,cd

it ,xt ;σt
)

∂Ait+1
=−ûd

it,c +β

ˆ

z+1

∂

∂Ait+1
[Vi(xt+1;σt+1)] f σt

i (xt+1|xt ,dit , ĉit)dzt+1
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Notice that the ‘time to build’ assumption makes ûit,c independent of other
households’ adoption choice at time t. Moreover, the Markov property implies that,
pσt+1(dit+1 = 1|xt+1) is independent of dit ,cit ,xt given xt+1. Lastly, the envelope
condition makes ∂

∂Ait+1
[Vi(xt+1;σt+1)] independent of the value function in period

t + 2 and the subsequent ones. Thus, for a household ∂

∂Ait+1
[Vi(xt+1;σt+1)] is

independent of σt . Then σ′t

∂vi
(
dit ,cd

it ,xt ;σ′t
)

∂Ait+1
−

∂vi
(
dit ,cd

it ,xt ;σt
)

∂Ait+1
= β

ˆ

zt+1

{
∂Vi(xt+1;σt+1)

∂Ait+1

[
f σ′t
i (xt+1|xt ,dit , ĉit)− f σt

i (xt+1|xt ,dit , ĉit)
]}

dzt+1

Now define the vector wt+1 = {at+1,A−it+1,yt+1,kt , pricet+1,ξt+1} where
k̄t ,Ait+1 /∈ wt+1. Notice that the envelope condition and the Markov Property imply
that ∂Vi(xt+1;σt+1)

∂Ait+1
is invariable in all the elements of vector wt+1. It is possible to

rewrite:

∂vi
(
dit ,cd

it ,xt ;σ′t
)

∂Ait+1
−

∂vi
(
dit ,cd

it ,xt ;σt
)

∂Ait+1
= β

ˆ

wt+1

ˆ

k̄t

{
∂Vi(xt+1;σt+1)

∂Ait+1

[
f σ′t
i (xt+1|xt ,dit , ĉit)− f σt

i (xt+1|xt ,dit , ĉit)
]}

dk̄t dwt+1

Using integration by parts we get:

= β
´

wt+1

{[´ 1
0 f σ′t

i (xt+1|xt ,dit , ĉit)− f σt
i (xt+1|xt ,dit , ĉit)dk̄t

]
∂

∂Ait+1
[Vi(x̄t+1;σt+1)]

−
´ 1

0

[´ k̄t
0 f σ′t

i (xt+1|xt ,dit , ĉit)− f σt
i (xt+1|xt ,dit , ĉit)ds

]
∂2Vi(xt+1;σt+1)

∂Ait+1∂k̄t−1
dk̄t

}
dwt+1

= β
´

wt+1

∂2Vi(xt+1;σt+1)
∂Ait+1∂k̄t−1

[´ k̄t
0 f σt

i (xt+1|xt ,dit , ĉit)− f σ′t
i (xt+1|xt ,dit , ĉit)ds

]
dwt+1

= β
´

wt+1

∂2Vi(xt+1;σt+1)
∂Ait+1∂k̄t−1

rσt ,σ
′
t

i (xt+1|xt ,dit , ĉit)dwt+1

where x̄t+1 = {at+1, Ât+1,yt+1,kt , k̂t , pricet+1,ξt+1} and
rσt ,σ

′
t

i (xt+1|xt ,dit , ĉit) =
[´ k̄t

0 f σt
i (xt+1|xt ,dit , ĉit)− f σ′t

i (xt+1|xt ,dit , ĉit)ds
]

Notice that

the above is equal to zero if ∂2Vi(xt+1;σt+1)
∂Ait+1∂k̄t−1

is equal to zero as well.
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CASE 1: kit−1 = 0.

∂2Vi(xt+1;σt+1)
∂Ait+1∂k̄t−1

=
{[

(1+ r)
[
ν
(
ĉ1

it+1
)ν−1

φ

+(ν−1)ν dA∗it+2
dk̄t

∣∣∣
dit+1=0

(
ĉ0

it+1
)ν−2

(1+φk̄t)

]]
[1− pσt+1(dit+1 = 1|xt+1)]

+

[
(1+ r)

[
ν
(
ĉ1

it+1
)ν−1

φ+(ν−1)ν dA∗it+2
dk̄t

∣∣∣
dit+1=1

(
ĉ1

it+1
)ν−2

(1+φk̄t)

]]
[pσt+1(dit+1 = 1|xt+1)]

+P′(v1
it+1− v0

it+1)
[
û1

it+1,c− û0
it+1,c

]
(1+ r)·

{
φ

[(
ĉ1

it+1
)ν−

(
ĉ0

it+1
)ν
]
+

(
û1

it+1,c
dA∗it+2

dk̄t

∣∣∣
dit+1=1

− û0
it+1,c

dA∗it+2
dk̄t

∣∣∣
dit+1=0

)}

+P′(v1
it+1− v0

it+1)(1+ r)
{

φ

[
ν
(
ĉ1

it+1
)ν−1−ν

(
ĉ0

it+1
)ν−1

]

+

(
û1

it+1,cc
dA∗it+2

dk̄t

∣∣∣
dit+1=1

− û0
it+1,cc

dA∗it+2
dk̄t

∣∣∣
dit+1=1

)}

+P′(v1
it+1− v0

it+1)
{

φ(1+φk̄t)(1+ r)ν2
[(

ĉ1
it+1
)ν−1−

(
ĉ0

it+1
)ν−1

][(
ĉ1

it+1
)ν−

(
ĉ0

it+1
)ν
]

+(1+φk̄t)(1+ r)ν
[(

ĉ1
it+1
)ν−1−

(
ĉ0

it+1
)ν−1

][
û1

it+1,c
dA∗it+2

dk̄t

∣∣∣
dit+1=1

− û0
it+1,c

dA∗it+2
dk̄t

∣∣∣
dit+1=0

]}

+P′′(v1
it+1− v0

it+1) · [v1
it+1− v0

it+1]
{

φ(1+φk̄t)(1+ r)ν
[(

ĉ1
it+1
)ν−1−

(
ĉ0

it+1
)ν−1

][(
ĉ1

it+1
)ν−

(
ĉ0

it+1
)ν
]

+ (1+φk̄t)(1+ r)ν
[(

ĉ1
it+1
)ν−1−

(
ĉ0

it+1
)ν−1

][
û1

it+1,c
dA∗it+2

dk̄t

∣∣∣
dit+1=1

− û0
it+1,c

dA∗it+2
dk̄t

∣∣∣
dit+1=0

]}

CASE 2: kit−1 = 1. The above simplifies because pσt+1(dit+1 = 1|xt+1) = 0 thus:

∂2Vi(xt+1;σt+1)
∂Ait+1∂k̄t−1

= (1+ r)
{

ν
[
ĉ0

it+1
]ν−1

φ + (ν−1)ν dA∗it+2
dk̄t

∣∣∣
dit+1=0

[
ĉ0

it+1
]ν−2

(1+η+φk̄t)

}

CASE 3: for dit = 1 one gets (for any kit−1):

∂2Vi(xt+1;σt+1)
∂Ait+1∂k̄t−1

= (1+ r)
{

ν
[
c0

it+1
]ν−1

φ +(ν−1)ν dA∗it+2
dk̄t

∣∣∣
dit+1=1

[
c0

it+1
]ν−2

(1+η+φk̄t)

}
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Now notice that if φ = 0 then the cross derivative for dit = 0 becomes:

For CASE 1: kit−1 = 0:

∂vi(dit ,cd
it ,xt ;σ′t)

∂Ait+1
− ∂vi(dit ,cd

it ,xt ;σt)
∂Ait+1

= β
´

xt+1

s[
(1+ r)(ν−1)ν dA∗it+2

dk̄t

∣∣∣
dit+1=0

[
ĉ0

it+1

]ν−2
]
[1− pσt+1(dit+1 = 1|xt+1)]

+

[
(1+ r)(ν−1)ν dA∗it+2

dk̄t

∣∣∣
dit+1=1

[
ĉ0

it+1

]ν−2
]
[pσt+1(dit+1 = 1|xt+1)]

+P′(v1
it+1− v0

it+1)
[
û1

it+1,c− û0
it+1,c

]
(1+ r)

[
û1

it+1,c
dA∗it+2

dk̄t

∣∣∣
dit+1=1

− û0
it+1,c

dA∗it+2
dk̄t

∣∣∣
dit+1=0

]

+P′(v1
it+1− v0

it+1)(1+ r)
[

û1
it+1,cc

dA∗it+2
dk̄t

∣∣∣
dit+1=1

− û0
it+1,cc

dA∗it+2
dk̄t

∣∣∣
dit+1=1

]

+P′(v1
it+1− v0

it+1)(1+ r)ν
[(

ĉ1
it+1
)ν−1−

(
ĉ0

it+1

)ν−1
][

û1
it+1,c

dA∗it+2
dk̄t

∣∣∣
dit+1=1

− û0
it+1,c

dA∗it+2
dk̄t

∣∣∣
dit+1=0

]

+P′′(v1
it+1− v0

it+1)[v
1
it+1− v0

it+1](1+ r)ν
[(

ĉ1
it+1
)ν−1−

(
ĉ0

it+1

)ν−1
]

·
[

û1
it+1,c

dA∗it+2
dk̄t

∣∣∣
dit+1=1

− û0
it+1,c

dA∗it+2
dk̄t

∣∣∣
dit+1=0

]{
rσt ,σ

′
t

i (xt+1|xt ,0, ĉit)dxt+1

For CASE 2: kit−1 = 1, the difference
∂vi(dit ,cd

it ,xt ;σ′t)
∂Ait+1

− ∂vi(dit ,cd
it ,xt ;σt)

∂Ait+1
becomes:

∂vi
(
dit ,cd

it ,xt ;σ′t
)

∂Ait+1
−

∂vi
(
dit ,cd

it ,xt ;σt
)

∂Ait+1
= β

ˆ

xt+1

(1+r)(ν−1)ν
dA∗it+2

dk̄t

∣∣∣∣
dit+1=0

[
c0

it+1
]ν−2

(1+η)rσt ,σ
′
t

i (xt+1|xt ,0, ĉit)dxt+1

and similarly for CASE 3 (dit = 1) the difference
∂vi(dit ,cd

it ,xt ;σ′t)
∂Ait+1

− ∂vi(dit ,cd
it ,xt ;σt)

∂Ait+1

becomes:

∂vi
(
dit ,cd

it ,xt ;σ′t
)

∂Ait+1
−

∂vi
(
dit ,cd

it ,xt ;σt
)

∂Ait+1
= β(1+r)

ˆ

xt+1

(ν−1)ν
dA∗it+2

dk̄t

∣∣∣∣
dit+1=1

[
c0

it+1
]ν−2

(1+η)rσt ,σ
′
t

i (xt+1|xt ,1, ĉit)dxt+1

These differences are both zero if dA∗it+2
dk̄t

∣∣∣
Ait+1,dit+1,kit ,Ait

= 0 for all dit+1 ∈ {0,1}. When

is this the case? If A∗it+2 is not an interior solution, then the derivative is always zero.
If it is interior, consider the FOC w.r.t Ait+2 in period t +1.

When is this the case?
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∂vi(dit+1,cd
it+1,xt+1;σt+1)

∂Ait+2

∣∣∣∣
dit+1=0

=−ν [(1+ r)Ait+1−Ait+2 + yit+1]
ν−1 (1+ηkit +φk̄t)

+β
´

xt+2

{
û0

it+2,c(1+ r)[1− pσt+2(dit+2 = 1|xt+2)] + û1
it+2,c(1+ r)pσt+2(dit+2 = 1|xt+2)

+P′(v1
it+2− v0

it+2)[vi(1, ĉ1
it+2,xt+2;σt+2)− vi(0, ĉ0

it+2,xt+2;σt+2)](1+ηkit+1 +φk̄t+1)

·(1+ r)ν
[(

ĉ1
it+2
)ν−1−

(
ĉ0

it+2
)ν−1

]}
f σt+1
i (xt+2|xt+1,dit+1, ĉit+1)dxt+2

At an interior solution the FOC must be satisfied with equality. Now totally differen-
tiate w.r.t k̄t .

∂v2
i (dit+1,cd

it+1,xt+1;σt+1)
∂Ait+2∂k̄t

∣∣∣∣
dit+1=0

=−ν
[
cd

it+1
]ν−1

φ+(1−ν)ν
[
cd

it+1
]ν−2 dA∗it+2

dk̄t

∣∣∣
dit+1

+β
´

xt+2

∂Vi(xt+2;σt+2)
∂Ait+2

∂

∂k̄t

[
f σt+1
i (xt+2|xt+1,dit , ĉit)

]
+∂2Vi(xt+2;σt+2)

∂A2
it+2

dA∗it+2
dk̄t

∣∣∣
dit+1

f σt+1
i (xt+2|xt+1,dit , ĉit)dxt+2

´
xt+2

∂Vi(xt+2;σt+2)
∂Ait+2

∂

∂k̄t

[
f σt
i (xt+2|xt+1,dit , ĉit)

]
dxt+2

=
´

wt+2

´
k̄t+1

∂Vi(xt+2;σt+2)
∂Ait+2

∂

∂k̄t

[
f σt+1
i (xt+2|xt+1,dit , ĉit)

]
dk̄t+1 dwt+2

Using this result, it is possible to write:

β
´

xt+2

∂Vi(xt+2;σt+2)
∂Ait+2

∂

∂k̄t

[
f σt+1
i (xt+2|xt+1,dit , ĉit)

]
dxt+2

= β
´

wt+2

∂Vi(x̄t+2;σt+2)
∂Ait+2

´
k̄t+1

∂

∂k̄t

[
f σt+1
i (xt+2|xt+1,dit , ĉit)

]
dk̄t+1

−
´

k̄t+1

∂2Vi(xt+2;σt+2)
∂Ait+2∂k̄t+1

´ k̄t+1
k

∂

∂k̄t

[
f σt+1
i (xt+2|xt+1,dit , ĉit)

]
dk̄t+1dwt+2

Now notice that, at constant Ait+2 we get that´
k̄t+1

[
f σt+1
i (xt+2|xt+1,dit , ĉit)

]
dk̄t+1 = s(wt+2|dit , ĉit) that is independent of xt+1.

The intuition here is that the Envelope condition and the Markov property imply that
∂Vi(xt+2;σt+2)

∂Ait+2
is invariable in all the elements of vector wt+2. Thus it is possible to

write:

β
´

wt+2

∂Vi(x̄t+2;σt+2)
∂Ait+2

´
k̄t+1

∂

∂k̄t

[
f σt+1
i (xt+2|xt+1,dit , ĉit)

]
dk̄t+1 dwt+2

= β
∂Vi(x̄t+2;σt+2)

∂Ait+2

∂

∂k̄t

´
wt+2

´
k̄t+1

[
f σt+1
i (xt+2|xt+1,dit , ĉit)

]
dk̄t+1 = 0
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The above becomes:

−β

ˆ

wt+2

∂2Vi(xt+2;σt+2)

∂Ait+2∂k̄t+1

k̄t+1ˆ

k

∂

∂k̄t

[
f σt+1
i (xt+2|xt+1,dit , ĉit)

]
dk̄t+1 dwt+2

Notice that if the optimal solution for A∗it+2 is interior, it is possible to calculate the
following:

dA∗it+2

dk̄t

∣∣∣∣
dit+1

=
ν
[
cd

it+1

]ν−1
φ−β

´
xt+2

∂2Vi(xt+2;σt+2)

∂Ait+2∂k̄t+1

´ k̄t+1
k

∂

∂k̄t

[
f σt+1
i (xt+2|xt+1,dit , ĉit)

]
dk̄t+1 dxt+2

(1−ν)ν
[
cd

it+1

]ν−2
+(1−ν)ν

[
cd

it+1

]ν−2
+β
´

xt+2

∂2Vi(xt+2;σt+2)

∂A2
it+2

f σt+1
i (xt+2|xt+1,dit , ĉit)dxt+2

which is equal to zero if φ and ∂2Vi(xt+2;σt+2)
∂Ait+2∂k̄t+1

= 0. But under those conditions, one can

update
∂vi(dit ,cd

it ,xt ;σ′t)
∂Ait+1

− ∂vi(dit ,cd
it ,xt ;σt)

∂Ait+1
and conclude that

∂vi(dit ,cd
it ,xt ;σ′t)

∂Ait+1
− ∂vi(dit ,cd

it ,xt ;σt)
∂Ait+1

= 0 if
∂vi(dit+1,cd

it+1,xt+1;σ′t+1)
∂Ait+2

− ∂vi(dit+1,cd
it+1,xt+1;σt+1)

∂Ait+2
at

any state vector that can be reached with positive probability from xt with choices
Ait+1,dit . This updating process can go on recursively until period T −1 (i.e., A−1)
at that point notice that dA∗iT+1

dk̄T−1

∣∣∣
diT−1

= 0 because in the last period of life T (i.e., A)

households consume all such that A∗iT+1 = 0. This implies that ∂2Vi(xt+1;σt+1)
∂AiT+1∂k̄T

= 0 (i.e.,

household’s savings is unaffected by kT because they do not save in any case).
Therefore recursively ∂2Vi(xt+1−s;σt+1−s)

∂AiT+1−s∂k̄T−s
= 0 for all s ∈ [0,1, ...T ]. Notice that if the

solution for A∗it+2 is not interior, then dA∗it+2
dk̄t

∣∣∣
dit+1

= 0 and the desired result hold

trivially. Lastly, notice that, because
∂vi(dit ,cd

it ,xt ;σ′t)
∂Ait+1

− ∂vi(dit ,cd
it ,xt ;σt)

∂Ait+1
is continuous in φ

and with finite derivative, then for any λ > 0 there exists ϕ such that if φ ≤ ϕ then
∂vi(dit ,cd

it ,xt ;σ′t)
∂Ait+1

− ∂vi(dit ,cd
it ,xt ;σt)

∂Ait+1
≤ λ. I define ϕ(λ,dit ,Ait+1,xt ,σt) to be the minimum ϕ

that ensures that the inequality is satisfied at specific values of states and controls
dit ,Ait+1,xt ,σt .

4.8.3.2 i-Increasing Differences in dit , σt

To show that vt(dit = 1, ĉ1
it ,xt ;σt)−vt(dit = 0, ĉ0

it ,xt ;σt) is increasing in σt . Recall that
the value functions are expressed as:
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vi
(
dit = 1, ĉ1

it ,xt ;σt
)
= [(1+ r)Ait−Ait+1 + yit− pricet ]

ν (1+ηkit−1 +φk̄t−1)+αkit−1 + γkit−1k̄t−1

+β
´

xt+1
Vt+1(xt+1;σt+1) f σt

i (xt+1|xt ,1, ĉit)dxt+1

vi
(
dit = 0, ĉ0

it ,xt ;σt
)
= [(1+ r)Ait−Ait+1 + yit ]

ν (1+ηkit−1 +φk̄t−1)+αkit−1 + γkit−1k̄t−1

+β
´

xt+1
Vt+1(xt+1;σt+1) f σt

i (xt+1|xt ,0, ĉit)dxt+1

Thus{[
vi
(
dit = 1, ĉ1

it ,xt ;σ′t
)
− vi

(
dit = 0, ĉ0

it ,xt ;σ′t
)]
−
[
vi
(
dit = 1, ĉ1

it ,xt ;σt
)
− vi

(
dit = 0, ĉ0

it ,xt ;σt
)]}

Ait+1

= β
´

xt+1
Vi(xt+1;σt+1) f σ′t

i (xt+1|xt ,1, ĉit)−Vi(xt+1;σt+1) f σ′t
i (xt+1|xt ,0, ĉit)

−Vi(xt+1;σt+1) f σt
i (xt+1|xt ,1, ĉit)+Vi(xt+1;σt+1) f σt

i (xt+1|xt ,0, ĉit)dxt+1

because of the assumption that kt is unaffected by dit on the point of view of household
i, then for a given Ait+1, and the fact that kit is a deterministic state, it is possible to
write:

β
´

qt+1

´
k̄t

[
Vi(x̃′t+1;σt+1)−Vi(x̃t+1;σt+1)

][
f σ′t
i (x̃t+1|xt ,dit , ĉit)− f σt

i (x̃t+1|xt ,dit , ĉit)
]

dk̄t dqt+1

where qt+1 =
(
at+1, Ãt+1,yt+1, pricet+1,ξt+1

)
,

x̃′t+1 =
(
at+1, Ãt+1,yt+1, k̃t ,kt , pricet+1,ξt+1

)
is the vector of states with

k̃t = (k1t ,k2t , ..., k̃it , ...,knt) and k̃it = 1 and Ãt+1 = (A1t+1,A2t+1, ..., Ãit+1, ...Ant+1).
Similarly, x̃t+1 =

(
at+1, Ãt+1,yt+1, k̃t ,kt , pricet+1,ξt+1

)
is the vector of states with

k̃t = (k1t ,k2t , ..., k̃it , ...,knt) and k̃it = kit−1. Notice that the step above follows from
the fact that f σt

i
(
x̃′t+1|xt ,dit , ĉit

)
= f σt

i (x̃t+1|xt ,dit , ĉit) at given Ait+1 = Ãit+1. Then,
using integration by parts, the formula above can be written as follows:

⇒ β
´

qt+1

[
Vi(x̃′t+1;σt+1)−Vi(x̃t+1;σt+1)

]´
k̄t

[
f σ′t
i (x̃t+1|xt ,dit , ĉit)− f σt

i (x̃t+1|xt ,dit , ĉit)
]

dk̄t

+
´

qt+1

∂[Vi(x̃′t+1,σt+1)−Vi(x̃t+1,σt+1)]
∂k̄t

rσt ,σ
′
t

i (x̃t+1|xt ,dit , ĉit)dqt+1

where rσt ,σ
′
t

i (x̃t+1|xt ,dit , ĉit)≥ 0 for all x̃t+1
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= β
´

qt+1

∂[Vi(x̃′t+1,σt+1)−Vi(x̃t+1,σt+1)]
∂k̄t

rσt ,σ
′
t

i (x̃t+1|xt ,dit , ĉit)dqt+1

= Ert

[
∂[Vi(x̃′t+1,σt+1)−Vi(x̃t+1,σt+1)]

∂k̄t

]
Assuming an interior solution at time t+1, it is possible to use the Envelope condition
to calculate:

∂[Vi(x̃′t+1,σt+1)−Vi(x̃t+1,σt+1)]
∂k̄t

= φ
(
ĉ0

it+1(dit = 1)
)ν

+ γkit(dit = 1)

+γkit(dit = 0)−φ
(
ĉ0

it+1(dit = 0)
)ν

[pσt+1(dit+1 = 1|xt+1)]

−φ
(
ĉ0

it+1(dit = 0)
)ν

[1− pσt+1(dit+1 = 1|xt+1)]− γkit(dit = 0)

−P′(v1
it+1− v0

it+1)[v
1
it+1− v0

it+1][φ
(
ĉ0

it+1(dit = 1)
)ν

+ γkit(dit = 1)

−φ
(
ĉ0

it+1(dit = 0)
)ν

[pσt+1(dit+1 = 1|xt+1)]

−φ
(
ĉ0

it+1(dit = 0)
)ν

[1− pσt+1(dit+1 = 1|xt+1)]− γkit(dit = 0)

For φ = 0 this reduces to:

∂
[
Vi(x̃′t+1;σt+1)−Vi(x̃t+1;σt+1)

]
∂k̄t

=
[
1−P′(v1

it+1− v0
it+1)[v

1
it+1− v0

it+1]
]
[γkit(dit = 1)− γkit(dit = 0)]

Thus one gets that:

• If kit−1 = 1 then Ert

[
∂[Vi(x̃′t+1;σt+1)−Vi(x̃t+1;σt+1)]

∂k̄t

]
= 0

• If kit−1 = 0 then Ert

[
∂[Vi(x̃′t+1;σt+1)−Vi(x̃t+1;σt+1)]

∂k̄t

]
> 0 for

Ert

[
P′(v1

it+1− v0
it+1)[v

1
it+1− v0

it+1]
]
< 1, which is the case as long as P(x) is

“flat” enough.

The latter results implies that, for all households i it must be true that:

vi
(
d′it , ĉ

1
it(A
′
it+1),xt ;σ

′
t
)
−vi

(
d′it , ĉ

1
it(A
′
it+1),xt ;σt

)
≥ vi

(
d′′it , ĉ

1
it(A
′
it+1),xt ;σ

′
t
)
−vi

(
d′′it , ĉ

1
it(A
′
it+1),xt ;σt

)
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and the inequality is strict for all households j such that k jt−1 = 0 i.e., the objective
function satisfies i-Increasing Differences in dit ,σt (see. Milgrom and Shannon 1994).

4.8.3.3 i-Highest and i-Lowest Equilibria

I want to show that for all i such that kit−1 = 0, the following holds:

vi
(
d′it , ĉ

1
it(A
′
it+1),xt ;σ

′
t
)
−vi

(
d′′it , ĉ

1
it(A
′′
it+1),xt ;σ

′
t
)
≥ vi

(
d′it , ĉ

1
it(A
′
it+1),xt ;σt

)
−vi

(
d′′it , ĉ

1
it(A
′′
it+1),xt ;σt

)
(4.8.1)

holds for any A′it+1,A
′′
it+1 and for d′it > d′′it and σ′t ≥ σt , in the sense defined above.

Proof:

Suppose (4.8.1) is not satisfied i.e., the following instead is true:

vi
(
d′it , ĉ

1
it(A
′
it+1),xt ;σ

′
t
)
−vi

(
d′′it , ĉ

1
it(A
′′
it+1),xt ;σ

′
t
)
< vi

(
d′it , ĉ

1
it(A
′
it+1),xt ;σt

)
−vi

(
d′′it , ĉ

1
it(A
′′
it+1),xt ;σt

)
(4.8.2)

The fact that
∂vi(dit ,cd

it ,xt ;σ′t)
∂Ait+1

− ∂vi(dit ,cd
it ,xt ;σt)

∂Ait+1
≤ λ for 0< φ≤ϕ(λ,dit ,Ait+1,xtσt) implies

that:

vi
(
d′it , ĉ

1
it(A
′
it+1),xt ;σ′t

)
− vi

(
d′it , ĉ

1
it(A
′′
it+1),xt ;σ′t

)
= vi

(
d′it , ĉ

1
it(A
′
it+1),xt ;σt

)
− vi

(
d′it , ĉ

1
it(A
′′
it+1),xt ;σt

)
+b(d′it ,A

′
it+1,A

′′
it+1,xt ;σ′t ,σt ,φ)

where b(·) is a continuous function such that b(d′it ,A
′
it+1,A

′′
it+1,xt ;σ′t ,σt ,φ)≤ ζ if φ≤

ϕ(λ,dit ,Ait+1,xt ,σt). Because of the continuity (and finite derivative) of b, for any
ζ > 0 there exists φ̄(ζ,dit ,Ait+1,xt ,σt) such that if 0 < φ ≤ φ̄(ζ,dit ,Ait+1,xt ,σt) then
|b| ≤ ζ. This implies:

vi
(
d′it , ĉ

1
it(A
′
it+1),xt ;σ′t

)
= vi

(
d′it , ĉ

1
it(A
′′
it+1),xt ;σ′t

)
+vi
(
d′it , ĉ

1
it(A
′
it+1),xt ;σt

)
− vi

(
d′it , ĉ

1
it(A
′′
it+1),xt ;σt

)
+b(d′it ,A

′
it+1,A

′′
it+1,xt ;σ′t ,σt ,φ)

(4.8.3)
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Similarly, one can get:

vi
(
d′′it , ĉ

1
it(A
′′
it+1),xt ;σ′t

)
− vi

(
d′′it , ĉ

1
it(A
′
it+1),xt ;σ′t

)
= vi

(
d′′it , ĉ

1
it(A
′′
it+1),xt ;σt

)
− vi

(
d′′it , ĉ

1
it(A
′
it+1),xt ;σt

)
−b(d′′it ,A

′
it+1,A

′′
it+1,xt ;σ′t ,σt ,φ)

which implies:

vi
(
d′′it , ĉ

1
it(A
′′
it+1),xt ;σ′t

)
= vi

(
d′′it , ĉ

1
it(A
′
it+1),xt ;σ′t

)
+vi
(
d′′it , ĉ

1
it(A
′′
it+1),xt ;σt

)
− vi

(
d′′it , ĉ

1
it(A
′
it+1),xt ;σt

)
−b(d′′it ,A

′
it+1,A

′′
it+1,xt ;σ′t ,σt ,φ)

(4.8.4)

Now substituting (4.8.3) and (4.8.4) into (4.8.2) we get:

vi
(
d′it , ĉ

1
it(A
′′
it+1),xt ;σ′t

)
− vi

(
d′it , ĉ

1
it(A
′′
it+1),xt ;σt

)
+b(d′it ,A

′
it+1,A

′′
it+1,xt ;σ′t ,σt ,φ)

−vi
(
d′′it , ĉ

1
it(A
′′
it+1),xt ;σt

)
+ vi

(
d′′it , ĉ

1
it(A
′
it+1),xt ;σt

)
+b(d′′it ,A

′
it+1,A

′′
it+1,xt ;σ′t ,σt ,φ)< 0

Now notice that
∂vi(dit ,cd

it ,xt ;σ′t)
∂Ait+1

− ∂vi(dit ,cd
it ,xt ;σt)

∂Ait+1
≤ λ implies that:

vi
(
d′it , ĉ

1
it(A
′′
it+1),xt ;σ′t

)
− vi

(
d′it , ĉ

1
it(A
′′
it+1),xt ;σt

)
= vi

(
d′it , ĉ

1
it(A
′
it+1),xt ;σ′t

)
− vi

(
d′it , ĉ

1
it(A
′
it+1),xt ;σt

)
−b(d′it ,A

′
it+1,A

′′
it+1,xt ;σ′t ,σt ,φ)

(4.8.5)

Substituting (4.8.5) into (4.8.2) and rearranging to get:

vi
(
d′it , ĉ

1
it(A
′
it+1),xt ;σ′t

)
− vi

(
d′it , ĉ

1
it(A
′
it+1),xt ;σt

)
< vi

(
d′′it , ĉ

1
it(A
′
it+1),xt ;σ′t

)
− vi

(
d′′it , ĉ

1
it(A
′
it+1),xt ;σt

)
−b(d′′it ,A

′
it+1,A

′′
it+1,xt ;σ′t ,σt ,φ)

(4.8.6)
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Recall that in the previous section it was shown that for all i such that kit−1 = 0 the
following holds:

vi
(
d′it , ĉ

1
it(A
′
it+1),xt ;σ

′
t
)
−vi

(
d′it , ĉ

1
it(A
′
it+1),xt ;σt

)
> vi

(
d′′it , ĉ

1
it(A
′
it+1),xt ;σ

′
t
)
−vi

(
d′′it , ĉ

1
it(A
′
it+1),xt ;σt

)
because vi satisfies i-Increasing Differences in (dit ,σ

′
t). We also know from the

previous paragraph that or 0 < φ ≤ φ̄(ζ,dit ,Ait+1,xt ,σt) we get
|b
(
d′′it ,A

′
it+1,A

′′
it+1,xt ;σ′t ,σt ,φ

)
≤ ζ. As this is the case for all dit ,Ait+1,xt ,σt then

there exists ζ̂ such that |b
(
d′′it ,A

′
it+1,A

′′
it+1,xt ;σ′t ,σt ,φ

)
| ≤ ζ̂ for all dit ,Ait+1,xt ,σt .

Then, if φ ≤ φ̄

(
ζ̂

)
, the condition (4.8.6) cannot be satisfied. This leads to a

contradiction, Q.E.D

Now, because of this result, we know that for any higher beliefs σ′t ≥ σt , the best
response for any household i implies (weakly) higher dit . Thus with beliefs σ′t all
households play dit = 1 with higher probability than under beliefs σt . As a result, if
σ′t and σt are equilibrium beliefs, then it must be that in equilibrium´ k̂it

0 f σt
i (xt+1|xt ,dit , ĉit)− f σ′t

i (xt+1|xt ,dit , ĉit)dk̄t ≥ 0 for all k̂t ∈ [kt ,1]. It also implies
that there exists a highest and a lowest pure strategy N.E. with respect to the
distribution of kt .
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4.8.4 Tables

Table 4.1: Descriptive Statistics

Data: S1 Data:S2
Variable Mean std. dev Mean std. dev
Household
Age of Household Head (yrs) 42.56 (13.22) 43.61 (13.81)
Education level of HH head (yrs) 4.61 (0.34) 4.87 (0.32)
Nr. Of Female HH members 2.54 (1.29) 2.89 (1.40)
Household size 5.20 (1.03) 5.67 (1.10)
Dwelling ownership 0.89 (0.314) 0.90 (0.309)
Cash-in-hand (Rs.) 57,112.32 (16,167) 68,331.69 (18,128)
Savings, Liquid Assets (Rs.) 4,482.13 (5,073) 7,674.34 (4,899)

Village/Group
Drainage Infratructure 0.43 (0.495) 0.47 (0.461)
Community Sanitation presence 0.51 (0.501) 0.54 (0.489)
Cost of building Sanitation (Rs.) 8,628.00 (1150) 9,281.00 (1256)
Sanitation coverage 0.41 (0.304) 0.61 (0.287)

Nr. of groups 42
Nr. of observations 1,451

Notes: This table provides descriptive statistics for key household and group variables
across the two sample periods. Monetary values in the second period are deflated to first period values.
The GDP (per capita) Rs. 167,600 (2010 estimate). £1 ≈ Rs.100(INR).
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Table 4.2: Structural Estimates: Preference Parameters

Parameter Estim. Std Err. Description
ν 0.3376 (0.014) (1−ν) coeff of rel. risk aversion
η 0.00022 (0.0001) interaction ct & own sanitation
φ 0.00514 (0.002) interaction ct & average sanitation prev.

α20≤a<26 4.8155 (0.084) importance of sanitation at 20≤age<26
α26≤a<75 0.0138 (0.002) importance of sanitation at 26≤age<75

γ 2.7019 (0.024) interaction own sanitation & average sanitation prev.
β 0.9436 (0.004) discount factor

Notes: Model parameters characterizing preferences and discount rate. Bootstrap standard errors
computed using 250 bootstrap resamples. Calibrated values: r = 0.02 real interest savings rate based
on data from the Reserve Bank of India (RBI).

Table 4.3: First Stage Estimates: Earnings Function Parameters

Parameter Coeff. Std. Err Variable Description
ψ

y
0 3.831 0.081 Constant

ψ
y
20≤a<25 0.431 0.016 HH head Age 20≤ a< 25

ψ
y
25≤a<50 0.824 0.009 HH head Age 25≤ a< 50

ψ
y
50≤a<75 -0.106 0.004 HH head Age 50≤ a< 75

ψ
y
edu1 0.784 0.062 HH head Education (yrs)

ψ
y
edu2 -0.082 0.011 HH head Education Sq. (yrs)

ψ
y
age∗edu3 0.110 0.015 HH Age x Education

σ2
u 0.311 0.012 variance Innovations

σ2
ξ

0.126 0.018 variance Measurement Error
ρ 1.00 - presistence (Calibrated)

Notes: Parameter Estimates for the earnings function. Bootstrapped standard errors in parentheses.

Table 4.4: Structural Estimates: Preference Parameters

Parameter Mod: No
Borrowing
(at ≥ 0)

Mod: Borrow-
ing Allowed

Description

ν 0.3376 0.4845 (1−ν) coeff of rel. risk aversion
η 0.00022 0.00012 interaction ct & own sanitation
φ 0.00514 0.00412 interaction ct & avg sanitation prev.

α20≤a<26 4.8155 5.1259 imp. of sanitation 20≤age<26
α26≤a<75 0.0138 0.00127 imp. of sanitation 26≤age<75

γ 2.7019 2.3452 interaction own sanitation & avg sanitation prev.
β 0.9436 0.9634 discount factor

Notes: Model parameters characterizing preferences and discount rate. Column (2) denotes parameter
estimates under model with borrowing restricted. Column (3) denotes parameter estimates under no
borrowing restrictions. Calibrated values: r = 0.02 real interest savings rate based on data from the
Reserve Bank of India (RBI).

151



Table
4.5:FirstStage

E
stim

ates:C
onditionalC

hoice
Probability

(C
C

P)Param
eters

G
roup

A
(H

igh)
G

roup
B

(L
ow

)
G

roup
C

(H
igh)

G
roup

D
(L

ow
)

Param
eter

C
oeff.

Std.E
rr

C
oeff.

Std.E
rr

C
oeff.

Std.E
rr

C
oeff.

Std.E
rr

D
escription

ψ
c20≤

a<
25

0.088
(0.006)

0.032
(0.004)

0.042
(0.004)

0.062
(0.007)

H
H

head
A

ge
20
≤

a
<

25
ψ

c25≤
a<

50
0.039

(0.004)
0.021

(0.003)
0.075

(0.008)
0.033

(0.003)
H

H
head

A
ge

25
≤

a
<

50
ψ

c50≤
a<

75
-0.022

(0.003)
-0.008

(0.002)
0.001

(0.000)
-0.002

(0.001)
H

H
head

A
ge

50
≤

a
<

75
ψ

cedu
0.206

(0.013)
0.189

(0.013)
0.244

(0.021)
0.188

(0.018)
H

H
head

E
ducation

(yrs)
ψ

casset
0.071

(0.022)
0.062

(0.014)
0.083

(0.018)
0.058

(0.013)
H

H
Savings

(1000
R

s.)
ψ

cinc
0.331

(0.045)
0.253

(0.042)
0.213

(0.036)
0.268

(0.038)
H

H
Incom

e
(1000

R
s.)

ψ
csize

0.021
(0.004)

0.036
(0.010)

0.041
(0.012)

0.042
(0.010)

Fam
ily

Size
(N

r.O
fH

H
m

em
bers)

ψ
cprice

-0.109
(0.019)

-0.098
(0.010)

-0.116
(0.011)

-0.131
(0.009)

C
ostofSanitation

(1000
R

s.)
ψ

ccoverage
3.811

(0.312)
2.673

(0.264)
3.433

(0.369)
2.851

(0.289)
Sanitation

coverage/prevalence
ψ

cage
0.013

(0.003)
0.021

(0.004)
0.028

(0.003)
0.018

(0.003)
M

ean(-i)A
ge

ψ
cage 2

-0.001
(0.001)

-0.001
(0.000)

-0.002
(0.001)

-0.002
(0.002)

M
ean(-i)A

ge
Sq

ψ
cedu

0.106
(0.029)

0.181
(0.042)

0.080
(0.018)

0.041
(0.011)

M
ean(-i)E

ducation
(yrs)

ψ
cA
+

y
0.080

(0.012)
0.065

(0.008)
0.101

(0.013)
0.061

(0.010)
M

ean(-i)C
ash-in-H

and
(1000

R
s.)

ψ
cA
+

y 2
0.008

(0.002)
0.010

(0.003)
0.011

(0.003)
0.004

(0.001)
M

ean(-i)C
ash-in-H

and
Sq.(1000

R
s.)

ψ
c0

-3.863
(0.324)

-4.623
(0.481)

-3.920
(0.345)

-4.564
(0.369)

C
onstant

D
rainage

Infrastructure
Y

es
N

o
Y

es
N

o
D

rainage
Infrastructure

in
village

C
om

m
unity

Sanitation
N

o
Y

es
N

o
Y

es
Public

sanitation
facility

in
village

N
r.ofvillage

in
subgroup

9
12

10
11

Prob.ofA
dotion

(m
ean)

0.724
0.326

0.867
0.247

N
otes:Param

eterE
stim

ates
forthe

conditionalchoice
probabilities

by
village

subgroups.B
ootstrapped

standard
errors

in
parentheses.

152



Table 4.6: Structural Estimates: Village “Fixed Effects”

Village Data Coeff. µ̂g Std. Err
S1 S2

(mean) 2.24 (0.03)

vill ID 9 0.00 0.00 1.56 (0.07)
vill ID 15 0.00 0.00 1.24 (0.04)
vill ID 18 0.00 0.09 1.42 (0.01)
vill ID 22 0.00 0.13 0.98 (0.05)
vill ID 12 0.00 0.28 0.33 (0.01)
vill ID 19 0.00 0.31 2.12 (0.02)
vill ID 2 0.00 0.42 1.19 (0.02)
vill ID 35 0.06 0.54 0.96 (0.03)
vill ID 40 0.08 0.19 0.67 (0.01)
vill ID 24 0.12 0.35 1.62 (0.02)
vill ID 3 0.14 0.57 0.88 (0.01)
vill ID 37 0.15 0.53 0.45 (0.01)
vill ID 5 0.19 0.26 1.43 (0.03)
vill ID 21 0.19 0.46 1.45 (0.04)
vill ID 11 0.20 0.60 1.69 (0.01)
vill ID 8 0.21 0.50 2.23 (0.05)
vill ID 7 0.25 0.50 1.97 (0.01)
vill ID 4 0.27 0.63 2.35 (0.01)
vill ID 44 0.31 0.47 3.23 (0.04)
vill ID 25 0.33 1.00 2.31 (0.05)
vill ID 6 0.37 0.63 1.41 (0.01)
vill ID 28 0.38 0.38 2.49 (0.02)
vill ID 17 0.45 0.59 2.69 (0.04)
vill ID 14 0.47 0.78 3.91 (0.04)
vill ID 32 0.47 0.89 1.3 (0.03)
vill ID 31 0.50 0.67 2.48 (0.01)
vill ID 27 0.50 0.75 1.86 (0.01)
vill ID 38 0.50 0.86 3.84 (0.08)
vill ID 26 0.61 0.85 4.21 (0.04)
vill ID 20 0.63 0.75 3.64 (0.08)
vill ID 30 0.63 0.79 2.13 (0.02)
vill ID 43 0.67 0.83 0.97 (0.05)
vill ID 29 0.67 0.93 4.12 (0.03)
vill ID 13 0.71 0.94 4.67 (0.04)
vill ID 23 0.71 0.86 3.96 (0.04)
vill ID 36 0.78 0.89 2.34 (0.02)
vill ID 1 0.82 0.90 1.49 (0.05)
vill ID 42 0.82 0.89 2.67 (0.02)
vill ID 39 0.88 0.88 2.57 (0.03)
vill ID 34 0.88 0.96 4.96 (0.02)
vill ID 33 0.88 0.95 3.51 (0.04)
vill ID 16 0.91 1.00 2.88 (0.01)

Notes: Parameter estimates for location (mean) of taste shocks εd
i . The villages are listed in increasing

order of sanitation coverage. Data:S1 and Data:S2 denote sanitation coverage over the two sample
periods. Bootstrapped standard errors in parentheses.
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Table 4.7: Village: Price & Coverage variation

Cost of Sanitation Data
Village per unit (Rs.) S1 S2
vill ID 9 9,725 0.00 0.00
vill ID 15 10,243 0.00 0.00
vill ID 18 10,975 0.00 0.09
vill ID 22 10,016 0.00 0.13
vill ID 12 9,823 0.00 0.28
vill ID 19 10,427 0.00 0.31
vill ID 2 11,337 0.00 0.42
vill ID 35 10,280 0.06 0.54
vill ID 40 10,273 0.08 0.19
vill ID 24 9,510 0.12 0.35
vill ID 3 7,800 0.14 0.57
vill ID 37 9,788 0.15 0.53
vill ID 5 9,801 0.19 0.26
vill ID 21 10,475 0.19 0.46
vill ID 11 10,055 0.20 0.60
vill ID 8 7,938 0.21 0.50
vill ID 7 7,738 0.25 0.50
vill ID 4 8,795 0.27 0.63
vill ID 44 9,913 0.31 0.47
vill ID 25 11,175 0.33 1.00
vill ID 6 8,313 0.37 0.63
vill ID 28 8,131 0.38 0.38
vill ID 17 7,915 0.45 0.59
vill ID 14 8,882 0.47 0.78
vill ID 32 7,155 0.47 0.89
vill ID 31 6,900 0.50 0.67
vill ID 27 8,181 0.50 0.75
vill ID 38 6,775 0.50 0.86
vill ID 26 6,030 0.61 0.85
vill ID 20 8,113 0.63 0.75
vill ID 30 6,662 0.63 0.79
vill ID 43 6,113 0.67 0.83
vill ID 29 7,844 0.67 0.93
vill ID 13 9,924 0.71 0.94
vill ID 23 8,875 0.71 0.86
vill ID 36 6,113 0.78 0.89
vill ID 1 5,713 0.82 0.90
vill ID 42 9,012 0.82 0.89
vill ID 39 6,350 0.88 0.88
vill ID 34 7,963 0.88 0.96
vill ID 33 7,168 0.88 0.95
vill ID 16 11,425 0.91 1.00
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Table 4.8: Village: Simulation Bounds

Data Mod: φ = 0 Mod: φ> 0
Village S1 S2 LB-UB LB-UB
vill ID 9 0.00 0.00 (0.00,0.19) (0.02,0.20)
vill ID 15 0.00 0.00 (0.00,0.25) (0.00,0.25)
vill ID 18 0.00 0.09 (0.02,0.29) (0.03,0.29)
vill ID 22 0.00 0.13 (0.10,0.65) (0.10,0.66)
vill ID 12 0.00 0.28 (0.05,0.29) (0.05,0.31)
vill ID 19 0.00 0.31 (0.00,0.34) (0.02,0.35)
vill ID 2 0.00 0.42 (0.05,0.36) (0.07,0.39)
vill ID 35 0.06 0.54 (0.35,0.68) (0.36,0.71)
vill ID 40 0.08 0.19 (0.12,0.66) (0.15,0.68)
vill ID 24 0.12 0.35 (0.18,0.71) (0.21,0.76)
vill ID 3 0.14 0.57 (0.20,0.76) (0.26,0.77)
vill ID 37 0.15 0.53 (0.32,0.72) (0.34,0.78)
vill ID 5 0.19 0.26 (0.19,0.71) (0.21,0.74)
vill ID 21 0.19 0.46 (0.23,0.63) (0.61,0.82)
vill ID 11 0.20 0.60 (0.26,0.75) (0.29,0.76)
vill ID 8 0.21 0.50 (0.24,0.81) (0.24,0.82)
vill ID 7 0.25 0.50 (0.30,0.82) (0.32,0.81)
vill ID 4 0.27 0.63 (0.28,0.80) (0.31,0.85)
vill ID 44 0.31 0.47 (0.33,0.64) (0.33,0.67)
vill ID 25 0.33 1.00 (0.40, 0.72) (0.41,0.73)
vill ID 6 0.37 0.63 (0.37,0.78) (0.37,0.79)
vill ID 28 0.38 0.38 (0.38,0.72) (0.39,0.75)
vill ID 17 0.45 0.59 (0.56,0.89) (0.58,0.90)
vill ID 14 0.47 0.78 (0.47,0.82) (0.75,0.83)
vill ID 32 0.47 0.89 (0.58,0.92) (0.58,0.93)
vill ID 31 0.50 0.67 (0.62,0.89) (0.64,0.90)
vill ID 27 0.50 0.75 (0.68,0.83) (0.68,0.84)
vill ID 38 0.50 0.86 (0.76,0.94) (0.76,0.94)
vill ID 26 0.61 0.85 (0.72,0.92) (0.76,0.93)
vill ID 20 0.63 0.75 (0.72,0.93) (0.72,0.95)
vill ID 30 0.63 0.79 (0.74,0.90) (0.76,0.94)
vill ID 43 0.67 0.83 (0.78,0.93) (0.79,0.96)
vill ID 29 0.67 0.93 (0.73,0.95) (0.73,0.99)
vill ID 13 0.71 0.94 (0.78,0.97) (0.81,1.00)
vill ID 23 0.71 0.86 (0.81,0.98) (0.81,0.99)
vill ID 36 0.78 0.89 (0.81,0.96) (0.81,0.97)
vill ID 1 0.82 0.90 (0.83,0.97) (0.86,0.98)
vill ID 42 0.82 0.89 (0.83,0.94) (0.83,0.94)
vill ID 39 0.88 0.88 (0.89,0.99) (0.89,1.00)
vill ID 34 0.88 0.96 (0.88,0.98) (0.89,1.00)
vill ID 33 0.88 0.95 (0.88,0.99) (0.88,1.00)
vill ID 16 0.91 1.00 (0.91,0.98) (0.95,0.99)
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Table 4.9: Simulation Bounds (Perturbation φ)

Data Mod:
φ = 0

Mod: φ̂ =
0.00514

Village S1 S2 P1 P2 P3 P4 P5 P6
vill ID 24 0.120 0.350 LB 0.181 0.185 0.190 0.194 0.197 0.208

UB 0.712 0.727 0.733 0.744 0.751 0.758

vill ID 3 0.140 0.570 LB 0.201 0.206 0.222 0.237 0.258 0.263
UB 0.764 0.765 0.765 0.767 0.769 0.770

vill ID 21 0.190 0.460 LB 0.230 0.272 0.357 0.484 0.590 0.611
UB 0.626 0.691 0.734 0.798 0.820 0.820

vill ID 14 0.470 0.780 LB 0.470 0.549 0.581 0.628 0.675 0.754
UB 0.817 0.818 0.820 0.821 0.823 0.827

vill ID 13 0.710 0.940 LB 0.776 0.781 0.787 0.790 0.799 0.808
UB 0.973 0.976 0.984 0.991 0.999 1.000
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Table 4.10: Village: Social Planner Problem

Total #HH Total Endowment Cost of Sanitation Data Utilitarian Under-adoption
Village (approx) value (x1000 Rs.) per unit (x1000 Rs.) S1 Social Planner (%)
vill ID 9 190 8,217.88 9.725 0.00 0.72 100%
vill ID 15 162 8,201.25 10.243 0.00 0.73 100%
vill ID 18 301 12,474.04 10.975 0.00 0.78 100%
vill ID 22 240 10,410.00 10.016 0.00 0.75 100%
vill ID 12 121 4,154.29 9.823 0.00 0.74 100%
vill ID 19 210 5,995.29 10.427 0.00 0.73 100%
vill ID 2 470 23,028.12 11.337 0.00 0.77 100%
vill ID 35 762 31,341.06 10.280 0.06 0.62 91%
vill ID 40 360 22,363.56 10.273 0.08 0.74 89%
vill ID 24 873 42,891.36 9.510 0.12 0.66 82%
vill ID 3 786 28,177.31 7.800 0.14 0.58 77%
vill ID 37 306 10,324.13 9.788 0.15 0.70 79%
vill ID 5 270 13,786.47 9.801 0.19 0.76 76%
vill ID 21 282 18,634.28 10.475 0.19 0.81 77%
vill ID 11 100 4,572.00 10.055 0.20 0.72 72%
vill ID 8 308 19,836.43 7.938 0.21 0.82 74%
vill ID 7 226 9,754.84 7.738 0.25 0.78 68%
vill ID 4 633 56,674.39 8.795 0.27 0.92 70%
vill ID 44 313 27,611.92 9.913 0.31 0.89 65%
vill ID 25 109 4,756.76 11.175 0.33 0.78 57%
vill ID 6 200 12,018.20 8.313 0.37 0.77 52%
vill ID 28 164 19,903.53 8.131 0.38 0.94 60%
vill ID 17 324 15,900.95 7.915 0.45 0.84 46%
vill ID 14 220 10,798.04 8.882 0.47 0.75 38%
vill ID 32 187 12,615.58 7.155 0.47 0.76 38%
vill ID 31 127 8,930.64 6.900 0.50 0.74 32%
vill ID 27 120 4,304.76 8.181 0.50 0.74 32%
vill ID 38 328 28,304.10 6.775 0.50 0.91 45%
vill ID 26 413 22,870.29 6.030 0.61 0.88 31%
vill ID 20 169 10,431.53 8.113 0.63 0.87 28%
vill ID 30 366 23,321.89 6.662 0.63 0.86 26%
vill ID 43 140 13,040.02 6.113 0.67 0.91 27%
vill ID 29 453 27,705.03 7.844 0.67 0.88 24%
vill ID 13 340 16,649.12 9.924 0.71 0.96 26%
vill ID 23 168 11,790.41 8.875 0.71 0.91 22%
vill ID 36 280 22,333.92 6.113 0.78 0.94 17%
vill ID 1 347 22,793.04 5.713 0.82 0.91 10%
vill ID 42 273 21,557.72 9.012 0.82 0.85 3%
vill ID 39 163 8,761.58 6.350 0.88 0.78 -12%
vill ID 34 215 11,279.98 7.963 0.88 0.89 2%
vill ID 33 314 20,301.04 7.168 0.88 0.91 3%
vill ID 16 167 12,332.95 11.425 0.91 0.92 1%

Notes: This table show the socially optimal level of sanitation coverage Social Planner calculations are
performed using endowment level from observed villages in period S1. Column (5) and (6) denote the
proportion of sanitation adoption observed in the data and under the social planner solution respectively.
On average the extent of under-adoption of sanitation is close to 53% with respect to a utilitarian SWF,
where the planner assigns equal pareto weights to each household in the village. £1 ≈ Rs.100(INR).
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Table 4.11: Village: Price Subsidy Simulated Bounds

Cost of Data Pol: Price Subsidy (LB-UB)
Village Sanitation (Rs.) S1 No Subsidy Sub: 5% Sub: 15% Sub: 25%
vill ID 9 9,725 0.00 (0.02,0.20) (0.05,0.25) (0.18,0.72) (0.64,0.98)
vill ID 15 10,243 0.00 (0.00,0.25) (0.02,0.26) (0.12,0.42) (0.72,0.88)
vill ID 18 10,975 0.00 (0.03,0.29) (0.05,0.30) (0.15,0.48) (0.65,0.80)
vill ID 22 10,016 0.00 (0.10,0.66) (0.10,0.66) (0.17,0.67) (0.81,0.90)
vill ID 12 9,823 0.00 (0.05,0.31) (0.05,0.31) (0.23,0.62) (0.84,0.91)
vill ID 19 10,427 0.00 (0.02,0.35) (0.03,0.35) (0.08,0.41) (0.68,0.75)
vill ID 2 11,337 0.00 (0.07,0.39) (0.09,0.39) (0.12,0.43) (0.62,0.88)
vill ID 35 10,280 0.06 (0.36,0.71) (0.38,0.71) (0.65,0.84) (0.72,0.91)
vill ID 40 10,273 0.08 (0.15,0.68) (0.17,0.69) (0.19,0.72) (0.59,0.78)
vill ID 24 9,510 0.12 (0.21,0.76) (0.28,0.79) (0.31,0.83) (0.66,0.90)
vill ID 3 7,800 0.14 (0.26,0.77) (0.35,0.79) (0.84,0.96) (0.91,0.99)
vill ID 37 9,788 0.15 (0.34,0.78) (0.36,0.79) (0.71,0.86) (0.76,0.92)
vill ID 5 9,801 0.19 (0.21,0.74) (0.30,0.78) (0.64,0.82) (0.70,0.86)
vill ID 21 10,475 0.19 (0.61,0.82) (0.62,0.84) (0.66,0.89) (0.69,0.90)
vill ID 11 10,055 0.20 (0.29,0.76) (0.29,0.78) (0.32,0.79) (0.62,0.84)
vill ID 8 7,938 0.21 (0.24,0.82) (0.32,0.83) (0.63,0.85) (0.68,0.88)
vill ID 7 7,738 0.25 (0.32,0.81) (0.34,0.82) (0.70,0.88) (0.76,0.93)
vill ID 4 8,795 0.27 (0.31,0.85) (0.37,0.89) (0.68,0.92) (0.75,0.96)
vill ID 44 9,913 0.31 (0.33,0.67) (0.36,0.69) (0.76,0.92) (0.86,0.95)
vill ID 25 11,175 0.33 (0.40, 0.72) (0.43,0.74) (0.48,0.76) (0.62,0.91)
vill ID 6 8,313 0.37 (0.37,0.79) (0.38,0.79) (0.61,0.83) (0.66,0.84)
vill ID 28 8,131 0.38 (0.39,0.75) (0.41,0.76) (0.60,0.79) (0.65,0.82)
vill ID 17 7,915 0.45 (0.58,0.90) (0.72,0.91) (0.75,0.92) (0.78,0.98)
vill ID 14 8,882 0.47 (0.75,0.83) (0.78,0.84) (0.80,0.89) (0.88,0.97)
vill ID 32 7,155 0.47 (0.58,0.93) (0.70,0.94) (0.73,0.95) (0.80,1.00)
vill ID 31 6,900 0.50 (0.64,0.90) (0.67,0.91) (0.72,0.94) (0.81,0.97)
vill ID 27 8,181 0.50 (0.68,0.84) (0.72,0.85) (0.81,0.92) (0.84,0.93)
vill ID 38 6,775 0.50 (0.76,0.94) (0.78,0.94) (0.81,0.94) (0.82,0.95)
vill ID 26 6,030 0.61 (0.76,0.93) (0.78,0.94) (0.82,0.96) (0.88,0.99)
vill ID 20 8,113 0.63 (0.72,0.95) (0.75,0.96) (0.79,0.96) (0.86,0.99)
vill ID 30 6,662 0.63 (0.76,0.94) (0.80,0.96) (0.83,0.96) (0.88,0.97)
vill ID 43 6,113 0.67 (0.79,0.96) (0.79,0.96) (0.84,0.97) (0.88,0.99)
vill ID 29 7,844 0.67 (0.73,0.99) (0.75,0.99) (0.78,0.99) (0.82,1.00)
vill ID 13 9,924 0.71 (0.81,1.00) (0.84,1.00) (0.88,1.00) (0.89,1.00)
vill ID 23 8,875 0.71 (0.81,0.99) (0.84,1.00) (0.85,1.00) (0.88,1.00)
vill ID 36 6,113 0.78 (0.81,0.97) (0.82,0.97) (0.86,0.98) (0.94,0.99)
vill ID 1 5,713 0.82 (0.86,0.98) (0.87,0.98) (0.92,0.99) (0.93,0.99)
vill ID 42 9,012 0.82 (0.83,0.94) (0.86,0.96) (0.88,0.96) (0.92,0.97)
vill ID 39 6,350 0.88 (0.89,1.00) (0.89,1.00) (0.90,1.00) (0.90,1.00)
vill ID 34 7,963 0.88 (0.89,1.00) (0.91,1.00) (0.92,1.00) (0.93,1.00)
vill ID 33 7,168 0.88 (0.88,1.00) (0.88,1.00) (0.90,1.00) (0.90,1.00)
vill ID 16 11,425 0.91 (0.95,0.99) (0.95,1.00) (0.95,1.00) (0.96,1.00)

Notes: Policy simulations are performed on observed villages. £1 ≈ Rs.100(INR).
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Table 4.12: Simulated Bounds under different policies

Initial Sanitation Policy Effect: Equilibrium Sanitation (LB-UB)
Coverage (Fraction) Uncond Loan Sanitation Loan (100% of cost) Price Subsidy (25% of cost)

0 (0.07,0.28) (0.02,0.39) (0.16,0.42)
0.05 (0.11,0.35) (0.05,0.46) (0.21,0.58)
0.15 (0.28,0.49) (0.16,0.58) (0.39,0.66)
0.25 (0.38,0.60) (0.26,0.69) (0.47,0.78)
0.35 (0.60,071) (0.42,0.75) (0.66,0.81)
0.45 (0.71,0.77) (0.69,0.84) (0.75,0.88)
0.55 (0.75,0.81) (0.81,0.90) (0.82,0.91)
0.65 (0.82,0.86) (0.88,0.93) (0.90,0.96)
0.75 (0.85,0.91) (0.94,0.98) (0.96,0.98)
0.85 (0.91,0.96) (0.95,0.98) (0.98,0.98)
0.95 (0.95,0.98) (0.97,0.99) (0.98,1.00)

Notes: Policy simulations are performed on a counterfactual village where the initial distribution of
all state variables: age, assets, income and cost of sanitation Rs.8628 excluding the initial sanitation
coverage are held constant. The initial sanitation coverage is determined by generating a random
allocation of sanitation for different households in the village holding fixed all other characteristics.

Table 4.13: Household Valuation of Sanitation

Compensation Amount (x 1000 Rs.)
Age No Ext With Ext (LB-UB)
20 259.8 (578.4,884.6)
25 242.3 (557.1,834.6)
30 185.3 (483.8,732.4)
35 158.8 (389.6,632.5)
40 140.2 (326.5,561.4)
45 128.4 (259.8,438.5)
50 110.8 (224.0,328.5)
55 89.3 (163.4,267.2)
60 72.3 (125.4,189.2)
65 56.2 (96.4,136.1)
70 33.45 (63.2,97.5)
74 12.6 (35.7,63.5)

Notes: Compensation amount denotes the valuation of sanitation made by a household. The
amounts are computed for a representative household at different ages £1 ≈ Rs.100(INR).

159



Table 4.14: Estimated Welfare Change: Social Planner’s Solution

Total Welfare Sanitation
(x1000. Rs) Coverage

Baseline S1 9,247.2 0.370
Social Planner 36,569.6 0.807
Change +295.5% +118.1%

Notes: This table shows the change in the welfare for a representative village from enacting the social
planner’s solution where the total endowment is calculated with respect to the first sample period. The
social planner induces households to solve the optimal adoption problem by re-allocating the total
endowment between food consumption and sanitation, so as to maximize utility. A utilitarian Social
Welfare Function (SWF) is maximized with equal pareto weights for each household within the village

4.8.5 Figures

Figure 4.1: Life Cycle Profiles

(a) Proportion of Sanitation Adoption (b) Assets over the Life Cycle (1000Rs.)
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Figure 4.2: Model Fit: Life Cycle Profiles

(a) Proportion of Sanitation Adoption (b) Assets over the Life Cycle (1000Rs.)

Figure 4.3: Impact of Liquidity Constraints
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Figure 4.4: Model Fit: Impact of Liquidity Constraints

(a) Proportion of Sanitation Adoption (b) Assets over the life cycle (1000Rs.)

Figure 4.5: Model: Household Income
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Figure 4.6: Model Fit: Simulation by Village

Figure 4.7: Model Fit: Model φ = 0
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Figure 4.8: Household Valuation of Sanitation

Figure 4.9: Model simulation: Price Subsidy
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Figure 4.10: Equilibrium Adoption: Size of Loans & Subsidies

Notes: The simulations plot the upper and lower bound for the predicted equilibrium sanitation level
one period ahead. Policy simulations are performed on a counterfactual village where the initial
distribution of all state variables: age, assets, income and cost of sanitation Rs.8628 are held constant
and the initial sanitation coverage is fixed at 0%.
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Figure 4.11: Equilibrium Adoption: Cost of Policy & Size of Policy (lower bound)

Notes: The simulations plot the upper and lower bound for the predicted equilibrium sanitation level
one period ahead. Policy simulations are performed on a counterfactual village where the initial
distribution of all state variables: age, assets, income and cost of sanitation Rs.8,628 are held constant
and the initial sanitation coverage is fixed at 0%.
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Figure 4.12: Equilibrium Adoption: Cost and Allocation of Policy (lower bound)

(a) ZERO INITIAL COVERAGE (b) LOW INITIAL COVERAGE

Notes: The simulations plot the lower bounds for the predicted equilibrium sanitation level one period
ahead. Policy simulations are performed on a counterfactual village where the initial distribution of all
state variables: age, assets, income and cost of sanitation Rs.8628 are held constant and the initial
sanitation coverage is fixed at 0%.

Figure 4.13: Value of price subsidy: lower bound

Notes: The simulations plot the lower bound for the value of subsidy one period ahead. Policy
simulations are performed on a counterfactual village where the initial distribution of all state
variables: age, assets, income and cost of sanitation Rs.8628 excluding the initial sanitation coverage
are held constant. The initial sanitation coverage is determined by generating a random allocation of
sanitation for different households in the village holding fixed all other characteristics.
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Figure 4.14: Price Elasticity: Substitution & Income Effects
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Figure 4.15: Simulated Policy Bounds

(a) UNCONDITIONAL LOAN (b) SANITATION LOAN (100% OF COST)

(c) PRICE SUBSIDY (25% OF COST)
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