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Abstract—Network function virtualization (NFV) aims to 

decouple software network applications from their hardware in 
order to reduce development and deployment costs for new 
services. To enable the deployment of diverse network services, a 
reconfigurable and high performance hardware platform can 
bring considerable benefits to NFV. In this paper, an FPGA-based 
platform is proposed to perform as a protocol reconfigurable NFV 
switch. Logic circuit of virtual network functions can be 
reconfigured at run time on the proposed platform. A 
reconfiguration process is also proposed to enable packet loss free 
switch-over between virtual network functions that delivers 
undisrupted service. The platform can be reconfigured between 
Layer 1 circuit switch and Layer 2 Ethernet packet switch. Once 
running as a packet switch, the platform can switch over from 
Layer 2 Ethernet switch to Layer 3 IP parser and even Layer 4 
UDP parser. Performance of the implemented 2x2 switch at 
10Gbps per port delivers a minimum latency of 300 nanoseconds 
(circuit switch) and maximum latency of 1 microsecond. 
Reconfiguration between IP and UDP parser without loss of data 
is also demonstrated.  

Keywords—Network function virtualization, FPGA, Partial 
reconfiguration, network switching 

I.  INTRODUCTION 
 Current common network environment consists of 

interconnected routers with hosts, servers and clients. 
Forwarding of packets is decided on each router by a distributed 
routing algorithm. All network devices need to conform to 
appropriate standards to satisfy the compliance requirement. 
Such a rigid network environment offers little opportunity for 
innovation [1]. Software defined network (SDN) [2] aims to 
reduce the capital and operational expenditures for the 
development and deployment of new network services by 
offering a software programmable control plane. However, 
current network services often rely on diverse and purpose-built 
hardware (black-boxes), which increase the time and expertise 
of the additions and upgrade of SDN based network services [3]. 
Network function virtualization (NFV) [4] has emerged as a 
solution to decouple the software network applications from 
their supported hardware.  

To deliver diverse virtual network functions (VNFs) and 
maintain their performance, a reconfigurable and high 
performance hardware platform has become a common 
requirement. Functions are often treated as short-lived tasks and 
deployed in a time-shared manner on a reconfigurable platform. 
By reducing the configuration downtime, a reconfigurable 
platform is able to offer undisrupted dynamic services. Thus, the 

reconfiguration downtime has become a key parameter in a 
reconfigurable system. The NFV platform should also meet the 
performance requirement of diverse network functions. Latency 
and throughput become two key parameters to evaluate the 
performance of a network function. For example, rack scale 
computing requires a network latency as low as a small factor of 
DRAM latency [5]. 

The main contribution of this paper is an FPGA based 
reconfigurable high performance platform for network function 
virtualization. With the introduction of a new reconfiguration 
mechanism and process as well as the use of partial 
reconfiguration and network on chip (NoC), the proposed 
platform has the following features:  

a) A high performance platform that can support diverse 
network functions including multiple protocol processors 
and multilayer switches. VNFs can be associated with 
dedicated set of ports or virtual flows.  

b) A process that involves orchestration of networking and 
partial reconfiguration has been performed to deliver 
packet loss free reconfiguration. 

c) Virtual network functions in Layer 2 (switching), Layer 3 
(IP parsing) and Layer 4 (UDP parsing) can be deployed at 
runtime.  

A high performance 2x2 reconfigurable multi-layer switch is 
demonstrated. It delivers 9.8 Gbps throughput per 10 Gbps port. 
The switch has a latency of 300 nanoseconds. The minimum 
latency of the Ethernet switch is 500 nanoseconds and the 
maximum is 1 microseconds tested under different traffic 
distributions.  

The rest of the paper is organized as follows: Section II 
introduces the related work. The overview architecture of the 
proposed NFV platform is explained in section III. Further 
implementation of the platform is introduced in section IV. The 
proposed reconfiguration process is compared with common 
partial reconfiguration process in section V. Section VI 
demonstrates the protocol reconfiguration use cases. Section VII 
concludes this paper. 

II. BACKGROUND 
Existing commercial off-the-shelf (COTS) often needs a 

number of line cards connected by a high-speed interconnect to 
support both high performance and numerous programmable 
features of NFV [6]. FPGA has been proposed to perform as a 
reconfigurable high performance platform to reduce the 



 
 
 

complexity of the current COTS in a number of researches. 
Research in [7] implements an FPGA based programmable 
parser with 400 Gbps maximum throughput. A high 
performance FPGA-based OpenFlow switch is reported in [8]. 
An FPGA-based network monitoring accelerator is 
demonstrated in [9]. All these papers show that FPGA is able to 
perform as a flexible and reconfigurable platform to deliver high 
performance network functions. 

The most common method to introduce flexibility to an 
FPGA based network function is based on control registers. 
However, partial reconfiguration became a candidate 
technology for real-time FPGA based reconfiguration recently. 
Comparing to control registers, the partial reconfiguration based 
FPGA platform can be designed deep into logic circuit level 
[10]. The reconfiguration downtime is highly related to the size 
of reconfigurable regions and bit-file to be downloaded [11]. 
Instead of configuring the entire FPGA, partial reconfiguration 
enables the configuration of a part of FPGA without disturbing 
the rest, which is able to reduce the configuration downtime. 
Partial reconfiguration has been adopted in [12] to offer virtual 
network functions. Reconfigurable regions are created and 
interfaced directly to external ports in this research. A complete 
service chain from input port to output port may consist of a 
number of network functions. As a consequence, these network 
functions have to be placed in one reconfigurable region. A large 
number of FPGA resources might be included in the 
reconfigurable region, which increases the reconfiguration 
downtime. Instead of locating all functions in one reconfigurable 
region, the research in [13] propose to interconnect 
reconfigurable regions with less resources to deliver a chain of 
functions. Network on chip (NoC) is a common interconnect 
architecture to establish communication between these 
reconfigurable regions [14].  

III. OVERVIEW OF ARCHITECTURE 
The architecture of the proposed NFV platform is shown in 

Fig. 1. It is composed of a number of partial reconfigurable 
regions (PRRs), which are interconnected by a NoC. The 
10Gbps PHY is also connected to the NoC to receive and 
transmit data to off chip network. A central controller is also 
included to control the NoC router(s) and orchestrate the virtual 
network function switch-over process. As the logic circuit of 
VNFs can be reconfigured, the network developers are able to 
perform VNF design deep into logic circuit level.  

A dynamic NoC is adopted as interconnect architecture 
between PRRs in the proposed NFV platform. It is composed 
of a number of NoC routers. NoC interfaces are also included 
between PRRs and NoC routers to control the traffic. Each PRR 
is identified by a unique NoC address. The destination address 
of a packet is added in the NoC interface. And the NoC routers 
forward the packet according to the NoC address. The 
architecture of the NoC router and interface will be further 
introduced in section IV. The external 10 Gbps network ports 
are also connected with the NoC. All PRRs are decoupled from 
PHYs and directly attached to NoC as pluggable independently 
accessible regions. This enables for a protocol independent 
system that can support different protocols from Layer 2 and 
upwards. The host PC controls the reconfiguration of the 
platform through the on-chip central controller. Updated 

information is transferred from the host PC through the central 
controller to the NoC to enable the update of routing algorithms. 
The central controller is also responsible to perform the 
protocol reconfiguration process. The detailed information of 
the process is given in section V. 
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Fig. 1. Overview architecture of the NFV platform. 

Since all VNFs including Layer 2 MAC are only attached to 
NoC (network-attached functions) they are clearly decoupled 
from the high speed I/Os. This allows for a highly flexible 
system that can deploy and involve the VNFs where and when 
needed. VNF engines can be reconfigured on PRRs on per port, 
per independent flow, or per virtual network basis. PRRs can be 
also reconfigured into on-demand VNFs at run-time and 
critically without disruption of the service or loss of data.  

Therefore, a reconfigurable NFV platform with the 
following features is established: a) Network developers can 
design their VNFs deep into logic circuit level, which can 
potentially increase performance. b) Network developers can 
also reconfigure the switch type of the system between circuit 
switch and Layer 2 packet switch to serve the required service 
with appropriate capabilities and performance. c) Network 
developers can enhance the already deployed protocols and 
functions in real-time and in packet loss free manner.  

IV. IMPLEMENTATION 
The implementation detail of the NoC router and interface 

is shown in Fig. 2. A NoC interface is needed at the edge of 
NoC to bridge PRRs and PHYs with NoC routers. The NoC 
routers can be connected to build up diverse topology between 
PRRs. The NoC routers and interfaces are connected following 
the AXI4-stream handshake standard.  
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Fig. 2. The architecture of NoC router and end point buffer 

The Ethernet address is translated into NoC address 
according to the table in the NoC interface. This table can be 
updated by the central controller through AXI4-lite interface. 
The NoC address is transferred in parallel with the packet (in 
the user channel of AXI4-stream) until reaching its required 
PRR. The NoC interface is also responsible to control the 
traffic. FIFO is added to temporarily store the traffic during the 
reconfiguration of the platform. The FIFO can be controlled by 
the central controller to buffer or release the traffic at runtime. 
When the traffic has been buffered, the traffic buffer flag will 
be raised by the NoC interface. The flag will be transferred by 
NoC routers to notify that the traffic has been buffered (No 
further data will arrive until the traffic is released). This flag 
will be used in the reconfiguration process in section V to 
indicate that the traffic has been completely buffered. 

A routing table between NoC destination and output port is 
stored in each NoC router. When a packet is received by a NoC 
router, its NoC destination is extracted and the packet is 
forwarded to the related output port according to the routing 
table. The routing table can be updated dynamically by the 

central controller through an AXI4-lite interface. The traffic 
buffer flag is transferred by the NoC routers. This flag is also 
given to the central controller to indicate that the last clock 
cycle of data has arrived (No further data will be received until 
the traffic is released). 

V. PACKET LOSS FREEE RECONFIGURATION PROCESS 
A reconfiguration process that supports packet loss free 

protocol reconfiguration is introduced in this section. Instead of 
only having one active PRR, a backup (empty) PRR is 
introduced. As the NoC does not forward any data to the backup 
PRR, the bit file for this PRR can be downloaded without 
disturbing the existing traffic. When a switch-over of VNF (i.e. 
transfer from UDP parser to IP parser) is requested, partial bit 
file of the requested VNF will be firstly deployed on the backup 
PRR. During the download of the partial bit file of the backup 
PRR, the rest of the platform including the active PRR will not 
be interrupted. The backup PRR with requested VNF will not 
come into use until the reconfiguration of backup PRR is 
finished. When the reconfiguration of backup PRR is finished 
(the requested VNF is ready), the NoC will forward the related 
dataflow to the backup PRR and stop forwarding data to the 
previous active PRR. The previous backup PRR become active 
and the previous active PRR takes the role of the new backup 
PRR for future protocol upgrades and switch-overs. 

As shown in Fig.3, the PRRs, NoC routers and interfaces 
should be orchestrated appropriately during the reconfiguration 
process. The central controller takes the responsibility to 
orchestrate the reconfiguration process. The process takes five 
steps to reconfigure the VNF. Partial bit file of the requested 
VNF is downloaded from host PC to the backup PRR in the first 
step (a). The traffic will have to be buffered in the second step 
(b) to avoid any packet loss. The NoC routers report the traffic 
buffer flag to the central controller to confirm that the traffic 
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Fig. 3.  Reconfiguration process. a) The partial bit file is download into the backup PRR. b) The traffic is buffered. c) traffic already exiting in NoC has 

been completely transferred to the destination. d) The NoC is reconfigured to forward data to new processor. e) the traffic is released. f) the overall 
orchestration of the process 

 



 
 
 

has been completely buffered in step (c). The central controller 
then updates the routing table of the NoC in step (d). The data 
will then be released from the NoC interface and will be routed 
through the new requested NFV PRR in step (e). The overall 
orchestration process is shown in Fig.3.f. 

The proposed process is able to increase the performance 
of the reconfiguration since the platform is still functioning 
during the partial bit file download period. Only when the NoC 
is being updated, traffic should be buffered. The traffic buffer 
time required to enable free packet loss for common 
reconfiguration process and the proposed process is compared 
in the following paragraphs. 

In the standard partial reconfiguration process, the traffic 
has to be buffered during the download period of the bit file, 
since the PRR is not funcitoning. The download time of partial 
bit files according to their sizes are shown in Fig.4. The partial 
reconfiguration is performed through Vivado with the standard 
configuration of the reconfiguration controller (ICAPE2 at 100 
MHz). As the partial bit file needs to be forwarded to the 
reconfiguration controller, the size of the bit file has a strong 
influence on the reconfiguration time. Table I shows the 
resource utilization, partial bit file size and download time of a 
set of VNF processors. As indicated, the Ethernet parser with 
minimum partial bit file size takes 1785 microseconds. The 
Ethernet MAC needs the maximum download time which is 
2525 microseconds. Following the standard reconfiguration 
process, these times translate to excessive buffering resources 
as shown in Fig.4. 

 
Fig. 4. Time and buffer needed for packet loss free partial bitfile download 

TABLE I.  RESOURCE UTILIZATION AND PARTIAL BIT FILE SIZE 

VNF processor Flip flop LUT Partial bit 
file size (KB) 

Download 
time (us) 

Ethernet MAC 2700 3245 1010 2525 
Ethernet Parser 493 290 714 1785 

IP Parser 1268 1001 792 1980 
UDP Parser 2072 1451 846 2115 

 

During the proposed reconfiguration process, traffic needs 
to be buffered only when the NoC is being updated, since the 
previous VNF is still functioning in the active PRR. The buffer 
time required is the update time of the NoC. As introduced in 
section III, the routing table is updated through AXI4-lite 

interface. The size of the update data will have an influence on 
the time. The size of each destination-output port pair of the 
routing table is 8 bytes. Each NoC router contains 32 
destination-output port pairs. The number of destination-output 
port pairs need to be updated depends on the deployed routing 
algorithm. The time and buffer required to reconfigure the NoC 
is shown in Fig.5. 

 
Fig. 5. Time and buffer needed for packet loss free NoC Update time 

The result shows that the time to update NoC is at 
microsecond’s level (Fig.5) comparing to the common partial 
bit file download time which is at the level of hundreds of 
microseconds or even milliseconds (Fig.4). As the NFV 
platform is still able to process data during the download time 
of the partially bit file, time needed to buffer the traffic can be 
reduced with the proposed reconfiguration process. Therefore, 
the proposed partial reconfiguration process enables a packet 
loss free reconfiguration (switch-over) between VNFs where no 
data is lost during the process. With the proposed process, the 
network developer will be able to change VNFs on demand 
without stopping the traffic. 

VI. EXPERIMENTAL DEMONSTRATION 
This section demonstrates use cases of the proposed NFV 

platform.  Reconfiguration between a circuit switch and a Layer 
2 Ethernet packet switch is demonstrated. The latency of the 
circuit and packet switch is measured. Reconfiguration between 
IP (Layer 3) and UDP (Layer 4) parsers is also demonstrated. 
Parsed packets are counted to prove that no packet is lost during 
the reconfiguration process. 

TABLE II.  RESOURCE UTILIZATION 

Component Flip Flop LUT BRAM 

NoC interface 446 267 3 

NoC router 10398 22268 0 

Central controller 994 432 2 

 

The resource requirement for a star topology NoC with 15 
ports is shown in table II. The proposed NFV platform is 
implemented on the NetFPGA SUME board with Xilinx 
Virtex-7 690T FPGA chip [15]. The traffic is generated and 
analyzed by the Network Master Pro MT1000A from Anritsu 
[16]. The latency accuracy of the traffic analyzer is 100 
nanoseconds. The traffic analyzer has also a built in 100 



 
 
 

nanoseconds latency (measured when using it in a loopback 
mode). This has been removed in the following result. The 
network analyzer is connected with the 10Gbps SFP+ optical 
transceivers of the NetFPGA through one-meter single mode 
fiber. As the latency accuracy of the traffic analyzer is 100 
nanoseconds, the latency of the fiber (5 nanoseconds per meter) 
is ignored. 

A. Reconfiguration between circuit and packet switch 
Fig.6 shows the reconfiguration process from circuit switch 

to packet switch. In the circuit switch mode, the NoC forwards 
data from the input port directly to the output port. Ethernet 
MAC does not process any data. When the platform is 
reconfigured to packet switch mode, the routing table of NoC 
are dynamically updated to forward input data to an Ethernet 
MAC. Ethernet packets are extracted and sent to different 
output ports according to their Ethernet address information. 
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Fig. 6. Reconfigure from circuit switch to Ethernet packet switch 

 

The performance of a 2x2 Ethernet packet switch has been 
further analyzed. A NoC with mesh topology has been set up as 
shown in Fig.7.a. Clock convert modules are inserted between 

MAC (156.25 MHz) and the NoC (200 MHz). The NoC does 
not have to perform at the frequency of MAC with this 
configuration. Also the NoC can have good connectivity to 
interconnect a large number of PRRs. The influence of 
throughput on the latency is shown in Fig.7.c (1.2 microseconds 
and 1.9 microseconds for minimum and maximum throughput 
respectively). And the influence of packet size is shown in 
Fig.7.d. A NoC with star topology has been set up as shown in 
Fig.7.b. In this case, the NoC is operating at the frequency of 
MAC, so the clock convert modules are removed. The 
maximum number of input-output pairs of a NoC router is 15, 
so maximum 15 modules (I/O PHYs and PRRs) can be 
interconnected with this configuration. As shown in Fig.7.c and 
Fig.7.d, although the connectivity is limited, this configuration 
achieves ultra-low latency (500 nanoseconds and 1 
microsecond for minimum and maximum throughput 
respectively). This implementation delivers a latency reduction 
compared to the 4x4 mesh configuration in the order of 58% 
and 47% under minimum and maximum throughput 
respectively. 

B. Packet Loss Free Reconfiguration between Funcitons 
A reconfiguration between IP and UDP parser is 

demonstrated. The process of the demonstration is shown in 
Fig.8. IP parser is deployed in the active PRR in the initial stage 
(a). Then in stage (b), the UDP parser is deployed in the backup 
PRR. After the proposed reconfiguration process, the traffic is 
forwarded there to make the deployed UDP parser processing 
the traffic. Then the previous active PRR is configured into 
UDP parser and the traffic switches back to the active PRR by 
the proposed reconfiguration process. 
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Fig. 7 The performance of a 2x2 Ethernet packet switch. a) The experiment set up for a 4x4 mesh NoC running at 200MHz with clock converters. b) The 

experiment set up for a star NoC running at PHY frequency (156.25MHz), clock converter is not requirement. c) The relationship between throughput and 
latency. d) The relationship between packet size and latency. 
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Fig. 8. The reconfiguration process  demonstrated. a) The initial stage of the 

platform. b) The requested UDP parser is deployed on the backup PRR 
and become active. c) Switch back to the orginal PRR. 

The record of parsed packets in each PRR is shown in 
Fig.9. During 20th to 30th second, the backup PRR start parsing 
the traffic. From 30th to 70th second, the backup PRR is 
processing packets. The original active PRR is then 
reconfigured into UDP parser and then reused after 70 seconds, 
while the backup PRR becomes available again for future 
reconfigurations. The number of total packets is recorded by the 
traffic analyzer which is 77518546. The number of packets 
parsed in each PRR is 42708766 (original active PRR) and 
34809780 (original backup PRR). There is no packet lost 
throughout the whole process as the total number of parsed 
packets (with no errors) is equal to the total number of transmit 
packets (34809780 + 42708766 = 77518546). 

 
Fig. 9. Packet loss free switch-over between UDP and IP parsers. 

VII. CONCLUSION 
An FPGA-based network function virtualization platform 

has been proposed in this paper. It has been implemented to 
demonstrate a protocol independent switch that can evolve from 
one protocol to another in real-time and without service 
disruption and loss of data. The platform allows a network 
developer to design and deploy the logic circuit of any VNF on 
the platform. Partially reconfiguration has been adopted to 
enable the runtime reconfiguration of VNFs. A reconfiguration 
process has been proposed and implemented to realize packet 
loss free function reconfiguration. The platform can keep 
performing without loss of data during the download time of the 

partial bit file.  Reconfiguration between circuit switch and 
Layer 2 Ethernet packet switch is demonstrated. Ethernet MAC 
can be bypassed in the circuit switch mode to reduce latency. 
The implemented NFV 2x2 switch has very high performance 
in terms of latency (0.3 microseconds for circuit switch, 
maximum 1 microsecond for Layer 2 Ethernet) while delivering 
9.8 Gbps throughout per 10 Gbps port. Reconfiguration 
between IP and UDP parser has also been demonstrated. The 
result shows that all the packets are parsed without losing data.  
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