
978-1-5090-3707-0/16/$31.00 ©2016 Crown

Reconfigurable Computing for Network Function
Virtualization: A Protocol Independent Switch

Qianqiao Chen, Vaibhawa Mishra, Georgios Zervas
Department of Electrical and Electronics Engineering

University of Bristol, Bristol, UK
{qianqiao.chen, vaibhawa.mishra, georgios.zervas}@bristol.ac.uk

Abstract—Network function virtualization (NFV) aims to

decouple software network applications from their hardware in
order to reduce development and deployment costs for new
services. To enable the deployment of diverse network services, a
reconfigurable and high performance hardware platform can
bring considerable benefits to NFV. In this paper, an FPGA-based
platform is proposed to perform as a protocol reconfigurable NFV
switch. Logic circuit of virtual network functions can be
reconfigured at run time on the proposed platform. A
reconfiguration process is also proposed to enable packet loss free
switch-over between virtual network functions that delivers
undisrupted service. The platform can be reconfigured between
Layer 1 circuit switch and Layer 2 Ethernet packet switch. Once
running as a packet switch, the platform can switch over from
Layer 2 Ethernet switch to Layer 3 IP parser and even Layer 4
UDP parser. Performance of the implemented 2x2 switch at
10Gbps per port delivers a minimum latency of 300 nanoseconds
(circuit switch) and maximum latency of 1 microsecond.
Reconfiguration between IP and UDP parser without loss of data
is also demonstrated.

Keywords—Network function virtualization, FPGA, Partial
reconfiguration, network switching

I. INTRODUCTION
 Current common network environment consists of

interconnected routers with hosts, servers and clients.
Forwarding of packets is decided on each router by a distributed
routing algorithm. All network devices need to conform to
appropriate standards to satisfy the compliance requirement.
Such a rigid network environment offers little opportunity for
innovation [1]. Software defined network (SDN) [2] aims to
reduce the capital and operational expenditures for the
development and deployment of new network services by
offering a software programmable control plane. However,
current network services often rely on diverse and purpose-built
hardware (black-boxes), which increase the time and expertise
of the additions and upgrade of SDN based network services [3].
Network function virtualization (NFV) [4] has emerged as a
solution to decouple the software network applications from
their supported hardware.

To deliver diverse virtual network functions (VNFs) and
maintain their performance, a reconfigurable and high
performance hardware platform has become a common
requirement. Functions are often treated as short-lived tasks and
deployed in a time-shared manner on a reconfigurable platform.
By reducing the configuration downtime, a reconfigurable
platform is able to offer undisrupted dynamic services. Thus, the

reconfiguration downtime has become a key parameter in a
reconfigurable system. The NFV platform should also meet the
performance requirement of diverse network functions. Latency
and throughput become two key parameters to evaluate the
performance of a network function. For example, rack scale
computing requires a network latency as low as a small factor of
DRAM latency [5].

The main contribution of this paper is an FPGA based
reconfigurable high performance platform for network function
virtualization. With the introduction of a new reconfiguration
mechanism and process as well as the use of partial
reconfiguration and network on chip (NoC), the proposed
platform has the following features:

a) A high performance platform that can support diverse
network functions including multiple protocol processors
and multilayer switches. VNFs can be associated with
dedicated set of ports or virtual flows.

b) A process that involves orchestration of networking and
partial reconfiguration has been performed to deliver
packet loss free reconfiguration.

c) Virtual network functions in Layer 2 (switching), Layer 3
(IP parsing) and Layer 4 (UDP parsing) can be deployed at
runtime.

A high performance 2x2 reconfigurable multi-layer switch is
demonstrated. It delivers 9.8 Gbps throughput per 10 Gbps port.
The switch has a latency of 300 nanoseconds. The minimum
latency of the Ethernet switch is 500 nanoseconds and the
maximum is 1 microseconds tested under different traffic
distributions.

The rest of the paper is organized as follows: Section II
introduces the related work. The overview architecture of the
proposed NFV platform is explained in section III. Further
implementation of the platform is introduced in section IV. The
proposed reconfiguration process is compared with common
partial reconfiguration process in section V. Section VI
demonstrates the protocol reconfiguration use cases. Section VII
concludes this paper.

II. BACKGROUND
Existing commercial off-the-shelf (COTS) often needs a

number of line cards connected by a high-speed interconnect to
support both high performance and numerous programmable
features of NFV [6]. FPGA has been proposed to perform as a
reconfigurable high performance platform to reduce the

complexity of the current COTS in a number of researches.
Research in [7] implements an FPGA based programmable
parser with 400 Gbps maximum throughput. A high
performance FPGA-based OpenFlow switch is reported in [8].
An FPGA-based network monitoring accelerator is
demonstrated in [9]. All these papers show that FPGA is able to
perform as a flexible and reconfigurable platform to deliver high
performance network functions.

The most common method to introduce flexibility to an
FPGA based network function is based on control registers.
However, partial reconfiguration became a candidate
technology for real-time FPGA based reconfiguration recently.
Comparing to control registers, the partial reconfiguration based
FPGA platform can be designed deep into logic circuit level
[10]. The reconfiguration downtime is highly related to the size
of reconfigurable regions and bit-file to be downloaded [11].
Instead of configuring the entire FPGA, partial reconfiguration
enables the configuration of a part of FPGA without disturbing
the rest, which is able to reduce the configuration downtime.
Partial reconfiguration has been adopted in [12] to offer virtual
network functions. Reconfigurable regions are created and
interfaced directly to external ports in this research. A complete
service chain from input port to output port may consist of a
number of network functions. As a consequence, these network
functions have to be placed in one reconfigurable region. A large
number of FPGA resources might be included in the
reconfigurable region, which increases the reconfiguration
downtime. Instead of locating all functions in one reconfigurable
region, the research in [13] propose to interconnect
reconfigurable regions with less resources to deliver a chain of
functions. Network on chip (NoC) is a common interconnect
architecture to establish communication between these
reconfigurable regions [14].

III. OVERVIEW OF ARCHITECTURE
The architecture of the proposed NFV platform is shown in

Fig. 1. It is composed of a number of partial reconfigurable
regions (PRRs), which are interconnected by a NoC. The
10Gbps PHY is also connected to the NoC to receive and
transmit data to off chip network. A central controller is also
included to control the NoC router(s) and orchestrate the virtual
network function switch-over process. As the logic circuit of
VNFs can be reconfigured, the network developers are able to
perform VNF design deep into logic circuit level.

A dynamic NoC is adopted as interconnect architecture
between PRRs in the proposed NFV platform. It is composed
of a number of NoC routers. NoC interfaces are also included
between PRRs and NoC routers to control the traffic. Each PRR
is identified by a unique NoC address. The destination address
of a packet is added in the NoC interface. And the NoC routers
forward the packet according to the NoC address. The
architecture of the NoC router and interface will be further
introduced in section IV. The external 10 Gbps network ports
are also connected with the NoC. All PRRs are decoupled from
PHYs and directly attached to NoC as pluggable independently
accessible regions. This enables for a protocol independent
system that can support different protocols from Layer 2 and
upwards. The host PC controls the reconfiguration of the
platform through the on-chip central controller. Updated

information is transferred from the host PC through the central
controller to the NoC to enable the update of routing algorithms.
The central controller is also responsible to perform the
protocol reconfiguration process. The detailed information of
the process is given in section V.

L1 ETH
flow

PRR Partial reconfiguration region

UDP
Parse VNF to be deployed

ETH
MAC

VNF has been deployed

10G PHY

L2 ETH
flow

Control

I/F NoC interface

Central ControllerFPGA

PRR PRR PRR PRR ...

NoC

ETH
MAC

ETH
MAC

Host PC

UDP
Parse

IP
Parse

...

I/F I/F I/F I/F

ETH
MAC

I/F
I
/F

I/
F

I/F

Fig. 1. Overview architecture of the NFV platform.

Since all VNFs including Layer 2 MAC are only attached to
NoC (network-attached functions) they are clearly decoupled
from the high speed I/Os. This allows for a highly flexible
system that can deploy and involve the VNFs where and when
needed. VNF engines can be reconfigured on PRRs on per port,
per independent flow, or per virtual network basis. PRRs can be
also reconfigured into on-demand VNFs at run-time and
critically without disruption of the service or loss of data.

Therefore, a reconfigurable NFV platform with the
following features is established: a) Network developers can
design their VNFs deep into logic circuit level, which can
potentially increase performance. b) Network developers can
also reconfigure the switch type of the system between circuit
switch and Layer 2 packet switch to serve the required service
with appropriate capabilities and performance. c) Network
developers can enhance the already deployed protocols and
functions in real-time and in packet loss free manner.

IV. IMPLEMENTATION
The implementation detail of the NoC router and interface

is shown in Fig. 2. A NoC interface is needed at the edge of
NoC to bridge PRRs and PHYs with NoC routers. The NoC
routers can be connected to build up diverse topology between
PRRs. The NoC routers and interfaces are connected following
the AXI4-stream handshake standard.

FIFO

Routing
table

NoC router

...
Other
router

B
u
f
f
e
r

T
r
a
f
f
i
c

U
p
d
a
t
e

Ready

Valid

PRR

NoC Des

AXI4-stream AXI4-lite

...ETH/NoC
tableE

T
H

D
e
s

NoC Interface

Update

Central controller

FIFO
Ctrl

Traffic buffer flag

PHY
...

PRR
...
PHY

...

Traffic buffer flag

AXI
4-stream
switch

DATA

Fig. 2. The architecture of NoC router and end point buffer

The Ethernet address is translated into NoC address
according to the table in the NoC interface. This table can be
updated by the central controller through AXI4-lite interface.
The NoC address is transferred in parallel with the packet (in
the user channel of AXI4-stream) until reaching its required
PRR. The NoC interface is also responsible to control the
traffic. FIFO is added to temporarily store the traffic during the
reconfiguration of the platform. The FIFO can be controlled by
the central controller to buffer or release the traffic at runtime.
When the traffic has been buffered, the traffic buffer flag will
be raised by the NoC interface. The flag will be transferred by
NoC routers to notify that the traffic has been buffered (No
further data will arrive until the traffic is released). This flag
will be used in the reconfiguration process in section V to
indicate that the traffic has been completely buffered.

A routing table between NoC destination and output port is
stored in each NoC router. When a packet is received by a NoC
router, its NoC destination is extracted and the packet is
forwarded to the related output port according to the routing
table. The routing table can be updated dynamically by the

central controller through an AXI4-lite interface. The traffic
buffer flag is transferred by the NoC routers. This flag is also
given to the central controller to indicate that the last clock
cycle of data has arrived (No further data will be received until
the traffic is released).

V. PACKET LOSS FREEE RECONFIGURATION PROCESS
A reconfiguration process that supports packet loss free

protocol reconfiguration is introduced in this section. Instead of
only having one active PRR, a backup (empty) PRR is
introduced. As the NoC does not forward any data to the backup
PRR, the bit file for this PRR can be downloaded without
disturbing the existing traffic. When a switch-over of VNF (i.e.
transfer from UDP parser to IP parser) is requested, partial bit
file of the requested VNF will be firstly deployed on the backup
PRR. During the download of the partial bit file of the backup
PRR, the rest of the platform including the active PRR will not
be interrupted. The backup PRR with requested VNF will not
come into use until the reconfiguration of backup PRR is
finished. When the reconfiguration of backup PRR is finished
(the requested VNF is ready), the NoC will forward the related
dataflow to the backup PRR and stop forwarding data to the
previous active PRR. The previous backup PRR become active
and the previous active PRR takes the role of the new backup
PRR for future protocol upgrades and switch-overs.

As shown in Fig.3, the PRRs, NoC routers and interfaces
should be orchestrated appropriately during the reconfiguration
process. The central controller takes the responsibility to
orchestrate the reconfiguration process. The process takes five
steps to reconfigure the VNF. Partial bit file of the requested
VNF is downloaded from host PC to the backup PRR in the first
step (a). The traffic will have to be buffered in the second step
(b) to avoid any packet loss. The NoC routers report the traffic
buffer flag to the central controller to confirm that the traffic

c)

④ Update NoC

Network on Chip

IP
Parser

UDP
Parser

Central controller

d)

② start buffering traffic

Network on Chip

IP
Parser

UDP
Parser

Central controller

b)

⑤ release traffic

Network on Chip

IP
Parser

UDP
Parser

Central controller

e)

① Partial bitstream
download

Network on Chip

IP
Parser

Backup
PRR

Central controller

a)

③ Traffic is buffered completely

Network on Chip

IP
Parser

UDP
parser

Central controller

①

②
③
④
⑤

f)

PC
Central

controller
NoC

interfaces

NoC
RoutersPRR

Fig. 3. Reconfiguration process. a) The partial bit file is download into the backup PRR. b) The traffic is buffered. c) traffic already exiting in NoC has

been completely transferred to the destination. d) The NoC is reconfigured to forward data to new processor. e) the traffic is released. f) the overall
orchestration of the process

has been completely buffered in step (c). The central controller
then updates the routing table of the NoC in step (d). The data
will then be released from the NoC interface and will be routed
through the new requested NFV PRR in step (e). The overall
orchestration process is shown in Fig.3.f.

The proposed process is able to increase the performance
of the reconfiguration since the platform is still functioning
during the partial bit file download period. Only when the NoC
is being updated, traffic should be buffered. The traffic buffer
time required to enable free packet loss for common
reconfiguration process and the proposed process is compared
in the following paragraphs.

In the standard partial reconfiguration process, the traffic
has to be buffered during the download period of the bit file,
since the PRR is not funcitoning. The download time of partial
bit files according to their sizes are shown in Fig.4. The partial
reconfiguration is performed through Vivado with the standard
configuration of the reconfiguration controller (ICAPE2 at 100
MHz). As the partial bit file needs to be forwarded to the
reconfiguration controller, the size of the bit file has a strong
influence on the reconfiguration time. Table I shows the
resource utilization, partial bit file size and download time of a
set of VNF processors. As indicated, the Ethernet parser with
minimum partial bit file size takes 1785 microseconds. The
Ethernet MAC needs the maximum download time which is
2525 microseconds. Following the standard reconfiguration
process, these times translate to excessive buffering resources
as shown in Fig.4.

Fig. 4. Time and buffer needed for packet loss free partial bitfile download

TABLE I. RESOURCE UTILIZATION AND PARTIAL BIT FILE SIZE

VNF processor Flip flop LUT Partial bit
file size (KB)

Download
time (us)

Ethernet MAC 2700 3245 1010 2525
Ethernet Parser 493 290 714 1785

IP Parser 1268 1001 792 1980
UDP Parser 2072 1451 846 2115

During the proposed reconfiguration process, traffic needs
to be buffered only when the NoC is being updated, since the
previous VNF is still functioning in the active PRR. The buffer
time required is the update time of the NoC. As introduced in
section III, the routing table is updated through AXI4-lite

interface. The size of the update data will have an influence on
the time. The size of each destination-output port pair of the
routing table is 8 bytes. Each NoC router contains 32
destination-output port pairs. The number of destination-output
port pairs need to be updated depends on the deployed routing
algorithm. The time and buffer required to reconfigure the NoC
is shown in Fig.5.

Fig. 5. Time and buffer needed for packet loss free NoC Update time

The result shows that the time to update NoC is at
microsecond’s level (Fig.5) comparing to the common partial
bit file download time which is at the level of hundreds of
microseconds or even milliseconds (Fig.4). As the NFV
platform is still able to process data during the download time
of the partially bit file, time needed to buffer the traffic can be
reduced with the proposed reconfiguration process. Therefore,
the proposed partial reconfiguration process enables a packet
loss free reconfiguration (switch-over) between VNFs where no
data is lost during the process. With the proposed process, the
network developer will be able to change VNFs on demand
without stopping the traffic.

VI. EXPERIMENTAL DEMONSTRATION
This section demonstrates use cases of the proposed NFV

platform. Reconfiguration between a circuit switch and a Layer
2 Ethernet packet switch is demonstrated. The latency of the
circuit and packet switch is measured. Reconfiguration between
IP (Layer 3) and UDP (Layer 4) parsers is also demonstrated.
Parsed packets are counted to prove that no packet is lost during
the reconfiguration process.

TABLE II. RESOURCE UTILIZATION

Component Flip Flop LUT BRAM

NoC interface 446 267 3

NoC router 10398 22268 0

Central controller 994 432 2

The resource requirement for a star topology NoC with 15
ports is shown in table II. The proposed NFV platform is
implemented on the NetFPGA SUME board with Xilinx
Virtex-7 690T FPGA chip [15]. The traffic is generated and
analyzed by the Network Master Pro MT1000A from Anritsu
[16]. The latency accuracy of the traffic analyzer is 100
nanoseconds. The traffic analyzer has also a built in 100

nanoseconds latency (measured when using it in a loopback
mode). This has been removed in the following result. The
network analyzer is connected with the 10Gbps SFP+ optical
transceivers of the NetFPGA through one-meter single mode
fiber. As the latency accuracy of the traffic analyzer is 100
nanoseconds, the latency of the fiber (5 nanoseconds per meter)
is ignored.

A. Reconfiguration between circuit and packet switch
Fig.6 shows the reconfiguration process from circuit switch

to packet switch. In the circuit switch mode, the NoC forwards
data from the input port directly to the output port. Ethernet
MAC does not process any data. When the platform is
reconfigured to packet switch mode, the routing table of NoC
are dynamically updated to forward input data to an Ethernet
MAC. Ethernet packets are extracted and sent to different
output ports according to their Ethernet address information.

Central ControllerFPGA

PRR PRR PRR PRR ...

NoC

ETH
MAC

ETH
MAC

Host PC

ETH
MAC

ETH
MAC

Central ControllerFPGA

PRR PRR PRR PRR ...

NoC

ETH
MAC

ETH
MAC

Host PC

ETH
MAC

ETH
MAC

Fig. 6. Reconfigure from circuit switch to Ethernet packet switch

The performance of a 2x2 Ethernet packet switch has been
further analyzed. A NoC with mesh topology has been set up as
shown in Fig.7.a. Clock convert modules are inserted between

MAC (156.25 MHz) and the NoC (200 MHz). The NoC does
not have to perform at the frequency of MAC with this
configuration. Also the NoC can have good connectivity to
interconnect a large number of PRRs. The influence of
throughput on the latency is shown in Fig.7.c (1.2 microseconds
and 1.9 microseconds for minimum and maximum throughput
respectively). And the influence of packet size is shown in
Fig.7.d. A NoC with star topology has been set up as shown in
Fig.7.b. In this case, the NoC is operating at the frequency of
MAC, so the clock convert modules are removed. The
maximum number of input-output pairs of a NoC router is 15,
so maximum 15 modules (I/O PHYs and PRRs) can be
interconnected with this configuration. As shown in Fig.7.c and
Fig.7.d, although the connectivity is limited, this configuration
achieves ultra-low latency (500 nanoseconds and 1
microsecond for minimum and maximum throughput
respectively). This implementation delivers a latency reduction
compared to the 4x4 mesh configuration in the order of 58%
and 47% under minimum and maximum throughput
respectively.

B. Packet Loss Free Reconfiguration between Funcitons
A reconfiguration between IP and UDP parser is

demonstrated. The process of the demonstration is shown in
Fig.8. IP parser is deployed in the active PRR in the initial stage
(a). Then in stage (b), the UDP parser is deployed in the backup
PRR. After the proposed reconfiguration process, the traffic is
forwarded there to make the deployed UDP parser processing
the traffic. Then the previous active PRR is configured into
UDP parser and the traffic switches back to the active PRR by
the proposed reconfiguration process.

c)

a)

d)

ETH
MAC

ETH
MAC

ETH
MAC

Clock
convert

Clock
convert

Clock
convert

PCS/
PMA

PCS/
PMA

PCS/
PMA

b)

ETH
MAC

PCS/
PMA

PCS/
PMA

ETH
MAC

PCS/
PMA

ETH
MAC

Fig. 7 The performance of a 2x2 Ethernet packet switch. a) The experiment set up for a 4x4 mesh NoC running at 200MHz with clock converters. b) The

experiment set up for a star NoC running at PHY frequency (156.25MHz), clock converter is not requirement. c) The relationship between throughput and
latency. d) The relationship between packet size and latency.

Central ControllerFPGA

PRR PRR PRR PRR ...

NoC

ETH
MAC

ETH
MAC

Host PC

UDP

c)

a) b)

Central ControllerFPGA

PRR PRR PRR PRR ...

NoC

ETH
MAC

ETH
MAC

Host PC

IP

Central ControllerFPGA

PRR PRR PRR ...

NoC

ETH
MAC

ETH
MAC

Host PC

IPUDP

Fig. 8. The reconfiguration process demonstrated. a) The initial stage of the

platform. b) The requested UDP parser is deployed on the backup PRR
and become active. c) Switch back to the orginal PRR.

The record of parsed packets in each PRR is shown in
Fig.9. During 20th to 30th second, the backup PRR start parsing
the traffic. From 30th to 70th second, the backup PRR is
processing packets. The original active PRR is then
reconfigured into UDP parser and then reused after 70 seconds,
while the backup PRR becomes available again for future
reconfigurations. The number of total packets is recorded by the
traffic analyzer which is 77518546. The number of packets
parsed in each PRR is 42708766 (original active PRR) and
34809780 (original backup PRR). There is no packet lost
throughout the whole process as the total number of parsed
packets (with no errors) is equal to the total number of transmit
packets (34809780 + 42708766 = 77518546).

Fig. 9. Packet loss free switch-over between UDP and IP parsers.

VII. CONCLUSION
An FPGA-based network function virtualization platform

has been proposed in this paper. It has been implemented to
demonstrate a protocol independent switch that can evolve from
one protocol to another in real-time and without service
disruption and loss of data. The platform allows a network
developer to design and deploy the logic circuit of any VNF on
the platform. Partially reconfiguration has been adopted to
enable the runtime reconfiguration of VNFs. A reconfiguration
process has been proposed and implemented to realize packet
loss free function reconfiguration. The platform can keep
performing without loss of data during the download time of the

partial bit file. Reconfiguration between circuit switch and
Layer 2 Ethernet packet switch is demonstrated. Ethernet MAC
can be bypassed in the circuit switch mode to reduce latency.
The implemented NFV 2x2 switch has very high performance
in terms of latency (0.3 microseconds for circuit switch,
maximum 1 microsecond for Layer 2 Ethernet) while delivering
9.8 Gbps throughout per 10 Gbps port. Reconfiguration
between IP and UDP parser has also been demonstrated. The
result shows that all the packets are parsed without losing data.

VIII. ACKNOWLEDGEMENT
This work is supported by the EC H2020 dredbox project

with grant agreement No.687632.

REFERENCES

[1] N. Zilberman, P. M. Watts, C. Rotsos, and A. W. Moore, “Reconfigurable Network
Systems and Software-Defined Networking,” Proc. IEEE, vol. 103, no. 7, pp. 1102–
1124, Jul. 2015.

[2] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-Defined Networking: A Comprehensive Survey,” Proc.
IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[3] Y. Li and M. Chen, “Software-Defined Network Function Virtualization: A Survey,”
IEEE Access, vol. 3, pp. 2542–2553, 2015.

[4] Network Functions Virtualisation (NFV);Virtual Network Functions Architecture,
ETSI GS NFV-SWA 001 V1.1.1, 2014-12.

[5] A. Daglis, S. Novaković, E. Bugnion, B. Falsafi, and B. Grot, “Manycore Network
Interfaces for in-memory rack-scale computing,” in 2015 ACM/IEEE 42nd Annual
International Symposium on Computer Architecture (ISCA), 2015, pp. 567–579.

[6] G. Brebner, “Softly Defined Networking,” in Proceedings of the Eighth ACM/IEEE
Symposium on Architectures for Networking and Communications Systems, New
York, NY, USA, 2012, pp. 1–2.

[7] M. Attig and G. Brebner, “400 Gb/s Programmable Packet Parsing on a Single
FPGA,” in Proceedings of the 2011 ACM/IEEE Seventh Symposium on
Architectures for Networking and Communications Systems, Washington, DC,
USA, 2011, pp. 12–23.

[8] S. Zhou, W. Jiang, and V. K. Prasanna, “A flexible and scalable high-performance
OpenFlow switch on heterogeneous SoC platforms,” in 2014 IEEE 33rd
International Performance Computing and Communications Conference (IPCCC),
2014, pp. 1–8.

[9] L. Kekely, V. Puš, P. Benáček, and J. Kořenek, “Trade-offs and progressive adoption
of FPGA acceleration in network traffic monitoring,” in 2014 24th International
Conference on Field Programmable Logic and Applications (FPL), 2014, pp. 1–4.

[10] D. Koch, J. Torresen, C. Beckhoff, D. Ziener, C. Dennl, V. Breuer, J. Teich, M.
Feilen, and W. Stechele, “Partial reconfiguration on FPGAs in practice; Tools and
applications,” in ARCS Workshops (ARCS), 2012, 2012, pp. 1–12.

[11] L. Jianwen and J. C. Chuen, “Partially reconfigurable matrix multiplication for area
and time efficiency on FPGAs,” in Euromicro Symposium on Digital System
Design, 2004. DSD 2004, 2004, pp. 244–248.

[12] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow, “FPGAs in the
Cloud: Booting Virtualized Hardware Accelerators with OpenStack,” in 2014 IEEE
22nd Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2014, pp. 109–116.

[13] D. Koch, C. Beckhoff, and J. Teich, “ReCoBus-Builder-A novel tool and technique
to build statically and dynamically reconfigurable systems for FPGAS,” in 2008
International Conference on Field Programmable Logic and Applications, 2008, pp.
119–124.

[14] A. Weichslgartner, S. Wildermann, and J. Teich, “Dynamic decentralized mapping
of tree-structured applications on NoC architectures,” in 2011 Fifth IEEE/ACM
International Symposium on Networks on Chip (NoCS), 2011, pp. 201–208.

[15] Noa Zilberman, Yury Audzevich, G. Adam Covington, Andrew W. Moore,
'NetFPGA SUME: Toward 100 Gbps as Research Commodity,' IEEE Micro, vol.34,
no.5, pp.32,41, September-October 2014.

[16] “Network Master Pro MT1000A- Anritsu Europe.” [Online]. Available:
https://www.anritsu.com/en-GB/test-measurement/products/mt1000a. [Accessed:
20-Jul-2016].

