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Abstract— This paper presents and defines a Reconfiguration 
over Network (REoN) protocol. It is a solution for a FPGA-based 
dynamically reconfigurable system, that offers partial 
(re)programming over the network without the need of a 
local/embedded soft/hard processor. This protocol can transport 
partial bit files from centralized control and management system 
via network resource management API to a FPGA empowered 
network node, using standard 10 Gbps Ethernet. This work 
architects and introduces a proprietary lightweight connection 
oriented protocol stack, which guarantees reliability over 
standard UDP/IP protocol. Hardware stack for standard 
networking protocols including remote reconfiguration engine 
directly interfaced with Xilinx Internal Configuration Access 
Port (ICAP). This minimizes FPGA resource requirements in re-
programming the FPGA. The presented work is an enabling 
technology for a range of applications such as reconfigurable 
computing enabled Network Function Virtualization (NFV), 
function disaggregation on data centres empowered by 
FPGA/SoCs, as well as Internet of Things (IoT). 

Keywords—Partial Reconfiguration, network protocols, remote 
dynamic reconfiguration 

I. INTRODUCTION 

FPGAs are being used in application specific processing 
such as video, image or general purpose computing for more 
than twenty years. In recent years, FPGAs have been 
introduced to cloud data centres, offloading and accelerating 
specific networking applications and services [1][2][3]. 

As cloud data centre services are growing rapidly, the need 
and availability of “Hardware as a Service” (HaaS) [4], 
Software defined hardware programmability and Network 
Function Virtualization [5] [6] are introduced to provide 
infrastructure and service flexibility. The FPGA platforms 
promise flexibility in custom hardware design, parallelism and 
quick prototyping. FPGA based system advocates its need in 
data centre (DC) and software defined network applications 
due to a key set of well-known advantages. These include 
resource reuse for hardware configuration, acceleration, run-
time (partial) reconfiguration. However, in these partial 
reconfigurable systems, FPGAs are usually under the control of 
a CPU that can either be on-chip or connected through a high-
speed point-to-point interconnect such as PCIe or low speed 
interconnect such as JTAG. These create a critical dependency 
on deploying a CPU that is costly in terms of physical 
resources and power required, design complexity and limit on 
the configuration speed.  

To provide FPGA as an independent resource that can be 
ubiquitously deployed and re-purposed on diverse 
environments from high performance Data Centres to low-cost 
low-power sensor networks, it must be installed as network-
attached node and have the capability to be re-programmed 
over standard network protocols. As such, we propose a 
network based framework and reconfigurable model that sets 
the FPGA free from the attached CPU, Embedded CPU or 
point-to-point connectivity to a server. In our proposal, FPGAs 
can be re-configured as a standalone network-attached 
resource. 

This work describes Reconfiguration over Network 
Protocol (REoN) framework to modify/update reconfigurable 
resources over the network by providing reliable transport of 
partial bit files. REoN includes a network stack to be supported 
by the network-attached remote FPGA (rFPGA) and the 
Software Defined Centralized Network Controller (SD-CNC). 
The protocol has the following attributes: 

 Runs over a standard socket-based Internet protocol. 

 Occupies a very small hardware footprint on the FPGA 
and it does not require an Embedded CPU or OS. 

 Provides full access to partial reconfiguration, via 
Xilinx's Internal Configuration Access Port (ICAP). 

 Supports reliable transport of partial bit-files with 
maximum throughput and minimum latency. 

 It is independent of the other applications running on 
FPGA. 

 It can be potentially applied to any FPGA type that 
supports Ethernet based I/Os. 

The paper reports on the design and demonstration of 
REoN protocol. To the best of the authors knowledge REoN 
achieves the highest partial bit-file download throughput 505 
Mbits/s and reconfiguration throughput of 696 Mbits/s while 
requires the least amount of resources. 

The paper is organized as follows: section II reports on 
existing network based reconfiguration methods for FPGAs 
and provides the motivation to propose this new protocol. 
Section III explains the high level concept of the proposed 
work and its architecture. The design and implementation of 
REoN protocol and its functionality is presented and explained 
in section IV. Section V explains the test and measurement 



 

process and results followed by use of applications in section 
VI. Finally, section VII concludes the paper. 

II. BACKGROUND AND MOTIVATION 

Few previous works have been conducted to introduce 
direct attached FPGA and partial reconfiguration in software 
defined hardware programmability in networks. Gordon  et al. 
[5] introduce programmable hardware for implementing 
flexible SDN data planes and accelerating NFV functions. 
George et al. [6], Chen et al. [7] and Byma et al. [8], have used 
FPGA as virtual resource and partial reconfiguration via CPU 
connected over PCIe. The framework presented in [8] benefits 
users to deploy their own application in the FPGAs and access 
those applications over Ethernet. It has been shown in [8] that 
OpenStack service can be used to manage FPGA bit streams. 
Catapult [9] uses customized FPGA to accelerate page-ranking 
algorithms in Bing web search engine. It can achieve 90-95% 
improvement in ranking throughput for a fixed latency 
compared to the software approach. In [6] and [9], FPGAs are 
accessed and configured through the PCIe bus, whereas [7] 
uses a plain 1 GigE Ethernet connection and local embedded 
processor. 

Network based communication frameworks have also been 
developed for partial reconfiguration [10] [11] [12] [13] [14]. 
An on-chip microprocessor has been used to manage 
reconfiguration of the device in [10], [12] and [13]. In case the 
systems are connected via a network, this wastes resources. 
Since the processor’s main function is to implement a network 
stack, such resources can be used more effectively by other 
complex applications. The framework in [11] allows the 
transport of partial bit files from server over network with 
custom protocol headers into Ethernet payloads. This may 
reduce the latency due to the absence of higher layers however 
issues might arise when the FPGA belongs to IP subnet and 
coexists with other devices. Work presented in [14] suggests a 
network-attached framework. However, it does not provide a 
well-defined, complete, general and common framework for 
transporting partial bit files to an FPGA. Critically it doesn’t 
support reliable transport of partial bit files. Furthermore, the 
writing configuration bit files process supports low speed 
interconnect (1 GigE) and offers one to one solution which is 
not the case with present network transport services and cloud 
data centres’ requirements.  

In contrast to those systems, we propose a framework 
which allows FPGA as a standalone resource for any Ethernet-
based network environment. It is capable to deploy new 
physical or virtual network functions, data and signal 
accelerators, on demand over the network. Our approach also 
advocates custom hardware network stacks, which can be very 
fast and resource efficient. The centralized server is used to 
store the partial bit files as well as reconfiguration sequence by 
which partial bit files can be transferred directly to network 
enabled FPGAs. 

III. HIGH LEVEL ARCHITECTURE  

A high level architecture for the proposed framework is 
depicted in Fig. 1(a). As mentioned in earlier sections, the 
implementation is divided in two aspects, the software part, 

running over the SD-CNC and hardware part, deployed on 
rFPGA platforms. The SD-CNC runs the Remote 
Reconfiguration and Standard Network Management (RR-
SNM) System. The RR-SNM system is able to call an 
application specific function from a library through its software 
APIs and transfer its corresponding partial bit file to the 
required rFPGA. These APIs, as the part of the RR-SNM 
system have been provided to abstract low-level details of 
proposed protocol and provide user interaction to initiate 
configuration sequence. To do so, the RR-SNM APIs 
communicate with the Remote Reconfiguration Engine (RRE) 
on rFPGA via REoN protocol; a connection-oriented protocol 
over UDP which creates and reconfiguration session and 
guarantees order and delivery of partial bit file packets sent to 
the rFPGA from the SD-CNC.  

RRE works as bridge between RR-SNM system and ICAP 
to manage the on-chip partial reconfiguration with local ICAP 
controller. UDP has been chosen as the base protocol because 
it is fast, simple, and its hardware implementation will occupy 
far fewer resources than more complex protocols such as TCP. 
The main targets of the proposed framework are: 

 Provide direct interface to configuration port 

 Full customized hardware network stack 
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Fig. 1. (a) High Level Architecture for “REoN” Framework, (b) Logical 
Usecase for Proposed Framework 



 

 Portable 

 High throughput 

 Low latency 

 Optimized resource 

 Simple server based resource and network management 
API 

The logical use case for the proposed framework has been 
illustrated in Fig. 1(b). RR-SNM system running at one SD-
CNC provides flexibility to re-program more than one partial 
reconfiguration region within same rFPGA or among different 
rFPGAs. This allows for FPGA-based virtual networks each 
controlled by separate SD-CNC and operating their own virtual 
network functions (VNFs) using a sub-set FPGA resources. 

IV. DESIGN AND IMPLEMENTAION 

The targets for the proposed framework, mentioned in the 
previous section have a great dependency on each part of the 
proposed solutions. Aiming for low latency, high throughput, 
and minimal area requires the least-complex architecture, 
design and implementation. In this section, we will discuss 
how the REoN protocol has been implemented on both SD-
CNC and rFPGA. 

A. Protocol Specification 

The most frequent and commonly used protocols in 
networks are UDP and TCP over IP. TCP is reliable but it 
consumes substantial resources. On the other hand, UDP needs 
less resources but it is connectionless and thus unreliable (or 
not guaranteed data transport). The network layer protocol (IP) 
is required in our solution to connect it easily in any type of 
network. For the transport layer, we required to find out a way 
in between TCP and UDP as we need both features to deliver 
partial bit files. One could propose a new transport layer 
protocol, which have simplicity like UDP and reliability like 
TCP. However, this would limit its widespread deployment 
since protocols and network drivers need to be re-written. The 
socket programming also would not be useful as it uses 
UDP/TCP/IP stacks. To address above difficulties, our solution 
introduces a new protocol REoN over UDP/IP, dedicated only 
to establish a reconfiguration session and transport partial bit 
files for rFPGA.  

REoN protocol has been defined in such a way that rFPGA 
can share the same configuration channel among SD-CNCs 
within the control plane network. The REoN uses 49000/49001 
as UDP port number. Any other packets from the same SD-
CNC, using different UDP port numbers, would not be treated 
as REoN packets and forwarded to expected destination as in 
Fig. 1(a), running on the same rFPGA. To simplify the 
hardware implementation part of REoN, the protocol is 
designed for SD-CNC initiated communication only. 

The REoN maximum packet size is 1472 (include 8 byte 
REoN header) following the Ethernet standard which is  
maximum of 1500 bytes (excluding Ethernet frame headers 
and FCS) including IP, UDP and REoN headers and payloads. 
There are two advantages to keep REoN packet in single 

Ethernet packet. One could be that the entire “REoN” packet 
can be encapsulated in a single Ethernet frame which limits 
data integrity issues. Second, there is no need to implement the 
packet fragmentation/defragmentation logic for IP protocol to 
reorder and reassemble IP packets that reduce IP protocol 
complexity which reduce the hardware utilizations. The IP 
protocol allows a packet to be marked "Don't Fragment." 

The UDP checksum has not been used and is replaced with 
zero to save rFPGA’s resource utilization. The packet, sent and 
received over the network would be validated by CRC value 
calculated by Ethernet for the entire frame. Dependency over 
the Ethernet’s CRC seems to be promising as each REoN 
packet will always be encapsulated on a single Ethernet frame. 

DHCP protocol has not been used to get dynamic IP 
address to limit resource utilization. However,  the static IP 
address for the rFPGA are fixed within the network. ARP has 
been adopted to make the proposed solution compatible with 
standard IP networks. This allows the SD-CNCs in the network 
to discover the rFPGA’s MAC address. The rFPGA will reply 
on ARP request and store the connected SD-CNC’s 
information like IP-MAC addresses pair. The rFPGAs does not 
need to send ARP request packet to the network as REoN is the 
host initiated protocol and the rFPGAs sends only 
acknowledgement (ACK) packets to the connected SD-CNC. 

B. Packet Structure 

ReON’s header structure is shown in Fig. 2. The first byte 
of the REoN header provides the information about the type of 
handshake the packets belong to. REoN packets flowing from 
SD-CNC to rFPGA are always necessary to be request packet 
while in return rFPGA can only send ACK packet for each 
request to the SD-CNC. The connectID allows the 
configuration channel to be shared among various SD-CNC for 
the same rFPGA. By binding connectID and SD-CNC’s IP 
address enables rFPGA to manage the partial bit files and keep 
separate from the partial bit files sent by other SD-CNC. 

Four bytes followed by connectID have dual purposes and 
are used for packetID in request/ACK packet for bit file 
downloading and bit_file_size in request/ACK packet for 
partial bit file info handshake, successively. In other instances 
(different handshake purpose), these 4 bytes signify nothing 
and are set to zero. PacketID is used to place partial bit files in 
order for already acquired connectID. Failing that may raise 
very critical failure for rFPGA reconfiguration. 

 

Fig. 2. REoN Header Structure 



 

To send partial bit files, the RR-SNM API first packetize 
the partial bit files with maximum allowed REoN payloads 
which is 1464 bytes and then assigns packet ID to each packet. 
REoN payload for the last packet containing partial bit files 
may be equal or less than 1464 bytes. Payload length is always 
used to get the number of bytes in REoN payload. 

C. Protocol Flow 

The REoN flow is depicted in Fig. 3. The flow may be 
understood in phases, connection request (rqst) phase, partial 
bit files info rqst phase, partial bit file downloading phase, 
configuration (config) start phase and disconnect rqst phase. 
REoN has a well-defined message handshake to a) establish the 
connection (session) with rFPGA, b)  send partial bit file’s 
information  c) send partial bit files, d) configuration start and 
e) tear-down the established connection (session). REoN will 
attempt five times to resend the continued handshake packets 
on failure to receive the ACK packet. After five attempted but 
failed handshake, RR-SNM API will clear associated 
information for connected rFPGA like connectID (if 
connection already established). Each request to reconfigure 
the rFPGA has certain flow and RR-SNM API will not send 
the next handshake packet until it receives the ACK packet for 
the previous handshake. However, this approach has not been 
used for partial bit files downloading packets. If the RR-SNM 
is waiting for an ACK packet after every bit file packet sent to 
rFPGA then overall throughput of the dedicated connection 
channel will be limited. A sliding window protocol is adopted 
to increase throughput while downloading partial bit files to the 
rFPGA. The window size of the protocol to each side is one, 
however a value greater than one at SD-CNC’s side is possible. 

Fig. 3(a) describes the ideal flow for the REoN, however, 
Fig. 3(b) illustrates the scenario where it might be possible that 
one of the packets carrying the partial bit file has been lost. 

 

 

Fig. 3. REoN flow. (a) Ideal Flow (b) ACK for bit files packet not received. 

D. FPGA Design 

Hardware design for the REoN has been depicted in Fig. 4. 
As discussed in previous sections that the main objective is to 
implement the required protocols and reconfiguration 
controller in hardware. In particular, the design must not 
include on-chip or off-chip CPU to achieve better performance 
with minimal resources. 

Each network protocol like ETH, IP, ARP and UDP has 
been simplified by implementing separate TX and RX 
channels. ETH RX block is responsible to filter the incoming 
packets for own MAC address. If the incoming packets do not 
belong to MAC address, this block will not allow packet to be 
further processed. ETH arbiter block provides the usability of 
the REoN protocol through various Ethernet ports. However, 
this block could be optional if only one port is dedicated for the 
re-configuration. Standard Network Management block is used 
to store the network related information like IP address & UDP 
port address of each pair (SD-CNC and rFPGA). This block 
also filters the incoming packets by UDP port numbers. This 
identifies whether an incoming packet belongs to REoN or 
other user application such as standard network functions or 
data processing blocks implemented as partial reconfiguration 
model. 

RRE appears as a core block for the REoN implementation. 
RRE receives the REoN header from the SD-CNC, decodes the 
handshake message and performs the following task. When 
RRE receives a handshake message to establish connection 
from RR-SNM API, it stores the requester SD-CNC’s 
connectID. If connectID is not available, it assigns a new one 
and acknowledges the requester SD-CNC. RRE uses this 
information to filter incoming packets from all connected SD-
CNCes and accepts only those packets from the connected SD-
CNC to which the connectID has been assigned. RRE can 
support a maximum of 255 configurations connections; 
however current implementation allows only two SD-CNC to 
access ICAP at same time. RRE block also provides basic 
information of the partial bit files i.e. bit file size, to the ICAP 
controller that directly connects to ICAP port. 

Partial bit files must be transferred to the ICAP port in 
order; failing this will trigger reconfiguration error. RRE 
manages the sequence of the partial bit files with each 
packetID number and place them in sequence to the local 
storage which is nothing but a dual port BRAM. 

 

Fig. 4. Hardware footprint for REoN 



 

In current experiment, 512 KB BRAM has been used which 
seems enough to store compressed partial bit files for complex 
design. The compression tool is an inbuilt feature of Xilinx 
Vivado tools, which reduces the size of the partial bit files for 
complex applications so that it can be stored in small BRAMs. 
BRAM size is not limiting the performance of the protocol and 
if the target application demands more storage, it can be 
increased up to required size. When RRE receives 
configuration start handshake message, it signals to ICAP 
controller to start reconfiguration. After reconfiguration is done 
by ICAP, it acknowledges the requester SD-CNC. RRE frees 
the occupied connectID once it receives connection (session) 
disconnect request from the connected SD-CNC. 

V. EXPERIMENT, PERFORMANCE AND ANALYSIS 

To highlight the performance benefits of our approach over 
previous works, the key performance metrics have been 
measured. Table 1 gives some performance values for the 
existing work.  

Myricom 10 GigE NIC card installed in standard Linux 
based system and NetFPGA SUME board have been used to 
test proposed framework. The current experimental set-up has 
been shown in Fig. 5. 

Current experimental set-up combines both SD-CNC and 
data processing application in a single server. Network 
connection between server and rFPGA has been established 
over an Ethernet 10Gb/s link. However, the experiment can be 
further extended in data network. Our proposed 
implementation needs to achieve reasonably high throughput 
so that it may be useful across a wide range of applications 

Most of the implemented logic operates at 156.25 MHz, 
which is the required frequency for 10GigE MAC. However, 
ICAP is running at 400 MHz, which provides 1.60 GBytes/s 
maximum local (ICAP to partial reconfiguration region) 
reconfiguration throughput. Incoming and outgoing packets 
have been traced and verified through Wireshark as shown in 
Fig. 6.  Wireshark also illustrates the relative placement of the 
measured latencies and the protocol stack operations. We have 
characterized the throughput in two phases. First is the 
throughout between SD-CNC and rFPGA’s RRE (download 
time) and the second between RRE and reconfigurable region 
through ICAP (reconfiguration time) as shown in Table I.   

 

Fig. 5. Experimental set-up to test proposed framework 

 

Fig. 6. Incoming and outgoing packets captured through Wirshark. 

While sending partial bit files we have achieved throughput 
505 Mbits/s, processing 8 bytes per clock, that even not 
utilizing full throughput offered. We may achieve more by 
increasing the window size for sliding window protocol 
running on SD-CNC. We have adopted two methods to 
measure latencies. The first method to measure latency is using 
Xilinx Vivado hardware debugger, running directly on 
hardware. The Ethernet subsystem, which includes 
ETH/IP/UDP/REoN as shown in Fig. 4, can receive maximum 
size packet 1500-bytes data packet, send an acknowledgement 
packet and its then ready to receive a new packet in 420 clock 
cycles or 2.6 μsec excluding MAC and PHY delays. It is 
important to mention here that while sending handshake 
packets other than downloading bit files, the Ethernet packet 
size is 66 bytes with all padding included. 

The response time to the handshake packets has been 
calculated as 28 clock cycles, which is 128 nsec. The 
maximum partial bit files downloading throughput with 1500 
data bytes per packet has been recorded as 505 Mbits/s for 10 
GigE MAC operated at 156.25 MHz with 64-bit data width. 

The latencies measured using the second method on the 
SD-CNC, includes APIs, operating system, and transport 
latencies. The average latencies measured with Wireshark have 
been found in between 96 μsec and 100 μsec in handshake 
phase (connection rqst phase, bit files info phase, config start 
phase and disconnect phase) from the rFPGA. For the bit file 
downloading phase, the two-way latency (up until SD-CNC 
gets acknowledgement that all bit files packets have been saved 
to local storage) dependents on the size of the bit file and has 
been given in Fig. 7. 



 

TABLE I.  COMPARISION OF PROPOSED WORK WITH EXISTING WORK 

 

 

FPGA Resources 
Utilization in % 

Measurement Interface Embedded/
external 

CPU Downloading 
bit files 

Reconfiguration 

LUTs FFs BRAMs Throughput* 
(Mbits/s) 

Throughput* 
(Mbits/s) 

P. Bomel et al. [11] NA NA NA 50 5  1GigE PPC, 
uBlaze 

O. Machidon et al. [10] NA NA NA NA NA 1GigE ARM 

Byma et al. [8] 19 19 32 NA NA 10GiE External 
CPU 

George et al. [6] NA NA NA 25 1000 PCIe 
gen3 

PCIE/CPU 

Tze Hon Tan et al. [14] 11 10 23 NA 352 10 GigE None 

REoN (Our approach) 2 1 8 505 696 10 GigE None 
* Throughput measured here depends on maximum size of the partial bit files for each work presented. 

The RR-SNM API’s call to send the packet and initiate 
socket interface happens before the packet is seen by 
Wireshark. After the call to the socket interface, the OS’s 
network stack prepares the packet for the network interface 
driver and has significant intervals. Wireshark captures the 
outgoing packet during this step. To measure the end to end 
latencies including OS and network driver delays, a software 
routine is written in each RR-SNM API. The end-to-end 
latencies recorded as average of 40 μsec for the handshake 
packets has been calculated by API provided functions which 
include delays for system call, OS and network drivers for both 
ongoing and incoming packets. Latencies measured at each 
level of framework to download partial bit files have been 
compared and depicted in Fig. 7. 

Measurement of actual reconfiguration latency is done 
through Hardware Debugger only. It reflects the down time of 
the reconfiguration region. The latency has been measured in 
between the moment ICAP controller receives command to 
start reconfiguration process and the one that completes the 
reconfiguration process. The end-to-end latencies for RR-SNM 
APIs call for the reconfiguration phase have been also 
measured and compared with values captured by Wireshark 
and Hardware Debugger in Fig. 8. Reconfiguration latencies 
seen by RR-SNM API include OS overhead on the other side 
Wireshark includes MAC to MAC delay only. Separate 
REoN/UDP/IP/ETH hardware stack latencies for the 
configuration phase have been measured and shown in Fig. 8. 

 

Fig. 7. Latencies measured at every stage while downloading bit file. 

Reconfiguration latency highly depends on size of the 
partial bit files and how faster the ICAP is functional. We are 
able to clock ICAP at 400 MHz. 

End to end latencies at each phase of proposed protocol 
have been depicted in Fig. 9. The latencies have been measured 
in µses and shown in logarithmic scale for larger partial bit 
files. 

VI. APPLICATION USE CASES 

Several applications in which proposed reconfiguration 
technique may be adopted, have been investigated with 
significantly large partial bit files and suitable for data-centre 
applications or any real time data transfer within other types of 
network. As a proof of concept, various processing algorithm 
has been chosen for real time raw video and data using the 
proposed framework model. Raw and uncompressed data 
transmission is used on post-processing applications and it 
needs high data volume transfer. An openCV platform has 
been used to send and receive raw RGB video over the network 
with UDP port number 49200 with rFPGA’s IP and MAC 
address as destination. Video sent from host server has been 
captured by rFPGA and processed with reconfigurable video 
processing block and send back to server for display. UDP port 
number 49300 has been used to send raw data for data 
processing algorithm. REoN packets and other data packets 
have been differed by the UDP port numbers mentioned above. 
The video/data processing algorithms used in this experiment 
has been listed with their partial bit files size in Table II. 

 

Fig. 8. Latencies measured at every stage while reconfiguration. 



 

 

Fig. 9. End to end latencies at each phase of proposed protcol. 

TABLE II.  BITFILE SIZE FOR PARTIAL RECONFIGURATION MODEL 

Partial Reconfigurable Modules 
(function) 

Size 
(KB) 

IEEE-754 
Single 

Precision 
Arithmetic 

Addition 100.78 
Subtraction 100.9 

Multiplication 101.65 
Division 111.73 

Complex 
DSP 

Algorithms,  
64 point 
Pipelined 

FFT 325.97 
IFFT 355.2 
DCT 355.8 
IDCT 365 

Video 
Processing 
Algorithms 

Color Space converter 39.48 
Sobel operation  40.44 

Laplacian operation 42.16 
Gaussian operation  43.26 

VII. CONCLUSION 

A lightweight remote partial reconfiguration protocol, 
REoN is implemented over UDP/IP with minimal hardware 
resources. UDP/IP is used as the fundamental protocol, which 
not only allows FPGA to coexist in a standard network, but the 
RR-SNM APIs can use standard OS/Network libraries to send 
partial bit files. The proposed framework can be used to re-
program high-speed network-attached FPGA-based sub-
systems while eliminates the need of having an on-chip/on-
board CPU. Our current version of framework achieves 505 
Mbits/s partial bit files download throughput and 
reconfiguration throughput as 696 Mbits/s with almost 
negligible FPGA resources: 2% LUTs, 1% FFs and 8% 
BRAMs. Many applications targeting reconfigurable hardware, 
like NFV, reconfigurable L2/L3 switch, can benefit from this 
framework. It also validates the possibility that network 
algorithms or network sub-system mapped on FPGA can be 
swapped with sub-system for higher layer network protocol to 
upgrade the system on demand.  
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