
978-1-5090-3707-0/16/$31.00 ©2016 Crown

REoN: A Protocol for Reliable Software-Defined
FPGA Partial Reconfiguration over Network

Vaibhawa Mishra, Qiaonqiao Chen, Georgious Zervas
Department of Electrical and Electronics Engineering

University of Bristol
Bristol, United Kingdom

Email: vaibhawa.mishra@bristol.ac.uk

Abstract— This paper presents and defines a Reconfiguration
over Network (REoN) protocol. It is a solution for a FPGA-based
dynamically reconfigurable system, that offers partial
(re)programming over the network without the need of a
local/embedded soft/hard processor. This protocol can transport
partial bit files from centralized control and management system
via network resource management API to a FPGA empowered
network node, using standard 10 Gbps Ethernet. This work
architects and introduces a proprietary lightweight connection
oriented protocol stack, which guarantees reliability over
standard UDP/IP protocol. Hardware stack for standard
networking protocols including remote reconfiguration engine
directly interfaced with Xilinx Internal Configuration Access
Port (ICAP). This minimizes FPGA resource requirements in re-
programming the FPGA. The presented work is an enabling
technology for a range of applications such as reconfigurable
computing enabled Network Function Virtualization (NFV),
function disaggregation on data centres empowered by
FPGA/SoCs, as well as Internet of Things (IoT).

Keywords—Partial Reconfiguration, network protocols, remote
dynamic reconfiguration

I. INTRODUCTION

FPGAs are being used in application specific processing
such as video, image or general purpose computing for more
than twenty years. In recent years, FPGAs have been
introduced to cloud data centres, offloading and accelerating
specific networking applications and services [1][2][3].

As cloud data centre services are growing rapidly, the need
and availability of “Hardware as a Service” (HaaS) [4],
Software defined hardware programmability and Network
Function Virtualization [5] [6] are introduced to provide
infrastructure and service flexibility. The FPGA platforms
promise flexibility in custom hardware design, parallelism and
quick prototyping. FPGA based system advocates its need in
data centre (DC) and software defined network applications
due to a key set of well-known advantages. These include
resource reuse for hardware configuration, acceleration, run-
time (partial) reconfiguration. However, in these partial
reconfigurable systems, FPGAs are usually under the control of
a CPU that can either be on-chip or connected through a high-
speed point-to-point interconnect such as PCIe or low speed
interconnect such as JTAG. These create a critical dependency
on deploying a CPU that is costly in terms of physical
resources and power required, design complexity and limit on
the configuration speed.

To provide FPGA as an independent resource that can be
ubiquitously deployed and re-purposed on diverse
environments from high performance Data Centres to low-cost
low-power sensor networks, it must be installed as network-
attached node and have the capability to be re-programmed
over standard network protocols. As such, we propose a
network based framework and reconfigurable model that sets
the FPGA free from the attached CPU, Embedded CPU or
point-to-point connectivity to a server. In our proposal, FPGAs
can be re-configured as a standalone network-attached
resource.

This work describes Reconfiguration over Network
Protocol (REoN) framework to modify/update reconfigurable
resources over the network by providing reliable transport of
partial bit files. REoN includes a network stack to be supported
by the network-attached remote FPGA (rFPGA) and the
Software Defined Centralized Network Controller (SD-CNC).
The protocol has the following attributes:

 Runs over a standard socket-based Internet protocol.

 Occupies a very small hardware footprint on the FPGA
and it does not require an Embedded CPU or OS.

 Provides full access to partial reconfiguration, via
Xilinx's Internal Configuration Access Port (ICAP).

 Supports reliable transport of partial bit-files with
maximum throughput and minimum latency.

 It is independent of the other applications running on
FPGA.

 It can be potentially applied to any FPGA type that
supports Ethernet based I/Os.

The paper reports on the design and demonstration of
REoN protocol. To the best of the authors knowledge REoN
achieves the highest partial bit-file download throughput 505
Mbits/s and reconfiguration throughput of 696 Mbits/s while
requires the least amount of resources.

The paper is organized as follows: section II reports on
existing network based reconfiguration methods for FPGAs
and provides the motivation to propose this new protocol.
Section III explains the high level concept of the proposed
work and its architecture. The design and implementation of
REoN protocol and its functionality is presented and explained
in section IV. Section V explains the test and measurement

process and results followed by use of applications in section
VI. Finally, section VII concludes the paper.

II. BACKGROUND AND MOTIVATION

Few previous works have been conducted to introduce
direct attached FPGA and partial reconfiguration in software
defined hardware programmability in networks. Gordon et al.
[5] introduce programmable hardware for implementing
flexible SDN data planes and accelerating NFV functions.
George et al. [6], Chen et al. [7] and Byma et al. [8], have used
FPGA as virtual resource and partial reconfiguration via CPU
connected over PCIe. The framework presented in [8] benefits
users to deploy their own application in the FPGAs and access
those applications over Ethernet. It has been shown in [8] that
OpenStack service can be used to manage FPGA bit streams.
Catapult [9] uses customized FPGA to accelerate page-ranking
algorithms in Bing web search engine. It can achieve 90-95%
improvement in ranking throughput for a fixed latency
compared to the software approach. In [6] and [9], FPGAs are
accessed and configured through the PCIe bus, whereas [7]
uses a plain 1 GigE Ethernet connection and local embedded
processor.

Network based communication frameworks have also been
developed for partial reconfiguration [10] [11] [12] [13] [14].
An on-chip microprocessor has been used to manage
reconfiguration of the device in [10], [12] and [13]. In case the
systems are connected via a network, this wastes resources.
Since the processor’s main function is to implement a network
stack, such resources can be used more effectively by other
complex applications. The framework in [11] allows the
transport of partial bit files from server over network with
custom protocol headers into Ethernet payloads. This may
reduce the latency due to the absence of higher layers however
issues might arise when the FPGA belongs to IP subnet and
coexists with other devices. Work presented in [14] suggests a
network-attached framework. However, it does not provide a
well-defined, complete, general and common framework for
transporting partial bit files to an FPGA. Critically it doesn’t
support reliable transport of partial bit files. Furthermore, the
writing configuration bit files process supports low speed
interconnect (1 GigE) and offers one to one solution which is
not the case with present network transport services and cloud
data centres’ requirements.

In contrast to those systems, we propose a framework
which allows FPGA as a standalone resource for any Ethernet-
based network environment. It is capable to deploy new
physical or virtual network functions, data and signal
accelerators, on demand over the network. Our approach also
advocates custom hardware network stacks, which can be very
fast and resource efficient. The centralized server is used to
store the partial bit files as well as reconfiguration sequence by
which partial bit files can be transferred directly to network
enabled FPGAs.

III. HIGH LEVEL ARCHITECTURE

A high level architecture for the proposed framework is
depicted in Fig. 1(a). As mentioned in earlier sections, the
implementation is divided in two aspects, the software part,

running over the SD-CNC and hardware part, deployed on
rFPGA platforms. The SD-CNC runs the Remote
Reconfiguration and Standard Network Management (RR-
SNM) System. The RR-SNM system is able to call an
application specific function from a library through its software
APIs and transfer its corresponding partial bit file to the
required rFPGA. These APIs, as the part of the RR-SNM
system have been provided to abstract low-level details of
proposed protocol and provide user interaction to initiate
configuration sequence. To do so, the RR-SNM APIs
communicate with the Remote Reconfiguration Engine (RRE)
on rFPGA via REoN protocol; a connection-oriented protocol
over UDP which creates and reconfiguration session and
guarantees order and delivery of partial bit file packets sent to
the rFPGA from the SD-CNC.

RRE works as bridge between RR-SNM system and ICAP
to manage the on-chip partial reconfiguration with local ICAP
controller. UDP has been chosen as the base protocol because
it is fast, simple, and its hardware implementation will occupy
far fewer resources than more complex protocols such as TCP.
The main targets of the proposed framework are:

 Provide direct interface to configuration port

 Full customized hardware network stack

Function Virtualized Network 2Function Virtualized Network 1

Data Plane

rFPGA

ICAP

Standard
N/W

Management

Target hardware function &
application

DPI

Video
Processing

InfiniBand

Data
processing
Algorithm
accelerator

Storage

L2/3
Switch

Reconfigurat
ion Region

Reconfiguration Over
Network Protocol

User Datagram
Protocol

Internet Protocol/
ARP

10 GigE

Remote
Reconfiguration

Engine

Other Network Devices/
Optical Switches

FPGA Node

Ethernet
Switch

Ethernet
Router

VoIP
Router

DPI

Network Functions

Video
processing

Library

Algorithm
accelerator

Storage
Data

Processing

Video and Storage Function

Application Specific H/W Lib

Reconfiguration
Over Network

Protocol

Remote Reconfiguration &
Standard N/W Management

UDP IP ARP

Standard Network Protocol

10 GigE

Control Plane

Standard N/W
Management

Software Defined-
Centralized Network
Controller

NorthBound Interface

Software Defined - Centralized Network
Controller

RR-SNM APIs

SD-CNC1

rFPGA1

SD-CNC2

PRR1 PRR2 PRRn

rFPGA2

PRR1 PRR2 PRRn

rFPGA3

PRR1 PRR2 PRRn

(a)

(b)

Fig. 1. (a) High Level Architecture for “REoN” Framework, (b) Logical
Usecase for Proposed Framework

 Portable

 High throughput

 Low latency

 Optimized resource

 Simple server based resource and network management
API

The logical use case for the proposed framework has been
illustrated in Fig. 1(b). RR-SNM system running at one SD-
CNC provides flexibility to re-program more than one partial
reconfiguration region within same rFPGA or among different
rFPGAs. This allows for FPGA-based virtual networks each
controlled by separate SD-CNC and operating their own virtual
network functions (VNFs) using a sub-set FPGA resources.

IV. DESIGN AND IMPLEMENTAION

The targets for the proposed framework, mentioned in the
previous section have a great dependency on each part of the
proposed solutions. Aiming for low latency, high throughput,
and minimal area requires the least-complex architecture,
design and implementation. In this section, we will discuss
how the REoN protocol has been implemented on both SD-
CNC and rFPGA.

A. Protocol Specification

The most frequent and commonly used protocols in
networks are UDP and TCP over IP. TCP is reliable but it
consumes substantial resources. On the other hand, UDP needs
less resources but it is connectionless and thus unreliable (or
not guaranteed data transport). The network layer protocol (IP)
is required in our solution to connect it easily in any type of
network. For the transport layer, we required to find out a way
in between TCP and UDP as we need both features to deliver
partial bit files. One could propose a new transport layer
protocol, which have simplicity like UDP and reliability like
TCP. However, this would limit its widespread deployment
since protocols and network drivers need to be re-written. The
socket programming also would not be useful as it uses
UDP/TCP/IP stacks. To address above difficulties, our solution
introduces a new protocol REoN over UDP/IP, dedicated only
to establish a reconfiguration session and transport partial bit
files for rFPGA.

REoN protocol has been defined in such a way that rFPGA
can share the same configuration channel among SD-CNCs
within the control plane network. The REoN uses 49000/49001
as UDP port number. Any other packets from the same SD-
CNC, using different UDP port numbers, would not be treated
as REoN packets and forwarded to expected destination as in
Fig. 1(a), running on the same rFPGA. To simplify the
hardware implementation part of REoN, the protocol is
designed for SD-CNC initiated communication only.

The REoN maximum packet size is 1472 (include 8 byte
REoN header) following the Ethernet standard which is
maximum of 1500 bytes (excluding Ethernet frame headers
and FCS) including IP, UDP and REoN headers and payloads.
There are two advantages to keep REoN packet in single

Ethernet packet. One could be that the entire “REoN” packet
can be encapsulated in a single Ethernet frame which limits
data integrity issues. Second, there is no need to implement the
packet fragmentation/defragmentation logic for IP protocol to
reorder and reassemble IP packets that reduce IP protocol
complexity which reduce the hardware utilizations. The IP
protocol allows a packet to be marked "Don't Fragment."

The UDP checksum has not been used and is replaced with
zero to save rFPGA’s resource utilization. The packet, sent and
received over the network would be validated by CRC value
calculated by Ethernet for the entire frame. Dependency over
the Ethernet’s CRC seems to be promising as each REoN
packet will always be encapsulated on a single Ethernet frame.

DHCP protocol has not been used to get dynamic IP
address to limit resource utilization. However, the static IP
address for the rFPGA are fixed within the network. ARP has
been adopted to make the proposed solution compatible with
standard IP networks. This allows the SD-CNCs in the network
to discover the rFPGA’s MAC address. The rFPGA will reply
on ARP request and store the connected SD-CNC’s
information like IP-MAC addresses pair. The rFPGAs does not
need to send ARP request packet to the network as REoN is the
host initiated protocol and the rFPGAs sends only
acknowledgement (ACK) packets to the connected SD-CNC.

B. Packet Structure

ReON’s header structure is shown in Fig. 2. The first byte
of the REoN header provides the information about the type of
handshake the packets belong to. REoN packets flowing from
SD-CNC to rFPGA are always necessary to be request packet
while in return rFPGA can only send ACK packet for each
request to the SD-CNC. The connectID allows the
configuration channel to be shared among various SD-CNC for
the same rFPGA. By binding connectID and SD-CNC’s IP
address enables rFPGA to manage the partial bit files and keep
separate from the partial bit files sent by other SD-CNC.

Four bytes followed by connectID have dual purposes and
are used for packetID in request/ACK packet for bit file
downloading and bit_file_size in request/ACK packet for
partial bit file info handshake, successively. In other instances
(different handshake purpose), these 4 bytes signify nothing
and are set to zero. PacketID is used to place partial bit files in
order for already acquired connectID. Failing that may raise
very critical failure for rFPGA reconfiguration.

Fig. 2. REoN Header Structure

To send partial bit files, the RR-SNM API first packetize
the partial bit files with maximum allowed REoN payloads
which is 1464 bytes and then assigns packet ID to each packet.
REoN payload for the last packet containing partial bit files
may be equal or less than 1464 bytes. Payload length is always
used to get the number of bytes in REoN payload.

C. Protocol Flow

The REoN flow is depicted in Fig. 3. The flow may be
understood in phases, connection request (rqst) phase, partial
bit files info rqst phase, partial bit file downloading phase,
configuration (config) start phase and disconnect rqst phase.
REoN has a well-defined message handshake to a) establish the
connection (session) with rFPGA, b) send partial bit file’s
information c) send partial bit files, d) configuration start and
e) tear-down the established connection (session). REoN will
attempt five times to resend the continued handshake packets
on failure to receive the ACK packet. After five attempted but
failed handshake, RR-SNM API will clear associated
information for connected rFPGA like connectID (if
connection already established). Each request to reconfigure
the rFPGA has certain flow and RR-SNM API will not send
the next handshake packet until it receives the ACK packet for
the previous handshake. However, this approach has not been
used for partial bit files downloading packets. If the RR-SNM
is waiting for an ACK packet after every bit file packet sent to
rFPGA then overall throughput of the dedicated connection
channel will be limited. A sliding window protocol is adopted
to increase throughput while downloading partial bit files to the
rFPGA. The window size of the protocol to each side is one,
however a value greater than one at SD-CNC’s side is possible.

Fig. 3(a) describes the ideal flow for the REoN, however,
Fig. 3(b) illustrates the scenario where it might be possible that
one of the packets carrying the partial bit file has been lost.

Fig. 3. REoN flow. (a) Ideal Flow (b) ACK for bit files packet not received.

D. FPGA Design

Hardware design for the REoN has been depicted in Fig. 4.
As discussed in previous sections that the main objective is to
implement the required protocols and reconfiguration
controller in hardware. In particular, the design must not
include on-chip or off-chip CPU to achieve better performance
with minimal resources.

Each network protocol like ETH, IP, ARP and UDP has
been simplified by implementing separate TX and RX
channels. ETH RX block is responsible to filter the incoming
packets for own MAC address. If the incoming packets do not
belong to MAC address, this block will not allow packet to be
further processed. ETH arbiter block provides the usability of
the REoN protocol through various Ethernet ports. However,
this block could be optional if only one port is dedicated for the
re-configuration. Standard Network Management block is used
to store the network related information like IP address & UDP
port address of each pair (SD-CNC and rFPGA). This block
also filters the incoming packets by UDP port numbers. This
identifies whether an incoming packet belongs to REoN or
other user application such as standard network functions or
data processing blocks implemented as partial reconfiguration
model.

RRE appears as a core block for the REoN implementation.
RRE receives the REoN header from the SD-CNC, decodes the
handshake message and performs the following task. When
RRE receives a handshake message to establish connection
from RR-SNM API, it stores the requester SD-CNC’s
connectID. If connectID is not available, it assigns a new one
and acknowledges the requester SD-CNC. RRE uses this
information to filter incoming packets from all connected SD-
CNCes and accepts only those packets from the connected SD-
CNC to which the connectID has been assigned. RRE can
support a maximum of 255 configurations connections;
however current implementation allows only two SD-CNC to
access ICAP at same time. RRE block also provides basic
information of the partial bit files i.e. bit file size, to the ICAP
controller that directly connects to ICAP port.

Partial bit files must be transferred to the ICAP port in
order; failing this will trigger reconfiguration error. RRE
manages the sequence of the partial bit files with each
packetID number and place them in sequence to the local
storage which is nothing but a dual port BRAM.

Fig. 4. Hardware footprint for REoN

In current experiment, 512 KB BRAM has been used which
seems enough to store compressed partial bit files for complex
design. The compression tool is an inbuilt feature of Xilinx
Vivado tools, which reduces the size of the partial bit files for
complex applications so that it can be stored in small BRAMs.
BRAM size is not limiting the performance of the protocol and
if the target application demands more storage, it can be
increased up to required size. When RRE receives
configuration start handshake message, it signals to ICAP
controller to start reconfiguration. After reconfiguration is done
by ICAP, it acknowledges the requester SD-CNC. RRE frees
the occupied connectID once it receives connection (session)
disconnect request from the connected SD-CNC.

V. EXPERIMENT, PERFORMANCE AND ANALYSIS

To highlight the performance benefits of our approach over
previous works, the key performance metrics have been
measured. Table 1 gives some performance values for the
existing work.

Myricom 10 GigE NIC card installed in standard Linux
based system and NetFPGA SUME board have been used to
test proposed framework. The current experimental set-up has
been shown in Fig. 5.

Current experimental set-up combines both SD-CNC and
data processing application in a single server. Network
connection between server and rFPGA has been established
over an Ethernet 10Gb/s link. However, the experiment can be
further extended in data network. Our proposed
implementation needs to achieve reasonably high throughput
so that it may be useful across a wide range of applications

Most of the implemented logic operates at 156.25 MHz,
which is the required frequency for 10GigE MAC. However,
ICAP is running at 400 MHz, which provides 1.60 GBytes/s
maximum local (ICAP to partial reconfiguration region)
reconfiguration throughput. Incoming and outgoing packets
have been traced and verified through Wireshark as shown in
Fig. 6. Wireshark also illustrates the relative placement of the
measured latencies and the protocol stack operations. We have
characterized the throughput in two phases. First is the
throughout between SD-CNC and rFPGA’s RRE (download
time) and the second between RRE and reconfigurable region
through ICAP (reconfiguration time) as shown in Table I.

Fig. 5. Experimental set-up to test proposed framework

Fig. 6. Incoming and outgoing packets captured through Wirshark.

While sending partial bit files we have achieved throughput
505 Mbits/s, processing 8 bytes per clock, that even not
utilizing full throughput offered. We may achieve more by
increasing the window size for sliding window protocol
running on SD-CNC. We have adopted two methods to
measure latencies. The first method to measure latency is using
Xilinx Vivado hardware debugger, running directly on
hardware. The Ethernet subsystem, which includes
ETH/IP/UDP/REoN as shown in Fig. 4, can receive maximum
size packet 1500-bytes data packet, send an acknowledgement
packet and its then ready to receive a new packet in 420 clock
cycles or 2.6 μsec excluding MAC and PHY delays. It is
important to mention here that while sending handshake
packets other than downloading bit files, the Ethernet packet
size is 66 bytes with all padding included.

The response time to the handshake packets has been
calculated as 28 clock cycles, which is 128 nsec. The
maximum partial bit files downloading throughput with 1500
data bytes per packet has been recorded as 505 Mbits/s for 10
GigE MAC operated at 156.25 MHz with 64-bit data width.

The latencies measured using the second method on the
SD-CNC, includes APIs, operating system, and transport
latencies. The average latencies measured with Wireshark have
been found in between 96 μsec and 100 μsec in handshake
phase (connection rqst phase, bit files info phase, config start
phase and disconnect phase) from the rFPGA. For the bit file
downloading phase, the two-way latency (up until SD-CNC
gets acknowledgement that all bit files packets have been saved
to local storage) dependents on the size of the bit file and has
been given in Fig. 7.

TABLE I. COMPARISION OF PROPOSED WORK WITH EXISTING WORK

FPGA Resources
Utilization in %

Measurement Interface Embedded/
external

CPU Downloading
bit files

Reconfiguration

LUTs FFs BRAMs Throughput*
(Mbits/s)

Throughput*
(Mbits/s)

P. Bomel et al. [11] NA NA NA 50 5 1GigE PPC,
uBlaze

O. Machidon et al. [10] NA NA NA NA NA 1GigE ARM

Byma et al. [8] 19 19 32 NA NA 10GiE External
CPU

George et al. [6] NA NA NA 25 1000 PCIe
gen3

PCIE/CPU

Tze Hon Tan et al. [14] 11 10 23 NA 352 10 GigE None

REoN (Our approach) 2 1 8 505 696 10 GigE None
* Throughput measured here depends on maximum size of the partial bit files for each work presented.

The RR-SNM API’s call to send the packet and initiate
socket interface happens before the packet is seen by
Wireshark. After the call to the socket interface, the OS’s
network stack prepares the packet for the network interface
driver and has significant intervals. Wireshark captures the
outgoing packet during this step. To measure the end to end
latencies including OS and network driver delays, a software
routine is written in each RR-SNM API. The end-to-end
latencies recorded as average of 40 μsec for the handshake
packets has been calculated by API provided functions which
include delays for system call, OS and network drivers for both
ongoing and incoming packets. Latencies measured at each
level of framework to download partial bit files have been
compared and depicted in Fig. 7.

Measurement of actual reconfiguration latency is done
through Hardware Debugger only. It reflects the down time of
the reconfiguration region. The latency has been measured in
between the moment ICAP controller receives command to
start reconfiguration process and the one that completes the
reconfiguration process. The end-to-end latencies for RR-SNM
APIs call for the reconfiguration phase have been also
measured and compared with values captured by Wireshark
and Hardware Debugger in Fig. 8. Reconfiguration latencies
seen by RR-SNM API include OS overhead on the other side
Wireshark includes MAC to MAC delay only. Separate
REoN/UDP/IP/ETH hardware stack latencies for the
configuration phase have been measured and shown in Fig. 8.

Fig. 7. Latencies measured at every stage while downloading bit file.

Reconfiguration latency highly depends on size of the
partial bit files and how faster the ICAP is functional. We are
able to clock ICAP at 400 MHz.

End to end latencies at each phase of proposed protocol
have been depicted in Fig. 9. The latencies have been measured
in µses and shown in logarithmic scale for larger partial bit
files.

VI. APPLICATION USE CASES

Several applications in which proposed reconfiguration
technique may be adopted, have been investigated with
significantly large partial bit files and suitable for data-centre
applications or any real time data transfer within other types of
network. As a proof of concept, various processing algorithm
has been chosen for real time raw video and data using the
proposed framework model. Raw and uncompressed data
transmission is used on post-processing applications and it
needs high data volume transfer. An openCV platform has
been used to send and receive raw RGB video over the network
with UDP port number 49200 with rFPGA’s IP and MAC
address as destination. Video sent from host server has been
captured by rFPGA and processed with reconfigurable video
processing block and send back to server for display. UDP port
number 49300 has been used to send raw data for data
processing algorithm. REoN packets and other data packets
have been differed by the UDP port numbers mentioned above.
The video/data processing algorithms used in this experiment
has been listed with their partial bit files size in Table II.

Fig. 8. Latencies measured at every stage while reconfiguration.

Fig. 9. End to end latencies at each phase of proposed protcol.

TABLE II. BITFILE SIZE FOR PARTIAL RECONFIGURATION MODEL

Partial Reconfigurable Modules
(function)

Size
(KB)

IEEE-754
Single

Precision
Arithmetic

Addition 100.78
Subtraction 100.9

Multiplication 101.65
Division 111.73

Complex
DSP

Algorithms,
64 point
Pipelined

FFT 325.97
IFFT 355.2
DCT 355.8
IDCT 365

Video
Processing
Algorithms

Color Space converter 39.48
Sobel operation 40.44

Laplacian operation 42.16
Gaussian operation 43.26

VII. CONCLUSION

A lightweight remote partial reconfiguration protocol,
REoN is implemented over UDP/IP with minimal hardware
resources. UDP/IP is used as the fundamental protocol, which
not only allows FPGA to coexist in a standard network, but the
RR-SNM APIs can use standard OS/Network libraries to send
partial bit files. The proposed framework can be used to re-
program high-speed network-attached FPGA-based sub-
systems while eliminates the need of having an on-chip/on-
board CPU. Our current version of framework achieves 505
Mbits/s partial bit files download throughput and
reconfiguration throughput as 696 Mbits/s with almost
negligible FPGA resources: 2% LUTs, 1% FFs and 8%
BRAMs. Many applications targeting reconfigurable hardware,
like NFV, reconfigurable L2/L3 switch, can benefit from this
framework. It also validates the possibility that network
algorithms or network sub-system mapped on FPGA can be
swapped with sub-system for higher layer network protocol to
upgrade the system on demand.

ACKNOWLEDGMENT

This work was supported by H2020 dRedBox project with
grant agreement no. 687632 funded by European
Commissions.

REFERENCES
[1] Putnam et al., “A reconfigurable fabric for accelerating large-scale

datacentre services,” in Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ser. ISCA ’14. Piscataway, NJ,
USA: IEEE Press, 2014, pp. 13–24.

[2] J. W. Lockwood and M. Monga, "Implementing Ultra Low Latency
Data Centre Services with Programmable Logic," 2015 IEEE 23rd
Annual Symposium on High-Performance Interconnects, Santa Clara,
CA, 2015, pp. 68-77.

[3] J. Weerasinghe, F. Abel, C. Hagleitner and A. Herkersdorf ,” Enabling
FPGAs in Hyperscale Data Centres,” In proceedings of the IEEE
International Conference on Cloud and Big Data Computing (CBDCom)
Beijing, China, August 10-14, pp. 1078-1086, 2015.

[4] A. Stanik, M. Hovestadt, and O. Kao,“Hardware as a Service (HaaS):
Physical and virtual hardware on demand,” In proceedings of the IEEE
4th International Conference on Cloud Computing Technology and
Science (CloudCom), Taipei, 3-6 Dec.2012, pp.830-836

[5] G. Brebner, "Programmable hardware in software defined networking,"
Optical Fiber Communications Conference and Exhibition (OFC), 2015,
Los Angeles, CA, 2015, pp. 1-1

[6] G. S. Zervas, Q. Chen, and V. Mishra, "Network, Compute and Storage
Function Programmability and Virtualization: An FPGA-based
Disaggregated System," in Asia Communications and Photonics
Conference 2015

[7] F. Chen et al., “Enabling FPGAs in the cloud,” in Proceedings of the
11th ACM Conference on Computing Frontiers, ser. CF ’14. New York,
NY, USA: ACM, 2014, pp. 3:1–3:10

[8] S. Byma et al., “FPGAs in the cloud: Booting virtualized hardware
accelerators with openstack,” in Proceedings of the 2014 IEEE 22Nd
International Symposium on Field-Programmable Custom Computing
Machines, ser. FCCM ’14, 2014, pp. 109–116

[9] A. Putnam et al., “A reconfigurable fabric for accelerating large-scale
datacentre services,” in Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ser. ISCA ’14. Piscataway, NJ,
USA: IEEE Press, 2014, pp. 13–24.

[10] O. Machidon, F. Sandu, C. Zaharia, P. Cotfas and D. Cotfas, "Remote
SoC/FPGA platform configuration for cloud applications," 2014
International Conference on Optimization of Electrical and Electronic
Equipment (OPTIM), Bran, 2014, pp. 827-832.

[11] P. Bomel, G. Gogniat, and J.-P. Diguet, “A networked, lightweight and
partially reconfigurable platform,” in Reconfigurable Computing:
Architectures, Tools and Applications, ser. Lecture Notes in Computer
Science, R. Woods, K. Compton, C. Bouganis, and P. Diniz, Eds.
Springer Berlin / Heidelberg, 2008, vol. 4943, pp. 318–323. 10, 13

[12] H. Tan and R. DeMara, “A Multilayer Framework Supporting
Autonomous Run-Time Partial Reconfiguration,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 16, no. 5, pp.
504 –516, May 2008.

[13] B. Blodget, S. McMillan, and P. Lysaght, “A lightweight approach for
embedded reconfiguration of FPGAs,” in Design, Automation and Test
in Europe Conference and Exhibition, 2003, 2003, pp. 399 – 400

[14] Tze Hon Tan, Chia Yee Ooi and M. N. Marsono, "rrBox: A remote
dynamically reconfigurable network processing middlebox," 2015 25th
International Conference on Field Programmable Logic and
Applications (FPL), London, 2015, pp. 1-4.

