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The plug flow of a non-Newtonian and a Newtonian liquid was experimentally investigated in a quartz microchannel
(200-mm internal diameter). Two aqueous glycerol solutions containing xanthan gum at 1000 and 2000 ppm were the
non-Newtonian fluids and 0.0046 Pa s silicone oil was the Newtonian phase forming the dispersed plugs. Two-color
particle image velocimetry was used to obtain the hydrodynamic characteristics and the velocity profiles in both phases
under different fluid flow rates. The experimental results revealed that the increase in xanthan gum concentration pro-
duced longer, bullet-shaped plugs, and increased the thickness of the film surrounding them. From the shear rate and
viscosity profiles, it was found that the polymer solution was in the shear-thinning region while the viscosity was higher
in the middle of the channel compared to the region close to the wall. Circulation times in the aqueous phase increased
with the concentration of xanthan gum. VC 2017 The Authors AIChE Journal published by Wiley Periodicals, Inc. on

behalf of American Institute of Chemical Engineers AIChE J, 63: 3599–3609, 2017
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Introduction

Over the last decade, research on microfluidic devices with

dimensions in the submillimeter scale has significantly
increased driven by process intensification demands. Such sys-

tems have found several chemical engineering applications in,

among others, mixing, separations, and reactions.1,2 The small

characteristic dimensions and high surface-to-volume ratio in
microdevices enhance the role of surface tension over gravita-

tional forces resulting in patterns different to those observed in

large-scale flows.3,4

Flows of mixtures of two immiscible liquids are very com-

mon in chemical processing. The main patterns that have been
observed in liquid-liquid microchannel flows are plug, drop,

annular, and parallel depending on the competition among

interfacial (�r/d), viscous (�l�u/d), and inertia (�q�u�d)
forces.5 Plug flow, where one phase forms elongated drops

(plugs) with size larger than the channel diameter, separated

from the channel wall by a thin film, is a common regime

which appears for a wide range of flow rates. The internal
recirculation within both phases and the presence of the thin

film surrounding the plugs enhance mass transfer and make

plug flow particularly suitable for liquid-liquid mass-transfer

operations and chemical reactions.
Two-phase liquid flows of Newtonian fluids in small chan-

nels have been widely studied.4,6–10 Conversely, even though

non-Newtonian fluids are very common industrially, there
are very few studies of their flow in microchannels. Non-
Newtonian fluids find applications in areas such as enhanced oil
recovery, catalytic polymerization reactions, and food process-
ing.11 From the few studies available, Hunsy and Cooper-
White2 experimentally investigated the formation of microdrops
in a T-junction microfluidic device using non-Newtonian aque-
ous solutions of polyethylene oxide (PEO) as the dispersed
phase and organic solutions as the continuous phase. Their
results showed that increasing the continuous phase viscosity
decreased the drop size whereas the presence of PEO had a neg-
ligible effect on the drop size. Fu et al.12 studied the flow pat-
terns in a T-junction microchannel when aqueous solutions of
carboxymethyl cellulose (CMC) were used as the non-
Newtonian continuous phase. Using high-speed imaging, they
observed four different patterns (slug, droplet, parallel, and jet
flow) and found that with increasing polymer concentration, the
droplet flow occurred at lower continuous phase superficial
velocities. Arratia et al.13 investigated the filament thinning and
breakup of viscoelastic fluids in liquid-liquid flows in a cross-
slot microchannel inlet to obtain their extensional viscosity.
Chiarello et al.14,15 studied the formation of oil droplets in
shear-thinning, aqueous solutions and introduced an effective
Capillary number that took into account the shear-thinning rhe-
ology. They observed that the droplet size in the non-
Newtonian fluids increased with the flow rate ratio and
decreased with increasing continuous phase flow rate.

When polymers are present in one of the phases, it is important
to be able to differentiate between the effects of increasing vis-
cosity and of non-Newtonian rheology. For this, it is necessary to
have information on the velocity fields and on shear rates. Micro-
particle image velocimetry (micro-PIV) has been widely used to
obtain the velocity profiles in liquid-liquid microchannel
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flows.10,16–20 Kinoshita et al.21 measured the three-dimensional
velocity fields and circulation patterns inside a moving aqueous
droplet by confocal microscopy whereas Kashid et al.16 studied
the circulation patterns into plugs during liquid-liquid two-phase
flow using PIV. Tsaoulidis and Angeli22 used an image acquisi-
tion system based on bright field PIV to visualize film thickness
and recirculation patterns in liquid plugs at small channels of
varying size. Chinaud et al.23 obtained velocity profiles within
both liquid phases during plug breakage at the T-junction inlet of
a microchannel using a two-color mPIV technique.

In this article, the liquid-liquid plug flow pattern in small

channels is investigated when one of the phases is non-

Newtonian. Hydrodynamic characteristics such as plug length,

shape, and film thickness are studied when shear-thinning xan-

than gum solutions at two different concentrations are used as

the non-Newtonian continuous phase. In addition, velocity fields

in both phases are measured with a two-color micro-PIV system.

These are the first studies where velocity profiles are obtained

during the two-phase flow of non-Newtonian fluids in small

channels and are related to the hydrodynamic characteristics.

Materials and Experimental Setup

For the investigations, two glycerol aqueous solutions con-

taining different concentrations of xanthan gum (Sigma-

Aldrich), 1000 (N1) and 2000 ppm (N2), were used as the

non-Newtonian phase, while the organic phase was a 0.0046 Pa

s silicone oil (from Sigma-Aldrich). Xanthan gum is a polysac-

charide biopolymer with a high molecular weight and a wide

range of applications in food, pharmaceutical, and oil indus-

tries.24 Glycerol (Sigma-Aldrich) was added in the aqueous

phase to match the refractive index of the organic phase and

avoid light refraction and optical distortions during the visuali-

zation and the PIV studies. It was found that a mixture of 48%

wt/wt water and 52% wt/wt glycerol matches the oil refractive

index (n20
D 5 1.39). Measurements were also carried out with

the corresponding Newtonian aqueous solution (without xan-

than gum) for reference and comparisons.
The physical properties of the fluids are summarized in Table

1. The Advanced Rheometric Expansion System (TA

Instruments
VR

) was used to study the rheological behavior of the

non-Newtonian solutions. All measurements were carried out at

208C. The rheometer had a Couette geometry (with bob diame-

ter 16.5 mm, cup size 17 mm, and 0.05 mm gap), and the tem-

perature was controlled with a water bath. The experimental

viscosity data of the two xanthan gum solutions are plotted as a

function of the shear rate in Figure 1. Both aqueous solutions

exhibit a typical shear-thinning behavior with the fluid viscosity

decreasing with increasing shear rate. It is noted that the viscos-

ity of the Newtonian solution (lN 5 0.007 Pa s) is always lower

than that of the non-Newtonian ones even at high shear rate val-

ues (above 1000 s21 where lN1 5 0.014 Pa s and

lN2 5 0.016 Pa s). The power-law model25 was used to fit the
data (see inset in Figure 1)

l _cð Þ5Kð _cÞn21
(1)

where l( _c) is the apparent viscosity (Pa s), _c is the shear rate
(s21), K is the consistency index, and n is the flow behavior
index. The values of K and n for the two non-Newtonian
solutions are given in Table 1. The interfacial tension, r, was
measured with the Du No€uy ring method (K100 KRUSS
GmbH

VR

).
The flow experiments were carried out in a circular micro-

channel with internal diameter (ID) 200 lm. The microchan-
nel is made of two semicircular channels, etched on quartz
chips, that were bonded together thermally (Dolomite

VR

micro-
fluidics). The T-junction inlet is etched in the same quartz
chip as the main channel. Using syringe pumps (KDS Scien-
tific

VR

), the two immiscible fluids were introduced separately
into the microchannel via a T-junction with branches of the
same size as the main channel. Experiments were conducted at
different combinations of flow rates of the two phases. The
microchannel was initially filled with the aqueous phase, and
the oil was introduced subsequently.

In each set of experiments, the aqueous (continuous) phase
flow rate was kept constant whereas the organic (dispersed)
phase flow rate was increased stepwise. The phase flow rates
ranged from 0.01 to 0.1 cm3/min. Initially, the flow pattern
map was obtained using a 3000-Hz high-speed camera (Pho-
tron 3000). A white LED backlight with adjustable intensity
was used to illuminate the channel. A small amount of com-
mercial, black ink (Pelikan

VR

) was added in the aqueous phase
to differentiate between the phases in the captured images.
The amount of ink added did not affect the interfacial tension.

Figure 1. Viscosity vs. shear rate of the non-Newtonian
fluids used.

N1 and N2 correspond respectively to the 1000 and 2000

ppm xanthan gum concentration solutions. Inset: Power-

law fitting of the viscosity curves. [Color figure can be

viewed at wileyonlinelibrary.com]

Table 1. Properties of the Working Fluids (T 5 208C)

Fluid System q (kg/m3)

lC (Pa s)

r (mN/m)K n

Continuous phase N2 Aqueous glycerol solution (52% wt/wt)
1 2000 ppm xanthan gum

1144 0.85 0.36 30.70

N1 Aqueous glycerol solution (52% wt/wt)
1 1000 ppm xanthan gum

1143 0.55 0.39 31.40

N Aqueous glycerol solution (52% wt/wt) 1142 0.007 31.80
Dispersed phase O Silicone oil 930 0.0046 –
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Images were acquired and processed with image processing
software (Photron, High Speed Cameras

VR

). The map indicated
the ranges of flow rates where plug flow occurs. Within the
plug flow region, further experiments were carried out to mea-
sure the plug characteristics and the velocity profiles within
the two phases. The conditions for the experiments are sum-
marized in Table 2 together with the corresponding modified
Capillary numbers. For the non-Newtonian solutions, the

Capillary number was calculated as follows26

Ca5l0CUP=r (2)

where l0C5Kð _cÞn 2 1
is the continuous phase viscosity, UP is

the plug velocity, and r is the interfacial tension. The average

shear rate across the channel diameter was calculated as _c5

2US 1 1 2nð Þ
D 11nð Þ where US represents the mean continuous phase

velocity, and n the flow behavior index. This definition
assumes a power law velocity profile in the channel. Different
shear rate definitions have previously been used in the litera-

ture depending on whether the fluids have a weak or strong
non-Newtonian character.15,26 The current definition was cho-
sen because of the strong shear-thinning behavior of the xan-
than gum solutions investigated here (n< 0.65).

The velocity profiles in the two phases during plug
flow were studied using a two-color micro-PIV technique.23

Two types of tracer particles with different fluorescing wave-
lengths were dispersed, each in one phase. The aqueous phase
was seeded with 1-lm carboxylate-modified microspheres
FluoSpheres

VR

with orange fluorescent colour (540/560 nm) at
a volume ratio of 0.04. In the organic phase, 1-lm blue poly-

styrene microspheres Fluoro-Max
VR

(350/440 nm) were dis-
persed at a volume ratio of 0.28 after a drying process.
A schematic of the two-color micro-PIV setup is shown in

Figure 2. For illumination, a double pulsed Nd:YAG laser
(Litron Lasers

VR

) was used that emits a blue (355 nm) and a

green (532 nm) wavelength at the same time. The light is guid-
ed with an optical fiber to the test section placed at an inverted

microscope (Nikon Eclipse Ti-s) with a 10x magnification.
The light emitted from the tracer particles is led to a beam

splitter (Andor
VR

Technology), which separates the two wave-
lengths using lenses, a dichroic mirror, and both high and band

pass filters. The orange light (560 nm) emitted by the particles
in the aqueous phase, is led through the dichroic mirror and a

high-pass filter toward a 4 MP, 32 fps CCD camera Link
VR

Base (TSI, Powerview 4 MP) with 2048 3 2048 pixels resolu-

tion; the blue light (440 nm) is reflected by the dichroic mirror
and is led through the band pass filter to a 12-bit CCD camera

Dicam pro
VR

(PCO Sensicam, Dicam pro
VR

) with 1270 3 512
pixels resolution. Both cameras have a 2x magnification lens

and are connected to a laser pulse synchronizer (TSI
VR

), which
controls the laser pulse delay time and the time between pulses

necessary for the flow visualization and the image acquisition.
The PIV acquisition frequency is 7 Hz per image pair. The

lPIV measurement depth for the blue (355 nm) and green
(532) wavelengths is approximately 20 lm (10% of the chan-

nel diameter) and 26 lm (13% of the channel diameter),
respectively, using an objective lens with magnification M
equal to 10x (NA 5 0.30, n 5 1).27

The detection of the interface presents a challenge in PIV
measurements in two-phase flows, particularly when the

refractive indices of the two phases have been matched.28 To
tackle this problem and improve the detection of the aqueous-

organic interface, 1 ppm of rhodamine 6G fluorescent dye is
also added in the aqueous phase.29 The fluorescent dye at such

small amounts was found to have negligible effects on the flu-
id properties.

PIV data processing

The acquired PIV images were initially processed using the
image processing software Insight 4G, TSI

VR

. For both cam-

eras, the PIV correlation box size was set to 64 3 64 pixels
with 50% spatial overlapping which results in a final spatial

resolution of 10.56 3 10.56 mm for the aqueous phase and of
24 3 24 lm for the organic phase. A primary-to-secondary

correlation peak ratio was used as filter to remove the false
vectors whereas vectors outside the seeded phases were set to

zero. The effective particle diameter, de, is equal to 33.2 lm
for the orange fluorescent particles and to 24.1 lm for the blue

ones providing an uncertainty equal to de/10M 5 0.33 lm for
the aqueous phase and de/10M 5 0.24 lm for the organic

phase (where M is the lens magnification).18,30 The focal plane
was located at the center of the channel using the front wall as

a reference and maximizing the channel width, giving an addi-
tional uncertainty of measured distance of 1.0 lm for the aque-

ous and 1.5 lm for the organic phase.
The PIV images were treated further with MATLAB

R2014a codes developed in house. In the images of the aque-

ous phase, the interface tracking was based on the rhodamine
dye dissolved into the aqueous phase, which resulted in

increased background contrast. Based on the intensity histo-
gram of the images, a threshold value was used to binarize the

images and reconstruct the interface. The same process was
also applied to the organic phase images. However, in this

case, the binarization process is based only on the signal of the
particles (as there is no dye in the organic phase). The recon-

structed contours of both the aqueous and the organic phases

Table 2. Experimental Conditions Used for Plug Flow

Case

QC

(cm3/min)

QD

(cm3/min) Ca(N) Ca(N1) Ca(N2)

1 0.06 0.01 0.007 0.012 0.022
2 0.06 0.02 0.008 0.013 0.022
3 0.06 0.03 0.009 0.014 0.024
4 0.07 0.01 0.010 0.014 0.023
5 0.07 0.02 0.011 0.015 0.024
6 0.07 0.03 0.013 0.015 0.025
7 0.08 0.01 0.011 0.014 0.025
8 0.08 0.02 0.012 0.015 0.026
9 0.08 0.03 0.013 0.017 0.027

Figure 2. Schematic diagram of the experimental setup
and the two-color micro-PIV system.

[Color figure can be viewed at wileyonlinelibrary.com]

AIChE Journal August 2017 Vol. 63, No. 8 Published on behalf of the AIChE DOI 10.1002/aic 3601

http://wileyonlinelibrary.com


are subsequently used as an adaptive mask to discriminate the

phases and match the velocity fields from each camera. Fur-

ther to this, a raw image of the microchannel boundaries is

acquired and used as the calibration target to match the two

recorded signals of the cameras.
During the acquisition process different plugs were

recorded which are not necessarily in the same position in the

channel. To obtain average velocity fields in each phase, the

images obtained from each camera were centered using the tip

plug position as reference. For the average velocity fields, 600

micro-PIV images were acquired. However, only 200–300 of

the images, depending on the flow rate conditions, corre-
sponded to full-length plugs and were used for the velocity

field calculations.

Results and Discussion

Flow pattern map

The flow patterns, which form under different phase flow
rates, were studied for the three aqueous solutions. For all con-

ditions studied (i.e., phase flow rates between 0.01 and

0.1 cm3/min) two different flow patterns were found, namely

plug and parallel flow. In plug flow, the organic 0.0046 Pa s
Newtonian phase always forms the dispersed plugs (Figure 3a)

irrespective of the side branch of the T-junction used to
introduce it in the main channel. In the parallel flow pattern

(Figure 3b), the two liquids come in contact at the T-junction

and then move in parallel along the channel. The different

flow patterns are attributed to the competition among interfa-

cial (�r/d), inertia (�q�u�d), and viscous forces (�l�u/d). The

interfacial forces tend to minimize the interfacial area result-
ing in plug flow whereas the viscous forces tend to keep the

interface smooth. The inertial force extends the interface in

the flow direction and dominates in the parallel flow pattern.31

The different patterns are plotted in Figure 3 for the

Newtonian and the 1000 ppm non-Newtonian aqueous phase,
in a map with the phase flow rates as coordinates. The patterns

for the 2000 ppm non-Newtonian solution are the same as

those for the 1000 ppm solution and are not shown here.
As can be seen, for the Newtonian aqueous phase, the plug

flow is limited to low dispersed and medium continuous phase

flow rates (points inside the dashed square). The range of con-
ditions for plug flow is, however, significantly expanded when

the non-Newtonian aqueous solution is used. In particular,

plug flow occurred for the whole range of the continuous
(aqueous) phase flow rates studied and for an extended range

of dispersed (organic) phase flow rates. Plug flow establishes
at low dispersed phase flow rates, where the shear forces

between the liquids are low. As the dispersed phase flow rate

is further increased and the shear force of the continuous phase
is not large enough to break the interface into plugs, parallel

flow forms (Figure 3). The shift in the boundary between the
plug and the parallel flows with the polymer addition could be

due to both the change in the shear viscosity and the non-
Newtonian rheology of the aqueous continuous phase. Sang

et al.,32 from numerical analysis of droplet formation, found

that an increase in Newtonian viscosity delayed the drop break
up at the channel inlet and resulted in a decrease in the area of

plug flow in the map. However, when power law fluids were
used, as the flow behavior index, n, decreased (or the amount

of polymer increased), the droplets broke closer to the T-

junction and extended the region of plug flow. A similar trend
was also found by Fu et al.12 who investigated the flow pat-

terns of cyclohexane (dispersed phase) and shear-thinning
non-Newtonian aqueous solutions (continuous phase) contain-

ing different concentrations of CMC. They observed that

droplet flow occurred at lower superficial velocity of the
continuous non-Newtonian phase with increasing CMC

concentration.
Generally, the transition from one pattern to another occurs

over a range of flow rates. For the non-Newtonian systems, a

transition region was found for all the continuous phase flow

rates studied. As the dispersed phase flow rate increased, for
constant QC, plugs with irregular sizes appeared before paral-

lel flow was established. This transition region occured for QD

between 0.04 and 0.05 cm3/min.
The hydrodynamic characteristics of the plug flow were fur-

ther studied in the main channel using the two-color micro-

PIV system for the cases indicated in Table 2.

Plug length

The effect of dispersed phase flow rate, QD, on plug size is

illustrated in Figure 4 for the Newtonian aqueous solution (N)
and QC 5 0.07 cm3/min. The channel walls are also shown for

clarity. From the pictures captured using the two-color PIV
(Figures 4a–c), it can be seen that by increasing the dispersed

phase flow rate, the plug length increases. A similar trend is

also found for both non-Newtonian 1000 ppm (N1) and 2000
ppm (N2) solutions. Plug lengths were averaged over micro-

PIV images with a standard deviation for all cases equal to
3.0–15.5%. The results are plotted in Figure 4d where it can

be seen that an increase in the polymer concentration produces

generally longer oil plugs, that is, LP N< LP N1< LP N2, where
LP is the plug length. This difference increases as the dispersed

(organic) phase flow rate increases.
An increase in the continuous phase flow rate on the other

hand, decreases LP for the non-Newtonian fluids as can be seen

in Figure 5 for dispersed phase flow rate QD 5 0.03 cm3/min.

Figure 3. Flow pattern map of the aqueous Newtonian/
non-Newtonian 1000 ppm solution and the
silicone oil.

The dashed line encloses the area of plug flow when the

Newtonian aqueous phase is used. Representative flow

patterns (a) plug flow; (b) parallel flow, captured using

the high-speed camera. The dark-colored liquid is the

aqueous phase whereas the light-colored one is the

organic phase. [Color figure can be viewed at wileyonli-

nelibrary.com]
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An increase in QC from 0.06 to 0.08 cm3/min reduces the plug
length in the N1 and N2 systems by approximately 47 and 55
lm, respectively (15% standard deviation). The trend is similar
to this of Hunsy and Cooper-White.2 Conversely, in the Newto-
nian system the continuous phase flow rate does not have a sig-
nificant effect on plug size with a maximum deviation of LP

equal to 17 lm (6% standard deviation). Furthermore, as the
xanthan gum concetration increases, longer plugs are produced,
for constant phase flow rates.

Chiarello et al.14 who studied the formation of organic drop-
lets in a T-junction channel using different concentrations of
xanthan gum in water, investigated the shear-thinning effect
on the droplet size. They compared a xanthan gum/water solu-
tion to a glycerol/water (Newtonian) one with similar viscosity
and found that the droplet lengths produced in the polymeric
mixtures were longer than those obtained in the Newtonian
one especially at a high flow rate ratio (under constant contin-
uous phase flow rate). Fu et al.33 who studied oil drops in shear
thinning aqueous solutions with PAAm also found longer
plugs in the non-Newtonian solutions compared to the Newto-
nian ones. The longer plug lengths, however, may not neces-
sarily mean that the plugs have larger volumes. As will be
shown later, the film thickness increases when polymers are
added in the water phase, and the change in plug length may

only be a result of plug elongation. From the PIV images col-
lected, it was found that the plug volumes actually decreased
with increasing amount of polymer added in the aqueous
phase. Chiarello et al.15 have also reported this trend with the
addition of polymers.

The nondimensional plug lengths are plotted in Figure 6
against the ratio of dispersed to continuous phase flow rates
for all conditions studied. As can be seen, the dimensionless
plug length increases almost linearly with the flow rate
ratio.14,34–36 Generally, plug lengths in the non-Newtonian
systems are larger than in the Newtonian one and increase
with the xanthan gum concentration. In addition, at a high
flow rate ratio, the increase of plug length with the polymer
becomes more significant (see also Figure 4), that is, for QD/
QC 5 0.5, the LP of the 2000 ppm solution increases by 32%
from the Newtonian case.

The results are also compared with the scaling law for the
squeezing regime for plug formation proposed by Garstecki
et al.,34 which is given by

LP

D
511a

QD

QC

(3)

where D is the internal diameter of the channel, and a is a
parameter of the order of one, whose value depends on the

Figure 4. Effect of dispersed phase flow rate on the Newtonian plug size for QD (cm3/min): (a) 0.01, (b) 0.02,
(c) 0.03 (QC 5 0.07 cm3/min), and (d) effect of dispersed phase flow rate on plug length (for constant
QC 5 0.07 cm3/min).

Figure 5. Effect of continuous phase flow rate on plug
length LP (for constant QD 5 0.03 cm3/min).

Figure 6. Effect of dispersed to continuous phase flow
rate ratio on dimensionless plug length Lp/D.
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geometry of the T-junction inlet and of the plug neck during
formation. For the Newtonian system, the above model agrees
well with the experimental data for a 5 1 with standard devia-
tion less than 8%. For the non-Newtonian systems, the values
of the parameter a that gave the best fit to the experimental
data are 1.30 (4.5% maximum error) and 1.65 (10% maximum
error) for the 1000 and 2000 ppm xanthan gum solution,
respectively. It appears that the addition of polymer does not
affect the linear trend and consequently the plug formation
mechanism. However, the increase in the slope of the line for
different xanthan gum concentrations indicates a geometrical
modification of the plug as it forms at the T-junction inlet.

The effect of flow rate ratio on the slug length is shown in
Figure 7. As the dispersed phase flow rate increases, the slug

length reduces linearly by 45% in all the three aqueous solu-

tions. Furthermore, for constant phase flow rates, increasing

the xanthan gum concetration results in slightly shorter slugs

(standard deviation for all cases equal to 6.5–13.0%). It should

be noted that for QD 5 0.01 cm3/min where the slug is long, a

full-length slug image could not be captured with the current

configuration of the PIV system, and no slug length was

calculated.

Plug shape

The rheological properties of the continuous phase are

found to affect the curvature of the plug leading edge which is

mainly controlled by the balance between interfacial and vis-

cous forces.37 The plug leading edge was obtained from the

lPIV images and is defined as the area from the tip of the plug

until the point where the surrounding film has reached a uni-

form thickness (Figure 8a). As can be seen in Figure 8, the

front plug edge curvature increases with increasing polymer

concentration in the continuous aqueous phase, and the plug

acquires a bullet-shaped profile. In the 2000 ppm polymer con-

centration system, the decrease in the plug leading edge radius

can be as high as 37% compared to the Newtonian case. The

radius of the trailing plug edge also decreases (curvature

increases) with polymer concentration in the aqueous phase.

However, this decrease is less pronounced compared to the

front edge and for the case shown in Figure 8 it is about 13%.

The same behavior was observed for all the flow rate combina-

tions studied.
The bullet-shaped profile of the leading plug edge has been

reported for Taylor bubbles at high Capillary numbers.38,39 In

the present study, high Capillary numbers can be achieved by

increasing the continuous phase viscosity or the dispersed

phase velocity as the interfacial tension is the same for all the

three aqueous solutions. The dependency of the plug front

edge radius, rtip, on the Capillary number for the different con-

tinuous phases studied is shown in Figure 9 for

QC 5 0.07 cm3/min. The plug radius decreases as the Ca num-

ber increases with the polymer addition; this was also seen by

Meyer et al.40 In the non-Newtonian solutions, the viscocity is

not homogeneous across the channel. The viscosity is higher

in the middle of the channel (see also Figure 15a) where the

shear rates are low. As a result, the increased viscous forces in

this region overcome the surface tension forces which are not

able to sustain the semispherical shape of the plug front, lead-

ing to the bullet-shaped profile.

Figure 7. Effect of dispersed to continuous phase flow
rate ratio on dimensionless slug length LS/D.

Figure 8. Effect of the polymer addition on plug shape:
(a) Newtonian fluid, N, (b) non-Newtonian flu-
id 1000 ppm, N1, and (c) non-Newtonian fluid
2000 ppm, N2 (QC 5 0.07 cm3/min and
QD 5 0.01 cm3/min).

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 9. Effect of Capillary number on plug front edge
radius for constant QC 5 0.07 cm3/min and QD

equal to 0.01, 0.02, and 0.03 cm3/min.
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Film thickness

In all cases investigated, the plugs are separated from the
channel wall by a thin film of the continuous phase as shown
in Figure 8. The film thickness was measured from the images
obtained with the micro-PIV system. As can be seen, the film
thickness, d, is not uniform over the entire length of the plug.
According to Bretherton,41 the plug profile can be divided into
three different parts: leading edge, trailing edge, and main
part. The leading and trailing edge caps join through a transi-
tion region with the main part of the plug with uniform film
thickness. However, when the plugs are not sufficiently long, a
uniform film thickness region may not establish.

Two main plug profiles were observed depending on the
plug length. In short plugs, the leading plug edge joins almost
immediately the trailing edge, and there is not a region of uni-
form film thickness (Figures 10a, b). As the plug length
increases above LP� 352 lm, a region of uniform film thick-
ness can be seen (Figure 10c). This variation in film thickness
can pose problems in its measurement. Eain et al.42 have cho-
sen as measurement location the trailing part of the plug where
the film thickness has its lowest value. Other investigators9,10

have used an average value of the film thickness along the
plug, between the leading and trailing edges. This approach

was also used here, and an average film thickness was calcu-
lated. For low Capillary numbers Ca � 1023, where the

dimensionless film thickness is d � 8 lm, the standard devia-
tion in the film thickness measurements could be as high as
20%. At high Capillary numbers, which correspond to the

non-Newtonian solutions, the standard deviation in the film
thickness measurements is below 10% for all the cases

studied.
The effect on film thickness of the continuous phase flow

rate and rheology can be seen in Figure 11. With increasing
amount of xanthan gum in the aqueous phase and front plug

edge curvature, the film thickness increases. At the Newtonian
system, the liquid film corresponds to approximately 3% of
the channel diameter, whereas at the 2000 ppm xanthan gum

(N2) system the film thickness is almost 10% of the channel
diameter. Additionally, for a constant continuous phase flow
rate, QC 5 0.07 cm3/min, the film thickness increases with

increasing dispersed phase flow rate. As reported in the litera-
ture, in Newtonian systems, the film thickness is increased

either by increasing the velocity or the viscosity of the contin-
uous phase, which leads to increased Ca number.22,42 Howev-
er, for these Newtonian cases, the maximum increase of the

film thickness is by a factor of 2 (even at higher Ca number,
i.e., 0.003<Ca< 0.180) while for the shear-thinning fluids
used in the experiments, the increase is by a factor of 4

(0.007<Ca< 0.027).
The experimental nondimensional film thickness results, d/R,

for all conditions studied, are plotted in Figure 12 against

the Capillary number Ca 5 l0c�UP/r, which for the non-
Newtonian systems was calculated from Eq. 2. From the dif-
ferent velocities that have been used in the literature for the

calculation of the Capillary number (e.g., plug, slug, or contin-
uous phase velocities4,22,43), the plug velocity was chosen
because it is related to the film thickness (see Bretherton41;

Eain et al.42). The dimensionless film thickness was found to
increase with increasing Capillary number. The results are also
compared against the predictions of commonly used models

given in Table 3. Many of the literature correlations for film
thickness, shown in Figure 12, are developments of the theo-

retical analysis by Bretherton41 who found that the film thick-
ness in gas-liquid Taylor flow was proportional to Ca2/3. The
data for the Newtonian system agreed well with the model by

Aussillous and Qu�er�e,47 with an average error of 7%, who
modified Bretherton’s correlation to fit the experimental data

Figure 10. Micro-PIV images highlighting the effect of
plug length on film thickness for N2 and QD

(cm3/min): (a) 0.01, (b) 0.02, and (c) 0.03
(QC 5 0.07 cm3/min).

Figure 11. Effect of dispersed phase flow rate on film
thickness for different aqueous solutions
(for QC 5 0.07 cm3/min).

Figure 12. Nondimensional film thickness, d/R, plotted
against the Capillary number for all experi-
mental conditions.

Current results are compared to literature models

from Table 3.
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by Taylor.48 At Ca< 0.015, the results also agreed well with

the model by Bretherton41 with an average error of 9%. These

models however, did not predict well the experimental results

for the non-Newtonian systems (average error> 54%). Iran-

doust and Anderson46 proposed an empirical correlation for

film thickness in gas-liquid Taylor flow, which predicted the

present results in both Newtonian and non-Newtonian systems

with an average error of 33%. The model by Dore et al.10 pre-

dicted reasonably well the experimental data for the non-

Newtonian system (11% average error) but not for the Newto-

nian ones, with an average error of about 56%. The model by

Eain et al.42 which included the effects of inertial forces via

the Weber number, did not predict the non-Newtonian data

well with an average error of 90% whereas for the Newtonian

mixtures, the average error was 24%.

Circulation patterns in the plugs and the slugs

Representative average velocity fields in both the organic

and the aqueous phases, obtained with the two-color lPIV sys-

tem, are shown in Figure 13. The horizontal component of the

velocity is dominant at the main flow direction along the x
axis. The velocity is maximum at the core of both the plug and

the slug and decreases toward the channel walls and the liq-

uid/liquid interface.
The horizontal velocity profiles at the middle of the plug

and slug, (dotted rectangle in Figure 13) for two extreme cases

(Newtonian, N and 2000 ppm xanthan gum, N2) are compared

in Figures 14a and b, respectively, for QC 5 0.07 cm3/min and

QD 5 0.03 cm3/min. Within the plug, the velocities are slightly

larger for the non-Newtonian system compared to the Newto-

nian one (Figure 14b). This is expected since the addition of

the polymer resulted in a bullet-shaped plug and increased

film thickness, which led to a higher plug velocity. As can be

seen in Figure 14a, the velocity profile in the slug changes

shape with the addition of the polymer. For the Newtonian

system, fully developed laminar flow is expected in the middle

of the slug, and this is reflected in the parabolic profile. How-

ever, in the non-Newtonian system the profile is flat in the

Table 3. Experimental Studies of Liquid Film Thickness in Two-Phase Flow (Bandara et al.
44

)

Authors Model Flow Condition

Bretherton41
1:34 Ca2=3 1024�Ca� 1022

Suo and Griffith45

12

ffiffiffiffiffiffiffiffiffiffiffi
UTPM

UB

r� �
Re � 1

Irandoust and Anderson46
0:36 12exp 23:08 Ca0:54

� �� �
9.5 3 1024< Ca< 1.9

0.42<Re< 860

Aussillous and Qu�er�e47
1:34 Ca2=3

113:35 Ca2=3

1023�Ca� 1.4

Han and Shikazono43
1:34 Ca2=3

113:13Ca2=310:504 Ca0:672 Re0:58920:352We0:629
Þ

Ca< 0.3 and

Re< 2000

Dore et al.10
0:30 12exp 26:90 Ca0:54

� �� �
0.007<Ca< 0.159

Eain et al.42
0:35Ca0:354We0:097 0.002<Ca< 0.119 14.46<Re< 100.96

Figure 13. Averaged total velocity fields in (a) slug and
(b) plug for Newtonian fluid N and flow rates
QC 5 0.07 cm3/min and QD 5 0.03 cm3/min.

Dotted rectangle indicates the fully developed laminar

flow area. [Color figure can be viewed at wileyonlineli-

brary.com]

Figure 14. Average velocity profiles of the horizontal
component of the velocity in the middle of
(a) the slug and (b) the plug for different con-
centrations of xanthan gum (QC 5 0.07 cm3/
min and QD 5 0.03 cm3/min).
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middle, which is characteristic of the laminar velocity profile

of a power law fluid.
The nonhomogeneous viscosity and shear rate profiles in

the slug were also calculated based on the PIV velocity pro-

files and are presented in Figure 15 for the 2000 ppm non-

Newtonian solution. As can be seen, the shear rate varies from

1000 s21 (close to channel wall) to almost zero (in the middle

area of the channel) resulting in an increase in the viscosity of

the xanthan gum solutions by one order of magnitude, that is,

from 0.02 Pa s in the wall (1000 s21) to 0.2 Pa s in the middle

(0–3 s21). These values correspond to the shear-thinning

region of the solution (see Figure 1). Figure 15 clearly shows

that the hydrodynamic characteristics of the plugs formed in

shear-thinning xanthan solutions are a result of both shear-

thinning behavior and increased viscosity.
The change in the velocity profiles, particularly in the slug,

when polymer is added is expected to affect the circulation

patterns. The recirculation patterns in the slug were calculated
by subtracting the slug velocity from the averaged local veloc-

ity field and are shown in Figure 16 for a continuous phase
flow rate QC 5 0.07 cm3/min and dispersed phase flow rate

QD 5 0.03 cm3/min. As shown in Figure 16a, for the Newtoni-
an aqueous phase a clear recirculation pattern forms which

consists of two distinct vortices, counter rotating, and symmet-
rical about the channel axis. The recirculation pattern is also

symmetric with respect to the centerline of the slug and

extends along the whole slug length. Two stagnation zones are
visible, and the backflow of the particles is pronounced. When

the 2000 ppm xanthan gum solution is used as continuous
phase, the two stagnation zones move toward the channel

wall, while they remain symmetric about the channel axis
(Figure 16b) resulting in a less intense recirculation pattern.

The circulation within the slugs can be quantified with the

dimensionless circulation time, s.49 This is defined as the time
taken by the liquid to move from one end of the slug to

the other, TL, over the slug travel time, TS (time needed for the
slug to travel a distance equal to its own length; TS 5 LS/US

where LS is the slug length and US is the slug velocity)

s � TL

Ts

5
TLUS

LS

(4)

The dimensionless circulation time can be calculated from the
current velocity profiles obtained from PIV on a plane in the

middle of the slug as follows10

scir5
LSy0Ð y0

0
u x; yð Þdy

US

LS

5
USy0

Dy
Pi5N

i51 vi

(5)

where yo is the location of the stagnation point projected onto

the observation plane.
The dimensionless circulation time from Eq. 5 is plotted

against the slug length in Figure 17. As can be seen, the cir-

culation time is almost uniform in the main part of the slug
body indicating that the circulation patterns are regular and

increases close to the front and back interfaces. When the
xanthan gum solution is used, the circulation time increases

slightly under the same flow rate conditions. The average
dimensionless circulation time corresponding to the plateau

of the curve is equal to 4.76 and 5.44 for the Newtonian and

non-Newtonian systems, respectively. Similar trends were

Figure 15. (a) Viscosity profile and (b) shear rate profile in
the aqueous non-Newtonian 2000 ppm slug
(QC 5 0.07 cm3/min and QD 5 0.03 cm3/min).

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 17. Effect of xanthan gum concentration on the
dimensionless circulation time in the slug
for flow rates QC 5 0.07 cm3/min and
QD 5 0.03 cm3/min.

Figure 16. Effect of xanthan gum concentration on cir-
culation patterns in aqueous slugs for (a)
Newtonian fluid, N and (b) non-Newtonian
2000 ppm fluid, N2 (QC 5 0.07 cm3/min and
QD 5 0.03 cm3/min).

[Color figure can be viewed at wileyonlinelibrary.com]
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found for all the flow rates studied as can be seen in Table 4.

As was mentioned before when QD 5 0.01 cm3/min, a full-

length slug image could not be captured with the current PIV

system, and no circulation patterns could be calculated for

these cases.

Conclusions

The hydrodynamic characteristics of the plug flow of a non-

Newtonian and a Newtonian liquid in a microchannel were

investigated using a two-color micro-PIV system. Two glycer-

ol aqueous solutions containing different concentrations of a

shear-thinning polymer, xanthan gum (1000 and 2000 ppm)

were used as the non-Newtonian phase while silicone oil was

the Newtonian one forming the dispersed plugs under all con-

ditions. It was found that the addition of xanthan gum extend-

ed the area of plug flow to higher superficial phase velocities

compared to the Newtonian case. Plug lengths increased when

polymer was added, while in all cases their size increased

when the dispersed to continuous phase flow rate ratio

increased. The front plug edge curvature increased with poly-

mer concentration, and the plug acquired a bullet-shaped pro-

file. The thickness of the aqueous film between the plug and

the channel wall increased with increasing concentration of

the polymer in the continuous phase; it also increased with the

dispersed phase velocity. Using a modified Capillary number

to account for the non-Newtonian continuous phase viscosity,

the suggested models were not able to predict both Newtonian

and non-Newtonian film thickness data satisfactorily. Good

agreement was found between the non-Newtonian data and

the film thickness models by Irandoust and Anderson46 and

Dore et al.10 for 0.012<Ca< 0.027.
The velocity profiles obtained from the PIV measurements

showed that the addition of xanthan gum resulted in a higher

plug velocity. Within the non-Newtonian slug, the velocity pro-

files were found to be flat in the middle of the channel as

expected for a power law fluid. Higher viscosities were also

found in this region compared to the region close to the channel

wall. The addition of the polymer also changed the circulation

patterns in the aqueous continuous phase. Compared to the

Newtonian cases, in the non-Newtonian slugs the stagnation

points moved toward the channel wall while the dimensionless

circulation times increased, indicating a less intense mixing.
Future studies will investigate the process of plug formation

at the channel inlet and link it to the plug and slug sizes

observed in the main channel. Different types of non-

Newtonian fluids will be used to understand the effect of rhe-

ology on the flow properties of the two-phase mixtures.
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