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ABSTRACT 

 

INTRODUCTION 

 

Immunoglobulin light chain (AL) amyloidosis is a progressive plasma cell dyscrasia which is characterized 

by deposition of amyloid fibers derived from immunoglobulin light chain systemically in many organs 1. 

Amyloidogenic light chains are secreted by clonal plasma cells and, because of the immunoglobulin 

variability, they are unique to each patient 2, 3. Characteristics of amyloids related to disease severity and 

sequelae, including the target organs where amyloids accumulate, such as the heart, kidney, liver and 

peripheral nerves 3. Heart failure is usually the critical life-threatening condition; the median survival time 

depends on the extent of amyloid interference with the critical organ function and survival may range from 

some months to some years 1, 4. The incidence in AL amyloidosis is estimated to be somewhat over 3 per 

million 5, 6. Monoclonal gammopathy of undetermined significance (MGUS) is often the precursor disease 

for AL amyloidosis and the related disease multiple myeloma (MM) 7. It has been reported that some 10 to 

15% of multiple myeloma patients have AL amyloidosis 8, 9; conversely, some 10% of AL amyloidosis 

patients have MM at the time of diagnosis 10. AL amyloidosis and MM share genetic risk loci and the 7 

single nucleotide polymorphism (SNPs) initially described for MM were replicated in 443 AL amyloidosis 

patients with a nominal significance of p<0.05 11. 

 

We have recently characterized 10 putative genetic risk loci (at significance level of <10-5) for AL 

amyloidosis using a genome-wide association study (GWAS) approach on a total of 1351 German, UK and 

Italian patients 12. In the present study we carry out a systematic association study on the GWAS identified 

loci and the available clinical data including the affected organs and the type of serum immunoglobulin (Ig).  

 

METHODS 

  

The patient populations and GWAS analysis have been described elsewhere 12. Shortly, the German 

amyloidosis patients (595 passed the GWAS quality control) were ascertained through the Amyloidosis 

Center at University Clinic Heidelberg. The UK samples (474) were obtained from the National Amyloidosis 

Centre, London and the Italian samples (282) came from the Amyloidosis Research and Treatment Center, 
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Pavia. The diagnostic criteria used were as described 13. DNA was genotyped using Illumina Human 

OmniExpress-12 v1.0 and related arrays. Local control populations included 2,107 Germans, 5637 Britons 

465 Italians. 

 

A total of 9 clinical profiles were selected among organ involvement (kidney, heart, heart & kidney and liver, 

irrespective of whether other organs were involved) and Ig profiles (IgG with intact Ig, λ any, κ any, λ/κ light 

chain only (LCO), and λ LCO).   

 

Analysis of the GWAS data was performed using imputed data as described 12. All SNPs having a minor 

allele frequency (MAF) <1% were excluded. The association test between imputed SNPs and AL 

amyloidosis was performed in SNPTESTv2.5. The three data sets were combined in meta-analysis and 

heterogeneity was assessed by the I2 statistic (interpreted as low <0.25, moderate 0.50 and high >0.75). 

Genomic locations are given in NCBI Build 37/UCSC hg19 coordinates. For genome-wide significance, a 

limit of p< 5x10-8 was used. 

 

In order to test homogeneity of the results between AL amyloidosis and MM ASSET analysis was performed 

14. This method explores all possible subsets for negative, positive, or null associations, identifying the 

subset with the strongest association signal; it also accounts for the multiple tests required by the subset 

analysis.  

 

To investigate chromatin state segmentation profiles (ChromHMM) and 3-dimentional interactions (Hi-C) at 

risk loci we made use of the ENCODE project data on cell lines, including lymphoblastoid cells (GM12878).  

We also used HaploReg v4.1 (www.broadinstitute.org/mammals/haploreg) to evaluate the regulatory nature 

and the possible functional effects of SNPs and their proxies r2 ≥ 0.8, or 0.95 15.  All relevant data available 

in HaploReg were considered in the SNP search but when multiple cell types were listed data on 

hematologic cell types were reported. Association profiles were visualized using the Locuszoom 16 in 

conjunction with the UCSC genome browser 17. Z score calculated for SNPs as log OR divided by standard 

error 18.  

 

RESULTS  

 

http://www.broadinstitute.org/mammals/haploreg
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We selected 9 clinical profiles for a specific analysis of GWAS data (Table 1). Among Ig related profiles, λ 

any (with or without heavy chains) was the most common one, found in 930 patients. λ/κ LCO was found in 

535 patients. Kidney and heart profiles were the largest organ profiles, including over 800 patients each, and 

liver profile was the smallest with only 194 patients. The median diagnostic ages differed minimally, from 62 

to 66 years. The male-female ratio was 1.37 overall and it did not appreciably differ between the profiles. In 

the bottom of Table 1 data on the MM cohorts are given. 

  

Association analysis and comparison with MM 

 

We carried out a systematic association analysis of each of the 9 clinical profiles against controls in each of 

the 3 cohorts. Manhattan plots are shown for joint analysis in 4 clinical profiles with genome-wide 

associations. In the liver profile a genome-wide association, based on imputed SNPs, was noted in 

chromosome 11 but it had a MAF of 1%; thus few individuals had the variant allele and the association was 

considered no further.  

 

Among Ig profiles, the λ/κ LCO and the λ LCO profiles showed a strong association with SNP rs9344 (Table 

2). The OR for rs9344 OR in the λ/κ LCO profile was 1.62 (p=1.99x10-12) and in the λ LCO profile it was 

1.70 (p=1.29x10-11). The weakest association was noted for the IgG profile (1.20, 9.69x10-3), with non-

overlapping 95%CIs to the LCO profiles. For overall AL amyloidosis, the OR was 1.35 and for MM it was 

1.06, as reported earlier 12.  Z-scores are also listed because they will be used in figures to be shown later.  

  

For the IgG profile, rs10507419 reached genome-wide significance with an OR of 1.49 and p-value of 

5.63x10-8. The two subgroups IgG λ and IgG κ showed similar ORs (1.57 and 1.51, respectively) and IgG λ 

reached genome-wide significance of 2.90x10-8 (Table 3). ORs of profiles λ/κ LCO (0.90), λ LCO (0.91), 

liver (0.98) and κ any (1.00) differed significantly (non-overlapping 95%Cs) from the IgG profile. Among 

MM subtypes, the OR for IgG MM was 1.01 while the ORs for both IgG λ and IgG κ were 1.00. 

 

Genome-wide association was found for SNP rs6752376 in the heart & kidney profile (OR 1.54, p=2.88 x 10-

8) (Table 4). The profiles for kidney and heart only reached ORs of 1.24 and 1.27, respectively. ORs for liver 
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(0.98) and κ any (1.04) profiles differed significantly from the heart & kidney profile. The OR for MM was 

1.00.  

 

The liver profile rs7820212 reached genome-wide significance even with a small patient number (194) (OR 

1.86, p= 1.86 x 10-8) (Table 5). ORs of all other clinical profiles differed significantly from the liver profile. 

The OR for AL amyloidosis overall was 1.07 and for MM it was 1.04.  

 

Of note, there was no or at most moderate heterogeneity for any genome-wide significant associations in 

Tables 2 to 5 between the 3 AL amyloidosis cohorts as indicated by I2. The ORs of the significant 

associations did not change when stratified for age and sex.      

 

We assessed the associations of the previously described 10 putative candidate SNPs from the combined AL 

amyloidosis cohorts with each of the 9 profiles 12.  With the exception of SNP rs9344 (Table 2) no other SNP 

associated specifically with AL amyloidosis defined by a clinical profile. 

 

Biological interference  

 

Regional plots of association are shown in Fig. 2 for the genome-wide significant SNPs in 4 clinical profiles. 

For the λ/κ LCO profile, rs9344 on chromosome 11q13.3 maps to a splice site in the cyclin D1 gene as 

shown previously (Fig. 2A) 12. For the IgG profile, SNP rs10507419 on chromosome 13q13.2 maps within 

the LINC00457 gene (long intergenic non-protein coding RNA 457) of unknown function and resides 330 kb 

5’ of NBEA (neurobeachin) (Fig, 2B). ENCODE Hi-C data are lacking for rs10507419 but data are available 

for the linked SNP (r2=1.00) rs9529341, 1 kb away, showing long-range association within the NBEA gene 

(Supplementary Fig. 1, not included).   The SNP changes motif for transcription factor Pax-4. STEFAN: WE 

NEED DATA ON 13q deletion for this point.  

 

The heart & kidney profile risk SNP rs6752376 on chromosome 2p25.2 is located between two RNA genes, 

63 kb from LINC01247 (long intergenic non-protein coding RNA 1247) and 9.9 kb 3’ of ACO17053.1 (not 

shown in Fig. 2C); functions of both of these are unknown. rs6752376 is a moderate expression quantitative 



7 

 

trait locus (eQTL) (3.7x10-5) to human metabolic profile relating to serum concentration of pantothenate 19. 

According to HaploReg the SNP alters motifs for 3 transcription factors, Nkx2, Nkx3, PLZF. Liver profile 

SNP rs7820212 on chromosome 8q11.23 maps 28kb 3' of FAM150A (family with sequence similarity 150 

member A). 116 kb away is the locus for RB1CC1 (RB1 inducible coiled-coil 1). The SNP changes motif for 

transcription factor CEBPB. 

 

DISCUSSION 

 

The recent GWAS on these 3 AL amyloidosis cohorts reported 4 SNPs reaching (or almost reaching) a 

genome-wide significance 12. With the exception of the most significant SNP, rs9344, none of the other 3 

were associated with the defined 9 clinical profiles, probably because of decreased patient numbers. 

Interestingly, 3 completely new profile-specific genetic loci were identified with homogeneous results from 

the 3 cohorts. Independent associations of rs9344 with the two LCO profiles and of rs10507419 with the two 

IgG profiles show internal consistency.      

 

The preferential association of rs9344 with LCO profiles could possibly be explained by the association of 

this SNP with translocation (11;14) and the resulting disturbance of IgH production in AL amyloidosis and 

MM 12, 20, 21. However no light chain excess has been reported in t(11;14) AL amyloidosis 22, 23. Data on MM 

cell line have suggested that compromised production of IgH leads to excess production of free light chains 

24. How rs9344 could interfere with IgH production independent of t(11;14) remains enigmatic. Risk allele G 

at the splice site of cyclin D1 encodes a full length cyclin D1 which has many functions, including 

involvement in double-strand repair with RAD51, BRCA1 and BRCA2 and thus a possible interference with 

the class switch recombination for IgH 25, 26.  Curiously, while the LCO profiles were strongly associated 

with rs9344, the weakest association was noted for the IgG profile. Conversely, rs10507419 was strongly 

associated with the IgG profiles while weakly opposite associations were found with this SNP and the LCO 

profiles. rs10507419 on chromosome 13q13.2 maps close to the NBEA locus (13q13.3) which is a fragile site 

causing deletion of the telomeric end of chromosome 13q in patients with MM, MGUS and AL-amyloidosis 

22, 27-29. We found in Hi-C data that rs10507419 shows long-range association with the NBEA locus. 

Occasionally NBEA is fused with the tip of chromosome 8q24 containing PVT1 30. The translocation may 

interfere with expression of RB1 which is located at 13q14.2 29.  

        



8 

 

 

The possible functions of rs6752378 SNP associated with heart & kidney profile are unknown as are those 

for the adjacent RNA genes LINC01247 and ACO17053.1. The SNP may influence serum concentration of 

pantothenate but how this might be related to the heart & kidney profile remain unknown 19. Liver profile 

SNP rs7820212 on chromosome 8q11.23 maps close to FAM150A, which is a ligand for receptor tyrosine 

kinases leukocyte tyrosine kinase (LTK) and anaplastic lymphoma kinase (ALK). These belong to the insulin 

receptor superfamily, and their aberrant activation has been described in many cancers, such as non-small 

lung cancer and neuroblastoma in which ALK mutations are common 31, 32. Fusion genes of ALK are often 

found in lymphomas with resulting downstream activation of the Ras/Raf/MEK/ERK pathway 33. rs7820212 

is adjacent to the RB1CC1 gene which encodes a protein interacting with pathways involved in regulation of 

cell growth, proliferation, apoptosis, autophagy, and cell migration 34, 35. It has tumor suppressor properties 

in enhancing RB1 (retinoblastoma 1) gene expression in cancer cells and promoting senescence 36. The SNP 

changes the binding motif for CEBPB, which is an important transcription factor regulating the expression 

of genes involved in immune and inflammatory responses. CEBPB may regulate osteoclast activity in MM 

and through redundant functions with CEBPA it may be involved in multiple cellular processes in 

hematopoietic cells 37, 38.  

 

In conclusion, 4 SNPs reached genome-wide associations in clinical profile-specific AL amyloidosis. While 

the associations were internally consistent and homogeneous between the 3 cohorts the underlying 

mechanisms remain speculative but tangible. For rs9344 the preference for LCO amyloidosis is another lead 

to mechanistic understanding.    
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Table 1. Number of AL amyloidosis and multiple myeloma patients according to clinical profiles 

 Clinical profiles German Britishc Italian Joined 
Median age  

(range) in yearsa 
Sex-ratiob 

Overall AL amyloidosis 562 410 257 1129 64 (30-87) 1.37:1 

Ig profiles c IgG 194 157 96 447 66 (30-87) 1.19:1 

 
IgG λ  160 116 69 345 66 (30-87) 1.16:1 

 
IgG κ  34 24 27 85 66 (40-85) 1.30:1 

 
λ any 438 304 188 930 64 (30-87) 1.38:1 

 
κ any 122 74 69 265 65 (38-87) 1.28:1 

 
λ/κ LCO 312 96 127 535 62 (37-84) 1.49:1 

  λ LCO 231 84 89 404 62 (37-84) 1.59:1 

Organ profiles  Kidney 358 320 166 844 64 (30-87) 1.30:1 

 
Heart 396 239 200 835 64 (34-87) 1.44:1 

 
HK 180 140 106 426 63 (38-87) 1.39:1 

  Liver 105 57 32 194 63 (34-87) 1.49:1 

Overall  multiple myeloma 1508  2282 - 3790 63 (27-89) 1.41:1 

Ig profiles IgG MM 748 - - - 57 (30-72) 1.44:1 

  IgG λ MM 200 - - - 58 (33-72) 1.17:1 

  IgG κ MM 548 - - - 57 (30 -72) 1.55:1 

a: Median age of the joined cohort.  

b: Sex-ratio is calculated as male:female ratio for the joined cohort. 

c: Data on some clinical profiles were missing in the British cohort.  
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Table 2. Summary statistics for the λ/κ LCO risk allele G of rs9344 in clinical profiles 

Profiles Number of cases Odds ratio 95% CI a P-value b I2 c Z-score  

Overall AL 1129 1.35 1.23-1.48 7.80 x 10-11 0.36 6.51 

IgG 447 1.20 1.05-1.38 9.69 x 10-3 0.00 2.59 

λ any 930 1.40 1.27-1.55 9.28 x 10-11 0.00 6.48 

κ any 265 1.33 1.11-1.59 2.03 x 10-3 0.00 3.09 

λ/κ LCO 535 1.62 1.42-1.85 1.99 x 10-12 0.00 7.04 

λ LCO 404 1.70 1.46-1.98 1.29 x 10-11 0.00 6.77 

Kidney 844 1.34 1.20-1.48 6.89 x 10-8 0.20 5.40 

Heart 835 1.39 1.24-1.54 2.91 x 10-9 0.49 5.94 

HK 426 1.31 1.14-1.52 2.14 x 10-4 0.38 3.70 

Liver 194 1.40 1.14-1.73 1.63 x 10-3 0.00 3.15 

Overall MM  3790 1.06 1.00-1.12 4.00 x 10-2 0.61 2.09 

a CI, confidence interval 

b P-value based on the meta-analysis of the three patient cohorts in AL amyloidosis, and two 

patient cohorts in multiple myeloma 

c I2 proportion of total variance due to heterogeneity 

Genome-wide significant associations are indicated in bold  
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Table 3. Summary statistics for the IgG profile risk allele A of rs10507419 of in clinical profiles 

Profiles N cases Odds ratio 95% CI a P-value b I2 c Z-score  

Overall AL 1129 1.13 1.03-1.25 1.15 x 10-2 0.00 2.53 

IgG 447 1.49 1.29-1.72 5.63 x 10-8 0.49 5.43 

IgG λ 345 1.57 1.34-1.85 2.90 x 10-8 0.42 5.55 

IgG κ 85 1.51 1.21-1.89 2.39 x 10-4 0.67 3.68 

λ any 930 1.18 1.06-1.32 2.20 x 10-3 0.00 3.06 

κ any 265 1.00 0.82-1.22 9.88 x 10-1 0.00 0.02 

λ/κ LCO 535 0.90 0.78-1.04 1.63 x 10-1 0.00 -1.39 

λ LCO 404 0.91 0.77-1.07 2.46 x 10-1 0.35 -1.16 

Kidney 844 1.18 1.06-1.32 2.69 x 10-3 0.00 3.00 

Heart 835 1.16 1.04-1.30 1.02 x 10-2 0.00 2.57 

HK 426 1.33 1.15-1.55 1.81 x 10-4 0.38 3.75 

Liver 194 0.98 0.78-1.24 9.00 x 10-1 0.00 -0.13 

Overall MM  3790 1.06 1.00-1.13 4.47 x 10-2 0.03 2.00 

IgG MM  748 1.01 0.88-1.15 9.35 x 10-1 - 0.08 

IgG λ MM 200 1.00 0.80-1.26 9.56 x 10-1 - 0.06 

IgG κ MM 548 1.00 0.86-1.16 9.40 x 10-1 - 0.07 

aCI, confidence interval 

bP-value based on the meta-analysis of three patient cohorts in AL amyloidosis, and two patient cohorts 

in multiple myeloma; the IgG profiles of MM are based on only German cohort 

cI2 proportion of total variance due to heterogeneity 

Genome-wide significant associations are indicated in bold 
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Table 4. Summary statistics for the HK profile risk allele T of rs6752376 in clinical profiles 

Profiles Number of cases Odds ratio 95% CI a P-value b I2 c Z-score  

Overall AL 1129 1.17 1.06-1.28 9.96 x 10-4 0.75 3.29 

IgG 447 1.20 1.04-1.39 1.12 x 10-2 0.33 2.54 

λ any 930 1.24 1.12-1.38 5.20 x 10-5 0.67 4.05 

κ any 265 1.04 0.87-1.25 6.59 x 10-1 0.10 0.44 

λ/κ LCO 535 1.20 1.05-1.37 7.78 x 10-3 0.46 2.66 

λ LCO 404 1.25 1.08-1.46 3.52 x 10-3 0.54 2.92 

Kidney 844 1.24 1.11-1.38 8.62 x 10-5 0.71 3.93 

Heart 835 1.27 1.14-1.42 1.50 x 10-5 0.30 4.31 

HK 426 1.54 1.32-1.79 2.88 x 10-8 0.07 5.55 

Liver 194 0.98 0.80-1.21 8.86 x 10-1 0.00 -0.14 

Overall MM  3790 1.00 0.94-1.06 9.25 x 10-1 0.37 -0.09 

aCI, confidence interval 

bP-value based on the meta-analysis of three patient cohorts in AL amyloidosis, and two patient 

cohorts in multiple myeloma 

cI2 proportion of total variance due to heterogeneity 

Genome-wide significant associations are indicated in bold 
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Table 5. Summary statistics for the liver profile risk allele A of rs7820212 in clinical profiles 

Profiles Number of cases Odds ratio 95% CI a P-value b I2 c Z-score  

Overall AL 1129 1.07 0.98-1.17 1.40 x 10-1 0.19 1.48 

IgG 447 1.00 0.87-1.15 9.63 x 10-1 0.00 0.05 

λ any 930 1.10 0.99-1.21 6.32 x 10-2 0.52 1.86 

κ any 265 0.97 0.81-1.16 7.49 x 10-1 0.05 -0.32 

λ/κ LCO 535 1.13 0.99-1.29 6.67 x 10-2 0.26 1.83 

λ LCO 404 1.14 0.98-1.32 8.30 x 10-2 0.61 1.73 

Kidney 844 1.10 0.99-1.22 8.33 x 10-2 0.36 1.73 

Heart 835 1.09 0.98-1.21 1.07 x 10-1 0.00 1.61 

HK 426 1.02 0.88-1.17 8.04 x 10-1 0.06 0.25 

Liver 194 1.86 1.50-2.31 1.86 x 10-8 0.04 5.63 

Overall MM  3790 1.04 0.98-1.10 1.81 x 10-1 0.00 1.34 

aCI, confidence interval 

bP-value based on the meta-analysis of three patient cohorts in AL amyloidosis, and two patient 

cohorts in multiple myeloma 

cI2 proportion of total variance due to heterogeneity 

Genome-wide significant associations are indicated in bold 
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LEGENDS TO FIGURES 

 

Figure 1. Manhattan plots of association analysis for AL amyloidosis clinical profiles with 

genome-wide significant results. A) λ/κ LCO profile; B) IgG profile; C) heart & kidney profile; 

D) liver profile. The x-axis shows the chromosomal position and the y-axis is the significance (–

log10 P; 2-tailed) of association derived by logistic regression. The red line shows the genome-

wide significance level (5 × 10−8) and the blue line shows suggestive significance level (1 × 10-5). 

The significant/top SNPs are labeled. 

 

Figure 2. Regional association plots showing the significant/top SNPs in the four AL amyloidosis 

clinical profiles. A) λ/κ LCO profile; B) IgG profile; C) heart & kidney profile; D) liver profile. The x-

axis shows the chromosomal position as Mb and the mapped genes annotated from the UCSC genome 

browser. The y-axis shows the significance (–log10 P; 2-tailed) on the left and recombination rates 

(light blue lines) on the right. The reference SNP is labeled and colored purple, the rest of the SNPs 

are colored based on their r2 to the reference SNP, on a shown scale, based on pairwise r2 values from 

HapMap CEU. Square-shaped SNP symbols represent genotyped SNPs and circle-shaped SNPs 

represent imputed ones.  

 

Supplementary Figure : Z-diagrams 

Supplementary Figure : Hi-C  

Supplementary Figure : Forest plot for each SNP considering amyloidosis and multiple myeloma 

results. 

 

 

 

 


