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Abstract

Time lags in switching operational modes are typical in the manufacturing and power sectors

but are not treated in most real options models. In this paper, we consider a firm that has

the opportunity to suspend and to resume production infinitely many times subject to a

time lag after each startup decision. We contribute to the literature by allowing the firm to

determine its level of installed capacity in conjunction with its optimal investment timing.

We find that an increase in the length of the time lag results in an increase in the optimal

capacity level. Capacity optimization also interacts with the length of the time lag to affect

investment timing and the triggers to suspend and resume production, thereby weakening the

result about hysteresis from a standard real options model. Under the assumption of a fixed

level of capacity, a longer lag speeds up the decision to resume operations due to a positive

upside to the revenue but delays the suspension of operations. By contrast, with capacity

optimization, a longer time lag results in a larger capacity choice, which can indirectly delay

the investment decision and the timing to resume operations. This indirect effect dominates

when the level of market uncertainty is low and the time lag is initially small.

Keywords: Investment Analysis, Real Options, Time Lag, Capacity Optimization

1. Introduction

An advantage of the real options approach (Dixit and Pindyck, 1994) over now-or-never

net present value (NPV) appraisal methods is its capability to account for the managerial

discretion to modify the project after the initial investment decision. Indeed, such so-called

embedded options can have a bearing upon the initial investment decision and the value
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of the option to invest itself. With the recession that started in the fall of 2008, valuing

firms’ flexibility to respond to market conditions is paramount. For example, in December

2008, General Motors announced that it would “temporarily close twenty factories across

North America and make sweeping cuts to its vehicle production as it tries to adjust to

dramatically weaker automobile demand.”1 Other car manufacturers, such as Toyota2 and

Honda,3 similarly chose to close some of their production plants temporarily. In turn, the

global steel market, which experienced a major cutback in steel purchases from its customers,

i.e., automotive manufacturers, was also affected by the global economic downturn. To

illustrate, in May 2009, the world’s largest steel producer, ArcelorMittal, opted to idle its

Monessen coke plant.4 In subsequent years, steel makers recovered from the slump that had

begun when the economy faltered in 2008. Eventually, in 2012, ArcelorMittal announced the

resumption of production at its Monessen coke plant. Yet, it took two years for production

to resume. In general, such production facilities are characterized by time lags to resume

production from a suspended state. Moreover, there are fixed costs associated with switching

between the operational and the suspended state.

Given this background, we assess the decision-making problem of a firm with the opportu-

nity to suspend and to resume production infinitely many times in the future in exchange for

some positive switching costs. Entry-and-exit models have been pioneered by Mossin (1968)

and generalized by Brennan and Schwartz (1985), Dixit (1989), and McDonald (2002). Where

these models place their focus on the optimal triggers for switching operational states, some

later extensions take up the additional challenge to optimize endogenously the firm’s capac-

ity. For example, Van Mieghem and Dada (1999) consider a firm that optimizes the capacity

of its plant before demand uncertainty has been resolved. After demand realization, the firm

chooses optimal production quantities, which are constrained by the earlier chosen capacity

size. Dangl (1999) and Hagspiel et al. (2016) extend this model to a dynamic setting in

which the firm optimizes investment timing along with capacity size. After investment, the

firm optimizes the level of production for each realization of demand assuming the same

constraints as in Van Mieghem and Dada (1999). Likewise, Boonman et al. (2015) examine

a strategic capacity investment game between two firms.

Such models provide a contribution to the existing literature by optimizing the level of

capacity. However, they typically allow a firm to switch costlessly between the operational

1http://articles.economictimes.indiatimes.com/2008-12-13/news/28479230 1 tony-sapienza-gm-and-
chrysler-vehicle-production

2 http://content.time.com/time/business/article/0,8599,1919395,00.html
3 http://www.theguardian.com/business/2009/jan/30/honda-swindon-shutdown
4http://www.post-gazette.com/business/2014/04/08/Monessen-coke-plant-set-to-resume-production-

this-month/stories/201404080025
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and idle states. In Dixit (1989) and McDonald (2002), a fixed cost has to be paid for

switching between these two states, which brings the model closer to reality. Indeed, laying

off employees or depreciation of unused equipment results in non-negligible costs when a

firm decides to suspend operations. Furthermore, resuming production generates costs like

overdue maintenance, marketing, and training that comes with hiring new employees. In the

case of the steel producer example, ArcelorMittal even re-invested $50 million in its plant

prior to the re-opening.

In this paper, we incorporate such realistic features into a real options model for capacity

sizing and investment timing in order to gain deeper managerial insights about the impact of

time lags and capacity sizing on hysteresis in a firm’s operations. Specifically, the standard

real options model of industry entry and exit by a firm under market uncertainty assumes

a fixed capacity and instantaneous suspension/resumption possibilities (Dixit and Pindyck,

1994). Consequently, greater uncertainty increases (decreases) the entry (exit) price thresh-

old. In effect, more volatility causes the firm to delay making decisions of either sort. Since

many firms, e.g., ArcelorMittal as we describe, have production facilities that require lead

times before being re-activated from idle states and also have the flexibility to choose their

capacity size at the time of investment, we extend the real options approach to examine how

these two key features affect firm behavior.

We address the issue of time lags by introducing a delay in switching between idle and

operational states, which takes place after the decision to resume production. Even for modest

time lags, there is a significant effect on the optimal triggers to switch from the operational

to the idle state and vice versa. In related work, Bar-Ilan and Strange (1996) embed lags in

the classic irreversible lumpy investment model presented by Dixit (1989). They find that for

some parameter values, an increase in uncertainty can actually hasten investment, a result

contrary to that found in papers without investment lags. Meanwhile, Takashima et al.

(2010) report a similar finding in examining investment timing and discrete capacity choice

when there is a time lag between the initial investment decision and the start of operations.

Other work on time lags typically omits the capacity-sizing decision, e.g., Gauthier and

Morellec (2000) and Costeniuc et al. (2008). The former investigates the timing of uncertain

investment decisions given an implementation delay after the investment decision without

either capacity sizing or operational flexibility. Costeniuc et al. (2008) model a firm that

can make investment and disinvestment decisions with time lags but without capacity sizing.

Furthermore, the time lags are not after the investment decision. Instead, a Parisian delay is

assumed, i.e., a Parisian option gets activated/deactivated when the underlying process has

spent a sufficient amount of time above/below the barrier level.

We incorporate a time lag in McDonald (2002)’s entry-and-exit model not only after the
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entry decision (Bar-Ilan and Strange, 1996; Takashima et al., 2010) but also after each decision

to resume production since a startup will not occur instantaneously, a feature that is ignored

in capacity-sizing real options work (Dangl, 1999). While the time it takes to prepare the

production process is captured by this time lag, the decision to stop the production is assumed

to be executed immediately. The paper most closely related to our work is Sødal (2006), who

uses the Dixit (1989) model as a baseline and models a firm with infinitely many options to

enter and exit a market in exchange for a fixed entry or exit cost. He finds that the effect of a

time lag in resuming production implies that increasing uncertainty might hasten investment

when there is a time lag and also lower the entry trigger for resuming operations. Our

contribution of introducing capacity optimization in the model with operational flexibility

and a time lag changes the results of Bar-Ilan and Strange (1996) and Sødal (2006), viz.,

that the effect of uncertainty on the optimal operational triggers is ambiguous with a fixed

capacity level. In fact, with capacity optimization, there is also an indirect effect: greater

uncertainty delays investment, which allows for a larger capacity level and, in turn, leads

to strictly higher switching triggers. Indeed, operational switching triggers occur around

the level of price intercept for which the price is equal to the unit production cost. Thus,

this indirect effect of uncertainty on the operational triggers via the capacity size dominates

the direct effect (Bar-Ilan and Strange, 1996; Sødal, 2006), thereby causing uncertainty to

increase both the resumption and suspension thresholds.

Furthermore, capacity optimization changes the effect of the length of the time lag on the

optimal investment and switching triggers. Where Bar-Ilan and Strange (1996) observe that

the trigger values decrease for an increase in the length of the time lag, we find that for low

uncertainty and a low initial time lag, the triggers can also increase. Indirectly, a longer time

lag results in a larger capacity choice, which in turn increases the trigger values. This larger

capacity choice is the result of (i) a need to recoup forgone profit during the lag and (ii) a

truncated downside of investment due to the presence of a suspension option and unlimited

upward potential in the revenue. Thus, at the moment that the firm resumes production

after the time lag, it expects the profit to have grown. This result will be amplified under a

longer time lag, thereby allowing for a larger capacity choice. Hence, our modeling features

enable us to study more realistic settings and provide more subtle insights than those from

the extant literature, which could be used by policymakers in reforming industrial strategy.

This paper is structured as follows. Modeling assumptions are presented in Section 2.

Section 3 analyzes the benchmark model with investment timing, capacity sizing, and oper-

ational flexibility without a time lag. In Section 4, a time lag after the decision to resume

production is added to the model. Section 5 compares the numerical results for the models

with and without a time lag, and Section 6 concludes. All proofs and lengthy derivations are

4



in Appendix B and Appendix C.

2. Modeling Assumptions

We take the perspective of a firm that has to decide about capacity investment. The deci-

sion variables are (i) investment timing, (ii) capacity sizing, and (iii) suspension/resumption

timing (see Figure 1).5 After investment and determination of the capacity size, the firm

commences operations and earns a profit flow. In exchange for a switching cost, S > 0, it

can decide to stop operations temporarily. In this state, the profit flow of the firm is zero.

An inactive firm has the option to re-start production for a switching cost R > 0.6 Due to

the (positive) switching costs, a firm will not switch states at the price where its profit is

equal to zero. Instead, it switches from the suspended state to the operational state and vice

versa at some optimal switching triggers.

��
@@ t

τ I τ 1 τ 2k τ 2k+1 τ 2k+2· · · · · ·

· · ·· · ·
? ?? ? ?

Invest Resume ResumeSuspend Suspend

0

Figure 1: Decision-making timeline for investing, suspending, and resuming operations.

We assume that the inverse demand function at time t ≥ 0 reflects the price earned by

the firm per unit sold and is given by:

Pt = Xt − ηQ, (1)

where Q is a decision variable representing the fixed annual production of the firm and

η ∈ (0, 1) is a parameter reflecting the slope of the inverse demand (also known as the

substitutability parameter and related to the price elasticity of demand). The parameter Xt

for t ≥ 0 is a stochastic shock to the inverse demand outside the control of the decision maker

5As is typical in real options, each of the timing decisions corresponds to an optimal threshold, i.e., a trigger
policy. Thus, when determining the optimal investment threshold, it is necessary to know the optimal capacity
size. In turn, prior to determining the optimal capacity size, we need to derive the optimal operational policy.
Hence, although the sequence of decisions encountered in real time is (i)→ (ii)→ (iii), since the problem is
solved via backward induction, the way that the solution procedure works is (iii)→ (ii)→ (i).

6Positive switching costs are not necessary as long as R+ S > 0. Indeed, either R or S may be negative,
which corresponds to a subsidy or a salvage value. However, as described in Chapter 7 of Dixit and Pindyck
(1994), if we have R + S < 0, then it is possible for the firm to make arbitrarily large amounts of money
simply by repeatedly suspending and resuming operations.
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and is assumed to follow a geometric Brownian motion (GBM):

dXt = µXtdt+ σXtdωt, (2)

with drift parameter µ, volatility parameter σ ≥ 0, X0 = x, and dωt the increment of a

standard Wiener process. Future revenues will be discounted at an exogenous interest rate

ρ > µ. Variable production cost is denoted by c ≥ 0, so that the profit flow of a firm in

production is given by:

πt = (Pt − c)Q. (3)

For analytical convenience, we invoke the market-clearing assumption, i.e., the firm produces

up to capacity. This assumption is widely used in the literature (Chod and Rudi, 2005;

Deneckere et al., 1997; Anand and Girotra, 2007). Unlike Dangl (1999) and Hagspiel et al.

(2016), we do not optimize a firm’s production level; instead, the firm is able to deal with

low prices via the option to suspend the production facility.

Following Dangl (1999) and Hagspiel et al. (2016), investment costs are sunk and equal to

I(Qt) = δQλ
t . Constant δ > 0 denotes the variable investment cost, and constant 0 < λ < 1

indicates a concave investment structure. By adopting the same investment costs, we are

able to compare our results with those in the literature.7

3. Operational Flexibility and Capacity Choice without Time Lags

To illustrate a sequence of decisions made by a firm after investment, consider Figure 2,

which illustrates a sample path of the uncertainty parameter Xt. Assume that the firm is

not producing at the start of the time frame. We find that the firm resumes production

at time t = τ 2k for k ∈ N. The firm stays in production until it suspends production at

time t = τ 2k+1. After this closure decision, the firm resumes production at time t = τ 2k+2.

Thus, as part of its optimal investment timing and capacity sizing decisions in Figure 1, the

firm must determine the corresponding thresholds of Xt at which to suspend and resume

operations.

3.1. The Model

Figure 1 shows the decision-making timeline. At time t = τ I , the firm invests in optimal

capacity size Q∗. The firm suspends operations at the odd triggers and resumes at the even

7Hagspiel et al. (2016) additionally show a scenario in which a firm faces convex investment costs. This
paper explains that: “The firm decides to invest significantly later in slightly more capacity in the convex
case. This is an expected result since the investment cost the firm is facing for the convex case is significantly
higher for larger investments, and therefore installing a large amount of capacity is more expensive.”
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Figure 2: A simulated sample path of the uncertainty parameter, Xt, with operational triggers χs = 460 and
χr = 515.

triggers, i.e., at time t = τ 2k+1 and t = τ 2k+2, respectively, for k ∈ N, where τ 1 > τ I . Since

there exists stationary behavior in the shut down and re-starting decisions, we assume that

there is one mutual trigger for resuming operations, i.e., Xτ2k = χr for all k ∈ N, and one

mutual trigger for suspending operations, i.e., Xτ2k+1 = χs, for all k ∈ N.

In order to find the value functions and optimal decisions of the firm, we will work

backward through the timeline. Since the firm has infinitely many suspension and resumption

decisions, it is not possible to consider the “last” decision of a firm. Instead, we shall consider

an arbitrary point on the timeline and work backward from that moment on.

To start with, assume that production has just been suspended when the stochastic shock,

Xt, dropped to the threshold χs at time τ 2k+1, and the firm’s expected net present value

(NPV) is F s(Xt;χ
s, χr, Q), where χs, χr, Q after the semi-colon refers to the endogenously

determined optimal capacity and operational policy. Taking one step back in the timeline,

we look at the decision to suspend operations. Denoting the expected NPV of a firm that is

in operation by F r(Xt;χ
s, χr, Q), we find the following:

F r(Xt;χ
s, χr, Q) =

XtQ

ρ− µ
− (ηQ2 + cQ)

ρ
+(

Xt

χs

)β2 ((ηQ2 + cQ)

ρ
− χsQ

ρ− µ
− S + F s(χs;χs, χr, Q)

)
. (4)

The first two terms in expression (4) reflect the expected present value of operating profits

of a firm that produces forever. Since the stochastic shock to the price is growing at rate

µ, its discount rate differs from the rate, ρ, at which operating costs are discounted. At
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some point in the future when Xt drops to χs, i.e., the stochastic shock hits the suspension

threshold from above signifying a sufficient reduction in the price, the firm decides to suspend

operations, thereby effectively canceling out its cash flows from operating, i.e., recovering the

operating costs and forgoing the revenues, but receiving the expected NPV of a suspended

firm, F s(χs;χs, χr, Q), in exchange for switching cost S. The term
(
Xt
χs

)β2
can be interpreted

as the expectation of a stochastic discount factor that reflects the time value of money between

the current time, t, at which the stochastic parameter is Xt and the future time of suspension

when the stochastic parameter will hit the critical threshold χs. Dixit and Pindyck (1994)

(on pp. 315–316) show that E[e−ρ(τ
2k+1−t)] =

(
Xt
χs

)β2
, where β1 (β2) is the positive (negative)

root of the quadratic polynomial

1

2
σ2β2 +

(
µ− 1

2
σ2

)
β − ρ = 0. (5)

By taking one extra step back in the decision-making timeline, we look at the decision to

resume operations occurring at time t = τ 2k. The expected NPV of a firm that has just

stopped production and now has the option to resume is given by:

F s(Xt;χ
s, χr, Q) =

(
Xt

χr

)β1
(F r(χr;χs, χr, Q)−R) . (6)

Expression (6) states that the firm obtains no profit in the suspended state, but it has an

option to resume operations for a switching cost R in the future.

After substitution of F s(χs;χs, χr, Q) from (6) in (4) and evaluating F r(Xt;χ
s, χr, Q)

for Xt = χr (as described in Chapter 17 of McDonald (2002)), we find an expression for

F r(χr;χs, χr, Q):

F r(χr;χs, χr, Q) =

χrQ
ρ−µ −

(ηQ2+cQ)
ρ

+
(
χr

χs

)β2 (
χs

χr

)β1
(−R) +

(
χr

χs

)β2 ( (ηQ2+cQ)
ρ

− χsQ
ρ−µ − S

)
1−

(
χr

χs

)β2 (
χs

χr

)β1 .

(7)

Subsequently, we substitute equation (7) into (6) and evaluate F s(Xt;χ
s, χr, Q) at Xt = χs:

F s(χs;χs, χr, Q) =

(
χs

χr

)β1
 χsQ

ρ−µ −
(ηQ2+cQ)

ρ
+
(
χr

χs

)β2 (
χs

χr

)β1
(−R) +

(
χr

χs

)β2 ( (ηQ2+cQ)
ρ

− χsQ
ρ−µ − S

)
1−

(
χr

χs

)β2 (
χs

χr

)β1
 . (8)
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We take the first-order necessary condition of F r(χr;χs, χr, Q) with respect to χs, and the

first-order necessary condition of F s(χs;χs, χr, Q) with respect to χr. We simultaneously

solve these two equations numerically to find the two switching triggers, χs(Q) and χr(Q).

The switching triggers are relevant only after the firm has made the investment decision.

Now, assume a firm that has not yet invested. Here, Xt is the level of the stochastic shock at

the first moment where the firm considers investing in the market. The expected NPV of a

firm that has the option to invest at Xt = χI in capacity Q is the discounted expected value

of operating forever plus the option to suspend:

F I(Xt;χ
I , χs, χr, Q) =

(
Xt

χI

)β1 ( χIQ

ρ− µ
− (ηQ2 + cQ)

ρ
− δQλ +

(
χI

χs(Q)

)β2 ((ηQ2 + cQ)

ρ

− χs(Q)Q

ρ− µ
− S + F s(χs(Q);χs(Q), χr(Q), Q)

))
. (9)

We find the optimal moment to invest and the corresponding optimal level of capacity by

optimizing F I(Xt;χ
I , Q) with respect to χI and Q, thereby yielding χI∗ and Q∗. Due to the

complexity of the first-order conditions, there is no analytical solution available for maximiz-

ing (9).

3.2. Results

The left panel of Figure 3 illustrates the effect of market uncertainty on the switching

triggers χs(Q) and χr(Q) for a fixed level of capacity. Capacity choice Q is fixed at the

optimal level for σ = 0.10. The result is in line with the standard real options result, viz.,

a higher level of uncertainty delays the firm’s switching decisions. For a more uncertain

market environment, the firm waits for a higher (lower) level of Xt before it switches from

the suspended (operational) state to the operational (suspended) state. The right panel of

Figure 3 illustrates the effect of capacity choice Q on the optimal switching triggers. Due

to positive switching costs, the triggers to suspend and resume operations, respectively, lie

below and above the level of Xt for which the profit is exactly zero (indicated by the dotted

line in the middle). The inverse demand function, as defined by expression (1), shows that

a higher capacity level implies a higher level of Xt is required in order to avoid a negative

price. Therefore, the switching triggers increase for a higher capacity level as illustrated in

Figure 3.

Table 1 shows the combined effect of optimal capacity and timing of investment for several

levels of uncertainty. Closely related to our work is the inflexible model of Hagspiel et al.

(2016), in which a firm decides about the optimal investment timing and determines the
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Figure 3: The effect of uncertainty σ (left panel) and capacity choice Q (right panel) on the optimal oper-
ational triggers with exogenous capacity sizes. We use the parameter combination Q = 197.81 (left panel),
σ = 0.1 (right panel), ρ = 0.10, µ = 0.02, η = 1, R = S = 3000, δ = 1000, λ = 0.7, and c = 200.

optimal capacity size.8 In this model, a suspension option prevents a firm from producing

as soon as demand is such that price will fall below unit production costs, resulting in a

costless switch of operational states. In order to compare our model with Hagspiel et al.

(2016), we have chosen the same parameter values. The optimal investment strategy for our

model, shown in Table 1, confirms the optimal investment strategy illustrated in Figure 6 in

Hagspiel et al. (2016).

σ χI∗ Q∗ χs(Q∗) χr(Q∗)

0.10 464.74 197.81 362.57 429.62
0.15 678.30 383.19 547.45 616.33
0.20 1321.21 982.31 1141.31 1221.52

Table 1: Investment strategy and optimal operational triggers. Parameter values are ρ = 0.10, µ = 0.02,
σ = 0.10, η = 1, c = 200, S = R = 3000, δ = 1000, and λ = 0.7.

The last two columns of Table 1 show the effect of increasing uncertainty on the switching

triggers. In fact, these results can be explained by combining the two graphs in Figure 3 with

the first two columns of Table 1. A higher level of uncertainty results in a larger capacity

investment, which in turn increases both switching triggers. In effect, a firm speeds up the

optimal moment to suspend production and delays the optimal moment to resume production

(i.e., an indirect effect caused by the impact of uncertainty on Q∗). Also, we have shown in

Figure 3 that a higher level of uncertainty delays both the optimal moment to suspend as

well as the optimal moment to resume operations (i.e., a direct effect caused by an increase

in the opportunity cost of switching). Indeed, for a fixed capacity size and positive switching

8This model is inflexible compared to another model that Hagspiel et al. (2016) define, i.e., the flexible
model, in which a firm can also optimize production output after the capacity level has been determined.
Specifically, with flexible production, once the capacity size has been fixed toQ∗, output can vary continuously
between 0 and Q∗ depending on market conditions. By contrast, inflexible production means that output
can be either 0 or Q∗, i.e., only two possible discrete values, which is also our approach.
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costs, our model without time lags is equivalent to the mothballing model from Chapter 7 of

Dixit and Pindyck (1994). As such, we obtain similar insights about the impact of greater

uncertainty on hysteresis: higher volatility pushes the operational triggers further apart,

thereby delaying action. Table 1 shows that the indirect effect, stemming from the impact

of uncertainty on the capacity choice, dominates the direct effect, which emanates only from

uncertainty.

The impact of the switching costs on the operational triggers is illustrated in Figure 4.

The first two panels allow us to compare our results with those from Chapter 7 of Dixit and

Pindyck (1994). Indeed, as expected, for a given capacity, higher switching costs lead to

more hysteresis. Our model is equivalent to the inflexible model of Hagspiel et al. (2016)

when switching costs are zero as illustrated in the third panel of Figure 4 with R = S = 0.

Here, the firm suspends and resumes operations when the stochastic parameter becomes

χs(Q) = χr(Q) = 397.8, i.e., corresponding to a price that is equal to the unit production

costs, i.e., Pt − c = 0 ⇔ Xt = ηQ + c. For positive switching costs, we find that χs(Q) ≤
397.8 ≤ χr(Q), i.e., the firm does not immediately suspend (resume) operations when the

profit turns negative (positive).9 It would rather make a small operating loss than pay the

switching costs (Tsekrekos, 2010). In Figure 4, we choose the optimal level of capacity, Q,

for R = S = 3000 and σ = 0.10.

4. Time Lags and Capacity Optimization with Operational Flexibility

In the previous section, the firm was given the opportunity to suspend production for

low prices. This section takes into account that the startup of production involves a time

lag between the decision to resume and the start of the operations during which the firm is

unable to obtain revenue from production. The suspension decision, on the other hand, can

occur instantaneously.

4.1. Description of the Model

Figure 5 illustrates the decision-making timeline with time lags. We start by looking at

the scenario in which the firm has just made the decision to resume operations at t = τ 2k.

There is a necessary preparation time before a firm can obtain the “old” profit flow. Denote

the deterministic time that it takes to prepare for the re-start of production, also known as

the time lag, by T ≥ 0, i.e., the firm will be operating by time t = τ 2k + T . If the last

decision that the firm made is resumption, then the firm now has the option to suspend

operations at its optimal time. It could be optimal to suspend production immediately after

9A “bang-bang” switching policy under fixed capacity occurs only with zero switching costs.
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Figure 4: The effect of the switching cost parameters on the optimal operational triggers. We use the
parameter combination Q = 197.81, ρ = 0.10, µ = 0.02, σ = 0.10, η = 1, δ = 1000, λ = 0.7, and c = 200. In
the upper-left panel we have S=3000, and in the upper-right panel, we have R=3000.
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Figure 5: Decision-making timeline for investing, suspending, and resuming operations with time lags.

the time lag. In this case, the firm observes a price too low to continue production (i.e.,

Xτ2k+T ≤ Xτ2k+1). Note that this implies that the firm has not yet produced anything, and

it immediately goes back to the suspended state. Alternatively, the current price after the

time lag is high enough to resume production (i.e., Xτ2k+T > Xτ2k+1), and a firm optimally

suspends production later at time t = τ 2k+1. After one such cycle has been completed, the

firm will face similar decisions in the subsequent cycle. Intuitively, a firm that has just started

operations from a suspended state (i) faces a memoryless price process and (ii) has infinite

shutdown/resumption options remaining. Thus, its situation is identical to that at any other

point in time that it resumes operations. Likewise, a firm that has just suspended operations

is in the same situation from a decision-analytic perspective at another point in time at

which suspension has just occurred. Similar arguments in the literature, e.g., Chapter 7 of

Dixit and Pindyck (1994) and Chapter 17 of McDonald (2002), follow from the Markovian

property of the GBM and the presence of infinite subsequent operational options after each

suspension or resumption decision. Due to the stationarity in these decisions, we argue that
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there is one mutual trigger for resuming operations and one mutual trigger for suspending

operations, i.e., Xτ2k = χr and Xτ2k+1 = χs for all k ∈ N.
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Figure 6: A simulated sample path of the uncertainty parameter, Xt. Assume operational triggers χr = 470
and χs = 428.

Figure 6 illustrates the two possible scenarios for suspending operations. Assume that

the firm is initially inactive when starting to evaluate the price process. Almost immediately

the firm makes the decision to resume the production at time t = τ 2k. After the time lag, the

firm produces for a while until it is optimal to suspend the production at time t = τ 2k+1. At

time t = τ 2k+2, the firm resumes the operations again, but on this occasion the price after the

time lag, i.e., at τ 2k+2 + T , is too low to produce, and production is suspended immediately.

4.2. Suspending Operations

In order to find the value functions and optimal decisions of the firm, we work backward

through the timeline. Denote the expected NPV of a firm that has just resumed operations

at time t = τ 2k+2 by F r(χr;χs, χr, Q) for some given k ∈ N. By taking one step back in the

decision-making timeline, we next look at the suspension decision of the firm. There are two

opportunities for a firm to shut down the operation. A firm could immediately suspend after

the time lag, i.e., at t = τ 2k + T ; in this case, it holds that Xτ2k+T ≤ χs.10 Alternatively, the

firm optimally suspends operations at time t = τ 2k+1. To simplify the notation, from now on

we shall denote Xτ2k+T by XT .

10This case is peculiar since the value of Xt at time τ2k+T , i.e., right when the firm can resume production,
slips below the suspension threshold, χs. Figure 6 does not describe this case at time τ2k + T , but it does so
at time τ2k+2 + T .
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The expected NPV of an active firm at t = τ 2k + T that has the opportunity to suspend

is denoted by V (XT ;χs, χr, Q) and is expressed as follows:

V (XT ;χs, χr, Q) =



(
XT
χr

)β1
F r(χr;χs, χr, Q)− S −R if XT ≤ χs,

XTQ
ρ−µ −

(ηQ2+cQ)
ρ

−R +
(
XT
χs

)β2 ( (ηQ2+cQ)
ρ

− χsQ
ρ−µ

−S +
(
χs

χr

)β1
F r(χr;χs, χr, Q)

)
if XT > χs.

(10)

In case the suspension decision is immediately performed at time t = τ 2k + T (upper line

of expression (10)), the firm pays switching cost S for switching to the suspended state and

R for the previous decision to re-start the operation. Similar to Bar-Ilan and Strange (1996)

and Sødal (2006), we assume that the entry costs are paid at the end of the time lag. In case

the firm continues production after the time lag (lower line of expression (10)), it obtains

discounted expected profit of XTQ
ρ−µ −

(ηQ2+cQ)
ρ

plus the discounted cash flow from suspending

production at time t = τ 2k+1 by hitting threshold χs. To simplify the notation, we shall from

now on denote V (XT ;χs, χr, Q) by V (XT ).

4.3. Resuming Operations

Since we are working backward through the decision-making timeline, next we look at the

firm’s decision to resume operations at time t = τ 2k, which is followed by a time lag T . As

discussed earlier, time t = τ 2k+T is the first moment at which the firm can decide to suspend

the production. The expected NPV of a firm that is able to resume operations is in fact just

the discounted expected NPV of the active firm as in (10). This expectation is discounted

back to the moment at which the operating decision is made (at t = τ 2k). F r(χr;χs, χr, Q)

denotes the expected NPV of a firm that has just resumed operations at time t = τ 2k and is

given by the discounted expected NPV of an active firm T time units later:

F r(χr;χs, χr, Q) = e−ρTE[V (XT )|χr]. (11)

The expected NPV of being active at time t = τ 2k + T given that the decision to resume

operations occurred at t = τ 2k in expression (11) can be written as:

E [V (XT )|χr] =
∫ χs
0

((
XT
χr

)β1
F r(χr;χs, χr, Q)−R− S

)
f(XT |χr)dXT

+
∫∞
χs

(
XTQ
ρ−µ −

(ηQ2+cQ)
ρ

−R +
(
XT
χs

)β2 ( (ηQ2+cQ)
ρ

−χsQ
ρ−µ − S +

(
χs

χr

)β1
F r(χr;χs, χr, Q)

))
f(XT |χr)dXT ,

(12)
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where f(XT |χr) denotes the conditional probability density function at time t = τ 2k of the

output price at time t = τ 2k+T when the production preparation is completed. According to

(12), the expected NPV of an active firm T time units after the decision to resume depends

on the value of the stochastic process at that time: if it is less than the optimal suspension

threshold, then the firm suspends operations at that time, which has an expected value

captured by the first integral of (12). Otherwise, if the value of the stochastic process T

time units later is greater than the optimal suspension threshold, then the firm remains

operational. The expected value of such a firm is calculated by the second integral in (12).

Its first three terms correspond to the discounted cash flows of a firm that operates forever,

whereas the remaining terms are the discounted expected value of suspending operations in

the future if the value of the stochastic process were to drop to the suspension threshold

followed by subsequent resumption. Equation (12) can be re-written as:

E [V (XT )|χr] =
(
χr

χr

)β1
F r(χr;χs, χr, Q)Φ(v(χs, χr)− β1σ

√
T )eρT

− (S +R)Φ(v(χs, χr)) + χrQ
ρ−µ

(
1− Φ(v(χs, χr)− σ

√
T )
)
eµT

−
(

(ηQ2+cQ)
ρ

+R
)

(1− Φ(v(χs, χr))) +
(
χr

χs

)β2 ( (ηQ2+cQ)
ρ

−χsQ
ρ−µ − S +

(
χs

χr

)β1
F r(χr;χs, χr, Q)

)(
1− Φ(v(χs, χr)− β2σ

√
T )
)
eρT ,

(13)

where Φ(·) is the standard normal cumulative distribution function and v(χs, χr) is defined

by

v(χs, χr) =
log(χs)− log(χr)− (µ− 1

2
σ2)T

σ
√
T

. (14)

Appendix B explains the derivation of expression (13) from expression (12). Intuitively,

(13) calculates the integrals using the cumulative distribution of a standard normal random

variable, Φ(·), and the critical value, v(·), which are standard expressions related to the

conditional probabilities for hitting a given threshold within a specified amount of time for

the standard normal random variable (Etheridge, 2002). The first term of (13) indicates

that the firm’s value T time units later would be the expected NPV of a suspended firm with

probability Φ(v(χs, χr)−β1σ
√
T ), i.e., the probability that the value of the stochastic process

drops below the suspension threshold in the next T time units. Similarly, the next four terms

in (13) correspond to the expected NPV of an active firm with certain probabilities, i.e., that

the value of the stochastic process remains above the suspension threshold in the next T time

units:

1. −(S+R)Φ(v(χs, χr)) is the expected switching cost given that the value of the stochastic

process drops below the suspension threshold in the next T time units.
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2. χrQ
ρ−µ

(
1− Φ(v(χs, χr)− σ

√
T )
)
eµT is the expected revenue that the firm obtains from

operating indefinitely provided that the value of the stochastic process does not drop

below the suspension threshold in the next T time units.

3. −
(

(ηQ2+cQ)
ρ

+R
)

(1− Φ(v(χs, χr))) is the expected cost of operating indefinitely pro-

vided that the value of the stochastic process does not drop below the suspension

threshold in the next T time units.

4.
(
χr

χs

)β2 ( (ηQ2+cQ)
ρ
− χsQ

ρ−µ−S+
(
χs

χr

)β1
F r(χr;χs, χr, Q)

)(
1− Φ(v(χs, χr)− β2σ

√
T )
)
eρT

is the expected NPV from recovered operating costs and forgone revenues plus the value

to resume operations as a result of subsequent suspension given that the value of the

stochastic process does not drop below the suspension threshold in the next T time

units.

The following proposition explains that for T very close to zero, the model described in

this section simplifies to the model of Section 3 (see Appendix C for the proof).

Proposition 1. The value functions of the model that incorporate time lag T converge to
the value functions without a time lag, as T → 0.

4.4. Switching Triggers

Following Chapter 17 of McDonald (2002), we substitute expression (13) into (11). Solving

for F r(χr;χs, χr, Q) yields the expression:

F r(χr;χs, χr, Q)

=
e−ρT

1− Φ
(
v(χs, χr)− β1σ

√
T
)
−
(

1− Φ(v(χr)− β2σ
√
T )
)(

χs

χr

)β1 (
χr

χs

)β2
×
[
− (S +R)Φ(v(χs, χr)) +

χrQ

ρ− µ

(
1− Φ(v(χs, χr)− σ

√
T )
)
eµT

−
(

(ηQ2 + cQ)

ρ
+R

)
(1− Φ(v(χs, χr))) +

(
χr

χs

)β2
(

(ηQ2 + cQ)

ρ
− χsQ

ρ− µ
− S

)(
1− Φ(v(χs, χr)− β2σ

√
T )
)
eρT
]
. (15)

This closed-form solution for F r(χr;χs, χr, Q) is substituted into the value function of a

suspended firm, i.e.,

F s(χs;χs, χr, Q) =

(
χs

χr

)β1
F r(χr;χs, χr, Q). (16)
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Next, we take the first-order condition of F r(χr;χs, χr, Q) with respect to χs and the first-

order condition of F s(χs;χs, χr, Q) with respect to χr:

∂F r(χr;χs, χr, Q)

∂χs
= 0, (17)

∂F s(χs;χs, χr, Q)

∂χr
= 0. (18)

These equations are solved simultaneously numerically for χs and χr for every Q ≥ 0. Solu-

tions are denoted by χs(Q) and χr(Q).

4.5. Investment Trigger and Capacity Choice

Suppose that the firm has not yet invested in the market. The option value of the firm

that invests at χI in capacity Q is given by

F I(Xt;χ
I , χs, χr, Q) = e−ρT

(
Xt

χI

)β1 [( XT

χr(Q)

)β1
F r(χr(Q);χs(Q), χr(Q), Q)

×Φ(v(χs(Q), XT )− β1σ
√
T )eρT − (S)Φ(v(χs(Q), XT ))

+
XTQ

ρ− µ

(
1− Φ(v(χs(Q), XT )− σ

√
T )
)
eµT −

(
(ηQ2 + cQ)

ρ

)
(1− Φ(v(χs(Q), XT )))

+

(
XT

χs(Q)

)β2 ((ηQ2 + cQ)

ρ
− χs(Q)Q

ρ− µ
− S +

(
χs(Q)

χr(Q)

)β1
F r(χr(Q);χs(Q), χr(Q), Q)

)
×
(

1− Φ(v(χs(Q), XT )− β2σ
√
T )
)
eρT − δQλ

]
. (19)

The
(
Xt
χI

)β1
and e−ρT terms are (expected) discount factors reflecting the time value of money

from the current point in time to investment and from investment to the start of cash flows,

respectively. Once investment has been triggered and the time to build elapsed, the firm

can either proceed to earn cash flows or suspend operations. The first term in the square

brackets corresponds to the latter situation, i.e., the value of the stochastic shock T time

units after the investment decision has been taken is too low to warrant production. Thus,

as in (13), the firm suspends operations. However, if the stochastic shock T time units

after investment remains sufficiently high, then the firm proceeds with production until the

stochastic shock becomes low enough to suspend operations. The terms in the third to fifth

lines encompass this situation, which again mirrors that in (13). Finally, the investment

cost is subtracted from the cash flows as the last term in (19). As in Section 3, the optimal

capacity and investment trigger are found by taking the first-order condition of expression
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(19) with respect to χI and Q. The optimal values are denoted by χI∗ and Q∗. Substitution

of Q∗ in χs(Q) and χr(Q) yields χs(Q∗) and χr(Q∗), respectively.

5. Numerical Examples

In order to compare the results between models with (Section 4) and without (Section 3)

time lags, we consider the set of parameters from Section 3. Note that our model simplifies

to the model of Bar-Ilan and Strange (1996) and Sødal (2006) by choosing η = 0 and

Q = 1. Even though we take a slightly different version of the discount factor approach of

Sødal (2006), we can replicate his results (Table 1, p. 1972) by making the same parameter

assumptions, which can be seen as a validation exercise for our model.

5.1. Value Functions

The value functions F s(Xt;χ
s, χr, Q)−δQλ, F r(Xt;χ

s, χr, Q)−δQλ, and F I(Xt;χ
I , Q) are

shown in Figure 7. Note that investment costs are subtracted from operational and suspended

value functions in order to value match with the option value to invest, F I(Xt;XT , Q). Due

to the assumption that the entry cost is paid after the time lag, there is a gap in the value

of R+ S = 6000 at Xt = χs. However, when the stochastic shock, Xt, hits χr, the operating

and suspended value functions value match perfectly. The numerical example from Figure 7

assumes that there is no time lag.11
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Figure 7: Value of the investment opportunity. Capacity Q∗ = 197.81 and triggers χs = 362.6, χr = 429.6,
and χI = 464.7 are optimal under parameter combination ρ = 0.10, µ = 0.02, σ = 0.10, η = 1, R = S = 3000,
δ = 1000, λ = 0.7, c = 200, and T = 0.

11When δ = 82.16, the investment and resumption thresholds both equal 402.499 with an investment cost
of 3000.14. Subsequent decreases to δ will actually result in an investment threshold that is lower than the
one for resumption. This unusual result would generally occur only if the investment cost were less than the
resumption cost, which is unlikely because it requires a facility’s cost of resuming operations to be on level
pegging as the overnight capital cost of a new facility.
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5.2. Switching Triggers

Consider a firm that has invested and has a known total capacity. Figure 8 illustrates the

effect of uncertainty (right panel) and the length of the time lag (left panel) on the optimal

switching triggers. The superscript lag highlights the results that incorporate the time lag.

We find that the time lag speeds up the decision to resume operations whenever a firm is in

the suspended state but delays the suspension of operations from an active state.
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Figure 8: The effect of time lag T and uncertainty σ on the optimal triggers χr(Q), χs(Q), χr,lag(Q), and
χs,lag(Q). Take parameter combination Q = 197.81, ρ = 0.10, µ = 0.02, σ = 0.10, η = 1, R = S = 3000,
δ = 1000, λ = 0.7, c = 200, and T = 1. Capacity choice, Q, is optimal for T = 0 and σ = 0.10.

First, consider the decision to resume operations. The firm has the possibility to suspend

operations for low prices; however, the upward potential of the market is unlimited. Thus,

the firm is expected to have a higher profit after the time lag. At the moment that the firm

decides to resume operations, it has to wait for T time units before it actually gains revenue.

As a result, it expects that after the time lag, the price will be already higher than would be

optimal. Taking this into account, it is optimal to make the decision to resume production

a little earlier. A positive market drift only strengthens this result.12 Second, the time lag

slightly delays the optimal moment to suspend operations. Assume a firm that has to wait for

a few months before it gains revenue from the production facility. Once it is in production,

it will hesitate to suspend the production facility since it knows that this decision will be

followed by another start of the operation that includes an additional time lag.

We find that the time lag has a stronger influence on the resumption decision than on the

suspension one. This is because operations are forced to be inactive for at least the duration

of this time lag. Besides the switching cost that has to be paid from going from one state

to the other, the length of the time lag is another “burden” for the firm because it cannot

12Also, under the assumption of a negative market drift, the firm resumes operations at a lower trigger
when it faces a larger time lag. However, this trigger does not diminish as much compared to the case of a
positive market drift. Similarly, the trigger to suspend the production does not increase as much for a larger
time lag under a negative drift compared to the case with a positive drift.
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receive any (potentially high) revenue in this period.13 Hence, relative to a model without

time lags, e.g., Dixit and Pindyck (1994), we demonstrate that hysteresis, i.e., an increase in

the delay between switching operational states in response to higher uncertainty, is actually

weakened as a result of incorporating time lags.

The right panel of Figure 8 confirms the result found in Bar-Ilan and Strange (1996)

and Sødal (2006), i.e., higher uncertainty might hasten a firm’s entry decision. Bar-Ilan and

Strange (1996) explain that there are two effects, where the level of uncertainty determines

which one dominates. First, an increase in uncertainty raises the expected profit over the

time lag period, which might result in an earlier entry. The expected profits can increase

due to the availability of a subsequent abandonment option that truncates the downside of

the market. Second, a higher level of uncertainty increases the likelihood of bad news, which

delays the firm’s decision to resume operations.

5.3. Investment Decision

σ T χI∗,lag Q∗lag χs,lag(Q∗lag) χr,lag(Q∗lag)
0.1 0 464.7 197.8 362.6 429.6
0.1 0.1 470.9 202.5 366.2 432.4
0.1 0.3 469.2 203.1 364.8 428.8
0.1 0.5 469.9 204.0 363.9 425.2
0.15 0 678.3 383.2 547.5 616.3
0.15 0.1 682.6 388.4 539.8 627.9
0.15 0.3 678.1 390.5 536.0 616.2
0.15 0.5 673.9 393.3 534.2 604.7
0.2 0 1321.2 982.3 1119.8 1247.1
0.2 0.1 1317.9 991.9 1113.2 1225.6
0.2 0.3 1295.9 1004.6 1106.9 1174.1
0.2 0.5 1274.7 1017.7 1106.5 1130.4

Table 2: Investment strategy and optimal operational triggers. Parameter values are ρ =0.10, µ =0.02, η = 1,
c = 200, S = R =3000, λ =0.7, and δ =1000.

We contribute to the literature by incorporating an initial investment decision in which

the firm has the additional option to optimize capacity. Table 2 shows for several levels of

13For a very large time lag, the firm is not at all motivated to suspend operations. In the case of un-
realistically large time lags, e.g., T=4.4 years, the switching triggers do not exist, and the firm does not
use the opportunity to suspend operations. The switching triggers, χs and χr, in Figure 8 are relatively
large compared to those in Bar-Ilan and Strange (1996) and Sødal (2006) due to the higher assumed level of
unit production choice. By definition of the GBM, we know that higher levels of Xt result in larger shocks.
Therefore, we find in our example that for a time lag larger than 4.4 years, a firm will not use the opportunity
to enter and exit the market, whereas for the examples in the other two mentioned papers, this result has
not yet occurred after 8 years.
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uncertainty the effect of the time lag on the optimal investment decisions and the switching

triggers. The conventional result is that a larger capacity investment corresponds to a delay

in investment timing. This result still holds when an increase in uncertainty is considered.

However, where a longer time lag results in an increase in the size of investment, it does

not necessarily lead to a higher investment trigger. This result is further strengthened for a

higher level of uncertainty. The larger capacity level is related to the expected profit of the

firm over the time lag. Specifically, the ability of a firm to suspend operations means that

the downside of the investment is truncated. Therefore, the firm expects revenues to increase

during the time lag, thereby resulting in a larger expected profit once the firm can pursue the

production after the delay. Hence, a longer time lag further strengthens this result, which

justifies the larger capacity choice.

Result 1. Under capacity optimization, an increase in the length of the time lag results in
a larger capacity size.

The effect of the time lag on the optimal timing of investment is ambiguous. In partic-

ular, it can be optimal to delay investment due to the larger capacity choice (Dangl, 1999).

Alternatively, the firm may hasten investment because of the first time lag right after the

investment decision. As explained in the left panel of Figure 8, increasing the length of the

time lag makes a firm hasten the entry decision.

Capacity optimization also affects the switching triggers after entry, as is shown in the

last two columns of Table 2. From Figure 8, we know that when capacity optimization is

not an issue, a longer time lag reduces the level of both triggers, i.e., the direct effect of an

increasing time lag. Yet, the switching triggers are also indirectly affected by the time lag,

i.e., via the capacity level. Result 1 indicates that an increase in the length of the time lag

results in a higher capacity level, which, in turn, increases the level of the switching triggers.

Recall that a higher capacity level implies a higher level of Xt for which production becomes

(un)profitable (see the right panel of Figure 3). The indirect effect dominates only for a small

initial level of the time lag and a relatively low uncertainty (Table 2).

Result 2. Under capacity optimization, a longer time lag leads to higher investment and
operational triggers only when uncertainty is relatively low and the initial time lag is small.

5.4. Counterfactual Effects

We assess the impact of the time lag on the value of the firm by performing a counter-

factual analysis. Specifically, we assume that a firm neglects the time lag when it decides

about the optimal triggers for suspending and resuming operations, i.e., it uses the triggers

that do not incorporate the time lag from Section 3. The counterfactual analysis determines
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the percentage loss in value when the firm does not suspend and resume operations at the

optimal triggers due to neglect of the time lag as follows:

Dr(Q∗, Q∗lag) =
F r(χr,lag(Q∗lag);χs,lag(Q∗lag), χr,lag(Q∗lag), Q∗lag)− δQ∗lagλ−

F r(χr,lag(Q∗lag);χs(Q∗), χr(Q∗), Q∗)− δQ∗λ

− F r(χr,lag(Q∗lag);χs(Q∗), χr(Q∗), Q∗)− δQ∗λ

F r(χr,lag(Q∗lag);χs(Q∗), χr(Q∗), Q∗)− δQ∗λ
, (20)

and

Ds(Q∗, Q∗lag) =
F s(χs,lag(Q∗lag);χs,lag(Q∗lag), χr,lag(Q∗lag), Q∗lag)− δQ∗lagλ

F s(χs,lag(Q∗lag);χs(Q∗), χr(Q∗), Q∗)− δQ∗λ

− F s(χs,lag(Q∗lag);χs(Q∗), χr(Q∗), Q∗)− δQ∗λ

F s(χs,lag(Q∗lag);χs(Q∗), χr(Q∗), Q∗)− δQ∗λ
. (21)

Dr(Q∗, Q∗lag) and Ds(Q∗, Q∗lag) reflect the counterfactual value losses of resuming and sus-

pending operations, respectively.14 Table 3 includes the counterfactual values to the results

in Table 2.

σ T Ds(Q∗, Q∗lag) Dr(Q∗, Q∗lag)
0.1 0 0% 0%
0.1 0.1 0.008% 0.002%
0.1 0.3 0.075% 0.023%
0.1 0.5 0.213% 0.068%
0.15 0 0% 0%
0.15 0.1 0.017% 0.009%
0.15 0.3 0.152% 0.088%
0.15 0.5 0.399% 0.240%
0.2 0 0% 0%
0.2 0.1 0.054% 0.042%
0.2 0.3 0.366% 0.298%
0.2 0.5 0.808% 0.673%

Table 3: Uncertainty, time lags, and counterfactual effects. Parameter values are ρ =0.10, µ =0.02, η = 1,
c = 200, S = R =3000, λ =0.7, and δ =1000.

As expected, the percentage loss in value due to the neglect of the time lag increases with

the length of the time lag. When a firm resumes operations at the “wrong” (i.e., too high)

trigger, it misses revenue due to the forced time lag. An increase in the market uncertainty

14Substitute Xt = χr,lag(Q∗lag) into F r(Xt;χ
s, χr, Q)−δQλ for the counterfactual value loss Dr(Q∗, Q∗lag)

because the firm optimizes the option value to resume operations at some moment in the future under the
assumption that it has just stopped producing. For similar reasons, we substitute Xt = χs,lag(Q∗lag) into
F s(Xt;χ

s, χr, Q)− δQλ for the counterfactual value loss Ds(Q∗, Q∗lag).
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also increases the counterfactual effects. This is indirectly caused by the increase in the

optimal capacity choice. For a firm with a high production capacity, it is very costly to

continue production too long with a negative revenue. Similarly, a firm misses out on high

profits when the decision to continue the production is made later than optimal. Especially

for a very uncertain market environment and a long time lag, it is important for a firm to

incorporate the time lag in the model in order to find the correct triggers. The counterfactual

values may seem very low; however, under high uncertainty, the capacity level (and, thus,

the production level) is such that 0.8% of the total firm value is a big gain in revenue. Low

counterfactual percentage values are also observed in more realistic case studies. For example,

in an analysis of U.K. transmission investment under uncertainty, van der Weijde and Hobbs

(2012) find that the expected cost of ignoring uncertainty is modest in percentage terms,

i.e., 0.08%. Nevertheless, they argue that this loss could be a non-negligible portion of the

planner’s budget.

Since neither Bar-Ilan and Strange (1996) nor Sødal (2006) performs a counterfactual

analysis in the model with a fixed capacity, we conduct this in Table 4. The style of Table 4

is similar to the one that is presented in Bar-Ilan and Strange (1996) and Sødal (2006);

therefore, it considers σ2 rather than σ. Our model can be simplified to their model by

setting Q = 1 and η = 0, i.e., by removing capacity sizing as a decision variable.15 Even

so, analytical solutions are not possible: indeed, the model of Bar-Ilan and Strange (1996)

requires numerical solutions. In general, we would have to remove switching costs and time

lags in order to solve the model analytically.

Result 3. There exists a parabolic effect in σ in the counterfactual value losses when capacity
is not optimized. For intermediate levels of market uncertainty, the firm has the most benefit
from correctly choosing the triggers for which it resumes or suspends the operation.

Contrary to the model where capacity is optimized, we find that there is a parabolic effect

in the counterfactual value losses. Namely, for relatively low levels of uncertainty, the firm is

more confident that the price after the time lag is still high enough to pursue the production,

and, for very high levels of uncertainty, the price level is so unpredictable that the exact

switching triggers matter less. The price is expected to reach a large bandwidth within a

short time frame anyway. However, we observe that when the firm is given the opportunity

to optimize its capacity level, a higher level of uncertainty corresponds to a steep increase in

the capacity level. When a large capacity level is involved, it contributes to the importance

to choose the correct triggers, thereby resulting in a larger counterfactual effect. Hence,

15Bar-Ilan and Strange (1996) consider the same set of parameters; however, Sødal (2006) detects a small
technical error in this analysis of Bar-Ilan and Strange (1996) and rectifies the results.
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σ2 T = 0 T = 6
χs χr Xs,lag Xr,lag Ds(·) Dr(·)

0.00 1.000 1.025 1.000 1.025 0.000% 0.000%
0.01 0.834 1.243 0.793 1.146 1.109% 1.268%
0.02 0.795 1.312 0.736 1.151 1.373% 1.406%
0.03 0.770 1.362 0.697 1.149 1.526% 1.494%
0.04 0.751 1.405 0.666 1.145 1.632% 1.555%
0.05 0.735 1.442 0.640 1.140 1.710% 1.600%
0.10 0.682 1.586 0.551 1.112 1.921% 1.712%
0.20 0.623 1.791 0.450 1.072 2.043% 1.742%
0.30 0.587 1.953 0.388 1.048 2.045% 1.700%
0.40 0.560 2.094 0.342 1.036 2.003% 1.635%
0.50 0.539 2.221 0.308 1.031 1.941% 1.562%
0.60 0.522 2.338 0.280 1.033 1.868% 1.488%
0.80 0.495 2.554 0.237 1.049 1.712% 1.344%
1.00 0.474 2.753 0.206 1.078 1.556% 1.210%

Table 4: Investment strategy, optimal operational triggers and counterfactual effects. Parameter values are
ρ =0.025, µ =0, η = 0, c = 1, S = 0, R =1, and Q = 1 (Bar-Ilan and Strange, 1996).

although the loss in value is modest when capacity can be varied, the counterfactual effects

are stronger when capacity is fixed to some arbitrary level.

6. Conclusions

We extend the literature on entry and exit decisions by giving the firm the opportunity

to optimize the size of its capacity at the moment that it invests in the market. Capacity is

assumed to be lumpy. Therefore, after each entry decision, it uses the capacity that it initially

adopted. We assume that resuming operations cannot occur instantaneously because it takes

time to find new employees and train them to a desired level. Besides the obvious examples

of a production facility or a power plant, we can also think about a company that provides

services, which needs to freeze or merge some divisions in recessions.

We find that the additional opportunity of a firm to optimize capacity changes the results

to a great extent. First, a slightly higher level of uncertainty results in a delay in the optimal

moment to resume operations and hastens the suspension. The latter differs from the analysis

without capacity optimization, in which the firm delays the decision to suspend operations

under a higher level of uncertainty. Under capacity optimization, the firm increases the size

of its capacity investment, and, thus, also a higher price intercept is required for a revenue

flow equal to zero. Due to positive switching costs, the firm switches from the operational

state towards the suspended state for a slightly negative revenue flow, which will occur later

under a higher capacity level.
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Second, we find that the length of the time lag positively affects the size of capacity.

Namely, the ability of a firm to suspend operations means that the downside of the invest-

ment is truncated. Therefore, the presence of a time lag causes an increase in the expected

profit over the time lag period under the assumed uncertainty. Thus, a longer time lag also

positively affects the expected profit and, therefore, justifies the larger capacity choice. Un-

der the assumption of a fixed capacity, we confirm Bar-Ilan and Strange (1996)’s result that

a longer time lag results in lower switching triggers. This result is not always true under

capacity optimization, however. Besides the mentioned direct effect, the triggers are also

indirectly affected by an increase in the length of the time lags. A slightly longer time lag

results in a higher capacity choice, thereby yielding higher switching triggers. This indirect

effect dominates for an initially small time lag.

We assume an additive demand structure because this enables us to compare our results

with Dangl (1999) and Hagspiel et al. (2016). However, Boonman and Hagspiel (2014) high-

light the differences in results between additive and multiplicative demand structures. Where

for the additive demand structure an increase in uncertainty results in a explosive increase

in the capacity level, this increase is more moderate for the multiplicative demand structure.

In this paper, we find that a higher level of uncertainty results in a higher trigger value to

suspend the operation, which is indirectly caused by the steep increase in capacity. We leave

it to further investigation to find out whether these results still hold under multiplicative

demand. Additionally, it would be interesting to see how the results are affected in a com-

petitive environment. Finally, devising capacity-investment strategies under lags and regime

switches that are exogenous, e.g., that depend on technological innovation or changes in

government policy (Chronopoulos and Lumbreras, 2016; Chronopoulos and Siddiqui, 2015),

would also be relevant.
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Appendix A. Nomenclature

t Time index (years)

T Time lag after investment has been

undertaken or production resumed (years)

S Switching cost for suspending operations (e)

R Switching cost for resuming production (e)

Pt Price earned from operations at time t (e/unit)

Xt Intercept of the inverse demand function at time t (e/unit)

η Slope of the inverse demand function (e/unit2)

Qt Annual production of firm in operation at time t (units)

µ Drift parameter of geometric Brownian motion (1/year)

σ Volatility parameter of geometric Brownian motion (1/year)

ρ Annual long term interest rate (1/year)

β1 Positive root of characteristic quadratic (–)

β2 Negative root of characteristic quadratic (–)

c Variable production cost (e/unit)
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πt Annual profit flow of firm at time t (e)

δ Variable investment cost (units depend on λ)

λ Parameter that indicates concave investment cost structure (–)

τ I Moment in time at which firm makes investment decision (year)

χI Optimal investment trigger (e/unit)

χI∗ Optimal investment trigger under the assumption of no lags (e/unit)

χI∗lag Optimal investment trigger under the assumption of a time lag (e/unit)

τ 2k+1, τ 2k+3, . . . Moments in time at which operating firm suspends production (year)

χs Optimal trigger for suspending operations (e/unit)

χs(Q) Optimal trigger for suspending operations given capacity size Q

under the assumption of no lags (e/unit)

χs,lag(Q) Optimal trigger for suspending operations given capacity size Q

under the assumption of a time lag (e/unit)

τ 2k, τ 2k+2, . . . Moments in time at which inactive firm resumes production (year)

χr Optimal trigger for resuming operations (e/unit)

χr(Q) Optimal trigger for resuming operations given capacity size Q

under the assumption of no lags (e/unit)

χr,lag(Q) Optimal trigger for resuming operations given capacity size Q

under the assumption of a time lag (e/unit)

Q∗ Optimal annual production capacity

under the assumption of no lags (units)

Q∗lag Optimal annual production capacity

under the assumption of a time lag (units)

F I(Xt;χ
I , χs, χr, Q) Expected NPV of a firm that has the option

to invest when Xthits investment trigger χI with capacity Q (e)

F s(Xt;χ
s, χr, Q) Expected NPV of an inactive firm that has the option

to resume operations at a later moment in time (e)

F r(Xt;χ
s, χr, Q) Expected NPV of a firm that is in operation and has the option

to suspend operations at a later moment in time (e)

V (XT ;χs, χr, Q) Expected NPV of an active firm at time t = τ 2k + T

that has the opportunity to suspend (e)

Appendix B. Expected Value of the Option to Suspend

When parameter XT follows a GBM, the distribution of XT given χr is log normal, i.e.

log(XT )|χr ∼ N(log(χr) + (µ− 1

2
σ2)T, σ2T ). (B-1)
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Let us assume that z = log(XT ), g = log(χr) + (µ− 1
2
σ2)T and s2 = σ2T , then

z ∼ N(g, s2). (B-2)

We are interested in E[Xβ
T |χr] = E[ezβ|χr]. This is in fact equal to the calculation of the

moment generating function. However, when we only need this expectation for XT ∈ (0, χs),

then the βth moment of XT is calculated as follows:

E[ezβ|z < log(χs)] =

∫ log(χs)

−∞
ezβ

1√
2πs2

e−
1
2

(z−g)2

s2 dz. (B-3)

Define y = z−g
s

, which implies that z = ys+ g. The substitution rule gives

E[ezβ|z < log(χs)] =

∫ log(χs)−g
s

−∞
e(ys+g)β

1√
2πs2

e−
1
2
y2(
dz

dy
)dy. (B-4)

Because we know that dz
dy

= s, we find:

E[ezβ|z < log(χs)] = eβg
∫ log(χs)−g

s

−∞
eysβ

1√
2π
e−

1
2
y2dy. (B-5)

Replacement of some terms yields:

E[ezβ|z < log(χs)] = eβg
∫ log(χs)−g

s

−∞

1√
2π
e−

1
2
(y−βs)2e

1
2
s2β2

dy, (B-6)

E[ezβ|z < log(χs)] = eβg+
1
2
s2β2

∫ log(χs)−g
s

−∞

1√
2π
e−

1
2
(y−βs)2dy. (B-7)

Finally, the integral is defined as a CDF of variable y that is normally distributed with

expectation βs and variance 1. When we also substitute y = z−g
s

back in the integral, we

find:
E[ezβ|z < log(χs)] = E[Xβ

T |XT < χs]

= eβg+
1
2
s2β2

Φ( log(χ
s)−g
s

− βs),
(B-8)

thus

E[ezβ|z < log(χs)] = (χr)β e
1
2
σ2β2T+(µ− 1

2
σ2)βTΦ(

log(χs)− log(χr)− (µ− 1
2
σ2T )

σ
√
T

− βσ
√
T ).

(B-9)
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Since β1 (β2) is the positive (negative) root of the quadratic polynomial

1

2
σ2β2 +

(
µ− 1

2
σ2

)
β − ρ = 0, (B-10)

we find that e
1
2
σ2β2T+(µ− 1

2
σ2)βT = eρT . By applying this result to the components of the

integral in expression (12), we obtain:

⇒
∫ χs

0

(
XT

χr

)β1
(F r(χr;χs, χr, Q))f(XT |χr)dXT (B-11)

=

(
χr

χr

)β1
(F r(χr;χs, χr, Q)) Φ(v(χs, χr)− β1σ

√
T )eρT

⇒ −
∫ χs

0

(R + S)f(XT |χr)dXT = −(S +R)Φ(v(χs, χr)) (B-12)

⇒
∫ ∞
χs

XTQ

ρ− µ
f(XT |χr)dXT =

χrQ

ρ− µ

(
1− Φ(v(χs, χr)− σ

√
T )
)
eµT (B-13)

⇒ −
∫ ∞
χs

(
(ηQ2 + cQ)

ρ
+R

)
f(XT |χr)dXT (B-14)

= −
(

(ηQ2 + cQ)

ρ
+R

)
(1− Φ(v(χs, χr)))

⇒
∫ ∞
χs

(
XT

χs

)β2((ηQ2 + cQ)

ρ
− χsQ

ρ− µ
− S +

(
χs

χr

)β1
F r(χr;χs, χr, Q)

)
f(XT |χr)dXT

(B-15)

=

(
χr

χs

)β2 ((ηQ2 + cQ)

ρ
− χsQ

ρ− µ
− S +

(
χs

χr

)β1
F r(χr;χs, χr, Q)

)
·
(

1− Φ(v(χs, χr)− β2σ
√
T )
)
eρT

�
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Appendix C. Proof of Proposition 1

We show that expression (11) moves towards expression (4) for T → 0. For this, we

introduce new notation to distinguish the expected NPVs for a model with a time lag from

the expected NPVs without a time lag. F r(χr, T ) denotes the expected NPV of a firm that

has just made the decision to resume production and now obtains the option to suspend at

an optimal moment after the time lag. For the model without a time lag, we define this

option by F r(χr, 0). We will show that limT→0 F
r(χr, T ) = F r(χr, 0). Substituting (13) into

(11) gives:

F r(χr, T )

=e−ρT
((

χr

χr

)β1
F r(χr, T )Φ(v(χs, χr)− β1σ

√
T )eρT

+
χrQ

ρ− µ

(
1− Φ(v(χs, χr)− σ

√
T )
)
eµT −

(
(ηQ2 + cQ)

ρ
+R

)
(1− Φ(v(χs, χr)))

−(S +R)Φ(v(χs, χr)) +

(
χr

χs

)β2 ((ηQ2 + cQ)

ρ
− χsQ

ρ− µ
− S

+

(
χs

χr

)β1
F r(χr, T )

)(
1− Φ(v(χs, χr)− β2σ

√
T )
)
eρT
)
. (C-1)

Since χr ≥ χs, we find that v(χs, χr) < 0, where v(χs, χr) is defined by expression (14). For

T → 0, it holds that v(χs, χr)→ −∞. Thus, limT→0 Φ(v(χs, χr)) = 0 and limT→0 Φ(v(χs, χr)−
β1σ
√
T ) = 0, which eliminates two terms in expression (C-1). Similarly, we obtain limT→0(

1− Φ(v(χs, χr)− σ
√
T )
)

= 1, limT→0 (1− Φ(v(χs, χr))) = 1, and limT→0

(
1− Φ(v(χs, χr)− β2σ

√
T )
)

= 1. In order to finish the proof, we additionally have limT→0 e
ρT = 1 and limT→0 e

µT = 1.

Hence, we find that:

F r(χr, 0) =
χrQ

ρ− µ
− (ηQ2 + cQ)

ρ
−R

+

(
χr

χs

)β2 ((ηQ2 + cQ)

ρ
− χsQ

ρ− µ
− S +

(
χs

χr

)β1
F r(χr, 0)

)
, (C-2)

which is similar to expression (4) with X = χr, after substitution of expression (6) in which

Xt = χs. Notice that, due to the assumption that switching cost, R, is paid after the time

lag, R is placed in a different position in the above formula than in expression (4). However,

since T → 0, this does not affect the results. �
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