Accepted Manuscript

A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design

The state of the s

Iván García Kerdan, Rokia Raslan, Paul Ruyssevelt, David Morillón Gálvez

PII: S0360-5442(17)30535-2

DOI: 10.1016/j.energy.2017.03.142

Reference: EGY 10609

To appear in: Energy

Received Date: 14 November 2016

Revised Date: 06 March 2017

Accepted Date: 28 March 2017

Please cite this article as: Iván García Kerdan, Rokia Raslan, Paul Ruyssevelt, David Morillón Gálvez, A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design, *Energy* (2017), doi: 10.1016/j.energy. 2017.03.142

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Highlights

- The study compares an energy-based and an exergy-based building design optimisation
- Occupant thermal comfort is considered as a common objective function
- A comparison of thermodynamic outputs is made against the actual retrofit design
- Under similar constraints, second law optimisation presents better overall results
- Exergoeconomic optimisation solutions improves building exergy efficiency to double

A comparison of an energy/economic-based against an 1

exergoeconomic-based multi-objective optimisation for low 2

carbon building energy design 3

Iván García Kerdan^{a,c,d*}, Rokia Raslan^b, Paul Ruyssevelt^a, David Morillón Gálvez^c 4

5

- ^a Energy Institute, University College London, 14 Upper Woburn PI, London, WC1H 0NN, U.K.
- 6 7 ^b Environmental Design and Engineering, University College London, 14 Upper Woburn PI, London, 8 WC1H 0NN, U.K.
- 9 ^c Departamento de Mecánica y Energía, Instituto de Ingeniería, Universidad Nacional Autónoma de 10 México, México, México
- ^d Centre for Process Systems Engineering, Imperial College London, Roderic Hill Building, South 11 12 Kensington Campus, London, SW7 2AZ, UK

13

14

15

16 17

18 19

20

21

22

23

24

25 26

27

28 29

30

31

Abstract

- This study presents a comparison of the optimisation of building energy retrofit strategies from two different perspectives: energy/economic-based and exergy/exergoeconomic-based analysis. A recently retrofitted community centre is used as a case study. ExRET-Opt, a novel building energy/exergy simulation tool with multi-objective optimisation capabilities based on NSGA-II is used to run both analysis. The first analysis, based on the 1st Law only, simultaneously optimises building energy use and design's Net Present Value (NPV). The second analysis, based on the 1st and the 2nd Laws, simultaneously optimises exergy destructions and the exergoeconomic cost-benefit index. Occupant thermal comfort is considered as a common objective function for both approaches. The aim is to assess the difference between the methods and calculate the performance among main indicators, considering the same decision variables and constraints. Outputs show that the inclusion of exergy/exergoeconomics as objective functions into the optimisation procedure has resulted in similar 1st Law and thermal comfort outputs, while providing solutions with less environmental impact under similar capital investments. This outputs demonstrate how the 1st Law is only a necessary calculation while the utilisation of the 1st and 2nd Laws becomes a sufficient condition for the analysis and design of low carbon buildings.
- 32 **Keywords:**
- energy; optimisation; building simulation; carbon buildings; exergy;
- 34 exergoeconomics.

35 36 *Corresponding author at: CPSE, Imperial College London, UK., United Kingdom. Tel: +44 (0) 7867798730 E-mail addresses: i.kerdan.12@ucl.ac.uk, i.garcia-kerdan@imperial.ac.uk (I. Garcia Kerdan)

1. Introduction

In industrialised countries, buildings are responsible for approximately 20-40% of the national primary energy utilisation [1] and 25-30% of the global CO₂ emissions [2, 3]. Therefore, the sector holds a great opportunity for energy reduction and carbon abatement by delivering cost-effective building energy retrofit (BER) strategies. As the energy issue is becoming more evident in the building sector, developing techniques for designing efficient and cost-effective energy systems is still a challenge that practitioners and researchers face in today's building industry. Optimisation is a technique that is commonly used in research and engineering applications. Buildings' energy design optimisation is an inherently complex technique involving disciplines such as engineering, mathematics, enviro-economic science, and computer science [4]. Three basic types of algorithms are used in optimisation problems applied to buildings: enumerative, deterministic, and stochastic [5]. Stochastic methods based on genetic algorithms (GA) can be regarded as the most popular method for building optimisation. Other popular algorithm methods are 'Direct Search', 'Simulated Annealing', and 'Particle Swarm optimisation' [6].

Evins [6] conducted a comprehensive review of 74 optimisation research studies, providing a list of the most typical objectives used in sustainable building design. He found that the most common objective was energy use (found in 60% of the studies), followed by costs and occupants' thermal comfort. While multi-objective optimisation (MOO) methods are usually used during early designs [5] they have also been applied for retrofit projects. As MOO studies have been increasing in number in recent years, several tools have been developed, using typical building energy simulation tools, such as TRNSYS and EnergyPlus (as the core calculation engines) combined with optimisation toolboxes from MatLab, R, C++ and Python [4]. Taking the advantages from these tools, BER optimisation studies have become more common, considering different decision variables, objective functions, and constraints. Table 1 presents a comprehensive review of the most notable contributions in the field in the last decade.

[Table 1 around here]

1.1 Exergy and exergoeconomic optimisation

As shown, the basis of typical optimisation process has been the 1st Law of thermodynamics or the 'conservation of mass and energy' principles. Energy analysis typically shows limitations when it comes to assessing the characteristics of energy conversion systems. With the current high dependency on high-quality energy sources, such as natural gas, oil, and fossil-fuel based generated electricity, combined with the low thermodynamic efficiency of current building system technologies (e.g. at T_0 = 5 °C and T_i = 20 °C, electric heater Ψ : 0.05; air source heat pump Ψ : 0.15), new approaches to improve the selection of optimal BER measures are required. In this sense, there is an opportunity to redesign typical approaches, where the consideration of the fundamental 2nd Law of thermodynamics under the exergy concept appears to hold some promise. Combining 1st and 2nd Law analysis has significant advantages, as it provides with technical limits that the 1st Law misses and an appropriate link between demand and supply analyses, which is often performed separately. This disengagement has led the decision makers to assume that systems, such as electric-based heating, are the most efficient way to deliver heat as it has an 'energy efficiency' of 100%. The problem is that the delivery of electricity to cover a low-quality demand, such as space heating/cooling or DHW, can be considered as irrational because the qualities of the demand and supply do not match. Exergy-based analysis could be the ideal methodological complement for the assessment and comparison of energy designs as it focuses on improving efficiency.

After decades of exergy research in other sectors, the 2nd Law and exergy concepts can be considered well established. However, in the building sector, it still needs to achieve certain degree of maturity that could make the analysis useful. In the last years, exergy analysis research in buildings has significantly increased. Main contributions came from three research groups: IEA EBC Annex 37 [31], IEA EBC Annex49 [32] and the 'LowEx - COSTeXergy' [33]. The common aim was to provide a standard methodology that could lead to a deeper understanding of using both thermodynamic laws in the built environment and its potential application.

However, decision making in building energy design is still mainly based on typical economic indicators, such as Net Present Value (NPV), Life Cycle Cost (LCC), and Discounted Payback (DPB) [34,35]. In this sense, exergoeconomics, which considers not only the thermodynamic inefficiencies of a system but also the costs associated with these inefficiencies, and the investment expenditure required to reduce them could be considered for a comprehensive analysis. Widely used in process and power generation optimisation [36], exergoeconomic optimisation aims to find a trade-off between the energy streams/product cost and capital

investment cost of energy systems within the technically possible limits. Exergoeconomics has been effectively combined with the cost-benefit analysis to improve operation and design. By minimising the Life Cycle Cost (LCC), the best system considering the prevailing economic conditions could be found; and by minimising the exergy loss, environmental impact could also be minimised [37]. The major strengths of combining exergoeconomics is the ability to pinpoint exact sources of inefficiencies, highlight real improvement potential, and provide a robust comparison among designs. Specifically, in building research, exergoeconomic has been applied for the analysis and optimisation of different building energy systems such as district heating networks [38-40], micro cogeneration systems (mCHP) [41,42], heat pumps [43], energy storage [44,45], envelope's insulation [46] and conventional heating systems [47-49]. However, neither study performs an exergoeconomic-based multi-objective optimisation under different objective functions.

After highlighting the research gaps in both building energy design optimisation and exergy/exergoeconomic analysis, with the intention of challenging the established methodology for building energy design optimisation based on the 1st law only, the novelty of this paper comes from performing a comparative study between an energy/economic-based and exergy/exergoeconomic-based multi-objective optimisation. To achieve this, ExRET-Opt [50], an automated simulation tool developed for building energy/exergy design optimisation is used. The aim is to illustrate through a detailed analysis the differences between the methodologies and results. Although it is expected that both approaches would provide a more informed assessment of BER designs than the actual retrofit design of the selected case study, it is also expected that each approach would deliver different BER designs and outputs due to the differences in calculation methods.

2. Case Study

The case study building is based on an 1890s-community centre located in Islington, London (UK) that was retrofitted in 2011 to Passivhaus standards. The actual BER design resulted in the installation of an 8.4 kW ground source heat pump (GSHP) and a 90% efficient Mechanical Ventilation Heat Recovery (MVHR) system. Additionally, 18 kWp PV solar panels were installed together with a 3 kW solar thermal system connected to a 300 litres water storage tank. Triple glazed clear windows to maximise winter solar gains and high levels of envelope insulation were installed, compiling with Passivhaus standards. Building's main characteristics and a diagram of the energy system can be found in Table 2 and Fig. 1.

132	[Table 2 around here]
133	[Fig. 1 around here]
134	For simplification, the building energy model has been divided into six thermal zones,
135	according to the orientation, activity type and the spaces' internal loads: 1) basement floor
136	offices, 2) above ground offices, 3) music studio, 4) main hall, 5) reception, and 6) kitchen
137	area. Heathrow, London weather file (epw file) is used as reference temperature for dynamic
138	energy/exergy analysis. Previously, Garcia Kerdan et al. [51] presented the exergy and
139	exergoeconomic evaluation for the retrofitted building. The model calculated a retrofit
140	investment of approximately £417,028 exclusively for energy related measures. The ratio of
141	passive and active technology investment was calculated at 0.41, where PV/T panels
142	represented almost 37% of the total investment, followed by glazing (17.5%) and roof
143	insulation (10.4%). For a 50-year period, the buildings life cycle cost (eq. A.17) has been
144	calculated at £471,403 considering project's capital investment, annual energy bills,
145	government incentives through the feed-in-tariff (FiT) and renewable heat incentives (RHI),
146	and the salvage cost or residual value. This resulted in a discounted payback of 137 years.
147	Table 3 presents the main energy, exergy and other non-thermodynamic values for the case
148	study building.
149	[Table 3 around here]
150	These will be used to design the optimisation studies and as benchmark for comparative
151	purposes. A secondary aim of this paper is to showcase the tool's capabilities of providing
152	more cost-effective designs regardless of the approach.
153	
154	3. Methods and Materials
155	
156	3.1 ExRET-Opt
157	ExRET-Opt [50] is a simulation tool that enhances typical building retrofit-oriented tools with
158	the addition of exergy and exergoeconomic analysis and multi-objective optimisation. The
159	systematic methodology and simulation tool covers an existing gap that limits the introduction

of exergy into energy design practice. The tool allows the practitioner to quantify indices of performance of the building retrofit based on the 1st and 2nd laws analyses, among other non-energy indicators. It has been developed by embedding a comprehensive dynamic exergy analysis [52] and a tailored exergoeconomic method [53] into a typical open-source building simulation tool – EnergyPlus [54]. The main exergy and exergoeconomic formulas embedded in the tool can be found in Appendix A.

3.2 Optimisation study design

As mentioned, the MOO studies are designed from two different perspectives: a) an energy/economic-based focus and b) an exergy/exergoeconomic-based focus. Yet, buildings are designed to the primary objective of providing a comfortable environment for its occupants. Therefore, the optimal selection of BER should be a trade-off between the thermodynamic efficiency, capital costs, and most importantly, occupant thermal comfort. Thus, occupants' thermal comfort is the only common objective for both approaches. The first MOO method, based on the 1st Law only (typically used in the building industry and research), optimises building energy use and project's Net Present Value (NPV). From this point in the paper, this approach is referred to as the *energy/economic optimisation*. The second method, based on the 1st and 2nd Laws simultaneously, optimises building exergy destructions and an exergoeconomic index. This approach is referred to as the *exergy/exergoeconomic optimisation*. Fig. 2 shows the methodological approach applied to this study.

[Fig. 2 around here]

Following the finalisation of the optimisation processes, Pareto fronts are obtained for both approaches. In a first level of analysis and to make a comparison of both approaches' main outputs, both the number of constrained solutions and the size of non-dominated solutions (Pareto fronts) are statistically analysed using an independent two sample t-test was. An independent t-test compares the mean values from the two-sample gathered and test the likelihood of the samples originating from populations with different mean values. The t-test calculates the null hypothesis that the means of two normally distributed groups are equal. Similar to Yoo and Harman [55], the null hypothesis in this study (setting an α level of 0.95) is that with two different optimisation approaches, the mean values of the number of non-dominated solutions are equivalent. If a p-values is significant, this would suggest that the null hypothesis should be rejected, meaning that one of the optimisation approaches produces a larger number of Pareto solutions.

192	3.2.1 Decision variables
193	Due to the inclusion of the extensive ExRET-Opt technology database, the tool can be applied
194	to analyse a wide range of different BER measures. Table 4 presents the characteristic of the
195	main HVAC systems embedded in the database. The techno-economic values for all other
196	possible retrofit measures can be found in [50,52] and in Appendix B.
197	[Table 4 around here]
198	Apart from typical technologies found in the tool, some additional considerations are made.
199	Following the actual retrofit design (up to Passivhaus standards) and due to the building's
200	nature, the envelope is differentiated into six parts: 1) above ground wall insulation, 2)
201	basement wall insulation, 3) basement floor insulation, 4) ground floor insulation, 5) pitched
202	roof insulation, and 6) normal roof insulation. Additionally, thicker insulation technologies have
203	been included to achieve U_{values} per Passivhaus standards (U_{val} <0.15 W/m 2 K). After
204	discretisation of all variables, the total number of decision variables for the optimisation
205	process are defined in Table 5.
206	[Table 5 around here]
200	[Table & allound Hore]
207	Therefore, as all possible combinations are more than seven thousand quadrillion
208	(7,099,580,375,363,174,400), presenting an impossible task for almost any computer due to
209	limited number of cores and processing time. However, the optimisation jobs have been
210	subject to the following NSGA-II parameters.
211	3.2.2 Objective functions
212	As mentioned, the two approaches, consider three conflicting objectives that must be satisfied
213	simultaneously.
214	3.2.2.1 Energy/economic-based optimisation
215	For the energy/economic approach the objectives are the minimisation of building energy use,
216	reduction of occupant thermal discomfort, and maximisation of project's NPV:
217	I. Building's annual site energy use (kWh/m²-year):

- 218 $Z_1(x)min = EUI_{hui}$
- 219 (1)
- where EUI_{bui} is the total annual energy used by the building.
- 221 II. Occupant discomfort hours (Fanger's model [56]):

222
$$Z_2(x)min = (|PMV| > 0.5) = (|(0.303e^{-0.036M} + 0.028)(H - L)| > 0.5)$$
 (2)

- where e is the Euler's number (2.718), M is the metabolic rate (W/m²), H is internal heat
- production rate of an occupant per unit area (W/m^2), and L is energy loss (W/m^2). This value
- is given by ExRET-Opt through EnergyPlus calculations.
- 226 III. Net Present Value_{50 years} (£):

227
$$Z_3(x)max = NPV_{50years} = -TCI + \left(\sum_{n=1}^{N} \frac{R}{(1+i)^n}\right) + \frac{SV_N}{(1+i)^N}$$

- 228 (3)
- where TCI is the initial total capital investment, R is the annual revenue cost (composed of the
- annual energy cost savings minus the operation and maintenance cost), and SV is the salvage
- cost or residual value. Detailed calculation information can be found in Appendix A.2 (eq.
- 232 A.20). However, for simplification and to encode a purely minimisation problem, the NPV is
- set as negative $-NPV_{50vears}$ (however, results throughout the appear are presented as normal
- positive outputs).
- 235 3.2.2.2 Exergy/exergoeconomics-based optimisation
- 236 For the exergy/exergoeconomic approach, the objectives are the minimisation of overall
- building exergy destructions, reduction of occupant thermal discomfort, and minimisation of
- 238 the exergoeconomic cost-benefit index:
- 239 I. Building annual exergy destructions (kWh/m²-year):

240
$$Z_1(x)min = Ex_{dest,bui} = \sum Ex_{prim}(t_k) - \sum Ex_{dem,bui}(t_k)$$

241 (4)

- 242 where Ex_{prim} and $Ex_{dem,bui}$ are the total primary exergy supplied and total building exergy
- 243 demand respectively.
- 244 II. Occupant discomfort hours (Fanger's model):

245
$$Z_2(x)min = (|PMV| > 0.5) = (|(0.303e^{-0.036M} + 0.028)(H - L)| > 0.5)$$
 (5)

- 246 III. Exergoeconomic cost-benefit 50 years (£/h):
- 247 $Z_3(x)min = Exec_{CB} = \dot{C}_{D.sys} + \dot{Z}_{sys} \dot{R}$
- 248 (6)
- 249 where $\dot{C}_{D,sys}$ is the building total exergy destruction cost (eq. A.25), \dot{Z}_{sys} is the annual capital
- cost rate for the retrofit measure (eq. A.26), and \dot{R} is the annual revenue rate. All three
- parameters are levelised considering the project's lifetime (50 years) and the present value of
- 252 money. The outputs are given in £/h. The exergoeconomic cost-benefit indicator $Exec_{CB}$ [53]
- 253 is a novel index for energy system design comparison developed from the SPECO
- exergoeconomic method [61].
- 255 3.2.3 Constraints
- The optimisation problem is subjected to three constraints. First, the capital investment of the
- actual retrofit project of £417,028 [51], requiring the model to deliver cheaper designs.
- 258 Secondly, a positive NPV or a DBP of less than 50 years is also considered a constraint.
- 259 Finally, the amount of discomfort hours obtained by the actual retrofit model (853 hours) is
- considered as the third constraint. Hence, the optimisation problems for both approaches can
- 261 be generally formulated as follows:
- 262 Given a thirteen-dimensional decision variable vector
- 263 $x = \{X^{\text{HVAC}}, X^{\text{wall}}, X^{\text{roof}}, X^{\text{ground}}, X^{\text{wall_BS}}, X^{\text{roof_Pi}}, X^{\text{ground_BS}}, X^{\text{seal}}, X^{\text{glaz}}, X^{\text{light}}, X^{\text{PV}}, X^{\text{wind}}, X^{\text{heat}}\},$ in
- 264 the solution space X, find the vector(s) x^* that:
- 265 Minimise: $Z(x^*) = \{Z_1(x^*), Z_2(x^*), Z_3(x^*)\}$
- 266 (7)

267	Subject to follow inequality constraints: $ \begin{cases} TCI \leq £417,028 \\ DPB \leq 50 \ years \\ Discomfort \leq 853 \end{cases} $
268	(8)
269 270	Based on compromise programming and equal weight solution, all three objective functions are considered to have the same weight (w1 =0.33, w2=0.33, and w3=0.33).
271	3.2.4 NSGA-II parameters
272 273	Table 6 presents the NSGA-II settings defined for both studies hoping to obtain more variability among simulation results:
274	[Table 6 around here]
275 276 277	Each procedure should perform approximately 10,000 simulations, or terminate either if the objective functions converge or a time limit is reached. The detailed optimisation algorithm process as well as the modelling environments is shown in more detail in Fig. 3.
278	[Fig. 3 around here]
279 280	
281	It is important to point out that GA presents some limitations. Apart of only operating under a
282	discrete search space, meaning that continuous variables must be discretised, algorithm
283	parameters such as population size, crossover and mutation, can affect the location of the
284	optimal value and convergence rate [57, 58].
285	4. Results
286 287 288 289 290	In an 8-core laptop, following 150 hours of simulation, the energy/economic-based MOO collected 9,815 simulations, while the exergy/exergoeconomic-based MOO simulated 9,747 models. However, the number of constrained solutions are found at 475 and 344 for the energy-based and exergy-based MOO respectively. This demonstrates that around 3-5% of the simulated solutions have a better thermal comfort and economic performance than the
291	actual retrofitted building.

292 4.1 Single-objective analysis

Each objective from the non-dominated solutions are individually optimised for both approaches. The single objective optimal BER designs are shown in Table 7 for the energy/economic based approach and Table 8 for the exergy/exergoeconomic-based approach.

297 [Table 7 around here]

298 [Table 8 around here]

4.1.1 Energy-based single objective results

For the energy-based optimisation, when single-optimising building's EUI, the tool produces a BER design similar to the actual retrofit building. The model is also based on a GSHP, differing in that instead of considering a MVHR, the model suggests the installation of underfloor heating. In addition, the wall insulation is similar to that found in the actual BER, having 0.25m of Polyurethane for the above ground walls and 0.30m of cellular glass for the basement walls. In terms of infiltration rate, again, the model suggests a similar value to the one in the real design (model: 0.50 ach, real: 0.42 ach). However, to lower the capital cost, the model reduces the glazing system to double-glazed air-filled windows instead of the triple-glazed air-filled. The lighting system is based on T8 LFC, similarly to the actual building. The biggest change comes in the PV panels, where the model does not consider their installation, and instead, a 20 kW turbine is proposed. The design is able to lower energy use from 47,293 kWh/year (61.6 kWh/m²-year) to 44,845 kWh/year (58.4 kWh/m²-year). It also improves thermal comfort by 1.4% (from 853 to 841 discomfort hours), while delivering a positive NPV_{50 years} of £8,488. The project's total capital investment is calculated of £271,738, reducing the original budget by 34.8%.

When single-optimising for thermal comfort, the model suggests the installation of H21: GSHP with underfloor heating with similar envelope insulation levels compared to the previous case, but considering double-glazed Krypton-filled windows instead of air-filled. The model also considers an airtight envelope, with a value of 0.6 ach. T5 LFC lighting is considered along the implementation of 3.9 kWp PV panels and a 20 kW turbine. This results in a high-energy

- 320 use of 50,571 kWh/year (65.9 kWh/m²-year); however discomfort hours are reduced to 550.
- 321 This BER has a capital investment of £316,444 and a DPB of 33.6 years.

324

327

328

330

331

332

333

334 335

336

337

338

339

340

341

342

343

344

345

346 347

348

349

350

- 322 Finally, by single-optimising NPV, the model considers H31: microCHP and gas boiler 323 connected to a CAV system. The solution considers low insulation levels (with some parts not even meeting minimum Part L2B requirements) and an improvement on the airtightness of the 325 building of just 20% (0.8 ach). In the model, the windows are retrofitted to double-glazed air-326 filled, while considering a more efficient lighting system of T5 LFCs. It also suggests the installation of 3.9 kWp of PV panels and a 20 kW turbine. With this design, the building demands 209,006 kWh/year (272.4 kWh/m²-year) while keeping thermal comfort at the same 329 level as the original design (853 discomfort hours). However, it has the best economic performance with a payback of 23.7 years requiring a capital investment of £262,992.
 - 4.1.2 Exergy/exergoeconomics-based single objective results
 - In the exergy/exergoeconomics-based approach, by single-optimising building exergy destructions, the optimisation procedure delivers a design composed of H15: district heating connected to a wall heating system. From a 2nd Law perspective, district systems (especially waste heat-based) are considered as the most ideal low-exergy supplying systems due to their high efficiency in using low grade heat. The design is combined with medium levels of insulation, where just the basement walls and ground insulation meet Part L2 requirements. The design also proposes a reduction of 20% in the air leakage (0.8%) with no retrofit in the glazing system. The lighting system is changed to T8 LED, with no PV panels and a 20 kW wind turbine. The model is able to reduce thermodynamic irreversibilities from the actual retrofit of 104,918 kWh/year (136.8 kWh/m²-year) to 78,938 kWh/year (102.9 kWh/m²-year) and improves exergy efficiency (Ψ) from an already high value of 18.0% to 22.2%. Discomfort levels and the exergoeconomic cost-benefit indicator are also reduced to 791 hours and £0.23/h respectively. This BER design has a capital investment of £179,250 and a DPB of 50 years.
 - By single-optimising discomfort under an exergy oriented approach, the BER design is based on a H28: biomass boiler with wall panel heating with high envelope insulation values, suggesting the installation of 0.25m of EPS for the above ground walls, 0.14m of cork board for the ground floor and 0.12m of cork board for the pitched roof. It also suggests a 0.07m of EPS for the basement walls. This is combined with a slight improvement in the airtightness of 10% (0.9 ach) and the installation of double-glazed air filled windows. For active systems, it

recommends the installation of T5 LFC and 7.8 kWp PV panels. This design reduces exergy destructions to 90,364 kWh/year (117.8 kWh/m²-year) and improves exergy efficiency to 19.5%. In addition, it reduces discomfort hours to 584 hours and minimises exergoeconomic cost-benefit value to £0.28/h. The design requires an investment of £256,761 delivering a DPB of 43.7 years.

Finally, of great interest are the results obtained from the single optimisation of the novel exergoeconomic cost-benefit indicator. This design suggests an HVAC system based on H29: biomass boiler connected to underfloor heating. The algorithm chooses a low-exergy efficient system but with a high renewability factor and high income from government incentives. The envelope is characterised by high levels of insulation in the roof and ground floors and low levels in the walls and pitched roof. A building airtightness of 0.9 *ach* and the utilisation of the pre-retrofit single glazing is also considered by the model. For active systems, the models suggest the installation of highly efficient T5 LFC lighting and the implementation of 7.8 kWp of PV panels. This design results in exergy destructions of 87,405 kWh/year (114.0 kWh/m²-year) and an exergy efficiency of 19.9%. Discomfort values are reduced to 666 hours per year. Moreover, the exergoeconomic cost-benefit indicator reaches a value of -£0.11/h, meaning that the project was exergoeconomically efficient. This is supported by a low cost BER design (£180,017) with a payback of 26.7 years; similar to the one obtained by optimising NPV in the energy-based approach.

Table 9 provides a comparative study of other main indicators. As seen in the results, the solution that reduced the most carbon emissions is the single optimisation of the exergoeconomic cost-benefit indicator. This design provides the best overall performance, obtaining the best outcomes in three main indicators without delivering indicators showing unsatisfactory performance. This large reduction is achieved thanks to the installation of the biomass-based boiler (0.039 kgCO₂e/kWh) working with low temperature floor systems combined with the 7.8 kWp of PV panels (0.075 kgCO₂e/kWh). On the other hand, as expected the NPV single optimisation provided the best economic outcomes; however, it presents the worst performance in seven other indicators related to carbon emissions and exergy use.

[Table 9 around here]

4.2 Triple-objective analysis

As mentioned, the 475 constrained models obtained in the energy/economic-based MOO procedure, represent less than 4.8% of all the simulated models. In this case the Pareto front is composed of just nine solutions. The sample is dominated by H21: GSHP and underfloor heating, appearing in 66.6% of the solutions. H31: microCHP with condensing boiler and H28: Biomass boiler and wall heating also appear in the Pareto front. For envelope's insulation, not a single technology appears to dominate the solutions, with XPS and polyurethane being the most common solutions. The rest of the envelope is mainly dominated from high levels of infiltration (>0.7 ach) and single-glazing. For renewable energy, 20 kW turbine and 13.8 kWp of PV panels appear most frequently.

On the other hand, the exergy/exergoeconomics-based optimisation delivers an even smaller constrained search space with 344 models, representing 3.5% of the simulated space; however, it is able to deliver more Pareto optimal solutions with fourteen non-dominated models. This suggests that an exergy/exergoeconomics-based optimisation presents better performance and more variability among models, locating solutions in a wider spectrum. The most frequent HVAC system is H29: biomass boiler and underfloor heating with a frequency of 64.2%. This is followed by H15: district heating with wall heating with a frequency of 21.4%. For the insulation measures, high variability existed among technologies and thicknesses, with XPS and EPS being the most common measures. The air tightness of the building is characterised for solutions with 0.8 *ach*. In terms of glazing systems, double glazing technologies are the most frequent. For renewable technologies, 20 kW wind turbines and 11.7 kWp are the most common measures.

Fig. 4 and Fig. 5 shows a comparison of all the constrained solutions and the non-dominated Pareto fronts for the energy/economics and exergy/exergoeconomics based approaches respectively. For both graphs, the current retrofitted building can be located. In this case, every single Pareto point presents a better overall performance compared to the baseline model.

408 [Fig. 4 around here]

409 [Fig. 5 around here]

410 4.3 Algorithm behaviour – Convergence study

To check convergence in objectives, a comparison in the algorithm behaviour for both approaches is presented. Fig. 6 illustrates the convergence rates for the three studied objectives for the energy/economic optimisation. The results demonstrate that energy use converged rather early reaching the minimum value at the 28th generation. However, the discomfort hours and NPV converged at a much later stage (around the 60th generation). As it can be seen, the minimum value for in-site building energy use, found in the third generation (~70 kWh/m²-year) is similar to the optimised value. This means that the algorithm selected a 'strong' and 'healthy individual' at an early stage in the simulation. On the other hand, due to the study strict constraints on capital investment and thermal comfort, larger number of generations were required for these objectives to converge within an acceptable value.

421 [Fig. 6 around here]

Fig. 7 illustrates the convergence rates for the exergy/exergoeconomic optimisation. Although it might seem that exergy destruction rate converged late in the optimisation process (generation 77th), the values at the initial generation already presented similar values to the final optimised value. The same behaviour is found for the discomfort hours, reaching convergence after the 8th generation. In the case of the exergoeconomic cost-benefit indicator the initial value of £0.20/h already represented a major improvement from the actual Passivhaus retrofit (£1.33/h); however, it was after generation 74th when it reached the best outcome (-£0.11/h) due to economic constrains set in the study.

431 [Fig. 7 around here]

4.4 A statistical comparison of optimisation outputs

Although there is no minimum sample size for a t-test to be valid, it is considered that the Pareto fronts are too small (sample sizes: 9 and 14); therefore, it is decided to perform the analysis in the constrained solutions (474 and 343 samples). For the test, the analysed indicators are the same as presented in Table 9. Fig. 8 presents boxplots for each of these

outputs. The boxplots would also help to determine each output's variability, median values (skewness), and outliers. Although not conclusive, the test should provide an initial evidence to exhibit that, on average, either approach delivers better outcomes than the real retrofit. Although the t-test requires normally distributed samples, the test is not sensitive to deviation if the distribution of both samples' outputs is similar and the sample size is large enough (>50). Nevertheless, data transformation is required to make the output samples more normally distributed, meaning to remove some extreme outliers.

445 [Fig. 8 around here]

The independent t-test results are displayed in Table 10. Beforehand, it was expected that each approach dominates its related outputs, meaning that the energy/economic optimisation would deliver better indicators such as energy, NPV, LCC; while the exergy/exergoeconomic optimisation would perform better in indexes such as exergy destruction cost, exergy efficiency, etc. However, there are outputs such as discomfort and carbon emissions which were of great interest for this study.

[Table 10 around here]

According to the results, discomfort hours and annual revenue p-values demonstrated that the difference between the approaches' means, at a significance level of 5%, do not have statically significant difference from zero; therefore, there is insufficient evidence to suggest that either approach has a better performance. The discomfort hours' indicator p-value was expected, as this objective was optimised for both approaches; however, the fact that the annual revenue's energy/economic optimisation do not seem to outperform its exergy/exergoeconomic counterpart, suggests that exergoeconomic optimisation can also deliver cost-effective solutions without the need to invest larger amounts, as shown in the NPV t-test outputs. However, the indicator that seemed to provide the most meaningful outcome is the annual carbon emissions, where there is an average difference in annual emissions of 7.67 tCO₂ in favour of the exergy/exergoeconomic solutions. The t-test provided a 95% confidence interval of the mean difference between 5.8 and 9.78 tCO₂ and a small p-value of 7.16E-15; therefore the null-hypothesis can be rejected and conclude that the exergy/exergoeconomic optimisation approach, at least for this specific case study, provides larger carbon emission reductions.

5. Conclusions

This paper presented two different approaches (1st Law and combined 1st & 2nd Laws) for the optimisation of building energy retrofit designs under tight economic constraints. A recently retrofitted Passivhaus community centre has been used as case study. The results, although presented for a single case, clearly demonstrate the strengths of exergoeconomic optimisation compared to 1st Law-only optimisation (energy and typical economics). Considering the practical limitations that ExRET-Opt might present, the inclusion of exergy/exergoeconomics as objective functions into the MOO procedure has resulted in models with better overall performance, including non-thermodynamic values such as thermal comfort and carbon emissions.

However, due to the high capital investment constraints and high technological prices for low-exergy systems, some Pareto solutions under the exergy/exergoeconomic optimisation are based on high exergy systems (e.g. biomass boilers). This has deprived the optimisation model from suggesting more thermodynamic efficient designs. In an ideal thermodynamic situation, the BER system design would be based on either a high efficient low-temperature lift GSHP or on a waste-heat or low-carbon-based district system network, combined with low temperature hydronic systems and medium levels of envelope's thermal insulation. Nevertheless, the exergy-oriented approach is able to double the thermodynamic efficiency by focusing on improving exergy efficiency on generation systems and electrical appliances. The optimisation drove BER designs towards low-carbon HVAC systems, allocating limited budget to efficient active systems and suggesting U_{values} (envelope and glazing), and infiltration rates not as strict as government minimum requirements. These results suggest that both 1st and 2nd Law analysis, as they have the capability to locate exact sources of inefficiency, should be used together as objective functions and constraints in optimisation procedures.

Exergy and exergoeconomic optimisation could have an important future role in the building industry if some practical barriers can be overcome. The analysis has demonstrated to provide designs with an appropriate balance between active and passive measures, while consistently accounting of irreversibilities and its exergetic and economic costs along every subsystem in the building energy system. Meanwhile, the application of the exergoeconomic cost-benefit index as an objective function could provide more consistent outputs among a large variety of indicators. This index could be a practical solution as it supports building designers in making informed and robust economic decisions.

The outputs from this study should critically expose the limitations of using energy analysis only, demonstrating how the 1st Law is only a necessary calculation while the utilisation of the 1st and 2nd Laws simultaneously becomes a sufficient condition for an in-depth analysis. It is sought that the lessons learned and conclusions from this study may be useful for future retrofit standards and appropriate taxation across the UK and other countries. Minimising exergy destructions at a larger scale could provide countries with greater energy security as high-quality energy sources can be used more efficiently in sectors such as the chemical industry and transport. Nevertheless, more case studies and optimisation runs are necessary to generalise these conclusions.

Acknowledgments

502

503

504

505506

507

508

509

510

511

515

- 512 The first author acknowledges support from The Mexican National Council for Science and
- Technology (CONACyT) through a scholarship to pursue doctoral studies with a CVU: 331698
- 514 and grant number: 217593.

Nomenclature

516	ach	air change rates (1/h)
517	BER	building energy retrofit
518	\dot{C}_D	exergy destruction cost rate (£/h)
519	$\dot{\mathcal{C}}_p$	exergy cost balance (£/kWh)
520	c_f	average cost of fuel (£/kWh)
521	c_p	average cost of product (£/kWh)
522	CAV	constant air volume
523	CRF	capital recovery factor (£)
524	DHW	domestic hot water
525	DPB	discounted payback (years)
526	e	Euler's number
527	EPS	Expanded Polystyrene
528	EUI	energy use index (kWh/m²-year)
529	Ex	exergy (kWh)
530	\dot{Ex}_D	exergy destructions (kWh)
531	Ex_{dem}	exergy demand
532	Ex_{prim}	primary exergy
533	$Exec_{CB}$	exergoeconomic cost benefit factor (£/h)

534	f_k exergoeconomic factor (-)
535	F_p primary energy factor (-)
536	\boldsymbol{F}_q quality factor (-)
537	FiT feed-in-tariff
538	GSHP ground source heat pump
539	H internal heat production rate (W/m²)
540	HVAC heating, ventilation, and air conditioning
541	i interest rate (%)
542	kW Kilowatt(s)
543	kWh Kilowatt-Hour(s)
544	L energy loss (W/m²)
545	LCC life cycle cost (£)
546	LFC Lampe Fluorescente Compacte
547	M metabolic rate (W/m²)
548	MVHR mechanical ventilation heat recovery
549	NPV net present value (£)
550	N project lifetime (years)
551	NSGA Non-Dominated Sorting Genetic Algorithm
552	PMV predicted mean vote
553	PW present factor (£)
554	R annual revenue (£)
555	\dot{R} annual revenue rate (£/h)
556	r_k relative cost difference (-)
557	RHI renewable heat incentive (£)
558	SV salvage cost (£)
559	T_0 reference temperature (K)
560	$T_{\rm i}$ room temperature (K)
561	TCI total capital investment (£)
562	U _{value} thermal transmittance (W/m²-K)
563	VAV variable air volume
564	VRF variable refrigerant flow
565	$Z_j(\mathbf{x} *)$ objective function
566	\dot{Z}_{sys} capital investment rate (£/h)
567	Greek symbols
568	ψ_{tot} exergy efficiency (-)
569	

- Appendices
 Appendix A. Exergy/exergoeconomic calculation framework [52, 53]
- 573 A.1 Exergy analysis for building energy systems
- 575 A.1.1 HVAC exergy stream

572

574

576

- 577 a) Detailed thermal exergy demand (heat and matter): $Ex_{dem,therm,zone\ i}(t_k) = \sum_{i=1}^{n} \left(En_{dem,therm\ ith}(t_k) * \left(1 \frac{T_0\ (t_k)}{T_i\ (t_k)} \right) \right) \tag{A.1}$
- $t = 1 \left(\begin{array}{ccc} t & t & t \\ t & t \end{array} \right) \left(\begin{array}{ccc} T_{i}(t_{k}) \\ T_{i}(t_{k}) \end{array} \right)$
- 579 $Ex_{dem,vent, zone i}(t_k) = \sum_{i=1}^{n} \left(En_{dem, vent ith}(t_k) * \left(1 \frac{T_0(t_k)}{T_i(t_k) T_0(t_k)} ln \frac{T_i(t_k)}{T_0(t_k)} \right) \right)$ (A.2)
- b) Room air subsystem:

581
$$F_{q,room}(t_k) = 1 - \frac{T_0(t_k)}{T_{emission}(t_k)}$$
 (A.3)

Therefore, the exergy load of the room is:

583
$$Ex_{room}(t_k) = F_{q,emission}(t_k) * Q_{emission}(t_k)$$
 (A.4)

- 584 c) Emission subsystem:
- Referencing to the inlet and return temperature of the system, the exergy losses of the
- 586 emission system are calculated as follows:

587
$$\Delta E x_{emission}(t_k) = \frac{Q_{tot}(t_k) + Q_{loss,HS}(t_k)}{T_{in}(t_k) - T_{ret}(t_k)} * \left\{ (T_{in}(t_k) - T_{ret}(t_k)) - T_0(t_k) * \ln\left(\frac{T_{in}(t_k)}{T_{ret}(t_k)}\right) \right\}$$
(A.5)

588 Therefore, exergy load rate of the heating system is:

589
$$Ex_{emission}(t_k) = Ex_{room}(t_k) + \Delta Ex_{emission}(t_k)$$
 (A.6)

- 590 d) Distribution subsystem:
- As a result of the heat losses in the supply pipe, a temperature drop occurs (ΔT_{dis}). The exergy
- 592 demand of the distribution system is:

593
$$\Delta E x_{dist}(t_k) = \frac{Q_{loss,dist}(t_k)}{\Delta T_{dist}(t_k)} * \left\{ (\Delta T_{dist}(t_k) - T_0(t_k)) * \ln \left(\frac{T_{dist}(t_k)}{T_{dist}(t_k) - \Delta T_{dist}(t_k)} \right) \right\}$$
(A.7)

Hence, the exergy load of the distribution system is:

595
$$Ex_{dist}(t_k) = Ex_{emission}(t_k) + \Delta Ex_{dist}(t_k)$$
 (A.8)

596 e) Storage subsystem:

The exergy demand of the storage can be calculated as follows:

$$598 \qquad \Delta E x_{strg} = \frac{Q_{loss,strg}(t_k)}{\Delta T_{strg}(t_k)} * \left\{ (\Delta T_{strg}(t_k) - T_0(t_k)) * \ln \left(\frac{T_{dist}(t_k) + \Delta T_{strg}(t_k)}{T_{dis}(t_k)} \right) \right\}$$
(A.9)

And the exergy load is calculated as follows:

$$Ex_{stra}(t_k) = Ex_{dist}(t_k) + \Delta Ex_{stra}(t_k)$$
(A.10)

601

- 602 A.1.2 DHW exergy stream
- 603 Exergy demand for domestic hot water is calculated as follows::

604
$$Ex_{dem,DHW}(t_k) = Q_{DHW}(t_k) * \frac{\eta_{WH}(t_k)}{q_{fuel}} * \left(1 - \left(\frac{T_0(t_k)}{T_{p_{WH}}(t_k) - T_0(t_k)}\right) * \ln\left(\frac{T_{p_{WH}}(t_k)}{T_0(t_k)}\right)\right)$$
 (A.11)

- Distribution and storage subsystem in the DHW stream is calculated similar to the HVAC
- 606 stream.
- 607 A.1.3 Electric-based exergy stream
- 608 Electric-based equipment such as fans, pumps, lighting, computers, and motors are
- considered to have the same exergy efficiency as their energy counterpart ($\psi_{elec} \approx \eta_{elec}$) and
- therefore the same exergy consumption.

611
$$Ex_{dem,elec,i}(t_k) = En_{dem,elec,i}(t_k) * F_{q,elec}$$
 (A.12)

612

- 613 A.1.4 Other end-use streams
- 614 Exergy demand for cooking equipment (gas based):

615
$$Ex_{dem,cooking} = Q_{cook}(t_k) * \frac{\eta_{cook}(t_k)}{q_{fuel}} * \left(1 - \frac{T_0(t_k)}{T_{p_{cook}}(t_k)}\right)$$
 (A.13)

616 Exergy demand for refrigeration:

617
$$Ex_{dem,ref}(t_k) = Q_{ref}(t_k) * COP_{ref}(t_k) \left(\frac{T_0(t_k)}{T_{p_{ref}}(t_k)} - 1 \right)$$
 (A.14)

- 618 A.1.5 Primary Exergy Input
- For primary exergy input, the following formula is used:

$$Ex_{prim}(t_k = \sum_i \left(\frac{En_{gen,i}(t_k)}{*n_{gen,i}(t_k)} * F_{p,source,i} * F_{q,source,i} \right) + \left(Ex_{dem,elec,ith}(t_k) * F_{p,elec} \right)$$
(A.15)

Fuel primary energy factors and quality factors used in this study are shown in Table A.1

622 623 [Table A.1 around here] 624 625 A.1.6 Exergy destructions and exergy efficiency Exergy destructions is obtained by subsystems or whole building is obtained as follows: 626 627 $Ex_{dest,i} = Ex_{IN,i} - Ex_{OUT,i}$ (A.16) 628 Therefore, a building's exergy efficiency Ψ_i is obtained as follows: $\Psi_{sys,i}(t_k) = \frac{Ex_{out,i}(t_k)}{Ex_{in,i}(t_k)}$ 629 (A.17)630 631 A.2 Economic/Exergoeconomic analysis 632 633 A.2.1 Economic analysis 634 635 The proposed framework recommends and considers typical economic calculations as a first 636 assessment. a) Life cycle cost analysis (LCCA) 637 $LCCA = \sum_{n=1}^{N} \frac{cF_n}{(1+r_d)^n}$ 638 (A.18)where CF_n is the annual cash flow of year n , N is the total years of evaluation, and r_d is the 639 640 discount rate. The annual cash flow is calculated as follows: $CF_n = [C_n^B + O \& M_n^B] + [C_n + O \& M_n] + [C_{en} - C_{inc}] - SV_N$ 641 (A.19)where $\mathcal{C}_n^{\mathcal{B}}$ is the baseline capital cost, $O\&M_n^{\mathcal{B}}$ is the baseline operation and maintenance cost, 642 \mathcal{C}_n is the incremental capital cost in year $\textit{n},~\textit{O}\&\textit{M}_n$ is the incremental operation and 643

maintenance cost in year n, \mathcal{C}_{en} is the annual energy cost, \mathcal{C}_{inc} is annual income from

- incentives, and SV_N is the salvage cost or residual value with measures with longer lifespan (considering a common rate of 15%).
- b) Net Present value (NPV) and Discounted Payback (DPB)

648
$$NPV_{Nyears} = -TCI + \left(\sum_{n=1}^{N} \frac{R}{(1+i)^n}\right) + \frac{SV_N}{(1+i)^N}$$
 (A.20)

where *TCI* is the initial total capital investment, *R* is the annual revenue cost (composed of the annual energy cost savings minus the operation and maintenance cost). A lifespan (N) of 50 years and a discount rate (i) of 3% [59] are considered. DPB can be calculated by contracting the Taylor Series of the NPV formula and by accounting for the retrofit project annual revenue:

653
$$DPB = -\frac{\ln\left[\left((1-(1+i))*\left(\frac{TCI}{R}\right)\right)+1\right]}{\ln(1+i)}$$
 (A.21)

- 654 ExRET-Opt accounts for programs such as FiT and RHI. Other economic parameters that are
- considered are energy price escalation, inflation rate, labor and maintenance cost, taxes, etc.
- Table A.2 shows energy tariffs including CCL for 'small' non-domestic consumers.
- 657 [Table A.2 around here]

658

- An annual energy price escalation until 2035 for gas and electricity is considered. [60]. Prices
- from 2035 onwards maintain the same value. Additionally, energy price forecasts for other
- energy sources are not considered.
- Table A.3 shoes government incentives considered in the analysis. Price changes are not
- 663 considered for these schemes.
- [Table A.3 around here]

665

666 A.2.2 Exergoeconomic analysis (SPECO) [61]

- This section shows the main exergoeconomic equations used in this study. Rates are
- presented in £/h.
- An exergy cost stream rate associated with the corresponding stream *i* is calculated as follows:

$$\dot{C}_i = c_i E x_i \tag{A.22}$$

- where c_i and Ex_i are the streams' specific cost and exergy, respectively. A general cost
- balance expression rate is expressed as follows:

674
$$\dot{C}_{p,k} = \dot{C}_{D,k} + \dot{Z}_{sys}$$
 (A.23)

In addition, the exergy destruction cost rate of a component is defined as:

676
$$\dot{C}_{D,k} = c_{f,K} \dot{E} x_{D,k}$$
 (A.24)

- To obtain building exergy destruction cost rate, a sum of all subsystems' components is
- 678 needed:

679
$$\dot{C}_{D,sys} = \sum_{k=0}^{n} (c_{f,K} \dot{E} x_{D,k})$$
 (A.25)

- To account for the component capital investment, we should convert it into an hourly rate
- dependant also on the project's lifetime:

$$Z_{sys} = \frac{PW \cdot CRF}{\tau}$$
 (A.26)

683 PW and CRF are obtained as follows:

684
$$PW = TCI - \frac{SV_N}{(1+i)^N}$$
 (A.27)

685
$$CRF = \frac{i(1+i)^n}{(1+i)^n - 1}$$
 (A.28)

- Apart from the basic exergoeconomic evaluation, within the SPECO method, two additional
- performance indicators can be calculated:
- 688 Relative cost difference

689
$$r_k = \frac{c_{P,k} - c_{F,k}}{c_{F,k}}$$
 (A.29)

690 Exergoeconomic factor

691
$$f_k = \frac{\dot{z}_k}{\dot{z}_k + c_{F,k}(\dot{E}\dot{x}_{D,k})}$$
 (A.30)

- 692 Appendix B ExRET-Opt BER strategies techno-economic characteristics [11]
- 693 [Table B.1 around here]
- 694 [Table B.2 around here]

695	[Table B.3 around here]
696	[Table B.4 around here]
697	[Table B.5 around here]
698	[Table B.6 around here]
699	
700	
701	

References

702

- 703 [1] Pérez-Lombard L, Ortiz J, Pout C. A review on buildings energy consumption information. 704 Energy and Buildings. 2008;40(3):394-8.
- [2] Metz B, Davison OR, Bosch PR, Dave R, Meyer LA. Climate Change 2007: Mitigation of Climate Change. In: IPCC, editor. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 2007.
- 708 [3] UNEP-SBCI. Buildings and Climate Change Summary for Decision-Makers. UNEP Sustainable Buildings & Climate Initiative. 2009.
- 710 [4] Nguyen A-T, Reiter S, Rigo P. A review on simulation-based optimization methods applied to building performance analysis. Applied Energy. 2014;113(0):1043-58.
- [5] Attia S, Hamdy M, O'Brien W, Carlucci S. Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design. Energy and Buildings. 2013;60(0):110-24.
- 715 [6] Evins R. A review of computational optimisation methods applied to sustainable building design. Renewable and Sustainable Energy Reviews. 2013;22(0):230-45.
- 717 [7] Diakaki C, Grigoroudis E, Kolokotsa D. Towards a multi-objective optimization approach for improving energy efficiency in buildings. Energy and Buildings. 2008;40(9):1747-54.
- 719 [8] Diakaki C, Grigoroudis E, Kabelis N, Kolokotsa D, Kalaitzakis K, Stavrakakis G. A multi-720 objective decision model for the improvement of energy efficiency in buildings. Energy. 721 2010;35(12):5483-96.
- [9] Siddharth V, Ramakrishna PV, Geetha T, Sivasubramaniam A. Automatic generation of energy conservation measures in buildings using genetic algorithms. Energy and Buildings. 2011;43(10):2718-26.
- [10] Asadi E, da Silva MG, Antunes CH, Dias L. A multi-objective optimization model for building retrofit strategies using TRNSYS simulations, GenOpt and MATLAB. Building and Environment. 2012;56(0):370-8.
- 728 [11] Diakaki C, Grigoroudis E, Kolokotsa D. Performance study of a multi-objective 729 mathematical programming modelling approach for energy decision-making in buildings. 730 Energy. 2013;59:534-42.
- 731 [12] Gossard D, Lartigue B, Thellier F. Multi-objective optimization of a building envelope for 732 thermal performance using genetic algorithms and artificial neural network. Energy and 733 Buildings. 2013;67:253-60.
- 734 [13] Malatji EM, Zhang J, Xia X. A multiple objective optimisation model for building energy efficiency investment decision. Energy and Buildings. 2013;61(0):81-7.
- [14] Asadi E, Silva MGd, Antunes CH, Dias L, Glicksman L. Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application. Energy and Buildings. 2014;81(0):444-56.
- 739 [15] Murray SN, Walsh BP, Kelliher D, O'Sullivan DTJ. Multi-variable optimization of thermal energy efficiency retrofitting of buildings using static modelling and genetic algorithms A

741 case study. Building and Environment. 2014;75(0):98-107.

- 742 [16] Shao Y, Geyer P, Lang W. Integrating requirement analysis and multi-objective
- 743 optimization for office building energy retrofit strategies. Energy and Buildings. 2014;82:356-
- 744
- 745 [17] Wang B, Xia X, Zhang J. A multi-objective optimization model for the life-cycle cost 746 analysis and retrofitting planning of buildings. Energy and Buildings. 2014;77(0):227-35.
- 747 [18] Ascione F, Bianco N, De Stasio C, Mauro GM, Vanoli GP. A new methodology for cost-
- 748 optimal analysis by means of the multi-objective optimization of building energy performance.
- Energy and Buildings. 2015;88(0):78-90. 749
- 750 [19] Echenagucia, T. M., Capozzoli, A., Cascone, Y., & Sassone, M. The early design stage
- of a building envelope: Multi-objective search through heating, cooling and lighting energy 751
- 752 performance analysis. Applied Energy. 2015;154:577-591.
- 753 [20] Dahlhausen M, Heidarinejad M, Srebric J. Building energy retrofits under capital
- 754 constraints and greenhouse gas pricing scenarios. Energy and Buildings. 2015;107:407-16.
- 755 [21] Carlucci, S., Cattarin, G., Causone, F., & Pagliano, L. Multi-objective optimization of a
- 756 nearly zero-energy building based on thermal and visual discomfort minimization using a non-
- 757 dominated sorting genetic algorithm (NSGA-II). Energy and Buildings. 2015; 104: 378-394.
- [22] Lu Y, Wang S, Zhao Y, Yan C. Renewable energy system optimization of low/zero energy 758
- 759 buildings using single-objective and multi-objective optimization methods. Energy and
- 760 Buildings. 2015;89(0):61-75.
- [23] Ascione, F., Bianco, N., De Masi, R. F., Mauro, G. M., & Vanoli, G. P. Design of the 761
- 762 building envelope: A novel multi-objective approach for the optimization of energy
- performance and thermal comfort. Sustainability. 2015; 7(8):10809-10836 763
- 764 [24] Ascione, F., Bianco, N., De Masi, R. F., De Stasio, C., Mauro, G. M., & Vanoli, G. P. Multi-
- objective optimization of the renewable energy mix for a building. Applied Thermal 765 766 Engineering. 2015; 101:612-521
- [25] Penna P, Prada A, Cappelletti F, Gasparella A. Multi-objectives optimization of Energy 767
- 768 Efficiency Measures in existing buildings. Energy and Buildings. 2015;95(0):57-69.
- 769 [26] Delgarm N, Sajadi B, Kowsary F, Delgarm S. Multi-objective optimization of the building
- 770 energy performance: A simulation-based approach by means of particle swarm optimization 771 (PSO). Applied Energy. 2016;170:293-303.
- 772 [27] Ascione, F., Bianco, N., De Stasio, C., Mauro, G. M., & Vanoli, G. P. Simulation-based
- 773 model predictive control by the multi-objective optimization of building energy performance
- 774 and thermal comfort. Energy and Buildings. 2016;111:131-144.
- [28] Schwartz Y, Raslan R, Mumovic D. Implementing multi objective genetic algorithm for life 775
- 776 cycle carbon footprint and life cycle cost minimisation: A building refurbishment case study.
- 777 Energy. 2016;97:58-68.
- [29] Hamdy, M., Nguyen, A. T., & Hensen, J. L. A performance comparison of multi-objective 778
- 779 optimization algorithms for solving nearly-zero-energy-building design problems. Energy and
- 780 Buildings. 2016;121:57-71.
- [30] Fan, Y., & Xia, X. A multi-objective optimization model for energy-efficiency building 781
- 782 envelope retrofitting plan with rooftop PV system installation and maintenance. Applied
- 783 Energy. 2017; 189: 327-335.
- 784 [31] IEA-EBC Annex37. Technical Synthesis Report: Low Exergy Systems for Heating and
- 785 Cooling of Buildings, IEA ECBCS, UK, 2007.
- 786 [32] IEA-EBC Annex49. Detailed Exergy Assessment Guidebook for the Built Environment,
- 787 IEA ECBCS. Torio H, Schmidt D, editors. Fraunhofer, IBP; 2011.
- 788 [33] Ala-Juusela M, Angelotti A, Koroneos C, Van der Kooi HJ, Simone A, Olesen BW. Low-
- 789 exergy in the built environment insights from the costeXergy action 2007-2012 In: Technology 790 CECiSa, editor. 2014.
- 791 [34] Remer DS, Nieto AP. A compendium and comparison of 25 project evaluation techniques.
- 792 Part 1: Net present value and rate of return methods. International Journal of Production
- 793 Economics. 1995;42(1):79-96.
- [35] Ashuri B, Kashani H, Lu J. An Investment Analysis Framework for Energy Retrofit in 794
- 795 Existing Buildings. 47th ASC Annual International Conference Proceedings. 2011:9.

- 796 [36] Rosen MA. Does industry embrace exergy? Exergy, An International Journal. 797 2002;2(4):221-3.
- 798 [37] Wall G. Exergy a useful concept within resource accounting. 1977(Report no. 77-42,
- 799 Institute of Theoretical Physics, Chalmers University of Technology and University of 800 Göteborg).
- [38] Verda V, Borchiellini R, Cali M. A Thermoeconomic Approach for the Analysis of District Heating Systems. International Journal of Thermodynamics. 2001;4(4):183-90.
- [39] Verda V, Kona A. Thermoeconomics as a tool for the design and analysis of energy savings initiatives in buildings connected to district heating networks. International Journal of Thermodynamics 2012;15(4):221-9.
- [40] Pirkandi J, Jokar MA, Sameti M, Kasaeian A, Kasaeian F. Simulation and multi-objective optimization of a combined heat and power (CHP) system integrated with low-energy buildings. Journal of Building Engineering. 2016;5:13-23.
- [41] Tozer R, Lozano Serrano MA, Valero Capilla A, James R. Thermoeconomics applied to an air conditioning system with cogeneration. Building Services Engineering Research and Technology. 1996;17(1):37-42.
- [42] Campos-Celador Á, Pérez-Iribarren E, Sala JM, del Portillo-Valdés LA. Thermoeconomic analysis of a micro-CHP installation in a tertiary sector building through dynamic simulation. Energy. 2012;45(1):228-36.
- [43] Ozgener O, Hepbasli A, Dincer I, Rosen MA. Modelling and assessment of ground-source heat pump systems using exergoeconomic analysis for building applications. Ninth International IBPSA Conference Montréal, Canada. 2005:15–8.
- 818 [44] Demirel Y, Öztürk HH. Thermoeconomics of seasonal latent heat storage system. 819 International Journal of Energy Research. 2006;30(12):1001-12.
- [45] Caliskan H, Dincer I, Hepbasli A. Thermoeconomic analysis of a building energy system integrated with energy storage options. Energy Conversion and Management. 2013;76(0):274-81.
- [46] Ucar A. Thermoeconomic analysis method for optimization of insulation thickness for the four different climatic regions of Turkey. Energy. 2010;35(4):1854-64.
- [47] Baldvinsson I, Nakata T. A comparative exergy and exergoeconomic analysis of a residential heat supply system paradigm of Japan and local source based district heating system using SPECO (specific exergy cost) method. Energy. 2014;74:537-54.
- [48] Yücer CT, Hepbasli A. Exergoeconomic and enviroeconomic analyses of a building heating system using SPECO and Lowex methods. Energy and Buildings. 2014;73(0):1-6.
- [49] Açıkkalp E, Yucer CT, Hepbasli A, Karakoc TH. Advanced low exergoeconomic (ALEXERGO) assessment of a building along with its heating system at various stages. Energy and Buildings. 2015;87(0):66-73.
- [50] García Kerdan I, Raslan R, Ruyssevelt P, Morillón Gálvez D. ExRET-Opt: An automated exergy/exergoeconomic simulation framework for building energy retrofit analysis and design optimisation. Applied Energy. 2017;192:33-58.
- [51] Garcia Kerdan, I., Raslan, R., Ruyssevelt, P., Vaiciulyte, S., Morillón Gálvez, D.
 Thermodynamic and exergoeconomic analysis of a non-domestic Passivhaus retrofit, *Building* and Environment, 2017. doi: 10.1016/j.buildenv.2017.03.003. In Press, Corrected Proof
- [52] García Kerdan I, Raslan R, Ruyssevelt P. An exergy-based multi-objective optimisation model for energy retrofit strategies in non-domestic buildings. Energy. 2016;117(2):506–522.
- [53] García Kerdan I, Raslan R, Ruyssevelt P, Morillón Gálvez D. An exergoeconomic-based parametric study to examine the effects of active and passive energy retrofit strategies for buildings. Energy and Buildings. 2016;133:155-71.
- [54] EnergyPlus. Getting Started with EnergyPlus. BasicConcepts Manual Essential
 Information You Need about Running EnergyPlus. The Board of Trustees of the University of
 Illinois and the Regents of the University of California through the Ernest Orlando Lawrence
- 847 Berkeley National Laboratory. 2012:73.
- 848 [55] Yoo S, Harman M. Pareto efficient multi-objective test case selection. Proceedings of the
- 849 2007 international symposium on Software testing and analysis. London, United Kingdom:
- 850 ACM; 2007. p. 140-50.

851 852 853	[56] ASHRAE. ANSI/ASHRAE Standard 55-2004. Thermal Environmental Conditions for Human Occupancy. American Society of Heating, Refrigerating and Air-conditioning Engineers; 2004.
854	[57] Roeva O, Fidanova S, Paprzycki M. Influence of the population size on the genetic
855	algorithm performance in case of cultivation process modelling. Conference Influence of the
856 857	population size on the genetic algorithm performance in case of cultivation process modelling. p. 371-6.
858	[58] Alajmi A, Wright J. Selecting the most efficient genetic algorithm sets in solving
859	unconstrained building optimization problem. International Journal of Sustainable Built
860 861	Environment. 2014;3(1):18-26. [59] HM Treasury. THE GREEN BOOK: Appraisal and Evaluation in Central Government. In:
862	Treasury H, editor. London, UK2003.
863	[60] NationalGrid. Future Energy Scenarios: UK gas and electricity transmission. 2015.
864 865	[61] Lazzaretto A, Tsatsaronis G. SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy. 2006;31(8–9):1257-89.
866	
867	
868	
869	
870	
871	
872	
873	

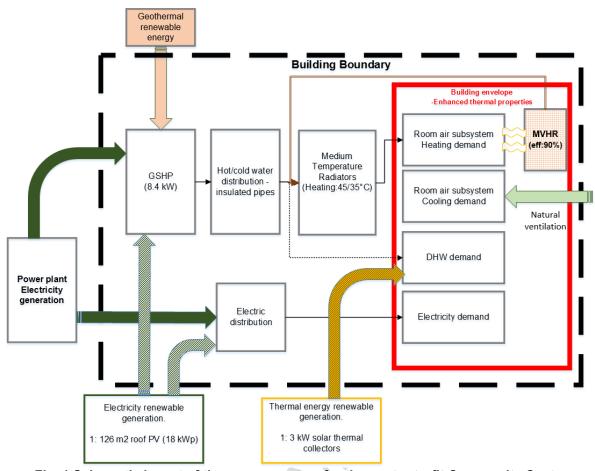


Fig. 1 Schematic layout of the energy system for the post-retrofit Community Centre

8/4 875

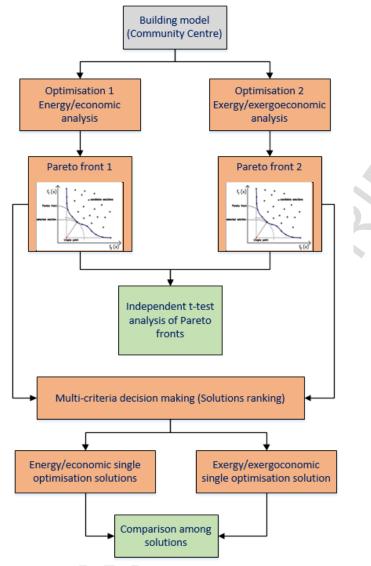


Fig. 2 Methodological approach to assess the differences between results of both optimisation approaches

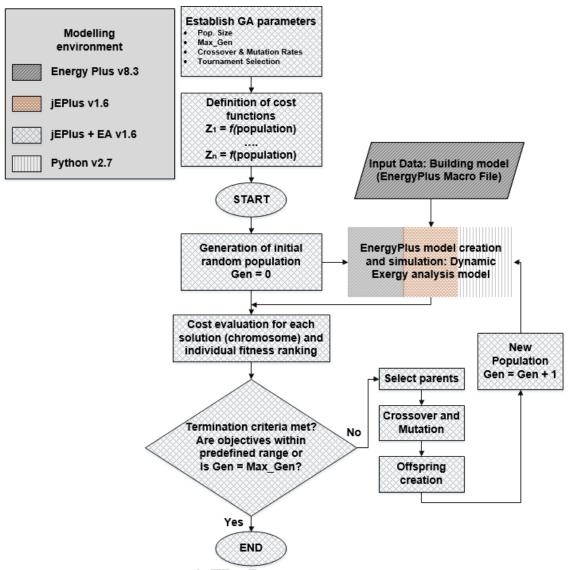


Fig. 3 Genetic algorithm optimisation process applied to the ExRET-Opt tool [52]

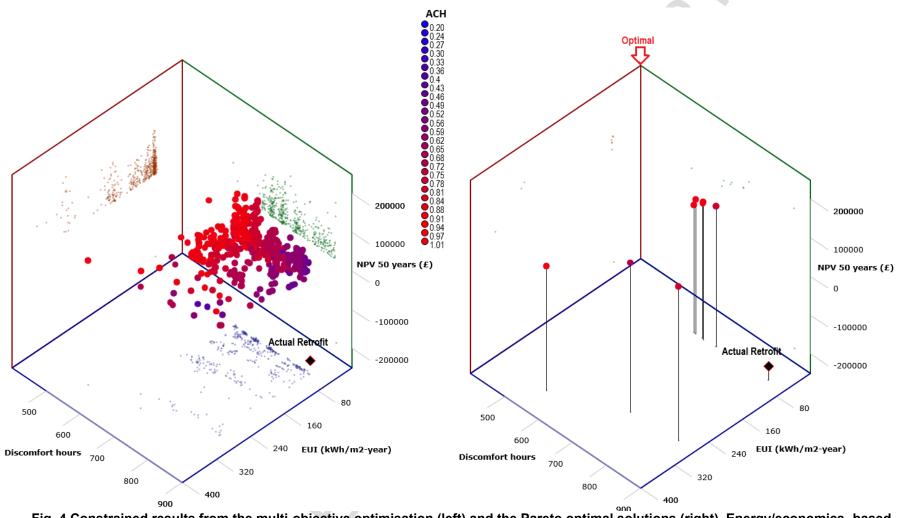


Fig. 4 Constrained results from the multi-objective optimisation (left) and the Pareto optimal solutions (right). Energy/economics- based optimisation

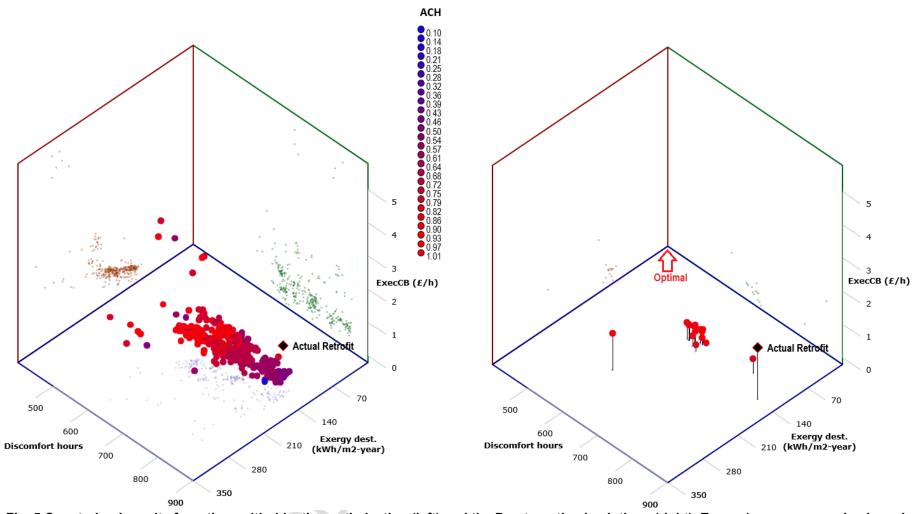


Fig. 5 Constrained results from the multi-objective optimisation (left) and the Pareto optimal solutions (right). Exergy/exergoeconomics-based optimisation

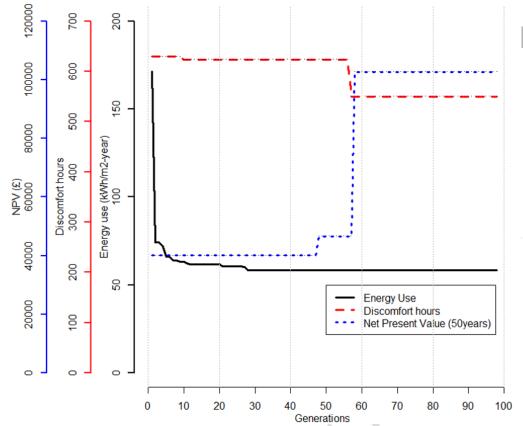


Fig. 6 Convergence of energy/economic optimisation procedure for the three objective functions

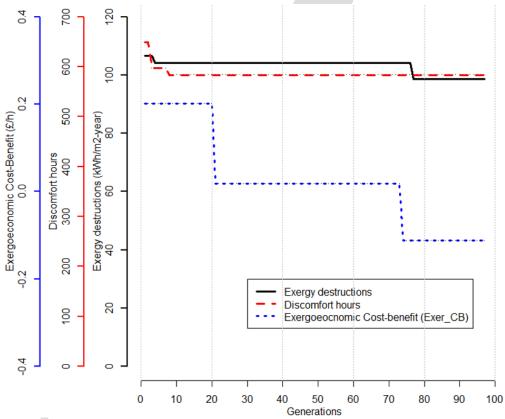


Fig. 7 Convergence of exergy/exergoeconomic optimisation procedure for the three-objective functions

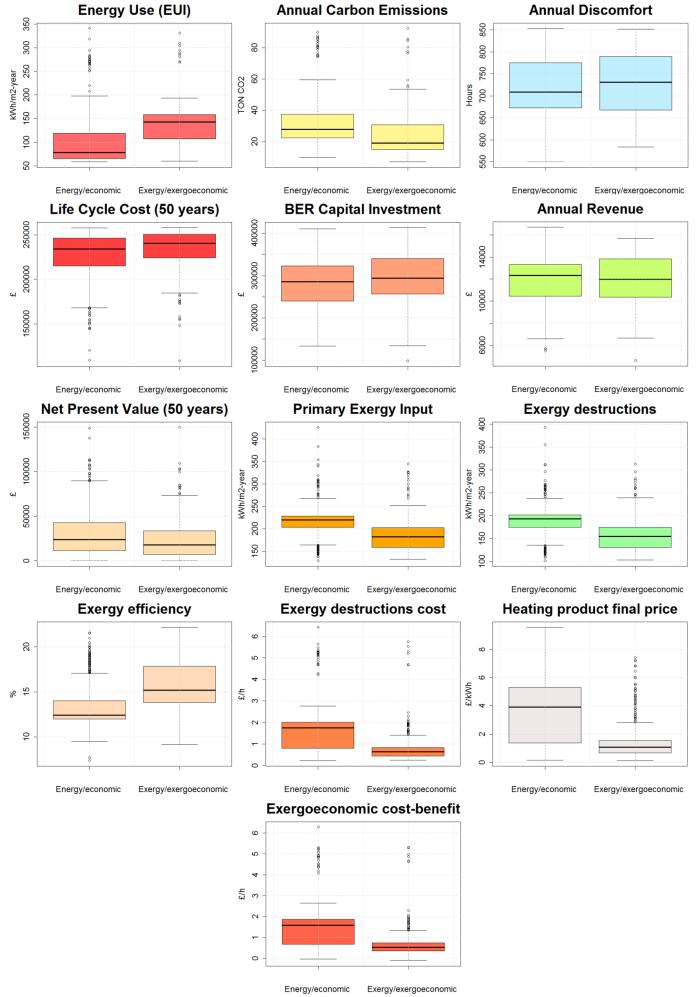


Fig. 8 Boxplots representing each output gathered for both optimisation approach

Table 1 Comparison of several multi-objective optimisation studies applied to building energy design studies

Author	Case study	Location(s)	Simulation engine(s)	Decision variables	Objective functions	Constraints	Optimisation algorithm	Ranking method
Diakaki et al. [7]	Single-zone dwelling (100 m2)	Athens, Greece	LINGO	Windows, insulation type, wall insulation thickness	Initial investment costBuilding load coefficient	Insulation thickness	Mixed-integer combinatorial optimisation problem	Compromise programming and goal programming
Diakaki et al. [8]	Single-zone dwelling (100 m2)	Athens, Greece	LINGO	HVAC and DHW systems, Solar collectors, and building envelope characteristics	 Primary energy use Carbon emissions Initial investment cost	Capital investment	Mixed-integer combinatorial optimisation problem	Chebyshev programming
Siddharth et al. [9]	Office building (3721 m2)	Chennai, India. Maryland, USA. Arkansas, USA	DOE-2.2	HVAC systems, envelope characteristics	Energy useInitial investment cost	Non-defined	NSGA-II	N/A
Asadi et al. [10]	Semi- detached dwelling (97 m2)	Coimbra, Portugal	TRNSYS, GenOpt, and MatLab	Envelope characteristics (windows, walls, and roof) and solar collectors	Initial investment costEnergy savingsThermal comfort	Non-defined	Mixed-integer combinatorial optimisation problem	Chebyshev programming
Diakaki et al. [11]	Single-zone dwelling 50m2	Iraklion, Greece	TRNSYS and LINGO	Envelope characteristics and HVAC systems	Primary energy useCarbon emissionsInitial investment cost	Technological and budget constraints	Mixed-integer multi- objective combinatorial optimisation problem	Chebyshev programming
Gossard et al. [12]	Single-zone dwelling (112 m2)	Nancy, France Nice, France	TRNSYS, GenOpt, and ANN	Envelope thermo-physical values	Energy useThermal comfort	Comfort conditions	NSGA-II and Particle swarm optimisation (PSO)	Weighted-sum method
Malatji et al. [13]	Facility building (m2)	Pretoria, South Africa	N/A	Insulation, lighting, controls, and HVAC systems	Energy usePayback period	NPV, initial investment, energy target, and payback period	Integer programming GA	Weighted-sum method

Asadi et al. [14]	School building 9850 m2	Coimbra, Portugal	TRNSYS, GenOpt, and ANN	Envelope characteristics (windows, walls, and roof), solar collectors, and HVAC systems	Energy use Retrofit cost Thermal comfort	Non-defined	NSGA-II	N/A
Murray et al. [15]	University building (m2)	Cork, Ireland	Degree-days and BeOpt	Envelope characteristics (windows, walls, and roof)	Simple paybackCarbon emissionsEnergy Cost	Capital investment	NSGA-II	N/A
Shao et al. [16]	Office building (400 m2)	Aachen, Germany	Visual Basic energy model	Envelope characteristics (windows, walls, and roof), and HVAC systems	Initial capital investmentEnergy use,Carbon emissions	Envelope physical values, annual energy use and envelope air leakage	NSGA-II	Multiple-attribute value theory (MAVT)
Wang et al. [17]	Facility building (m2)	Pretoria, South Africa	N/A	Lighting and HVAC systems	Energy savingsNPVEvaluation period	% energy use, expected payback period, initial investment	Differential evolution (DE) algorithms	Weighted sum method
Ascione et al. [18]	Apartment flats (110 m2 per flat)	Naples, Italy	EnergyPlus and MatLab	Setpoints, envelope insulation, and HVAC systems	Initial investment costHVAC energy requirementThermal comfort	Investment costs	NSGA-II	N/A
Echenagucia et al. [19]	Open space office (first floor) (280 m2)	Palermo, Torino, Frankfurt and Oslo	EnergyPlus	Wall thickness, Number, shape and placement of windows Glazing characteristics	HeatingCoolingLighting	Building physical characteristics	NSGA-II	N/A
Dahlhausen et al. [20]	Office building (6968 m2)	Philadelphia, USA	Open Studio, EnergyPlus, and R	Building enclosure, solar control, plug load/lighting control, and HVAC equipment	Energy useNPV	Investment costs	mixed-integer multi- objective combinatorial optimisation problem	N/A

Carlucci et al. [21]	detached single-family house (149.2 m2)	Mascalucia, Italy	EnergyPlus, GenOpt and Java	Envelope characteristics, control strategies, and window openings	Thermal comfort Visual comfort	Indoor air quality	NSGA-II	N/A
Lu et al. [22]	Office building (1520 m2)	Hong Kong, China.	TRNSYS and MatLab	Envelope and HVAC systems	Investment costsCarbon emissionsGrid interaction index.	Zero energy use	NSGA-II	N/A
Ascione et al. [23]	Apartment flats (110 m2 per flat)	Napes, Italy. Istambul, Turkey	EnergyPlus and MatLab	Solar absorbance and infrared emittance of external plastering, insulation thickness, brick thickness and density, windows' thermal transmittance	 Primary energy for space conditioning Thermal comfort 	Maximum value of admitted discomfort	NSGA-II	Weighted sum method
Ascione et al. [24]	Apartment flats (110 m2 per flat)	Napes, Italy	EnergyPlus and MatLab	Presence and the characteristics (typology and size) renewable systems (type and size of solar collectors, type and size of PV panels, generation system for heating, cooling and DHW)	 Primary energy consumption Investment cost 	Fulfillment of the minimum levels of RES integration per Italian law (minimum production of DHW, minimum size of PV, etc)	NSGA-II	Weighted sum method
			& C					

Penna et al. [25]	Single-zone dwelling (100 m2)	Milan, Italy. Messina, Italy	TRNSYS and MatLab	Envelope and HVAC systems	Energy useNPVThermal comfort	Investment costs	NSGA-II	N/A
Delgarm et al. [26]	Single-zone dwelling (9 m2)	Tehran, Iran. Kerman, Iran	EnergyPlus, jEPlus and MatLab	Insulation, glazing, and solar shading	Annual heatingCoolingLighting	N/A	Particle swarm optimisation (PSO)	Weighted sum method
Ascione et al [27]	Residential building (140 m2)	Napes, Italy	EnergyPlus and MatLab	hourly values of set point temperatures in the building thermal zones	Energy demand Thermal comfort	Maximum duration of HVAC system daily operation	NSGA-II	Weighted sum method
Schwartz et al. [28]	Council house complex (m2)	Sheffield, England	EnergyPlus, jEPlus and jEPlus EA	Envelope characteristics, insulation, windows	Life cycle cost Life cycle carbon	N/A	NSGA-II	N/A
Hamdy et al. [29]	Residential house –two floors (143 m2)	Helsinki, Finland	IDA-ICE 4.6	Energy saving measures (envelope, equipment, systems), renewable energy sources (thermal collectors, PV) and mechanical systems	 primary energy consumption life-cycle cost (LCC) of the design solution 	N/A	pNSGA-II MOPSO PR.GA ENSES evMOGA spMODE-II MODA	Normalized generational distance, normalized inversed generational distance and normalized diversity metric
Fan et al. [30]	Residential building – 66 apartments (70 m2 each)	South Africa	Non-linear integer programming problem.	Windows, external wall insulation materials, roof insulation materials, rooftop solar panel	Energy savingsNPVPayback period	Total cost of the building envelope retrofitting considering maintenance during a time, and maximum area for solar panel	Genetic Algorithm	Weighted sum method

898

Table 2 Retrofitted Community Centre main characteristics

General Description	Three Storey Com	nmunity Centre - Offices	i								
Building Type	Commercial					III					
Configuration	Low Rise-Shallow	Plan		71	111 1111						
Location	London										
Coordinates	51° 33' 03" N, 0 51.550833 ⁰ , -0.08	0° 04′ 57" W Decima 2489 ⁰									
Weather File	London Heathrow	, UK	_								
Geometry											
Number of Floor	S	3 Total	Floor Are	ea 80)0m²						
Opaque	Materials	Constructio	n (from i	nside layer)	J	J-Value Wm ² /K					
External Walls (0	GF/1 ST F)	400mm Solid Wall - 3	400mm Solid Wall – 300mm Extruded Polystyrene 0.109								
External Walls (F		400mm Solid Wall – 200mm Expanded Polystyrene 0.160									
Basement Floor	,	300 mm Concrete Floo	0.173								
Ground Floor		300 mm Concrete Floo				0.108					
Pitched Roof		Timber framed - 300m				0.134					
Flat Roof		200 mm Concrete Sla			.511	0.131					
			2 30011	U-Value							
Transpare	nt Materials	Property		W/m²K	SHGC	VT					
Glazing Material		6-13-6-13-6 Triple Gla Filled-Low-e		1.598	0.613	0.696					
Glazing Area		23% of Total Wall Are	а								
Skylight Area		5% of Total Roof Area	1								
Shading		N/A									
Systems											
HVAC System T	ype	Mechanical Ventilation	n with He	at Recovery Syste	em						
Heating System		Heat Recovery Syster	n + 8.4kV	V Ground Source	Heat Pum	p with radiators					
COP GSHP		4.5									
Fuel Type		Electricity									
Heating System	Controls	Main System Thermostat – Thermostatic Valves on Radiators									
Cooling System		N/A (Natural Ventilation and Night Cooling)									
Ventilation		Winter: Mechanic		 							
		Heat Recovery-Radius			5						
		Summer: Mixed N									
		Heat Recovery-Radius			5 + Natura	l Ventilation					
Specific Fan Pov	wer	0.7 – 1.5 kPa									
DHW											
Generator Type		Single 3m ² thermal va	cuum tub	e panel + hot wat	er tank GS	SHP for top-up					
Fuel Type		Solar energy - Electric									
Lighting			•								
Туре		T8 LFC									
Controls		manual-on-off									
Loads											
Occupancy		1 person/16m ² - at ave	erage 140) watts= 8.75 W/n	1 ²						
Equipment		73.4 W/m ²									
Lighting		10.6 W/m ²									
Rates											
Infiltration Rate (@50 Pa)	0.42 ach									
Renewables (P											
Available roof sp		398.6 m ²									
PV array		125m ² of PV on pitche	ed surface	e (inclination 30°)							
Туре											
1 ypc		77 modules of 18kWp, c-Si-Monocrystalline									

900 Table 3 Actual performance for the case study Passivhaus building [51]

Energy and economic indicators	Values
Energy use (EUI) (kWh/m²-year)	61.6
Energy bill (£/year)	4,379
RHI income (£/year)	988.3
FiT income (£/year)	723.6
Retrofit capital investment (£)	417,028
Annual revenue (£/year)	7,415.4
Life Cycle Cost _{50 years} (£)	471,403
Net Present Value 50 years (£)	-213,436
DPB	137.2
Exergy and exergoeconomic indicators	Values
Exergy input (fuel) (kWh/m²-year)	166.8
Exergy demand (product) (kWh/m²-year)	30.0
Exergy destructions (kWh/m²-year)	136.8
Exergy efficiency HVAC	10.4%
Exergy efficiency DHW	2.5%
Exergy efficiency Electric equip.	19.9%
Exergy efficiency Building	18.0%
Exergy cost fuel-prod HEAT (£/kWh) $\{r_k\}$	0.12—0.26{1.14}
Exergy cost fuel-prod COLD (£/kWh) $\{r_k\}$	{}
Exergy cost fuel-prod DHW (£/kWh) $\{r_k\}$	0.12—1.90 {14.82}
Exergy cost fuel-prod Elec (£/kWh) $\{r_k\}$	0.12-0.24 (0.97)
D (£/h) Exergy destructions cost {energy bill £; %D from energy bill}	0.38 {2,947.3; 68.2 %}
Z (£/h) Levelised capital cost	1.78
R (£/h) Levelised revenue	0.84
Exergoeconomic factor f_k (%)	0.82
Exergoeconomic cost-benefit (£/h)	1.33
Non-thermodynamic indices	Values
Occupant thermal discomfort (PMV)	853
Carbon emissions tCO ₂	38.6

903 Table 4 Characteristics and investment cost of HVAC systems [50, 52]

HVAC ID	System Description	Emission system	Cost
H1	Condensing Gas Boiler + Chiller	CAV	Generation systems
H2	Condensing Gas Boiler + Chiller	VAV	• £160/kW Water-
H3	Condensing Gas Boiler + ASHP-VRF System	FC	based Chiller (COP=3.2)
H4	Oil Boiler + Chiller	CAV	• £99/kW Condensing gas boiler (η=0.95)
H5	Oil Boiler + Chiller	VAV	• £70/kW Oil Boiler
H6	Oil Boiler + Chiller	FC	(η=0.90)
H7	Electric Boiler + Chiller	CAV	• £150/kW Electric
H8	Electric Boiler + Chiller	VAV	Boiler (η=1.0) • £208/kW Biomass
H9	Electric Boiler + ASHP-VRF System	FC	Boiler (η=0.90)
H10	Biomass Boiler + Chiller	CAV	• £1300/kW ASHP-
H11	Biomass Boiler + Chiller	VAV	VRF System
H12	Biomass Boiler + ASHP-VRF System	FC	(COP=3.2) • £1200/kW GSHP
H13	District system	CAV	(Water-Water)
H14	District system	VAV	System (COP=4.2)
H15	District system	Wall	• £452/kW ASHP (Air-
H16	District system	Underfloor	Air) (COP=3.2) • £2000/kW PV-T
H17	District system	Wall+Underfloor	system
H18	Ground Source Heat Pump	CAV	• £27080 micro-CHP
H19	Ground Source Heat Pump	VAV	(5.5 kW) + fuel cell
H20	Ground Source Heat Pump	Wall	system
H21	Ground Source Heat Pump	Underfloor	Emission systems
H22	Ground Source Heat Pump	Wall+Underfloor	 £700 per CAV
H23	Air Source Heat Pump	CAV	• £1200 per VAV
H24	PVT-based system (50% roof) with supplemental Electric boiler and Old Chiller	CAV	 £35/m² wall heating £35/m² underfloor heating
H25	Condensing Boiler + Chiller	Wall	• £6117 per Heat
H26	Condensing Boiler + Chiller	Underfloor	Recovery system
H27	Condensing Boiler + Chiller	Wall+Underfloor	Other subsystems:
H28	Biomass Boiler + Chiller	Wall	£56/kW District heat
H29	Biomass Boiler + Chiller	Underfloor	exchanger + £6122
H30	Biomass Boiler + Chiller	Wall+Underfloor	connection charge • £50/m for building's
H31	Micro-CHP with Fuel Cell and Electric boiler and old Chiller	CAV	insulated distribution pipes
H32	Condensing Gas Boiler and old Chiller. Heat Recovery System included.	CAV	p.poo
H33*	Ground Source Heat Pump + Heat Recovery System Presents the actual post-retrofit HVAC system installed	MT Radiators	

* H33 represents the actual post-retrofit HVAC system installed

906

907 Table 5 Decision variables and vector ID used for the case study

Decision variables - BER measures	Number of possible solutions	Vector ID
HVAC system	34	X^{HVAC}
Wall insulation (above ground)	116	X^{wall}
Roof Insulation	116	X^{roof}
Ground floor Insulation	111	X^{ground}
Basement Wall insulation	116	$X^{\text{wall_BS}}$
Pitched Roof Insulation	116	$X^{\text{roof_Pi}}$
Basement Ground Insulation	111	$X^{\text{ground_BS}}$
Sealing (infiltration rate)	10	X^{seal}
Glazing	13	X^{glaz}
Lighting	4	$X^{ m light}$
Photovoltaic panels	12	X^{PV}
Wind turbines	3	X^{wind}
Heating set-point	5	X ^{heat}

908 909

Table 6 Algorithm parameters and stopping criteria for optimisation with GA

F	arameters
Encoding scheme	Integer encoding (discretisation)
Population type	Double-Vector
Population size	100
Crossover Rate	100%
Mutation Rate	40%
Selection process	Stochastic – fitness influenced
Tournament Selection	2
Elitism size	Pareto optimal solutions
Sto	pping criteria
Max Generations	100
Time limit (s)	10 ⁶
Fitness limit	10 ⁻⁶

911		Ta	able 7 BER	retrofit des	ign for sing	le-objective	optimisati	on using e	nergy/eco	nomics	-based	approa	ch			
Obj.	XHVAC	Xwall	X ^{roof}	X ^{ground}	X ^{wall_BS}	X ^{roof_Pi}	X ^{ground_BS}	X ^{seal}	X^{glaz}	Xlight	XPV	Xwind	Xheat	EUI_{bu}	Discom	NPV _{50y}
					Basement	Pitched	Basement							~	-fort	
		Wall	Roof	Ground	Wall	Roof	Ground	Infiltration	(glass-	Light	%	(kW)	(°C)	(kWh/	(1)	(£/h)
		Insulation	Insulation	Insulation	Insulation	Insulation	Insulation	Reduction	gap-	tech	Roof			`m²-	(hours)	
		(m)	(m)	(m)	(m)	(m)	(m)	%	glass,		panels			year)		(DPB-
		{U-value}	(U-value)	{U-value}	{U-value}	{U-value}	{U-value}	(ach)	in mm)		7			, ,		years}
[min]	H21:	Polyure-	Phenolic	Phenolic	Cellular	Phenolic	Phenolic	50%	Double	T8	0	20	21	58.4	841	+8,488
EUI_{bui}	GSHP +	thane			Glass				glazed	LFC						
	Underfloor	(0.25m)	(0.03m)	(0.05m)	(0.30m)	(0.08m)	(0.10m)	(0.9 ach)	Air							{50.0}
	Heat.	{U: 0.09}	{U: 0.32}	{U: 0.15}	{U: 0.13}	{U: 0.25}	{U: 0.11}		(6-6-6)							
[min]	H21:	EPS	XPS	Cellular	XPS	EPS	Polyure-	40%	Double	T5	10	20	21	65.9	550	+79,773
Discom	GSHP +			Glass			thane		glazed	LFC						
-fort	Underfloor	(0.14m)	(0.10m)	(0.12m)	(0.25m)	(0.12m)	(0.10m)	(0.6 ach)	Krypton							{33.6}
	Heat.	{U: 0.22}	{U: 0.33}	{U: 0.14}	{U: 0.13}	{U: 0.27}	{U: 0.11}		(6-6-6)							
[max]	H31:	Glass	XPS	Cork	XPS	XPS	Phenolic	20%	Double	T5	10	20	21	272.4	853	+148,667
\overline{NPV}_{50y}	mCHP +	Fibre		Board					glazed	LFC						
	Boiler +	(0.15m)	(0.08m)	(0.14m)	(0.04m)	(0.03m)	(0.04m)	(0.8 ach)	Air							{23.7}
	CAV	{U: 0.21}	{U: 0.85}	{U: 0.18}	{U: 0.60}	{U: 0.41}	{U: 0.26}		(6-13-6)							

912		Table	8 BER ret	rofit design	for single-c	bjective op			y/exergo	econor	nics-bas	sed app	roach			
Obj.	XHVAC	Xwall	X ^{roof}	Xground	X ^{wall_BS}	X ^{roof_Pi}	X ^{ground_BS}	X ^{seal}	X^{glaz}	Xlight	X^{PV}	Xwind	Xheat	Ex _{dest}	Discom -fort	Exec _{CB}
				_	Basement	Pitched	Basement								-1011	(0.11.)
		Wall	Roof	Ground	Wall	Roof	Ground	Infiltration	(glass-	Light	%	(kW)	(°C)	(kWh/	(hours)	(£/h)
		Insulation	Insulation	Insulation	Insulation	Insulation	Insulation	Reduction	gap-	tech	Roof			m²-	(Hours)	
		(m)	(m)	(m)	(m)	(m)	(m)	%	glass,		panels			year)		(DPB
		{U-value}	{U-value}	{U-value}	{U-value}	{U-value}	{U-value}	(ach)	in mm)							(years)}
[min]	H15:	Polyure-	Phenolic	Polyure-	Glass	EPS	Aerogel	20%	Single	T8	0	20	20	102.9	791	0.23
Ex _{dest,bui}	District	thane		thane	Fibre				glazed	LED						
	Heating +	(0.03m)	(0.05m)	(0.06m)	(0.20m)	(0.09m)	(0.025m)	(0.8 ach)	(6)							{50.0}
	Wall Heat.	{U: 0.56}	{U: 0.37}	{U: 0.23}	{U: 0.16}	{U: 0.37}	{U: 0.26}									
[min]	H28:	EPS	Cork	Cork	EPS	Cork	Cellular	10%	Double	T5	30	0	20	117.8	584	0.28
Discom	Biomass		board	board		Board	glass		glazed	LFC						
-fort	Boiler +	(0.25m)	(0.28m)	(0.14m)	(0.07m)	(0.12m)	(0.13m)	(0.9 ach)	Air							{43.7}
	Wall Heat.	{Ù: 0.13}	{Ù: 0.13}	(Ù: 0.12)	{Ù: 0.39}	{Ù: 0.28}	{Ù: 0.13}	,	(6-13-6)							, ,
[min]	H29:	Glass	Polyure-	Phenolic	XPS	Polyure-	Polyure-	10%	Single	T5	20	0	19	114.0	666	-0.11
$Exec_{CB}$	Biomass	Fibre	thane			thane	thane		glazed	LFC						
	Boiler +					,			-							{26.7}
	Underfloor	(0.065m)	(0.12m)	(0.03m)	(0.03m)	(0.04m)	(0.07m)	(0.9 ach)								
	Heat	(U: 0.42)	{Ù: 0.19}	{Ù: 0.17}	{Ù: 0.72}	{Ù: 0.57}	{Ù: 0.14}	. ,								
		,		. ,			,									

Table 9 A comparison of main indicators among single optimisation models from both MOO approaches (best performance in bold and underlined,

Model	EUI	Annual Carbon	Discom- fort	LCC (50 years)	BER Total Capital Invest.	Annual Revenue (with incentives)	NPV (50 years)	Primary exergy input	Exergy dest.	Exergy eff. Building	Exergy dest. cost rate	Heating fuel- product price	Exec _{CI}
	(kWh/ m² - year)	(tCO ₂)	(hours)	(£)	(£)	(£)	(£)	(kWh _{ex} / m²- year)	(kWh _{ex} / m²- year)	(%)	(£/h)	(£/kWh)	(£/h)
					Ener	gy/economic-k	oased optir	misation					
[min] EUI _{bui}	<u>58.4</u>	27.5	841	249,478	271,738	10,530	8,489	222.1	194.7	12.3%	2.06	0.124.24	2.03
[min] Discom- fort	65.9	28.3	<u>550</u>	186,670	316,444	14,649	71,297	213.1	185.9	12.7%	1.05	0.12—3.59	1.43
[max] NPV _{50y}	272.4	81.0	853	<u>109,300</u>	262,992	<u>15,650</u>	<u>148,667</u>	294.5	255.9	13.1%	5.05	0.124.46	4.39
					Exergy/e	xergoeconom	cs-based	optimisatio	า				
[min] Ex _{dest,bui}	118.3	53.6	791	254,123	<u>179,250</u>	6,878	3,844	132.2	102.9	22.2%	<u>0.25</u>	0.070.12	0.23
[min] Discom- fort	121.7	25.0	584	150,796	256,761	11,309	43,005	146.3	117.8	19.5%	0.28	0.04—0.29	0.28
[min] Exec _{CB}	123.3	<u>14.4</u>	666	177,333	180,018	9,891	80,633	142.2	114.0	19.9%	<u>0.25</u>	0.040.19	- <u>0.11</u>

ACCEPTED MANUSCRIPT

917 Table 10 Independent t-test analysis on main indicators from both optimisation approaches
918 (best performance in bold and underlined)

	Mean	Mean					
Indicator	energy/ economic approach	exergy/ exergoeconomic approach	Estimation difference	95° Confid inter	lence	t-value	p-value
EUI (kWh/m²year)	102.4	135.0	-32.4	-39.1	-26.0	-9.78	2.2E-16
Carbon emissions (tCO ₂ /year)	31.65	23.98	7.67	5.8	9.6	7.94	7.2E-15
Discomfort (Hours)	726	729	-3	-11.6	6.2	-0.59	0.5507
LCC (£)	226,694	233,946	-7252	-10,576	-3,928	-4.28	2.1E-05
BER Capital Investment (£)	282,047	292,534	-10487	-18,640	-234	-2.53	0.01177
Annual Revenue (£)	11,802	11,914	-112	-421	198	-0.71	0.4787
NPV (£)	<u>31,273</u>	24,021	7252	3,928	10,576	4.28	2.1E-05
Primary exergy input (kWh/m²year)	215.9	<u>186.4</u>	29.5	24.4	34.6	11.35	2.2E-16
Exergy destructions (kWh/m²year)	187.6	<u>158.0</u>	29.6	24.6	34.6	11.72	2.2E-16
Exergy efficiency (%)	13.4	<u>15.6</u>	-2.2	-2.5	-1.84	-12.3	2.2E-16
Exergy destructions cost (£/h)	1.59	0.80	0.79	0.67	0.9	13.12	2.2E-16
Heating product final price (£/kWh)	3.64	<u>1.47</u>	2.17	1.92	2.42	17.19	2.2E-16
Exergoeconomic Cost-benefit (£/h)	1.15	0.70	0.45	0.64	0.87	12.86	2.2E-16

921 Table A.1 Primary Energy Factors and Quality Factors by energy sources

Energy source	Primary energy factor (F_p) (kWh/kWh)	Quality factor (F_q) (kWhex/kWhen)
Natural gas	1.11	0.94
Electricity (Grid supplied)	2.58	1.00
District energy ¹	1.11	0.94
Oil	1.07	1.00
Biomass (Wood pellets)	(0.20) ^t 1.20	1.05
Coal	1.01	1.04

The District system was assumed to be run by a single-effect indirect-fired absorption chiller with a coefficient of performance (COP) of 0.7.

^tConsidering a quality factor for renewable based and fossil based separately.

Table A.2 Energy tariffs for small non-domestic buildings in the UK in 2015 (considering CCL)

Energy source	(£/kWh)
Natural gas	0.030
Electricity (Grid supplied)	0.121
District Heating and Cooling	0.066 ^y
Oil	0.054
Biomass (Wood pellets)	0.044

yPrices taken from Shetland Heat Energy & Power Ltd - Lerwick's District Heating Scheme (Commercial tariffs http://www.sheap-ltd.co.uk/commercial-tariffs) Accessed: 15-October-2015

Table A.3 FiT and RHI tariffs included in ExRET-Opt. Prices are from September, 2015

Prices (£/kWh)
0.048
0.059
0.138
0.103
0.090
0.026
0.045

Table B.1 Characteristics and investment cost of lighting systems

Lights ID	Lighting technology	Cost per W/m²
L1	T8 LFC	£5.55
L2	T5 LFC	£7.55
L3	T8 LED	£11.87

Renewable ID	Technology	Cost
R1	PV panels 10-100% roof	PV: £1200/m ²
R2	Wind Turbine 20 kW	Turbine: £4000/kW
R3	Wind Turbine 40 kW	

^{*}For the case study PV panels roof area were applied in 10% steps (0-100%)

Table B.3 Cooling and heating indoor set points variations

Set-point ID	Set-point Type	Value (°C)	Cost
SH18	Heating	18	(-)
SH19	-	19	
SH20		20	
SH21		21	
SH22		22	

Table B.4 Characteristics and investment cost of different insulation materials

Ins. ID	Insulation measure	Thickness (cm)	Total of measures	Cost per m ² (lowest to highest)
l1	Polyurethane	2 to 15 in 1 cm steps	14	£6.67 to £23.32
12	Extruded polystyrene	1 to 15 in 1 cm steps	15	£4.77 to £31.99
13	Expanded polystyrene	2 to 15 in 1 cm steps	14	£4.35 to £9.95
14	Cellular Glass	4 to 18 in 1 cm steps	15	£16.21 to £72.94
15	Glass Fibre	6.7 7.5 8.5 and 10 cm	4	£5.65 to £7.75
16	Cork board	2 to 6 in 1 cm steps 8 to 20 cm in 2 cm steps 28 and 30 cm	14	£5.57 to £85.80
17	Phenolic foam board	2 to 10 in 1 cm steps	9	£5.58 to £21.89
18	Aerogel	0.5 to 4 in 0.5 cm steps	8	£26.80 to £195.14
19	PCM (w/board)	10 and 20 mm	2	£57.75 to £107.75

*For the case study, for insulation measures I1, I2, I3, I4, I5, I6, and I7, extra thicknesses (20, 25 and 30 cm) with its respective cost were added. This was done to achieve envelope U-values within the Passivhaus standard

Table B.5 Characteristics and investment cost of glazing systems

Glazing	System Description	Gas	Cost per m ²
ID	(# panes – gap)	Filling	
G1	Double pane - 6mm	Air	£261
G2	Double pane - 13mm	Air	£261
G3	Double pane - 6mm	Argon	£350
G4	Double pane - 13mm	Argon	£350
G5	Double pane - 6mm	Krypton	£370
G6	Double pane - 13mm	Krypton	£370
G7	Triple pane - 6mm	Air	£467
G8	Triple pane - 13mm	Air	£467
G9	Triple pane - 6mm	Argon	£613
G10	Triple pane - 13mm	Argon	£613
G11	Triple pane - 6mm	Krypton	£653
G12	Triple pane - 13mm	Krypton	£653

944

945

938

946 947 948

ACCEPTED MANUSCRIPT

Table B.6 Characteristics and investment cost for air tightness improvement considering baseline of 1 ach @50Pa

Sealing ID	ACH (1/h) @50Pa Improvement %	Cost per m² (opaque envelope)
S1	10%	£1.20
S2	20%	£3.31
S3	30%	£6.35
S4	40%	£10.30
S5	50%	£15.20
S6	60%	£20.98
S7	70%	£27.69
S8	80%	£35.33
S9	90%	£43.88