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Purpose: Respiratory motion compensation in PET/CT and PET/MRI is essential as motion is a source

of image degradation (motion blur, attenuation artifacts). In previous work, we developed a direct method

for joint image reconstruction/motion estimation (JRM) for attenuation-corrected (AC) respiratory-gated

PET, which uses a single attenuation-map (l-map). This approach was successfully implemented for res-

piratory-gated PET/CT, but since it relied on an accurate l-map for motion estimation, the question of

its applicability in PET/MRI is open. The purpose of this work is to investigate the feasibility of JRM in

PET/MRI and to assess the robustness of the motion estimation when a degraded l-map is used.

Methods: We performed a series of JRM reconstructions from simulated PET data using a range of

simulated Dixon MRI sequence derived l-maps with wrong attenuation values in the lungs, from

�100% (no attenuation) to +100% (double attenuation), as well as truncated arms. We compared the

estimated motions with the one obtained from JRM in ideal conditions (no noise, true l-map as an

input). We also applied JRM on 4 patient datasets of the chest, 3 of them containing hot lesions.

Patient list-mode data were gated using a principal component analysis method. We compared

SUVmax values of the JRM reconstructed activity images and non motion-corrected images. We also

assessed the estimated motion fields by comparing the deformed JRM-reconstructed activity with

individually non-AC reconstructed gates.

Results: Experiments on simulated data showed that JRM-motion estimation is robust to l-map

degradation in the sense that it produces motion fields similar to the ones obtained when using the

true l-map, regardless of the attenuation errors in the lungs (< 0.5% mean absolute difference with

the reference motion field). When using a l-map with truncated arms, JRM estimates a motion field

that stretches the l-map in order to match the projection data. Results on patient datasets showed that

using JRM improves the SUVmax values of hot lesions significantly and suppresses motion blur.

When the estimated motion fields are applied to the reconstructed activity, the deformed images are

geometrically similar to the non-AC individually reconstructed gates.

Conclusion: Motion estimation by JRM is robust to variation of the attenuation values in the lungs. JRM

successfully compensates for motion when applied to PET/MRI clinical datasets. It provides a potential

alternative to existing methods where the motion fields are pre-estimated from separate MRI measure-

ments. © 2017 University College London (UCL). Medical Physics published by Wiley Periodicals, Inc.

on behalf of American Association of Physicists in Medicine. [https://doi.org/10.1002/mp.12253]
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1. INTRODUCTION

Patient respiratory motion is a source of quantitation errors

in positron emission tomography (PET), due to the degra-

dation of the image resolution1 and potential misalignment

with the attenuation map (l-map) used for attenuation

correction (AC), which is derived from computed tomogra-

phy2 (CT) or magnetic resonance imaging (MRI).3 Both

phenomena can compromise accurate detection and quanti-

tation of lesions in the reconstructed PET.4 To reduce the

effect of motion, motion-free images can be reconstructed

from a single gate corresponding to one respiratory
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phase,5 but the reduction in the number of counts

increases noise and bias. The reconstructed gates can be

coregistered and averaged to a single image to reduce

noise, but the final output suffers from bias induced by

noise from each gate.6,7 Ideally, motion correction (MC) is

achieved using an estimated respiratory motion field

directly incorporated into the reconstruction in order to

maximize the number of usable counts. Most MC

approaches in PET can be classified into two categories:

indirect and direct.

Indirect approaches consists of pre-estimating a motion

field that is then incorporated in the PET system matrix for

MC iterative reconstruction. For example, the motion can be

derived by registering non–AC-gated PET images,8,9 but reg-

istration suffers from noise and low contrast from the individ-

ually non–AC-reconstructed gates. Alternatively, the motion

can be pre-estimated from a separate dynamic MRI

sequence4,10,11 or gated CT,12 but they require additional MRI

or CT measurements.

Direct approaches consist of jointly estimating the activ-

ity distribution and the motion field directly from the PET

data, without reconstructing “intermediary” PET images. A

single reference activity image is estimated together with the

motion by performing penalized maximum-likelihood

(PML) of the PET data. Such approaches have been pro-

posed in the literature13–16 but they ignored attenuation.

Recently, we developed a probabilistic model where the

activity distribution is deformed alongside the l-map,17,18

which produces a motion-free AC-reconstructed activity

image. Moreover, this approach incorporates l-map

misalignments within the motion so that the final output

activity image is free of attenuation artifacts. This approach,

namely joint activity reconstruction/motion estimation

(JRM), was successfully applied on PET/CT patient data.17

In principle, JRM requires an accurate forward model, and

in particular an estimate of the attenuation that can be

deformed to fit each respiratory gate. This raises the question

of its applicability in PET/MR. The standard protocol for the

thorax is to perform AC with a l-map derived from a seg-

mented Dixon MRI sequence,19–21 with generic attenuation

values allocated to each of the segmented classes (generally

air and soft adipose tissue). When the input l-values do not

correspond to the patient values, the JRM optimization algo-

rithm will attempt to match PET projection data that are out-

side of the range of the forward model, which can affect

motion estimation. To our knowledge, a direct motion com-

pensation approach for AC reconstruction with a single l-

map has never been used in PET/MRI.

In this paper, we evaluate the impact of a deteriorated

MRI-derived l-map on motion estimation by JRM with a

non–time-of-flight (TOF) PET/MRI system. We first ana-

lyzed the existence of a solution to the JRM problem with a

locally deteriorated l-map. We performed XCAT simulations

to generate a gold-standard, and applied JRM using simulated

MRI-derived l-maps with a range of deterioration (wrong

lung and bone l-values and truncated arms). We then applied

JRM on four sets of respiratory-gated PET/MRI clinical data,

and investigated the effects of JRM motion compensation on

hot lesions, as well as comparing the JRM reconstructed

images with non-AC individually reconstructed gates.

2. METHODS

2.A. Theory

2.A.1. Joint image reconstruction/motion

estimation with attenuation correction in gated PET

Positron emission tomography gating is achieved by

regrouping the raw list-mode data into ng sinograms

fg‘g ¼ fg1; . . .; gngg, each sinogram vector g‘ 2 R
nb
þ com-

prising nb entries (detector bins pairs) and corresponding to a

single gate on which the patient is assumed to be static (i.e.,

no motion). At each gate ‘ the collected data g‘ results from

the emission of the radiopharmaceutical tracer, modeled by

an activity concentration volume f ‘ 2 R
nv
þ comprising nv vox-

els, which represents the tracer distribution at gate ‘. The

probabilities of detecting of the annihilations are altered by

the presence of an attenuation medium (patient tissues,

bones, the bed, etc.), also distributed in a volume l‘ 2 R
nv
þ .

Each entry [f‘]j and [l‘]j, respectively, corresponds to the

activity concentration and the attenuation at voxel j and gate

‘. At this stage, the gated activity distribution volumes f‘ can

be reconstructed from the corresponding data g‘, accounting

for the corresponding attenuation l‘, with the help of iterative

algorithms such as maximum-likelihood expectation-maximi-

zation (MLEM)22,23 and penalized-MLEM.24

In Bousse et al.17 we adopted a model where the activity

f‘ and attenuation l‘ at each gate ‘ are produced by the defor-

mation of two volumes f and l:

f ‘ ¼ W‘f ; l‘ ¼ W‘l

where W‘ 2 R
nv�nv is an image-warping matrix defined with

a spatial deformation (diffeomorphism) u‘ : R
3 ! R

3 as

½W‘f �j,f � u‘ðrjÞ; ½W‘l�j , l � u‘ðrjÞ; (1)

f(r) and l(r) being interpolated versions of f and l respec-

tively, and rj the center of voxel j. This simultaneous warp-

ing activity/attenuation model was used for joint image

reconstruction/motion estimation (JRM) with attenuation

correction by maximization of the penalized log-likelihood

Φ with respect to the activity image f and the motion fields

fû‘g,

ðf̂ ; fû‘gÞ ¼ arg max
f ;fu‘g

Uðf ; fu‘g; fg‘g; lÞ; (2)

Uðf ; fu‘g; fg‘g; lÞ ,
X

ng

‘¼1

Kðg‘j�g‘ðf ;u‘; lÞÞ � Uðf Þ

� Vðfu‘gÞ; (3)

where Kðgj�gÞ ,
Pnb

i¼1gi log �gi � �gi is the Poisson log-likeli-

hood (the similarity term), which depends on the gated data

g‘ and on the expected PET data �g‘ðf ;u‘;lÞ defined as
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�g‘ðf ;u‘; lÞ , s‘aðW‘lÞPW‘f þ b‘ (4)

with a(l) ≜ diag{e�Rl}, and U and V are smoothness penalty

terms on the activity image and the motion fields, respec-

tively. In (4), P 2 Rnb�nv represents the nonattenuated, non-

TOF PET system matrix, that is, defined by the system geom-

etry and detector sensitivity, R 2 Rnb�nv is an operator that

computes the linear attenuation along each line of response,

s‘ is the acquisition time corresponding to gate ‘, and

b‘ 2 R
nb is a background vector which is the sum of the

expected random and scatter counts.

In Bousse et al.,17 solving (2) was achieved by alternating

the optimization in f and {φ‘}, with the help of a MC-MLEM

algorithm (using the current motion estimate) for f and a

quasi-Newton optimization25 for {φ‘}. A single image f̂ is

reconstructed using the entire gated data {g‘}, with MC using

the estimated deformation fields fû‘g. This reconstructed

image does not correspond to a reference gate. The recon-

structed gated activity images at each gate ‘ are f̂ ‘ , Ŵ‘ f̂ ,

where Ŵ‘ is the warping operator derived from û‘ and are

considered as the final output.

In this approach, the attenuation map l is assumed to be

known. A solution of (2) is achieved with an activity image f̂

and motion fields û‘ such that the expected projections

�g‘ðf̂ ; û‘; lÞ match the gated data g‘. In particular, the warped

volumes f̂ ‘ ¼ Ŵ‘ f̂ and l̂‘ ¼ Ŵ‘l are aligned with the data.

2.A.2. The effect of a “Wrong” l-map input on
motion estimation with JRM

In PET/MRI, the usual procedure is to utilize an MRI

Dixon sequence segmented into three classes19 (air, soft adi-

pose tissue) or four classes20 (air, soft and adipose tissue and

bone). Generic (nonpatient dependent) values are attributed

to each class to form a “piece-wise constant” l-map, used for

attenuation correction. However, it has been observed that the

lung attenuation may vary significantly across the respiratory

cycle26 (�20%). In addition, MRI images may suffer from

truncation due to the smaller field of view.21

In the forward model (4), the attenuation map l is a fixed

input image. The deformation fields {φ‘} can change its

shape but not its values. This can be potentially problematic

when the values of the input attenuation l are incorrect.

We now analyze the existence of a solution to JRM in

non-TOF PET, for a single gate case (the multiple gate case

can be similarly addressed as in Bousse et al.,17) when the

input attenuation values are wrong. More precisely, we will

demonstrate that with a locally deteriorated input l-map it is

possible to find an approximate solution to the JRM problem

(2) with the correct motion.

Assume the true activity and attenuation are respectively

fH and l
H, and the input l-map for attenuation correction is

l. For a single-gate noiseless reconstruction problem, in the

absence of penalty terms, the JRM task (2) reduces to finding

an activity image f and a warping operator W [defined by

some diffeomorphism φ as in (1)] that fit the observed data

gH ¼ aðlHÞPfH:

find f ;W s.t. aðWlÞPWf ¼ aðlHÞPfH (5)

, PWf ¼ aðlH �WlÞPfH: (6)

Case 1 When the true attenuation l
H is a deformed ver-

sion of the input attenuation l, that is, ~Wl ¼ l
H for some

invertible warping operator ~W, a solution to (5) is achieved

with

f ¼ ~W�1fH; W ¼ ~W:

With this solution, the reconstructed activity f is “aligned”

with the input attenuation l, and the estimated motion W rea-

ligns f and l to the observed data.17

Case 2 On the other hand, if lH is not a deformed version

of the input attenuation l (which happens for example when

the values of the input attenuation l are incorrect), then

l
H �Wl 6¼ 0 for all W. Equation (6) indicates that

a(lH �WlÞPfH should be in the range of P. In general, this

will not be possible. However, there are some examples

where this is feasible, such as when aðlH �Wl) is a multi-

ple of the identity matrix. This condition is satisfied if and

only if l
H �Wl forward projects to a uniform sinogram,

which is generally untrue.

Case 3 We now assume that input attenuation l satisfies

~Wl ¼ l
H þ g;

for some warping operator ~W and an error g with ‖g‖1 small,

which corresponds to a situation where the input attenuation

is a deformed version of the truth, with an additive error (lo-

cal deterioration). It is possible to find an approximate solu-

tion to (5), along the lines of previous work from Thielemans

et al.,27 which investigated the influence of using the wrong

attenuation map in image reconstruction. We seek for a solu-

tion f,W to

aðWlÞPWf ¼ aðlHÞPfH

, PWf ¼ að�gÞa ½ ~W �W�l
� �

PfH:
(7)

A first order Taylor expansion of (7) gives

PWf�a ½ ~W �W�l
� �

PfH

� diagfRgga ½ ~W �W�l
� �

PfH:
(8)

Now assume that R=P (which assumes the PET scanner is

non-TOF) and g is supported on a small area located far from

the edges of fH, then it is reasonable to assume27 that PfH is

fairly constant on the lines of response intersecting the sup-

port of g and (8) becomes

PWf � a ½ ~W �W�l
� �

PfH � qa ½ ~W �W�l
� �

Pg; (9)

where q is the mean value of PfH on supp(Pg). Taking

W ¼ ~W gives

P ~Wf � fH
� �

� qPg:
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Thus,

f ¼ ~W�1 fH þ qg
� �

; W ¼ ~W: (10)

is an approximate solution to (9)—and therefore to (5)—with

the correct motion. In addition, the reconstructed image

f ¼ fH þ qg is identical to the one derived from Thielemans

et al.27 (without motion). This reasoning can be extended to

the multigate case by combining the misalignment ~W with

the motions W2; . . .;Wng at the other gates.
17

In practice, attenuation errors g in MRI-derived l-maps

do not have a small support (e.g., lungs), so that the existence

of a solution of the form (10) is not guaranteed. In the next

section we set out to evaluate this potential problem using

MRI-derived l-maps with incorrect lung values.

2.B. Simulation study

The aim of this simulation study was to experimentally

assess the effect of a wrong input l-map on the motion esti-

mation by JRM. We investigated two types of defects: wrong

l-values in the lungs and truncation of the arms (in addition

to the absence of bones).

2.B.1. Simulated data

We simulated a sequence of five activity and attenuation

images (1839183952 volumes, 3.125 mm3 cubic voxels), fH‘
and l

H

‘ (Figs. 1(a) and 1(c), respectively) using the XCAT

phantom software. Each volume corresponds to a respiratory

gate (‘ = 1 and ‘ = 5 correspond to inspiration and expira-

tion, respectively). Only respiratory motion was simulated

(no cardiac motion), with a 3 cm amplitude diaphragm

motion, and a 1.2 cm amplitude anterior/posterior motion.

The volumes contain a hot lesion in the lung.

Noiseless respiratory-gated data were obtained by project-

ing each activity image fH‘ with the corresponding attenuation

coefficients,

gH‘ ¼ e�RlH
‘ PfH‘ þ b‘; 8‘ ¼ 1; . . .; 5;

and noisy data were generated as a Poisson process,

g‘ � PoissonðgH‘ Þ; 8‘ ¼ 1; . . .; 5:

We used a uniform background for b‘ (randoms and scatter).

The PET system matrix P is a standard 2-dimensional “slice-

by-slice” projector modeling a 5 mm FWHM point spread

function for resolution and we assumed P = R. The total

number of counts for {g‘} was 39109, including background

effects (accounting for 30% of the total counts).

We generated a collection of l-map mimicking Dixon MRI-

derived l-maps, consisting of an XCAT attenuation image (at

inspiration, that is, corresponding to gate ‘ = 1) with only two

classes (soft tissues and lungs, no bones), with different possible

values for the lungs: from �100% of the original value (no

attenuation) to +100% (double of the original value). Each of

these l-maps is denoted l̂x, x 2 [�100,100]. Figure 2(b) shows

l̂
0 (x = 0), which has the correct lung l-values [i.e., same value

as in the ground truth l
H

1 , Fig. 2(a)]. In addition, an MRI-

derived l-map, denoted l̂
trunc, was generated from l̂

0 by trun-

cating the arms (Fig. 2(c)).

FIG. 1. (a) True activity images fH‘ ; (b) ideally reconstructed activity images f̂ ideal‘ ¼ Ŵ ideal
‘ f̂ ideal, obtained by solving (13); (c) true l-map images lH‘ ; (d) warped

l-map images l̂ideal‘ ¼ Ŵideal
‘ l

H

1 , where Ŵ
ideal
‘ was obtained by (13) and l

H

1 is the true attenuation map at gate ‘=1. A horizontal line was plotted to visualize the

amplitude of the motion. Each row corresponds to a gate ‘, from ‘=1 (top row) to ‘=5 (bottom row).

(a) (b) (c)

FIG. 2. (a) Original l-map l
H

1 (gate ‘=1); (b) MRI Dixon segmentation l-map l̂
0 (correct lung attenuation value); (c) truncated MRI Dixon segmentation l-

map l̂trunc.
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2.B.2. Reconstructions

Joint activity reconstruction/motion estimation was

applied by maximizing the penalized-likelihood Φ (3) with

respect to the activity image f and the deformation fields

{φ‘}, with the attenuation maps described in the above sec-

tion. The joint reconstructions (activity images and motion

fields) are

ðf̂ x; fûx
‘gÞ , arg max

f ;fu‘g

Uðf ; fu‘g; fg‘g; l̂
xÞ; (11)

ðf̂ trunc; fûtrunc
‘ gÞ , arg max

f ;fu‘g

Uðf ; fu‘g; fg‘g; l̂
truncÞ:

(12)

Note that solving (11) will produce errors in f̂ x for large abso-

lute values of x, but the aim of this work is to assess the

robustness of the estimation of the motion û
x
‘.

Due to the nonuniqueness of the solution in image regis-

tration (two motion fields can produce the same deformed

image, especially in the presence of uniform regions), the

estimated motion fields fûx
‘g and fûtrunc

‘ g were compared to

the motion fields obtained from JRM in ideal conditions,

using the true attenuation l
H

1 at gate ‘=1 and the non-noisy

sinograms fgH‘ g:

ðf̂ ideal; fûideal
‘ gÞ , arg max

f ;fu‘g

Uðf ; fu‘g; fg
H

‘ g; l
H

1 Þ: (13)

This approach shows how degraded l-maps may affect

motion estimation by JRM.

The motion fields {φ‘} were modeled using the same cubic

B-spline linear combinations as in previous work,17 with one

control point every three voxels along each axis. We did not

use a penalty term on the activity image (i.e., we used U = 0),

but we included a “small” penalty term on the motion fields

{φ‘}, consisting of a quadratic smoothing function with a

small weight (c = 10�2), similar to the one used in Bousse

et al.17 Each JRM reconstruction was run until convergence.

In the rest of this work, Ŵx
‘, Ŵ

trunc
‘ and Ŵ ideal

‘ denote the

warping operators associated to û
x
‘, û

trunc
‘ and û

ideal
‘ , respec-

tively, as defined in (1). The corresponding reconstructed activ-

ity images and deformed l-maps at each gate ‘ are denoted

f̂ x‘ , Ŵx
‘ f̂

x; l̂
x
‘,Ŵx

‘l̂
x;

f̂ trunc‘ ,Ŵ trunc
‘ f̂ trunc; l̂

trunc
‘ , Ŵ trunc

‘ l̂
trunc;

f̂ ideal‘ , Ŵ ideal
‘ f̂ ideal; l̂

ideal
‘ , Ŵ ideal

‘ l
H

1 :

Figure 1(b) shows the ideal reconstructed activity images

f̂ ideal‘ at each gate ‘. As observed in Bousse et al.,17 they look

similar to the true activity images fH‘ (Fig. 1(a)). The

deformed l-maps l̂ideal‘ are shown in Fig. 1(d). They also look

similar to the ground truth l-maps lH‘ (Fig. 1(c)). A non-MC

reconstruction, reconstructed from the non-noisy data fgH‘ g,
is shown in Fig. 3.

Results were assessed by comparing the estimated motion

fields ûx
‘ and û

ideal
‘ , both in the hot lesion and the entire vol-

ume, calculated as

P5
‘¼1

P

j2R‘
jûideal

‘ ðrjÞ � û
x
‘ðrjÞj

P5
‘¼1

P

j2R‘
jûideal

‘ ðrjÞj
; (14)

where rj 2 R
3 is the center of the j-th voxel and R‘ is either

the lesion’s support at gate ‘ or the entire volume.

2.C. Patient data

We investigated four patient datasets, acquired for research

purpose (following a clinical scan). Patients consented to the

use of their data for research purposes. The PET data were

acquired with a Siemens Biograph PET/MRI scanner28 at

University College London Hospital (UCLH), London, UK.

Each acquisition consists of a 4 min list-mode PET-scan, sin-

gle bed position, and an end-expiration Dixon MRI sequence

for AC. The l-maps (Fig. 4) were derived from a segmented

Dixon MRI sequence (air, soft, and adipose tissue), and the

system included a maximum-likelihood for activity and atten-

uation (MLAA) algorithm29 to partially reconstruct the

patient arms in the l-map. The four datasets are denoted

Patient-A, Patient-B, Patient-B
0

and Patient-C. Patient-B and

Patient-B
0

corresponds to two scans of the same patient (base-

line and follow-up one year later). A total of seven hot lesions

(one for Patient-A, 3 for B and 3 for B
0

), detected by accred-

ited radiologists from our department, were analyzed.

Each dataset was reconstructed twice: one standard

MLEM reconstruction without motion compensation

(MLEM-noMC), and with JRM. The number of iterations for

MLEM-noMC was 80, whereas we performed four outer iter-

ations for JRM, each of which consisting of 20 MLEM itera-

tions and a motion estimation phase, totaling 80 MC-MLEM

iterations (see Bousse et al.17 for a detailed description of the

algorithm). Similarly to simulations, we did not use a penalty

term on the activity image (i.e., we used U = 0), but only a

“small” quadratic penalty term17 on the motion fields

(c = 0.2).

FIG. 3. Non-MC reconstruction.

(a) (b) (c)

FIG. 4. MRI-derived l-maps: (a) Patient-A, (b) Patient-B, and (c) Patient-C.
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For JRM, the list-mode PET data were regrouped into

ng ¼ 5 respiratory gates following the strategy adopted by

Thielemans et al.:30 list-mode data were unlisted into 600

sinograms of 0.4 s duration. The dimension of each sinogram

was reduced to n0b 	 nb (nb is the original number of bins),

in order to reduce computational time. We then performed

principal component analysis on the resulting n0b � 600

matrix in order to extract a frame by frame temporal

respiratory signal, obtained by projection on the first

principal component. This signal was then used to unlist the

original list-mode file into ng ¼ 5 respiratory gates based on

its amplitude. Contrary to simulations, gates ‘ = 1 and ‘ = 5

correspond to end-expiration and end-inspiration, respec-

tively.

Projection and backprojection for MLEM-noMC and

JRM, as well as background (scatter and random) estima-

tion were performed using the open-source software for

tomographic image reconstruction STIR31. A 5 mm

FWHM resolution model was used (for both P and R).

For JRM, 5 background sinograms b‘ (scatter and ran-

dom), corresponding to the five gates, were derived by

rescaling the total (ungated) background sinogram accord-

ing to the gate durations s‘, ‘=1,. . .,5. The reconstruc-

tions are 289 9 289 9 127 volumes with 2.031 9 2.031

9 2.045 mm3 voxels.

3. RESULTS

3.A. Simulated data

3.A.1. Modified l-value in the lungs

Reconstructed activity volumes f̂ x‘ obtained using l̂
x

(MRI-derived l-map with x% of attenuation alteration in the

lungs) as an input for JRM [i.e., by solving (11)], for

x = �100 (no lung attenuation), x = 0 (true lung attenuation)

and x = 100 (double lung attenuation), are shown in

Figs. 5(a)–5(c), respectively.

Although the activity values are different due to the incor-

rect l-values, the organ boundaries of f̂ x‘ at each gate look

similar to the ones of the ideal reconstructed activity images

f̂ ideal‘ (Fig. 1(b)) regardless of x, suggesting that JRM motion

estimation is not affected by the lung l-value defects. Similar

results are observed with the deformed l-maps l̂
x
‘

(Figs. 6(a)–6(c)).

Figure 7 shows the normalized absolute difference

between û
x
‘ and û

ideal
‘ , as defined in (14), with

x 2 {�100,�50,�20,0,20,50,100}. Results show, for the

current choice of B-spline parametrization and penalty, that

when the lung attenuation error does not exceed �50% the

difference is negligible, and does not exceed 0.45% with

�100% error. This shows that the impact of the deterioration

the l-values on motion estimation by JRM is limited for rea-

sonable errors on the l-map. Note that the minimum value is

not reached by x = 0, possibly due to the noise in the data

and/or the fact that the MRI-derived l-map l̂
0 differs from

the truth l
H

1 (because of the absence of bones, the uniform

soft tissues and lungs).

Figure 8 shows the average reconstructed activity in the

lungs versus the percentage of lung attenuation error x. One

can observe that the lung activity increases linearly with the

attenuation error, in a similar fashion to the approximate solu-

tion (10) we derived in Section 2.A.2. This shows that despite

the nonlocal character of the lungs attenuation error, the

reconstructed activity appears to be similar to the predictions.

To finish, we displayed the displacement fields vectors

frj � û‘ðrjÞg in Fig. 9 (at gate ‘ = 5), for the ideal case (true

l-map, no noise), MRI-derived l-maps l̂x (with x = 0, �100
and 100), and with the truncated l-map (discussed in the next

section). We observed that the displacement fields using

MRI-derived l-maps (Figs. 9(b)–9(d)) are fairly similar to

the one obtained from the ideal case (Fig. 9(a)).

FIG. 5. Reconstructed activity images f̂ x‘ ¼ Ŵx
‘ f̂

x, obtained by solving (11) (degraded lungs attenuation) with (a) x = �100 (no lungs attenuation), (b) x = 0

(true lung attenuation), and (c) x = 100 (double lungs attenuation); (d) reconstructed activity images f̂ trunc‘ ¼ Ŵtrunc
‘ f̂ trunc obtained by solving (12) (truncated arms

l-map). Each row corresponds to a gate ‘, from ‘ = 1 (top row) to ‘ = 5 (bottom row).
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3.A.2. Truncated arms

Reconstructed activity volumes f̂ trunc‘ using the truncated

MRI-derived l-map (Fig. 2(c)) by solving (12) are shown in

Fig. 5(d). They appear similar to the ideal reconstructed activ-

ity images f̂ ideal‘ (Fig. 1(b)), and more importantly, the warped

l-maps f̂ trunc‘ ¼ Ŵ trunc
‘ l̂

trunc (Fig. 6(d)) appear similar to l̂
0
‘

(Fig. 6(b)). This means that JRM estimated deformation

fields ûtrunc
‘ that are not only matching the respiratory motion

but also “stretching” the truncated arms in order to match the

projected data {g‘}. This phenomenon can be observed on

the displacement field (Fig. 9(e)). l̂
trunc and

l̂
trunc
1 ¼ Ŵ trunc

1 l̂
trunc (gate ‘=1) are displayed in Fig. 10 for

comparison. Similar results were observed in previous

work,17,18 where the activity image was reconstructed in the

“input l-map space”, then warped alongside the activity to

match the observed PET data.

3.B. Patient data

For each patient, we display the images corresponding to

f̂ 1 ¼ Ŵ1 f̂ , that is, the motion compensated reconstructed

image at gate ‘ = 1 (end expiration), except Patient-C for

which all gates are displayed.

3.B.1. Patient-A

Patient-A was acquired with a 68Ga DOTA-TATE

132 MBq injection, 71 min prior to the scan. The patient was

scanned for neuroendocrine tumor deposit in the liver. Fig-

ure 11 shows the transaxial and coronal slices of the recon-

structed PET volumes with MLEM-noMC (Fig. 11(a)) and

FIG. 7. Mean absolute difference between fûx
‘g and fûideal

‘ g calculated fol-

lowing (14), for x varying between �100% and +100%.

FIG. 8. Attenuation error VS average reconstructed activity, for x varying

between �100% and +100%.

FIG. 6. Warped l-maps l̂x‘ ¼ Ŵx
‘ l̂

x, where Ŵx
‘ was obtained by solving (11)(degraded lungs attenuation) with (a) x = �100 (no lungs attenuation), (b) x = 0

(true lungs attenuation), and (c) x = 100 (double lungs attenuation); (d) warped truncated l-maps l̂trunc‘ ¼ Ŵtrunc
‘ l̂

trunc obtained by solving (12) (truncated arms

l-map). Each row corresponds to a gate ‘, from ‘ = 1 (top row) to ‘ = 5 (bottom row).

Medical Physics, 0 (0), xxxx
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JRM (Fig. 11(b)). Although the lesion is visible on both

reconstructions, it has a higher contrast on the JRM image

and is less blurry. The SUVmax analysis (Table I, row 1)

shows that JRM reconstruction produced an image with a

25.86% SUVmax increase on the lesion in comparison to

MLEM-noMC.

3.B.2. Patient-B and B
0

Patient-B and B
0

consists of a baseline and follow-up scan

of the same patient, suffering from multiple endocrine

neoplasia type 1 (pancreatic neuroendocrine tumors). The

first scan was performed with a 68Ga DOTA-TATE 150 MBq

injection 144 min prior to the scan, and the follow-up scan

was performed one year later with an 170 MBq injection,

61 min prior to the scan. The noise increase between the two

scans may be attributed to the decay. Three lesions were

investigated (denoted 1, 2, and 3).

Figures 12 and 13 show respectively the transaxial and

coronal slices of the reconstructed PET images from the base-

line scan, using MLEM-noMC (Figs. 12(a) and 13(a)) and

JRM (Figs. 12(b) and 13(b)). Each transaxial slice contains

one hot lesion. The hot lesions are hardly visible on the

MLEM-noMC images but they can be seen on the JRM

images. Quantitative analysis (Table I, rows 2–4) shows that

the lesions SUVmax increased significantly when using JRM

(from 16.37% to 60.71%).

This case study is particularly relevant, as on the noMC

images only one tumor was detected by the clinicians, for

which the default plan is a surgical intervention. However,

the presence of three tumors (visible on the JRM images)

changes the risk benefit balance of surgery, as the entire pan-

creas would need to be removed.

FIG. 9. Warped reconstructed activity (at gate ‘ = 5) with the corresponding displacement fields frj � û‘ðrjÞg: (a) ideal scenario (true l-map, no noise); MRI-

derived l-maps with (b) x = 0 (true lungs attenuation), (c) x = �100 (no lungs attenuation), and (d) x = 100 (double lungs attenuation); (e) truncated l-map.

(a) (b)

FIG. 10. (a) Truncated MRI Dixon segmentation l-map l̂
trunc; (b) warped

truncated l-maps l̂trunc1 ¼ Ŵtrunc
1 l̂

trunc at gate ‘ = 1.

FIG. 11. Patient-A: coronal and transaxial slices of the reconstructed PET

volume using (a) MLEM-noMC and (b) JRM.

TABLE I. Hot lesions SUVmax values for Patient-A, B, and B
0

, with

MLEM-noMC and JRM.

Patient MLEM-noMC JRM % increase

A 16.94 21.32 25.86%

B(1) 1.95 2.90 48%

B(2) 1.81 2.11 16.57%

B(3) 1.68 2.70 60.71%

B
0

(1) 7.23 10.50 45.23%

B
0

(2) 5.53 7.25 31.10%

B
0

(3) 6.76 9.98 47.63%
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The follow-up scan reconstructions are shown in Figs. 14

and 15. The three lesions are now clearly visible on the

MLEM-noMC images (Figs. 14(a) and 15(a)), but the con-

trast is greatly improved on JRM images (Figs. 14(b) and

15(b)), as compared to MLEM-noMC. SUVmax analysis con-

firms this observation (Table I, rows 5–7). Note that the

patient positions were not the same for B and B
0

.

3.B.3. Patient-C

Patient-C was acquired with an 18F-FDG 152 MBq injec-

tion, 129 min prior to the scan. The patient suffered from

squamous cell carcinoma of the left axilla. No hot lesions

were detected but the data suffer from high amplitude respira-

tory motion. The MLEM-noMC images (Fig. 16(a)) are

degraded due to the motion. In contrast, the JRM-recon-

structed images (Fig. 16(b)) appear sharper and have higher

contrast. More particularly, the shape of the JRM-recon-

structed heart appears well defined, and appears similar to

the non-AC gate 1 reconstruction (Fig. 17(a), first row), sug-

gesting that the motion was successfully compensated.

Although the change in the images was not judged to be

clinically relevant for this particular case study, 18F-FDG is

often used for assessment of myocardial viability and inflam-

mation (such as myocarditis in sarcoidosis), and can benefit

from the image quality improvement provided by JRM.

FIG. 12. Patient-B: transaxial slices—containing the lesions 1, 2, and 3 (top

to bottom)—of the reconstructed PET volume using (a) MLEM-noMC and

(b) JRM.

FIG. 13. Patient-B: coronal slices—containing the lesions 1 (top image), 2,

and 3 (bottom image)—of the reconstructed PET volume using (a) MLEM-

noMC and (b) JRM.

FIG. 14. Patient-B
0

(follow-up): transaxial slices—containing the lesions 1,

2, and 3 (top to bottom)—of the reconstructed PET volume using (a)

MLEM-noMC and (b) JRM.

FIG. 15. Patient-B
0

: coronal slices—containing the lesions 1 (bottom image),

2, and 3 (top image)—of the reconstructed PET volume using (a) MLEM-

noMC and (b) JRM.

FIG. 16. Patient-C: coronal and transaxial slices of the reconstructed PET

volume using (a) MLEM-noMC and (b) JRM.
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Figure 17(a) shows the non–AC-reconstructed PET

images at each respiratory gate ‘ = 1,. . .,5 and the ampli-

tude of the motion can be observed on the heart as well as

on the right lung lower boundary (a green line was plotted

for visualization purposes). In Bousse et al.17, we compared

the warped l-maps l̂‘ ¼ Ŵ‘l, derived from the JRM-esti-

mated motion fields û‘, to the gated CT images (cine-

CT32). In absence of gated l-maps, we displayed the

warped reconstructed images f̂ ‘ ¼ Ŵ‘ f̂ (Fig. 17(b)), where

f̂ and Ŵ‘ are respectively the single MC reconstructed

image (using all the gates) and the estimated motion at gate

‘, and the warped MRI-derived l-maps l̂‘ ¼ Ŵ‘l

(Fig. 17(c)), alongside the non–AC-gated PET images, at

each gate ‘=1,. . .,5. Although both images are not directly

comparable due to absence of AC in Fig. 17(a), we can

observe that the deformed heart obtained with Ŵ‘ appears

similar to the one in the gated non-AC reconstruction. Sim-

ilarly, we can observe that the lower boundary of the right

lung in the non–AC-gated PET images seems to match

with f̂ ‘ and l̂‘, with perhaps the exception of gate 5 which

was the shortest gate (hence the noisiest).

It is worth noting that for this patient data the arms were

almost absent from the l-map (despite the MLAA correc-

tion), so the estimated motion fields were not able to stretch

them down, as we observed with simulations in Section

3.A.2.

4. DISCUSSION

The quality of MC reconstruction is determined by the

accuracy of the motion estimation. Although dynamic MRI-

derived motion models are under investigation,4,10,11 their

accuracy depends on the quality of the dynamic MRI, and

they require modifications of the acquisition protocol (mainly

addition of a dynamic MRI acquisition). No standard proce-

dure has therefore emerged. On the contrary, JRM can be

applied in principle to any PET/MRI protocols, although the

motion estimation can be subject to noise (e.g., low counts

gates). In addition, since JRM relies on PET data only, it is

important to understand the effect of using an incorrect input

l-map, which can be the case with an MRI-derived l-map. In

order to fully assess the potential of JRM in PET/MRI, it

should be compared with indirect MC approaches, for exam-

ple, using motion fields pre-estimated from an MRI

sequence.4,10,11

This investigation showed that motion estimation with

JRM appears not to be affected by the utilization of a MRI-

derived l-map. Simulation results presented in Section 3.A

show that the estimated motion fields were similar to the ones

obtained with the true l-map, used to generate the data. In

the presence of large errors in the lung l-values, the esti-

mated motion remained unchanged, as predicted by our anal-

ysis. In case of partial truncation of the arms, the estimated

motion tried to match the PET projection data by stretching

the arms. This result is not surprising since it was demon-

strated in previous work17,18 that JRM reconstructs an activity

image f̂ aligned to the input l-map, and estimates a deforma-

tion field which warps both the reconstructed activity image

f̂ and the l-map in order to match the PET data. However,

this result must be interpreted cautiously, as JRM cannot

“recreate” missing features in the l-map, but only deform

already existing features (c.f. the results on Patient-C, Section

3.B.3). For heavy arms truncation, an MLAA-type algo-

rithm29 should be applied to reconstruct the arms in the l-

map.

Results on real data confirmed our observations from sim-

ulations. Hot lesions on JRM-reconstructed images are sig-

nificantly more visible than on non-MC images (c.f. Patient-

FIG. 17. Patient-C: (a) no attenuation-corrected PET images at each gate; (b) warped reconstructed activity f̂ ‘ ¼ Ŵ‘ f̂ at each gate, where the warping operators

Ŵ‘ were derived from the JRM estimated motion field l̂‘ ¼ û‘; (c) warped MRI-derived l-map Ŵ‘l at each gate. Each row corresponds to a gate ‘, from ‘ = 1

(top row) to ‘ = 5 (bottom row). The top image of column (b) corresponds to the top image of Fig. 16(b).
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A, B and B
0

): the SUVmax values are higher when using JRM

and do not suffer from blur due to motion. Similarly, the

reconstruction of the heart (Patient-C) is also greatly

improved when using JRM as compared with non-MC recon-

struction. JRM-reconstructed images at each gate, obtained

by applying the estimated motion operator Ŵ‘ to the MC

reconstructed activity f̂ returns images with features match-

ing the ones of the gated non-AC reconstruction. These

results show that the motion estimation from JRM is accurate

despite the utilization of a segmented Dixon MRI sequence-

derived l-map.

We did not investigate the effects of a poorly aligned l-

map (e.g., deep breath-in or deep breath-out) on patient data,

as we showed in Bousse et al.18 it requires a large number of

iterations in non-time-of-flight PET. At the time of imple-

mentation, the STIR Matlab interface we used did not incor-

porate ordered subset EM (OSEM), and therefore such

experiments were not feasible.

5. CONCLUSION

In this work, we implemented a direct AC-PET joint

image reconstruction/motion estimation (JRM) for PET/MRI

using a segmented Dixon MRI sequence-derived l-map for

attenuation correction. As previous work showed that JRM

was successful for PET/CT,17 we showed here that it can also

be used in PET/MRI, and that the motion estimation was still

accurate even using a heavily degraded l-map. Future work

includes: (a) assessing the potential of JRM to deal with a

misaligned l-map in clinical PET/MRI, as we have previ-

ously done in PET/CT,17 and, (b) comparison with indirect

motion-estimation approaches.
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