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Theory of Impedance Loaded Loop Antennas and
Nanorings From RF to Optical Wavelengths

Arnold F. McKinley

Abstract— The analytical theory of perfectly conducting thin-
wire closed-loop antennas with multiple loads in the periphery
was formally derived in the 1950s and 1960s. In this paper, it is
extended to loop antennas and nanorings for use in communi-
cations, in the ‘“Internet of things,” and as metamaterials. The
new derivation relies on recent work from 2013 that incorporates
the surface impedance of metal wires into the standard theory,
thus pushing its applicability into the gigahertz, terahertz, and
optical regimes. Surface impedance effects cause losses and phase
shifts in the current within the loop, which in turn cause
wavelength scaling and degradation of signal strength. These
effects are modeled using a critical point transition model of
permittivity and of the index of refraction. The new results
therefore extend standard loop antenna theory so that it now
includes characteristics of multiply loaded loops over a very
broad spectrum from radio frequencies to the optical region.
The new model is verified using modern simulation tools. The
examples given here include resistive and capacitive loading.

Index Terms— Antenna theory, critical point model, Internet of
things, loop antennas, metamaterials, multiply loaded antennas,
nanorings, nanotechnology, wavelength scaling.

I. INTRODUCTION

TANDARD loop antenna theory appeared in the 1950s
S and 1960s with the work in Storer [1] and Wu [2].
Solutions of the differential equations were difficult, even
with the assumption of closed ring vanishingly thin perfectly
conducting (PEC) wires. Later, lizuka [3] broke the need for
a closed ring, enabling the theory to include multiple loads
evenly spaced around the periphery. It was not until 2013 [4]
that the surface impedance effects, which cause loss and phase
shift, were incorporated into the closed-loop theory, using a
critical point transition model of permittivity and of the index
of refraction. This enhancement brought the standard closed
ring theory to the gigahertz (GHz), terahertz (THz), and optical
regions.

In this paper, the surface impedance effects are coupled
with the multiply loaded ring theory so that the entire theory
becomes available to researchers working in GHz and THz
communication and in GHz, THz, and optical metamaterials.

In Section II, the original cumbersome matrix notation used
to derive the theory of multiply loaded loops is replaced with
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the easier Einstein notation. From the very first step, the
derivation includes the characteristics of metals at high fre-
quencies. The resulting new theory yields proper wavelength
scaling, an important characterization of metals operating at
very high frequency [5, Sec. 9.17] [6]. Two examples are
given, one with resistive loads and one with capacitive loads.
Conclusions follow with the Appendix giving a heretofore
unreported derivation of the complete resistance, inductance,
and capacitance of loop antennas, which, when new theory
is included, yields these values for the entire spectrum, RF
through optical. The second part of the Appendix gives proper
simulation settings for verification of the new theory using
CST’s Microwave Studio (MWS)! tool.

Two variables are important to understand. The first is the
parameter k, = 2z b/A, where 4 is the incident or driving
wavelength. Frequency increases as kj increases. The second
is the thickness measure Q = 21n(2zb/a). Larger values of
Q refer to larger aspect ratios, b/a, and therefore to thinner
wires. Loop antennas and nanorings where Q > 10 are said
to follow the “thin-wire” approximation, for which all of the
derivations here apply.

II. MODERN DERIVATION OF MULTIPLY LOADED LOOPS
A. Current Distribution

The principle theory of closed thin-wire loop antennas,
given in [1] and [2], was extended to GHz, THz, and optical
frequencies by [7] and [4]. In summary, a delta-function
voltage generator, Vyd(¢), across an infinitesimal gap at ¢ = 0
provides a broad spectrum source for the loop (see Fig. 1). The
current distribution for a completely closed ring without load
is given by

et im¢
¢ =v > ["’Z, }

where Z), = ja&am + (b/a)Zs. (1)

The standard theory uses only the single term Z, =
jréoa,. The addition of (b/a)Zg extends the theory to the
higher frequency ranges. Z; is the surface impedance of
the metal material of the wire in all frequency regimes.
A detailed definition and discussion of this impedance is given
in [4].

The input impedance Zcr, and the input admittance Ycr, of
the closed loop are given by placing the driving input voltage

lCornputer Simulation Technology AG, MWS. 2012. Darmstadt, Germany.
www.cst.com.

0018-926X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Loop geometry. The gap is infinitesimally small and across it is
placed a delta-function voltage generator to provide a broad spectrum source.

Fig. 2. Loop geometry of multiple sources and loads. The voltage sources
marked “V,” are evenly spaced around the ring. The notation is short

for “V,0(d — g ).

atp =0

v > 1]
Zop = — = — | =— 2
T [mE?QD Zgl} Yo @

lizuka [3] extended the low-frequency theory to include
loads placed in the periphery of the loop. Unfortunately, the
notation used in his paper is cumbersome and the more useful
Einstein notation clarifies his approach and makes calculations
easier. The derivation for loops with load impedances begins
by first placing a number of V,d(¢) voltage sources evenly
around the ring separated by an angle A¢ = 2x/M where
M is the number of impedances, as shown in Fig. 2. Suppose
M = 6; the sources are then at the angles ¢, = 27(q —
1)/6,g = {1,...,6}. The current in the ring results from
a superposition of the currents due to all of the voltage
sources, V,. Each current has the form given by (1) and
therefore is a distributed function of the angle, ¢. The total
current is

M
1($) = D 14(9)

g=1
i X pim(p—2n(g—1)/M)

= _— Vq
g=1 \m=—00 Z'/"

M-

Y (g, q)Vy. (3)

<
Il
—_
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Since each Z; is given by (1), the surface impedance of
the wire is automatically included and lizuka’s theory is
automatically extended to the higher frequency range.
Note that at the source p
X oimQr(p—q)/M)
Y(¢p,q) = —
m=—00 m

= [Ypql. “)

This lends itself to matrix notation. The term [Y,] is a square
matrix with M x M elements; p is the row counter and g
the column counter. Y (¢, ¢) in (3) becomes a vector, Y, (¢).
Then (3) becomes

M
1(@) = D 1Y (IVy] )
qg=1
= Y($)V,

where the last line uses the Einstein summation rule (repeated
indices are summed over); the upper index refers to the
elements in a horizontal vector and the subscript counter refers
to the elements in a vertical vector. Similarly

[Ypgl = Y2 6)

In order to include impedances in the formalism, series
impedances (voltage sinks) are added to the voltage sources.
V, transforms as

Vy = Vy— Zo . )

Setting V,; to O eliminates the generator leaving only the
impedance and vice versa. The current [; is the current at
the source (with its distinct counter to avoid confusion), that
is, Iy means [ (). Zlq‘ is a square M x M diagonal matrix in
which the diagonal terms are the impedances at each of the
voltage sources. This approach provides enough information
to find the current at each impedance node. Setting ¢, in (5)
and using (6)

I, =YV, — Y7 (Vy — Z5 Iy
=YiV, - Y] ZhI;
q 7k q
I, + YJZhl = Y}V,
k q ~k q
%+%%M=%%- (8)

The term If, is the diagonal identity matrix. To simplify the
notation, define

fy=Th+v]zk )
Equation (8) becomes
Ie= L7 Y5V,

where the inverse of the matrix fl’,‘ has been taken. When (7)
and (10) are substituted into the sum (5), the current at any
angle in the ring results

1) = Y1) (Vy — ZyIx)
=YV, — YI(B) Zi Ik
=Y (@)V; — YURZEL YV

(10)

(1)
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N <
1ol
N ©

Fig. 3. Ring with one driving source and a load at ¢ = = to show a formal
solution using (11).

The last line requires a change in the counter notation to
prevent counter confusion. Notice the difference between
(5) and (11). Each voltage generator V, in the former has
been extended to include a load impedance.

B. Input Impedance

The driving point impedance and admittance occur when
there is only one driving source. In this case, the source can be
at any of the M angles spread evenly around the ring. Taking
it at ¢ = 0, the impedance and admittance are calculated by
dividing the source voltage, Vi = V, by the current at ¢ =0

Zin = % =[r'(©0) - Yq(O)z’;[f—l]fY;]*‘. (12)

III. EXAMPLES
A. Resistive Loads

As examples, let us explore singly loaded resistive and
capacitive loops. In the first case, place in a PEC loop, a load
impedance at ¢» = &, and the drive source at ¢; = 0, as in
Fig.3. Then, M =2,V = V volt, V, = 0; Z% = Z, while all
other impedance elements are zero. The matrix elements, Y7,
are calculated as follows:

Yoo Yz
Y = 13
[Yn YCJ (13
where
YoL = Z - and Y, = Z —— (14)
m=—o0 M m=—00 m
The matrix elements for f are
1 vz
f= [0 1+YCLZJ (15

and the current in (10) is

I = |:YCL +Zp(YeLYeL — Yz Yn)} v
1+YcLZL

L = L v (16)

S Y LZ,

The total current is given by expanding (11)

1) =V [Y1<¢) R (17

2

These results reproduce lizuka’s equations (18), (19), and (22).
The input impedance for the example can be found from (16)

T T T T T T T T T
20

€ =10, PEC, Low Frequency
Z=Ratd=n
Theoretical Calculations

175

Conductance, 8

Fig. 4. Input admittance of an Q = 10 and 27b = 30-m PEC loop with
various resistive loads at ¢ = 7 using (18).

7 T P — T ‘ ‘ T
200 % =10, PEC, Low Frequency g
& Z=Ratd=nx g 0
6 L
sk
»
g
g r
3
g
c
St
100 Q
> Simulation |
oo Model (Eqn 18)
; _
0 - L 1 L kb
04 06 08 1 12 1.4 16 1.8 2 22 24
Fig. 5. 20- and 100-Q curves of Fig. 4 compared with those given by

simulation. See notes in the Appendix for simulation settings.

since 11 = I(0), or from (17) setting ¢ = 0
\%4 14+YcLZ]

1(0) Yoo+ Zr(YeLYeL — Yz Yr)

The conductance of six different loop antennas where
Z; = R = {-100, —60, —20, 20, 60, 100}, shown in Fig. 4
duplicates [3, Fig. 8]. See [3] for other resistive examples. The
negative resistances were fabricated in [3] using Esaki diodes.
Note that negative resistance can generate high resonances.
Fig. 5 checks the validity of the model by comparing the
20- and 100-Q curves of Fig. 4 with curves obtained by
modern simulation. The correspondence is strong.

Zin

(18)

B. Capacitive Loads

As another example of the application of (18), set Z to
a capacitive reactive load. Using w = kpc/b, where c is the
speed of light, the load may be expanded

19)

kp normalizes the reactance to the size of the loop and /¢
becomes a measure of capacitance. For example, a capacitor of
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u =12, Au, Short Wavelengths
T /= le=10atd=n

A =2nb=10pum

Simulation i
oo Model (Egn 18)

Conductance, S

R |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fig. 6. Capacitive reactive load where /[ = 1.0 is placed at ¢ = 7 in three
differently sized nanoloops. Here b = {10 um/2x, 5 um/2x, 3 um/2x}.
Simulation results are replicated well by the model in (18). See notes in the
Appendix for simulation settings.

0.012 T T T T T T T T T
Q =12, ) = 2xb=10um
[e=10atd®=x
0.01 -
—— Au, without surface impedance term
----- Au, with surface impedance term
0.008
w
@
Q
f o
g 0.006 -
o
p
=
ey
Q
© 0.004
0.002 -
0 . . .
0 0.25 0.5 0.75 1 125 15 175 2 2.25 25
Fig. 7. Comparison of the conductances given by (18) of the 10-um gold

loop in Fig. 6 with and without the use of the surface impedance term. The
extra impedance causes higher losses and therefore smaller Q resonances and
red shifting.

value [, = 1.0 associated with a loop near its main resonance,
kp, = 1.0, has the reactance —jX¢c = —jé = —j377 Q
and a capacitive value of C = €obl. = 8.85b pf, where b is
in meters. In a similar way, inductive reactance is given by
J X1 = jéokply, inductance L = pobl,, and resistance by
R = &okpr, where [, and r are the appropriate constants
necessary to make the inductance and resistance desired at the
given kj. Fig. 6 shows the effects of using a capacitance of
value /. = 1.0 in gold nanoloops with radii b = {10 um/2x,
5 ym/2x,3 um/2x}. A resonance appears in the region below
kp = 0.5, the “subwavelength” region. The surface impedance
of the gold causes wavelength scaling and is the ultimate cause
of the k; compression that appears in the figure (that is, the
movement of the peak toward the left, a red shift scaling).
This is a resonance saturation explained in [4].

It is the addition of the surface impedance term to legacy
theory that allows for the extension to higher frequen-
cies. Fig. 7 compares the conductances of the 1 = 2=z
b = 10-um gold loop shown in Fig. 6 when the term is used

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION

in (18) and when it is not. When the term is not used, there
is nothing in the legacy theory to distinguish the gold loop
from a PEC loop; the conductance, therefore is the same as
it would be at low frequencies for a PEC loop; a very high-
Q sub-wavelength resonance occurs near k; = 0.35 with the
main resonance near k, = 1.25. With the term, using data
for gold, the subwavelength resonance still exists, but its Q is
much smaller and all of the resonances have red shifted. The
subwavelength resonance red shifts to k, = 0.25. Indeed, use
of the surface impedance term is vital for reproducing actual
behavior.

IV. CONCLUSION

The original early work on impedance loaded loop antennas
has been extended to the high GHz, THz, and optical regions
for thin-wire, PEC, lossy, and frequency-dependent metal
rings. The examples given in the early work using resistive
loads was confirmed using a modern simulation tool, as was
the extended theory using capacitive loads. The principal
additions to the theory of loop antennas are twofold: 1) the
inclusion of a surface impedance in the main legacy theory
to allow for extension to the optical frequencies and 2) the
clarification of the multiple gap mathematics using Einstein
notation, which now also includes the surface impedance. The
Appendix contains a derivation of the inductance, capacitance,
and resistance of any thin-wire closed loop made of noble
metals at any wavelength. MATLAB code is available from
the author upon request.

APPENDIX
A. RLC Element Derivation for Closed Loops

The input impedance of a closed loop of a loop or nanoring
at any frequency may be calculated in the following way.
From (1), with ¢ =0

— 1 | |
lzl-lz>z) @
Remembering that the impedance is complex
YAVA 1
7t ==~ =z Z,+ZZ,
_ el % < Zn
= 1Z] Z5Z'0 * ZI: Z3Z),
R)—iX) ~=R,—iX),
—z12| 2o 0 Z
R A
( R, < R
= |zf? Z mz
ANEAR 1Z3]
X0 i X
izl iz
=R-iX. (21)
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Equation (21) gives the total resistance and reactance of the
loop, taking into account all of the modal impedances. It is,
of course, just the complex conjugate of Z which can be
calculated from the definitions. The reactance in (21) can be
expanded to give the total inductance and capacitance of the
loop. Remembering that the capacitance has no zero mode

X/, X!
X =z ,02 +Z—m2
1zl Tz,
/ o0 /
XL =wL=|Z|2[ L02 +> wLmz}
1zo|” Tz
1 2= 1/(0C;,)
Xc = — =|Z] (22)
= ac T2 12,

L = pobl, =2

|2, 1Z,,]
11 y— 1/C,
C  eble 2] 21: iz, (23)
m

These are functions of k;. The prime, of course, refers to the
elemental values when the surface impedance is taken into
account.

B. Simulation Methodology

MWS by CST? was used to produce the results appearing
in Figs. 5 and 6. The low-frequency simulations for the first
of Figs. 5 and 6 use an Q = 10, PEC torus with middle
circumference, 2z b = 3 m (about 100 MHz). A discrete port
with an internal resistance, Rport, is placed across a gap of
width 0.05b at ¢ = 0. The resistive loads are established as
lumped elements across a similar gap at ¢ = 7. The schematic
is not used.

The high-frequency simulations in the second of Figs. 5
and 6 use an Q = 12 gold torus of various sizes as noted
in the text. A port resistance and two gaps are used as for
the previous figure. The permittivity of the gold follows the
permittivity model described in great detail in [4].

Each gap acts as a capacitive reactance, X,. The gap
reactance at ¢ = 0 affects the input impedance, Z;,, for
some ranges of kp; Z;, is what MWS reports, and therefore,
for a proper comparison with the results of the model, based
on (18), X, must be removed (see Fig. 8). This can be done
by assuming that it is a flat plate capacitance in parallel
across the input loop impedance. On the other hand, the gap
reactance at ¢ = & does not have to be removed because the
load resistance, Ry, is much smaller than the gap reactance;
moreover, it has very little effect on the resonances.

Maximum power transfer into the loop occurs when the port
resistance matches Zj,. The proper Rpor to use is discovered

2Computer Simulation Technology AG, MWS, 2012, Darmstadt, Germany.
wWww.cst.com.

—AMA-

Rport

Vd(9) @ Zin —» Xg == Zloop
(@)

A

Zint

V(@@ In —» Xg === RL
(b)

Fig. 8. Equivalent circuits representations for the loop at (a) ¢ = 0 and
(b) ¢ = m. MWS reports Z;, and therefore X, needs to be removed from
the results for a fair comparison with the model. This is not true for X, at
¢ = (see the text).

iteratively. A first solution using R = 50 ohm is tried; the
real part of the resulting input loop impedance at the main
resonance (near k;, = 1.0 where the imaginary part is zero)
is then used for the port resistance in the next trial run.
This continues until convergence, often after just two trials.
The capacitance of the gap is not removed before the loop
resistance is identified. The internal port impedance has no
bearing on the comparison of simulation and model results.

The discrete port supplied in the MWS simulator does not
make good contact with the wire. This is particularly true
when the material of the torus is something other than PEC.
Consequently, small PEC spheres are placed inside the torus
on either side of the gaps, but protruding a bit into the gap
so to provide a connection point for the port. This seems to
provide adequate contact for the solver.

The theoretical model was derived for vanishingly thin
loops. The thickness of the loop adds additional inductance
that the simulations naturally take into account. For a fair
comparison with the model, that inductance needs to be added
in the model. This can be done effectively by introducing
an inductance, approximate to first order, in series with the
loop at the input. In other words, add an input impedance,
Z! = &kp(r + jly), in series with V; in (12). The resistance
added to the loops used in Fig. 5 was R = &ykpr where r =
0.025 and the inductance was L = uobl, where [, = 0.110.
The thickness of the Q = 12 loops in Fig. 6 adds no appre-
ciable resistance or inductance at the very high frequencies
studied.

MATLAB code, written to reproduce (11) and (12) for any
number of loads around the loop, is available from the author
upon request.
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Theory of Impedance LLoaded Loop Antennas and
Nanorings From RF to Optical Wavelengths

Arnold F. McKinley

Abstract—The analytical theory of perfectly conducting thin-
wire closed-loop antennas with multiple loads in the periphery
was formally derived in the 1950s and 1960s. In this paper, it is
extended to loop antennas and nanorings for use in communi-
cations, in the ‘“Internet of things,” and as metamaterials. The
new derivation relies on recent work from 2013 that incorporates
the surface impedance of metal wires into the standard theory,
thus pushing its applicability into the gigahertz, terahertz, and
optical regimes. Surface impedance effects cause losses and phase
shifts in the current within the loop, which in turn cause
wavelength scaling and degradation of signal strength. These
effects are modeled using a critical point transition model of
permittivity and of the index of refraction. The new results
therefore extend standard loop antenna theory so that it now
includes characteristics of multiply loaded loops over a very
broad spectrum from radio frequencies to the optical region.
The new model is verified using modern simulation tools. The
examples given here include resistive and capacitive loading.

Index Terms— Antenna theory, critical point model, Internet of
things, loop antennas, metamaterials, multiply loaded antennas,
nanorings, nanotechnology, wavelength scaling.

I. INTRODUCTION

TANDARD loop antenna theory appeared in the 1950s

and 1960s with the work in Storer [1] and Wu [2].
Solutions of the differential equations were difficult, even
with the assumption of closed ring vanishingly thin perfectly
conducting (PEC) wires. Later, lizuka [3] broke the need for
a closed ring, enabling the theory to include multiple loads
evenly spaced around the periphery. It was not until 2013 [4]
that the surface impedance effects, which cause loss and phase
shift, were incorporated into the closed-loop theory, using a
critical point transition model of permittivity and of the index
of refraction. This enhancement brought the standard closed
ring theory to the gigahertz (GHz), terahertz (THz), and optical
regions.

In this paper, the surface impedance effects are coupled
with the multiply loaded ring theory so that the entire theory
becomes available to researchers working in GHz and THz
communication and in GHz, THz, and optical metamaterials.

In Section II, the original cumbersome matrix notation used
to derive the theory of multiply loaded loops is replaced with
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the easier Einstein notation. From the very first step, the
derivation includes the characteristics of metals at high fre-
quencies. The resulting new theory yields proper wavelength
scaling, an important characterization of metals operating at
very high frequency [5, Sec. 9.17] [6]. Two examples are
given, one with resistive loads and one with capacitive loads.
Conclusions follow with the Appendix giving a heretofore
unreported derivation of the complete resistance, inductance,
and capacitance of loop antennas, which, when new theory
is included, yields these values for the entire spectrum, RF
through optical. The second part of the Appendix gives proper
simulation settings for verification of the new theory using
CST’s Microwave Studio (MWS)! tool.

Two variables are important to understand. The first is the
parameter k, = 2z b/A, where A is the incident or driving
wavelength. Frequency increases as kj increases. The second
is the thickness measure Q = 21n(2zb/a). Larger values of
Q refer to larger aspect ratios, b/a, and therefore to thinner
wires. Loop antennas and nanorings where Q > 10 are said
to follow the “thin-wire” approximation, for which all of the
derivations here apply.

II. MODERN DERIVATION OF MULTIPLY LOADED LOOPS
A. Current Distribution

The principle theory of closed thin-wire loop antennas,
given in [1] and [2], was extended to GHz, THz, and optical
frequencies by [7] and [4]. In summary, a delta-function
voltage generator, Vpd(¢), across an infinitesimal gap at ¢ = 0
provides a broad spectrum source for the loop (see Fig. 1). The
current distribution for a completely closed ring without load
is given by

0 eim(ﬁ
1§ =v > [Z, ]

m=—00 m

where Z;VI = jréoam + (b/a)Zs. (1)

The standard theory uses only the single term Z, =
jmloay. The addition of (b/a)Zs extends the theory to the
higher frequency ranges. Zs is the surface impedance of
the metal material of the wire in all frequency regimes.
A detailed definition and discussion of this impedance is given
in [4].

The input impedance Zcy, and the input admittance Y¢r, of
the closed loop are given by placing the driving input voltage

1Computer Simulation Technology AG, MWS. 2012. Darmstadt, Germany.
WWWw.cst.com.
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Fig. 1. Loop geometry. The gap is infinitesimally small and across it is
placed a delta-function voltage generator to provide a broad spectrum source.

V, ———— v,

3
\“QXW

s

Fig. 2. Loop geometry of multiple sources and loads. The voltage sources
marked “V,” are evenly spaced around the ring. The notation is short

for “V,d(p — ¢g)”-

atp =0

Vi > 17"
Zop = — = — | =— 2
710 L:Zoo Z:J Yeu @
lizuka [3] extended the low-frequency theory to include
loads placed in the periphery of the loop. Unfortunately, the
notation used in his paper is cumbersome and the more useful
Einstein notation clarifies his approach and makes calculations
easier. The derivation for loops with load impedances begins
by first placing a number of V,d(¢$) voltage sources evenly
around the ring separated by an angle A¢ = 2x/M where
M is the number of impedances, as shown in Fig. 2. Suppose
M = 6; the sources are then at the angles ¢; = 27 (q —
1)/6,q = {1,...,6}. The current in the ring results from
a superposition of the currents due to all of the voltage
sources, V,. Each current has the form given by (1) and
therefore is a distributed function of the angle, ¢. The total
current is

M
1($) = D 14(9)

g=1
i ( i eim<¢2n<q1)/M))
= B — Vq
g=1 \m=—00 Z;”
M
=D Y49V, 3)
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Since each Z; is given by (1), the surface impedance of
the wire is automatically included and lizuka’s theory is
automatically extended to the higher frequency range.
Note that at the source p
X pimQr(p—q)/M)
Yépa)= D
m=—00 m

= [qu] . 4)

This lends itself to matrix notation. The term [Y ] is a square
matrix with M x M elements; p is the row counter and g
the column counter. Y (¢, ¢) in (3) becomes a vector, Y, (¢).
Then (3) becomes

M
1(@) = D [Yg(@)[Vq] )
q=1
=YV,

where the last line uses the Einstein summation rule (repeated
indices are summed over); the upper index refers to the
elements in a horizontal vector and the subscript counter refers
to the elements in a vertical vector. Similarly

[Ypgl = Y. 6)

In order to include impedances in the formalism, series
impedances (voltage sinks) are added to the voltage sources.
V, transforms as

Vg = Vq— ZhIy. (7

Setting V, to O eliminates the generator leaving only the
impedance and vice versa. The current [; is the current at
the source (with its distinct counter to avoid confusion), that
is, Iy means I (¢x). Zg is a square M x M diagonal matrix in
which the diagonal terms are the impedances at each of the
voltage sources. This approach provides enough information
to find the current at each impedance node. Setting ¢, in (5)
and using (6)

I, =YV, — Y} (Vy — Z3Ii)
=YiV, - Y Zi I
k
L+ Y, Zyl = Y,V
k k
(T, +YiZ) Ik = Y}V, 8)

The term If, is the diagonal identity matrix. To simplify the
notation, define

fy=Ty+ Y] 7 ©)
Equation (8) becomes
=117}V,

where the inverse of the matrix fl’,‘ has been taken. When (7)
and (10) are substituted into the sum (5), the current at any
angle in the ring results

1($) = Y9($)(Vy — ZyIx)
= YUV — Y (P ZyIk
=Y (@)V; — YURZEL YV

(10)
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N <
Il
N ©

Fig. 3. Ring with one driving source and a load at ¢ = 7 to show a formal
solution using (11).

The last line requires a change in the counter notation to
prevent counter confusion. Notice the difference between
(5) and (11). Each voltage generator V, in the former has
been extended to include a load impedance.

B. Input Impedance

The driving point impedance and admittance occur when
there is only one driving source. In this case, the source can be
at any of the M angles spread evenly around the ring. Taking
it at ¢ = 0, the impedance and admittance are calculated by
dividing the source voltage, Vi = V, by the current at ¢ =0

\4 _ -1
Zin = O [Y'©) —riozitf "y, a2

III. EXAMPLES
A. Resistive Loads

As examples, let us explore singly loaded resistive and
capacitive loops. In the first case, place in a PEC loop, a load
impedance at ¢» = &, and the drive source at ¢; = 0, as in
Fig. 3. Then, M =2, V] = V volt, V, = 0; Z% = 7/, while all
other impedance elements are zero. The matrix elements, Ya,
are calculated as follows:

YCL Y7r
Y = 13
[Yn YCL] (13)
where
o o
1 (="
YoL = Z — and Y = Z — (14)
m=—o0 M m=—o0 m

The matrix elements for f are

f=[(1)

and the current in (10) is

YaZy } (15)

1+YcLZ,

I = |:YCL +Zr(YcLYcL — Yr Yn):| y
1+YcrLZy

L= [ Ya ]V (16)

71 +YcLZL

The total current is given by expanding (11)
YrZ1

”—Y2(¢))}-

I+YcLZt

These results reproduce lizuka’s equations (18), (19), and (22).
The input impedance for the example can be found from (16)

1) =V [Y1(¢) _ (17

T T T T T T T T
20 -

Q =10, PEC, Low Frequency
Z=Ratd=n
Theoretical Calculations

175

Conductance, S

Fig. 4. Input admittance of an Q = 10 and 2z b = 30-m PEC loop with
various resistive loads at ¢ = 7 using (18).

7 T T T T T T T T T
0o ﬁ% Q =10, PEC, Low Frequencyaay"%éé
i Z=Ratd==a \
6 ”b L \ |
§ % %
i : 3 3
» F
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£ ot
k5]
=
e
5
(S
100 Q
) Simulation ]
oo Model (Eqn 18)

] J

0 - 1 1 L kb
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Fig. 5. 20- and 100-Q curves of Fig. 4 compared with those given by

simulation. See notes in the Appendix for simulation settings.

since 11 = I(0), or from (17) setting ¢ = 0
\% 14+YcLZL

100)  YeL+Zr(YeLYeL — Yo Yz)

The conductance of six different loop antennas where
Z; = R = {-100, —60, —20, 20, 60, 100}, shown in Fig. 4
duplicates [3, Fig. 8]. See [3] for other resistive examples. The
negative resistances were fabricated in [3] using Esaki diodes.
Note that negative resistance can generate high resonances.
Fig. 5 checks the validity of the model by comparing the
20- and 100-Q curves of Fig. 4 with curves obtained by
modern simulation. The correspondence is strong.

Zin

(18)

B. Capacitive Loads

As another example of the application of (18), set Z; to
a capacitive reactive load. Using w = kpc/b, where c is the
speed of light, the load may be expanded

19)

kp normalizes the reactance to the size of the loop and /.
becomes a measure of capacitance. For example, a capacitor of
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oo Model (Eqn 18)
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Fig. 6. Capacitive reactive load where [ = 1.0 is placed at ¢ = x in three
differently sized nanoloops. Here b = {10 um/2x, 5 ym/2x, 3 ym/2x}.
Simulation results are replicated well by the model in (18). See notes in the
Appendix for simulation settings.
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Q =12, % = 2xb=10um
[e=10atd=x
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[} 0.25 05 0.75 1 1.25 15 175 2 225 25
Fig. 7. Comparison of the conductances given by (18) of the 10-um gold

loop in Fig. 6 with and without the use of the surface impedance term. The
extra impedance causes higher losses and therefore smaller Q resonances and
red shifting.

value /. = 1.0 associated with a loop near its main resonance,
kp = 1.0, has the reactance —jX¢c = —jé = —j377 Q
and a capacitive value of C = €pbl, = 8.85b pf, where b is
in meters. In a similar way, inductive reactance is given by
J X1 = jéokply, inductance L = pobl,, and resistance by
R = &okpr, where [, and r are the appropriate constants
necessary to make the inductance and resistance desired at the
given kj. Fig. 6 shows the effects of using a capacitance of
value [ = 1.0 in gold nanoloops with radii b = {10 ym/2x,
5 ym/2xz,3 um/2x}. A resonance appears in the region below
kp = 0.5, the “subwavelength” region. The surface impedance
of the gold causes wavelength scaling and is the ultimate cause
of the k; compression that appears in the figure (that is, the
movement of the peak toward the left, a red shift scaling).
This is a resonance saturation explained in [4].

It is the addition of the surface impedance term to legacy
theory that allows for the extension to higher frequen-
cies. Fig. 7 compares the conductances of the 1 = 2z
b = 10-um gold loop shown in Fig. 6 when the term is used

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION

in (18) and when it is not. When the term is not used, there
is nothing in the legacy theory to distinguish the gold loop
from a PEC loop; the conductance, therefore is the same as
it would be at low frequencies for a PEC loop; a very high-
Q sub-wavelength resonance occurs near k; = 0.35 with the
main resonance near k, = 1.25. With the term, using data
for gold, the subwavelength resonance still exists, but its Q is
much smaller and all of the resonances have red shifted. The
subwavelength resonance red shifts to k, = 0.25. Indeed, use
of the surface impedance term is vital for reproducing actual
behavior.

IV. CONCLUSION

The original early work on impedance loaded loop antennas
has been extended to the high GHz, THz, and optical regions
for thin-wire, PEC, lossy, and frequency-dependent metal
rings. The examples given in the early work using resistive
loads was confirmed using a modern simulation tool, as was
the extended theory using capacitive loads. The principal
additions to the theory of loop antennas are twofold: 1) the
inclusion of a surface impedance in the main legacy theory
to allow for extension to the optical frequencies and 2) the
clarification of the multiple gap mathematics using Einstein
notation, which now also includes the surface impedance. The
Appendix contains a derivation of the inductance, capacitance,
and resistance of any thin-wire closed loop made of noble
metals at any wavelength. MATLAB code is available from
the author upon request.

APPENDIX
A. RLC Element Derivation for Closed Loops

The input impedance of a closed loop of a loop or nanoring
at any frequency may be calculated in the following way.
From (1), with ¢ =0

1 1 =1
— == — 20
AR A
Remembering that the impedance is complex
VAV 1 =1
7t ="Z= 177 | = —
Z II%+;%
Z/* 00 Z/*
1] Z(’)*Z’0+ZIZZ;,TZ;”
_zp| RomiXo S R =X,
2 2
L 1% T 1z
(R, & R,
=1ZE et
L |ZO| 1 |Zm|
! S ’
X
0 m
— +Z_
2 2
zo]” T2l
=R—-iX. 2n
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Equation (21) gives the total resistance and reactance of the
loop, taking into account all of the modal impedances. It is,
of course, just the complex conjugate of Z which can be
calculated from the definitions. The reactance in (21) can be
expanded to give the total inductance and capacitance of the
loop. Remembering that the capacitance has no zero mode

_e| X0 s X
e

Ak
/ o0 L/
zp)? Tz,
1 s~ 1/(0C},)
&—wdqmzjvw (22)

Reducing, we have for L and C

L = pobl, = |Z|? [

L L
0 m
S

|2y |Z;,]
11 e 1/C,
C  ebl. 12l Z 1z, |2' (23)
1 m

These are functions of k. The prime, of course, refers to the
elemental values when the surface impedance is taken into
account.

B. Simulation Methodology

MWS by CST? was used to produce the results appearing
in Figs. 5 and 6. The low-frequency simulations for the first
of Figs. 5 and 6 use an Q = 10, PEC torus with middle
circumference, 2z b = 3 m (about 100 MHz). A discrete port
with an internal resistance, Rpor, is placed across a gap of
width 0.05b at ¢ = 0. The resistive loads are established as
lumped elements across a similar gap at ¢ = «. The schematic
is not used.

The high-frequency simulations in the second of Figs. 5
and 6 use an Q = 12 gold torus of various sizes as noted
in the text. A port resistance and two gaps are used as for
the previous figure. The permittivity of the gold follows the
permittivity model described in great detail in [4].

Each gap acts as a capacitive reactance, X,. The gap
reactance at ¢ = O affects the input impedance, Z;,, for
some ranges of kp; Zi, is what MWS reports, and therefore,
for a proper comparison with the results of the model, based
on (18), X, must be removed (see Fig. 8). This can be done
by assuming that it is a flat plate capacitance in parallel
across the input loop impedance. On the other hand, the gap
reactance at ¢ = = does not have to be removed because the
load resistance, Ry, is much smaller than the gap reactance;
moreover, it has very little effect on the resonances.

Maximum power transfer into the loop occurs when the port
resistance matches Zj,. The proper Rpor¢ to use is discovered

2Computer Simulation Technology AG, MWS, 2012, Darmstadt, Germany.
www.cst.com.

A

Rport

V(¢) @ Zin —» Xg

(a)

Zloop

AN

Zint

V(x) @ Zn —» Xg Ru
(b)

Fig. 8. Equivalent circuits representations for the loop at (a) ¢ = 0 and
(b) ¢ = m. MWS reports Z;;, and therefore X needs to be removed from
the results for a fair comparison with the model. This is not true for X, at
¢ = (see the text).

iteratively. A first solution using R = 50 ohm is tried; the
real part of the resulting input loop impedance at the main
resonance (near k; = 1.0 where the imaginary part is zero)
is then used for the port resistance in the next trial run.
This continues until convergence, often after just two trials.
The capacitance of the gap is not removed before the loop
resistance is identified. The internal port impedance has no
bearing on the comparison of simulation and model results.

The discrete port supplied in the MWS simulator does not
make good contact with the wire. This is particularly true
when the material of the torus is something other than PEC.
Consequently, small PEC spheres are placed inside the torus
on either side of the gaps, but protruding a bit into the gap
so to provide a connection point for the port. This seems to
provide adequate contact for the solver.

The theoretical model was derived for vanishingly thin
loops. The thickness of the loop adds additional inductance
that the simulations naturally take into account. For a fair
comparison with the model, that inductance needs to be added
in the model. This can be done effectively by introducing
an inductance, approximate to first order, in series with the
loop at the input. In other words, add an input impedance,
le = &okp(r + jl,), in series with Vy in (12). The resistance
added to the loops used in Fig. 5 was R = &okpr where r =
0.025 and the inductance was L = uobl, where [, = 0.110.
The thickness of the Q = 12 loops in Fig. 6 adds no appre-
ciable resistance or inductance at the very high frequencies
studied.

MATLAB code, written to reproduce (11) and (12) for any
number of loads around the loop, is available from the author
upon request.
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