
Reinforcement Learning from
Self-Play in Imperfect-Information

Games

Johannes Heinrich

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

March 9, 2017



2

I, Johannes Heinrich, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work.



Abstract

This thesis investigates artificial agents learning to make strategic decisions in

imperfect-information games. In particular, we introduce a novel approach to re-

inforcement learning from self-play.

We introduce Smooth UCT, which combines the game-theoretic notion of fic-

titious play with Monte Carlo Tree Search (MCTS). Smooth UCT outperformed a

classic MCTS method in several imperfect-information poker games and won three

silver medals in the 2014 Annual Computer Poker Competition.

We develop Extensive-Form Fictitious Play (XFP) that is entirely implemented

in sequential strategies, thus extending this prominent game-theoretic model of

learning to sequential games. XFP provides a principled foundation for self-play

reinforcement learning in imperfect-information games.

We introduce Fictitious Self-Play (FSP), a class of sample-based reinforce-

ment learning algorithms that approximate XFP. We instantiate FSP with neural-

network function approximation and deep learning techniques, producing Neural

FSP (NFSP). We demonstrate that (approximate) Nash equilibria and their repre-

sentations (abstractions) can be learned using NFSP end to end, i.e. interfacing

with the raw inputs and outputs of the domain.

NFSP approached the performance of state-of-the-art, superhuman algorithms

in Limit Texas Hold’em - an imperfect-information game at the absolute limit of

tractability using massive computational resources. This is the first time that any re-

inforcement learning algorithm, learning solely from game outcomes without prior

domain knowledge, achieved such a feat.



Acknowledgements

Heartfelt thanks to:

David Silver, for inspiring and guiding me in the fascinating world of rein-

forcement learning and artificial intelligence

Peter Dayan, for his thought-provoking feedback and ideas

Philip Treleaven, for his mentorship and support

Peter Cowling and Thore Graepel, for their valuable feedback and a mem-

orable viva

The DeepMind team who greatly inspired, taught and supported me: Marc

Lanctot, Georg Ostrovski, Helen King, Marc Bellemare, Joel Veness,

Tom Schaul, Thomas Degris, Nicolas Heess, Volodymyr Mnih, Remi

Munos, Demis Hassabis

John Shawe-Taylor, for his feedback and support

James Pitkin, for the fun times

Sam Devlin, for his friendship and guidance

The CDT in Financial Computing & Analytics, for the support and great

research environment

NVIDIA, for the hardware grant

My family, for their love and support

Martina Ankenbrand, for our love and adventures



Strategy without tactics is the slowest route to victory.

Tactics without strategy is the noise before defeat.

— Sun Tzu

One day Alice came to a fork in the road and saw a Cheshire

cat in a tree. “Which road do I take?” she asked. “Where do

you want to go?” was his response. “I don’t know”, Alice

answered. “Then,” said the cat, “it doesn’t matter.”

— Lewis Carroll, Alice in Wonderland



Contents

1 Introduction 12
1.1 Strategic Decision Making . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 Adaptive (Exploitative) Approach . . . . . . . . . . . . . . 13
1.1.2 Static (Defensive) Approach . . . . . . . . . . . . . . . . . 14
1.1.3 Self-Play . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.1 Theme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Background and Literature Review 21
2.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2 Value Functions . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.3 Policy Evaluation and Policy Improvement . . . . . . . . . 25
2.1.4 Function Approximation . . . . . . . . . . . . . . . . . . . 28
2.1.5 Exploration and Exploitation . . . . . . . . . . . . . . . . . 30
2.1.6 Monte Carlo Tree Search . . . . . . . . . . . . . . . . . . . 31

2.2 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.1 Extensive-Form Games . . . . . . . . . . . . . . . . . . . . 33
2.2.2 Nash Equilibria . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.3 Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.4 Sequence Form . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.5 Fictitious Play . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.6 Best Response Computation . . . . . . . . . . . . . . . . . 39

2.3 Poker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.1 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.3 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.4 Current Methods . . . . . . . . . . . . . . . . . . . . . . . 45



Contents 7

3 Smooth UCT Search 46
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 MCTS in Extensive-Form Games . . . . . . . . . . . . . . . . . . . 47
3.3 Extensive-Form UCT . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Smooth UCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 Kuhn Poker . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.2 Leduc Hold’em . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.3 Limit Texas Hold’em . . . . . . . . . . . . . . . . . . . . . 54

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Fictitious Play in Extensive-Form Games 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Best Response Computation . . . . . . . . . . . . . . . . . . . . . 62
4.3 Strategy Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Mixed Strategies . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.2 Unweighted Behavioural Strategies . . . . . . . . . . . . . 63
4.3.3 Realization-Weighted Behavioural Strategies . . . . . . . . 65

4.4 Extensive-Form Fictitious Play . . . . . . . . . . . . . . . . . . . . 67
4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.1 Realization-Weighted Updates . . . . . . . . . . . . . . . . 69
4.5.2 GFP and Comparison to CFR . . . . . . . . . . . . . . . . 70
4.5.3 Robustness of XFP . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Fictitious Self-Play 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Experiential Learning . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 Best Response Learning . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.1 Sequence of MDPs . . . . . . . . . . . . . . . . . . . . . . 77
5.3.2 Sampling Experience . . . . . . . . . . . . . . . . . . . . . 78
5.3.3 Memorizing Experience . . . . . . . . . . . . . . . . . . . 78
5.3.4 Best Response Quality . . . . . . . . . . . . . . . . . . . . 79

5.4 Average Strategy Learning . . . . . . . . . . . . . . . . . . . . . . 80
5.4.1 Modeling Oneself . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.2 Sampling Experience . . . . . . . . . . . . . . . . . . . . . 82
5.4.3 Memorizing Experience . . . . . . . . . . . . . . . . . . . 83
5.4.4 Average Strategy Approximation . . . . . . . . . . . . . . . 84

5.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5.1 Batch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5.2 Table-lookup . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.6.1 Empirical Analysis of Approximation Errors . . . . . . . . 87
5.6.2 Sample-Based Versus Full-Width . . . . . . . . . . . . . . 89

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



Contents 8

6 Practical Issues in Fictitious Self-Play 94
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2 Simultaneous Learning . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3 Online FSP Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.4 Neural Fictitious Self-Play . . . . . . . . . . . . . . . . . . . . . . 96
6.5 Encoding a Poker Environment . . . . . . . . . . . . . . . . . . . . 98
6.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.6.1 Leduc Hold’em . . . . . . . . . . . . . . . . . . . . . . . . 101
6.6.2 Comparison to DQN . . . . . . . . . . . . . . . . . . . . . 102
6.6.3 Limit Texas Hold’em . . . . . . . . . . . . . . . . . . . . . 105

6.7 Visualization of a Poker-Playing Neural Network . . . . . . . . . . 107
6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 Conclusion 114
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.1.1 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.1.2 Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 Future of Self-Play . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A Analysis of Self-Play Policy Iteration 120
A.1 Nash Equilibria of Imperfect-Information Games . . . . . . . . . . 120
A.2 Policy Iteration in Perfect-Information Games . . . . . . . . . . . . 122

B Geometric Fictitious Play 124

Bibliography 127



List of Figures

2.1 MCTS schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 Exemplary Texas Hold’em game situation . . . . . . . . . . . . . . 41

3.1 The full game tree and the players’ individual information-state
trees of a simple extensive-form game. . . . . . . . . . . . . . . . . 48

3.2 Learning curves in Kuhn poker. . . . . . . . . . . . . . . . . . . . . 52
3.3 Learning curves in Leduc Hold’em. . . . . . . . . . . . . . . . . . 53
3.4 Long-term learning curves in Leduc Hold’em. . . . . . . . . . . . . 54
3.5 Learning performance in two-player Limit Texas Hold’em, evalu-

ated against SmooCT, the runner-up in the ACPC 2014. The esti-
mated standard error at each point of the curves is less than 1 mbb/h.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Illustration of mixed strategy updates in extensive form . . . . . . . 63
4.2 Game used in proof of proposition 4.3.1 . . . . . . . . . . . . . . . 64
4.3 Learning curves of extensive-form fictitious play processes in

Leduc Hold’em, for stepsizes λ 1 and λ 2. . . . . . . . . . . . . . . . 70
4.4 Performance of XFP and GFP variants in Leduc Hold’em. . . . . . 71
4.5 Comparison of XFP, GFP and CFR in Leduc Hold’em. . . . . . . . 72
4.6 The impact of constant stepsizes on the performance of full-width

fictitious play in Leduc Hold’em. . . . . . . . . . . . . . . . . . . . 73
4.7 The performance of XFP in Leduc Hold’em with uniform-random

noise added to the best response computation. . . . . . . . . . . . . 74

5.1 Analysis of the best response approximation quality of table-lookup
FSP in Leduc Hold’em. . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Analysis of the average strategy approximation quality of table-
lookup FSP in Leduc Hold’em. . . . . . . . . . . . . . . . . . . . . 90

5.3 Comparison of XFP and table-lookup FSP in Leduc Hold’em with
6 and 60 cards. The inset presents the results using a logarithmic
scale for both axes. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 Comparison of XFP and table-lookup FSP in River poker. The inset
presents the results using a logarithmic scale for both axes. . . . . . 92

6.1 Learning performance of NFSP in Leduc Hold’em for various net-
work sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



List of Figures 10

6.2 Breaking learning performance in Leduc Hold’em by removing es-
sential components of NFSP. . . . . . . . . . . . . . . . . . . . . . 103

6.3 Comparing performance to DQN in Leduc Hold’em. . . . . . . . . 104
6.4 Win rates of NFSP against SmooCT in Limit Texas Hold’em. The

estimated standard error of each evaluation is less than 10 mbb/h. . . 106
6.5 t-SNE embeddings of the first player’s last hidden layer activations.

The embeddings are coloured by A) action probabilities; B) round
of the game; C) initiative feature; D) pot size in big bets (logarith-
mic scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.6 t-SNE embeddings of the second player’s last hidden layer activa-
tions. The embeddings are coloured by A) action probabilities; B)
round of the game; C) initiative feature; D) pot size in big bets (log-
arithmic scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.7 A) pairs preflop vs call; B) pairs check/calling down from flop after
big-blind defense (rc/crc/crc/cr); C) pairs on flop facing continua-
tion bet after big-blind defense (rc/cr); D) straight draws facing a
bet on the turn; E) uncompleted straight draws on the river after
having bluff-bet the turn. . . . . . . . . . . . . . . . . . . . . . . . 112

6.8 A) high cards vs river bet after check through turn; B) high cards
facing check/raise on flop after continuation bet (rc/crr); C) flushes
facing a check; D) straight draws facing a bet on the flop; E) facing
check on river after having bluff-raised (first four) or bluff-bet (last
four) the turn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.1 A small two-player general-sum game. . . . . . . . . . . . . . . . 123



List of Tables

3.1 E[HS2] discretization grids used in experiments. . . . . . . . . . . . 55
3.2 Two-player Limit Texas Hold’em winnings in mbb/h and their stan-

dard errors. The average results are reported with and without in-
cluding chump4 and chump9. . . . . . . . . . . . . . . . . . . . . 58

3.3 Three-player Limit Texas Hold’em winnings in mbb/h and their
standard errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Win rates of NFSP’s greedy-average strategy against the top 3
agents of the ACPC 2014. . . . . . . . . . . . . . . . . . . . . . . 106



Chapter 1

Introduction

Games are domains of conflict or cooperation (Myerson, 1991) between decision-

making intelligences, who are termed agents. Our world is full of imperfect-

information games. Examples include airport security, traffic control, financial

trading, sales & marketing, tax evasion, sports and poker. This thesis addresses

the problem of artificial agents learning to make strategic decisions in imperfect-

information games.

Agents exist in an environment. An agent’s experience in its environment is a se-

quence of observations it perceives, actions it chooses, and rewards it receives. The

real-valued reward signal determines how the agent perceives its experience, e.g.

falling off a bike would be a painful, negative-reward experience. The observations

encode the information that the agent gathers via its senses, e.g. sight or touch but

also non-human senses such as a phone’s accelerometer. An agent’s goal is to max-

imise its total long-term reward. To achieve its goal it has to experientially learn a

policy for choosing optimal (reward-maximising) actions, which may include for-

going short-term reward to achieve higher long-term reward. For example, an agent

might try different restaurants and dishes on the menu instead of settling on a single

choice.

Reinforcement learning is a paradigm of goal-directed intelligent learning from

an agent’s experience (Sutton and Barto, 1998). A reinforcement-learning agent

is in charge of exploring its environment to gather the experience it may need for

learning a policy on its own. In particular, positive (negative) rewards reinforce



1.1. Strategic Decision Making 13

(inhibit) the agent’s decisions. This could be described as trial-and-error learning.

Unlike in supervised learning, there is no external teacher1 who presents the agent

with the optimal action (label) for a given situation (input). Unlike in traditional

programming, the agent’s decisions are not hard-coded. These distinctive proper-

ties of reinforcement learning were key to achieving superhuman performance in

Backgammon (Tesauro, 1995), Go (Silver et al., 2016a), and Atari games (Mnih

et al., 2015).

Game theory is the classic science of strategic decision making in games. Strategic

decisions take into account the motives and intelligence of other agents, who might

be cooperative or adversarial. Game theorists have traditionally studied the decision

making of rational agents (Myerson, 1991). Rational agents maximise their rewards

and are assumed to have the ability to do so. A seminal game-theoretic result is that

every game has a Nash equilibrium (Nash, 1951), i.e. an assignment of policies

from which no rational agent would choose to deviate.

1.1 Strategic Decision Making
In a single-agent task, such as a robot lifting inanimate objects or a machine clas-

sifying images, the agent’s environment is usually assumed to be stationary, i.e. its

dynamics do not change if the task is repeated. This property is very useful to a

reinforcement learner, as it can gather experience from repeatedly performing the

task. In contrast, in a multi-agent game an agent’s decisions affect fellow agents’

experience, causing them to dynamically adapt their behaviour. Due to these recip-

rocal effects, experience of specific strategic scenarios can be scarce. This poses

significant challenges to experiential learning.

1.1.1 Adaptive (Exploitative) Approach

Consider an agent repeatedly playing a game against an opponent. Each round of

the game adds to the experience of both agents. In particular, the opponent will learn

from this experience and thus (indefinitely) alter its internal state, e.g. memory and

policy. Technically, as the opponent cannot be forced to forget the past, an agent

1A teacher could be encountered within the agent’s environment.



1.1. Strategic Decision Making 14

can therefore never repeat the same iteration of the game against the same oppo-

nent. How could the agent still effectively learn from trial and error? It would have

to generalise from unique experiences. First, there might be generalisable patterns

in the opponent’s decision making that allow the agent to transfer knowledge across

the sequence of repeated games. This could be the case when the opponent is using

a simple heuristic or algorithm for making its decisions or when it has a bounded

memory or other limitations. Second, the agent could play against different oppo-

nents and attempt to generalise from these experiences. This would be possible if

there were (identifiable) groups of opponents that think similarly.

While the adaptive approach has the potential of being optimal, i.e. reward

maximising, it poses several challenges. First, acquiring experience and learning

from trial and error can be particularly costly in an adversarial game, such as airport

security or poker. Second, accelerating the experience acquisition by using data or

experience of other agents may not be an option for imperfect-information games.

Finally, a superior opponent, who learns faster, could outplay an adaptive agent by

anticipating its decisions. For example, by employing a theory of mind (Premack

and Woodruff, 1978), an opponent could be already thinking about what the agent

is thinking about him (Yoshida et al., 2008), i.e. the opponent’s decision making

would be one step ahead.

1.1.2 Static (Defensive) Approach

In a Nash equilibrium every agent is maximising its reward and therefore may as

well continue using its respective policy. Thus, a Nash equilibrium can be regarded

as a fixed point of multi-agent learning. In fact, by definition (Nash, 1951), Nash

equilibria are the only policies that rational agents can ever converge on.

What are the use cases of Nash equilibria? First, learning a Nash equilibrium,

in principle, only requires knowledge of the game’s rules or access to a black-box

simulator. In particular, no prior experience or domain knowledge is required. Sec-

ond, a Nash equilibrium may be predictive of sophisticated, i.e. approximately

rational, agents’ behaviour. This can be useful in designing multi-agent systems

that cannot be gamed, e.g. auctions (Roth, 2002) or blockchains (Nakamoto, 2008).



1.1. Strategic Decision Making 15

Third, decentrally deployed cooperative agents are sometimes managed by a single

entity, e.g. a city’s traffic lights system. All optimal policies of these agents would

be Nash equilibria. The goal would be to find the best Nash equilibrium, i.e. a

global optimum. Fourth, in adversarial (two-player zero-sum) games Nash equilib-

ria offer attractive worst-case guarantees (Neumann, 1928). In particular, choosing

a Nash equilibrium is optimal against a worst-case opponent, i.e. an opponent that

always knows the agent’s policy and plays perfectly against it. This is useful in se-

curity domains, where an attacker might choose to only act on detected weaknesses

(Tambe, 2011). Furthermore, a Nash equilibrium is unbeatable (in expectation) in

alternating adversarial games, e.g. poker. Finally, a Nash equilibrium could be used

as an initial policy and then tailored to fellow agents by learning from experience

(Johanson et al., 2008). This could mitigate some of the costs of experience acqui-

sition (compare Section 1.1.1).

Using static Nash equilibria poses the following challenges. First, choosing a

policy from a Nash equilibrium is not always optimal. For example, an irrational

opponent might make mistakes that the agent could learn to exploit for higher re-

ward than a Nash equilibrium might offer (see Section 1.1.1). Also, in games with

more than two players (or general-sum games) all agents generally have to select the

same Nash equilibrium in order to be offered its optimality guarantees, e.g. if two

cooperative neighbouring city councils operate their own respective traffic lights

systems, they might have to coordinate on the same Nash equilibrium to achieve

optimal traffic flow. Second, the reward signals of fellow agents are subjective and

generally unperceivable by other agents. For instance, fellow agents’ reward signals

might encode individual, altruistic, moral and utilitarian motives (Hula et al., 2015).

Therefore, a Nash equilibrium of a subjective model of a game might be unapplica-

ble to the environment if the assumed rewards do not match the real reward signals

of fellow agents. This is less of an issue for purely adversarial games, such as poker,

football or tax evasion, where the opponent’s reward might just be assumed to be

the negative of the relevant agent’s reward. In this case, a Nash equilibrium would

offer the typical worst-case guarantees with respect to the relevant agent’s reward



1.2. Research Question 16

signal, e.g. breaking even in symmetric or alternating games.

1.1.3 Self-Play

Self-play is the activity of imagining or simulating the play of a game against one-

self. For instance, a human agent could sit down in front of a chess board and play

out game positions either mentally or physically on the board. This educational ac-

tivity yields experience that humans can learn from. Similarly, an artificial agent can

learn from self-play (Shannon, 1950; Samuel, 1959). Many practical successes of

artificial intelligence in games have been based on self-play (Tesauro, 1995; Veness

et al., 2009; Bowling et al., 2015; Brown et al., 2015; Silver et al., 2016a).

Self-play can be alternatively interpreted as a fictitious interaction of multiple

agents. This is because a self-playing agent would have to imagine itself as each

player2 in the game, taking into account the respective players’ private information

that would be available only to them in an imperfect-information game. This is

technically equivalent to imagining multiple agents interacting in the game. There-

fore, our discussion of Nash equilibria as fixed points of multi-agent learning (see

Section 1.1.2) also applies to self-play. In particular, Nash equilibria are the only

policies that rational learning from self-play can converge on (Bowling and Veloso,

2001). Vice versa, Nash equilibria can, in principle, be learned from self-play.

1.2 Research Question
Our overall goal is to answer the question,

Can an agent feasibly learn approximate Nash equilibria of large-scale

imperfect-information games from self-play?

1.2.1 Motivation

Real-world games are typically large-scale and only partially observable, requiring

agents to make decisions under imperfect information. By large-scale, we mean

the game to have a variety of situations that cannot be exhaustively enumerated with

2 A game’s player is merely the specification of a role. This role can be implemented by an agent.



1.2. Research Question 17

reasonable computational resources. In particular, specific actions for each situation

cannot be feasibly provided by a lookup table.

We have established the utility of Nash equilibria in Section 1.1.2. In large-

scale games we generally have to settle for an approximate Nash equilibrium, i.e.

an assignment of policies from which agents have little incentive to deviate.

1.2.2 Related Work

In this section we discuss prior work related to our research question, focusing on

the respective aspects that have not fully addressed our question.

Optimisation Nash equilibria have been traditionally computed by mathematical

programming techniques (Koller et al., 1996; Gilpin et al., 2007; Hoda et al., 2010;

Bosansky et al., 2014). An advantage of some of these methods is that they produce

a perfect equilibrium. However, these methods generally need to enumerate and

encode the various aspects of a game and thus do not apply to large-scale games.

Fictitious play (Brown, 1951) is a classic game-theoretic model of learning from

self-play (Robinson, 1951; Fudenberg and Levine, 1995; Monderer and Shapley,

1996; Hofbauer and Sandholm, 2002; Leslie and Collins, 2006). Fictitious players

repeatedly play a game, at each iteration choosing the best policy in hindsight. This

is quite similar to how a reinforcement learner might act. However, fictitious play

has been mainly studied in single-step games, which can only inefficiently represent

sequential, multi-step games (Kuhn, 1953). A sequential variant of fictitious play

was introduced but lacks convergence guarantees in imperfect-information games

(Hendon et al., 1996).

Counterfactual Regret Minimization (CFR) (Zinkevich et al., 2007) is a full-

width3 self-play approach guaranteed to converge in sequential adversarial (two-

player zero-sum) games. Monte Carlo CFR (MCCFR) (Lanctot et al., 2009) extends

CFR to learning from sampled subsets of game situations. Outcome Sampling (OS)

(Lanctot et al., 2009; Lisý et al., 2015) is an MCCFR variant that samples single

game trajectories. It can be regarded as an experiential, reinforcement learning

method. However, OS, MCCFR and CFR are all table-lookup approaches that lack
3 Generally, each iteration has to consider all game situations or actions.



1.2. Research Question 18

the ability to learn abstract patterns and use them to generalise to novel situations,

which is essential in large-scale games. An extension of CFR to function approxi-

mation (Waugh et al., 2015) is able to learn such patterns but has not been combined

with sampling. Therefore, it still needs to enumerate all game situations. Finally,

the aforementioned CFR variants, except OS, are unsuitable for agent-based learn-

ing from experience.

CFR-based methods have essentially solved two-player Limit Texas Hold’em

poker (Bowling et al., 2015) and produced a champion program for the No-Limit

variant (Brown et al., 2015). Both of these games can be considered large-scale.

However, in order to achieve computational tractability, a model of the game had

to be exploited with domain-specific human-engineered routines, e.g. compression

techniques, abstractions and massive distributed computing. In contrast, an agent

would learn solely from its experience and generalise to unseen situations rather

than exhaustively enumerate them. Such an agent may also be versatilely applied

to other games by connecting it to the respective environments’ streams of observa-

tions, actions and rewards.

Abstraction The limited scalability of CFR and mathematical programming meth-

ods has traditionally been circumvented by solving abstractions of games. An ab-

straction reduces the game to a manageable size. Forming an abstraction generally

requires prior domain knowledge (experience). In early work on computer poker

(Billings et al., 2003; Zinkevich et al., 2007; Johanson et al., 2012), agents did not

learn abstractions from their own experience. Instead they were injected with a

hard-coded abstraction, which was handcrafted based on human domain expertise.

Apart from the resource requirements for creating such abstractions, hard-coded

abstraction can eternally bias an agent and prevent it from achieving its goals. In

particular, handcrafted abstractions can result in unintuitive pathologies of agents’

policies (Waugh et al., 2009a). Recent work (Sandholm and Singh, 2012; Kroer and

Sandholm, 2014; Brown and Sandholm, 2015) has explored automated abstraction

techniques, which refine an abstraction during training based on (computed) game

outcomes. Similarly, an end-to-end approach to experiential learning from self-play



1.3. Approach 19

could allow an agent to learn both the game’s optimal (Nash equilibrium) policy as

well as a suitable game abstraction (features) to represent it.

Reinforcement learning has been successful in learning end to end (Riedmiller,

2005; Heess et al., 2012; Mnih et al., 2015, 2016), i.e. interfacing with the raw

stream of the environment’s observations, actions, and rewards. Many applications

of experiential learning from self-play can be well described as reinforcement learn-

ing. In adversarial games, agents try to maximise (minimise) their own (opponents’)

rewards in a Minimax fashion (Shannon, 1950; Littman, 1996). While classical re-

inforcement learning methods have achieved high-quality solutions to recreational,

perfect-information games (Tesauro, 1995; Veness et al., 2009; Silver et al., 2016a),

these methods fail to converge (on Nash equilibria) in imperfect-information games

(Ponsen et al., 2011; Lisý, 2014) (see Appendix A). However, for the adaptive ap-

proach to strategic decision making (see Section 1.1.1) convergence to Nash equi-

libria is not required. In this case, the problem reduces to a Markov decision process

(MDP) (technically, a single-agent domain) for which reinforcement learning offers

convergence guarantees (Sutton and Barto, 1998). Regarding learning from self-

play, Leslie and Collins (2006) introduced a reinforcement learning algorithm that

implements (approximate) fictitious play in single-step games and thus offers its

convergence guarantees.

1.3 Approach
This section describes the recurring theme of this thesis and the specific steps we

take towards answering our research question.

1.3.1 Theme

We craft a novel approach to learning from self-play, by combining the strengths

of reinforcement learning (sequential experiential learning) and fictitious play (con-

vergence on Nash equilibria). This is motivated by a striking similarity between

the concepts of fictitious play and reinforcement learning. Both techniques con-

sider agents who choose policies that are best in hindsight, i.e. according to their

experience.



1.3. Approach 20

We develop and evaluate our methods in poker games, which have traditionally

exemplified the challenges of strategic decision making (Von Neumann and Mor-

genstern, 1944; Kuhn, 1950; Nash, 1951; Billings et al., 2002; Sandholm, 2010;

Rubin and Watson, 2011; Bowling et al., 2015).

1.3.2 Outline

We proceed as follows:

• Chapter 2 reviews the literature and background material that we build upon.

• Chapter 3 presents a case study of introducing the notion of fictitious play

into a reinforcement learning algorithm. The resulting approach, Smooth

UCT, significantly improves on the original algorithm’s convergence in self-

play and was successful in the Annual Computer Poker Competition (ACPC)

2014.

• Chapter 4 extends fictitious play to sequential games, preserving its conver-

gence guarantees. The resulting full-width approach, Extensive-Form Ficti-

tious Play (XFP), provides a principled foundation for reinforcement learning

from self-play.

• Chapter 5 extends XFP to learning from sampled experience. The resulting

approach, Fictitious Self-Play (FSP), utilises standard supervised and rein-

forcement learning techniques for approximating (sequential) fictitious play.

• Chapter 6 addresses practical issues of FSP by instantiating it with deep learn-

ing techniques. The resulting approach, Neural Fictitious Self-Play (NFSP),

has enabled agents to experientially learn a near state-of-the-art policy for a

large-scale poker game from self-play. This result provides an answer to the

research question of the thesis.

• Chapter 7 concludes the thesis.



Chapter 2

Background and Literature Review

2.1 Reinforcement Learning

Reinforcement learning is the science of optimal sequential decision making in the

presence of a reward feedback signal. A reinforcement learning agent is not gen-

erally presented a desired or optimal action (output) for a given situation (input).

Instead it needs to discover desired solutions from its own or others’ experience of

interacting with its domain. A real-valued reward signal provides the agent with

feedback on its choices and experience. A common goal for the agent is to learn an

optimal policy that maximises its expected total reward.

2.1.1 Task

A reinforcement learning agent exists in an environment that it can interact with.

At each each time step t the learning agent perceives the current observation

Ot ∈ O and then chooses an action At ∈ A from a set of available actions. Af-

ter performing its action, which generally has an effect on the environment, the

agent experiences a reward Rt+1 ∈ R and its next observation Ot+1 of the envi-

ronment. The sequence of observations, actions and rewards constitutes the agent’s

experience. The agent’s information state Ut ∈U is a (possibly sufficient) statis-

tic of the agent’s past experience. A policy, π(a |u), is a probability distribution

over available actions given information states. In a finite, episodic task, the agent



2.1. Reinforcement Learning 22

strives to maximise its return1, Gt = ∑
T
k=t Rk+1, by learning an optimal policy from

its experience.

A reinforcement learning task has been traditionally formulated as a Markov

decision process (MDP) (Puterman, 1994; Sutton and Barto, 1998). A MDP

consists of a set of Markov states S , a set of actions A and probability

distributions that determine its dynamics. The transition function, Pa
ss′ =

P(St+1 = s′ |St = s,At = a), determines the probability of transitioning to state

s′ after taking action a in state s. Rewards are emitted from a conditional prob-

ability distribution with expected values determined by the reward function,

Ra
ss′ = E [Rt+1 |St = s,At = a,St+1 = s′].

A MDP defines a perfect-information, stationary environment. In this envi-

ronment the agent observes the MDP’s Markov state, Ot = St , which is a sufficient

statistic of the agent’s past experience,

P(ot+1,rt+1 |o1,a1, ...,ot ,at) = P(ot+1,rt+1 |ot ,at) .

In MDP environments we usually do not distinguish between the environment state

and the agent’s information state and observation, as we assume them to be equal,

St =Ut = Ot .

A partially observable Markov decision process (POMDP) (Kaelbling

et al., 1998) extends the MDP model to environments that are not fully observable.

In addition to the components of an MDP, a POMDP contains a set of observa-

tions O and an observation function Zso = P(Ot = o |St = s) that determines the

probability of observing o in state s.

A POMDP defines an imperfect-information, stationary environment. In this

environment the agent only receives a partial observation of the underlying MDP’s

state. In principle, the agent can remember the full history of past observations and

1 In this thesis, we restrict our presentation and use of reinforcement learning to episodic tasks
and thus ignore the common discount factor that is convenient for non-episodic tasks.



2.1. Reinforcement Learning 23

actions, which by definition is a sufficient statistic of its experience and thus an ideal

information state,

Ut = O1A1O2...At−1Ot . (2.1)

The POMDP can be reduced to a standard, perfect-information MDP by redefining

it over these full-history information states and extending the respective transition

and reward functions (Silver and Veness, 2010).

2.1.2 Value Functions

Many reinforcement learning methods learn to predict the expected return of the

agent (Sutton and Barto, 1998).

The state-value function, V π : U → R, maps an information state u to the

expected return from following policy π after experiencing u,

V π(u) = Eπ [Gt |Ut = u] , (2.2)

where Eπ denotes the expectation with the agent’s actions, {Ak}k≥t , and thus sub-

sequent experience sampled from policy π .

The action-value function, Qπ : U ×A → R, maps information state-action

pairs (u,a) to the expected return from taking action a in information state u and

following policy π thereafter,

Qπ(u,a) = Eπ [Gt |Ut = u,At = a] . (2.3)

Full-Width Updates A key ingredient of many reinforcement learning algorithms

are the Bellman equations (Bellman, 1957). They relate the values of subsequent

states. For MDPs, where the agent’s information states are equivalent to the MDP’s



2.1. Reinforcement Learning 24

Markov states, we can derive the Bellman equations,

V π(u) = Eπ

[
T

∑
k=t

Rk+1

∣∣∣∣∣Ut = u

]

= Eπ

[
Rt+1 +

T

∑
k=t+1

Rk+1

∣∣∣∣∣Ut = u

]

= ∑
a∈A

π(a |u) ∑
u′∈U

Pa
uu′

(
Ra

uu′+Eπ

[
T

∑
k=t+1

Rk+1

∣∣∣∣∣Ut+1 = u′
])

= ∑
a∈A

π(a |u) ∑
u′∈U

Pa
uu′
(
Ra

uu′+V π(u′)
)
. (2.4)

The Bellman equations define a full-width update of a state value from its subse-

quent state values,

V π(u)← ∑
a∈A

π(a |u) ∑
u′∈U

Pa
uu′
(
Ra

uu′+V π(u′)
)

(2.5)

This update requires knowledge or a model of the MDP dynamics.

Similar equations and full-width updates can be derived for the action-value

function,

Qπ(u,a) = ∑
u′∈U

Pa
uu′

(
Ra

uu′+ ∑
a∈A

π(a |u′)Q(u′,a)

)
. (2.6)

Sampled Updates Consider the problem of estimating a state or action value from

sampled experience, without requiring a model of the environment’s dynamics.

Assume an episodic environment and consider experience sampled from fol-

lowing a policy π . Then the sampled return after visiting information state Ut at

time t,

Gt =
T

∑
k=t

Rk+1, (2.7)

is an unbiased estimate of the state value, V π (Ut). Monte Carlo methods accumu-

late these sampled returns to update the value function

V (Ut)←V (Ut)+αt(Gt−V (Ut)), (2.8)

where αt is some scalar step-size that can be time- and state-dependent.



2.1. Reinforcement Learning 25

Especially if a state’s value depends on many subsequent actions and delayed

rewards, sampled returns can have high variance. By bootstrapping value function

updates from current value estimates, temporal-difference methods reduce vari-

ance at the cost of introducing bias (Sutton and Barto, 1998).

Considering the Bellman equation,

V π(Ut) = Eπ [Gt ] = Eπ [Rt+1 +V π(Ut+1)] , (2.9)

we can replace samples of Gt with Rt +V π(Ut+1). Temporal-difference learn-

ing (Sutton, 1988) uses the current estimate V (Ut+1) of V π(Ut+1) to perform the

following update

V (Ut)←V (Ut)+αt (Rt +V (Ut+1)−V (Ut)) . (2.10)

As V (Ut+1) is an approximation, this update uses a biased estimate of the target

value. The difference

δt = Rt +V (Ut+1)−V (Ut) (2.11)

is the temporal-difference error. Temporal-difference learning minimises the ex-

pected temporal-difference error by incrementally matching values of subsequent

states.

2.1.3 Policy Evaluation and Policy Improvement

The preceding section discussed estimating values of single states or state-action

pairs. In order to guide sequential decision making in the whole environment, it is

useful to estimate the policy’s value function for all states. This is known as policy

evaluation (Sutton and Barto, 1998). After evaluating a policy π , i.e. computing

the value function V π or Qπ , the policy can be improved by raising its probability

of taking actions that are predicted to lead to higher returns. In particular, for an



2.1. Reinforcement Learning 26

evaluated action-value function, Qπ , greedy policy improvement

π
′(a|u) =

1 for a = argmaxa′Q
π(u,a′)

0 otherwise
(2.12)

is guaranteed to improve the agent’s performance, i.e. V π ′(u) ≥ V π(u) ∀s ∈ S

(Bellman, 1957). For any MDP there are unique optimal value functions,

V ∗(u) = max
π

V π(u) ∀u ∈U , (2.13)

Q∗(u,a) = max
π

Qπ(u,a) ∀(u,a) ∈U ×A , (2.14)

that cannot be further improved (Sutton and Barto, 1998). An optimal policy, π∗,

is any policy that only takes actions of maximum value,

π
∗(a |u)> 0→ Q∗(u,a) = max

a′
Q∗(u,a′), (2.15)

and thus maximises the agent’s expected total reward.

Policy iteration (Bellman, 1957; Puterman and Shin, 1978) alternates policy

evaluation with policy improvement. In particular, for a known model of the MDP

we can evaluate a policy by repeatedly applying the full-width update (2.5) to all

states. Under appropriate conditions, the Banach fixed-point theorem ensures con-

vergence of this procedure to the value function of the evaluated policy. Alternating

this policy evaluation procedure with greedy policy improvement converges to the

optimal value function (Puterman and Shin, 1978). In general, we do not need to

wait for policy evaluation to converge before improving the policy. Value iteration,

V k+1(u)←max
a∈A ∑

u′∈U
Pa

uu′

(
Ra

uu′+V k(u′)
)
∀u ∈U , (2.16)

also converges to the optimal value function (under appropriate conditions) and

performs both (approximate) policy evaluation and greedy policy improvement in

one step (Puterman and Shin, 1978). In an episodic MDP that can be represented



2.1. Reinforcement Learning 27

by a finite tree, there is no need to iteratively apply the value iteration algorithm.

If the computation is started from the leaves of the tree, one pass over all values

of the tree is sufficient to compute the optimal value function. Value iteration is

one example of Generalised Policy Iteration (GPI), a fundamental principle that

underlies many reinforcement learning methods (Sutton and Barto, 1998). GPI de-

scribes the concept of interleaving potentially partial policy evaluation with policy

improvement.

Whereas (full-width) policy and value iteration update all states of the envi-

ronment at each iteration, sample-based methods selectively apply their updates to

states that were experienced by an agent interacting with the environment. On-

policy agents evaluate the same policy that they use for sampling their experience.

In the off-policy setting an agent evaluates its policy from experience that was

sampled from a different policy, possibly even by a different agent. Q-learning

(Watkins, 1989) is a popular off-policy temporal-difference learning algorithm. It

evaluates the greedy policy by temporal-difference learning (2.10) from sampled

experience tuples, (Ut ,At ,Rt+1,Ut+1),

Q(Ut ,At)← Rt+1 +max
a∈A

Q(Ut+1,a).

The experience can be sampled from any policy without biasing the update. This

is because both random variables, Ut+1,Rt+1, of the update are determined by the

environment. A common approach is to sample experience from an exploratory

ε-ε-ε-greedy policy, which chooses a random action with probability ε and the ac-

tion of highest estimated value otherwise. This ensures that all states are visited

and evaluated, enabling Q-learning to converge to the optimal policy (Watkins and

Dayan, 1992). Vanilla Q-learning updates the value function after each transition in

the environment in an online fashion. Fitted Q Iteration (FQI) (Ernst et al., 2005) is

a batch reinforcement learning (Lange et al., 2012) method that applies Q-learning

to past, memorized experience (Lin, 1992).



2.1. Reinforcement Learning 28

2.1.4 Function Approximation

In domains with a very large or continuous state space, learning a separate value for

each state can be unfeasible. However, there might be similarities between states

leading to similar values. Generalising learned values across states could increase

learning performance.

One way to achieve generalisation is to approximate the value function by a

simpler function of the agent’s information state. In order to define such functions,

we need to encode the agent’s state appropriately. A common choice is to represent

the information state u as a vector of features, φ(u) ∈ Rn. Examples of features

include the agent’s sensor reading, e.g. the pixels it observes on a screen (Mnih

et al., 2015), or a binary k-of-n encoding of the cards it is holding in a card game.

A linear function approximator represents the value of a state as a linear

combination

V (u ;θ) = θ
T

φ(u), (2.17)

where θ ∈Rn is a learned weight vector. State aggregation is a special linear func-

tion approximator that encodes each state as a unit vector with exactly one non-zero

element. Table lookup is a special case of state aggregation, that encodes each

state uniquely and thus represents the value of each state separately. The repre-

sentational power of a linear function approximator is limited by the quality of the

features. A multi-layer perceptron is a common feedforward neural network

(Bengio, 2009; Schmidhuber, 2015) and a universal function approximator capable

of approximating any continuous function on a compact subset of Rn (Cybenko,

1989). It performs successive stages (layers) of computation. Each layer k is pa-

rameterized by a weight matrix W k and a bias vector bk and transforms the previous

layer’s output xk−1 to an output vector

xk = ρ

(
W kxk−1 +bk

)
,

where ρ is a usually non-linear activation function, e.g. rectified linear ρ(x) =

max(0,x). Each row of this computation, xk
i = ρ

(
W k

i xk−1 +bk
i
)
, models an artifical



2.1. Reinforcement Learning 29

neuron. A rectified linear unit (ReLU) is an artificial neuron activated by a rectified

linear function. When approximating a value function, the neural network would

map the agent’s feature vector, x0 = φ(u), to the approximated value of the state,

V (u ;θ) = xn, where xn is the final layer’s output and θ = {W 1, ...,W n,b1, ...,bn} is

the set of network parameters. In particular,

V (u ;θ) =W 2
ρ
(
W 1

φ(u)+b1)+b2, (2.18)

specifies a single-layer perceptron approximation of a value function.

In principle, we could approximately evaluate a policy by Stochastic Gradient

Descent (SGD) on the mean squared error objective

L π (θ) = Eπ

[
(V π(Ut)−V (Ut ;θ))2

]
. (2.19)

This is a supervised learning formulation of policy evaluation that requires knowl-

edge of the target value function (labels), V π . In practice, we substitute these opti-

mal targets with sampled or biased targets,

V̂t =


∑a∈A π(a |Ut)∑u∈U Pa

Utu
(
Ra

Utu +V (u ;θ)
)

(DP)

Gt (MC)

Rt+1 +V (Ut+1 ;θ) (TD)

(2.20)

Temporal-difference learning (Sutton, 1988) stochastically optimises the squared

temporal-difference error (compare Equation 2.11) with sampled gradient updates,

θ ← θ +αt
(
V̂t−V (Ut ;θ)

)
∇θV (Ut ;θ)

= θ +αt (Rt+1 +V (Ut+1 ;θ)−V (Ut ;θ))∇θV (Ut ;θ).

On-policy linear temporal-difference learning (Sutton, 1988, 1996) uses linear func-

tion approximation and is guaranteed to converge to a bounded region of the de-

sired value function (Gordon, 2001). On the other hand, off-policy and non-linear



2.1. Reinforcement Learning 30

temporal-difference learning were shown to diverge in counter examples (Baird

et al., 1995; Tsitsiklis and Van Roy, 1997). In practice, temporal-difference learning

with neural network function approximation was incredibly successful in a variety

of applications (Tesauro, 1992; Lin, 1992; Mnih et al., 2015). Neural Fitted Q It-

eration (NFQ) (Riedmiller, 2005) and Deep Q Network (DQN) (Mnih et al., 2015)

are extensions of FQI that use neural network function approximation with batch

and online (fitted) Q-learning updates respectively. These approaches are consid-

ered to stabilise reinforcement learning with neural-network function approxima-

tion. In particular, they break the correlation of online updates through experience

replay (Lin, 1992; Riedmiller, 2005; Mnih et al., 2015). Furthermore, they reduce

non-stationarity through fitted target (see Equation 2.20) network parameters (Ried-

miller, 2005; Mnih et al., 2015).

2.1.5 Exploration and Exploitation

In order to fully evaluate its policy an agents needs to explore all states and actions in

the environment. On the other hand, in order to perform well the agent must choose

actions of highest (estimated) value. The agent faces the following dilemma. While

exploitation of current knowledge, e.g. value function, achieves higher short-term

reward, exploration of the environment acquires new knowledge that could result

in more reward in the long term.

A simple approach for trading off exploitation against exploration is the

ε-ε-ε-greedy policy, which chooses a random action with probability ε and the action

of highest estimated value otherwise,

ε-greedy [Q] (a |u) =

1− ε + ε

|A (u)| , a = argmaxa′∈A (u)Q(u,a)

ε

|A (u)| , a 6= argmaxa′∈A (u)Q(u,a)

A more sophisticated approach, that uses the scale of the estimated action values to

inform exploration, is the Boltzmann policy,

Boltzmann [Q] (a |u) =
exp Q(u,a)

τ

∑a′∈A exp Q(u,a′)
τ

,



2.1. Reinforcement Learning 31

where the temperature τ controls the randomness of the policy. In practice, the

ε-greedy and Boltzmann policies’ exploration parameters, ε and τ respectively, are

reduced over time to focus the policy on the highest-value actions. This idea is

related to the principle of optimism in the face of uncertainty, which prescribes

adjusting exploration of actions with the degree of uncertainty of their values. In

a stationary environment, values become more certain over time and therefore ex-

ploration can be reduced. The Upper Confidence Bounds (UCB) algorithm (Auer

et al., 2002) is a principled approach to optimism in the face of uncertainty for (non-

adversarial) multi-armed bandit problems (Lai and Robbins, 1985), i.e. single-state

MDPs. UCB applies exploration bonuses, derived from confidence bounds, to ac-

tions in proportion to their uncertainty, and maximises the resulting values,

at = argmax
a

Qt(a)+

√
2logNt

Nt(a)
, (2.21)

where Nt(a) counts the number of times action a has been chosen, Nt = t is the total

number of plays and Qt(a) is the mean reward from choosing action a.

2.1.6 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) (Coulom, 2006; Kocsis and Szepesvári, 2006;

Browne et al., 2012) is a class of simulation-based search algorithms, many of

which apply Monte Carlo reinforcement learning to local search trees (Silver, 2009).

The following properties render MCTS applicable to large-scale environments. By

planning online, it can focus its search effort on a relevant (local) subset of states.

Instead of a full-width evaluation of the local subtree, as e.g. in Minimax search,

MCTS selectively samples trajectories of the game and thus mitigates the curse

of dimensionality. These simulations are guided by an action-selection policy that

explores the most promising regions of the state space. The search tree is incre-

mentally expanded across explored states, which produces a compact, asymmetric

search tree.

A MCTS algorithm requires the following components. Given a state and ac-

tion, a black box simulator of the game samples a successor state and reward. A



2.1. Reinforcement Learning 32

reinforcement learning algorithm uses simulated trajectories and outcomes (re-

turns) to update statistics at visited nodes in the search tree. A tree policy chooses

actions based on a node’s statistics. A rollout policy determines default behaviour

for states that are out of the scope of the search tree.

a

o

a

a

o o o

a

o

a a

a aaa

o'

root

terminal state

action node

observation/state node

default rollout policy

Figure 2.1: MCTS schematic

For a specified amount of planning

time the algorithm repeats the following. It

starts each Monte Carlo simulation at the

root node and follows its tree policy until ei-

ther reaching a terminal state or the bound-

ary of the search tree. Leaving the scope

of the search tree, the rollout policy is used

to play out the simulation until reaching a

terminal state. In this case, the tree is ex-

panded by a state node where the simula-

tion left the tree. This approach selectively

grows the tree in areas that are frequently

encountered in simulations. After reaching

a terminal state, the rewards are propagated back so that each visited state node can

update its statistics.

Common MCTS keeps track of the following node values. N(u) is the number

of visits by a Monte-Carlo simulation to node u. N(u,a) counts the number of times

action a has been chosen at node u. Q(u,a) is the estimated value of choosing

action a at node u. The action value estimates are usually updated by Monte Carlo

evaluation,

Q(u,a) =
1

N(u,a)

N(u,a)

∑
k=1

G(u,k),

where G(u,k) is the k-th return experienced from state u.

Kocsis and Szepesvári (2006) suggested using UCB to select actions in the

Monte Carlo search tree. The resulting MCTS method, UCB Applied to Trees

(UCT), selects greedily between action values that have been enhanced by an ex-



2.2. Game Theory 33

ploration bonus,

πtree(s) = argmax
a

Q(s,a)+ c

√
logN(s)
N(s,a)

. (2.22)

The exploration bonus parameter c adjusts the balance between exploration and

exploitation. For suitable c, UCT converges to optimal policies in Markovian envi-

ronments (Kocsis and Szepesvári, 2006). The appropriate scale of c depends on the

size of the rewards.

Other MCTS methods have been proposed in the literature. Silver and Ve-

ness (2010) adapt MCTS to POMDPs and prove convergence given a true initial

belief state. Auger (2011) and Cowling et al. (2012) extend MCTS to imperfect-

information games and use the regret-minimising bandit method EXP3 (Auer et al.,

1995) for action selection. Lisy et al. (2013) prove convergence of MCTS in

simultaneous-move games for regret-minimising tree policies, including the EXP3

variant. Cowling et al. (2015) propose MCTS methods for inference in multi-player

imperfect-information games. Lisý et al. (2015) introduce Online Outcome Sam-

pling, an online MCTS variant that is guaranteed to converge in two-player zero-

sum imperfect-information games. Ponsen et al. (2011) compared the full-game

search performance of Outcome Sampling and UCT in a poker game. They con-

cluded that UCT quickly finds a good but suboptimal policy, while Outcome Sam-

pling initially learns more slowly but converges to the optimal policy over time.

2.2 Game Theory
Game theory is the science of strategic decision making in multi-agent scenarios.

2.2.1 Extensive-Form Games

Extensive-form games (Kuhn, 1953; Myerson, 1991) are a model of multiple play-

ers’ sequential interaction. The representation is based on a game tree and consists

of the following components: N = {1, ...,n} denotes the set of players. S is a set

of states corresponding to nodes in a finite rooted game tree. For each state node

s ∈S the edges to its successor states define a set of actions A (s) available to a



2.2. Game Theory 34

player or chance in state s. The player function P : S →N ∪{c}, with c denot-

ing chance, determines who is to act at a given state. Chance may be considered a

particular player that follows a fixed randomized strategy that determines the distri-

bution of chance events at chance nodes. For each player i there is a corresponding

set of information states U i and an information function Ii : S →U i that deter-

mines which states are indistinguishable for the player by mapping them onto the

same information state u ∈U i. In this dissertation, we mostly assume games with

perfect recall, i.e. each player’s current information state ui
t implies knowledge of

the sequence of his information states and actions, ui
1,a

i
1,u

i
2,a

i
2, ...,u

i
t , that led to

this information state. The return function R : S → Rn maps terminal states to a

vector whose components correspond to each player’s return. A game is zero-sum

if and only if the sum of all players’ returns is always zero, i.e. ∑i∈N Ri(s) = 0 for

all terminal states s.

By composing (surjective) functions, f i
A : S i → S̃ i ⊆ S i, with the game’s

information functions, Ii, we obtain alternative information functions, Ĩi = f i
A ◦ Ii,

that induce an (information-state) abstraction of the extensive-form game. This

is conceptually equivalent to introducing state-aggregating function approximators

(Section 2.1.4) for each player.

A player’s behavioural strategy, π i(a |ui), is a probability distribution over

actions given information states, and Σi is the set of all behavioural strategies of

player i. A strategy profile π =(π1, ...,πn) is a collection of strategy for all players.

π−i refers to all strategies in π except π i.

2.2.2 Nash Equilibria

By extension of the return function R, Ri(π) is the expected return of player i if

all players follow the strategy profile π . For ε ≥ 0, the set of ε-best responses of

player i to their opponents’ strategies π−i,

BRi
ε(π
−i) =

{
π

i ∈ Σ
i : Ri(π i,π−i)≥ max

π ′∈Σi
Ri(π ′,π−i)− ε

}
, (2.23)



2.2. Game Theory 35

contains all strategies which achieve an expected return against π−i that is sub-

optimal by no more than ε . The set of best responses, BRi(π−i) = BRi
0(π
−i),

contains all optimal strategies against π−i. A Nash equilibrium (Nash, 1951) of an

extensive-form game is a strategy profile π such that π i ∈ BRi(π−i) for all i ∈N ,

i.e. a strategy profile from which no return-maximising player would choose to de-

viate. An ε-Nash equilibrium is a strategy profile π such that π i ∈ BRi
ε(π
−i) for

all i ∈N .

For a two-player zero-sum game, we say that a strategy profile π is exploitable

by an amount ε if and only if

ε =
R1 (BR1(π2),π2)+R2 (π1,BR2(π1)

)
2

.

Exploitability measures how well a worst-case opponent would perform by best

responding to the strategy profile. In two-player zero-sum games Nash equilibria

have attractive worst-case guarantees.

Theorem 2.2.1 (Minimax (Neumann, 1928)). For any two-player zero-sum game,

there is a value v ∈ R such that

max
π1∈Σ1

min
π2∈Σ2

R1(π1,π2) = min
π2∈Σ2

max
π1∈Σ1

R1(π1,π2) = v

Thus, playing a Nash equilibrium strategy guarantees player 1 (player 2) at

least the game’s unique value v (−v). Hence, a Nash equilibrium is unexploitable,

i.e. has zero exploitability. In general-sum and multi-player games different Nash

equilibria can result in different expected returns.

2.2.3 Normal Form

An extensive-form game induces an equivalent normal-form game as follows

(Kuhn, 1953; Myerson, 1991). For each player i ∈ N their deterministic be-

havioural strategies, ∆i
p ⊂ Σi, define a set of normal-form actions, called pure

strategies. Restricting the extensive-form return function R to pure strategy pro-

files yields an (expected) return function for the normal-form game.



2.2. Game Theory 36

Each pure strategy can be interpreted as a full-game plan that specifies deter-

ministic actions for all situations that a player might encounter. Before playing an

iteration of the game each player chooses one of their available plans and commits

to it for the iteration. A mixed strategy Πi for player i is a probability distribution

over their pure strategies. Let ∆i denote the set of all mixed strategies available

to player i. A mixed strategy profile Π ∈ ×i∈N ∆i specifies a mixed strategy for

each player. Finally, Ri(Π) determines the expected return of player i for the mixed

strategy profile Π.

Throughout this dissertation, we use small Greek letters for extensive-form,

behavioural strategies and large Greek letters for pure and mixed strategies of a

game’s normal form.

2.2.4 Sequence Form

The sequence form (Koller et al., 1994; Von Stengel, 1996) is a compact representa-

tion of an extensive-form game, which is well-suited for computing Nash equilibria

of two-player zero-sum games by linear programming (Koller et al., 1996). It de-

composes players’ strategies into sequences of actions and probabilities of realizing

these sequences.

For any player i ∈N of a perfect-recall extensive-form game, each of their

information states ui ∈ U i uniquely defines a sequence σui of actions that the

player has to take in order to reach information state ui. Let σua denote the se-

quence that extends σu with action a. A realization plan, x, maps each player

i’s sequences, {σui}ui∈U i , to realization probabilities, such that x( /0) = 1 and

x(σui) = ∑a∈A (ui) x(σuia)∀si ∈U i. A behavioural strategy π induces a realization

plan

xπ(σu) = ∏
(u′,a)∈σu

π(a |u′),

where the notation (u′,a) disambiguates actions taken at different information

states. Similarly, a realization plan induces a behavioural strategy,

π(a |u) = x(σua)
x(σu)

, x(σu) 6= 0,



2.2. Game Theory 37

where π is defined arbitrarily at information states that are never visited, i.e. when

x(σu) = 0. As a pure strategy is just a deterministic behavioural strategy, it has a

realization plan with binary values. As a mixed strategy is a convex combination

of pure strategies, Π = ∑i wiΠi, its realization plan is a similarly weighted convex

combination of the pure strategies’ realization plans, xΠ = ∑i wixΠi .

Two strategies π1 and π2 of a player are realization equivalent (Von Stengel,

1996) if and only if for any fixed strategy profile of the other players both strategies,

π1 and π2, produce the same probability distribution over the states of the game. As

a realization plan defines probabilities of strategies realizing states, we have the

following theorem.

Theorem 2.2.2 (Von Stengel, 1996). Two strategies are realization equivalent if

and only if they have the same realization plan.

Kuhn’s Theorem (Kuhn, 1953) links extensive-form, behavioural strategies

with (realization-equivalent) normal-form, mixed strategies.

Theorem 2.2.3 (Kuhn, 1953). For a player with perfect recall, any mixed strategy

is realization equivalent to a behavioural strategy, and vice versa.

2.2.5 Fictitious Play

Fictitious play (Brown, 1951) is a classic game-theoretic model of learning from

self-play. Fictitious players repeatedly play a game, at each iteration choosing a best

response to their opponents’ empirical, average strategies. The average strategies of

fictitious players converge to Nash equilibria in certain classes of games, e.g. two-

player zero-sum and many-player potential games (Robinson, 1951; Monderer and

Shapley, 1996). Fictitious play is a standard tool of game theory and has motivated

substantial discussion and research on how Nash equilibria could be realized in

practice (Brown, 1951; Fudenberg and Levine, 1995; Fudenberg, 1998; Hofbauer

and Sandholm, 2002). Leslie and Collins (2006) introduced generalised weakened

fictitious play. It has similar convergence guarantees as common fictitious play, but

allows for approximate best responses and perturbed average strategies, making it

particularly suitable for machine learning.



2.2. Game Theory 38

Definition 2.2.4 (compare Definition 3 (Leslie and Collins, 2006)). A generalised

weakened fictitious play is a sequence of mixed strategies, {Πk}, Πk ∈ ×i∈N ∆i,

s.t.

Π
i
k+1 ∈ (1−αk+1)Π

i
k +αk+1(BRi

εk
(Π−i

k )+Mi
k+1), ∀i ∈N ,

with αk→ 0 and εk→ 0 as k→ ∞, ∑
∞
k=1 αk = ∞, and {Mi

k} sequences of perturba-

tions that satisfy, for any T > 0,

lim
k→∞

sup
l

{∥∥∥∥∥l−1

∑
j=k

α j+1Mi
j+1

∥∥∥∥∥s.t.
l−1

∑
j=k

α j+1 ≤ T

}
= 0, ∀i ∈N .

An appropriate choice of perturbations is e.g. Mt a martingale that is uniformly

bounded in L2 and αk =
1
k (Benaı̈m et al., 2005). Original fictitious play Brown

(1951) is a generalised weakened fictitious play with stepsize αk =
1
k , εk = 0 and

Mk = 0 ∀k. Cautious or smooth fictitious play (Fudenberg and Levine, 1995) uses

ε-best responses defined by a Boltzmann distribution over the action values.

Leslie and Collins (2006) proposed a self-play reinforcement learning method

for normal-form games that follows a generalised weakened fictitious play. In par-

ticular, they simulated two agents that play according to their average fictitious-play

strategies and evaluate action values from the outcomes of these simulations

Qi
k
(
ai)≈ Ri (ai,Π−i

k−1

)
Each agent updates its average fictitious play policy by moving it towards a best

response in form of a Boltzmann distribution over its Q-value estimates.

Hendon et al. (1996) introduced two definitions of fictitious play in extensive-

form games, based on sequential and local best responses respectively. They

showed that each convergence point of these variants is a sequential equilibrium,

but convergence in imperfect-information games could not be guaranteed.



2.2. Game Theory 39

2.2.6 Best Response Computation

This section describes the computation of best responses in extensive-form games.

Consider a player i of an extensive-form game and let π−i be a strategy profile of

fellow agents. This strategy profile defines stationary stochastic transitions at all

states that are not controlled by player i. Thus, the game becomes a single-agent

(information-state) MDP. Computing an optimal policy of such an MDP, e.g. by

dynamic programming, produces a best response, BRi(π−i), to the fellow agents’

strategy profile, π−i. Johanson et al. (2011) discuss efficient techniques for com-

puting best responses in extensive-form poker games.

We present dynamic-programming values and recursions for computing best

responses in extensive-form games. At each player’s terminal information state, ūi,

we compute his value as a weighted sum over his returns in all states that belong

to his information set weighted by the realization probabilities of his fellow agents

and chance. In particular,

v(ūi) = ∑
s∈I−1(ūi)

xπ−i(σs)Ri(s), (2.24)

where xπ−i(σs) is the product of fellow agents’ and chance’s realization probabilities

based on their respective imperfect-information views of state s. These computed

values are recursively propagated back. In particular, each information state’s value

and best-response action can be recursively defined,

v(ui) = max
a∈A (ui)

∑
u∈U i

δ
a
uiuv(u),

β
i(ui) = argmax

a∈A (ui)
∑

u∈U i

δ
a
uiuv(u), (2.25)

where δ a
uiu ∈ {0,1} indicates whether the player can transition (in one step) to in-

formation state u after taking action a in information state ui. Furthermore, the sum

of each player’s values at the game’s root produces the expected reward his best

response achieves. This can be used for computing the exploitability of a strategy

profile.



2.3. Poker 40

2.3 Poker
Poker has traditionally exemplified the challenges of strategic decision making

(Von Neumann and Morgenstern, 1944; Kuhn, 1950; Nash, 1951). It has also be-

come a focus of research in computational game theory (Billings et al., 2002; Sand-

holm, 2010; Rubin and Watson, 2011; Bowling et al., 2015).

In addition to its large number of game states, it features elements of imper-

fect information and uncertainty. These properties are found in many real-world

problems that require strategic decision making, e.g. security, trading and negotia-

tions. Unlike complex real-world problems, however, poker games have clear rules

and structure. This enables rapid simulation and algorithm development. Thus, it

is an excellent domain for furthering methods of multi-agent artifical intelligence,

reinforcement learning and game theory.

In this section we introduce the rules of the poker games that are used in our ex-

periments. In addition, we give an overview of common properties of poker games

and discuss why these are challenging for self-play reinforcement learning. Finally,

we review algorithmic approaches that have been successfully applied to computer

poker.

2.3.1 Rules

There exist many different poker games (Sklansky, 1999). We restrict our presenta-

tion to (Limit) Texas Hold’em, Leduc Hold’em and Kuhn poker. Texas Hold’em is

the most popular poker game among humans and has also been a main challenge in

algorithmic game-theory (Billings et al., 2002; Sandholm, 2010). Leduc Hold’em

and Kuhn poker are smaller poker variants that are well-suited for experiments.

Limit Texas Hold’em is played with a 52 card deck that contains 13 card ranks

and 4 suits. Each episode (hand) of the game consists of up to four betting rounds.

At the beginning of the first round, called preflop, each player is dealt two private

cards. In the second round, the flop, three public community cards are revealed. A

fourth and fifth community card are revealed in the last two rounds, the turn and

river, respectively. Figure 2.2 shows an exemplary situation of a flop in two-player

Texas Hold’em.



2.3. Poker 41

Figure 2.2: Exemplary Texas Hold’em game situation

Players have the following options when it is their turn. A player can fold and

forfeit any chips that he has bet in the current episode. After folding a player is

not allowed to participate any further until the beginning of the next episode of the

game. A player can call by matching the highest bet that has been placed at the

current betting round. If no bet has been placed at the current round then this action

is called a check. A player can raise by betting the round’s currently highest bet

increased by a fixed amount, i.e. bet size. The bet size is two units preflop and on

the flop and four units on the turn and river, called small and big bet respectively.

A marker, called the button, defines the positions of players. After each episode

of the game it is moved by one position clockwise. At the beginning of the game

the first and second player after the button are required to place forced bets of one

and two units respectively, called the small and big blind. Afterwards, the first

betting round commences with the player following the big blind being the first to

act. On the flop, turn and river the first remaining player after the button is the

first to act. The total number of bets or raises per round is limited (capped). In

particular, players are only allowed to call or fold once the current bet has reached

four times the round’s bet size. The game transitions to the next betting round once

all remaining players have matched the current bet. However, each remaining player

is guaranteed to act at least once at each round.

An episode ends in one of two ways. If there is only one player remaining,

i.e. all other players folded, then he wins the whole pot. If at least two players

reach the end of the river then the game progresses to the showdown stage. At the



2.3. Poker 42

showdown each remaining player forms the best five card combination from his

private cards and the public community cards. There are specific rules and rankings

of card combinations (Sklansky, 1999), e.g. three of a kind beats a pair. The player

with the best card combination wins the pot. There is also the possibility of a split

if several players have the same combination.

No-Limit Texas Hold’em has almost the same rules as the Limit variant. The

main difference is that players do not need to bet in fixed increments but are allowed

to relatively freely choose their bet sizes including betting all their chips, known as

moving all-in.

Leduc Hold’em (Southey et al., 2005) is a small variant of Texas Hold’em.

There are three card ranks, J, Q and K, with two of each in the six card deck. There

are two betting rounds, preflop and the flop. Each player is dealt one private card

preflop. On the flop one community card is revealed. Instead of blinds, each player

is required to post a one unit ante preflop, i.e. forced contribution to the pot. The

bet sizes are two units preflop and four units on the flop with a cap of twice the bet

size at each round.

Kuhn poker (Kuhn, 1950) is a simpler variant than Leduc Hold’em. There are

3 cards, a J, Q, and K, in the deck. Each player is dealt one private card and there

is only one round of betting without any public community cards. Each player is

required to contribute a one unit ante to the pot. The bet size is one unit and betting

is capped at one unit.

2.3.2 Properties

Poker presents a variety of difficulties to learning algorithms.

Imperfect Information In imperfect-information games players only observe their

information state, U i
t , and generally do not know which exact game state, St , they are

in. They might form beliefs, P
(
St |U i

t
)
, which are generally affected by fellow play-

ers’ strategies at preceding states, Sk, k < t. This implicit connection to prior states

renders common policy iteration (Section 2.1.3) and Minimax search techniques in-

effective in imperfect-information games (compare Appendix A) (Frank and Basin,

1998). This is problematic as many reinforcement learning algorithms are related



2.3. Poker 43

to (generalised) policy iteration (Sutton and Barto, 1998). It also poses a problem to

local search which has been highly successful in large perfect-information games,

e.g. computer Go (Silver et al., 2016a). Given a subgame with perfect player beliefs

based on a full-game Nash equilibrium, resolving the subgame does not generally

recover a Nash equilibrium (Burch et al., 2014; Ganzfried and Sandholm, 2015;

Lisý et al., 2015). Finally, Nash equilibria of imperfect-information games are gen-

erally stochastic. By contrast, many reinforcement learning methods are designed

for MDPs, which always have an optimal deterministic strategy. Furthermore, even

with a stochastic policy, the standard GPI approach to reinforcement learning may

be unsuitable for learning Nash equilibria of imperfect-information games (see Sec-

tion A.1).

Size A two-player zero-sum game can theoretically be solved by linear program-

ming (Koller et al., 1996). In practice, however, linear programming does not scale

to the size of Limit Texas Hold’em with current computational resources. Note that

the size of Limit Texas Hold’em, which has about 1018 game states, might not ap-

pear to be large in comparison to much larger perfect-information games such as

chess or Go. However, these game sizes are not directly comparable because local

search and other solution techniques, e.g. Minimax search, are not readily appli-

cable to imperfect-information games. In particular, Minimax search has to parse

the tree only once to produce a Nash equilibrium, whereas CFR or fictitious play

need to repeatedly perform computations at all states. In practice, large imperfect-

information games are usually abstracted to a tractable size (Johanson et al., 2013).

We discuss common abstraction techniques for poker in the next section.

Multi-Player Almost all poker variants are defined for two and more players. Apart

from the escalating size of multi-player games there are more fundamental problems

in finding optimal strategies. The worst-case guarantees of the Minimax Theorem

2.2.1 do not apply to multi-player games. Therefore, it is unclear whether and

when a Nash equilibrium is actually a desired solution. Furthermore, many game-

theoretic approaches do not have any convergence guarantees for even zero-sum

multi-player games (Risk and Szafron, 2010). However, in practice these methods



2.3. Poker 44

have produced competitive policies (Risk and Szafron, 2010) and in some games

converge close to a Nash equilibrium (Ganzfried and Sandholm, 2009).

Variable Outcomes Poker is a game of high variance. The private holdings and

public community cards are dealt by chance. This might pose a challenge to sample-

based evaluation. In addition, instead of a binary outcome as in many board games,

the outcome of poker is based on the monetary units that have been wagered. A

lot of bets and raises lead to large pots. E.g. in Limit Texas Hold’em (LHE) the

outcomes range between −48 and 48. This can pose a challenge for value function

approximation, e.g. neural networks.

2.3.3 Abstraction

This section describes common abstraction techniques for Limit Texas Hold’em. In

order to reduce the game tree to a tractable size, various hand-crafted abstractions

have been proposed in the literature (Billings et al., 2003; Gilpin and Sandholm,

2006; Johanson et al., 2013). A common approach is to group information states

by the strategic similarity of the corresponding cards and leave the players’ ac-

tion sequences unabstracted. Various metrics have been proposed for defining card

similarity. Hand strength-based metrics use the expected winning percentage of

a combination of private and community cards against a random holding (Billings

et al., 2003; Gilpin and Sandholm, 2006; Zinkevich et al., 2007). Distribution-aware

methods compare probability distributions of winning against a random holding

instead of just the expected value (Johanson et al., 2013). A clustering by these

metrics produces an abstraction function, fA, that assigns each card combination

to a cluster. Together with the action sequences, the clusters define the abstracted

information states.

After learning an approximate Nash equilibrium π in the abstracted game, we

can recover a strategy for the real game by composition π ◦ fA, i.e. mapping the

real information states to the abstraction and then selecting an action from the strat-

egy. The hope is that π ◦ fA also approximates a Nash equilibrium in the full game

and that the quality of the approximation improves with the quality of the abstrac-

tion. However, it has been shown that finer abstractions do not always yield better



2.3. Poker 45

approximations in the real game and can result in unintuitive pathologies (Waugh

et al., 2009a).

2.3.4 Current Methods

Efficiently computing Nash equilibria of imperfect-information games has received

substantial attention by researchers in computational game theory (Sandholm, 2010;

Bowling et al., 2015). Game-theoretic approaches have played a dominant role in

furthering algorithmic performance in computer poker. The most popular modern

techniques are either optimisation-based (Koller et al., 1996; Gilpin et al., 2007;

Hoda et al., 2010; Bosansky et al., 2014) or perform (counterfactual) regret minimi-

sation (Zinkevich et al., 2007; Sandholm, 2010).

Counterfactual Regret Minimization (CFR) (Zinkevich et al., 2007) is a full-

width self-play approach guaranteed to converge in sequential adversarial (two-

player zero-sum) games. MCCFR (Lanctot et al., 2009) extends CFR to learning

from sampled subsets of game situations. OS (Lanctot et al., 2009; Lisý et al., 2015)

is an MCCFR variant that samples single game trajectories. It can be regarded as an

experiential, reinforcement learning method2. However, OS, MCCFR and CFR are

all table-lookup approaches that lack the ability to learn abstract patterns and use

them to generalise to novel situations, which is essential in large-scale games. An

extension of CFR to function approximation (Waugh et al., 2015) is able to learn

such patterns but has not been combined with sampling. Therefore, it still needs

to enumerate all game situations. CFR-based methods have essentially solved two-

player Limit Texas Hold’em poker (Bowling et al., 2015) and produced a champion

program for the No-Limit variant (Brown et al., 2015).

2 We can reinterpret the counterfactual regret as a novel kind of (advantage) value function.



Chapter 3

Smooth UCT Search

In this chapter we address the subquestion,

Can UCT be utilised for learning approximate Nash equilibria in

imperfect-information games?

This is motivated by UCT’s success in perfect-information games. Furthermore, as

extensive-form games are essentially trees, an MCTS algorithm is a suitable choice

for a case study of reinforcement learning in imperfect-information extensive-form

games.

3.1 Introduction
MCTS (see Section 2.1.6) has been incredibly successful in perfect-information

games (Browne et al., 2012; Gelly et al., 2012; Silver et al., 2016a). Although these

methods have been extended to imperfect-information domains (Silver and Veness,

2010; Auger, 2011; Cowling et al., 2012), so far they have not achieved the same

level of practical performance (Brown et al., 2015) or theoretical convergence guar-

antees as competing methods (Lanctot et al., 2009; Lisý et al., 2015). In particular,

the prominent UCT algorithm has failed to converge in practice (Ponsen et al., 2011;

Lisý, 2014).

In this chapter, we investigate UCT-based MCTS in poker as a case study of

reinforcement learning from self-play in imperfect-information games. We focus

on convergence in the full-game MCTS setting, which is a prerequisite for online



3.2. MCTS in Extensive-Form Games 47

MCTS. In particular, we introduce Smooth UCT, which combines the notion of ficti-

tious play with MCTS. Fictitious players perform the best response to other players’

average behaviour. We introduce this idea into MCTS by letting agents mix in their

average strategy with their usual utility-maximising actions. Intuitively, apart from

mimicking fictitious play, this might have further potential benefits, e.g. breaking

correlations and stabilising self-play learning due to more smoothly changing agent

behaviour.

3.2 MCTS in Extensive-Form Games

In perfect-information games as well as single-agent POMDPs, it is sufficient to

search a single tree that includes the information states and actions of all players.

The asymmetry of players’ information in an extensive-form game with imperfect

information does not allow for a single, collective search tree. In order to extend the

single-agent Partially Observable Monte-Carlo Planning (POMCP) method (Silver

and Veness, 2010) to extensive-form games, we build on the idea of using separate

search trees that are spanned over the respective players’ information states of the

extensive-form game (Auger, 2011; Cowling et al., 2012).

In particular, for each player i we grow a tree T i over their information states

S i. T i(si) is the node in player i’s tree that represents their information state si. In

a game with perfect recall, player i’s sequence of previous information states and

actions, si
1,a

i
1,s

i
2,a

i
2, ...,s

i
k, is incorporated in the information state si

k and therefore

T i is a proper tree. Imperfect-recall abstractions (Waugh et al., 2009b) can produce

recombining trees. Figure 3.1 illustrates the multiple-tree approach.

Algorithm 1 describes a general MCTS approach for the multi-player

imperfect-information setting of extensive-form games. The game mechanics are

sampled from transition and return simulators G and R. The transition simulator

takes a game state and action as inputs and stochastically generates a successor state

St+1 ∼ G (St ,Ai
t), where the action Ai

t belongs to the player i who makes decisions

at state St . The return simulator generates all players’ returns at terminal states, i.e.

R ∼R(ST ). The extensive-form information function, Ii(s), determines the acting



3.3. Extensive-Form UCT 48

player i’s information state. The OUT-OF-TREE property keeps track of which

player has left the scope of their search tree in the current episode.

This algorithm can be specified by the action selection and node updating func-

tions, SELECT and UPDATE. These functions are responsible to sample from and

update the tree policy. In this work, we focus on UCT-based methods.

3.3 Extensive-Form UCT
Extensive-Form UCT uses UCB to select from and update the tree policy in Algo-

rithm 1. Algorithm 2 presents this instantiation. It can be seen as a multi-agent

version of Partially Observable UCT (PO-UCT) (Silver and Veness, 2010). PO-

UCT searches a tree over the histories of an agent’s observations and actions in a

POMDP, whereas extensive-form UCT searches multiple agents’ respective trees

over their information states and actions. In a perfect-recall game an information

state implies knowledge of the preceding sequence of information states and actions

and is therefore technically equivalent to a full history (compare Equation 2.1).

3.4 Smooth UCT
Smooth UCT is a MCTS algorithm that selects actions from Smooth UCB, a variant

of the multi-armed bandit algorithm UCB.

Smooth UCB is a heuristic modification of UCB, that is inspired by fictitious

play. Fictitious players learn to best respond to their fellow players’ average strategy

profile. By counting how often each action has been taken, UCB already keeps track

Figure 3.1: The full game tree and the players’ individual information-state trees of a sim-
ple extensive-form game.



3.4. Smooth UCT 49

Algorithm 1 Extensive-Form MCTS
function SEARCH

while within computational budget do
Sample initial game state s0
SIMULATE(s0)

end while
return πtree

end function

function ROLLOUT(s)
a∼ πrollout(s)
s′ ∼ G (s,a)
return SIMULATE(s′)

end function

function SIMULATE(s)
if ISTERMINAL(s) then

return r ∼R(s)
end if
i = PLAYER(s)
if OUT-OF-TREE(i) then

return ROLLOUT(s)
end if
ui = Ii(s)
if ui /∈ T i then

EXPANDTREE(T i,ui)
a∼ πrollout(s)
OUT-OF-TREE(i)← true

else
a = SELECT(ui)

end if
s′ ∼ G (s,a)
r← SIMULATE(s′)
UPDATE(ui,a,ri)
return r

end function

of an average strategy π . It can be readily extracted by setting πt(a) =
Nt(a)

Nt
, where

Nt(a) is the number of times action a has been chosen and Nt = t the total number

of plays. However, UCB does not use this strategy and therefore potentially ignores

some useful information in its search.

The basic idea of Smooth UCB is to mix in the average strategy when selecting

actions in order to induce the other agents to respond to it. This resembles the



3.4. Smooth UCT 50

Algorithm 2 UCT
SEARCH(Γ), SIMULATE(s) and ROLLOUT(s) as in Algorithm 1

function SELECT(ui)
return argmaxa Q(ui,a)+ c

√
logN(ui)
N(ui,a)

end function

function UPDATE(ui,a,ri)
N(ui)← N(ui)+1
N(ui,a)← N(ui,a)+1
Q(ui,a)← Q(ui,a)+ ri−Q(ui,a)

N(ui,a)
end function

idea of fictitious play, where agents are supposed to best respond to the average

strategy. The average strategy might have further beneficial properties. Firstly,

it is a stochastic strategy and it changes ever more slowly over time. This can

decrease correlation between the players’ actions and thus help to stabilise the self-

play process. Furthermore, a more smoothly changing strategy can be relied upon

by other agents and is easier to adapt to than an erratically changing greedy policy

like UCB.

Smooth UCB requires the same information as UCB but explicitly makes use

of the average strategy via the action counts. In particular, it mixes between UCB

and the average strategy with probability ηk, where ηk is a sequence that decays to

0 or a small constant for k→ ∞. On the one hand, decaying ηk allows the agents

to focus their experience on play against their opponents’ average strategies, which

fictitious players would want to best respond to. On the other hand, decaying ηk

would also slow down exploration and updates to the average strategy. Intuitively,

the annealing schedule for ηk has to balance these effects. In this work, we empiri-

cally chose

ηk = max
(

γ,η0

(
1+d

√
Nk

)−1
)
, k > 0, (3.1)

where Nk is the total number of plays, γ a lower limit on ηk, η0 an initial value and

d a constant that parameterises the rate of decay. Intuitively, the decay by
√

Nk and

the lower bound of γ were chosen to avoid a premature slowdown of exploration and

updates to the average strategies. Note that the effective step size of these updates



3.5. Experiments 51

is ηk
k , due to averaging.

As UCT is obtained from applying UCB at each information state, we similarly

define Smooth UCT as an MCTS algorithm that uses Smooth UCB at each infor-

mation state. Algorithm 3 instantiates extensive-form MCTS with a Smooth UCB

tree policy. For a constant η = 1 (via η0 = 1,d = 0), we obtain UCT as a special

case. Compared to UCT, the UPDATE operation is left unchanged. Furthermore,

for a cheaply determined η the SELECT procedure has little overhead compared

to UCT.

Algorithm 3 Smooth UCT
SEARCH(Γ), SIMULATE(s) and ROLLOUT(s) as in Algorithm 1
UPDATE(ui,a,ri) as in Algorithm 2

function SELECT(ui)

η ←max
(

γ,η0

(
1+d

√
N(ui)

)−1
)

as in Equation 3.1

z∼U [0,1]
if z < η then

return argmaxa Q(ui,a)+ c
√

logN(ui)
N(ui,a)

else
∀a ∈ A(ui) : p(a)← N(ui,a)

N(ui)
return a∼ p

end if
end function

3.5 Experiments
We evaluated Smooth UCT in the Kuhn, Leduc and Limit Texas Hold’em poker

games.

3.5.1 Kuhn Poker

Ponsen et al. (2011) tested UCT against Outcome Sampling in Kuhn poker. We

conducted a similar experiment, comparing UCT to Smooth UCT. Learning perfor-

mance was measured in terms of the average policies’ mean squared errors with

respect to the closest Nash equilibrium determined from the known parameteri-

zation of equilibria in Kuhn poker (Hoehn et al., 2005). Smooth UCT’s mixing

parameter schedule (3.1) was manually tuned in preliminary experiments on Kuhn



3.5. Experiments 52

poker. In particular, we varied one parameter at a time and measured the resulting

achieved exploitability. The best results were achieved with γ = 0.1, η = 0.9 and

d = 0.001. We calibrated the exploration parameters of UCT and Smooth UCT by

training 4 times for 10 million episodes each with parameter settings of c = 0.25k,

k = 1, ...,10. The best average final performance of UCT and Smooth UCT was

achieved with 2 and 1.75 respectively. In each main experiment, each algorithm

trained for 20 million episodes. The results, shown in figure 3.2, were averaged

over 50 repeated runs of the experiment. We see that Smooth UCT approached a

Nash equilibrium, whereas UCT exhibited divergent performance.

1e-05

0.0001

0.001

0.01

0.1

1

10

100 1000 10000 100000 1e+06 1e+07

M
S

E

Simulated Episodes

Smooth UCT
UCT

0

0.005

0.01

0.015

0.02

0 5e+06 1e+07 1.5e+07 2e+07

Figure 3.2: Learning curves in Kuhn poker.

3.5.2 Leduc Hold’em

We also compared Smooth UCT to OS (see Section 2.3.4) and UCT in Leduc

Hold’em. Due to not knowing the Nash equilibria in closed form, we measured

learning performance in terms of exploitability of the average strategy profile (see

Equation 2.2.2). Smooth UCT’s mixing parameter schedule (3.1) was manually

tuned in preliminary experiments on Leduc Hold’em. In particular, we varied one

parameter at a time and measured the resulting achieved exploitability. The best



3.5. Experiments 53

0.001

0.01

0.1

1

10

10000 100000 1e+06 1e+07 1e+08

E
x
p

lo
it

a
b

ili
ty

Simulated Episodes

Smooth UCT
UCT

Parallel Outcome Sampling
Alternating Outcome Sampling

0

0.5

1

1.5

2

0 1e+08 2e+08 3e+08 4e+08 5e+08

Figure 3.3: Learning curves in Leduc Hold’em.

results were achieved with γ = 0.1, η = 0.9 and d = 0.002. Smooth UCT and UCT

trained 5 times for 500 million episodes each with exploration parameter settings

of c = 14+ 2k, k = 0, ...,4. We report the best average performance which was

achieved with c = 20 and c = 18 for UCT and Smooth UCT respectively. We com-

pared to both Parallel and Alternating Outcome Sampling (Lanctot, 2013). Both

variants trained for 500 million episodes with exploration parameter settings of

ε = 0.4+ 0.1k, k = 0, ...,4. We report the best results which were achieved with

ε = 0.5 for both variants.

Figure 3.3 shows that UCT diverged rather quickly and never reached a level of

low exploitability. Smooth UCT, on the other hand, learned just as fast as UCT but

continued to approach a Nash equilibrium. For the first million episodes, Smooth

UCT’s performance is comparable to Outcome Sampling. Afterwards, the slope

of its performance curve begins to slowly increase. Alternating Outcome Sam-

pling achieved an exploitability of 0.0065, whereas Smooth UCT was exploitable

by 0.0223 after 500 million episodes.

We investigated Smooth UCT’s long-term performance, by running it for 10



3.5. Experiments 54

0.01

0.1

1

100000 1e+06 1e+07 1e+08 1e+09 1e+10

E
x
p

lo
it

a
b

ili
ty

Simulated Episodes

Smooth UCT, gamma=0.1
Smooth UCT, gamma=0.1
Smooth UCT, gamma=0.1

Smooth UCT, gamma=0
Smooth UCT, gamma=0
Smooth UCT, gamma=0

Figure 3.4: Long-term learning curves in Leduc Hold’em.

billion episodes with the same parameters as in the previous experiment. Figure

3.4 shows that Smooth UCT indeed struggles with convergence to a perfect Nash

equilibrium. Setting γ to zero in the mixing parameter schedule (3.1) appears to

stabilise its performance at an exploitability of around 0.017.

3.5.3 Limit Texas Hold’em

Finally, we consider LHE with two and three players. The two-player game tree

contains about 1018 nodes. In order to reduce the game tree to a tractable size,

various abstraction techniques have been proposed in the literature (Billings et al.,

2003; Johanson et al., 2013). The most common approach is to group information

states according to strategic similarity of the corresponding cards and leave the play-

ers’ action sequences unabstracted. The resulting information state buckets define a

state-aggregating function approximator (compare Section 2.1.4), i.e. abstraction.

In this section, we apply MCTS to an abstraction. This abstraction is hand-

crafted with a common bucketing metric called expected hand strength squared

(Zinkevich et al., 2007). At a final betting round, there are five public community

cards that players can combine their private cards with. The hand strength of such



3.5. Experiments 55

Game Preflop Flop Turn River
two-player LHE 169 1000 500 200
three-player LHE 169 1000 100 20

Table 3.1: E[HS2] discretization grids used in experiments.

a combination is defined as its winning percentage against all combinations that

are possible with the respective community cards. On any betting round, E[HS2]

denotes the expected value of the squared hand strength on the final betting round.

We have discretized the resulting E[HS2] values with an equidistant grid over their

range, [0,1]. Table 3.1 shows the grid sizes that we used in our experiments. We

used an imperfect-recall abstraction (Waugh et al., 2009b) that does not let players

remember their E[HS2] values of previous betting rounds. An imperfect-recall ab-

straction is simpler to generate and implement. Furthermore, it allows for a finer

discretization of hand strength values, as the information state assignment (bucket-

ing) at later rounds does not need to condition on the assignment at previous rounds.

In LHE, there is an upper bound on the possible terminal pot size given the

betting that has occurred so far in the episode. This is because betting is capped

at each betting round. To avoid potentially excessive exploration we dynamically

update the exploration parameter during a simulated episode at the beginning of

each betting round and set it to

c = min(C, potsize+ k ∗ remaining betting potential) , (3.2)

where C and k ∈ [0,1] are constant parameters and the remaining betting potential is

the maximum possible amount that players can add to the pot in the remainder of the

episode. Note that the remaining betting potential is 48,40,32,16 at the beginning

of the 4 betting rounds respectively. In particular, for k = 1 at each information

state the exploration parameter is bounded from above by the maximum achievable

potsize in the respective subtree. Furthermore, in two-player LHE, for k = 0.5 it is

approximately bounded by the maximum achievable total return. This is because

each player contributes about half of the potsize.



3.5. Experiments 56

Annual Computer Poker Competition We submitted SmooCT, a program trained

with an early version of the Smooth UCT algorithm (Heinrich and Silver, 2014), to

the 2014 ACPC, where it ranked second in all two- and three-player LHE competi-

tions. Our experiments in this dissertation improve on the performance of SmooCT,

the competition program. In particular, SmooCT’s implementation contained the

following differences. First, it used a different mixing parameter schedule (com-

pare (Heinrich and Silver, 2014)). Second, it had a bug in its preflop abstraction

that prevented the agents from distinguishing between suited1 and unsuited cards

preflop. Third, it used a coarser abstraction bucket granularity (compare Table 3.1).

Fourth, for its 3-player instance we manually refined its abstraction granularity for

often-visited subtrees.

Two-player We trained strategies for two-player LHE by UCT and Smooth UCT.

Both methods performed a simulation-based search in the full game. For evaluation,

we extracted a greedy policy profile that at each information state takes the action

with the highest estimated value. Learning performance was measured in milli-big-

blinds won per hand, mbb/h, in actual play against benchmark opponents. To reduce

variance of the evaluation, we averaged the results obtained from symmetric play

that permuted the positions of players, reusing the same random card seeds. We had

access to a benchmark server of the ACPC which enabled us to evaluate against the

contestants of the 2014 competition.

Based on the experiments in Kuhn and Leduc poker, we selected a parameter-

ization for Smooth UCT’s mixing parameter schedule (3.1) and set it to γ = 0.1,

η = 0.9 and d = 20000−1. In the exploration schedule (3.2) we set k = 0.5 and

C = 24, which corresponds to half of the maximum potsize achievable in two-player

LHE. This results in exploration parameter values of c ∈ [10,24], which is centred

around 17, a value that has been reported in a previous calibration of UCT in LHE

by Ponsen et al. (2011).

UCT and Smooth UCT planned for 14 days each, generating about 62.1 and

61.7 billion simulated episodes respectively; note that Smooth UCT had almost

1Cards of the same suit.



3.5. Experiments 57

-60

-50

-40

-30

-20

-10

0

10

20

0 50 100 150 200 250 300

Pe
rf

o
rm

a
n
ce

 i
n
 m

b
b

/h

Training Hours

Smooth UCT vs SmooCT
UCT vs SmooCT

Smooth UCT vs UCT (same training times)

Figure 3.5: Learning performance in two-player Limit Texas Hold’em, evaluated against
SmooCT, the runner-up in the ACPC 2014. The estimated standard error at
each point of the curves is less than 1 mbb/h.

no computational overhead compared to UCT. We trained on a modern desktop

machine, using a single thread and less than 200 MB of RAM. Each greedy strategy

profiles’ uncompressed size was 8.1 MB.

During training, snapshots of the strategies were taken at regular time intervals

in order to measure learning performance over time. In particular, we evaluated

each snapshot by symmetric play for 2.5 million games against SmooCT, the silver-

medal contestant of the 2014 ACPC. In addition, we compared UCT’s and Smooth

UCT’s snapshots by symmetric play against each other. The results in figure 3.5

show that UCT performed slightly better for a training time of under 72 hours.

After 72 hours Smooth UCT outperformed UCT and was able to widen the gap

over time.

Table 3.2 presents an extensive evaluation of greedy policies that were obtained

from UCT and Smooth UCT. The table includes results against all but one contes-

tants of the 2014 ACPC, in the order of their ranking in the competition. We had to

omit the one contestant because it was broken on the benchmark server. The table



3.5. Experiments 58

also includes matches between Smooth UCT and UCT. Smooth UCT performed

better than UCT against all but one of the top-7 benchmark agents. Performance

against the weaker 6 ACPC contestants was more even, with Smooth UCT perform-

ing better in just half of the match-ups. Finally, Smooth UCT won in the match-up

against UCT and achieved a higher average performance.

Smooth UCT lost against all but 2 of the top-7 contestants of the 2014 ACPC.

This might be partly due to the much bigger and sophisticated abstractions and

resources used by most of these agents. However, Smooth UCT achieved strong av-

erage performance against the whole field of agents. Similar results were achieved

by SmooCT in the 2014 two-player LHE competition (ACPC). This suggests that

Smooth UCT, using tiny resources and a small abstraction, can train highly compet-

itive policies that perform well in an ecosystem of variable player types. Regarding

the losses against the top agents, it remains unclear whether Smooth UCT would

be able to efficiently compute good approximate Nash equilibria if it were provided

with a larger abstraction.

Match-up Smooth UCT UCT
escabeche -23.49 ± 3.2 -30.26 ± 3.2
SmooCT 10.78 ± 0.8 3.64 ± 0.9
Hyperborean -24.81 ± 4.2 -25.03 ± 4.3
Feste 28.45 ± 4.0 20.02 ± 4.1
Cleverpiggy -25.22 ± 4.0 -30.29 ± 4.0
ProPokerTools -18.30 ± 4.0 -19.84 ± 3.9
652 -20.76 ± 4.0 -19.49 ± 4.0
Slugathorus 93.08 ± 5.7 93.13 ± 5.8
Lucifer 139.23 ± 4.7 138.62 ± 4.7
PokerStar 167.65 ± 4.9 173.19 ± 5.0
HITSZ CS 14 284.72 ± 4.5 281.55 ± 4.5
chump9 431.11 ± 7.7 435.26 ± 7.8
chump4 849.30 ± 8.5 789.28 ± 8.7
Smooth UCT 0 -5.28 ± 0.6
UCT 5.28 ± 0.6 0
average 51.38 48.33
average* 135.50 128.89

Table 3.2: Two-player Limit Texas Hold’em winnings in mbb/h and their standard er-
rors. The average results are reported with and without including chump4 and
chump9.



3.6. Conclusion 59

Three-player Next we performed a similar evaluation in three-player LHE. Smooth

UCT used the same mixing parameter schedule as in two-player LHE. The explo-

ration schedule (3.2) was set to k = 0.5 and C = 36, which corresponds to half of the

maximum potsize achievable in three-player LHE. UCT and Smooth UCT planned

for 10 days each, generating about 50.9 and 49.4 billion simulated episodes respec-

tively. Once again we trained on a modern desktop machine, using a single thread

and less than 3.6 GB of RAM. Each final greedy strategy profiles’ uncompressed

size was about 435 MB.

The 2014 ACPC featured two three-player LHE competitions that were won

by Hyperborean tbr and Hyperborean iro. In both competitions SmooCT and

KEmpfer finished second and third out of 5 respectively.

Table 3.3 presents our three-player results. Smooth UCT outperformed UCT

in all but 3 match-ups and achieved a higher average performance overall.

Match-up Smooth UCT UCT
Hyperborean iro, KEmpfer 27.06 ± 8 11.35 ± 8
Hyperborean tbr, KEmpfer 8.84 ± 9 2.79 ± 9
Hyperborean tbr, SmooCT -17.10 ± 8 -31.46 ± 9
Hyperborean tbr,
HITSZ CS 14 69.91 ± 10 74.73 ± 10
SmooCT, KEmpfer 42.30 ± 8 50.35 ± 8
SmooCT, HITSZ CS 14 133.49 ± 9 125.79 ± 9
KEmpfer, HITSZ CS 14 171.96 ± 9 194.55 ± 9
2x SmooCT 6.17 ± 1 -5.77 ± 1
2x Smooth UCT 0 -8.16 ± 1
2x UCT 7.51 ± 1 0
average 50.02 46.02

Table 3.3: Three-player Limit Texas Hold’em winnings in mbb/h and their standard errors.

3.6 Conclusion
We have introduced Smooth UCT, a MCTS algorithm for extensive-form games

with imperfect information. In two small poker games, it was able to learn as fast as

UCT but approached an (approximate) Nash equilibrium whereas UCT diverged.

Furthermore, in two- and three-player LHE, a game of real-world scale, Smooth



3.6. Conclusion 60

UCT outperformed UCT and achieved three silver medals in the 2014 ACPC. The

results suggest that highly competitive strategies can be learned by a full-game

simulation-based search with Smooth UCT.

Introducing the average strategy into the self-play learning process signifi-

cantly improved the performance of UCT. However, in our experiments in Leduc

Hold’em Smooth UCT performed worse than OS and plateaued at an approximate

Nash equilibrium. Hence, Smooth UCT’s heuristic implementation of fictitious play

is promising but imperfect. In the next chapter we introduce an extension of ficti-

tious play to extensive-form games and thus develop a more principled foundation

for self-play reinforcement learning.



Chapter 4

Fictitious Play in Extensive-Form

Games

In this chapter we address the subquestion,

Can fictitious play be extended to extensive-form games?

The motivation is to create a self-play algorithm that offers convergence guarantees

in extensive-form games. In particular, fictitious play exhibits key similarities to

reinforcement learning. Thus, an extensive-form variant could serve as a principled

foundation for the design of self-play reinforcement learning methods.

4.1 Introduction
Fictitious play is a classic example of self-play learning that has inspired artificial

intelligence algorithms in games. Despite the popularity of fictitious play to date, it

has seen use in few large-scale applications, e.g. (Lambert III et al., 2005; McMahan

and Gordon, 2007; Ganzfried and Sandholm, 2009). One possible reason for this

is its reliance on a normal-form representation. While any extensive-form game

can be converted into a normal-form equivalent (Kuhn, 1953), the resulting number

of actions is typically exponential in the number of game states. The extensive

form offers a much more efficient representation via behavioural strategies, whose

number of parameters is linear in the number of information states.

In this chapter, we extend fictitious play to extensive-form games. We begin

with a discussion of various strategy updates. Using one of these updates, we intro-



4.2. Best Response Computation 62

duce Extensive-Form Fictitious Play (XFP). It is realization equivalent to normal-

form fictitious play and therefore inherits its convergence guarantees. However, it

can be implemented using only behavioural strategies and therefore its computa-

tional complexity per iteration is linear in the number of game states rather than

exponential. We empirically compare our methods to CFR (Zinkevich et al., 2007)

and a prior extensive-form fictitious play algorithm (Hendon et al., 1996). Further-

more, we empirically evaluate XFP’s robustness to approximation errors, which is

useful for machine learning applications.

4.2 Best Response Computation
At each iteration, fictitious players compute best responses to their fellow players’

average strategy profile. In extensive-form games, these best responses can be effi-

ciently computed by dynamic programming, as described in Section 2.2.6.

4.3 Strategy Updates
This section explores various options for aggregating extensive-form, behavioural

strategies.

4.3.1 Mixed Strategies

We begin by analysing the mixed strategy updates that a common, normal-form

fictitious player would perform. A mixed strategy is a probability distribution over

normal-form actions. Therefore, a weighted aggregate of two mixed strategies can

be computed by taking a convex combination of the two corresponding vectors of

probabilities.

Figure 4.1 depicts such an aggregate of two mixed strategies and its equivalent

representation in extensive form. The aggregate behaviour at player 1’s initial state

is unsurprisingly composed of the two strategies’ behaviour at that state in propor-

tion to their combination’s weights, α and 1−α . Interestingly, the aggregate be-

haviour at player 1’s second state is entirely determined by his second strategy, Π2.

This is because a normal-form aggregate selects (pure) strategies for entire playouts

of the game and does not resample at each information state that is encountered dur-



4.3. Strategy Updates 63

1

2

T 1

T T

2

T T

0

0.5 0.5

1

0 0 0.5 0.5

Π1

(1−α) +

1

2

T 1

T T

2

T T

1

1 0

0

1 0 0 0

Π2

α

1

2

T 1

T T

2

T T

α

1 0

1−α

α 0 0.5(1−α) 0.5(1−α)

(1−α)Π1 +αΠ2

=

Figure 4.1: Illustration of mixed strategy updates in extensive form

ing such playouts. Because strategy Π1 never reaches the second state, its behaviour

at that state has no impact on the normal-form aggregate behaviour.

4.3.2 Unweighted Behavioural Strategies

A simple option for aggregating behavioural strategies is to linearly combine them

with equal weights at each state. In this section we discuss certain drawbacks of

such updates.

Firstly, this form of aggregaton would clearly yield a different result than the

normal-form aggregation shown in Figure 4.1. Hence, replacing normal-form ficti-

tious play updates with unweighted behavioural updates in the extensive form would

yield a different variant of fictitious play (Hendon et al., 1996), calling into question



4.3. Strategy Updates 64

1

2

2
−2 1

1
−1

c
−c

1
−1

L

a b

l r

R

Figure 4.2: Game used in proof of proposition 4.3.1

its convergence guarantees.

Secondly, consider two strategies that achieve a similar return performance

against an opponent strategy profile. For a combination of two such strategies, we

might consider it desirable that the aggregate strategy achieve a performance similar

to its constituent strategies. However, if we combine strategies unweightedly then

their aggregate performance can be arbitrarily worse, as shown by the following

result.

Proposition 4.3.1. There exists a (parameterised) game, two strategies, π1 and π2,

and an opponent strategy profile, π−i, such that both π1 and π2 have equal return

performance against π−i but the unweightedly aggregated strategy, (1− λ )π1 +

λπ2, performs arbitrarily worse.

Proof. Consider the game in Figure 4.2 and strategies π1 ≡ L,l and π2 ≡ R,r. Both

achieve a return of 1 against an opponent strategy profile, π−i ≡ b, that always

takes action b. However, an unweighted aggregate, (1−λ )π1 +λπ2, will achieve a

return of 1+λ (1−λ )(c−1)< 1 for c < 1. As c could be arbitrarily low, the result

follows.

In a reinforcement learning setting, this problematic scenario may occur when

aggregating two agents’ policies that focus on different areas of the state space.

An unweighted aggregate of two such policies could be tainted by suboptimal be-



4.3. Strategy Updates 65

haviour in states that one agent but not the other chose to avoid.

4.3.3 Realization-Weighted Behavioural Strategies

This section introduces an approach to combining strategies that overcomes the re-

turn performance corruption that unweighted aggregation may cause. Furthermore,

this method of combining strategies is equivalent to the corresponding normal-form

aggregation of the respective mixed strategies.

The main idea is to analyse the extensive-form behaviour of a convex combi-

nation of normal-form, mixed strategies. It turns out that the aggregate behaviour

can be efficiently expressed in closed form as a combination of the realization-

equivalent behavioural strategies’ behaviours. The following proposition formalizes

our analysis.

Proposition 4.3.2. Let π1, ...,πn be behavioural strategies of an extensive-form

game. Let Π1, ...,Πn be mixed strategies that are realization-equivalent to π1, ...,πn

respectively. Let w1, ...,wn ∈R≥0 be weights that sum to 1. Then the convex combi-

nation of mixed strategies,

Π =
n

∑
k=1

wkΠk,

is realization-equivalent to the behavioural strategy,

π(u) ∝

n

∑
k=1

wkxπk(σu)πk(u) ∀u ∈U , (4.1)

where ∑
n
k=1 wkxπk(σu) is the normalizing constant for the strategy at information

state u.

Proof. The realization plan of Π = ∑
n
k=1 wkΠk is

xΠ(σu) =
n

∑
k=1

wkxΠk(σu), ∀u ∈U .

and due to realization equivalence, xΠk = xπk for k = 1, ...,n. This realization plan



4.3. Strategy Updates 66

induces a realization-equivalent behavioural strategy

π(a |u) = xΠ(σua)
xΠ(σu)

=
∑

n
k=1 wkxΠk(σua)

∑
n
k=1 wkxΠk(σu)

=
∑

n
k=1 wkxπk(σu)πk(a |u)

∑
n
k=1 wkxπk(σu)

.

Each constituent strategy’s behaviour πk(u) at an information state s is

weighted by its probability of realizing this information state relative to the ag-

gregate strategy’s realization probability,

wkxπk(σu)

xπ(σu)
. (4.2)

This weight is the conditional probability of following strategy πk locally at u given

that the aggregate strategy π is played globally. Hence, it is 0 for a constituent strat-

egy that never reaches the respective information state and it can be as large as 1 if it

is the only strategy in the combination that reaches the information state. In Section

5.4, we exploit this conditional probability to devise sample-based approximations

of strategy aggregates.

The following corollary analyses the performance of realization-weighted ag-

gregates.

Corollary 4.3.3. Let π−i be a strategy profile of a player i’s fellow players in an

extensive-form game. Let π i
1, ...,π

i
n be behavioural strategies of player i, achieving

a return of G1, ...,Gn against π−i respectively. Let w1, ...,wn ∈ R≥0 be weights that

sum to 1 and

π
i(u) ∝

n

∑
k=1

wkx
π i

k
(σu)π

i
k(u) ∀u ∈U i,

a behavioural strategy. Then π i’s performance against π−i is a similarly weighted



4.4. Extensive-Form Fictitious Play 67

convex combination of its constitutent strategies’ returns,

n

∑
k=1

wkGk.

Proof. Given Proposition 4.3.2, π i is realization equivalent to a mixed strategy

Πi = ∑
n
k=1 wkΠi

k, where each constitutent strategy, Πi
k is realization equivalent to

π i
k. Following the definition of a mixed strategy, i.e. each constituent strategy Πi

k

is played with probability wk, the expected return is a similarly weighted convex

combination.

Corollary 4.3.3 shows that for realization-weighted strategy aggregation the

aggregate return is convex in the constituent strategy’s returns. Thus, the return

degradation shown for unweighted aggregates in Proposition 4.3.1 does not occur

with realization-weighted strategy aggregation.

4.4 Extensive-Form Fictitious Play
In this section we combine the extensive-form best response computation and aver-

age strategy updates into a fictitious play that is entirely implemented in behavioural

strategies. Thus, for sequential games computation in the exponentially less effi-

cient normal-form representation can be avoided. Nonetheless, this extensive-form

variant of fictitious play is realization-equivalent to its normal-form counterpart and

thus inherits its convergence guarantees.

The following theorem presents an extensive-form fictitious play that inher-

its the convergence results of generalised weakened fictitious play by realization-

equivalence.

Theorem 4.4.1. Let π1 be an initial behavioural strategy profile. The extensive-

form process

β
i
t+1 ∈ BRi

εt+1
(π−i

t ),

π
i
t+1(u) = π

i
t (u)+

αt+1x
β i

t+1
(σu)

(1−αt+1)xπ i
t
(σu)+αt+1x

β i
t+1

(σu)

(
β

i
t+1(u)−π

i
t (u)

)
, (4.3)



4.4. Extensive-Form Fictitious Play 68

for all players i∈N and all their information states u∈U i, with αt→ 0 and εt→

0 as t → ∞, and ∑
∞
t=1 αt = ∞, is realization-equivalent to a generalised weakened

fictitious play in the normal-form and thus the average strategy profile converges to

a Nash equilibrium in all games with the fictitious play property.

Proof. By induction. Assume πt and Πt are realization equivalent and βt+1 ∈

bεt+1(πt) is an εt+1-best response to πt . By Kuhn’s Theorem, let Bt+1 be any mixed

strategy that is realization equivalent to βt+1. Then Bt+1 is an εt+1-best response to

Πt in the normal-form. By Lemma 6, the update in behavioural strategies, πt+1, is

realization equivalent to the following update in mixed strategies

Πt+1 = (1−αt+1)Πt +αt+1Bt+1

and thus follows a generalised weakened fictitious play.

While the generality of this theorem, i.e. variable step size and approximate

best responses, is not really required for a full-width approach, it is useful for guid-

ing the development of sample-based, approximate reinforcement learning tech-

niques.

Algorithm 4 implements XFP, an extensive-form fictitious play according to

Theorem 4.4.1. The initial average strategy profile, π1, can be defined arbitrarily,

e.g. uniform random. At each iteration the algorithm performs two operations. First

it computes a best response profile to the current average strategies. Secondly it uses

the best response profile to update the average strategy profile. The first iteration’s

computational requirements are linear in the number of game states. For each player

the second operation can be performed independently from their opponents and

requires work linear in the player’s number of information states. Furthermore, if a

deterministic best response is used, the realization weights of Theorem 4.4.1 allow

ignoring all but one subtree at each of the player’s decision nodes.



4.5. Experiments 69

Algorithm 4 Extensive-Form Fictitious Play (XFP)
function FICTITIOUSPLAY(Γ)

Initialize π1 arbitrarily
j← 1
while within computational budget do

β j+1← COMPUTEBESTRESPONSES(π j)
π j+1← UPDATEAVERAGESTRATEGIES(π j,β j+1)
j← j+1

end while
return π j

end function

function COMPUTEBESTRESPONSES(π)
Compute a best-response strategy profile, β ∈ BR(π), with dynamic pro-

gramming, using Equations 2.24 and 2.25.
return β

end function

function UPDATEAVERAGESTRATEGIES(π j,β j+1)
for each player i do

Compute an updated strategy π i
j+1 by applying Equation 4.3 to all infor-

mation states of the player.
end for
return π j+1

end function

4.5 Experiments

4.5.1 Realization-Weighted Updates

In this section, we investigate the effects of unweighted and realization-weighted

strategy updates on the performance of extensive-form fictitious play.

We define updates with effective step sizes, λt+1 : U → [0,1],

πt+1(u) = πt(u)+λt+1(u)(βt+1(u)−πt(u)), ∀u ∈U ,

where βt+1 ∈ b(πt) is a sequential best response and πt is the iteratively updated

average strategy profile. Stepsize λ 1
t+1(u) =

1
t+1 produces the sequential extensive-

form fictitious play (Hendon et al., 1996), which applies unweighted strategy up-

dates. XFP is implemented by stepsize λ 2
t+1(u) =

xβt+1
(σu)

txπt (σu)+xβt+1
(σu)

. Note that both

updates use a basic step size of αt =
1
t (compare Equation 4.3).



4.5. Experiments 70

The initial average strategy profiles were initialized randomly as follows. At

each information state u, we drew the weight for each action from a uniform dis-

tribution and normalized the resulting strategy at u. We trained each algorithm for

400000 iterations and measured the exploitability of the average strategy profile af-

ter each iteration. The experiment was repeated five times and all learning curves

are plotted in figure 4.3. The results show noisy behaviour of each fictitious play

process that used stepsize λ 1. Each instance of XFP reliably approached an approx-

imate Nash equilibrium.

0

0.05

0.1

0.15

0.2

0.25

0 50000 100000 150000 200000 250000 300000 350000 400000

E
x
p

lo
it

a
b

ili
ty

Iterations

Locally-Updated Extensive-Form Fictitious Play (stepsize 1)
XFP (stepsize 2)

Figure 4.3: Learning curves of extensive-form fictitious play processes in Leduc Hold’em,
for stepsizes λ 1 and λ 2.

4.5.2 GFP and Comparison to CFR

In Appendix B we introduce Geometric Fictitious Play (GFP), a novel, experimental

variant of extensive-form fictitious play. This section compares the performance of

XFP, GFP and CFR in Leduc Hold’em.

Note that the GFP update (see Equation B.2) weights the vanilla average strat-

egy by (1−α)D+1, where D is the maximum depth of the player’s information-state

tree. For Leduc Hold’em we have D = 3. To control for the different effective step-



4.5. Experiments 71

sizes of XFP and GFP, we included variants with scaled and normalized stepsizes.

In particular, we normalized GFP’s stepsize by αk
1−(1−αk)D+1 to match vanilla XFP’s.

Vice versa, we scaled XFP’s stepsize by 1−(1−αk)
D+1

αk
to match vanilla GFP’s. For

each variant, we repeated the experiment 3 times with randomly initialized average

strategies (as above). All learning curves are plotted in Figure 4.4. The results show

that GFP outperformed XFP in Leduc Hold’em. This improvement does not appear

to be merely due to the larger effective stepsize, as scaling XFP’s stepsize had a

detrimental effect.

0.01

0.1

1

10

1 10 100 1000 10000

E
x
p

lo
it

a
b

ili
ty

Iterations

XFP
GFP

GFP, stepsize normalized
XFP, stepsize scaled to GFP's

Figure 4.4: Performance of XFP and GFP variants in Leduc Hold’em.

We also compared the performance of XFP and GFP to CFR, the main game-

theoretic approach to computing Nash equilibria from self-play. We initialized all

variants’ initial strategy to uniform random at all information states. As the algo-

rithms are deterministic, we present a single run of all algorithms in Figure 4.5.

Like CFR, both XFP and GFP appear to converge at a rate of O(k−
1
2 ), where k is

the iteration count, as conjectured by Karlin (1959).



4.5. Experiments 72

0.001

0.01

0.1

1

10 100 1000 10000 100000

E
x
p
lo
it
a
b
ili
ty

Iterations

XFP
GFP
CFR

Figure 4.5: Comparison of XFP, GFP and CFR in Leduc Hold’em.

4.5.3 Robustness of XFP

Our ultimate goal is to develop self-play reinforcement learning algorithms that ap-

proximate XFP and achieve its convergence properties. This is partly motivated

by the fact that generalised weakened fictitious play (Leslie and Collins, 2006) is

robust to various approximations. As machine learning algorithms will incur vari-

ous approximation and sampling errors, we investigate the potential effects of such

errors on XFP’s performance. In particular, we explore what happens when the per-

fect averaging used in XFP is replaced by an incremental averaging process closer

to gradient descent. Furthermore, we explore what happens when the exact best

response used in XFP is replaced by an approximation with epsilon error.

Figure 4.6 shows the performance of XFP with default, 1/T , and constant

stepsizes for its strategy updates. We see improved asymptotic but lower initial

performance for smaller stepsizes. For constant stepsizes the performance seems to

plateau rather than diverge. These results may guide algorithmic design decisions

for machine learning of average strategies, e.g. a decaying learning rate of gradient

descent might be a reasonable choice.



4.6. Conclusion 73

0.1

1

10

1 10 100 1000

E
x
p

lo
it

a
b

ili
ty

Iterations

XFP, stepsize 1/T
XFP, stepsize 0.01
XFP, stepsize 0.05

XFP, stepsize 0.1
XFP, stepsize 0.5

XFP, stepsize 1

Figure 4.6: The impact of constant stepsizes on the performance of full-width fictitious
play in Leduc Hold’em.

Reinforcement learning agents typically add random exploration to their poli-

cies and may use noisy stochastic updates to learn action values, which determine

their approximate best responses. Therefore, we investigated the impact of random

noise added to the best response computation, which XFP performs by dynamic pro-

gramming. At each backward induction step, we return a uniform-random action’s

value with probability ε and the best action’s value otherwise. Figure 4.7 shows

monotonically decreasing performance with added noise. However, performance

remains stable and keeps improving for all noise levels.

4.6 Conclusion
We have shown that fictitious play can be entirely implemented in behavioural

strategies of the extensive-form representation. The resulting approach, XFP, is

realization-equivalent to common, normal-form fictitious play and therefore pre-

serves all its convergence guarantees. However, XFP is much more efficient in

extensive-form games as its computational requirements in time and space are lin-

ear in the number of game states, rather than exponential.



4.6. Conclusion 74

0.1

1

10

1 10 100 1000

E
x
p

lo
it

a
b

ili
ty

Iterations

XFP, no noise
XFP, noise 0.05

XFP, noise 0.1
XFP, noise 0.2
XFP, noise 0.5

Figure 4.7: The performance of XFP in Leduc Hold’em with uniform-random noise added
to the best response computation.

We complemented our theoretical results with the following empirical findings.

Firstly, our experiments have shown that (realization-weighted) XFP significantly

outperforms a prior extensive-form fictitious play algorithm (Hendon et al., 1996)

that ignored such weightings. Secondly, in Leduc Hold’em we have seen GFP im-

prove on the performance of XFP and both achieved a similar level of performance

as CFR. Furthermore, both XFP and GFP appear to converge at a rate of O(k−
1
2 ),

where k is the iteration count, as conjectured by Karlin (1959). Finally, our ex-

periments have found XFP to be robust to various approximation errors and fixed

step sizes. This finding is aligned with the theoretical guarantees of generalised

weakened fictitious play allowing for certain approximations and perturbations.

This chapter introduced realization-weighted, full-width updates of fictitious

players’ strategies. These updates’ weights are in fact conditional probabilities that

prescribe a way to sample the updated strategies. In the next chapter we develop

sample-based methods that build upon this observation.



Chapter 5

Fictitious Self-Play

In this chapter we address the subquestion,

Can XFP be approximated by agents learning from sampled experi-

ence?

Such agents, in principle, would be able to learn approximate Nash equilibria from

self-play in games where fictitious play is guaranteed to converge.

5.1 Introduction
In XFP players compute their best responses, i.e. goal-directed strategies, by dy-

namic programming on their information state trees. In addition, they compute

routine strategies that average their past best responses. Thus, XFP is reminiscent

of an actor-critic architecture (Barto et al., 1983; Sutton et al., 1999a). In particular,

XFP moves players’ average strategies (actors) towards their best responses (crit-

ics). XFP has further properties that render it suitable for machine learning. First,

best responses are just strategies that are best in hindsight, i.e. optimal policies with

respect to an agent’s experience. This enables the use of standard reinforcement

learning techniques. Second, an average strategies’ weights (compare Equation 4.1)

are in fact conditional probabilites (see Equation 4.2) that are automatically realized

when sampling from the agent’s average policy. This enables the use of standard

supervised learning techniques for mimicking the sampled behaviour (labels).

In this chapter, we develop a sample-based machine learning approach to find-

ing Nash equilibria in imperfect-information games. We introduce Fictitious Self-



5.2. Experiential Learning 76

Play (FSP), a class of learning algorithms that approximate XFP. In FSP players

repeatedly play a game and learn from their experience. In particular, players learn

approximate best responses from their experience of play against their opponents.

In addition, they learn a model of their own average, routine strategy from their

experience of their own behaviour. In more technical terms, FSP iteratively sam-

ples episodes of the game from self-play. These episodes constitute experience that

is used by reinforcement learning to produce approximate best responses and by

supervised learning to produce models of average strategies.

5.2 Experiential Learning

XFP and related game-theoretic approaches face the following two challenges when

applied to large domains.

XFP is a full-width approach that suffers from the curse of dimensionality. At

each iteration, computation needs to be performed at all states of the game irrespec-

tive of their relevance. However, generalised weakened fictitious play (Leslie and

Collins, 2006) only requires approximate best responses and even allows some per-

turbations in the updates. An extensive-form game usually has sequential structure

that could be exploited when computing approximate best responses and strategy

updates, e.g. by sampling likely trajectories of the game.

XFP is not compatible with function approximation. Each state is represented

in isolation; preventing agents from generalising their knowledge between similar

states. Currently, researchers in computational game theory usually circumvent this

problem by hand-crafting abstractions of the game and applying their algorithm to

the smaller, abstracted version of the game. It would be desirable that the algorithm

itself can find such abstractions that best approximate the learned strategies and

action values.

FSP addresses both problems by introducing two innovations. Firstly, it

replaces XFP’s full-width strategy and action-value updates with approximate,

sample-based learning methods. Secondly, FSP agents can represent their strate-

gies and action-value estimates with function approximators instead of using table-



5.3. Best Response Learning 77

lookup representations. Approximate best responses are learned by reinforcement

learning from experience of play against the opponents’ average strategies. The

average strategy updates can be formulated as a supervised learning task, where

each player learns a transition model of their own behaviour. We introduce re-

inforcement learning-based best response computation in section 5.3 and present

supervised learning-based strategy updates in section 5.4.

5.3 Best Response Learning
This section develops reinforcement learning of approximate best responses from

sampled experience. We first break up the iterations of fictitious play into a se-

quence of MDPs. Then, we describe how agents can sample experience of these

MDPs. Next, we present a suitable memory architecture for off-policy learning

from such experience. Finally, we discuss the approximation effects of reinforce-

ment learning on the fictitious play process.

5.3.1 Sequence of MDPs

Consider an extensive-form game Γ and some strategy profile π . Then for each

player i ∈N the strategy profile of their opponents, π−i, defines an MDP, M (π−i)

(Greenwald et al., 2013). Player i’s information states define the states of the MDP

(Silver and Veness, 2010). The MDP’s dynamics are given by the rules of the

extensive-form game, the chance function and the opponents’ fixed strategy pro-

file. The rewards are given by the game’s return function.

An ε-optimal policy of the MDP, M (π−i), yields an ε-best response of player

i to the strategy profile π−i. Thus fictitious players’ iterative computation of approx-

imate best responses can be formulated as a sequence of MDPs to solve approxi-

mately, e.g. by applying reinforcement learning to samples of experience from the

respective MDPs. In particular, to approximately solve the MDP M (π−i) we sam-

ple player i’s experience from their opponents’ strategy profile π−i. Player i’s strat-

egy should ensure sufficient exploration of the MDP but can otherwise be arbitrary

if an off-policy reinforcement learning method is used, e.g. Q-learning (Watkins

and Dayan, 1992).



5.3. Best Response Learning 78

5.3.2 Sampling Experience

Each agent i tries to evaluate and maximise its action values, Qi(s,a) ≈

Eβ i,π−i
[
Gi

t
∣∣St = s,At = a

]
, of playing its (approximate) best response policy β i

against its fellow agents’ average strategy profile, π−i. The approximate best re-

sponse policy can be defined with respect to the Q-values, e.g. β i = ε-greedy
[
Qi]

or β i = Boltzmann
[
Qi].

In an on-policy setting we can simply let each agent i play its best response

policy against its opponents’ fixed average strategy profile, π−i, in alternating self-

play. Through iteration of policy evaluation and policy improvement, each agent

would learn an approximate best response. In an off-policy setting we can let all

agents play their average strategies, π , in simultaneous self-play and have them col-

lect their experience in a memory. This experience can then be evaluated with off-

policy reinforcement learning, again yielding an approximate best response through

iterative policy evaluation and improvement.

In this chapter we use off-policy, batch reinforcement-learning methods to

learn from memorized experience. At each iteration k, FSP samples each agent i’s

experience from two types of strategy profiles, the average strategy profile πk and

the strategy profile (β i
k+1,π

−i
k ). Both profiles generate experience of play against

the current average strategy profile of the agent’s opponents. Each agent i adds this

experience to its replay memory, M i
RL. The data is stored in the form of transition

tuples, (ut ,at ,rt+1,ut+1), that are typical for reinforcement learning.

5.3.3 Memorizing Experience

We use a finite memory of fixed size. If the memory is full, new transitions replace

existing transitions in a first-in-first-out order. Thus, each agent i’s memory, M i
RL,

contains experience of a sliding window of past MDPs, i.e.

M i
RL ≈

1
s+1

t

∑
k=t−s

M (π−i
k ),



5.3. Best Response Learning 79

where s depends on the capacity of the memory. As fictitious players’ average

strategies, πk, change more slowly over time,

lim
t→∞

1
s+1

t

∑
k=t−s

Πk = Πt

the memory’s windowing artifacts have a limited effect asymptotically,

1
s+1

t

∑
k=t−s

M (π−i
k )→M (π−i

t ) for t→ ∞.

5.3.4 Best Response Quality

While generalised weakened fictitious play allows εk-best responses at iteration k,

it requires that the deficit εk vanishes asymptotically, i.e. εk→ 0 as k→ ∞. Learn-

ing such a valid sequence of εk-optimal policies of a sequence of MDPs would be

hard if these MDPs were unrelated and knowledge could not be transferred. How-

ever, in fictitious play the MDP sequence has a particular structure. The average

strategy profile at iteration k is realization-equivalent to a linear combination of two

mixed strategies, Πk = (1−αk)Πk−1+αkBk. Thus, in a two-player game, the MDP

M (π−i
k ) is structurally equivalent to an MDP that initially picks between M (π−i

k−1)

and M (β−i
k ) with probability (1−αk) and αk respectively. Due to this similar-

ity between subsequent MDPs it is possible to transfer knowledge. The following

proposition bounds the increase of the optimality deficit when transferring an ap-

proximate solution between subsequent MDPs in a fictitious play process.

Proposition 5.3.1. Consider a two-player zero-sum extensive-form game with max-

imum return range R̂ = maxπ∈∆ R1(π)−minπ∈∆ R1(π). Consider a fictitious play

process in this game. Let Πk be the average strategy profile at iteration k, Bk+1

a profile of εk+1-best responses to Πk, and Πk+1 = (1−αk+1)Πk +αk+1Bk+1 the

usual fictitious play update for some stepsize αk+1 ∈ (0,1). Then for each player i,

Bi
k+1 is an [εk+1 +2αk+1R̂]-best response to Πk+1.

Proof. W.l.o.g. we prove the result for a player i at a fixed iteration k ∈ N. Further-

more, set α = αk+1 and ε = εk+1. Define vk = Ri(BRi(Π−i
k ),Π−i

k ), the value of a



5.4. Average Strategy Learning 80

best response to strategy profile Π
−i
k . Consider,

vk+1 = Ri(BRi(Π−i
k+1),Π

−i
k+1)

≤ (1−α)Ri(BRi(Πk),Πk)+αR̂

= (1−α)vk +αR̂

Then,

Ri(Bi
k+1,Πk+1) = (1−α)Ri(Bi

k+1,Π
−i
k )+αRi(Bi

k+1,B
−i
k+1)

≥ (1−α)(vk− ε)−αR̂

≥ vk+1− (1−α)ε−2αR̂

≥ vk+1−
(
ε +2αR̂

)

This bounds the absolute amount by which reinforcement learning needs to

improve the best response profile to achieve a monotonic decay of the optimality

gap εk. However, εk only needs to decay asymptotically. Given αk→ 0 as k→ ∞,

the bound suggests that in practice a finite amount of learning per iteration might be

sufficient to achieve asymptotic improvement of best responses. In Section 5.6.1,

we empirically analyse whether this is indeed the case in practice. Furthermore,

in our experiments on the robustness of (full-width) XFP (see Section 4.5.3), it

robustly approached lower-quality strategies for noisy, low-quality best responses.

5.4 Average Strategy Learning
This section develops supervised learning of approximate average strategies from

sampled experience. We first translate fictitious players’ averaging of strategies into

an equivalent problem of agents learning to model themselves. Then, we describe

how appropriate experience for such models may be sampled. Next, we present suit-

able memory architectures for off-policy learning from such experience. Finally, we

discuss the approximation effects of machine learning on the fictitious play process.



5.4. Average Strategy Learning 81

5.4.1 Modeling Oneself

Consider the point of view of a particular player i who wants to learn a behavioural

strategy π that is realization-equivalent to a convex combination of their own

normal-form strategies, Π = ∑
k
j=1 w jB j, ∑

k
j=1 w j = 1. This task is equivalent to

learning a model of the player’s behaviour when it is sampled from Π. In addition

to describing the behavioural strategy π explicitly, Proposition 4.3.2 prescribes a

way to sample data sets of such convex combinations of strategies.

Corollary 5.4.1. Let {Bk}1≤k≤n be mixed strategies of player i, Π = ∑
n
k=1 wkBk,

∑
n
k=1 wk = 1 a convex combination of these mixed strategies and µ−i a completely

mixed sampling strategy profile that defines the behaviour of player i’s fellow

agents. Then the expected behaviour of player i, when sampling from the strategy

profile (Π,µ−i), defines a behavioural strategy,

π(a |u) = P
(
Ai

t = a |U i
t = u,Ai

t ∼Π
)
∀u ∈U i ∀a ∈A (u), (5.1)

that is realization equivalent to Π.

Proof. This is a direct consequence of realization equivalence. In particular, con-

sider player i sampling from Π=∑
n
k=1 wkBk. For k = 1, ...,n, let βk be a behavioural

strategy that is realization equivalent to Bk. Choose u ∈ U i and a ∈ A (u). Then,

when sampling from (Π,µ−i), the probability of player i sampling action a in in-

formation state u is

P(u,a |Π,µ−i) =
n

∑
k=1

wkxβk
(σu)βk(a |u) ∑

s∈I−1(u)

xµ−i(σs),

=

(
n

∑
k=1

wkxβk
(σu)βk(a |u)

) ∑
s∈I−1(u)

xµ−i(σs)

 ,

where xµ−i(σs) is the product of fellow agents’ and chance’s realization probabili-

ties based on their respective imperfect-information views of state s. Conditioning



5.4. Average Strategy Learning 82

on reaching u yields

P(a |u,Π,µ−i) ∝

n

∑
k=1

wkxβk
(σu)βk(a |u),

which is equivalent to the explicit update in Equation 4.1.

Hence, the behavioural strategy π i can be learned approximately from a data

set consisting of trajectories sampled from (Πi,µ−i). Recall that we can sample

from Π = ∑
n
k=1 wkBk by sampling whole episodes from each constituent β i

k ≡ Bi
k

with probability wk.

5.4.2 Sampling Experience

In fictitious play, our goal is to keep track of the average mixed strategy profile

Πk+1 =
1

k+1

k+1

∑
j=1

B j =
k

k+1
Πk +

1
k+1

Bk+1.

Both Πk and Bk+1 are available at iteration k and we can therefore apply Proposi-

tion 5.4.1 to sample experience of a behavioural strategy π i
k+1 that is realization-

equivalent to Πi
k+1. In particular, for a player i we would repeatedly sample

episodes of him following his strategy π i
k+1 against a fixed, completely mixed strat-

egy profile of his opponents, µ−i. Note, that player i can follow π i
k+1 by choosing

between π i
k and β i

k+1 at the root of the game with probabilities k
k+1 and 1

k respec-

tively and committing to his choice for an entire episode. The player would ex-

perience sequences of state-action pairs, (st ,at), where at is the action he chose

at information state st following his strategy. This experience constitutes data that

approximates the desired strategy that we want to learn, e.g. by fitting the data set

with a function approximator. Alternatively, players can collect state-policy pairs,

(st ,ρt), where ρt = Et
[(

11{At=1}, ...,11{At=n}
)]

is the player’s policy at state St .

Instead of resampling a whole new data set of experience at each iteration,

we can incrementally update our data set from a stream of best responses, β i
j, j =

1, ... ,k. In order to constitute an unbiased approximation of an average of best



5.4. Average Strategy Learning 83

responses, 1
k ∑

k
j=1 Bi

j, we need to accumulate the same number of sampled episodes

from each Bi
j and these need to be sampled against the same fixed opponent strategy

profile µ−i. However, we suggest using the average strategy profile πk as the (now

varying) sampling distribution µk. Sampling against πk has the benefit of focusing

the updates on states that are more likely in the current strategy profile. When

collecting samples incrementally, the use of a changing sampling distribution πk

can introduce bias. However, in fictitious play πk is changing more slowly over

time and thus it is conceivable for this bias to decay over time as well.

5.4.3 Memorizing Experience

In principle, collecting sampled data from an infinite stream of best responses would

require an unbounded memory. To address this issue, we propose a table-lookup

counting model and the use of reservoir sampling (Vitter, 1985) for general super-

vised learning.

Table-Lookup A simple, but possibly expensive, approach to memorizing experi-

ence of past strategies, is to count the number of times each action has been taken.

For each sampled tuple, (si
t ,a

i
t), we update the count of the chosen action.

N(si
t ,a

i
t)← N(si

t ,a
i
t)+1

Alternatively, we can accumulate local policies ρ i
t = β i

t (s
i
t), where si

t is agent i’s

information state and β i
t is the strategy that the agent pursued at this state when this

experience was sampled.

∀a ∈A (st) : N(st ,a)← N(st ,a)+ρ
i
t (a)

The average strategy can be readily extracted.

∀a ∈A (st) : π(st ,a)←
N(st ,a)
N(st)

As each sampled tuple, (si
t ,a

i
t) or (si

t ,ρ
i
t ), only needs to be counted once, we can

parse the experience of average strategies in an online fashion and thus avoid infinite



5.4. Average Strategy Learning 84

memory requirements.

Reservoir In large domains, it is unfeasible to keep track of action counts at all

information states. We propose to track a random sample of past best response be-

haviour with a finite-capacity memory by applying reservoir sampling to the stream

of state-action pairs sampled from the stream of best responses.

Reservoir sampling (Vitter, 1985) is a class of algorithms for keeping track of

a finite random sample from a possibly large or infinite stream of items, {xk}k≥1.

Assume a reservoir (memory), M , of size n. For the first n iterations, all items,

x1, ...,xn, are added to the reservoir. At iteration k > n, the algorithm randomly

replaces an item in the reservoir with xk with probability n
k , and discards xk other-

wise. Thus, at any iteration k, the reservoir contains a uniform random sample of

the items that have been seen so far, x1, ...,xk. Exponential reservoir sampling (Os-

borne et al., 2014) replaces items in the reservoir with a probability that is bounded

from below, i.e. max(p, n
k ), where p is a chosen minimum probability. Thus, once

k = n
p items have been sampled, the items’ likelihood of remaining in the reservoir

decays exponentially.

Adding agents’ experience of their (approximate) best responses to their re-

spective supervised learning memories (reservoirs), MSL, with vanilla reservoir

sampling approximates a 1
T step size of fictitious play, where T abstracts the it-

eration counter. Using exponential reservoir sampling results in an approximate

step size of max(α, 1
T ), where α depends on the chosen minimum probabiltiy and

capacity of the reservoir.

5.4.4 Average Strategy Approximation

Let Π̃i
k be an approximation of the average strategy profile Πk =

1
k ∑

k
j=1 B j, learned

from a perfect fit of samples from the stream of best responses, Bk,k ≥ 1, e.g. with

the counting model. As we collect more samples from this stream, the approxi-

mation error, Π̃i
k−Πi

k, decays with increasing k. However, these approximation

errors can bias the sequence of learned best responses, Bk+1, as they are trained

with respect to the approximate average strategies, Π̃k. While generalised weak-

ened fictitious play only requires asymptotically-perfect best responses, this could



5.5. Algorithm 85

slow down convergence to an impractical level. In Section 5.6.1, we empirically

analyse the approximation error, Π̃i
k−Πi

k.

5.5 Algorithm
FSP can be implemented in a variety of ways, e.g. on- or off-policy and online or

batch variants are possible. The key idea is that the two fictitious play operations,

namely best response computation and average strategy updates, are implemented

via reinforcement and supervised learning respectively. Which exact machine learn-

ing methods to use, is up to the user and can be tailored to the demands of the

domain. It is critical though that one ensures that agents learn from appropriate ex-

perience, as discussed in Sections 5.3.2 and 5.4.2. Algorithm 5 presents FSP in this

abstract generality.

Algorithm 5 Abstract Fictitious Self-Play
Initialize completely mixed average strategy profile π1
for k = 1, ...,K−1 do

for each player i do
Update approximate best response, β i

k+1, via reinforcement learning from
experience in the MDP induced by fellow agents’ average strategy profile,
M (π−i

k )
Update average strategy, π i

k+1, via supervised learning from experience
of own historical best response behaviour, ∑

k+1
j=1 Bi

j or Πi
k +

1
k+1

(
Bi

k+1−Πi
k

)
end for

end for
return πK

In this chapter we restrict ourselves to batch reinforcement learning from mem-

orized experience and a table-lookup, counting model to keep track of players’ av-

erage strategies. We first discuss a general batch algorithm for FSP in Section 5.5.1

and then instantiate it with Q-learning and a table-lookup counting model in Section

5.5.2.

5.5.1 Batch

This section introduces a batch variant of FSP, presented in Algorithm 6. This vari-

ant separates the sampling of agents’ experience to fill their memories from their

learning from these memories. It does not specify particular off-policy reinforce-



5.5. Algorithm 86

ment learning or supervised learning techniques, as these can be instantiated by a

variety of algorithms.

Algorithm 6 Batch Fictitious Self-Play
Initialize completely mixed average strategy profile π1
Initialize replay memories MRL and MSL
Initialize the constant numbers of episodes that are sampled simultaneously, n,
and alternatingly, m
for k = 1, ...,K−1 do

SAMPLESIMULTANEOUSEXPERIENCE(n,πk,MRL)
Each player i updates their approximate best response strategy

β i
k+1← REINFORCEMENTLEARNING(M i

RL)
SAMPLEALTERNATINGEXPERIENCE(m,πk,βk+1,MRL,MSL)
Each player i updates their average strategy

π i
k+1← SUPERVISEDLEARNING(M i

SL)
end for
return πK

function SAMPLESIMULTANEOUSEXPERIENCE(n, π , MRL)
Sample n episodes from strategy profile π

For each player i store their experienced transitions,
(
ui

t ,at ,rt+1,ui
t+1
)
, in

their reinforcement learning memory M i
RL

end function

function SAMPLEALTERNATINGEXPERIENCE(m,π,β ,MRL,MSL)
for each player i ∈N do

Sample m episodes from strategy profile (β i,π−i)
Store player i’s experienced transitions,

(
ui

t ,at ,rt+1,ui
t+1
)
, in their rein-

forcement learning memory M i
RL

Store player i’s experienced own behaviour,
(
ui

t ,at
)

or
(
ui

t ,β
i(ui

t)
)
, in

their supervised learning memory M i
SL

end for
end function

Reinforcement Learning For each agent i, the functions SAMPLESIMULTANEOU-

SEXPERIENCE and SAMPLEALTERNATINGEXPERIENCE both generate experience

of play against fellow agents’ average strategy profile, π
−i
k , at iteration k. As this is

the strategy profile the agent wants to learn to best respond to, all this experience is

added to the agent’s reinforcement learning memory, M i
RL. Thus, an approximate

best response to π
−i
k can be learnt via off-policy reinforcement learning from the

memory. In this work, we implement the memories with circular buffers, which

produce sliding-window approximations as discussed in Section 5.3.3.



5.6. Experiments 87

Supervised Learning In order to enable agents to learn their own average strate-

gies, the function SAMPLEALTERNATINGEXPERIENCE also generates experience

of the agents’ own best response behaviour. This experience is added to the agents’

respective supervised learning memories, M i
SL, i = 1, ...,N. For each agent a fixed

number (m) of episodes is added from each of their past best responses. Thus,

at iteration k an agent i’s supervised learning memory approximates its historical,

average strategy, ∑
k+1
j=1 Bi

j.

5.5.2 Table-lookup

Algorithm 7 instantiates Batch FSP with table-lookup methods. In particular, to

learn approximate best responses we use Q-learning with experience replay on

the reinforcement learning memories. Given (approximately) evaluated Q-values,

a Boltzmann distribution over these values yields an approximate best response.

To keep track of the average strategies, we aggregate the experience from the su-

pervised learning memories into a counting model that was introduced in Section

5.4.3.

5.6 Experiments
This section presents experiments with table-lookup FSP. We begin by investigating

the approximation errors induced by our learning- and sample-based approach. We

then compare FSP to (full-width) XFP to illustrate the benefits of sampling and

learning from experience.

5.6.1 Empirical Analysis of Approximation Errors

Section 5.3.4 expressed concerns about the quality of approximate best responses

that are produced by reinforcement learning with a finite computational budget.

Here, we empirically investigate the quality of approximate best responses that

table-lookup FSP produces with Q-learning. In particular, we measure the optimal-

ity gap of the approximate ε-best responses, βk+1, to the average strategy profiles,

πk,

ε =
∑

2
i=1 Ri (BR(π−i

k ),π−i
k

)
−Ri (β i

k+1,π
−i
k

)
2

. (5.2)



5.6. Experiments 88

Algorithm 7 Table-lookup Batch FSP with Q-learning and counting model
Initialize Q-learning parameters, e.g. learning stepsize
Initialize all agents’ table-lookup action-values,

{
Qi}

i∈N
Intiialize all agents’ table-lookup counting models,

{
Ni}

i∈N
Initialize and run Algorithm 6 (Batch FSP) with REINFORCEMENTLEARNING

and SUPERVISEDLEARNING methods below

function REINFORCEMENTLEARNING(M i
RL)

Restore previous iteration’s Qi-values
Update (decay) learning stepsize and Boltzmann temperature
Learn updated Qi-values with Q-learning from M i

RL
return Boltzmann[Qi]

end function

function SUPERVISEDLEARNING(M i
SL)

Restore previous iteration’s counting model, Ni, and average strategy, π i

for each (ut ,ρt) in M i
SL do

∀a ∈A (ut) : Ni(ut ,a)← Ni(ut ,a)+ρt(a)
∀a ∈A (ut) : π i(ut ,a)← Ni(ut ,a)

Ni(ut)

end for
Empty M i

SL
return π i

end function

Figure 5.1 shows the quality of the best responses improve over time. As we use

a fixed computational budget per iteration, this demonstrates that knowledge is in-

deed transferred between iterations. It appears that Q-learning can keep up with the

slower changing average strategy profiles it learns against.

Section 5.4.4 expressed concerns about the quality of approximate average

strategies that are produced from a finite amount of samples from each constituent

(past) best response. Here, we empirically investigate the resulting approximation

error. In particular, we additionally track a perfect average strategy, which we com-

pute by periodically averaging the respective best responses according to XFP’s

full-width update (see Theorem 4.4.1). Note that these perfect average strategies do

not affect FSP in any way; they are only computed for evaluation purposes. We then

compute the squared distance (error) between this perfect average and the approxi-

mate average strategy contained in the counting model of table-lookup FSP. Figure

5.2 shows the approximate average strategy profile approach the quality of several



5.6. Experiments 89

0

0.2

0.4

0.6

0.8

1

10000 100000 1e+06 1e+07
 0

 0.2

 0.4

 0.6

 0.8

 1

E
x
p

lo
it

a
b

ili
ty

O
p

ti
m

a
lit

y
 G

a
p

Iterations

Optimality Gap (epsilon) of Best Response Profile
Exploitability of Average Strategy Profile

Figure 5.1: Analysis of the best response approximation quality of table-lookup FSP in
Leduc Hold’em.

perfect average strategies, which were computed at intervals of 10, 100 and 1000

iterations respectively. This suggests that, in principle, we can track and learn the

average strategy of fictitious play from sampled experience.

5.6.2 Sample-Based Versus Full-Width

We tested the performance of FSP Algorithm 7 with a fixed computational budget

per iteration and evaluated how it scales to larger games in comparison to XFP.

We manually tuned the FSP parameters in preliminary experiments on 6-card

Leduc Hold’em. In particular, we varied single or small subsets of parameters at

a time and measured the resulting achieved exploitability. The best results were

achieved with the following calibration, which we used in all subsequent experi-

ments and games presented in this section. In particular, for each player i, we used

a replay memory, M i
RL, with space for 40000 episodes. We sampled 2 episodes

simultaenously from strategy profile π and 1 episode alternatingly from (β i,π−i) at

each iteration for each player respectively, i.e. we set n = 2 and m = 1 in algorithm

6. At each iteration k each agent replayed 30 episodes with Q-learning stepsize



5.6. Experiments 90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

10000 100000 1e+06 1e+07
 0

 0.5

 1

 1.5

 2

 2.5

E
x
p

lo
it

a
b

ili
ty

A
p

p
ro

x
im

a
ti

o
n
 E

rr
o
r

Iterations

Exploitability of Average Strategy Profile
Squared Error of Average Strategy Approximation, 10

Squared Error of Average Strategy Approximation, 100
Squared Error of Average Strategy Approximation, 1000

Figure 5.2: Analysis of the average strategy approximation quality of table-lookup FSP in
Leduc Hold’em.

0.05
1+0.003

√
k
. It returned an (approximate) best response policy that at each informa-

tion state was determined by a Boltzmann distribution over the estimated Q-values,

using temperature (1+0.02
√

k)−1. The Q-value estimates were maintained across

iterations, i.e. each iteration started with the Q-values of the previous iteration.

We compared XFP and FSP in parameterizations of Leduc Hold’em and River

poker. In each experiment, both algorithms’ initial average strategy profiles were

initialized to a uniform distribution at each information state. Each algorithm

trained for 300 seconds. The average strategy profiles’ exploitability was measured

at regular intervals.

Leduc Hold’em Figure 5.3 compares both algorithms’ performance in 6- and 60-

card Leduc Hold’em, where the card decks consist of 3 and 30 ranks with 2 suits

respectively. While XFP clearly outperformed FSP in the small 6-card variant, in

the larger 60-card Leduc Hold’em it learned more slowly. This might be expected,

as the computation per iteration of XFP scales linearly in the squared number of

cards. FSP, on the other hand, operates only on information states whose number



5.6. Experiments 91

0

0.5

1

1.5

2

2.5

3

50 100 150 200 250 300

E
x
p

lo
it

a
b

ili
ty

Time in s

XFP, 6-card Leduc
XFP, 60-card Leduc

Table-Lookup FSP, 6-card Leduc
Table-Lookup FSP, 60-card Leduc

0.001

0.01

0.1

1

10

1 10 100

Figure 5.3: Comparison of XFP and table-lookup FSP in Leduc Hold’em with 6 and 60
cards. The inset presents the results using a logarithmic scale for both axes.

scales linearly with the number of cards in the game.

River Poker We compared the algorithms in two instances of River Poker, a sim-

plified model of an end-game situation in Limit Texas Hold’em. We set the potsize

to 6, allowed at most 1 raise and used a fixed set of community cards1. The first in-

stance assumes uninformed, uniform beliefs of the players that assigns equal prob-

ability to each possible holding. The second instance assumes that players have

inferred beliefs over their opponents’ holdings. An expert poker player has pro-

vided us with belief distributions that model a real Texas Hold’em scenario, where

the first player called a raise preflop, check/raised on the flop and bet the turn. The

distributions assume that player 1 holds one of 14% of the possible holdings 2 with

probability 0.99 and a uniform random holding with probability 0.01. Similarly,

player 2 is likely to hold one of 32% holdings 3.

According to figure 5.4, FSP improved its average strategy profile much faster

1KhTc7d5sJh
2K4s-K2s,KTo-K3o,QTo-Q9o,J9o+,T9o,T7o,98o,96o
3QQ-JJ,99-88,66,AQs-A5s,K6s,K4s-K2s,QTs,Q7s,JTs,J7s,T8s+,T6s-T2s,97s,87s,72s+,AQo-

A5o,K6o,K4o-K2o,QTo,Q7o,JTo,J7o,T8o+,T6o-T4o,97o,87o,75o+



5.6. Experiments 92

0

0.1

0.2

0.3

0.4

0.5

0.6

50 100 150 200 250 300

E
x
p

lo
it

a
b

ili
ty

Time in s

XFP, River Poker (uniform beliefs)
XFP, River Poker (defined beliefs)

Table-Lookup FSP, River Poker (uniform beliefs)
Table-Lookup FSP, River Poker (defined beliefs)

0.01

0.1

1

1 10 100

Figure 5.4: Comparison of XFP and table-lookup FSP in River poker. The inset presents
the results using a logarithmic scale for both axes.

than the full-width variant in both instances of River poker. In River poker with

defined beliefs, FSP obtained an exploitability of 0.05 after 33 seconds, whereas

after 300 seconds XFP was exploitable by more than 0.09. Furthermore, XFP’s

performance was similar in both instances of River poker, whereas FSP lowered its

exploitability by more than 40%, when defined beliefs were used.

River poker has about 10 million states but only around 4000 information

states. For a similar reason as in the Leduc Hold’em experiments, this might ex-

plain the overall better performance of FSP. Furthermore, the structure of the game

assigns non-zero probability to each state of the game and thus the computational

cost of XFP is the same for both instances of River poker. It performs computation

at each state no matter how likely it is to occur. FSP on the other hand is guided

by sampling and is therefore able to focus its computation on likely scenarios. This

allows it to benefit from the additional structure introduced by the players’ beliefs

into the game.



5.7. Conclusion 93

5.7 Conclusion
In this chapter we have introduced FSP, a sample-based machine learning ap-

proach to learning Nash equilibria from self-play. FSP is designed to approximate

extensive-form fictitious play. It can be instantiated with a variety of classic, single-

agent reinforcement learning and standard supervised learning methods.

Our experiments on two poker games have shown that sample-based FSP out-

performed full-width XFP in games with a large number of cards as well as non-

uniform belief distributions. We have attributed this success to two factors. Firstly,

reinforcement learning agents only observe their respective information states and

thus implicitly average over states that they can’t distinguish. XFP, which scales in

the number of games states rather than information states, can be more adversely

affected by an increase in the size of the game. Secondly, for non-uniform belief

distributions some states of the game can be more likely and important. A sample-

based approach can exploit this by sampling and focusing on these potentially more

important states.

While FSP’s strategy updates would asymptotically converge to the desired

strategies, it remains an open question whether guaranteed convergence can be

achieved with a finite computational budget per iteration. However, we have pre-

sented some intuition why this might be the case and our experiments provide first

empirical evidence that the resulting approximation erors indeed decay in practice.

This chapter’s table-lookup methods have barely tapped into FSP’s potential.

Function approximation can provide automated abstraction and generalisation in

large extensive-form games. Continuous-action reinforcement learning can learn

best responses in continuous action spaces. FSP may, therefore, scale to large and

even continuous-action game-theoretic applications. The next chapter provides ev-

idence of this claim, by combining FSP with deep learning techniques and success-

fully applying it to a large-scale game.



Chapter 6

Practical Issues in Fictitious Self-Play

In this chapter we address our main research question (see Section 1.2).

6.1 Introduction
Common game-theoretic methods (Section 2.3.4), XFP (Section 4.4) and table-

lookup FSP (Section 5.5.2) lack the ability to learn abstract patterns and use them

to generalise across related information states. This results in limited scalability to

large games, unless the domain is abstracted to a manageable size, typically using

human expert knowledge, heuristics or modelling. This domain knowledge is ex-

pensive and hard to come by. Thus, relying on it prevents self-play learning methods

from scaling at the pace of computational technology.

In this chapter we introduce NFSP, a deep reinforcement learning method for

learning approximate Nash equilibria of imperfect-information games without prior

domain knowledge. NFSP combines FSP with neural network function approxima-

tion. We begin by exploring fictitious play with anticipatory dynamics. These dy-

namics enable fictitious self-players to learn simultaneously by letting them choose

a mixture of their average strategy and best response strategy. We then introduce

the Online FSP Agent, an online reinforcement learner for FSP. Finally, we set

up NFSP as a multi-agent learning domain of simultaneously learning Online FSP

Agents that use neural networks to represent their average and best-response poli-

cies. These agents train their networks by deep learning from memorized experi-

ence. We empirically evaluate the convergence of NFSP in Leduc Hold’em and



6.2. Simultaneous Learning 95

compare it to DQN’s performance. We also apply NFSP to LHE, a game of real-

world scale, and visualize the neural representations (abstractions) it has learned.

6.2 Simultaneous Learning

The Batch FSP Algorithm 6 required a meta controller that coordinated FSP agents

so that that they appropriately sampled experience to approximate fictitious play.

From an artifical intelligence and multi-agent learning perspective, this is some-

what unappealing. If individual agents could autonomously learn a Nash equilib-

rium from simultaneous experience of their uncoordinated interaction, this would

provide an example of how such strategies might arise in practice. Furthermore,

there are also practical advantages to simultaneous learning. First, sampling expe-

rience simultaneously rather than alternatingly, in principle, is n times more sample

efficient, where n is the number of agents. Second, simultaneously learning agents

can be directly applied to a real-world black-box environment, such as a city’s traffic

lights system.

If we want all agents to learn simultaneously while playing against each other,

we face the following dilemma. In principle, each agent could play its average

policy, π , and learn a best response with off-policy Q-learning, i.e. evaluate and

maximise its action values, Qi(s,a)≈Eβ i,π−i
[
Gi

t
∣∣St = s,At = a

]
, of playing its best

response policy β i against its fellow agents’ average strategy profile, π−i. However,

in this case the agent would not generate any experience of its own best response

behaviour, β i, which is needed to train its average policy, π i, that approximates the

agent’s average of past best responses.

To address this problem, we propose an approximation of anticipatory dy-

namics of continuous-time dynamic fictitious play (Shamma and Arslan, 2005).

In this variant of fictitious play, players choose best responses to a short-term

prediction of their fellow agents’ (anticipated) average normal-form strategies,

Π
−i
t +η

d
dt Π

−i
t , where η ∈ R is the anticipatory parameter. The authors show

that for appropriate, game-dependent choice of η stability of fictitious play at equi-

librium points can be improved. We use Bi
k+1−Πi

k ≈
d
dk Πi

k as a discrete-time ap-



6.3. Online FSP Agent 96

proximation of the derivative that is used in the anticipatory dynamics. Note that

∆Πi
k ∝ Bi

k+1−Πi
k is indeed the normal-form update direction of common discrete-

time fictitious play.

6.3 Online FSP Agent
We introduce the Online FSP Agent, an online reinforcement learner for simul-

taneous FSP with anticipatory dynamics. Online FSP agents choose their actions

from the mixture policy σ ≡ (1−η)Π+ηB. This enables each agent to compute

an approximate best response, β i, to its fellow agents’ anticipated average strategy

profile, σ−i ≡ Π−i +η(B−i−Π−i), by iteratively evaluating and maximising their

action values, Qi(s,a) ≈ Eβ i,σ−i
[
Gi

t
∣∣St = s,At = a

]
. Additionally, as each agent’s

own best response policy is now sampled (in proportion to the anticipatory param-

eter), they can now learn their average policy from that experience. Algorithm 8

presents a general Online FSP Agent, that can be instantiated with a variety of rein-

forcement and supervised learning methods.

6.4 Neural Fictitious Self-Play
.

NFSP deploys individual deep-learning Online FSP Agents to represent the

self-playing intelligence from all players’ points of view. It implements a multi-

agent interpretation of self-play.

Deep Learning Best Responses DQN is an off-policy deep reinforcement learning

approach for MDP environments (Mnih et al., 2015). As before (see FSP Chapter

5), we can directly plug the algorithm into the FSP framework and thus utilise it to

learn approximate best responses.

DQN agents learn an ε-greedy policy by deep fitted Q-learning from replayed

experience (Mnih et al., 2015). Similarly, FSP agents can learn approximate best re-

sponses with the DQN algorithm applied to their reinforcement learning memories.

In particular, the agent trains a neural network, Q(s,a;θ Q), to predict action val-

ues from experience of play against its fellow agents’ (recent) anticipated average



6.4. Neural Fictitious Self-Play 97

Algorithm 8 Online FSP Agent
Initialize replay memories MRL (circular buffer) and MSL (reservoir)
Initialize average policy π

Initialize best-response policy β

Initialize anticipatory parameter η

for each episode do

Set policy σ ←

{
β , with probability η

π, with probability 1−η

Observe initial information state s1 and reward r1
for t = 1,T do

Sample action at from policy σ

Execute action at in environment and observe reward rt+1 and next infor-
mation state st+1

Store transition (st ,at ,rt+1,st+1) in reinforcement learning memory MRL
if following best response policy σ = β then

Store behaviour tuple (st ,at) in supervised learning memory MSL
end if
Update π with supervised learning on experience of own average be-

haviour, MSL
Update β with reinforcement learning on experience of interactions with

environment, MRL
end for

end for

strategies. This is achieved with stochastic gradient descent on the mean squared

error,

L
(

θ
Q
)
= E(s,a,r,s′)∼MRL

[(
r+max

a′
Q(s′,a′;θ

Q′)−Q(s,a;θ
Q)

)2
]
, (6.1)

where θ Q′ are the fitted network parameters, i.e. we periodically update θ Q′ ← θ Q.

The resulting network defines the agent’s approximate best response strategy,

β = ε-greedy
[
Q(· ;θ

Q)
]
, (6.2)

which selects a random action with probability ε and otherwise chooses the action

that maximises the predicted action values.

Deep Learning Average Strategies Multinomial logistic regression is a common

technique for learning from demonstrations (Argall et al., 2009). We apply this



6.5. Encoding a Poker Environment 98

method to learning average policies from the agents’ respective supervised learning

memories. These memories effectively contain demonstrations produced by the

agents’ own past best responses.

The agent’s average policy is represented by a neural network, Π(s,a;θ Π),

that maps states to a Softmax output of action probabilities. The network is trained

to imitate the agent’s own past best response behaviour by multinomial logistic

regression applied to its supervised learning memory, MSL. In particular, we use

stochastic gradient descent on the negative log-probability of past actions taken,

L (θ Π) = E(s,a)∼MSL

[
− logΠ(s,a;θ

Π)
]
. (6.3)

The agent’s average policy is defined by the network’s Softmax outputs,

π(a |s) = Π(s,a;θ
Π). (6.4)

Algorithm NFSP, presented in Algorithm 9, executes deep-learning instances of

the Online FSP Agent (Algorithm 8) for each player in the game. As these agents

interact, they learn their own average strategies and (approximate) best responses

to their fellow agents’ anticipated average strategies. Thus, NFSP is a simultaneous

self-play instance of FSP (Algorithm 5).

6.5 Encoding a Poker Environment
Observations One of our goals is to minimise reliance on prior knowledge. There-

fore, we attempt to define an objective encoding of information states in poker

games. In particular, we do not engineer any higher-level features. Poker games

usually consist of multiple rounds. At each round new cards are revealed to the

players. We represent each rounds’ cards by a k-of-n encoding. For example, LHE

has a card deck of 52 cards and on the second round three cards are revealed. Thus,

this round is encoded with a vector of length 52 and three elements set to 1 and

the rest to 0. In Limit Hold’em poker games, players usually have three actions to

choose from, namely {fold, call, raise}. Note that depending on context, calls and



6.5. Encoding a Poker Environment 99

Algorithm 9 Neural Fictitious Self-Play (NFSP) with DQN
Initialize game Γ and execute an agent via RUNAGENT for each player in the
game
function RUNAGENT(Γ)

Initialize replay memories MRL (circular buffer) and MSL (reservoir)
Initialize average-policy network Π(s,a;θ Π) with random parameters θ Π

Initialize action-value network Q(s,a;θ Q) with random parameters θ Q

Initialize target network parameters θ Q′ ← θ Q

Initialize anticipatory parameter η

for each episode do

Set policy σ ←

{
ε-greedy(Q) , with probability η

Π, with probability 1−η

Observe initial information state s1 and reward r1
for t = 1,T do

Sample action at from policy σ

Execute action at in game and observe reward rt+1 and next informa-
tion state st+1

Store transition (st ,at ,rt+1,st+1) in reinforcement learning memory
MRL

if agent follows best response policy σ = ε-greedy(Q) then
Store behaviour tuple (st ,at) in supervised learning memory MSL

end if
Update θ Π with stochastic gradient descent on loss

L (θ Π) = E(s,a)∼MSL

[
− logΠ(s,a;θ Π)

]
Update θ Q with stochastic gradient descent on loss

L
(
θ Q)= E(s,a,r,s′)∼MRL

[(
r+maxa′Q(s′,a′;θ Q′)−Q(s,a;θ Q)

)2
]

Periodically update target network parameters θ Q′ ← θ Q

end for
end for

end function



6.6. Experiments 100

raises can be referred to as checks and bets respectively. Betting is capped at a fixed

number of raises per round. Thus, we can represent the betting history as a tensor

with 4 dimensions, namely {player, round, number of raises, action taken}. E.g.

heads-up LHE contains 2 players, 4 rounds, 0 to 4 raises per round and 3 actions.

Thus we can represent a LHE betting history as a 2×4×5×3 tensor. In a heads-up

game we do not need to encode the fold action, as a two-player game always ends

if one player gives up. Thus, we can flatten the 4-dimensional tensor to a vector

of length 80. Concatenating with the card inputs of 4 rounds, we encode an infor-

mation state of LHE as a vector of length 288. Similarly, an information state of

Leduc Hold’em can be encoded as a vector of length 30, as it contains 6 cards with

3 duplicates, 2 rounds, 0 to 2 raises per round and 3 actions.

Actions Fixed-limit poker variants limit the number of players’ bets per round.

Thus, a raise is illegal once such limit is reached. Furthermore, a fold may be con-

sidered illegal if the agent does not face any prior bet, e.g. common poker software

deactivates this action for human players. We address these issues by modifying the

environment. In particular, an illegal raise or fold is automatically results in a call.

Thus, the environment is effectively offering two duplicate actions to the agent in

those cases.

Rewards We directly map players’ monetary payoffs to rewards, i.e. a loss of 1

monetary unit corresponds to a reward of−1. The agents’ betting during an episode

yield intermediate rewards. For example, if an agent bet 2 units on the flop, this

would result in an immediate reward of −2, which the agent would experience to-

gether with its observation of the next information state. Alternatively, total rewards

could be distributed only at the end of an episode.

6.6 Experiments

We evaluate NFSP and related algorithms in Leduc and Limit Texas Hold’em poker

games.



6.6. Experiments 101

6.6.1 Leduc Hold’em

We empirically investigate the convergence of NFSP to Nash equilibria in Leduc

Hold’em. We also study whether removing or altering some of NFSP’s components

breaks convergence.

First, we explored high-level architectural and parameter choices for NFSP in

preliminary experiments on Leduc Hold’em. In this initial exploration we found

rectified linear activations to perform better than alternative activation functions,

e.g. tanh or sigmoid. Furthermore, network architectures with one hidden layer of

64 neurons appeared to be a sweet spot that fabourably traded off network size and

resulting computational cost against achieved performance, i.e. low exploitability.

Second, we manually tuned the NFSP parameters in further preliminary experi-

ments on Leduc Hold’em for a fully connected neural network with 1 hidden layer

of 64 neurons and rectified linear activations. In particular, we varied single or small

subsets of parameters at a time and measured the resulting achieved exploitability.

We fixed the best calibration we could find and then repeated learning in Leduc

Hold’em for various network architectures with the same parameters. In particular,

we set the sizes of memories to 200k and 2m for MRL and MSL respectively. MRL

functioned as a circular buffer containing a recent window of experience. MSL was

updated with reservoir sampling (Vitter, 1985). The reinforcement and supervised

learning rates were set to 0.1 and 0.005, and both used vanilla SGD without mo-

mentum for stochastic optimisation of the neural networks. Each agent performed 2

stochastic gradient updates of mini-batch size 128 per network for every 128 steps

in the game. The target network of the DQN algorithm was refitted every 300 up-

dates. NFSP’s anticipatory parameter was set to η = 0.1. The ε-greedy policies’

exploration started at 0.06 and decayed to 0, proportionally to the inverse square

root of the number of iterations.

Figure 6.1 shows NFSP approaching Nash equilibria for various network archi-

tectures. We observe a monotonic performance increase with size of the networks.

NFSP achieved an exploitability of 0.06, which full-width XFP typically achieves

after around 1000 full-width iterations.



6.6. Experiments 102

0.01

0.1

1

10

1000 10000 100000 1e+06

E
x
p

lo
it

a
b

ili
ty

Iterations

8 hidden neurons
16 hidden neurons
32 hidden neurons
64 hidden neurons

128 hidden neurons

Figure 6.1: Learning performance of NFSP in Leduc Hold’em for various network sizes.

In order to investigate the relevance of various components of NFSP, e.g. reser-

voir sampling and anticipatory dynamics, we conducted an experiment that isolated

their effects. Figure 6.2 shows that these modifications led to decremental perfor-

mance. In particular, using a fixed-size sliding window to store experience of the

agents’ own behaviour led to divergence. NFSP’s performance plateaued for a high

anticipatory parameter of 0.5, that most likely violates the game-dependent stabil-

ity conditions of dynamic fictitious play (Shamma and Arslan, 2005). Finally, using

exponentially-averaged reservoir sampling for supervised learning memory updates

led to noisy performance.

6.6.2 Comparison to DQN

Several stable algorithms have previously been proposed for deep reinforcement

learning, notably the DQN algorithm (Mnih et al., 2015). However, the empirical

stability of these algorithms was only previously established in single-agent, perfect

(or near-perfect) information MDPs. Here, we investigate the stability of DQN in

multi-agent, imperfect-information games, in comparison to NFSP.

DQN learns a deterministic, greedy strategy. Such strategies are sufficient to



6.6. Experiments 103

0.01

0.1

1

10

1000 10000 100000 1e+06

E
x
p

lo
it

a
b

ili
ty

Iterations

NFSP
NFSP with exponentially-averaging SL reservoir

NFSP with anticipatory parameter of 0.5
NFSP with sliding window SL memory

Figure 6.2: Breaking learning performance in Leduc Hold’em by removing essential com-
ponents of NFSP.

behave optimally in single-agent domains, i.e. MDPs for which DQN was designed.

However, imperfect-information games generally require stochastic strategies to

achieve optimal behaviour. One might wonder if the average behaviour of DQN

converges to a Nash equilibrium. To test this, we augmented DQN with a super-

vised learning memory and train a neural network to estimate its average strategy.

Unlike NFSP, the average strategy does not affect the agent’s behaviour in any way;

it is passively observing the DQN agent to estimate its evolution over time. We

implement this variant of DQN by using NFSP with an anticipatory parameter of

η = 1. We trained DQN with all combinations of the following parameters: Learn-

ing rate {0.2,0.1,0.05}, decaying exploration starting at {0.06,0.12} and reinforce-

ment learning memory {2m reservoir,2m sliding window}. Other parameters were

fixed to the same values as NFSP; note that these parameters only affect the passive

observation process. We then chose the best-performing result and compared to

NFSP’s performance that was achieved in the previous section’s experiment. DQN

achieved its best-performing result with a learning rate of 0.2, exploration starting



6.6. Experiments 104

0.01

0.1

1

10

1000 10000 100000 1e+06

E
x
p

lo
it

a
b

ili
ty

Iterations

NFSP
DQN, average strategy
DQN, greedy strategy

Figure 6.3: Comparing performance to DQN in Leduc Hold’em.

at 0.12 and a sliding window memory of size 2m.

Figure 6.3 shows that DQN’s deterministic strategy is highly exploitable,

which is expected as imperfect-information games usually require stochastic poli-

cies. DQN’s average behaviour does not approach a Nash equilibrium either. In

principle, DQN also learns a best-response to the historical experience generated by

fellow agents. So why does it perform worse than NFSP? The problem is that DQN

agents exclusively generate self-play experience according to their ε-greedy strate-

gies. These experiences are both highly correlated over time, and highly focused on

a narrow distribution of states. In contrast, NFSP agents use an ever more slowly

changing (anticipated) average policy to generate self-play experience. Thus, their

experience varies more smoothly, resulting in a more stable data distribution, and

therefore more stable neural networks. Note that this issue is not limited to DQN;

other common reinforcement learning methods have been shown to exhibit similarly

stagnating performance in poker games, e.g. UCT (see Section 3.5.2).



6.6. Experiments 105

6.6.3 Limit Texas Hold’em

We applied NFSP to LHE, a game that is popular with humans. Since in 2008 a

computer program beat expert human LHE players for the first time in a public

competition, modern computer agents are widely considered to have achieved su-

perhuman performance (Newall, 2013). The game was essentially solved by Bowl-

ing et al. (2015). We evaluated our agents against the top 3 computer programs of

the most recent (2014) ACPC that featured LHE. Learning performance was mea-

sured in milli-big-blinds won per hand, mbb/h, i.e. one thousandth of a big blind

that players post at the beginning of a hand.

We successively tried 9 configurations of NFSP in LHE. The configurations’

parameters were chosen based on intuition and experience from the respective prior

runs in LHE as well as our experiments in Leduc Hold’em. We achieved the best

performance with the following parameters. The neural networks were fully con-

nected with four hidden layers of 1024,512,1024 and 512 neurons with rectified

linear activations. The memory sizes were set to 600k and 30m for MRL and MSL

respectively. MRL functioned as a circular buffer containing a recent window of

experience. MSL was updated with exponentially-averaged reservoir sampling (Os-

borne et al., 2014), replacing entries in MSL with minimum probability 0.25. We

used vanilla SGD without momentum for both reinforcement and supervised learn-

ing, with learning rates set to 0.1 and 0.01 respectively. Each agent performed 2

stochastic gradient updates of mini-batch size 256 per network for every 256 steps

in the game. The target network was refitted every 1000 updates. NFSP’s anticipa-

tory parameter was set to η = 0.1. The ε-greedy policies’ exploration started at 0.08

and decayed to 0, more slowly than in Leduc Hold’em. In addition to NFSP’s main,

average strategy profile we also evaluated the best response and greedy-average

strategies, which deterministically choose actions that maximise the predicted ac-

tion values or probabilities respectively.

To provide some intuition for win rates in heads-up LHE, a player that always

folds will lose 750 mbb/h, and expert human players typically achieve expected

win rates of 40-60 mbb/h at online high-stakes games. Similarly, the top half of



6.6. Experiments 106

-800

-700

-600

-500

-400

-300

-200

-100

 0

 100

 0  5x106  1x107  1.5x107  2x107  2.5x107  3x107  3.5x107

m
b

b
/h

Iterations

SmooCT
NFSP, best response strategy

NFSP, greedy-average strategy
NFSP, average strategy

Figure 6.4: Win rates of NFSP against SmooCT in Limit Texas Hold’em. The estimated
standard error of each evaluation is less than 10 mbb/h.

Match-up Win rate (mbb/h)
escabeche -52.1 ± 8.5
SmooCT -17.4 ± 9.0
Hyperborean -13.6 ± 9.2

Table 6.1: Win rates of NFSP’s greedy-average strategy against the top 3 agents of the
ACPC 2014.

computer agents in the ACPC 2014 achieved up to 50 mbb/h between themselves.

While training, we periodically evaluated NFSP’s performance against SmooCT

from symmetric play for 25000 hands each. Figure 6.4 presents the learning per-

formance of NFSP. NFSP’s average and greedy-average strategy profiles exhibit a

stable and relatively monotonic performance improvement, and achieve win rates

of around -50 and -20 mbb/h respectively. The best response strategy profile exhib-

ited more noisy performance, mostly ranging between -50 and 0 mbb/h. We also

evaluated the final greedy-average strategy against the other top 3 competitors of

the ACPC 2014. Table 6.1 presents the results. NFSP achieves winrates similar to

those of the top half of computer agents in the ACPC 2014 and thus is competitive



6.7. Visualization of a Poker-Playing Neural Network 107

with superhuman computer poker programs.

6.7 Visualization of a Poker-Playing Neural Network

To analyse the features (abstractions) that NFSP learned for LHE, we visualized the

neural networks’ last hidden layers’ activations with the t-SNE algorithm (Maaten

and Hinton, 2008). In particular, by simulating games of NFSP’s final average strat-

egy profile, we created a data set consisting of the information states, the last hidden

layers’ activations, the output action probabilities and various custom features. We

applied the t-SNE algorithm to about 100000 vectors of the networks’ activations

for both players respectively. We used the information state descriptions, action

probabilities and custom features to illustrate the embeddings.

Figures 6.5 and 6.6 present both players’ embeddings with various colourings.

We observe that the activations cluster by the game’s rounds and the players’ local

policies (action probabilities). It is interesting to see the colour gradients between

the fold and call actions as well the call and raise actions. Indeed, in many poker sit-

uations human players would gradually switch from call to fold (or raise) based on

their hand strength. The embeddings also appear to group states based on whether

the respective player has the initiative, i.e. was the last to bet or raise. This is a

common strategic feature that is taught in many books on poker strategy (Sklansky,

1999). Finally, situations with similar pot sizes are mapped to nearby locations. The

pot size is strategically important, as it determines the odds that players get on their

bets and thus their optimal action frequencies.

Figure 6.7 presents a selection of game situations from the first player’s em-

bedding. Group A shows clusters of pocket pairs that the network tends to raise

preflop against a call. Group B presents pairs that player 1 check/called on the flop

and turn after defending his big blind preflop (call against a raise). In this situation

the player is now facing a final bet on the river (last round). The colouring suggests

that the network gradually moves from a call to a fold based on the quality of the

pair (middle pair to bottom pair). Group C shows pairs that player 1 holds facing a

bet on the flop after defending his big blind preflop. This is one of the most com-



6.7. Visualization of a Poker-Playing Neural Network 108

mon situations in heads-up LHE. Indeed, these situations’ embedding appears to

form a prominent ridged structure. The colouring suggests that the network gradu-

ally switches from a call to a raise, based on the quality of the pair (bottom to top

pair). Group D presents straight draws on the turn, i.e. four cards to a straight that

are worthless unless a matching fifth card completes the hand on the river. Group E

presents straight draws that player 1 has bet with as a bluff on the turn and is now

facing a decision on the river after his draw did not complete to a straight. Both

groups, D and E, suggest that the network has learned features that encode straight

draws. Furthermore, the mapping of these bluffs to similar features may enable the

agent to identify situations in which it was bluffing.

Figure 6.8 presents a selection of game situations from the second player’s em-

bedding. Group A shows high cards1 that face a bet on the river after the turn was

checked by both players. This is a common situation where the player has to decide

whether their relatively weak holding might be sufficient to win the pot. Indeed, the

colouring suggests that the network gradually moves from a fold to a call based on

the quality of the high cards. Group B presents high cards that face a check/raise

after having placed a bet on the flop. Again we see a gradual switch from fold to call

based on the quality of the high cards. The examples indicate that the network would

fold weak high-card holdings that have little hope for improvement. Furthermore, it

would continue with high-card holdings that can beat a bluff and have some chance

for improvement. Group C presents a variety of diamond and spade flushes2, sug-

gesting that the network has learned features that encode flushes. Group D presents

a variety of straight draws that face a bet on the flop, providing further evidence for

the network having learned features that encode this category of holdings. Group E

shows a variety of bluffs that have either bet (first four examples) or raised the turn

(last four examples). In these situations the network faces a check on the river and

has to decide whether to follow through with its bluff. Mapping these situations to

similar feature vectors may enable the agent to learn decisions on following through

with bluffs on the river. When to follow through with a bluff is a common question

1Cards that have not formed a pair or better.
2Five cards of the same suit.



6.8. Conclusion 109

amongst amateur as well as expert players in the poker community.

The illustrations and discussion suggest that the network learned to represent

a variety of specific domain knowledge (card rankings such as pairs, straights and

flushes), strategic concepts (bluffs, check/raises, playing strong hands aggressively

and weak hands passively) and even heuristic features that human experts use, e.g.

initiative.

6.8 Conclusion
We have introduced NFSP, an end-to-end deep reinforcement learning approach to

learning approximate Nash equilibria of imperfect-information games from self-

play. Unlike previous game-theoretic methods, NFSP learns solely from game

outcomes without prior domain knowledge. Unlike previous deep reinforcement

learning methods, NFSP is capable of learning (approximate) Nash equilibria in

imperfect-information games. Our experiments have shown NFSP to converge reli-

ably to approximate Nash equilibria in a small poker game, whereas DQN’s greedy

and average strategies did not. In LHE, a poker game of real-world scale, NFSP

learnt a strategy that approached the performance of state-of-the-art, superhuman

algorithms based on significant domain expertise. To our knowledge, this is the

first time that any reinforcement learning algorithm, learning solely from game out-

comes without prior knowledge, has demonstrated such a result. Furthermore, the

visualization of the learned neural networks has empirically demonstrated NFSP’s

capability to learn richly featured abstractions end to end.



6.8. Conclusion 110

Figure 6.5: t-SNE embeddings of the first player’s last hidden layer activations. The em-
beddings are coloured by A) action probabilities; B) round of the game; C)
initiative feature; D) pot size in big bets (logarithmic scale).



6.8. Conclusion 111

Figure 6.6: t-SNE embeddings of the second player’s last hidden layer activations. The
embeddings are coloured by A) action probabilities; B) round of the game; C)
initiative feature; D) pot size in big bets (logarithmic scale).



6.8. Conclusion 112

Figure 6.7: A) pairs preflop vs call; B) pairs check/calling down from flop after big-blind
defense (rc/crc/crc/cr); C) pairs on flop facing continuation bet after big-blind
defense (rc/cr); D) straight draws facing a bet on the turn; E) uncompleted
straight draws on the river after having bluff-bet the turn.



6.8. Conclusion 113

Figure 6.8: A) high cards vs river bet after check through turn; B) high cards facing
check/raise on flop after continuation bet (rc/crr); C) flushes facing a check;
D) straight draws facing a bet on the flop; E) facing check on river after having
bluff-raised (first four) or bluff-bet (last four) the turn.



Chapter 7

Conclusion

We set out to address the question,

Can an agent feasibly learn approximate Nash equilibria of large-scale

imperfect-information games from self-play?

In this chapter, we discuss our contributions towards answering this question. We

also present an outlook on the future of self-play.

7.1 Contributions
We first critically review our contributions and then contextualize them.

7.1.1 Review

Smooth UCT (Chapter 3) introduced the notion of fictitious play into UCT, a pop-

ular Monte Carlo Tree Search (MCTS) algorithm. Our work on Smooth UCT can

be regarded as a proof of concept. It empirically demonstrated that the combi-

nation of fictitious play with reinforcement leaning can indeed learn high-quality

approximate Nash equilibria in sequential, imperfect-information games. While the

algorithm was practically successful in the 2014 Annual Computer Poker Compe-

tition (ACPC), our subsequent work on Extensive-Form Fictitious Play (XFP) and

Fictitious Self-Play (FSP) has revealed that it might not have a sound theoretical

foundation. In principle, this flaw could be fixed by modifying Smooth UCT to an

FSP algorithm1.
1This could be achieved with alternating self-play and a forgetting variant of UCT, e.g. similar

to sliding-window or discounted UCB (Garivier and Moulines, 2008)



7.1. Contributions 115

XFP (Chapter 4) extends fictitious play to sequential games. In particular, it

achieves the same convergence guarantees as its single-step (normal-form) coun-

terpart. Moreover, it represents agents’ policies in a sequential (extensive) form.

Thus, XFP is useful as a blueprint for designing sequential decision making algo-

rithms, e.g. reinforcement learning, that converge in self-play.

FSP (Chapter 5) extends XFP to learning from sampled experience, which is es-

sential to take on large-scale domains that are not exhaustively enumerable. In

order to generalise to unseen, i.e. non-sampled, situations, FSP proposes the use

of machine learning. In particular, FSP replaces the two full-width computations

of XFP, i.e. best response computation and policy averaging, with reinforcement

and supervised learning respectively. Furthermore, classical reinforcement and su-

pervised learning techniques, which are designed for stationary environments, can

be utilised. While we empirically investigated FSP’s approximation errors and con-

vergence, we did not prove theoretical guarantees for its convergence with a finite

computational budget per iteration.

NFSP (Chapter 6) instantiates FSP with neural-network function approximation

and deep learning techniques. In Limit Texas Hold’em, a large-scale poker game,

Neural Fictitious Self-Play (NFSP) approached the performance of state-of-the-art,

superhuman algorithms based on significant domain expertise. To our knowledge,

this is the first time that any reinforcement learning agent, learning solely from its

own experience without prior domain knowledge, has demonstrated such a result in

a large-scale game of imperfect information.

7.1.2 Contexts

Perfect to Imperfect Information TD-Gammon (Tesauro, 1995) and AlphaGo

(Silver et al., 2016a) achieved superhuman performance in perfect-information

games by reinforcement learning from self-play. NFSP achieved a similar result

in a real-world-scale imperfect-information game. This is a step towards other real-

world applications, which typically involve imperfect information.

Handcrafted to Learned Abstractions Many game-theoretic approaches for com-

puting Nash equilibria typically solve handcrafted abstractions of the game (Johan-



7.2. Future of Self-Play 116

son et al., 2013), i.e. approximate it first. In contrast, NFSP agents experientally

learn approximate Nash equilibria and an (implicit) abstraction end to end, i.e. from

the raw inputs of the environment. A visualization of the agents’ neural networks

(abstractions) revealed that they encoded complex strategic features akin to those a

domain expert might choose to craft by hand (see Section 6.7).

Experiential Learning from a Black Box With the exception of Outcome Sam-

pling (OS) (Lanctot et al., 2009), many game-theoretic methods for computing Nash

equilibria require explicit knowledge of the game’s dynamics. In contrast, FSP and

NFSP are experiential reinforcement learning approaches that can be applied to a

black box of the game, e.g. learn real-time in a traffic lights system from raw camera

inputs.

Realisation of Nash Equilibria Game theory has raised the question of how and

whether Nash equilibria are realised in practice (Harsanyi, 1973; Selten, 1975; Fu-

denberg and Levine, 1995). Leslie and Collins (2006) provided an example of how

agents interacting in a single-step game might converge on a Nash equilibrium.

NFSP provides a similar example for sequential games. The learning process can

be interpreted as habituation to a routine policy, which averages policies that were

deemed optimal in the past. Such process is reminiscent of an actor-critic architec-

ture (Barto et al., 1983).

7.2 Future of Self-Play
Local Planning Learning in a model of a subgame2, in the hope of transferring a

policy to the real environment, is known as local planning. By refining an agent’s

policy from self-play in the currently encountered subgame, local planning has been

incredibly successful in perfect-information games, e.g. Chess (Campbell et al.,

2002) or Go (Gelly et al., 2012; Silver et al., 2016a). In imperfect-information

games, however, strictly local3 planning does not generally recover a global Nash

equilibrium (Burch et al., 2014; Ganzfried and Sandholm, 2015; Lisý et al., 2015).

The consequences of this issue and how they could be overcome, e.g. global search

2A subgame encompasses a subset of locally relevant game situations.
3Sampling from the planning agents beliefs about the state of the game.



7.2. Future of Self-Play 117

targeting (Lisý et al., 2015), present a promising avenue of research.

Moravčı́k et al. (2017) have recently4 presented DeepStack, an approach to lo-

cal planning based on decomposition of imperfect-information games (Burch et al.,

2014). They utilise deep learning from approximate, game-theoretic solutions of the

game in order to innovatively bootstrap depth-limited, local planning in imperfect-

information games. A key aspect of this approach is to compactly summarize a

global Nash equilibrium with a set of counterfactual values and probabilities of re-

alising information states (Burch et al., 2014; Moravčı́k et al., 2017). This compact

summary of a Nash equilibrium, however, may be hard to come by as it requires

prior approximate solutions of the game. Furthermore, unlike in perfect-information

games, local planning in imperfect-information games may not recover from an in-

accurate compact summary of the Nash equilibrium.

We may want to investigate the following questions. As DeepStack relies on

a quality summary of the global Nash equilibrium, are there alternative approaches

to (semi-)local planning that do not have such requirements? For example, if there

was a mutually-observed state in the sequence of play should we rather plan from

that prior state, not requiring any compact summary of a Nash equilbrium? Do

such mutually-observed states commonly occur in real-world imperfect-information

games? Examples may include entering a new room with different people, tempo-

rary occlusions or synchronizing information through communication. Finally, how

should we plan locally in general-sum multi-player games, e.g. by using player

beliefs (Cowling et al., 2015) or equilibrium selection (Nash and Shapley, 1950;

Szafron et al., 2013)? In particular, are there any performance guarantees of multi-

player Nash equilibria that would justify a need for local planning that is able to

recover global Nash equilibria?

Temporal Abstraction In principle, an environment defines an agent’s primitive ac-

tions at the finest granularity, e.g. muscle controls. A great many such actions might

be required to perform a higher-level action such as taking a three-point shot (rather

than passing) in basketball. Arguably, strategic decision making (in the multi-agent

4This work was published after the defence of this thesis.



7.2. Future of Self-Play 118

sense) is mainly important at such higher levels of decisions. This is because primi-

tive or lower-level actions might have negligible reciprocal effects on fellow agents.

Therefore, temporal abstraction, e.g. hierarchical reinforcement learning (Dayan

and Hinton, 1993; Sutton et al., 1999b; Dietterich, 2000; Barto and Mahadevan,

2003), may be of particular importance to strategic decision making.

We may want to investigate the following questions. We may see full-game

strategies as the most temporally extended courses of action, i.e. options. Con-

sequently, a normal-form game would be a temporal abstraction. Can an agent

learn such a normal-form, temporal abstraction from experience in an extensive-

form game? In particular, how does it decide which learned strategies to put in the

abstract normal-form action set? For example, fictitious play could be considered

adding all past best responses. Is there a small set of distinctive strategies (options)

that would enable effective strategic reasoning, i.e. a kind of basis for the strategic

space of the game (Bosansky et al., 2014)? Does learning finer-grained temporal

abstractions in an extensive-form game pose the same challenges as temporal ab-

straction in sequential single-agent domains (McGovern and Barto, 2001; Mannor

et al., 2004; Konidaris et al., 2010; Castro and Precup, 2011)? In particular, are

there any challenges that are specific to multi-agent strategic decision making? For

example, could mutually-observed states not only serve as natural roots for local

planning (see above) but also define strategic termination conditions of options?

Game Models To learn from self-play, an agent requires a model of a multi-agent

environment. Learning multi-agent models poses distinctive challenges. In con-

trast to learning a model of a single-agent environment (Sutton, 1990; Lin, 1992;

Silver et al., 2016b), a multi-agent model would have to identify fellow agents,

i.e. assumed intelligences. Furthermore, such a model includes not only possible

information states and actions of fellow agents but also beliefs about their subjec-

tive reward signals. Learning Nash equilibria in such models touches on questions

of bounded rationality (Simon, 1972; Selten, 1990), e.g. a fellow agent might be

irrational or just optimising an unconventional reward signal.

A learned multi-agent model could also include likely or definite behaviours



7.2. Future of Self-Play 119

that fellow agents are assumed to exhibit (Johanson et al., 2008). Thus, there is

a continuum from the static, self-play approach (Sections 1.1.2 and 1.1.3) to the

adaptive approach (Section 1.1.1) in strategic decision making. At one extreme,

only the choices of fellow agents are modelled, without any assumptions on their

likelihood. At the other extreme, a completely defined model of fellow agents’

policies is learned. The latter model is a Markov decision process that can be solved

with typical (single-agent) reinforcement learning methods. The other models in the

continuum, which leave some choices of fellow agents undetermined, define games

that require an agent to learn from self-play.

We may want to investigate the following questions. Given that all learning

from self-play is model-based, what motivates an agent to learn and solve such a

subjective model in the first place? In particular, should a general reinforcement

learner (Hutter, 2005; Legg, 2008) ever play a Nash equilibrium, i.e. a solution to

a multi-agent model? In the case of the agent lacking a model of fellow agents’

behaviour, couldn’t self-play substitute for such a model by learning reasonable

behaviours from the fellow agents’ points of view? For example, humans may use

a theory of mind (Premack and Woodruff, 1978; Yoshida et al., 2008) to plan in

games. How can we enable an artifical agent to learn such a multi-agent model

from experience?



Appendix A

Analysis of Self-Play Policy Iteration

Rational learning from self-play can only converge on Nash equilibria (Bowling

and Veloso, 2001). This chapter presents analyses which suggest that Generalised

Policy Iteration (GPI), a fundamental principle of many reinforcement learning al-

gorithms (Sutton and Barto, 1998), might be unsuitable for convergent learning of

Nash equilibria from self-play in games that are not perfect-information two-player

zero-sum.

A.1 Nash Equilibria of Imperfect-Information Games
We analyse the value functions of a Nash equilibrium and conclude that rational

policy improvement may not be able to represent the equilibrium. Following the

definition of a Nash equilibrium (Nash, 1951), we know that all actions in the sup-

port of the equlibrium have the same (maximum) value.

Theorem A.1.1. Let π be a Nash equilibrium of an extensive-form game, i ∈N

any agent of the game and ui ∈ U i any of its information states that has positive

probability of being reached under the equilibrium, π . Furthermore, let A (ui) ⊆

A (ui) be the agents’s actions in the support of its equilibrium strategy, π i, at ui.

Then, its action-value function satisfies

Qπ(ui,a) = Qπ(ui,a′) for all a,a′ ∈A (ui),

Qπ(ui,a)≥ Qπ(ui,a′) for all a ∈A (ui),a′ ∈A (ui)



A.1. Nash Equilibria of Imperfect-Information Games 121

Proof. If one of the properties was not satisfied, then there would be an action

a∈A (ui) with π i(a |ui)> 0 such that Qπ(ui,a)< argmaxa′∈A (ui)Qπ(ui,a′), which

violates the assumption that π is a Nash equilibrium, as the agent would be able to

improve its return.

Consider a policy iteration algorithm that has evaluated the Nash equilibrium

strategy, i.e. computed its value function. Consider policy improvement being per-

formed via a mapping from action-value functions to policies.

Definition A.1.2. A monotonic policy mapping from the action-value function, Q,

to a policy, πQ, satisfies for any information state u

πQ(a |u)> πQ(a′ |u) if Q(u,a)> Q(u,a′),

πQ(a |u) = πQ(a′ |u) if Q(u,a) = Q(u,a′)

It is hard to justify a non-monotonic stochastic policy mapping for a Gener-

alised Policy Iteration (GPI)-based agent from knowledge of the (current) evalu-

ated action-value function alone. Why would it ever prefer actions with lower val-

ues, and why should it choose a non-uniform distribution over same-value actions

(unless it uses a deterministic policy for convenience)? However, Nash equilibria

of imperfect-information games generally require stochastic strategies with non-

uniform distributions, e.g. the equilibrium of Kuhn poker (Kuhn, 1950) balances

players betting frequencies in proportion to the pot size. Thus, both a deterministic

(greedy) as well as a monotonic policy mapping would break a perfectly-evaluated

Nash equilibrium strategy.

We also considered policy gradient methods (Sutton et al., 1999a), which are

an instance of GPI. Each agent’s policy gradient would be zero for a Nash equilib-

rium strategy profile. However, at any information state the action-value function

would be flat across all dimensions of actions in the support of the equilibrium.

There is no curvature that attracts a gradient descent method to the Nash equilib-

rium point. Therefore, an agent learning with a stochastic policy gradient method

(Sutton et al., 1999a) against a fixed Nash equilibrium would not be expected to



A.2. Policy Iteration in Perfect-Information Games 122

recover a Nash strategy. If all agents learned simultaneously, they might push each

other back towards the equilibrium by penalising deviations. Bowling and Veloso

(2001) demonstrated that this can indeed be achieved if agents dynamically adapt

their learning rates.

A.2 Policy Iteration in Perfect-Information Games
Having discussed the potential unsuitability of policy iteration for self-play learn-

ing in imperfect-information games, we investigate its applicability to games with

perfect information.

A general finite perfect-information game with any number of players can, in

principle, be solved by dynamic programming from the leaves of the game, e.g.

exhaustive Minimax search. It requires only a single exhaustive traversal of the

game tree to compute a Nash equilibrium strategy.

However, consider an iterative learning process based on the same dynamic

programming principles, e.g. GPI. Figure A.1 shows a simple two-player general-

sum game. Consider a policy iteration process that alternates policy evaluation

and greedy policy improvement. If two actions have the same value, then the

greedy action is chosen uniform randomly. Since player two is indifferent between

all of his actions he will randomly choose one of his 4 deterministic strategies,

{Ll,Lr,Rl,Rr}, at each iteration. We make the following observations.

• The iterative policy iteration process never converges as player 1 is forced to

switch his optimal policy infinitely often due to player 2’s infinite (random)

switches.

• The average policies converge but not to a Nash equilibrium. The average

policy of player 2 converges to a uniform random distribution over his actions

at each state. Observe that at each iteration player 2 plays one of his 4 policies

with equal probability. Hence, player 1 will respond with one of four best

responses to player 1’s policies. The average policy of player 1 thus converges

to P(L) = 3
8 , P(R) = 5

8 . This is not a best response to the average strategy of

player 2. Therefore, the converged average strategies do not form a Nash



A.2. Policy Iteration in Perfect-Information Games 123

equlibrium.

• Now consider a policy iteration process where players evaluate their policies

against the opponent’s average strategy, i.e. as in fictitious play. In this case, it

is easy to see that player 1 will converge to the pure strategy R, a best response

to player 2’s average strategy. Any strategy of player 2 is a best response as

all yield reward 0. This process thus converges to a Nash equilibrium in this

game.

Figure A.1: A small two-player general-sum game.

We can trivially extend the presented two-player game to a zero-sum three

player game, by adding a third player that has only one action which always leads

to the initial state of the original game. Finally, at each terminal node, add a reward

for player 3 that is the negative of player 1’s reward. The previous arguments also

apply to this three-player zero-sum game.

Note that in a two-player zero-sum game, if a player is indifferent between ac-

tions at a subsequent node, then his opponent would also be indifferent between the

player’s choice as he would get the same value due to the zero-sum property. Thus,

the players’ values that are backed up by dynamic programming are the same for

any distribution over the players’ same-value actions. Therefore, in finite perfect-

information zero-sum extensive-form games (iterative) deterministic policy itera-

tion converges to a Nash equilibrium after finitely many steps.



Appendix B

Geometric Fictitious Play

According to the common interpretation of fictitious play, players choose (and play)

a best response to their fellow players’ empirical, average behaviour. We propose

an alternative interpretation. Fictitious players have a routine (average) strategy, πk,

that they choose at each iteration. They update their routine strategy by introduc-

ing innovative behaviour, ∆Πk ∈ αk (BR(Πk−1)−Πk), with respect to their fellow

players’ current strategy profile, πk. In particular, innovation slows down over time

as αk decays and the routine strategies, πk, become more sophisticated. This inter-

pretation produces an equivalent sequence of average, routine strategies and thus

follows common fictitious play.

In XFP, players would introduce their (innovative) best response strategy at the

root of the game in proportion to a diminishing fraction (stepsize). This is because

the standard fictitious play update is realization equivalent to a mixed strategy that

samples the previous average strategy and the innovative best response in proportion

to the stepsize. Here, we consider a more aggressive update that introduces local,

sequential best responses at each information state. In particular, we define the local

policy operator,

L
[
β ,π,s′

]
(a |s) =

β (a |s) for σs′ ⊆ σs

π(a |s) otherwise
, (B.1)

that maps two strategies of a player, β i and π i, and one of their information states, si,



125

to a strategy that plays β i at all information states in the (local) subtree rooted at si

and π i otherwise. Any strategy in
{

L[β ,π i,si] : β ∈ BRi(π i)
}

is a local, sequential

best response of player i from si with routine strategy π i to their fellow players’

strategy profile π−i. For a best response Bi ∈BR
(
Π−i), consider the geometrically-

weighted update,

(1−α)D+1
Π

i +α

D

∑
d=0

(1−α)d
∑

s∈S i
d

xΠi(σs)L
[
Bi,Πi,s

]
, (B.2)

where D is the maximum depth of player i’s information-state tree and S i
d are

their information states at depth d of the tree. Note that, ∑s∈S i
d

xΠi(σs) = 1 and

α ∑
D
d=0(1−α)d = 1− (1−α)D+1. Geometric Fictitious Play (GFP) is a fictitious

play algorithm that uses this geometrically-weighted update.

While this looks like a busy update, it has a simple interpretation and also an

efficient recursive expression for behavioural strategies. The update is equivalent

to beginning the game with routine strategy, π i, and at each step in the game, in-

cluding at the root, choosing to switch to the best response for the remainder of the

game with probability α . Accordingly, for an information state s at depth d, the

realization-equivalent behavioural update is

π(s) ∝ (1−α)d+1xπ(σs)π(s)+α

d

∑
j=0

(1−α) jxπ (σs[: j])xβ (σs[ j :])︸ ︷︷ ︸
α[σs]

β (s), (B.3)

where σs[: j] is the partial sequence of the first j actions in σs and σs[ j :] = σs \σs[:

j]. Futhermore, the local stepsize, α[σs], can be recursively determined,

α[σsa] = α[σ ]β (a |s)+α(1−α)|σs|+1xπ(σsa), (B.4)



126

with α[ /0] = α . Finally, we have

π(s) ∝ (1−α)dxπ(σs) [(1−α)π(s)+αβ (s)]+α[σs[: d−1]]β (s)

∝ (1−α)π(s)+αβ (s)+ c︸︷︷︸
≥0

β (s) for xπ(σs) 6= 0. (B.5)

Thus, Geometric Fictitious Play (GFP)’s local stepsize at each information state is

at least α , wheras XFP’s,
αxβ (σs)

(1−α)xπ (σs)+αxβ (σs)
, is strictly smaller than GFP’s and can

be as small as zero.

Why would we want to apply such an update? The standard XFP update is very

sparse, e.g. for a deterministic best response it updates the policy along only a sin-

gle trajectory in a player’s information state tree. For a stochastic best response, its

realization weight is thinly spread across the tree. GFP, on the other hand, achieves

a minimum update of at least stepsize α at each information state (see Equation

B.5). Furthermore, in addition to XFP’s (global, normal-form) probability of α of

playing the best response, GFP plays additional local best responses with probabil-

ity α(1−α)d from each level d of the tree (see Equation B.2). These local best

responses are distributed across each level in proportion to the routine strategy’s

realization probabilities, thus carrying the updates to the potentially most relevant

states. The result is that the GFP update’s probability of playing the routine strategy

by step d of the game decays exponentially, (1−α)d . In particular, it still plays the

best response with only probability α at the root of the game. Intuitively, we might

be able to get away with these more aggressive updates deeper into the tree, because

these updates have less repercussions for the player’s own subsequent information

states and also their fellow players’ belief states. In our experiments in Section 4.5.2

GFP outperformed XFP in Leduc Hold’em.



Bibliography

Argall, B. D., Chernova, S., Veloso, M., and Browning, B. (2009). A survey of robot

learning from demonstration. Robotics and autonomous systems, 57(5):469–483.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the mul-

tiarmed bandit problem. Machine learning, 47(2-3):235–256.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. (1995). Gambling in a

rigged casino: The adversarial multi-armed bandit problem. In Foundations of

Computer Science, 1995. Proceedings., 36th Annual Symposium on, pages 322–

331. IEEE.

Auger, D. (2011). Multiple tree for partially observable Monte-Carlo tree search.

In Applications of Evolutionary Computation, pages 53–62. Springer.

Baird, L. et al. (1995). Residual algorithms: Reinforcement learning with func-

tion approximation. In Proceedings of the twelfth international conference on

machine learning, pages 30–37.

Barto, A. G. and Mahadevan, S. (2003). Recent advances in hierarchical reinforce-

ment learning. Discrete Event Dynamic Systems, 13(4):341–379.

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive

elements that can solve difficult learning control problems. IEEE transactions on

systems, man, and cybernetics, (5):834–846.

Bellman, R. (1957). Dynamic Programming. Princeton University Press, Princeton,

NJ, USA.



BIBLIOGRAPHY 128

Benaı̈m, M., Hofbauer, J., and Sorin, S. (2005). Stochastic approximations and

differential inclusions. SIAM Journal on Control and Optimization, 44(1):328–

348.

Bengio, Y. (2009). Learning deep architectures for ai. Foundations and trends® in

Machine Learning, 2(1):1–127.

Billings, D., Burch, N., Davidson, A., Holte, R., Schaeffer, J., Schauenberg, T.,

and Szafron, D. (2003). Approximating game-theoretic optimal strategies for

full-scale poker. In Proceedings of the 18th International Joint Conference on

Artifical Intelligence, pages 661–668.

Billings, D., Davidson, A., Schaeffer, J., and Szafron, D. (2002). The challenge of

poker. Artificial Intelligence, 134(1):201–240.

Bosansky, B., Kiekintveld, C., Lisy, V., and Pechoucek, M. (2014). An exact

double-oracle algorithm for zero-sum extensive-form games with imperfect in-

formation. Journal of Artificial Intelligence Research, pages 829–866.

Bowling, M., Burch, N., Johanson, M., and Tammelin, O. (2015). Heads-up limit

holdem poker is solved. Science, 347(6218):145–149.

Bowling, M. and Veloso, M. (2001). Rational and convergent learning in stochastic

games. In Proceedings of the 17th International Joint Conference on Artifical

Intelligence, volume 17, pages 1021–1026.

Brown, G. W. (1951). Iterative solution of games by fictitious play. Activity analysis

of production and allocation.

Brown, N., Ganzfried, S., and Sandholm, T. (2015). Hierarchical abstraction,

distributed equilibrium computation, and post-processing, with application to a

champion no-limit texas hold’em agent. In Proceedings of the 2015 Interna-

tional Conference on Autonomous Agents and Multiagent Systems, pages 7–15.

International Foundation for Autonomous Agents and Multiagent Systems.



BIBLIOGRAPHY 129

Brown, N. and Sandholm, T. W. (2015). Simultaneous abstraction and equilibrium

finding in games. AAAI.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfsha-

gen, P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S. (2012). A survey

of Monte Carlo tree search methods. IEEE Transactions on Computational Intel-

ligence and AI in Games, 4(1):1–43.

Burch, N., Johanson, M., and Bowling, M. (2014). Solving imperfect information

games using decomposition. In 28th AAAI Conference on Artificial Intelligence.

Campbell, M., Hoane, A. J., and Hsu, F.-h. (2002). Deep blue. Artificial intelli-

gence, 134(1):57–83.

Castro, P. S. and Precup, D. (2011). Automatic construction of temporally extended

actions for mdps using bisimulation metrics. In European Workshop on Rein-

forcement Learning, pages 140–152. Springer.

Coulom, R. (2006). Efficient selectivity and backup operators in Monte-Carlo tree

search. In 5th International Conference on Computer and Games.

Cowling, P. I., Powley, E. J., and Whitehouse, D. (2012). Information set Monte

Carlo tree search. IEEE Transactions on Computational Intelligence and AI in

Games, 4(2):120–143.

Cowling, P. I., Whitehouse, D., and Powley, E. J. (2015). Emergent bluffing and

inference with monte carlo tree search. In Computational Intelligence and Games

(CIG), 2015 IEEE Conference on, pages 114–121. IEEE.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.

Mathematics of control, signals and systems, 2(4):303–314.

Dayan, P. and Hinton, G. E. (1993). Feudal reinforcement learning. In Advances

in neural information processing systems, pages 271–271. Morgan Kaufmann

Publishers.



BIBLIOGRAPHY 130

Dietterich, T. G. (2000). Hierarchical reinforcement learning with the maxq value

function decomposition. J. Artif. Intell. Res.(JAIR), 13:227–303.

Ernst, D., Geurts, P., and Wehenkel, L. (2005). Tree-based batch mode reinforce-

ment learning. In Journal of Machine Learning Research, pages 503–556.

Frank, I. and Basin, D. (1998). Search in games with incomplete information: A

case study using bridge card play. Artificial Intelligence, 100(1-2):87–123.

Fudenberg, D. (1998). The theory of learning in games, volume 2. MIT press.

Fudenberg, D. and Levine, D. K. (1995). Consistency and cautious fictitious play.

Journal of Economic Dynamics and Control, 19(5):1065–1089.

Ganzfried, S. and Sandholm, T. (2009). Computing equilibria in multiplayer

stochastic games of imperfect information. In Proceedings of the 21st Inter-

national Joint Conference on Artifical Intelligence, pages 140–146.

Ganzfried, S. and Sandholm, T. (2015). Endgame solving in large imperfect-

information games. In Proceedings of the 14th International Conference on Au-

tonomous Agents and Multi-Agent Systems.

Garivier, A. and Moulines, E. (2008). On upper-confidence bound policies for non-

stationary bandit problems. arXiv preprint arXiv:0805.3415.

Gelly, S., Kocsis, L., Schoenauer, M., Sebag, M., Silver, D., Szepesvári, C., and

Teytaud, O. (2012). The grand challenge of computer go: Monte Carlo tree

search and extensions. Communications of the ACM.

Gilpin, A., Hoda, S., Pena, J., and Sandholm, T. (2007). Gradient-based algorithms

for finding Nash equilibria in extensive form games. In Internet and Network

Economics, pages 57–69. Springer.

Gilpin, A. and Sandholm, T. (2006). A competitive texas hold’em poker player via

automated abstraction and real-time equilibrium computation. In Proceedings of

the National Conference on Artificial Intelligence, volume 21, page 1007.



BIBLIOGRAPHY 131

Gordon, G. J. (2001). Reinforcement learning with function approximation con-

verges to a region. In Advances in Neural Information Processing Systems. Cite-

seer.

Greenwald, A., Li, J., Sodomka, E., and Littman, M. (2013). Solving for best re-

sponses in extensive-form games using reinforcement learning methods. The 1st

Multidisciplinary Conference on Reinforcement Learning and Decision Making

(RLDM).

Harsanyi, J. C. (1973). Games with randomly disturbed payoffs: A new rationale

for mixed-strategy equilibrium points. International Journal of Game Theory,

2(1):1–23.

Heess, N., Silver, D., and Teh, Y. W. (2012). Actor-critic reinforcement learning

with energy-based policies. In EWRL, pages 43–58.

Heinrich, J. and Silver, D. (2014). Self-play Monte-Carlo tree search in computer

poker. In Workshops at the Twenty-Eighth AAAI Conference on Artificial Intelli-

gence.

Hendon, E., Jacobsen, H. J., and Sloth, B. (1996). Fictitious play in extensive form

games. Games and Economic Behavior, 15(2):177–202.

Hoda, S., Gilpin, A., Pena, J., and Sandholm, T. (2010). Smoothing techniques

for computing Nash equilibria of sequential games. Mathematics of Operations

Research, 35(2):494–512.

Hoehn, B., Southey, F., Holte, R. C., and Bulitko, V. (2005). Effective short-term

opponent exploitation in simplified poker. In AAAI, volume 5, pages 783–788.

Hofbauer, J. and Sandholm, W. H. (2002). On the global convergence of stochastic

fictitious play. Econometrica, 70(6):2265–2294.

Hula, A., Montague, P. R., and Dayan, P. (2015). Monte carlo planning method

estimates planning horizons during interactive social exchange. PLoS Comput

Biol, 11(6):e1004254.



BIBLIOGRAPHY 132

Hutter, M. (2005). Universal Artificial Intelligence: Sequential Decisions based on

Algorithmic Probability. Springer, Berlin.

Johanson, M., Bard, N., Burch, N., and Bowling, M. (2012). Finding optimal ab-

stract strategies in extensive-form games. In 26th AAAI Conference on Artificial

Intelligence.

Johanson, M., Burch, N., Valenzano, R., and Bowling, M. (2013). Evaluating state-

space abstractions in extensive-form games. In Proceedings of the 12th Interna-

tional Conference on Autonomous Agents and Multi-Agent Systems, pages 271–

278.

Johanson, M., Waugh, K., Bowling, M., and Zinkevich, M. (2011). Accelerating

best response calculation in large extensive games. In Proceedings of the 22nd

international joint conference on Artificial intelligence, volume 11, pages 258–

265.

Johanson, M., Zinkevich, M., and Bowling, M. (2008). Computing robust counter-

strategies. In Advances in neural information processing systems, pages 721–728.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and acting

in partially observable stochastic domains. Artificial intelligence, 101(1):99–134.

Karlin, S. (1959). Mathematical methods and theory in games, programming and

economics. Addison-Wesley.

Kocsis, L. and Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In

Machine Learning: ECML 2006, pages 282–293. Springer.

Koller, D., Megiddo, N., and Von Stengel, B. (1994). Fast algorithms for finding

randomized strategies in game trees. In Proceedings of the 26th ACM Symposium

on Theory of Computing, pages 750–759. ACM.

Koller, D., Megiddo, N., and Von Stengel, B. (1996). Efficient computation of

equilibria for extensive two-person games. Games and Economic Behavior,

14(2):247–259.



BIBLIOGRAPHY 133

Konidaris, G., Kuindersma, S., Grupen, R., and Barto, A. G. (2010). Constructing

skill trees for reinforcement learning agents from demonstration trajectories. In

Advances in neural information processing systems, pages 1162–1170.

Kroer, C. and Sandholm, T. (2014). Extensive-form game abstraction with bounds.

In Proceedings of the fifteenth ACM conference on Economics and computation,

pages 621–638. ACM.

Kuhn, H. W. (1950). Simplified two-person poker. Contributions to the Theory of

Games, 1:97–103.

Kuhn, H. W. (1953). Extensive games and the problem of information. Contribu-

tions to the Theory of Games, 2(28):193–216.

Lai, T. L. and Robbins, H. (1985). Asymptotically efficient adaptive allocation

rules. Advances in applied mathematics, 6(1):4–22.

Lambert III, T. J., Epelman, M. A., and Smith, R. L. (2005). A fictitious play

approach to large-scale optimization. Operations Research, 53(3):477–489.

Lanctot, M. (2013). Monte Carlo sampling and regret minimization for equilibrium

computation and decision-making in large extensive form games. Ph.D. thesis,

University of Alberta.

Lanctot, M., Waugh, K., Zinkevich, M., and Bowling, M. (2009). Monte Carlo

sampling for regret minimization in extensive games. In Advances in Neural

Information Processing Systems 22, pages 1078–1086.

Lange, S., Gabel, T., and Riedmiller, M. (2012). Batch reinforcement learning. In

Reinforcement learning, pages 45–73. Springer.

Legg, S. (2008). Machine super intelligence. PhD thesis, University of Lugano.

Leslie, D. S. and Collins, E. J. (2006). Generalised weakened fictitious play. Games

and Economic Behavior.



BIBLIOGRAPHY 134

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning,

planning and teaching. Machine learning, 8(3-4):293–321.

Lisý, V. (2014). Alternative selection functions for information set monte carlo tree

search. Acta Polytechnica: Journal of Advanced Engineering, 54(5):333–340.

Lisy, V., Kovarik, V., Lanctot, M., and Bosansky, B. (2013). Convergence of Monte

Carlo tree search in simultaneous move games. In Advances in Neural Informa-

tion Processing Systems, pages 2112–2120.

Lisý, V., Lanctot, M., and Bowling, M. (2015). Online monte carlo counterfactual

regret minimization for search in imperfect information games. In Proceedings

of the 14th International Conference on Autonomous Agents and Multi-Agent

Systems.

Littman, M. L. (1996). Algorithms for sequential decision making. PhD thesis,

Brown University.

Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-sne. Journal of

Machine Learning Research, 9(Nov):2579–2605.

Mannor, S., Menache, I., Hoze, A., and Klein, U. (2004). Dynamic abstraction in

reinforcement learning via clustering. In Proceedings of the twenty-first interna-

tional conference on Machine learning, page 71. ACM.

McGovern, A. and Barto, A. G. (2001). Automatic discovery of subgoals in rein-

forcement learning using diverse density. In Proceedings of the 18th international

conference on Machine learning.

McMahan, H. B. and Gordon, G. J. (2007). A fast bundle-based anytime algorithm

for poker and other convex games. In International Conference on Artificial

Intelligence and Statistics, pages 323–330.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver,

D., and Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforce-



BIBLIOGRAPHY 135

ment learning. In Proceedings of the 33rd International Conference on Machine

Learning.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-

level control through deep reinforcement learning. Nature, 518(7540):529–533.

Monderer, D. and Shapley, L. S. (1996). Fictitious play property for games with

identical interests. Journal of economic theory, 68(1):258–265.

Moravčı́k, M., Schmid, M., Burch, N., Lisỳ, V., Morrill, D., Bard, N., Davis, T.,

Waugh, K., Johanson, M., and Bowling, M. (2017). Deepstack: Expert-level

artificial intelligence in no-limit poker. arXiv preprint arXiv:1701.01724.

Myerson, R. B. (1991). Game Theory: Analysis of Conflict. Harvard University

Press.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.

Nash, J. (1951). Non-cooperative games. Annals of mathematics, pages 286–295.

Nash, J. and Shapley, L. (1950). A simple three-person poker game. Essays on

Game Theory.

Neumann, J. v. (1928). Zur theorie der gesellschaftsspiele. Mathematische Annalen,

100(1):295–320.

Newall, P. (2013). Further Limit Hold ’em: Exploring the Model Poker Game. Two

Plus Two Publishing, LLC.

Osborne, M., Lall, A., and Van Durme, B. (2014). Exponential reservoir sampling

for streaming language models. In Proceedings of the 52nd Annual Meeting of

the Association for Computational Linguistics.

Ponsen, M., de Jong, S., and Lanctot, M. (2011). Computing approximate Nash

equilibria and robust best-responses using sampling. Journal of Artificial Intelli-

gence Research, 42(1):575–605.



BIBLIOGRAPHY 136

Premack, D. and Woodruff, G. (1978). Does the chimpanzee have a theory of mind?

Behavioral and brain sciences, 1(04):515–526.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley & Sons.

Puterman, M. L. and Shin, M. C. (1978). Modified policy iteration algorithms for

discounted markov decision problems. Management Science, 24(11):1127–1137.

Riedmiller, M. (2005). Neural fitted q iteration–first experiences with a data effi-

cient neural reinforcement learning method. In Machine Learning: ECML 2005,

pages 317–328. Springer.

Risk, N. A. and Szafron, D. (2010). Using counterfactual regret minimization to cre-

ate competitive multiplayer poker agents. In Proceedings of the 9th International

Conference on Autonomous Agents and Multiagent Systems, pages 159–166.

Robinson, J. (1951). An iterative method of solving a game. Annals of Mathematics,

pages 296–301.

Roth, A. E. (2002). The economist as engineer: Game theory, experimentation, and

computation as tools for design economics. Econometrica, 70(4):1341–1378.

Rubin, J. and Watson, I. (2011). Computer poker: A review. Artificial Intelligence,

175(5):958–987.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers.

IBM Journal of research and development, 3(3):210–229.

Sandholm, T. (2010). The state of solving large incomplete-information games, and

application to poker. AI Magazine, 31(4):13–32.

Sandholm, T. and Singh, S. (2012). Lossy stochastic game abstraction with bounds.

In Proceedings of the 13th ACM Conference on Electronic Commerce, pages

880–897. ACM.



BIBLIOGRAPHY 137

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural

Networks, 61:85–117.

Selten, R. (1975). Reexamination of the perfectness concept for equilibrium points

in extensive games. International journal of game theory, 4(1):25–55.

Selten, R. (1990). Bounded rationality. Journal of Institutional and Theoretical

Economics, pages 649–658.

Shamma, J. S. and Arslan, G. (2005). Dynamic fictitious play, dynamic gradient

play, and distributed convergence to Nash equilibria. IEEE Transactions on Au-

tomatic Control, 50(3):312–327.

Shannon, C. E. (1950). Programming a computer for playing chess. The London,

Edinburgh, and Dublin Philosophical Magazine and Journal of Science.

Silver, D. (2009). Reinforcement learning and simulation-based search. Doctor of

philosophy, University of Alberta.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,

Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,

Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016a). Mastering the game of

go with deep neural networks and tree search. Nature, 529:484–489.

Silver, D., Van Hasselt, H., Hessel, M., Schaul, T., Guez, A., Harley, T., Dulac-

Arnold, G., Reichert, D., Rabinowitz, N., Barreto, A., and Degris, T. (2016b).

The predictron: End-to-end learning and planning. Preprint.

Silver, D. and Veness, J. (2010). Monte-Carlo planning in large POMDPs. In

Advances in Neural Information Processing Systems, pages 2164–2172.

Simon, H. A. (1972). Theories of bounded rationality. Decision and organization,

1(1):161–176.

Sklansky, D. (1999). The theory of poker. Two Plus Two Publishing LLC.



BIBLIOGRAPHY 138

Southey, F., Bowling, M., Larson, B., Piccione, C., Burch, N., Billings, D., and

Rayner, C. (2005). Bayes bluff: Opponent modelling in poker. In Proceedings of

the 21st Annual Conference on Uncertainty in Artificial Intelligence.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.

Machine learning, 3(1):9–44.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting

based on approximating dynamic programming. In Proceedings of the seventh

international conference on machine learning, pages 216–224.

Sutton, R. S. (1996). Generalization in reinforcement learning: Successful exam-

ples using sparse coarse coding. Advances in Neural Information Processing

Systems, pages 1038–1044.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction,

volume 1.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (1999a). Policy

gradient methods for reinforcement learning with function approximation. In

NIPS, volume 99, pages 1057–1063.

Sutton, R. S., Precup, D., and Singh, S. (1999b). Between mdps and semi-mdps: A

framework for temporal abstraction in reinforcement learning. Artificial intelli-

gence, 112(1):181–211.

Szafron, D., Gibson, R., and Sturtevant, N. (2013). A parameterized family of

equilibrium profiles for three-player kuhn poker. In Proceedings of the 2013

international conference on Autonomous agents and multi-agent systems, pages

247–254. International Foundation for Autonomous Agents and Multiagent Sys-

tems.

Tambe, M. (2011). Security and game theory: algorithms, deployed systems,

lessons learned.



BIBLIOGRAPHY 139

Tesauro, G. (1992). Practical issues in temporal difference learning. In Reinforce-

ment Learning, pages 33–53. Springer.

Tesauro, G. (1995). Temporal difference learning and td-gammon. Communications

of the ACM, 38(3):58–68.

Tsitsiklis, J. N. and Van Roy, B. (1997). An analysis of temporal-difference learn-

ing with function approximation. IEEE Transactions on Automatic Control,

42(5):674–690.

Veness, J., Silver, D., Blair, A., and Uther, W. (2009). Bootstrapping from game tree

search. In Advances in neural information processing systems, pages 1937–1945.

Vitter, J. S. (1985). Random sampling with a reservoir. ACM Transactions on

Mathematical Software.

Von Neumann, J. and Morgenstern, O. (1944). Theory of games and economic

behavior.

Von Stengel, B. (1996). Efficient computation of behavior strategies. Games and

Economic Behavior.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8(3-4):279–

292.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis, University

of Cambridge England.

Waugh, K., Morrill, D., Bagnell, J. A., and Bowling, M. (2015). Solving games with

functional regret estimation. In 29th AAAI Conference on Artificial Intelligence.

Waugh, K., Schnizlein, D., Bowling, M., and Szafron, D. (2009a). Abstraction

pathologies in extensive games. In Proceedings of the 8th International Confer-

ence on Autonomous Agents and Multi-Agent Systems, pages 781–788.



BIBLIOGRAPHY 140

Waugh, K., Zinkevich, M., Johanson, M., Kan, M., Schnizlein, D., and Bowling,

M. H. (2009b). A practical use of imperfect recall. In Proceedings of the 8th

Symposium on Abstraction, Reformulation and Approximation. AAAI Press.

Yoshida, W., Dolan, R. J., and Friston, K. J. (2008). Game theory of mind. PLoS

Comput Biol, 4(12):e1000254.

Zinkevich, M., Johanson, M., Bowling, M., and Piccione, C. (2007). Regret mini-

mization in games with incomplete information. In Advances in Neural Informa-

tion Processing Systems, pages 1729–1736.


	Introduction
	Strategic Decision Making
	Adaptive (Exploitative) Approach
	Static (Defensive) Approach
	Self-Play

	Research Question
	Motivation
	Related Work

	Approach
	Theme
	Outline


	Background and Literature Review
	Reinforcement Learning
	Task
	Value Functions
	Policy Evaluation and Policy Improvement
	Function Approximation
	Exploration and Exploitation
	Monte Carlo Tree Search

	Game Theory
	Extensive-Form Games
	Nash Equilibria
	Normal Form
	Sequence Form
	Fictitious Play
	Best Response Computation

	Poker
	Rules
	Properties
	Abstraction
	Current Methods


	Smooth UCT Search
	Introduction
	MCTS in Extensive-Form Games
	Extensive-Form UCT
	Smooth UCT
	Experiments
	Kuhn Poker
	Leduc Hold'em
	Limit Texas Hold'em

	Conclusion

	Fictitious Play in Extensive-Form Games
	Introduction
	Best Response Computation
	Strategy Updates
	Mixed Strategies
	Unweighted Behavioural Strategies
	Realization-Weighted Behavioural Strategies

	Extensive-Form Fictitious Play
	Experiments
	Realization-Weighted Updates
	GFP and Comparison to CFR
	Robustness of XFP

	Conclusion

	Fictitious Self-Play
	Introduction
	Experiential Learning
	Best Response Learning
	Sequence of MDPs
	Sampling Experience
	Memorizing Experience
	Best Response Quality

	Average Strategy Learning
	Modeling Oneself
	Sampling Experience
	Memorizing Experience
	Average Strategy Approximation

	Algorithm
	Batch
	Table-lookup

	Experiments
	Empirical Analysis of Approximation Errors
	Sample-Based Versus Full-Width

	Conclusion

	Practical Issues in Fictitious Self-Play
	Introduction
	Simultaneous Learning
	Online FSP Agent
	Neural Fictitious Self-Play
	Encoding a Poker Environment
	Experiments
	Leduc Hold'em
	Comparison to DQN
	Limit Texas Hold'em

	Visualization of a Poker-Playing Neural Network
	Conclusion

	Conclusion
	Contributions
	Review
	Contexts

	Future of Self-Play

	Analysis of Self-Play Policy Iteration
	Nash Equilibria of Imperfect-Information Games
	Policy Iteration in Perfect-Information Games

	Geometric Fictitious Play
	Bibliography

