
Supplementary Material

Dynamic Linear Panel Regression Models

with Interactive Fixed Effects

Hyungsik Roger Moon‡ Martin Weidner§

August 10, 2015

S.1 Proof of Identification (Theorem 2.1)

Proof of Theorem 2.1. Let Q(β, λ, f) ≡ E
(
‖Y − β ·X − λ f ′‖2

F

∣∣∣λ0, f 0, w
)

, where β ∈
RK , λ ∈ RN×R and f ∈ RT×R. We have

Q(β, λ, f)

= E
{

Tr
[
(Y − β ·X − λ f ′)

′
(Y − β ·X − λ f ′)

] ∣∣∣λ0, f 0, w
}

= E
{

Tr
[(
λ0f 0′ − λf ′ − (β − β0) ·X + e

)′ (
λ0f 0′ − λf ′ − (β − β0) ·X + e

)] ∣∣∣λ0, f 0, w
}

= E
[
Tr (e′e)

∣∣∣λ0, f 0, w
]

+ E
{

Tr
[(
λ0f 0′ − λf ′ − (β − β0) ·X

)′ (
λ0f 0′ − λf ′ − (β − β0) ·X

)] ∣∣∣λ0, f 0, w
}

︸ ︷︷ ︸
≡Q∗(β,λ,f)

.

In the last step we used Assumption ID(ii). Because E
[
Tr (e′e)

∣∣∣λ0, f 0, w
]

is independent of

β, λ, f , we find minimizing Q(β, λ, f) is equivalent to minimizing Q∗(β, λ, f). We decompose
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Q∗(β, λ, f) as follows

Q∗(β, λ, f)

= E
{

Tr
[(
λ0f 0′ − λf ′ − (β − β0) ·X

)′ (
λ0f 0′ − λf ′ − (β − β0) ·X

)] ∣∣∣λ0, f 0, w
}

= E
{

Tr
[(
λ0f 0′ − λf ′ − (β − β0) ·X

)′
M(λ,λ0,w)

(
λ0f 0′ − λf ′ − (β − β0) ·X

)] ∣∣∣λ0, f 0, w
}

+ E
{

Tr
[(
λ0f 0′ − λf ′ − (β − β0) ·X

)′
P(λ,λ0,w)

(
λ0f 0′ − λf ′ − (β − β0) ·X

)] ∣∣∣λ0, f 0, w
}

= E
{

Tr
[(

(βhigh − β0,high) ·Xhigh

)′
M(λ,λ0,w)

(
(βhigh − β0,high) ·Xhigh

)] ∣∣∣λ0, f 0, w
}

︸ ︷︷ ︸
≡Qhigh(βhigh,λ)

+ E
{

Tr
[(
λ0f 0′ − λf ′ − (β − β0) ·X

)′
P(λ,λ0,w)

(
λ0f 0′ − λf ′ − (β − β0) ·X

)] ∣∣∣λ0, f 0, w
}

︸ ︷︷ ︸
≡Qlow(β,λ,f)

,

where (βhigh − β0,high) · Xhigh =
∑K

m=K1+1(βm − β0
m)Xm. A lower bound on Qhigh(βhigh, λ) is

given by

Qhigh(βhigh, λ)

≥ min
λ̃∈RN×(R+R+rank(w))

E
{

Tr
[(

(βhigh − β0,high) ·Xhigh

)′
M(λ̃,λ,w)

(
(βhigh − β0,high) ·Xhigh

)] ∣∣∣λ0, f 0, w
}

=

min(N,T )∑
r=R+R+rank(w)

µr

{
E
[(

(βhigh − β0,high) ·Xhigh

) (
(βhigh − β0,high) ·Xhigh

)′ ∣∣∣λ0, f 0, w
]}

.

(S.1.1)

Because Q∗(β, λ, f), Qhigh(βhigh, λ), and Qlow(β, λ, f), are expectations of traces of positive

semi-definite matrices we have Q∗(β, λ, f) ≥ 0, Qhigh(βhigh, λ) ≥ 0, and Qlow(β, λ, f) ≥ 0 for

all β, λ, f . Let β̄, λ̄ and f̄ be the parameter values that minimize Q(β, λ, f), and thus also

Q∗(β, λ, f). Because Q∗(β0, λ0, f 0) = 0 we have Q∗(β̄, λ̄, f̄) = minβ,λ,f Q
∗(β, λ, f) = 0. This

implies Qhigh(β̄
high

, λ̄) = 0 and Qlow(β̄, λ̄, f̄) = 0. Assumption ID(v), the lower bound (S.1.1),

and Qhigh(β̄
high

, λ̄) = 0 imply β̄
high

= β0,high. Using this, we find

Qlow(β̄, λ̄, f̄)

= E
{

Tr

[(
λ0f 0′ − λ̄f̄ ′ − (β̄

low − β0,low) ·Xlow

)′ (
λ0f 0′ − λ̄f̄ ′ − (β̄

low − β0,low) ·Xlow

)] ∣∣∣λ0, f 0, w

}
,

≥ min
f

E
{

Tr

[(
λ0f 0′ − λ̄f ′ − (β̄

low − β0,low) ·Xlow

)′ (
λ0f 0′ − λ̄f ′ − (β̄

low − β0,low) ·Xlow

)] ∣∣∣λ0, f 0, w

}
= E

{
Tr

[(
λ0f 0′ − (β̄

low − β0,low) ·Xlow

)′
Mλ̄

(
λ0f 0′ − (β̄

low − β0,low) ·Xlow

)] ∣∣∣λ0, f 0, w

}
,

(S.1.2)
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where (β̄
low−β0,low) ·Xlow =

∑K1

l=1(β̄l−β0
l )Xl. Because Qlow(β̄, λ̄, f̄) = 0 and the last expression

in (S.1.2) is non-negative we must have

E
{

Tr

[(
λ0f 0′ − (β̄

low − β0,low) ·Xlow

)′
Mλ̄

(
λ0f 0′ − (β̄

low − β0,low) ·Xlow

)] ∣∣∣λ0, f 0, w

}
= 0.

Using Mλ̄ = Mλ̄Mλ̄ and the cyclicality of the trace we obtain from the last equality:

Tr

{
Mλ̄AMλ̄

}
= 0,

where A = E
[(
λ0f 0′ − (β̄

low − β0,low) ·Xlow

)(
λ0f 0′ − (β̄

low − β0,low) ·Xlow

)′ ∣∣∣λ0, f 0, w

]
. The

trace of a positive semi-definite matrix is only equal to zero if the matrix itself is equal to zero,

so we find

Mλ̄AMλ̄ = 0,

This together with the fact that A itself is positive semi definite implies (note that A positive

semi-definite implies A = CC ′ for some matrix C, and Mλ̄AMλ̄ = 0 then implies Mλ̄C = 0, i.e.,

C = Pλ̄C)

A = Pλ̄APλ̄,

and therefore rank(A) ≤ rank(Pλ̄) ≤ R. We have thus shown

rank

{
E
[(
λ0f 0′ − (β̄

low − β0,low) ·Xlow

)(
λ0f 0′ − (β̄

low − β0,low) ·Xlow

)′ ∣∣∣λ0, f 0, w

]}
≤ R.

We furthermore find

R ≥ rank

{
E
[(
λ0f 0′ − (β̄

low − β0,low) ·Xlow

)(
λ0f 0′ − (β̄

low − β0,low) ·Xlow

)′ ∣∣∣λ0, f 0, w

]}
≥ rank

{
MwE

[(
λ0f 0′ − (β̄

low − β0,low) ·Xlow

)
Pf0

(
λ0f 0′ − (β̄

low − β0,low) ·Xlow

)′
Mw

∣∣∣λ0, f 0, w

]}
+ rank

{
PwE

[(
λ0f 0′ − (β̄

low − β0,low) ·Xlow

)
Mf0

(
λ0f 0′ − (β̄

low − β0,low) ·Xlow

)′
Pw

∣∣∣λ0, f 0, w

]}
≥ rank

[
Mwλ

0f 0′f 0λ0′Mw

]
+ rank

{
E
[(

(β̄
low − β0,low) ·Xlow

)
Mf0

(
(β̄

low − β0,low) ·Xlow

)′ ∣∣∣λ0, f 0, w

]}
.

Assumption ID(iv) guarantees rank
(
Mwλ

0f 0′f 0λ0′Mw

)
= rank

(
λ0f 0′f 0λ0′) = R, that is, we

must have

E
[(

(β̄
low − β0,low) ·Xlow

)
Mf0

(
(β̄

low − β0,low) ·Xlow

)′ ∣∣∣λ0, f 0, w

]
= 0.

According to Assumption ID(iii) this implies β̄
low

= β0,low, i.e., we have β̄ = β0. This also

implies Q∗(β̄, λ̄, f̄) = ‖λ0f 0′ − λ̄f̄ ′‖2
F = 0, and therefore λ̄f̄ ′ = λ0f 0′.
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S.2 Examples of Error Distributions

The following Lemma provides examples of error distributions that satisfy ‖e‖ = Op(
√

max(N, T ))

as N, T →∞. Example (i) is particularly relevant for us, because those assumptions on eit are

imposed in Assumption 5 in the main text, i.e., under those main text assumptions we indeed

have ‖e‖ = Op(
√

max(N, T )).

Lemma S.2.1. For each of the following distributional assumptions on the errors eit, i =

1, . . . , N , t = 1, . . . , T , we have ‖e‖ = Op(
√

max(N, T )).

(i) The eit are independent across i and t, conditional on C, and satisfy E(eit|C) = 0, and

E(e4
it|C) is bounded uniformly by a non-random constant, uniformly over i, t and N, T .

Here C can be any conditioning sigma-field, including the empty one (corresponding to

unconditional expectations).

(ii) The eit follow different MA(∞) processes for each i, namely

eit =
∞∑
τ=0

ψiτ ui,t−τ , for i = 1 . . . N, t = 1 . . . T , (S.2.1)

where the uit, i = 1 . . . N , t = −∞ . . . T are independent random variables with Euit = 0

and Eu4
it uniformly bounded across i, t and N, T . The coefficients ψiτ satisfy

∞∑
τ=0

τ max
i=1...N

ψ2
iτ < B ,

∞∑
τ=0

max
i=1...N

|ψiτ | < B , (S.2.2)

for a finite constant B which is independent of N and T .

(iii) The error matrix e is generated as e = σ1/2 uΣ1/2, where u is an N × T matrix with

independently distributed entries uit and Euit = 0, Eu2
it = 1, and Eu4

it is bounded uniformly

across i, t and N, T . Here σ is the N ×N cross-sectional covariance matrix, and Σ is the

T × T time-serial covariance matrix, and they satisfy

max
j=1...N

N∑
i=1

|σij| < B , max
τ=1...T

T∑
t=1

|Σtτ | < B , (S.2.3)

for some finite constant B which is independent of N and T . In this example we have

Eeitejτ = σijΣtτ .
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Proof of Lemma S.2.1, Example (i). Latala (2005) showed that for a N ×T matrix e with

independent entries, conditional on C, we have

E
(
‖e‖

∣∣C) ≤ c

max
i

[∑
t

E
(
e2
it

∣∣C)]1/2

+ max
j

[∑
i

E
(
e2
it

∣∣C)]1/2

+

[∑
i,t

E
(
e4
it

∣∣C)]1/4
 ,

where c is some universal constant. Because we assumed uniformly bounded 4th conditional

moments for eit we thus have ‖e‖ = OP (
√
T ) +OP (

√
N) +OP ((TN)1/4) = Op(

√
max(N, T )).

Example (ii). Let ψj = (ψ1j, . . . , ψNj) be an N × 1 vector for each j ≥ 0. Let U−j be an

N × T sub-matrix of (uit) consisting of uit, i = 1 . . . N , t = 1− j, . . . , T − j. We can then write

equation (S.2.1) in matrix notation as

e =
∞∑
j=0

diag(ψj)U−j

=
T∑
j=0

diag(ψj)U−j + rNT ,

where we cut the sum at T , which results in the remainder rNT =
∑∞

j=T+1 diag(ψj)U−j. When

approximating an MA(∞) by a finite MA(T ) process we have for the remainder

E (‖rNT‖F )2 =
N∑
i=1

T∑
t=1

E (rNT )2
ij ≤ σ2

u

N∑
i=1

T∑
t=1

∞∑
j=T+1

ψ2
ij

≤ σ2
uN T

∞∑
j=T+1

max
i

(
ψ2
ij

)
≤ σ2

uN
∞∑

j=T+1

j max
i

(
ψ2
ij

)
,

where σ2
u is the variance of uit. Therefore, for T →∞ we have

E

(
(‖rNT‖F )2

N

)
−→ 0 ,

which implies (‖rNT‖F )2 = Op(N), and therefore ‖rNT‖ ≤ ‖rNT‖F = Op(
√
N).

Let V be the N × 2T matrix consisting of uit, i = 1 . . . N , t = 1− T, . . . , T . For j = 0 . . . T

the matrices U−j are sub-matrices of V , and therefore ‖U−j‖ ≤ ‖V ‖. From example (i) we know

‖V ‖ = Op(
√

max(N, 2T )). Furthermore, we know ‖ diag(ψj)‖ ≤ maxi
(∣∣ψij∣∣).
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Combining these results we find

‖e‖ ≤
T∑
j=0

‖ diag(ψj)‖ ‖U−j‖+ ‖rNT‖

≤
T∑
j=0

max
i

(∣∣ψij∣∣) ‖V ‖+ op(
√
N)

≤

[
∞∑
j=0

max
i

(∣∣ψij∣∣)
]
Op(
√

max(N, 2T )) + op(
√
N)

≤ Op(
√

max(N, T )),

as required for the proof.

Example (iii). Because σ and Σ are positive definite, there exits a symmetric N ×N matrix

φ and a symmetric T × T matrix ψ such that σ = φ2 and Σ = ψ2. The error term can then be

generated as e = φuψ, where u is an N × T matrix with iid entries uit such that E(uit) = 0 and

E(u4
it) <∞. Given this definition of e we immediately have Eeit = 0 and Eeitejτ = σijΣtτ . What

is left to show is ‖e‖ = Op(
√

max(N, T )). From example (i) we know ‖u‖ = Op(
√

max(N, T )).

Using the inequality ‖σ‖ ≤
√
‖σ‖1 ‖σ‖∞ = ‖σ‖1, where ‖σ‖1 = ‖σ‖∞ because σ is symmetric

we find

‖σ‖ ≤ ‖σ‖1 ≡ max
j=1...N

N∑
i=1

|σij| < L ,

and analogously ‖Σ‖ < L. Because ‖σ‖ = ‖φ‖2 and ‖Σ‖ = ‖ψ‖2, we thus find ‖e‖ ≤
‖φ‖‖u‖‖ψ‖ ≤ LOp(

√
max(N, T )), i.e., ‖e‖ = Op(

√
max(N, T )).

S.3 Comments on Assumption 4 on the regressors

Consistency of the LS estimator β̂ requires the regressors not only satisfy the standard non-

collinearity condition in assumption 4(i), but also the additional conditions on high- and low-

rank regressors in assumption 4(ii). Bai (2009) considers the special cases of only high-rank

and only low-rank regressors. As low-rank regressors he considers only cross-sectional invari-

ant and time-invariant regressors, and he shows that if only these two types of regressors

are present, one can show consistency under the assumption plimN,T→∞WNT > 0 on the re-

gressors (instead of assumption 4), where WNT is the K × K matrix defined by WNT,k1k2 =

(NT )−1 Tr(Mf0 X
′
k1
Mλ0 Xk2). This matrix appears as the approximate Hessian in the profile
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objective expansion in theorem 4.1, i.e., the condition plimN,T→∞WNT > 0 is very natural in the

context of the interactive fixed effect models, and one may wonder whether also for the general

case one can replace assumption 4 with this weaker condition and still obtain consistency of

the LS estimator. Unfortunately, this is not the case, and below we present two simple counter

examples that show this.

(i) Let there only be one factor (R = 1) f 0
t with corresponding factor loadings λ0

i . Let there

only be one regressor (K = 1) of the form Xit = wivt + λ0
i f

0
t . Assume the N × 1 vector

w = (w1, . . . , wN)′, and the T × 1 vector v = (v1, . . . , vN)′ are such that the N × 2 matrix

Λ = (λ0, w) and and the T × 2 matrix F = (f 0, v) satisfy plimN,T→∞ (Λ′Λ/N) > 0, and

plimN,T→∞ (F ′F/T ) > 0. In this case, we have WNT = (NT )−1 Tr(Mf0 vw
′Mλ0 wv

′), and

therefore plimN,T→∞WNT = plimN,T→∞(NT )−1 Tr(Mf0 vw
′Mλ0 wv

′) > 0. However, β is

not identified because β0X+λ0f 0′ = (β0 + 1)X−wv′, i.e., it is not possible to distinguish

(β, λ, f) = (β0, λ0, f 0) and (β, λ, f) = (β0 + 1,−w, v). This implies that the LS estimator

is not consistent (both β0 and β0 + 1 could be the true parameter, but the LS estimator

cannot be consistent for both).

(ii) Let there only be one factor (R = 1) f 0
t with corresponding factor loadings λ0

i . Let the N×
1 vectors λ0, w1 and w2 be such that Λ = (λ0, w1, w2) satisfies plimN,T→∞ (Λ′Λ/N) > 0. Let

the T×1 vectors f 0, v1 and v2 be such that F = (f 0, v1, v2) satisfies plimN,T→∞ (F ′F/T ) >

0. Let there be four regressors (K = 4) defined by X1 = w1v
′
1, X2 = w2v

′
2, X3 = (w1 +

λ0)(v2+f 0)′, X4 = (w2+λ0)(v1+f 0)′. In this case, one can easily check plimN,T→∞WNT >

0. However, again βk is not identified, because
∑4

k=1 β
0
kXk + λ0f 0′ =

∑4
k=1(β0

k + 1)Xk −
(λ0 + w1 + w2)(f 0′ + v1 + v2)′, i.e., we cannot distinguish between the true parameters

and (β, λ, f) = (β0 + 1, −λ0 − w1 − w2, f
0′ + v1 + v2). Again, as a consequence the LS

estimator is not consistent in this case.

In example (ii), there are only low-rank regressors with rank(Xl) = 1. One can easily check

assumption 4 is not satisfied for this example. In example (i) the regressor is a low-rank regressor

with rank(X) = 2. In our present version of assumption 4 we only consider low-rank regressors

with rank(X) = 1, but (as already noted in a footnote in the main paper) it is straightforward

to extend the assumption and the consistency proof to low-rank regressors with rank larger than

one. Independent of whether we extend the assumption or not, the regressor X of example (i)

fails to satisfy assumption 4. This justifies our formulation of assumption 4, because it shows

in general the assumption cannot be replaced by the weaker condition plimN,T→∞WNT > 0.
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S.4 Some Matrix Algebra (including Proof of Lemma A.1)

The following statements are true for real matrices (throughout the whole paper and supplemen-

tary material we never use complex numbers anywhere). Let A be an arbitrary n×m matrix.

In addition to the operator (or spectral) norm ‖A‖ and to the Frobenius (or Hilbert-Schmidt)

norm ‖A‖F , it is also convenient to define the 1-norm, the ∞-norm, and the max-norm by

‖A‖1 = max
j=1...m

n∑
i=1

|Aij| , ‖A‖∞ = max
i=1...n

m∑
j=1

|Aij| , ‖A‖max = max
i=1...n

max
j=1...m

|Aij| .

Lemma S.4.1 (Some useful inequalities). Let A be an n ×m matrix, B be an m × p matrix,

and C and D be n× n matrices. Then we have:

(i) ‖A‖ ≤ ‖A‖F ≤ ‖A‖ rank (A)1/2 ,

(ii) ‖AB‖ ≤ ‖A‖ ‖B‖ ,

(iii) ‖AB‖F ≤ ‖A‖F ‖B‖ ≤ ‖A‖F ‖B‖F ,

(iv) |Tr(AB)| ≤ ‖A‖F ‖B‖F , for n = p,

(v) |Tr (C)| ≤ ‖C‖ rank (C) ,

(vi) ‖C‖ ≤ Tr (C) , for C symmetric and C ≥ 0,

(vii) ‖A‖2 ≤ ‖A‖1 ‖A‖∞ ,

(viii) ‖A‖max ≤ ‖A‖ ≤
√
nm ‖A‖max ,

(ix) ‖A′CA‖ ≤ ‖A′DA‖ , for C symmetric and C ≤ D.

For C, D symmetric, and i = 1, . . . , n we have:

(x) µi(C) + µn(D) ≤ µi(C +D) ≤ µi(C) + µ1(D) ,

(xi) µi(C) ≤ µi(C +D) , for D ≥ 0,

(xii) µi(C)− ‖D‖ ≤ µi(C +D) ≤ µi(C) + ‖D‖ .

Proof. Here we use notation si(A) for the ith largest singular value of a matrix A.

(i) We have ‖A‖ = s1(A), and ‖A‖2
F =

∑rank(A)
i=1 (si(A))2. The inequalities follow directly from

this representation. (ii) This inequality is true for all unitarily invariant norms, see, e.g., Bhatia

(1997). (iii) can be shown as follows

‖AB‖2
F = Tr(ABB′A′)

= Tr[‖B‖2AA′ − A(‖B‖2I−BB′)A′]

≤ ‖B‖2Tr(AA′) = ‖B‖2 ‖A‖2
F ,
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where we used A(‖B‖2I−BB′)A′ is positive definite. Relation (iv) is just the Cauchy Schwarz

inequality. To show (v) we decompose C = UDO′ (singular value decomposition), where U and

O are n× rank(C) that satisfy U ′U = O′O = I and D is a rank(C)× rank(C) diagonal matrix

with entries si(C). We then have ‖O‖ = ‖U‖ = 1 and ‖D‖ = ‖C‖ and therefore

|Tr(C)| = |Tr(UDO′)| = |Tr(DO′U)|

=

∣∣∣∣∣∣
rank(C)∑
i=1

η′iDO
′Uηi

∣∣∣∣∣∣
≤

rank(C)∑
i=1

‖D‖‖O′‖‖U‖ = rank(C)‖C‖ .

For (vi) let e1 be a vector that satisfies ‖e1‖ = 1 and ‖C‖ = e′1Ce1. Because C is symmetric

such an e1 has to exist. Now choose ei, i = 2, . . . , n, such that ei, i = 1, . . . , n, becomes a

orthonormal basis of the vector space of n × 1 vectors. Because C is positive semi definite we

then have Tr (C) =
∑

i e
′
iCei ≥ e1Ce1 = ‖C‖, which is what we wanted to show. For (vii) we

refer to Golub and van Loan (1996), p.15. For (viii) let e be the vector that satisfies ‖e‖ = 1 and

‖A′CA‖ = e′A′CAe. Because A′CA is symmetric such an e has to exist. Because C ≤ D we

then have ‖C‖ = (e′A′)C(Ae) ≤ (e′A′)D(Ae) ≤ ‖A′DA‖. This is what we wanted to show. For

inequality (ix) let e1 be a vector that satisfied ‖e1‖ = 1 and ‖A′CA‖ = e′1A
′CAe1. Then we have

‖A′CA‖ = e′1A
′DAe1 − e′1A′(D − C)Ae1 ≤ e′1A

′DAe1 ≤ ‖A′DA‖. Statement (x) is a special

case of Weyl’s inequality, see, e.g., Bhatia (1997). The inequalities (xi) and (xii) follow directly

from (ix) because µn(D) ≥ 0 for D ≥ 0, and because −‖D‖ ≤ µi(D) ≤ ‖D‖ for i = 1, . . . , n.

Definition S.4.2. Let A be an n × r1 matrix and B be an n × r2 matrix with rank(A) = r1

and rank(B) = r2. The smallest principal angle θA,B ∈ [0, π/2] between the linear subspaces

span(A) = {Aa| a ∈ Rr1} and span(B) = {Bb| b ∈ Br2} of Rn is defined by

cos(θA,B) = max
06=a∈Rr1

max
06=b∈Rr2

a′A′Bb

‖Aa‖‖Bb‖
.

Lemma S.4.3. Let A be an n × r1 matrix and B be an n × r2 matrix with rank(A) = r1 and

rank(B) = r2. Then we have the following alternative characterizations of the smallest principal

angle between span(A) and span(B)

sin(θA,B) = min
06=a∈Rr1

‖MB Aa‖
‖Aa‖

= min
06=b∈Rr2

‖MAB b‖
‖B b‖

.
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Proof. Because ‖MB Aa‖2 + ‖PB Aa‖2 = ‖Aa‖2 and sin(θA,B)2 + cos(θA,B)2 = 1, we find

proving the theorem is equivalent to proving

cos(θA,B) = min
06=a∈Rr1

‖PB Aa‖
‖Aa‖

= min
0 6=b∈Rr2

‖PAB b‖
‖Ab‖

.

This last statement is theorem 8 in Galantai and Hegedus (2006), and the proof can be found

there.

Proof of Lemma A.1. Let

S1(Z) = min
f,λ

Tr [(Z − λf ′) (Z ′ − fλ′)] ,

S2(Z) = min
f

Tr(ZMf Z
′) ,

S3(Z) = min
λ

Tr(Z ′Mλ Z) ,

S4(Z) = min
λ̃,f̃

Tr(Mλ̃ ZMf̃ Z
′) ,

S5(Z) =
T∑

i=R+1

µi(Z
′Z) ,

S6(Z) =
N∑

i=R+1

µi(ZZ
′) .

The theorem claims

S1(Z) = S2(Z) = S3(Z) = S4(Z) = S5(Z) = S6(Z) .

We find:

(i) The non-zero eigenvalues of Z ′Z and ZZ ′ are identical, so in the sums in S5(Z) and in

S6(Z) we are summing over identical values, which shows S5(Z) = S6(Z).

(ii) Starting with S1(Z) and minimizing with respect to f we obtain the first-order condition

λ′ Z = λ′ λ f ′ .

Putting this into the objective function we can integrate out f , namely

Tr
[
(Z − λf ′)′ (Z − λf ′)

]
= Tr (Z ′Z − Z ′λf ′)

= Tr
(
Z ′Z − Z ′λ(λ′λ)−1(λ′λ)f ′

)
= Tr

(
Z ′Z − Z ′λ(λ′λ)−1(λ′λ)λ′ Z

)
= Tr (Z ′Mλ Z) .

This shows S1(Z) = S3(Z). Analogously, we can integrate out λ to obtain S1(Z) = S2(Z).
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(iii) Let Mλ̂ be the projector on the N − R eigenspaces corresponding to the N − R smallest

eigenvalues1 of ZZ ′, let Pλ̂ = IN −Mλ̂, and let ωR be the R’th largest eigenvalue of ZZ ′.

We then know the matrix Pλ̂[ZZ
′−ωRIN ]Pλ̂−Mλ̂[ZZ

′−ωRIN ]Mλ̂ is positive semi-definite.

Thus, for an arbitrary N ×R matrix λ with corresponding projector Mλ we have

0 ≤ Tr
{(
Pλ̂[ZZ

′ − ωRIN ]Pλ̂ −Mλ̂[ZZ
′ − ωRIN ]Mλ̂

) (
Mλ −Mλ̂

)2
}

= Tr
{(
Pλ̂[ZZ

′ − ωRIN ]Pλ̂ +Mλ̂[ZZ
′ − ωRIN ]Mλ̂

) (
Mλ −Mλ̂

)}
= Tr [Z ′Mλ Z]− Tr

[
Z ′Mλ̂ Z

]
+ ωR

[
rank(Mλ)− rank(Mλ̂)

]
,

and because rank(Mλ̂) = N −R and rank(Mλ) ≤ N −R we have

Tr
[
Z ′Mλ̂ Z

]
≤ Tr [Z ′Mλ Z] .

This shows Mλ̂ is the optimal choice in the minimization problem of S3(Z), i.e., the optimal

λ = λ̂ is chosen such that the span of the N -dimensional vectors λ̂r (r = 1 . . . R) equals to

the span of the R eigenvectors that correspond to the R largest eigenvalues of ZZ ′. This

shows S3(Z) = S6(Z). Analogously one can show S2(Z) = S5(Z).

(iv) In the minimization problem in S4(Z) we can choose λ̃ such that the span of the N -

dimensional vectors λ̃r (r = 1 . . . R1) is equal to the span of the R1 eigenvectors that

correspond to the R1 largest eigenvalues of ZZ ′. In addition, we can choose f̃ such that

the span of the T -dimensional vectors f̃r (r = 1 . . . R2) is equal to the span of the R2

eigenvectors that correspond to the (R1 +1)-largest up to the R-largest eigenvalue of Z ′Z.

With this choice of λ̃ and f̃ we actually project out all the R largest eigenvalues of Z ′Z

and ZZ ′. This shows that S4(Z) ≤ S5(Z). (This result is actually best understood by

using the singular value decomposition of Z.)

We can write Mλ̃ ZMf̃ = Z − Z̃, where

Z̃ = Pλ̃ ZMf̃ + Z Pf̃ .

Because rank(Z) ≤ rank(Pλ̃ ZMf̃ ) + rank(Z Pf̃ ) = R1 + R2 = R, we can always write

1If an eigenvalue has multiplicity m, we count it m times when finding the N − R smallest eigenvalues. In

this terminology we always have exactly N eigenvalues of ZZ ′, but some may appear multiple times.
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Z̃ = λf ′ for some appropriate N ×R and T ×R matrices λ and f . This shows that

S4(Z) = min
λ̄,f̄

Tr(Mλ̃ ZMf̃ Z
′)

≥ min
{Z̃ : rank(Z̃)≤R}

Tr((Z − Z̃)(Z − Z̃)′)

= min
f,λ

Tr [(Z − λf ′) (Z ′ − fλ′)] = S1(Z) .

Thus we have shown here S1(Z) ≤ S4(Z) ≤ S5(Z), and this holds with equality because

S1(Z) = S5(Z) was already shown above.

S.5 Supplement to the Consistency Proof (Appendix A)

Lemma S.5.1. Under assumptions 1 and 4 there exists a constant B0 > 0 such that for the

matrices w and v introduced in assumption 4 we have

w′Mλ0 w − B0w
′w ≥ 0 , wpa1,

v′Mf0 v − B0 v
′ v ≥ 0 , wpa1.

Proof. We can decompose w = w̃ w̄, where w̃ is an N×rank(w) matrix and w̄ is a rank(w)×K1

matrix. Note w̃ has full rank, and Mw = Mw̃.

By assumption 1(i) we know λ0′λ0/N has a probability limit, i.e., there exists some B1 > 0

such that λ0′λ0/N < B1IR wpa1. Using this and assumption 4 we find for any R × 1 vector

a 6= 0 we have

‖Mv λ
0 a‖2

‖λ0 a‖2
=

a′ λ0′Mv λ
0 a

a′ λ0′ λ0 a
>

B

B1

, wpa1.

Applying Lemma S.4.3 we find

min
06=b∈Rrank(w)

b′ w̃′Mλ0 w̃ b

b′ w̃′ w̃ b
= min

06=a∈RR

a′ λ0′Mw λ
0 a

a′ λ0′ λ0 a
>

B

B1

, wpa1.

Therefore we find for every rank(w) × 1 vector b that b′ (w̃′Mλ0 w̃ − (B/B1)w̃′w̃ ) b > 0, wpa1.

Thus w̃′Mλ0 w̃ − (B/B1) w̃′ w̃ > 0, wpa1. Multiplying from the left with w̄′ and from the

right with w̄ we obtain w′Mλ0 w − (B/B1)w′w ≥ 0, wpa1. This is what we wanted to show.

Analogously we can show the statement for v.

As a consequence of the this lemma we obtain some properties of the low-rank regressors

summarized in the following lemma.
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Lemma S.5.2. Let the assumptions 1 and 4 be satisfied and let Xlow,α =
∑K1

l=1 αlXl be a linear

combination of the low-rank regressors. Then there exists some constant B > 0 such that

min
{α∈RK1 ,‖α‖=1}

∥∥Xlow,αMf0 X
′
low,α

∥∥
NT

> B , wpa1,

min
{α∈RK1 ,‖α‖=1}

∥∥Mλ0 Xlow,αMf0 X
′
low,αMλ0

∥∥
NT

> B , wpa1.

Proof. Note
∥∥Mλ0 Xlow,αMf0 X

′
low,αMλ0

∥∥ ≤ ∥∥Xlow,αMf0 X
′
low,α

∥∥, because ‖Mλ0‖ = 1, i.e., if

we can show the second inequality of the lemma we have also shown the first inequality.

We can write Xlow,α = w diag(α′) v′. Using Lemma S.5.1 and part (v), (vi) and (ix) of

Lemma S.4.1 we find∥∥Mλ0 Xlow,αMf0 X
′
low,αMλ0

∥∥ = ‖Mλ0 w diag(α′) v′Mf0 v diag(α′)w′Mλ0‖

≥ B0 ‖Mλ0 w diag(α′) v′ v diag(α′)w′Mλ0‖

≥ B0

K1

Tr [Mλ0 w diag(α′) v′ v diag(α′)w′Mλ0 ]

=
B0

K1

Tr [v diag(α′)w′Mλ0w diag(α′) v′]

≥ B0

K1

‖v diag(α′)w′Mλ0w diag(α′) v′‖

≥ B2
0

K1

‖v diag(α′)w′w diag(α′) v′‖

≥ B2
0

K2
1

Tr [v diag(α′)w′w diag(α′) v′]

=
B2

0

K2
1

Tr
[
Xlow,αX

′
low,α

]
.

Thus we have
∥∥Mλ0 Xlow,αMf0 X

′
low,αMλ0

∥∥ /(NT ) ≥ (B0/K1)2 α′W low
NT α , where the K1 × K1

matrix W low
NT is defined by W low

NT,l1l2
= (NT )−1Tr

(
Xl1X

′
l2

)
, i.e., it is a submatrix of WNT . Because

WNT and thus W low
NT converges to a positive definite matrix the lemma is proven by the inequality

above.

Using the above lemmas we can now prove the lower bound on S̃
(2)
NT (β, f) that was used in

the consistency proof. Remember

S̃
(2)
NT (β, f) =

1

NT
Tr

[(
λ0 f 0′ +

K∑
k=1

(β0
k − βk)Xk

)
Mf

(
λ0 f 0′ +

K∑
k=1

(β0
k − βk)Xk

)′
P(λ0,w)

]
.
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We want to show under the assumptions of theorem 3.1 there exist finite positive constants a0,

a1, a2, a3 and a4 such that

S̃
(2)
NT (β, f) ≥

a0

∥∥βlow − β0,low
∥∥2∥∥βlow − β0,low

∥∥2
+ a1

∥∥βlow − β0,low
∥∥+ a2

− a3

∥∥βhigh − β0,high
∥∥− a4

∥∥βhigh − β0,high
∥∥ ∥∥βlow − β0,low

∥∥ , wpa1.

Proof of the lower bound on S̃
(2)
NT (β, f). Applying Lemma A.1 and part (xi) of Lemma S.4.1

we find

S̃
(2)
NT (β, f) ≥ 1

NT
µR+1

[(
λ0 f 0′ +

K∑
k=1

(β0
k − βk)Xk

)′
P(λ0,w)

(
λ0 f 0′ +

K∑
k=1

(β0
k − βk)Xk

)]

=
1

NT
µR+1

[(
λ0 f 0′ +

K1∑
l=1

(β0
l − βl)wl v′l

)′(
λ0 f 0′ +

K1∑
l=1

(β0
l − βl)wl v′l

)

+

(
λ0 f 0′ +

K1∑
l=1

(β0
l − βl)wl v′l

)′
P(λ0,w)

K∑
m=K1

(β0
m − βm)Xm

+
K∑

m=K1

(β0
m − βm)X ′mP(λ0,w)

(
λ0 f 0′ +

K1∑
l=1

(β0
l − βl)wl v′l

)

+
K∑

m=K1

(β0
m − βm)X ′mP(λ0,w)

K∑
m=K1

(β0
m − βm)Xm

]

≥ 1

NT
µR+1

[(
λ0 f 0′ +

K1∑
l=1

(β0
l − βl)wl v′l

)′(
λ0 f 0′ +

K1∑
l=1

(β0
l − βl)wl v′l

)

+

(
λ0 f 0′ +

K1∑
l=1

(β0
l − βl)wl v′l

)′
P(λ0,w)

K∑
m=K1

(β0
m − βm)Xm

+
K∑

m=K1

(β0
m − βm)X ′mP(λ0,w)

(
λ0 f 0′ +

K1∑
l=1

(β0
l − βl)wl v′l

)]

≥ 1

NT
µR+1

(λ0 f 0′ +

K1∑
l=1

(β0
l − βl)wl v′l

)′(
λ0 f 0′ +

K1∑
l=1

(β0
l − βl)wl v′l

)
− a3

∥∥βhigh − β0,high
∥∥− a4

∥∥βhigh − β0,high
∥∥∥∥βlow − β0,low

∥∥ , wpa1,

where a3 > 0 and a4 > 0 are appropriate constants. For the last step we used part (xii) of
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Lemma S.4.1 and the fact that

1

NT

∥∥∥∥∥
K∑

m=K1

(β0
m − βm)X ′mP(λ0,w)

(
λ0 f 0′ +

K1∑
l=1

(β0
l − βl)wl v′l

)∥∥∥∥∥
≤ K

∥∥βhigh − β0,high
∥∥max

m

∥∥∥∥ Xm√
NT

∥∥∥∥(∥∥∥∥λ0 f 0′
√
NT

∥∥∥∥+K
∥∥βlow − β0,low

∥∥ max
l

∥∥∥∥ wlv
′
l√

NT

∥∥∥∥) .

Our assumptions guarantee the operator norms of λ0 f 0′/
√
NT and Xm/

√
NT are bounded

from above as N, T →∞, which results in finite constants a3 and a4.

We write the above result as S̃
(2)
NT (β, f) ≥ µR+1(A′A)/(NT ) + terms containing βhigh, where

we defined A = λ0 f 0′ +
∑K1

l=1(β0
l − βl)wl v

′
l. We also write A = A1 + A2 + A3, with A1 =

Mw APf0 = Mw λ
0 f 0′, A2 = Pw AMf0 =

∑K1

l=1(β0
l − βl)wl v′lMf0 , A3 = Pw APf0 = Pw λ

0 f 0′ +∑K1

l=1(β0
l − βl)wl v′l Pf . We then find A′A = A′1A1 + (A′2 + A′3)(A2 + A3) and

A′A ≥ A′A− (a1/2A′3 + a−1/2A′2)(a1/2A3 + a−1/2A2)

= [A′1A1 − (a− 1)A′3A3] + (1− a−1)A′2A2 ,

where ≥ for matrices refers to the difference being positive definite, and a is a positive number.

We choose a = 1 + µR(A′1A1)/(2 ‖A3‖2). The reason for this choice becomes clear below.

Note [A′1A1 − (a− 1)A′3A3] has at most rank R (asymptotically it has exactly rank R).

The non-zero eigenvalues of A′A are therefore given by the (at most) R non-zero eigenvalues

of [A′1A1 − (a− 1)A′3A3] and the non-zero eigenvalues of (1− a−1)A′2A2, the largest one of the

latter being given given by the operator norm (1− a−1)‖A2‖2. We therefore find

1

NT
µR+1 (A′A) ≥ 1

NT
µR+1

[
(A′1A1 − (a− 1)A′3A3) + (1− a−1)A′2A2

]
≥ 1

NT
min

{
(1− a−1)‖A2‖2 , µR [A′1A1 − (a− 1)A′3A3]

}
.

Using Lemma S.4.1(xii) and our particular choice of a we find

µR [A′1A1 − (a− 1)A′3A3] ≥ µR(A′1A1)− ‖(a− 1)A′3A3‖

=
1

2
µR(A′1A1) .

Therefore

1

NT
µR+1(A′A) ≥ 1

2NT
µR(A′1A1) min

{
1 ,

2 ‖A2‖2

2 ‖A3‖2 + µR(A′1A1)

}
≥ 1

NT

‖A2‖2 µR(A′1A1)

2 ‖A‖2 + µR(A′1A1)
,
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where we used ‖A‖ ≥ ‖A3‖ and ‖A‖ ≥ ‖A2‖.
Our assumptions guarantee there exist positive constants c0, c1, c2, and c3 such that

‖A‖√
NT
≤ ‖λ

0 f 0′‖√
NT

+

K1∑
l=1

|β0
l − βl|

‖wl v′l‖√
NT

≤ c0 + c1

∥∥βlow − β0,low
∥∥ , wpa1 ,

µR(A′1A1)

NT
=
µR
(
f 0 λ0′Mw λ

0 f 0′)
NT

≥ c2 , wpa1 ,

‖A2‖2

NT
= µ1

[
K1∑
l1=1

(β0
l1
− βl1)wl1 v

′
l1
Mf0

K1∑
l2=1

(β0
l2
− βl2) vl2 w

′
l2

]
≥ c3

∥∥βlow − β0,low
∥∥2

, wpa1 ,

were for the last inequality we used Lemma S.5.2.

We thus have

1

NT
µR+1 (A′A) ≥

c3

∥∥βlow − β0,low
∥∥2

1 + 2
c2

(
c0 + c1

∥∥βlow − β0,low
∥∥)2 , wpa1 .

Defining a0 = c2c3
2c21

, a1 = 2c0
c1

and a2 = c2
2c21

we thus obtain

1

NT
µR+1 (A′A) ≥

a0

∥∥βlow − β0,low
∥∥2∥∥βlow − β0,low

∥∥2
+ a1

∥∥βlow − β0,low
∥∥+ a2

, wpa1 ,

i.e., we have shown the desired bound on S̃
(2)
NT (β, f).

S.6 Regarding the Proof of Corollary 4.2

As discussed in the main text, the proof of Corollary 4.2 is provided in Moon and Weidner (2015).

All that is left to show here is the matrix WNT = WNT (λ0, f 0, Xk) does not become singular

as N, T →∞ under our assumptions.

Proof. Remember

WNT =
1

NT
Tr(Mf0 X

′
k1
Mλ0 Xk2) .
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The smallest eigenvalue of the symmetric matrix W (λ0, f 0, Xk) is given by

µK (WNT ) = min
{a∈RK , a 6=0}

a′WNT a

‖a‖2

= min
{a∈RK , a 6=0}

1

NT ‖a‖2
Tr

[
Mf0

(
K∑

k1=1

ak1 X
′
k1

)
Mλ0

(
K∑

k2=1

ak2 Xk2

)]

= min
{α ∈ RK1 , ϕ ∈ RK2

α 6= 0, ϕ 6= 0}

Tr
[
Mf0

(
X ′low,ϕ +X ′high,α

)
Mλ0 (Xlow,ϕ +Xhigh,α)

]
NT (‖α‖2 + ‖ϕ‖2)

,

where we decomposed a = (ϕ′, α′)′, with ϕ and α being vectors of length K1 and K2, respectively,

and we defined linear combinations of high- and low-rank regressors2

Xlow,ϕ =

K1∑
l=1

ϕlXl , Xhigh,α =
K∑

m=K1+1

αmXm .

We have Mλ0 = M(λ0,w) + P(Mλ0w), where w is the N ×K1 matrix defined in assumption 4, i.e.,

(λ0, w) is an N × (R + K1) matrix, whereas Mλ0w is also an N × K1 matrix. Using this we

obtain

µK (WNT )

= min
{ϕ ∈ RK1 , α ∈ RK2

ϕ 6= 0, α 6= 0}

1

NT (‖ϕ‖2 + ‖α‖2)

{
Tr
[
Mf0

(
X ′low,ϕ +X ′high,α

)
M(λ0,w) (Xlow,ϕ +Xhigh,α)

]
+ Tr

[
Mf0

(
X ′low,ϕ +X ′high,α

)
P(Mλ0w) (Xlow,ϕ +Xhigh,α)

]}
= min
{ϕ ∈ RK1 , α ∈ RK2

ϕ 6= 0, α 6= 0}

1

NT (‖ϕ‖2 + ‖α‖2)

{
Tr
[
Mf0 X

′
high,αM(λ0,w)Xhigh,α

]
+ Tr

[
Mf0

(
X ′low,ϕ +X ′high,α

)
P(Mλ0w) (Xlow,ϕ +Xhigh,α)

]}
.

(S.6.1)

2As in assumption 4 the components of α are denoted αK1+1, . . . , αK to simplify notation.
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We note there exists finite positive constants c1, c2, and c3 such that

1

NT
Tr
[
Mf0 X

′
high,αM(λ0,w)Xhigh,α

]
≥ c1‖α‖2 , wpa1,

1

NT
Tr
[
Mf0

(
X ′low,ϕ +X ′high,α

)
P(Mλ0w) (Xlow,ϕ +Xhigh,α)

]
≥ 0 ,

1

NT
Tr
[
Mf0 X

′
low,ϕ P(Mλ0w) Xlow,ϕ

]
≥ c2 ‖ϕ‖2 , wpa1,

1

NT
Tr
[
Mf0 X

′
low,ϕ P(Mλ0w)Xhigh,α

]
≥ −c3

2
‖ϕ‖‖α‖ , wpa1,

1

NT
Tr
[
Mf0 X

′
high,α P(Mλ0w)Xhigh,α

]
≥ 0 , (S.6.2)

and we want to justify these inequalities now. The second and the last equation in (S.6.2) are

true because, e.g., Tr
[
Mf0 X

′
high,α P(Mλ0w)Xhigh,α

]
= Tr

[
Mf0 X

′
high,α P(Mλ0w) Xhigh,αMf0

]
, and

the trace of a symmetric positive semi-definite matrix is non-negative. The first inequality in

(S.6.2) is true because rank(f 0)+rank(λ0, w) = 2R+K1 and using Lemma A.1 and assumption

4 we have

1

NT‖α‖2
Tr
[
Mf0 X

′
high,αM(λ0,w)Xhigh,α

]
≥ 1

NT‖α‖2
µ2R+K1+1

[
Xhigh,αX

′
high,α

]
> b , wpa1,

i.e., we can set c1 = b. The third inequality in (S.6.2) is true because according Lemma S.4.1(v)

we have

1

NT
Tr
[
Mf0 X

′
low,ϕ P(Mλ0w) Xhigh,α

]
≥ − K1

NT
‖Xlow,ϕ‖ ‖Xhigh,α‖

≥ − K1

NT
‖Xlow,ϕ‖F ‖Xhigh,α‖F

≥ −K1K1K2 ‖ϕ‖ ‖α‖ max
k1=1...K1

∥∥∥∥ Xk1√
NT

∥∥∥∥
F

max
k2=K1+1...K

∥∥∥∥ Xk2√
NT

∥∥∥∥
F

≥ −c3

2
‖ϕ‖ ‖α‖ ,

where we used that assumption 4 implies
∥∥∥Xk/

√
NT

∥∥∥
F
< C holds wpa1 for some constant C

as, and we set c3 = K1K1K2C
2. Finally, we have to argue that the third inequality in (S.6.2)

holds. Note X ′low,ϕ P(Mλ0w) Xlow,ϕ = X ′low,ϕMλ0 Xlow,ϕ, i.e., we need to show

1

NT
Tr
[
Mf0 X

′
low,ϕMλ0 Xlow,ϕ

]
≥ c2 ‖ϕ‖2 .

Using part (vi) of Lemma S.4.1 we find

1

NT
Tr
[
Mf0 X

′
low,ϕMλ0 Xlow,ϕ

]
=

1

NT
Tr
[
Mλ0 Xlow,ϕMf0 X

′
low,ϕMλ0

]
≥ 1

NT

∥∥Mλ0 Xlow,ϕMf0 X
′
low,ϕMλ0

∥∥ ,
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and according to Lemma S.5.2 this expression is bounded by some positive constant times ‖ϕ‖2

(in the lemma we have ‖ϕ‖ = 1, but all expressions are homogeneous in ‖ϕ‖).
Using the inequalities (S.6.2) in equation (S.6.1) we obtain

µK (WNT ) ≥ min
{ϕ ∈ RK1 , α ∈ RK2

ϕ 6= 0, α 6= 0}

1

‖ϕ‖2 + ‖α‖2

{
c1‖α‖2 + max

[
0, c2‖ϕ‖2 − c3‖ϕ‖‖α‖

]}
≥ min

(
c2

2
,

c1c
2
2

c2
2 + c2

3

)
, wpa1.

Thus, the smallest eigenvalue of WNT is bounded from below by a positive constant as N, T →
∞, i.e., WNT is non-degenerate and invertible.

S.7 Proof of Examples for Assumption 5

Proof of Example 1. We want to show the conditions of Assumption 5 are satisfied. Condi-

tions (i)-(iii) are satisfied by the assumptions of the example.

For condition (iv), notice Cov (Xit, Xis|C) = E (UitUis). Because |β0| < 1 and supit E(e2
it) <

∞, it follows

1

NT

N∑
i=1

T∑
t,s=1

|Cov (Xit, Xis|C)| =
1

NT

N∑
i=1

T∑
t,s=1

|E (UitUis)|

=
1

NT

N∑
i=1

T∑
t,s=1

∞∑
p,q=0

∣∣(β0)p+qE (eit−peis−q)
∣∣ <∞.

For condition (v), notice by the independence between the sigma field C and the error terms
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{eit} that we have for some finite constant M,

1

NT 2

N∑
i=1

T∑
t,s,u,v=1

∣∣∣Cov
(
eitX̃is, eiuX̃iv|C

)∣∣∣
=

1

NT 2

N∑
i=1

T∑
t,s,u,v=1

|Cov (eitUis, eiuUiv)|

=
1

NT 2

N∑
i=1

T∑
t,s,u,v=1

∞∑
p,q=0

∣∣∣(β0
)p+q E (eiteis−peiueiv−q)−

(
β0
)p E (eiteis−p)

(
β0
)q E (eiueiv−q)

∣∣∣
≤ M

T 2

T∑
t,s,u,v=1

∞∑
p,q=0

∣∣β0
∣∣p+q [I {t = u} I {s− p = v − q}+ I {t = v − q} I {s− p = u}]

=
M

T 2

T∑
t,u,s,v=1

s∑
k=−∞

v∑
l=−∞

∣∣β0
∣∣s−k+v−l I {t = u} I {k = l}+M

 1

T

T∑
s,u=1
s−u≥0

∣∣β0
∣∣s−u


 1

T

T∑
v,t=1
v−t≥0

∣∣β0
∣∣v−t


=
M

T

T∑
s,v=1

min{s,v}∑
k=−∞

∣∣β0
∣∣s+v−2k

+M

 1

T

T∑
s,u=1
s−u≥0

∣∣β0
∣∣s−u


 1

T

T∑
v,t=1
v−t≥0

∣∣β0
∣∣v−t
 .

Notice

1

T

T∑
s,v=1

min{s,v}∑
k=−∞

∣∣β0
∣∣s+v−2k

=
2

T

T∑
s=2

s∑
v=1

v∑
k=−∞

∣∣β0
∣∣s−v+2(v−k)

+
2

T

T∑
s=1

s∑
k=−∞

∣∣β0
∣∣2(s−k)

=
2

T

T∑
s=2

s∑
v=1

∣∣β0
∣∣s−v ∞∑

l=0

∣∣β0
∣∣2l +

2

T

T∑
s=1

∞∑
l=0

∣∣β0
∣∣2l

=
2

1−
∣∣β0
∣∣2 1

T

T∑
s=2

s∑
v=1

∣∣β0
∣∣s−v +

2

1−
∣∣β0
∣∣2

=

(
2

1−
∣∣β0
∣∣2
)

T−1∑
l=1

∣∣β0
∣∣l(1− l

T

)
+

2

1−
∣∣β0
∣∣2

= O (1) ,

and
1

T

T∑
s,u=1
s−u≥0

∣∣β0
∣∣s−u =

1

T

T∑
s=1

s∑
u=1

∣∣β0
∣∣s−u =

T−1∑
l=0

∣∣β0
∣∣l(1− l

T

)
= O (1) .
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Therefore, we have the desired result

1

NT 2

N∑
i=1

T∑
t,s,u,v=1

∣∣∣Cov
(
eitX̃is, eiuX̃iv|C

)∣∣∣ = Op (1) .

Preliminaries for Proof of Example 2

• Although we observe Xit for 1 ≤ t ≤ T, here we treat Zit = (eit, Xit) as having an infinite

past and future. Define

Gtτ (i) = C ∨ σ ({Xis : τ ≤ s ≤ t}) and Ht
τ (i) = C ∨ σ ({Zit : τ ≤ s ≤ t}) .

Then, by definition, we have Gtτ (i) ,Ht
τ (i) ⊂ F tτ (i) for all τ , t, i. By Assumption (iv) of Ex-

ample 2, the time series of {Xit : −∞ < t <∞} and {Zit : −∞ < t <∞} are conditional

α-mixing conditioning on C uniformly in i.

• Mixing inequality: The following inequality is a conditional version of the α-mixing in-

equality of Hall and Heyde (1980), p. 278. Suppose Xit is a Ft-measurable random

variable with E
(
|Xit|max{p,q} |C

)
< ∞, where p, q > 1 with 1/p + 1/q < 1. Denote

‖Xit‖C,p = (E (|Xit|p |C))1/p
. Then, for each i, we have

|Cov (Xit, Xit+m|C)| ≤ 8 ‖Xit‖C,p ‖Xit+m‖C,q α
1− 1

p
− 1
q

m (i) . (S.7.1)

Proof of Example 2. Again, we want to show the conditions of Assumption 5 are satisfied.

Conditions (i)-(iii) are satisfied by the assumptions of the example.

For condition (iv), we apply the mixing inequality (S.7.1) with p = q > 4. Then, we have

1

NT

N∑
i=1

T∑
t,s=1

|Cov (Xit, Xis|C)|

≤ 2

NT

N∑
i=1

T∑
t=1

T−t∑
m=0

|Cov (Xit, Xit+m|C)| =
2

NT

N∑
i=1

T−1∑
m=0

T−m∑
t=1

|Cov (Xit, Xit+m|C)|

=
16

NT

N∑
i=1

T−1∑
m=0

T−m∑
t=1

‖Xit‖C,p ‖Xit+m‖C,p αm (i)
p−2
P

≤ 16

(
sup
i,t
‖Xit‖2

C,p

) ∞∑
m=0

α
p−2
P
m

≤ Op (1) ,
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where the last line holds because supi,t ‖Xit‖2
C,p = Op (1) for some p > 4 as assumed in the

example (2), and
∑∞

m=0 α
p−2
P
m =

∑∞
m=0 m

−ζ p−2
P = O (1) because of ζ > 3 4p

4p−1
and p > 4.

For condition (v), we need to show

1

NT 2

N∑
i=1

T∑
t,s,u,v=1

∣∣∣Cov
(
eitX̃is, eiuX̃iv|C

)∣∣∣ = Op (1) .

Notice

1

NT 2

N∑
i=1

T∑
t,s,u,v=1

∣∣∣Cov
(
eitX̃is, eiuX̃iv|C

)∣∣∣
=

1

NT 2

N∑
i=1

T∑
t,s,u,v=1

∣∣∣E(eitX̃iseiuX̃iv|C
)
− E

(
eitX̃is|C

)
E
(
eiuX̃iv|C

)∣∣∣
≤ 1

NT 2

N∑
i=1

T∑
t,s,u,v=1

∣∣∣E(eitX̃iseiuX̃iv|C
)∣∣∣+

1

N

N∑
i=1

(
1

T

T∑
t,s=1

E
(
eitX̃is|C

))2

= I + II, say.

First, for term I, there are a finite number of different orderings among the indices t, s, u, v. We

consider the case t ≤ s ≤ u ≤ v and establish the desired result. The other cases can be shown

analogously. Note

1

NT 2

N∑
i=1

T∑
t=1

T−t∑
k=0

T−k∑
l=0

T−l∑
m=0

∣∣∣E(eitX̃it+keit+k+lX̃it+k+l+m|C
)∣∣∣

≤ 1

N

N∑
i=1

1

T 2

T∑
t=1

∑
0≤l,m≤k

0≤k+l+m≤T−t

∣∣∣E(eit (X̃it+keit+k+lX̃it+k+l+m

)
|C
)∣∣∣

+
1

N

N∑
i=1

1

T 2

T∑
t=1

∑
0≤k,m≤l

0≤k+l+m≤T−t

∣∣∣∣E [(eitX̃it+k

)(
eit+k+lX̃it+k+l+m

)
|C
]

−E
(
eitX̃it+k|C

)
E
(
eit+k+lX̃it+k+l+m|C

) ∣∣∣∣
+

1

N

N∑
i=1

1

T 2

T∑
t=1

∑
0≤k,m≤l

0≤k+l+m≤T−t

E
(
eitX̃it+k|C

)
E
(
eit+k+lX̃it+k+l+m|C

)

+
1

N

N∑
i=1

1

T 2

T∑
t=1

∑
0≤p,l≤m

0≤k+l+m≤T−t

∣∣∣E [(eitX̃it+keit+k+l

)
X̃it+k+l+m|C

]∣∣∣
= I1 + I2 + I3 + I4, say.
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By applying the mixing inequality (S.7.1) to
∣∣∣E(eit (X̃it+keit+k+lX̃it+k+l+m

)
|C
)∣∣∣ with eit and

X̃it+keit+k+lX̃it+k+l+m, we have∣∣∣E(eit (X̃it+keit+k+lX̃it+k+l+m

)
|C
)∣∣∣

≤ 8 ‖eit‖C,p
∥∥∥X̃it+keit+k+lX̃it+k+l+m

∥∥∥
C,q
α

1− 1
p
− 1
q

k (i)

≤ 8 ‖eit‖C,p
∥∥∥X̃it+k

∥∥∥
C,3q
‖eit+k+l‖C,3q

∥∥∥X̃it+k+l+m

∥∥∥
C,3q

α
1− 1

p
− 1
q

k (i) ,

where the last inequality follows by the generalized Holder’s inequality. Choose p = 3q > 4.

Then,

I1 ≤
8

N

N∑
i=1

1

T 2

T∑
t=1

∑
0≤l,m≤k

0≤k+l+m≤T−t

‖eit‖C,p
∥∥∥X̃it+k

∥∥∥
C,p
‖eit+k+l‖C,p

∥∥∥X̃it+k+l+m

∥∥∥
C,p
α

1− 1
4p

k (i)

≤ 8

(
sup
i,t
‖eit‖2

C,p

)(
sup
i,t

∥∥∥X̃it+k

∥∥∥2

C,p

)
1

T 2

T∑
t=1

∑
0≤l,m≤k

0≤k+l+m≤T−t

α
1− 1

4p

k

≤ 8

(
sup
i,t
‖eit‖2

C,p

)(
sup
i,t

∥∥∥X̃it+k

∥∥∥2

C,p

) ∞∑
k=0

k2α
1− 1

4p

k

≤ Op (1) ,

where the last line holds because we assume in example (2) that
(

supi,t ‖eit‖
2
C,p

)(
supi,t

∥∥∥X̃it+k

∥∥∥2

C,p

)
=

Op (1) for some p > 4,, and
∑∞

m=0m
2α

1− 1
4p

m =
∑∞

m=0m
2−ζ 4p−1

4p = O (1) because of ζ > 3 4p
4p−1

and

p > 4.

By applying similar arguments, we can also show

I2, I3, I4 = Op (1) .

S.8 Supplement to the Proof of Theorem 4.3

Notation EC and VarC and CovC: In the remainder of this supplementary file we write EC,
VarC and CovC for the expectation, variance and covariance operators conditional on C, i.e.,

EC(A) = E(A|C), VarC(A) = Var(A|C) and CovC(A,B) = Cov(A,B|C).

What is left to show to complete the proof of Theorem 4.3 is that Lemma B.1 and Lemma B.2

in the main text appendix hold. Before showing this, we first present two further intermediate

lemmas.
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Lemma S.8.1. Under the assumptions of Theorem 4.3 we have for k = 1, . . . , K,

(a) ‖Pλ0X̃k‖ = op(
√
NT ) ,

(b) ‖X̃kPf0‖ = op(
√
NT ) ,

(c) ‖Pλ0eX ′k‖ = op(N
3/2) ,

(d) ‖Pλ0ePf0‖ = Op(1) .

Proof of Lemma S.8.1. # Part (a): We have

‖Pλ0X̃k‖ = ‖λ0(λ0′λ0)−1λ0′X̃k‖

≤ ‖λ0(λ0′λ0)−1‖‖λ0′X̃k‖

≤ ‖λ0‖‖(λ0′λ0)−1‖‖λ0′X̃k‖F = Op(N−1/2)‖λ0′X̃k‖F ,

where we used part (i) and (ii) of Lemma S.4.1 and Assumption 1. We have

E
{
EC
[
‖λ0′X̃k‖2

F

]}
= E


R∑
r=1

T∑
t=1

EC

( N∑
i=1

λ0
irX̃k,it

)2


= E

{
R∑
r=1

T∑
t=1

N∑
i=1

(λ0
ir)

2EC
(
X̃2
k,it

)}

=
R∑
r=1

T∑
t=1

N∑
i=1

E
[
(λ0

ir)
2VarC (Xk,it)

]
= Op(NT ),

where we used X̃k,it is mean zero and independent across i, conditional on C, and our bounds

on the moments of λ0
ir and Xk,it. We therefore have ‖λ0′X̃k‖F = Op(

√
NT ) and the above

inequality thus gives ‖Pλ0X̃k‖ = Op(
√
T ) = op(

√
NT ).

# The proof for part (b) is similar. As above we first obtain ‖X̃kPf0‖ = ‖Pf0X̃ ′k‖ ≤
Op(T−1/2)‖f 0′X̃ ′k‖F . Next, we have

EC
[
‖f 0′X̃ ′k‖2

F

]
=

R∑
r=1

N∑
i=1

EC

( T∑
t=1

f 0
trX̃k,it

)2


=
R∑
r=1

N∑
i=1

T∑
t,s=1

f 0
trf

0
srEC

(
X̃k,itX̃k,is

)
≤

[
R∑
r=1

(
max
t
|f 0
tr|
)2
]

N∑
i=1

T∑
t,s=1

|CovC (Xk,it, Xk,is)|

= Op(T 2/(4+ε))Op(NT ) = op(NT
2),
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where we used that uniformly bounded E‖f 0
t ‖4+ε implies maxt |f 0

tr| = Op(T 1/(4+ε)). We thus

have ‖f 0′X̃ ′k‖2
F = op(T

√
N) and therefore ‖X̃kPf0‖ = op(

√
NT ).

# Next, we show part (c). First, we have

E
{
EC
[(
‖λ0 ′eX ′k‖F

)2
]}

= E

EC

 R∑
r=1

N∑
j=1

(
N∑
i=1

T∑
t=1

λ0
ireitXk,jt

)2


= E

{
R∑
r=1

N∑
i,j,l=1

T∑
t,s=1

λ0
irλ

0
lrEC (eitelsXk,jtXk,js)

}

=
R∑
r=1

N∑
i,j=1

T∑
t=1

E
[
(λ0

ir)
2EC

(
e2
itX

2
k,jt

)]
= O(N2T ) ,

where we used that EC (eitelsXk,jtXk,js) is only non-zero if i = l (because of cross-sectional

independence conditional on C) and t = s (because regressors are pre-determined). We can thus

conclude ‖λ0 ′eX ′k‖F = Op(N
√
T ). Using this we find

‖Pλ0eX ′k‖ = ‖λ0(λ0′λ0)−1λ0′eX ′k‖

≤ ‖λ0(λ0′λ0)−1‖‖λ0′eX ′k‖

≤ ‖λ0‖‖(λ0′λ0)−1‖‖λ0′eX ′k‖F = Op(N−1/2)Op(N
√
T ) = Op(

√
NT ) .

This is what we wanted to show.

# For part (d), we first find 1√
NT

∥∥f 0′eλ0
∥∥
F

= Op (1), because

E

EC

(∥∥f 0′eλ0
∥∥
F√

NT

)2
 = E

 1

NT
EC

( N∑
i=1

T∑
t=1

eitf
0′
t λ

0
i

)2


= E

{
1

NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

EC (eitejs) f
0′
t λ

0
iλ

0′
j f

0
s

}

=
1

NT

N∑
i=1

T∑
t=1

E
[
EC
(
e2
it

)
f 0′
t λ

0
iλ

0′
i f

0
t

]
= O (1) ,

where we used eit is independent across i and over t, conditional on C. Thus we obtain

‖Pλ0ePf0‖ = ‖λ0(λ0′λ0)−1λ0′ef 0(f 0′f 0)−1 f 0′‖

≤ ‖λ0‖
∥∥(λ0′λ0)−1

∥∥ ‖λ0′ef 0‖
∥∥(f 0′f 0)−1

∥∥ ‖f 0′‖

≤ Op(N1/2)Op(N−1)‖λ0′ef 0‖FOp(T−1)Op(T 1/2) = Op(1) ,

where we used part (i) and (ii) of Lemma S.4.1.
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Lemma S.8.2. Suppose A and B are T × T and N × N matrices that are independent of

e, conditional on C, such that EC
(
‖A‖2

F

)
= Op (NT ) and EC

(
‖B‖2

F

)
= Op (NT ), and let

Assumption 5 be satisfied. Then there exists a finite non-random constant c0 such that

(a) EC
(
{Tr [(e′e− EC (e′e))A]}2

)
≤ c0N EC

(
‖A‖2

F

)
,

(b) EC
(
{Tr [(ee′ − EC (ee′))B]}2

)
≤ c0 T EC

(
‖B‖2

F

)
.

Proof. # Part (a): Denote Ats to be the (t, s)th element of A. We have

Tr {(e′e− EC (e′e))A} =
T∑
t=1

T∑
s=1

(e′e− EC (e′e))tsAts

=
T∑
t=1

T∑
s=1

(
N∑
i=1

(eiteis − EC (eiteis))

)
Ats.

Therefore,

EC (Tr {(e′e− EC (e′e))A})2

=
T∑
t=1

T∑
s=1

T∑
p=1

T∑
q=1

EC

[(
N∑
i=1

(eiteis − EC (eiteis))

)(
N∑
j=1

(ejpejq − EC (ejpejq))

)]
EC (AtsApq) .

Let Σit = EC(e2
it). Then we find

EC

{(
N∑
i=1

(eiteis − EC (eiteis))

)(
N∑
j=1

(ejpejq − EC (ejpejq))

)}

=
N∑
i=1

N∑
j=1

{EC (eiteisejpejq)− EC (eiteis)EC (ejpejq)}

=


ΣitΣis if (t = p) 6= (s = q) and (i = j)

ΣitΣis if (t = q) 6= (s = p) and (i = j)

EC (e4
it)− Σ2

it if (t = s = p = q) and (i = j)

0 otherwise.

Therefore,

EC (Tr {(e′e− EC (e′e))A})2

≤
T∑
t=1

T∑
s=1

N∑
i=1

ΣitΣis

(
EC
(
A2
ts

)
+ EC (AtsAst)

)
+

T∑
t=1

N∑
i=1

(
EC
(
e4
it

)
− Σ2

it

)
ECA2

tt.

26



Define Σi = diag (Σi1, ...,ΣiT ) . Then, we have

T∑
t=1

T∑
s=1

N∑
i=1

ΣitΣis

(
ECA2

ts

)
= EC

(
N∑
i=1

Tr
(
A′ΣiAΣi

))

≤
N∑
i=1

EC
∥∥AΣi

∥∥2

F
≤

N∑
i=1

∥∥Σi
∥∥2 EC ‖A‖2

F

≤ N

(
sup
it

Σ2
it

)
EC ‖A‖2

F . (S.8.1)

Also,

T∑
t=1

T∑
s=1

N∑
i=1

ΣitΣisEC (AtsAst) = EC

[
N∑
i=1

Tr
(
ΣiAAΣi

)]

≤
N∑
i=1

EC
∥∥ΣiA

∥∥
F

∥∥AΣi
∥∥
F
≤

N∑
i=1

∥∥Σi
∥∥2 EC ‖A‖2

F

≤ N

(
sup
it

Σ2
it

)
EC ‖A‖2

F . (S.8.2)

Finally,

T∑
t=1

N∑
i=1

(
EC
(
e4
it

)
− Σ2

it

)
ECA2

tt ≤ N

(
sup
it

EC
(
e4
it

))
EC ‖A‖2

F , (S.8.3)

and supit EC (e4
it) is assumed bounded by Assumption 5(vi).

# Part (b): The proof is analogous to the proof of part (a).

Proof of Lemma B.1. # For part (a) we have∣∣∣∣ 1√
NT

Tr
(
Pf0 e

′ Pλ0 X̃k

)∣∣∣∣ =

∣∣∣∣ 1√
NT

Tr
(
Pf0 e

′ Pλ0Pλ0X̃kPf0
)∣∣∣∣

≤ R√
NT
‖Pλ0 e Pf0‖

∥∥∥Pλ0X̃k

∥∥∥ ‖Pf0‖
=

1√
NT
Op(1) op(

√
NT )Op(1)

= op(1),

where the second-last equality follows by Lemma S.8.1 (a) and (d).

# To show statement (b) we define ζk,ijt = eitX̃k,jt. We then have

1√
NT

Tr
(
Pλ0 e X̃

′
k

)
=

R∑
r,q=1

[(
λ0′λ0

N

)−1
]
rq

1

N
√
NT

T∑
t=1

N∑
i,j=1

λ0
irλ

0
jqζk,ijt︸ ︷︷ ︸

≡Ak,rq

.
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We only have EC
(
ζk,ijtζk,lms

)
6= 0 if t = s (because regressors are pre-determined) and i = l

and j = m (because of cross-sectional independence). Therefore

E
{
EC
(
A2
k,rq

)}
= E

{
1

N3T

T∑
t,s=1

N∑
i,j,l,m=1

λirλjqλlrλmq EC
(
ζk,ijtζk,lms

)}

=
1

N3T

T∑
t=1

N∑
i,j=1

E
[
λ2
irλ

2
jq EC

(
ζ2
k,ijt

)]
= O(1/N) = op(1).

We thus have Ak,rq = op(1) and therefore also 1√
NT

Tr
(
Pλ0 e X̃

′
k

)
= op(1).

# The proof for statement (c) is similar to the proof of statement (b). Define ξk,its =

eitX̃k,is − EC
(
eitX̃k,is

)
. We then have

1√
NT

Tr
{
Pf0

[
e′ X̃k − EC

(
e′ X̃k

)]}
=

R∑
r,q=1

[(
f ′f

T

)−1
]
rq

1

T
√
NT

N∑
i=1

T∑
t,s=1

ftrfsqξk,its︸ ︷︷ ︸
≡Bk,rq

.

Therefore

EC
(
B2
k,rq

)
=

1

T 3N

N∑
i,j=1

T∑
t,s,u,v=1

ftrfsqfurfvqEC
(
ξk,itsξk,juv

)
≤
(

max
t,r̃
|ftr̃|

)4
1

T 3N

N∑
i,j=1

T∑
t,s,u,v=1

∣∣∣CovC

(
eitX̃k,is, ejuX̃k,jv

)∣∣∣
=

(
max
t,r̃
|ftr̃|

)4
1

T 3N

N∑
i=1

T∑
t,s,u,v=1

∣∣∣CovC

(
eitX̃k,is, eiuX̃k,iv

)∣∣∣
= Op(T 4/(4+ε))Op(1/T )

= op(1),

where we used uniformly bounded E‖f 0
t ‖4+ε implies maxt |f 0

tr| = Op(T 1/(4+ε)).

# Part (d) and (e): We have ‖λ0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′‖ = Op((NT )−1/2), ‖e‖ = Op(N1/2),

‖Xk‖ = Op(
√
NT ) and ‖Pλ0ePf0‖ = Op(1), which was shown in Lemma S.8.1. Therefore:

1√
NT

Tr
(
ePf0 e

′Mλ0 Xk f
0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′)

=
1√
NT

Tr
(
Pλ0ePf0 e

′Mλ0 Xk f
0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′)

≤ R√
NT
‖Pλ0ePf0‖ ‖e‖‖Xk‖

∥∥f 0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′∥∥ = Op(N−1/2) = op(1) .
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which shows statement (d). The proof for part (e) is analogous.

# To prove statement (f) we need to use in addition ‖Pλ0 eX ′k‖ = op(N
3/2), which was also

shown in Lemma S.8.1. We find

1√
NT

Tr
(
e′Mλ0 XkMf0 e

′ λ0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′)
=

1√
NT

Tr
(
e′Mλ0 Xk e

′ Pλ0 λ
0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′)

− 1√
NT

Tr
(
e′Mλ0 Xk Pf0 e

′ Pλ0 λ
0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′)

≤ R√
NT
‖e‖‖Pλ0 eX ′k‖ ‖λ0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′‖

− R√
NT
‖e‖‖Xk‖‖Pλ0 e Pf0‖‖λ0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′‖

= op(1) .

# Now we want to prove part (g) and (h) of the present lemma. For part (g) we have

1√
NT

Tr
{

[ee′ − EC (ee′)] Mλ0 Xk f
0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′}

=
1√
NT

Tr
{

[ee′ − EC (ee′)] Mλ0 Xk f
0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′}

+
1√
NT

Tr
{

[ee′ − EC (ee′)] Mλ0 X̃kPf0 f
0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′

}
=

1√
NT

Tr
{

[ee′ − EC (ee′)] Mλ0 Xk f
0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′}

+
1√
NT
‖ee′ − EC (ee′)‖

∥∥∥X̃kPf0
∥∥∥∥∥f 0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′∥∥

=
1√
NT

Tr
{

[ee′ − EC (ee′)] Mλ0 Xk f
0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′}+ op(1).

Thus, what is left to prove is 1√
NT

Tr
{

[ee′ − EC (ee′)] Mλ0 Xk f
0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′} = op(1).

For this we define

Bk = Mλ0 Xk f
0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′ .

Using part (i) and (ii) of Lemma S.4.1 we find

‖Bk‖F ≤ R1/2‖Bk‖

≤ R1/2‖Xk‖
∥∥f 0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′∥∥

≤ R1/2‖Xk‖F
∥∥f 0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′∥∥ .
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and therefore

EC
(
‖Bk‖2

F

)
≤ R

∥∥f 0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′∥∥2 EC
(
‖Xk‖2

F

)
= O(1) ,

where we used EC
(
‖Xk‖2

F

)
= O(NT ), which is true because we assumed uniformly bounded

moments of Xk,it. Applying Lemma S.8.2 we therefore find

EC
(

1√
NT

Tr {[ee′ − EC (ee′)]Bk}
)2

≤ c0
T

NT
EC
(
‖Bk‖2

F

)
= o(1) ,

and thus

1√
NT

Tr {[ee′ − EC (ee′)]Bk} = op(1) ,

which is what we wanted to show. The proof for part (h) is analogous.

# Part (i): Conditional on C the expression e2
itXitX

′
it − EC (e2

itXitX
′
it) is mean zero, and it

is also uncorrelated across i. This together with the bounded moments that we assume implies

VarC

{
1

NT

N∑
i=1

T∑
t=1

[
e2
itXitX

′
it − EC

(
e2
itXitX

′
it

)]}
= Op(1/N) = op(1),

which shows the required result.

# Part (j): Define the K ×K matrix A = 1
NT

∑N
i=1

∑T
t=1 e

2
it (Xit + Xit) (Xit −Xit)′. Then

we have

1

NT

N∑
i=1

T∑
t=1

e2
it (XitX

′
it −XitX ′it) =

1

2
(A+ A′) .

Let Bk be the N × T matrix with elements Bk,it = e2
it (Xk,it + Xk,it). We have ‖Bk‖ ≤ ‖Bk‖F =

Op(
√
NT ), because the moments of Bk,it are uniformly bounded. The components of A can be

written as Alk = 1
NT

Tr[Bl(Xk −Xk)′]. We therefore have

|Alk| ≤
1

NT
rank(Xk −Xk)‖Bl‖ ‖Xk −Xk‖ .

We have Xk −Xk = X̃k Pf0 + Pλ0 X̃kMf0 . Therefore rank(Xk −Xk) ≤ 2R and

|Alk| ≤
2R

NT
‖Bl‖

(∥∥∥X̃k Pf0
∣∣∣+
∥∥∥Pλ0 X̃kMf0

∥∥∥)
≤ 2R

NT
‖Bl‖

(∥∥∥X̃k Pf0
∣∣∣+
∥∥∥Pλ0 X̃k

∥∥∥) =
2R

NT
Op(
√
NT )op(

√
NT ) = op(1),

where we used Lemma S.8.1. This shows the desired result.
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Proof of Lemma B.2. Let c be a K-vector such that ‖c‖ = 1. The required result follows by

the Cramer-Wold device, if we show

1√
NT

N∑
i=1

T∑
t=1

eitX
′
itc ⇒ N (0, c′Ωc) .

For this, define ξit = eitX
′
itc. Furthermore define ξm = ξM,m = ξNT,it, with M = NT and

m = T (i− 1) + t ∈ {1, . . . ,M}. We then have the following:

(i) Under Assumption 5(i), (ii), (iii) the sequence {ξm, m = 1, . . . ,M} is a martingale dif-

ference sequence under the filtration Fm = C ∨ σ({ξn : n < m}).

(ii) E(ξ4
it) is uniformly bounded, because by Assumption 5(vi) ECe8

it and EC (‖Xit‖8+ε) are

uniformly bounded by a non-random constant (applying Cauchy-Schwarz and the law of

iterated expectations).

(iii) 1
M

∑M
m=1 ξ

2
m = c′Ωc+ op(1).

This is true, because firstly under our assumptions we have EC
{[

1
M

∑M
m=1

(
ξ2
m − EC(ξ2

m)
)]2
}

=

EC
{

1
M2

∑M
m=1

(
ξ2
m − EC(ξ2

m)
)2
}

= OP (1/M) = oP (1), implying we have 1
M

∑M
m=1 ξ

2
m =

1
M

∑M
m=1 EC(ξ

2
m) + op(1). We furthermore have 1

M

∑M
m=1 EC(ξ

2
m) = VarC(M

−1/2
∑M

m=1 ξm),

and using the result in equation (14) of the main text we find VarC(M
−1/2

∑M
m=1 ξm) =

VarC((NT )−1/2
∑N

i=1

∑T
t=1 ξit) = c′Ωc+ op(1).

These three properties of {ξm, m = 1, . . . ,M} allow us to apply Corollary 5.26 in White (2001),

which is based on Theorem 2.3 in Mcleish (1974), to obtain 1√
M

∑M
m=1 ξm →d N (0, c′Ωc). This

concludes the proof, because 1√
M

∑M
m=1 ξm = 1√

NT

∑N
i=1

∑T
t=1 eitX

′
itc.

S.9 Expansions of Projectors and Residuals

The incidental parameter estimators f̂ and λ̂ as well as the residuals ê enter into the asymptotic

bias and variance estimators for the LS estimator β̂. To describe the properties of f̂ , λ̂ and ê, it

is convenient to have asymptotic expansions of the projectors Mλ̂(β) and Mf̂ (β) that correspond

to the minimizing parameters λ̂(β) and f̂(β) in equation (4). Note the minimizing λ̂(β) and

f̂(β) can be defined for all values of β, not only for the optimal value β = β̂. The corresponding

residuals are ê(β) = Y − β ·X − λ̂(β) f̂ ′(β).
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Theorem S.9.1. Under Assumptions 1, 3, and 4(i) we have the following expansions

Mλ̂(β) = Mλ0 +M
(1)

λ̂,e
+M

(2)

λ̂,e
−

K∑
k=1

(
βk − β0

k

)
M

(1)

λ̂,k
+M

(rem)

λ̂
(β) ,

Mf̂ (β) = Mf0 +M
(1)

f̂ ,e
+M

(2)

f̂ ,e
−

K∑
k=1

(
βk − β0

k

)
M

(1)

f̂ ,k
+M

(rem)

f̂
(β) ,

ê(β) = Mλ0 eMf0 + ê(1)
e −

K∑
k=1

(
βk − β0

k

)
ê

(1)
k + ê(rem)(β) ,

where the spectral norms of the remainders satisfy for any series ηNT → 0:

sup
{β:‖β−β0‖≤ηNT }

∥∥∥M (rem)

λ̂
(β)
∥∥∥

‖β − β0‖2 + (NT )−1/2 ‖e‖ ‖β − β0‖ + (NT )−3/2 ‖e‖3
= Op (1) ,

sup
{β:‖β−β0‖≤ηNT }

∥∥∥M (rem)

f̂
(β)
∥∥∥

‖β − β0‖2 + (NT )−1/2 ‖e‖ ‖β − β0‖ + (NT )−3/2 ‖e‖3
= Op (1) ,

sup
{β:‖β−β0‖≤ηNT }

∥∥ê(rem)(β)
∥∥

(NT )1/2‖β − β0‖2 + ‖e‖ ‖β − β0‖+ (NT )−1‖e‖3
= Op (1) ,

and we have rank(ê(rem)(β)) ≤ 7R, and the expansion coefficients are given by

M
(1)

λ̂,e
= −Mλ0 e f

0 (f 0′f 0)−1 (λ0′λ0)−1λ0′ − λ0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′ e′Mλ0 ,

M
(1)

λ̂,k
= −Mλ0 Xk f

0 (f 0′f 0)−1 (λ0′λ0)−1λ0′ − λ0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′X ′kMλ0 ,

M
(2)

λ̂,e
= Mλ0 e f

0 (f 0′f 0)−1 (λ0′λ0)−1λ0′ e f 0 (f 0′f 0)−1 (λ0′λ0)−1λ0′

+ λ0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′ e′ λ0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′ e′Mλ0

−Mλ0 eMf0 e
′ λ0 (λ0′λ0)−1 (f 0′f 0)−1 (λ0′λ0)−1 λ0′

− λ0 (λ0′λ0)−1 (f 0′f 0)−1 (λ0′λ0)−1 λ0′ eMf0 e
′Mλ0

−Mλ0 e f
0 (f 0′f 0)−1 (λ0′λ0)−1 (f 0′f 0)−1 f 0′ e′Mλ0

+ λ0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′ e′Mλ0 e f
0 (f 0′f 0)−1 (λ0′λ0)−1λ0′ ,
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analogously

M
(1)

f̂ ,e
= −Mf0 e

′ λ0 (λ0′λ0)−1 (f 0′f 0)−1f 0′ − f 0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′ eMf0 ,

M
(1)

f̂ ,k
= −Mf0 X

′
k λ

0 (λ0′λ0)−1 (f 0′f 0)−1f 0′ − f 0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′XkMf0 ,

M
(2)

f̂ ,e
= Mf0 e

′ λ0 (λ0′λ0)−1 (f 0′f 0)−1f 0′ e′ λ0 (λ0′λ0)−1 (f 0′f 0)−1f 0′

+ f 0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′ e f 0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′ eMf0

−Mf0 e
′Mλ0 e f

0 (f 0′f 0)−1 (λ0′λ0)−1 (f 0′f 0)−1 f 0′

− f 0 (f 0′f 0)−1 (λ0′λ0)−1 (f 0′f 0)−1 f 0′ e′Mλ0 eMf0

−Mf0 e
′ λ0 (λ0′λ0)−1 (f 0′f 0)−1 (λ0′λ0)−1 λ0′ eMf0

+ f 0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′ eMf0 e
′ λ0 (λ0′λ0)−1 (f 0′f 0)−1f 0′ ,

and finally

ê
(1)
k = Mλ0 XkMf0 ,

ê(1)
e = −Mλ0 eMf0 e

′ λ0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′

− λ0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′ e′Mλ0 eMf0

−Mλ0 e f
0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′ eMf0 .

Proof. The general expansion of Mλ̂(β) is given in Moon and Weidner (2015), and in the

theorem we just make this expansion explicit up to a particular order. The result for Mf̂ (β) is

just obtained by symmetry (N ↔ T , λ↔ f , e↔ e′, Xk ↔ X ′k). For the residuals ê we have

ê = Mλ̂

(
Y −

∑
k=1

β̂kXk

)
= Mλ̂

[
e−

(
β̂ − β0

)
·X + λ0f 0′

]
,

and plugging in the expansion of Mλ̂ gives the expansion of ê. We have ê(β) = A0 + λ0f 0′ −
λ̂(β)f̂ ′(β), where A0 = e−

∑
k(βk−β

0
k)Xk. Therefore ê(rem)(β) = A1 +A2 +A3 with A1 = A0−

Mλ0 A0Mf0 , A2 = λ0f 0′ − λ̂(β)f̂ ′(β), and A3 = −ê(1)
e . We find rank(A1) ≤ 2R, rank(A2) ≤ 2R,

rank(A3) ≤ 3R, and thus rank(ê(rem)(β)) ≤ 7R, as stated in the theorem.

Having expansions for Mλ̂(β) and Mf̂ (β), we also have expansions for Pλ̂(β) = IN −Mλ̂(β)

and Pf̂ (β) = IT − Mf̂ (β). The reason why we give expansions of the projectors and not

expansions of λ̂(β) and f̂(β) directly is for the latter we would need to specify a normalization,

whereas the projectors are independent of any normalization choice. An expansion for λ̂(β) can,

for example, be defined by λ̂(β) = Pλ̂(β)λ0, in which case the normalization of λ̂(β) is implicitly

defined by the normalization of λ0.
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S.10 Consistency Proof for Bias and Variance Estimators

(Proof of Theorem 4.4)

It is convenient to introduce some alternative notation for Definition 1 in section 4.3 of the main

text.

Definition Let Γ : R → R be the truncation kernel defined by Γ(x) = 1 for |x| ≤ 1, and

Γ(x) = 0 otherwise. Let M be a bandwidth parameter that depends on N and T . For an N ×N
matrix A with elements Aij and a T × T matrix B with elements Bts we define

(i) the diagonal truncations AtruncD = diag[(Aii)i=1,...,N ] and BtruncD = diag[(Btt)t=1,...,T ].

(ii) the right-sided Kernel truncation of B, which is a T × T matrix BtruncR with elements

BtruncR
ts = Γ

(
s−t
M

)
Bts for t < s, and BtruncR

ts = 0 otherwise.

Here, we suppress the dependence of BtruncR on the bandwidth parameter M . Using this

notation we can represent the estimators for the bias in Definition 1 as follows:

B̂1,k =
1

N
Tr
[
Pf̂ (ê′Xk)

truncR
]
,

B̂2,k =
1

T
Tr
[
(ê ê′)

truncD
Mλ̂Xk f̂ (f̂ ′f̂)−1 (λ̂

′
λ̂)−1 λ̂

′]
,

B̂3,k =
1

N
Tr
[
(ê′ ê)

truncD
Mf̂ X

′
k λ̂ (λ̂

′
λ̂)−1 (f̂ ′f̂)−1 f̂ ′

]
.

Before proving Theorem 4.4 we establish some preliminary results.

Corollary S.10.1. Under the Assumptions of Theorem 4.3 we have
√
NT

(
β̂ − β0

)
= Op(1).

This corollary directly follows from Theorem 4.3.

Corollary S.10.2. Under the Assumptions of Theorem 4.4 we have∥∥Pλ̂ − Pλ0∥∥ =
∥∥Mλ̂ −Mλ0

∥∥ = Op(N−1/2) ,∥∥∥Pf̂ − Pf0∥∥∥ =
∥∥∥Mf̂ −Mf0

∥∥∥ = Op(T−1/2) .

Proof. Using ‖e‖ = Op(N1/2) and ‖Xk‖ = Op(N) we find the expansion terms in Theorem S.9.1

satisfy ∥∥∥M (1)

λ̂,e

∥∥∥ = Op(N−1/2) ,
∥∥∥M (2)

λ̂,e

∥∥∥ = Op(N−1) ,
∥∥∥M (1)

λ̂,k

∥∥∥ = Op(1) .

Together with corollary S.10.1 the result for
∥∥Mλ̂ −Mλ0

∥∥ immediately follows. In addition we

have Pλ̂ − Pλ0 = −Mλ̂ +Mλ0 . The proof for Mf̂ and Pf̂ is analogous.
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Lemma S.10.3. Under the Assumptions of Theorem 4.4 we have

A1 ≡
1

NT

N∑
i=1

T∑
t=1

e2
it

(
XitX ′it − X̂itX̂ ′it

)
= op(1) ,

A2 ≡
1

NT

N∑
i=1

T∑
t=1

(
e2
it − ê2

it

)
X̂itX̂ ′it = op(1) .

Lemma S.10.4. Let f̂ and f 0 be normalized as f̂ ′f̂/T = IR and f 0′f 0/T = IR. Then, under

the assumptions of Theorem 4.4, there exists an R×R matrix H = HNT such that3∥∥∥f̂ − f 0H
∥∥∥ = Op (1) ,

∥∥∥λ̂− λ0 (H ′)
−1
∥∥∥ = Op (1) .

Furthermore ∥∥∥λ̂ (λ̂
′
λ̂)−1 (f̂ ′f̂)−1 f̂ ′ − λ0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′

∥∥∥ = Op

(
N−3/2

)
.

Lemma S.10.5. Under the Assumptions of Theorem 4.4 we have

(i) N−1
∥∥∥EC(e′Xk)− (ê′Xk)

truncR
∥∥∥ = op(1) ,

(ii) N−1
∥∥∥EC(e′e)− (ê′ ê)

truncD
∥∥∥ = op(1) ,

(iii) T−1
∥∥∥EC(ee′)− (ê ê′)

truncD
∥∥∥ = op(1) .

Lemma S.10.6. Under the Assumptions of Theorem 4.4 we have

(i) N−1
∥∥∥(ê′Xk)

truncR
∥∥∥ = Op(MT 1/8) ,

(ii) N−1
∥∥∥(ê′ ê)

truncD
∥∥∥ = Op(1) ,

(iii) T−1
∥∥∥(ê ê′)

truncD
∥∥∥ = Op(1) .

The proof of the above lemmas is given section S.11 below. Using these lemmas we can now

prove Theorem 4.4.

Proof of Theorem 4.4, Part I: show Ŵ = W + op(1).

3We consider a limit N,T → ∞ and for different N,T different H-matrices can be chosen, but we write H

instead of HNT to keep notation simple.
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Using |Tr (C)| ≤ ‖C‖ rank (C) and corollary S.10.2 we find:∣∣Ŵk1k2−WNT,k1k2

∣∣
=

∣∣∣∣(NT )−1Tr
[(
Mλ̂ −Mλ0

)
Xk1 Mf̂ X

′
k2

]
+ (NT )−1Tr

[
Mλ0 Xk1

(
Mf̂ −Mf0

)
X ′k2

]
≤ 2R

NT

∥∥Mλ̂ −Mλ0
∥∥ ‖Xk1‖‖Xk2‖

2R

NT

∥∥∥Mf̂ −Mf0

∥∥∥ ‖Xk1‖‖Xk2‖

=
2R

NT
Op(N−1)Op(NT ) +

2R

NT
Op(T−1)Op(NT )

= op(1) .

Thus we have Ŵ = WNT + op(1) = W + op(1).

Proof of Theorem 4.4, Part II: show Ω̂ = Ω + op(1).

Let ΩNT ≡ 1
NT

∑N
i=1

∑T
t=1 e

2
itXitX ′it. We have Ω = ΩNT + oP (1) = Ω̂ + A1 + A2 + op(1) =

Ω̂ + oP (1), where A1 and A2 are defined in Lemma S.10.3, and the lemma states A1 and A2 are

op(1).

Proof of Theorem 4.4, Part III: show B̂1 = B1 + op(1).

LetB1,k,NT = N−1 Tr [Pf0 EC (e′Xk)]. According to Assumption 6 we haveB1,k = B1,k,NT+op(1).

What is left to show is B1,k,NT = B̂1,k + op(1). Using |Tr (C)| ≤ ‖C‖ rank (C) we find∣∣∣B1,k,NT − B̂1

∣∣∣ =

∣∣∣∣EC [ 1

N
Tr(Pf0 e

′ Xk)

]
− 1

N
Tr
[
Pf̂ (ê′Xk)

truncR
]∣∣∣∣

≤
∣∣∣∣ 1

N
Tr
[(
Pf0 − Pf̂

)
(ê′Xk)

truncR
]∣∣∣∣

+

∣∣∣∣ 1

N
Tr
{
Pf0

[
EC (e′ Xk)− (ê′Xk)

truncR
]}∣∣∣∣

≤ 2R

N

∥∥∥Pf0 − Pf̂∥∥∥ ∥∥∥(ê′Xk)
truncR

∥∥∥
+
R

N
‖Pf0‖

∥∥∥EC (e′ Xk)− (ê′Xk)
truncR

∥∥∥ .

We have ‖Pf0‖ = 1. We now apply Lemmas S.10.5, S.10.2 and S.10.6 to find∣∣∣B1,k,NT − B̂1

∣∣∣ = N−1
(
Op(N−1/2)Op(MNT 1/8) + op(N)

)
= op(1) .

This is what we wanted to show.

Proof of Theorem 4.4, final part: show B̂2 = B2 + op(1) and B̂3 = B3 + op(1).

Define

B2,k,NT =
1

T
Tr
[
EC (ee′) Mλ0 Xk f

0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′] .
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According to Assumption 6 we have B2,k = B2,k,NT + op(1). What is left to show is B2,k,NT =

B̂2,k + op(1). We have

B2,k − B̂2,k =
1

T
Tr
[
EC (ee′) Mλ0 Xk f

0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′]
− 1

T
Tr
[
(ê ê′)

truncD
Mλ̂Xk f̂ (f̂ ′f̂)−1 (λ̂

′
λ̂)−1 λ̂

′]
=

1

T
Tr
[
(ê ê′)

truncD
Mλ̂Xk

(
f 0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′ − f̂ (f̂ ′f̂)−1 (λ̂

′
λ̂)−1 λ̂

′)]
+

1

T
Tr
[
(ê ê′)

truncD (
Mλ0 −Mλ̂

)
Xk f

0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′
]

+
1

T
Tr
{[

EC (ee′)− (ê ê′)
truncD

]
Mλ0 Xk f

0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′
}
.

Using |Tr (C)| ≤ ‖C‖ rank (C) (which is true for every square matrix C) we find∣∣∣B2,k − B̂2,k

∣∣∣ ≤R
T

∥∥∥(ê ê′)
truncD

∥∥∥ ‖Xk‖
∥∥∥f 0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′ − f̂ (f̂ ′f̂)−1 (λ̂

′
λ̂)−1 λ̂

′∥∥∥
+
R

T

∥∥∥(ê ê′)
truncD

∥∥∥∥∥Mλ0 −Mλ̂

∥∥ ‖Xk‖
∥∥f 0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′∥∥

+
R

T

∥∥∥EC (ee′)− (ê ê′)
truncD

∥∥∥ ‖Xk‖
∥∥f 0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′∥∥ .

Here we used ‖Mf0‖ =
∥∥∥Mf̂

∥∥∥ = 1. Using ‖Xk‖ = Op(
√
NT ), and applying Lemmas S.10.2,

S.10.4, S.10.5 and S.10.6, we now find∣∣∣B2,k − B̂2,k

∣∣∣ = T−1

[
Op(T )Op((NT )1/2)Op(N−3/2)

+Op(T )Op(N−1/2)Op((NT )1/2)Op((NT )−1/2)

+ op(T )Op((NT )1/2)Op((NT )−1/2)

]
= op(1) .

This is what we wanted to show. The proof of B̂3 = B3 + op(1) is analogous.

S.11 Proof of Intermediate Lemma

Here we provide the proof of some intermediate lemmas that were stated and used in section S.10.

The following lemma gives a useful bound on the maximum of (correlated) random variables

Lemma S.11.1. Let Zi, i = 1, 2, . . . , n, be n real valued random variables, and let γ ≥ 1 and

B > 0 be finite constants (independent of n). Assume maxi EC|Zi|γ ≤ B, i.e., the γ’th moment

of the Zi are finite and uniformly bounded. For n→∞ we then have

max
i
|Zi| = Op

(
n1/γ

)
. (S.11.1)

37



Proof. Using Jensen’s inequality one obtains ECmaxi |Zi| ≤ (ECmaxi |Zi|γ)1/γ ≤ (EC
∑n

i=1 |Zi|γ)
1/γ ≤

(n maxi EC|Zi|γ)1/γ ≤ n1/γ B1/γ. Markov’s inequality then gives equation (S.11.1).

Lemma S.11.2. Let

Z̄
(1)
k,tτ = N−1/2

N∑
i=1

[eitXk,iτ − EC (eitXk,iτ )] ,

Z̄
(2)
t = N−1/2

N∑
i=1

[
e2
it − EC

(
e2
it

)]
,

Z̄
(3)
i = T−1/2

T∑
t=1

[
e2
it − EC

(
e2
it

)]
.

Under assumption 5 we have

EC
∣∣∣Z̄(1)

k,tτ

∣∣∣4 ≤ B ,

EC
∣∣∣Z̄(2)

tτ

∣∣∣4 ≤ B ,

EC
∣∣∣Z̄(3)

i

∣∣∣4 ≤ B ,

for some B > 0, i.e., the conditional expectations Z̄
(1)
k,tτ , Z̄

(2)
tτ , and Z̄

(3)
i are uniformly bounded

over t, τ , or i, respectively.

Proof. # We start with the proof for Z̄
(1)
k,tτ . Define Z

(1)
k,tτ ,i = eitXk,iτ −EC (eitXk,iτ ). By assump-

tion we have finite 8th moments for eit and Xk,iτ uniformly across k, i, t, τ , and thus (using

Cauchy Schwarz inequality) we have finite 4th moment of Z
(1)
k,tτ ,i uniformly across k, i, t, τ .

For ease of notation we now fix k, t, τ and write Zi = Z
(1)
k,tτ ,i. We have EC(Zi) = 0 and

EC(ZiZjZkZl) = 0 if i /∈ {j, k, l} (and the same holds for permutations of i, j, k, l). Using

this we compute

EC

(
N∑
i=1

Zi

)4

=
N∑

i,j,k,l=1

EC (ZiZjZkZl)

= 3
∑
i 6=j

EC
(
Z2
i Z

2
j

)
+
∑
i

EC
(
Z4
i

)
= 3

N∑
i,j=1

EC
(
Z2
i

)
EC
(
Z2
j

)
+

N∑
i=1

{
EC
(
Z4
i

)
− 3

[
EC
(
Z2
i

)]2}
,

Because we argued EC (Z4
i ) is bounded uniformly, the last equation shows Z̄

(1)
k,tτ = N−1/2

∑N
i=1 Z

(1)
k,tτ ,i

is bounded uniformly across k, t, τ . This is what we wanted to show.

# The proofs for Z̄
(2)
t and Z̄

(3)
i are analogous.
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Lemma S.11.3. For a T × T matrix A we have4

∥∥AtruncR
∥∥ ≤ M

∥∥AtruncR
∥∥

max
≡ M max

t
max

t<τ≤t+M
|Atτ | ,

Proof. For the 1-norm of AtruncR we find

∥∥AtruncR
∥∥

1
= max

t=1...T

t+M∑
τ=t+1

|Atτ |

≤M max
t<τ≤t+M

|Atτ | = M
∥∥AtruncR

∥∥
max

,

and analogously we find the same bound for the ∞-norm
∥∥AtruncR

∥∥
∞. Applying part (vii) of

Lemma S.4.1 we therefore also get this bound for the operator norm ‖AtruncR‖.

Proof of Lemma S.10.3. # We first show A1 ≡ (NT )−1
∑N

i=1

∑T
t=1 e

2
it

(
XitX ′it − X̂itX̂ ′it

)
=

op(1). Let B1,it = Xit− X̂it, B2,it = e2
itXit, and B3,it = e2

itX̂it. Note B1, B2, and B3 can either be

viewed as K-vectors for each pair (i, t), or equivalently as N × T matrices B1,k, B2,k, and B3,k

for each k = 1, . . . , K. We have A1 = (NT )−1
∑

i

∑
t

(
B1,itB

′
2,it +B3,itB

′
1,it

)
, or equivalently

A1,k1k2 =
1

NT
Tr
(
B1,k1B

′
3,k2

+B2,k1B
′
1,k2

)
.

Using ‖Mλ̂ −Mλ0‖ = Op(N−1/2), ‖Mf̂ −Mf0‖ = Op(N−1/2), ‖Xk‖ = Op(
√
NT ) = Op(N), we

find for B1,k = (Mλ0 −Mλ̂)XkMf0 +Mλ̂Xk(Mf0 −Mf̂ ) that ‖B1,k‖ = Op(N1/2). In addition we

have rank(B1,k) ≤ 4R. We also have

‖B2,k‖4 ≤ ‖B2,k‖4
F

=

(
N∑
i=1

T∑
t=1

e4
itX 2

k,it

)2

≤

(
N∑
i=1

T∑
t=1

e8
it

)(
N∑
i=1

T∑
t=1

X 4
k,it

)
= Op(NT )Op(NT ) ,

which implies ‖B2,k‖ = Op(
√
NT ), and analogously we find ‖B3,k‖ = Op(

√
NT ). Therefore

|A1,k1k2| ≤
4R

NT
(‖B1,k1‖‖B3,k2‖+ ‖B2,k1‖‖B1,k2‖)

=
4R

NT

(
Op(N1/2)Op(

√
NT ) +Op(

√
NT )Op(N1/2)

)
= op(1) .

4For the boundaries of τ we could write max(1, t−M) instead of t−M , and min(T, t+M) instead of t+M ,

to guarantee 1 ≤ τ ≤ T . Since this would complicate notation, we prefer the convention Atτ = 0 for t < 1 or

τ < 1 of t > T or τ > T .
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This is what we wanted to show.

# Finally, we want to show A2 ≡ (NT )−1
∑N

i=1

∑T
t=1 (e2

it − ê2
it) X̂itX̂ ′it = op(1). According

to theorem S.9.1 we have e− ê = C1 + C2, where we defined C1 = −
∑K

k=1

(
β̂k − β0

k

)
Xk, and

C2 =
∑K

k=1

(
β̂k − β0

k

)
(Pλ0 XkMf0 +Xk Pf0) + Pλ0 eMf0 + e Pf0 − ê(1)

e − ê(rem), which satisfies

‖C2‖ = Op(N1/2), and rank(C2) ≤ 11R (actually, one can easily prove ≤ 5R, but this does not

follow from theorem S.9.1). Using this notation we have

A2 =
1

NT

N∑
i=1

T∑
t=1

(eit + êit)(C1,it + C2,it)X̂itX̂ ′it ,

which can also be written as

A2,k1k2 = −
K∑

k3=1

(
β̂k3 − β

0
k3

)
(C5,k1k2k3 + C6,k1k2k3) +

1

NT
Tr (C2C3,k1k2) +

1

NT
Tr (C2C4,k1k2) ,

where we defined

C3,k1k2,it = eitX̂k1,itX̂k2,it ,

C4,k1k2,it = êitX̂k1,itX̂k2,it ,

C5,k1k2k3 =
1

NT

N∑
i=1

T∑
t=1

eitX̂k1,itX̂k2,itXk3,it ,

C6,k1k2k3 =
1

NT

N∑
i=1

T∑
t=1

êitX̂k1,itX̂k2,itXk3,it .

Again, because we have uniformly bounded 8th moments for eit and Xk,it, we find

‖C3,k1k2‖4 ≤ ‖C3,k1k2‖4
F

=

(
N∑
i=1

T∑
t=1

e2
itX̂ 2

k1,it
X̂ 2
k2,it

)2

≤

(
N∑
i=1

T∑
t=1

e4
it

)(
N∑
i=1

T∑
t=1

X̂ 4
k1,it
X̂ 4
k2,it

)
= Op(N2T 2) ,
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i.e., ‖C3,k1k2‖ = Op(
√
NT ). Furthermore

‖C4,k1k2‖2 ≤ ‖C3,k1k2‖2
F

=
N∑
i=1

T∑
t=1

ê2
itX̂ 2

k1,it
X̂ 2
k2,it

≤

(
N∑
i=1

T∑
t=1

ê2
it

)
max
i=1...N

max
t=1...T

(
X̂ 2
k1,it
X̂ 2
k2,it

)
≤

(
N∑
i=1

T∑
t=1

e2
it

)
max
i=1...N

max
t=1...T

(
X̂ 2
k1,it
X̂ 2
k2,it

)
= Op(NT )Op((NT )(4/(8+ε))) = op((NT )(3/4)) .

Here we used the assumption that Xk has uniformly bounded moments of order 8 + ε for some

ε > 0. We also used
∑N

i=1

∑T
t=1 ê

2
it ≤

∑N
i=1

∑T
t=1 e

2
it.

For C5 we find

C2
5,k1k2k3

≤

(
1

NT

N∑
i=1

T∑
t=1

e2
it

)(
1

NT
X̂ 2
k1,it
X̂ 2
k2,it

X2
k3,it

)
= Op(1) ,

i.e., C5,k1k2k3 = Op(1), and analogously C6,k1k2k3 = Op(1), because
∑N

i=1

∑T
t=1 ê

2
it ≤

∑N
i=1

∑T
t=1 e

2
it.

Using these results we obtain

|A2,k1k2| ≤ −
K∑

k3=1

∥∥∥β̂k3 − β0
k3

∥∥∥ |C5,k1k2k3 + C6,k1k2k3|+
11R

NT
‖C2‖‖C3,k1k2‖+

11R

NT
‖C2‖‖C4,k1k2‖

= Op((NT )−1/2)Op(1) +
11R

NT
Op(N1/2)Op(

√
NT ) +

11R

NT
Op(N1/2)op((NT )3/4) = op(1) .

This is what we wanted to show.

Remember, the truncation Kernel Γ(.) is defined by Γ(x) = 1 for |x| ≤ 1 and Γ(x) = 0

otherwise. Without loss of generality we assume in the following the bandwidth parameter M

is a positive integer (without this assumption, one needs to replace M everywhere below by the

largest integer contained in M , but nothing else changes).

Proof of Lemma S.10.4. By Lemma S.10.2 we know asymptotically Pf̂ is close to Pf0 and

therefore rank(Pf̂Pf0) = rank(Pf0Pf0) = R , i.e., rank(Pf̂f
0) = R asymptotically. We can

therefore write f̂ = Pf̂f
0H, where H = HNT is a non-singular R×R matrix.
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We now want to show ‖H‖ = Op(1) and ‖H−1‖ = Op(1). Because of our normalization of f̂

and f 0 we have H = (f̂ ′Pf̂f
0/T )−1 = (f̂ ′f 0/T )−1, and therefore ‖H−1‖ ≤ ‖f̂‖‖f 0‖/T = Op(1).

We also have f̂ = f 0H + (Pf̂ − Pf0)f
0H, and thus H = f 0′f̂/T − f 0′(Pf̂ − Pf0)f

0H/T , i.e.,

‖H‖ ≤ Op(1) + ‖H‖Op
(
T−1/2

)
which shows ‖H‖ = Op(1). Note all the following results only

require ‖H‖ = Op(1) and ‖H−1‖ = Op(1), but apart from that are independent of the choice of

normalization.

The advantage of expressing f̂ in terms of Pf̂ as above is that the result
∥∥∥Pf̂ − Pf0∥∥∥ =

Op
(
T−1/2

)
of Lemma S.10.2 immediately implies∥∥∥f̂ − f 0H

∥∥∥ = Op (1) .

The FOC wrt λ in the minimization of the first line in equation (4) reads

λ̂ f̂ ′f̂ =

(
Y −

K∑
k=1

β̂kXk

)
f̂ , (S.11.2)

which yields

λ̂ =

[
λ0f 0′ −

K∑
k=1

(
β̂k − β0

k

)
Xk

]
f̂
(
f̂ ′f̂
)−1

=

[
λ0f 0′ +

K∑
k=1

(
β0
k − β̂k

)
Xk + e

]
Pf̂f

0
(
f 0′Pf̂f

0
)−1

(H ′)
−1

= λ0 (H ′)
−1

+ λ0f 0′
(
Pf̂ − Pf0

)
f 0
(
f 0′Pf̂f

0
)−1

(H ′)
−1

+ λ0f 0′f 0

[(
f 0′Pf̂f

0
)−1

−
(
f 0′f 0

)−1
]

(H ′)
−1

+

[
K∑
k=1

(
β0
k − β̂k

)
Xk + e

]
Pf̂f

0
(
f 0′Pf̂f

0
)−1

(H ′)
−1

.

We have
(
f 0′Pf̂f

0
/
T )−1 − (f 0′f 0/T )

−1
= Op(T−1/2), because

∥∥∥Pf̂ − Pf0∥∥∥ = Op
(
T−1/2

)
and

f 0′f 0/T by assumption is converging to a positive definite matrix (or given our particular

choice of normalization is just the identity matrix IR). In addition, we have ‖e‖ = Op(
√
T ),

‖Xk‖ = Op(
√
NT ) and by corollary S.10.1 also ‖β̂ − β0‖ = Op(1/

√
NT ). Therefore∥∥∥λ̂− λ0 (H ′)

−1
∥∥∥ = Op (1) , (S.11.3)

which is what we wanted to prove.
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Next, we want to show∥∥∥∥∥∥
(
λ̂
′
λ̂

N

)−1

−

(
(H)−1 λ0′ λ0 (H ′)−1

N

)−1
∥∥∥∥∥∥ = Op

(
N−1/2

)
,

∥∥∥∥∥∥
(
f̂ ′ f̂

T

)−1

−
(
H ′ f 0′ f 0H

T

)−1

∥∥∥∥∥∥ = Op
(
T−1/2

)
. (S.11.4)

Let A = N−1 λ̂
′
λ̂ and B = N−1 (H)−1 λ0′ λ0 (H ′)−1. Using (S.11.3) we find

‖A−B‖ =
1

2N

∥∥∥[λ̂′ + (H)−1 λ0′
] [
λ̂− λ0 (H ′)

−1
]

+
[
λ̂
′
− (H)−1 λ0′

] [
λ̂+ λ0 (H ′)

−1
]∥∥∥

= N−1Op(N1/2)Op(1) = Op
(
N−1/2

)
.

By assumption 1 we know ∥∥∥∥∥
(
λ0′ λ0

N

)−1
∥∥∥∥∥ = Op(1) ,

and thus also ‖B−1‖ = Op(1), and therefore ‖A−1‖ = Op(1) (using ‖A−B‖ = op(1) and applying

Weyl’s inequality to the smallest eigenvalue of B). Because A−1 − B−1 = A−1(B − A)B−1 we

find ∥∥A−1 −B−1
∥∥ ≤ ∥∥A−1

∥∥ ∥∥B−1
∥∥ ‖A−B‖

= Op
(
N−1/2

)
.

Thus, we have shown the first statement of (S.11.4), and analogously one can show the second

one. Combining (S.11.3), (S.11.2) and (S.11.4) we obtain∥∥∥∥∥∥ λ̂√
N

(
λ̂
′
λ̂

N

)−1 (
f̂ ′f̂

T

)−1
f̂ ′√
T
− λ0

√
N

(
λ0′λ0

N

)−1 (
f 0′f 0

T

)−1
f 0′
√
T

∥∥∥∥∥∥
=

∥∥∥∥∥∥ λ̂√
N

(
λ̂
′
λ̂

N

)−1 (
f̂ ′f̂

T

)−1
f̂ ′√
T
− λ0 (H ′)−1

√
N

(
(H)−1 λ0′λ0 (H ′)−1

N

)−1 (
H ′f 0′f 0H

T

)−1
H ′f 0′
√
T

∥∥∥∥∥∥
= Op

(
N−1/2

)
,

which is equivalent to the statement in the lemma. Note also λ̂ (λ̂
′
λ̂)−1 (f̂ ′f̂)−1 f̂ ′ is independent

of H, i.e., independent of the choice of normalization.
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Proof of Lemma S.10.5. # Part A of the proof: We start by showing

N−1
∥∥∥EC [e′Xk − (e′Xk)

truncR
]∥∥∥ = op(1) . (S.11.5)

Let A = e′Xk and B = A − AtruncR. By definition of the left-sided truncation (using the

truncation kernel Γ(.) defined above) we have Btτ = 0 for t < τ ≤ t+M and Btτ = Atτ otherwise.

By assumption 5 we have EC(Atτ ) = 0 for t ≥ τ . For t < τ we have EC(Atτ ) =
∑N

i=1 EC(eitXk,iτ ).

We thus have EC(Btτ ) = 0 for τ ≤ t+M , and ECBtτ =
∑N

i=1 EC(eitXk,iτ ) for τ > t+M . Therefore

‖EC(B)‖1 = max
t=1...T

T∑
τ=1

|EC(Btτ )|

≤ max
t=1...T

T∑
τ=t+M+1

∣∣∣∣∣
N∑
i=1

EC(eitXk,iτ )

∣∣∣∣∣ ≤ N max
t=1...T

T∑
τ=t+M+1

c (τ − t)−(1+ε) = op(N) ,

where we used M → ∞. Analogously we can show ‖EC(B)‖∞ = op(N). Using part (vii) of

Lemma S.4.1 we therefore also find ‖EC(B)‖ = op(N), which is equivalent to equation (S.11.5)

we wanted to show in this part of the proof. Analogously we can show

N−1
∥∥∥EC [e′e− (e′e)

truncD
]∥∥∥ = op(1) ,

T−1
∥∥∥EC [ee′ − (ee′)

truncD
]∥∥∥ = op(1) .

# Part B of the proof: Next, we want to show

N−1
∥∥∥[e′Xk − EC (e′Xk)]

truncR
∥∥∥ = op(1) . (S.11.6)

Using Lemma S.11.3 we have

N−1
∥∥∥[e′Xk − EC (e′Xk)]

truncR
∥∥∥ ≤M max

t
max

t<τ≤t+M
N−1 |e′tXk,τ − EC (e′tXk,τ )|

≤M max
t

max
t<τ≤t+M

N−1

∣∣∣∣∣
N∑
i=1

[eitXk,iτ − EC (eitXk,iτ )]

∣∣∣∣∣
≤M N−1/2 max

t
max

t<τ≤t+M

∣∣∣Z̄(1)
k,tτ

∣∣∣ .
According to Lemma S.11.2 we know EC

∣∣∣Z̄(1)
k,tτ

∣∣∣4 is bounded uniformly across t and τ . Applying

Lemma S.11.1 we therefore find maxt maxt<τ≤t+M Z̄
(1)
tτ = Op((MT )1/4). Thus we have

M N−1/2 max
t

max
t<τ≤t+M

∣∣∣Z̄(1)
tτ

∣∣∣ = Op
(
M N−1/2 (MT )1/4

)
= op(1) .
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Here we used M5/T → 0. Analogously we can show

N−1
∥∥∥[e′e − EC (e′e)]

truncD
∥∥∥ = op(1) ,

T−1
∥∥∥[ee′ − EC (ee′)]

truncD
∥∥∥ = op(1) .

# Part C of the proof: Finally, we want to show

N−1
∥∥∥[e′Xk − ê′Xk]

truncR
∥∥∥ = op(1) . (S.11.7)

According to theorem S.9.1 we have ê = Mλ0eMf0+erem, where erem ≡ ê
(1)
e −

∑K
k=1

(
β̂k − β0

k

)
ê

(1)
k +

ê(rem). We then have

N−1
∥∥∥[e′Xk − ê′Xk]

truncR
∥∥∥

≤ N−1
∥∥∥[e′remXk]

truncR
∥∥∥+N−1

∥∥∥[Pf0e
′Mλ0Xk]

truncR
∥∥∥+N−1

∥∥∥[e′Pλ0Xk]
truncR

∥∥∥ .
Using corollary S.10.1 we find the remainder term satisfies ‖erem‖ = Op(1). Using Lemma S.11.3

we find

N−1
∥∥∥[e′rem Xk]

truncR
∥∥∥ =

M

N
max
t,τ

ê′rem,tXk,τ

≤ M

N
max
t,τ
‖erem,t‖ ‖Xk,τ‖

≤ M

N
‖erem‖ max

τ
‖Xk,τ‖

≤ M

N
Op(1)Op(N1/2T 1/8) = op(1) ,

where we used the fact that the norm of each column erem,t is smaller than the operator norm

of the whole matrix erem. In addition we used Lemma S.11.1 and the fact that N−1/2 ‖Xk,τ‖ =√
N−1

∑N
i=1X

2
k,iτ has finite 8’th moment to show maxτ ‖Xk,τ‖ = Op(N1/2T 1/8). Using again

Lemma S.11.3 we find

N−1
∥∥∥[Pf0e

′Mλ0Xk]
truncR

∥∥∥ ≤ N−1M max
t,τ=1...T

∣∣f 0
t (f 0′ f 0)−1 f 0′ e′Mλ0Xk,τ

∣∣
≤ N−1M ‖e‖ ‖f 0‖

∥∥(f 0′ f 0)−1
∥∥ max

t
‖f 0

t ‖ max
τ
‖Xk,τ‖

= N−1M Op(N1/2)Op(T 1/2)Op(T−1)Op(N1/2T 1/8) = op(1) ,

and∥∥∥[e′Pλ0Xk]
truncR

∥∥∥ ≤ N−1/2M max
t=1...T

(
N−1/2

∑
i

eitλ
0
i

)
(N−1λ0′ λ0)−1 max

τ=1...T

(
N−1

∑
j

λ0′
j Xjt

)
= N−1/2MOp(T 1/8)Op(1)Op(T 1/8) = op(1).
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Thus, we proved equation (S.11.7). Analogously we obtain

N−1
∥∥∥[e′e − ê′ ê]

truncD
∥∥∥ = op(1) ,

T−1
∥∥∥[ee′ − ê ê′]

truncD
∥∥∥ = op(1) .

# Combining (S.11.5), (S.11.6), and (S.11.7), we obtain N−1
∥∥∥EC(e′Xk)− (ê′Xk)

truncR
∥∥∥ =

op(1). The proof of the other two statements of the lemma is analogous.

Proof of Lemma S.10.6. Using theorem S.9.1 and S.10.1 we find ‖ê‖ = Op(N1/2). Applying

Lemma S.11.3 we therefore find

N−1
∥∥∥(ê′Xk)

truncR
∥∥∥ ≤ M

N
max
t,τ
|ê′tXk,τ |

≤ M

N
max
t,τ
‖êt‖ ‖Xk,τ‖

≤ M

N
‖ê‖ max

τ
‖Xk,τ‖

≤ M

N
Op(N1/2)Op(N1/2T 1/8) = Op(MT 1/8) ,

where we used the result maxτ ‖Xk,τ‖ = Op(N1/2T 1/8) that was already obtained in the proof

of the last theorem.

The proof for the statement (ii) and (iii) is analogous.

S.12 Proofs for Section 5 (Testing)

Proof of Theorem 5.1. Using the expansion for LNT (β) in Lemma S.1 in the supplementary

material of Moon and Weidner (2015) we find for the derivative (the sign convention εk = β0
k−βk

results in the minus sign below)

∂LNT
∂βk

= − 1

NT

∞∑
g=2

g
K∑

κ1=0

K∑
κ2=0

. . .

K∑
κg−1=0

εκ1 εκ2 . . . εκg−1 L
(g)
(
λ0, f 0, Xk, Xκ1 , . . . , Xκg−1

)
=
[
2WNT (β − β0)

]
k
− 2√

NT
CNT,k +

1

NT
∇R1,NT,k +

1

NT
∇R2,NT,k ,
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where

WNT,k1k2 =
1

NT
L(2)

(
λ0, f 0, Xk1 , Xk2

)
,

CNT,k =
1

2
√
NT

Ge∑
g=2

g (ε0)g−1 L(g)
(
λ0, f 0, Xk, X0, . . . , X0

)
=

Ge∑
g=2

g

2
√
NT

L(g)
(
λ0, f 0, Xk, e, . . . , e

)
,

and

∇R1,NT,k = −
∞∑

g=Ge+1

g (ε0)g−1 L(g)
(
λ0, f 0, Xk, X0, . . . , X0

)
,

= −
∞∑

g=Ge+1

g L(g)
(
λ0, f 0, Xk, e, . . . , e

)
,

∇R2,NT,k = −
∞∑
g=3

g

g−1∑
r=1

(
g − 1

r

) K∑
k1=1

. . .
K∑

kr=1

εk1 . . . εkr (ε0)g−r−1

L(g)
(
λ0, f 0, Xk, Xk1 , . . . , Xkr , X0, . . . , X0

)
.

= −
∞∑
g=3

g

g−1∑
r=1

(
g − 1

r

) K∑
k1=1

. . .
K∑

kr=1

(β0
k1
− βk1) . . . (β0

kr − βkr)

L(g)
(
λ0, f 0, Xk, Xk1 , . . . , Xkr , e, . . . , e

)
.
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The above expressions for WNT and CNT are equivalent to their definitions given in theorem

4.1. Using the bound on L(g) we find5

|∇R1,NT,k| ≤ c0NT
‖Xk‖√
NT

∞∑
g=Ge+1

g2

(
c1‖e‖√
NT

)g−1

≤ 2 c0 (1 +Ge)
2NT

‖Xk‖√
NT

(
c1‖e‖√
NT

)Ge [
1−

(
c1‖e‖√
NT

)]−3

= op(
√
NT ) ,

|∇R2,NT,k| ≤ c0NT
‖Xk‖√
NT

∞∑
g=3

g2

g−1∑
r=1

(
g − 1

r

)
cg−1

1

 K∑
k̃=1

|β k̃ − β
0
k|
‖Xk̃‖√
NT


×

 K∑
k̃=1

|β k̃ − β
0
k|
‖Xk̃‖√
NT

+
‖e‖√
NT

g−2

≤ c0NT
‖Xk‖√
NT

∞∑
g=3

g3 (4c1)g−1

 K∑
k̃=1

|β k̃ − β
0
k|
‖Xk̃‖√
NT

 K∑
k̃=1

|β k̃ − β
0
k̃
|
‖Xk̃‖√
NT

+
‖e‖√
NT

g−2

≤ c2NT
‖Xk‖√
NT

 K∑
k̃=1

|β k̃ − β
0
k|
‖Xk̃‖√
NT

 K∑
k̃=1

|β k̃ − β
0
k̃
|
‖Xk̃‖√
NT

+
‖e‖√
NT

 ,

where c0 = 8Rdmax(λ0, f 0)/2 and c1 = 16dmax(λ0, f 0)/d2
min(λ0, f 0) both converge to a constants

as N, T → ∞, and the very last inequality is only true if 4c1

(∑K
k̃=1 |β k̃ − β

0
k̃
| ‖Xk̃‖√

NT
+ ‖e‖√

NT

)
<

1, and c2 > 0 is an appropriate positive constant. To show ∇R1,NT,k = op(NT ) we used

Assumption 3∗. From the above inequalities we find for ηNT →∞

sup
{β:‖β−β0‖≤ηNT }

‖∇R1,NT (β)‖√
NT

= op (1) ,

sup
{β:‖β−β0‖≤ηNT }

‖∇R2,NT (β)‖
NT

∥∥β − β0
∥∥ = op (1) .

Thus RNT (β) = R1,NT (β) +R2,NT (β) satisfies the bound in the theorem.

Proof of Theorem 5.2. Using Theorem 4.3 it is straightforward to show WD∗NT has limiting

distribution χ2
r.

For the LR test we have to show the estimator ĉ = (NT )−1Tr(ê(β̂) ê′(β̂)) is consistent for

c = ECe2
it. As already noted in the main text we have ĉ = LNT

(
β̂
)

, and using our expansion

and
√
NT -consistency of β̂ we immediately obtain

ĉ =
1

NT
Tr(Mλ0eMf0e

′) + op(1) .

5Here we use
(
n
k

)
≤ 4n.
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Alternatively, one could use the expansion of ê in Theorem S.9.1 to show this. From the above

result we find ∣∣∣∣ĉ− 1

NT
Tr(ee′)

∣∣∣∣ =
1

NT
|Tr(Pλ0eMf0e

′) + Tr(ePf0e
′)|+ op(1)

≤ 2R

NT
‖e‖2 + op(1) = op(1) .

By the weak law of large numbers we thus have

ĉ =
1

NT

N∑
i=1

T∑
t=1

e2
it + op(1) = c+ op(1) ,

i.e., ĉ is indeed consistent for c. Having this one immediately obtains the result for the limiting

distribution of LR∗NT .

For the LM test we first want to show equation (9) holds. Using the expansion of ê in

Theorem S.9.1 one obtains
√
NT (∇̃LNT )k = − 2√

NT
Tr (X ′kẽ)

=
[
2
√
NT WNT

(
β̃ − β0

)]
k

+
2

NT
C(1)(λ0, f 0, Xk, e) +

2

NT
C(2)(λ0, f 0, Xk, e)

− 2√
NT

Tr
(
X ′kẽ

(rem)
)

=

[
2
√
NT WNT

(
β̃ − β0

)
+

2

NT
CNT

]
k

+ op(1)

=
√
NT

[
∇LNT (β̃)

]
k

+ op(1) ,

which is what we wanted to show. Here we used |Tr
(
X ′kẽ

(rem)
)
| ≤ 7R‖Xk‖‖ẽ(rem)‖ = Op(N3/2).

Note that ‖Xk‖ = Op(N), and Theorem S.9.1, and
√
NT -consistency of β̃, together imply

‖ẽ(rem)‖ = Op(
√
N). We also used the expression for ∇LNT (β̃) given in Theorem 5.1, and the

bound on ∇RNT (β) given there.

We now use equation (10) and W̃ = W + op(1), Ω̃ = Ω + op(1), and B̃ = B+ op(1) to obtain

LM∗
NT −→

d
(C −B)′W−1H ′(HW−1ΩW−1H ′)−1HW−1(C −B) .

Under H0 we thus find LM∗
NT →d χ

2
r.

S.13 Additional Monte Carlo Results

We consider an AR(1) model with R factors

Yit = ρ0 Yi,t−1 +
R∑
r=1

λ0
ir f

0
tr + eit .
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We draw the eit independently and identically distributed from a t-distribution with five degrees

of freedom. The λ0
ir are independently distributed as N (1, 1), and we generate the factors

from an AR(1) specification, namely f 0
tr = ρf f

0
t−1,r + utr, for each r = 1, . . . , R, where utr ∼

iidN (0, (1 − ρ2
f )σ

2
f ). For all simulations we generate 1,000 initial time periods for f 0

t and Yit

that are not used for estimation. This guarantees the simulated data used for estimation are

distributed according to the stationary distribution of the model.

For R = 1 this is exactly the simulation design used in the main text Monte Carlo section,

but DGPs with R > 1 were not considered in the main text. Table S.1 reports results for which

R = 1 is used both in the DGP and for the LS estimation. Table S.2 reports results for which

R = 1 is used in the DGP, but R = 2 is used for the LS estimation. Table S.3 reports results

for which R = 2 is used both in the DGP and for the LS estimation. The results in Table S.1

and S.2 are identical to those reported in the main text Table 1 and 2, except we also report

results for the CCE estimator. The results in Table S.3 are not contained in the main text.

The CCE estimator is obtained by using f̂proxy
t = N−1

∑
i(Yit, Yi,t−1)′ as a proxy for the

factors and then estimating the parameters ρ, λi1, λi2, i = 1, . . . , N , via OLS in the linear

regression model Yit = ρYi,t−1 + λi1f̂
proxy
t1 + λi2f̂

proxy
t2 + eit.

The performance of the CCE estimator in Table S.1 and S.2 are identical (up to random

MC noise), because the number of factors need not be specified for the CCE estimator, and the

DGPs in Table S.1 and S.2 are identical. These tables show for R = 1 in the DGP, the CCE

estimator performs very well. From Chudik and Pesaran (2015) we expect the CCE estimator

to have a bias of order 1/T in a dynamic model, which is confirmed in the simulations: the bias

of the CCE estimator shrinks roughly in inverse proportion to T , as T becomes larger. The 1/T

bias of the CCE estimator could be corrected for, and we would expect the bias-corrected CCE

estimator to perform similarly to the bias-corrected LS estimator.

However, if there are R = 2 factors in the true DGP, then it turns out the proxies f̂proxy
t do

not pick those up correctly. Table S.3 shows for some parameter values and sample sizes (e.g.,

ρ0 = 0.3 and T = 10, or ρ0 = 0.9 and T = 40) the CCE estimator is almost unbiased, but for

other values, including T = 80, the CCE estimator is heavily biased if R = 2. In particular,

the bias of the CCE estimator does not seem to converge to zero as T becomes large in this

case. By contrast, the correctly specified LS estimators (i.e., correctly using R = 2 factors in

the estimation) performs very well according to Table S.3. However, an incorrectly specified

LS estimator, which would underestimate the number of factors (e.g., using R = 1 factors in

estimation instead of the correct number R = 2) would probably perform similarly to the CCE

estimator, because not all factors would be corrected for. Overestimating the number of factors
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(i.e., using R = 3 factors in estimation instead of the correct number R = 2) should, however,

not pose a problem for the LS estimator, according to Moon and Weidner (2015).
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Tables with Simulation Results

Table S.1: Same as Table 1 in main paper, but also reporting pooled CCE estimator of Pe-

saran (2006).

ρ0 = 0.3 ρ0 = 0.9

OLS FLS BC-FLS CCE OLS FLS BC-FLS CCE

T = 5 bias 0.1232 -0.1419 -0.0713 -0.1755 0.0200 -0.3686 -0.2330 -0.3298

(M = 2) std 0.1444 0.1480 0.0982 0.1681 0.0723 0.1718 0.1301 0.2203

rmse 0.1898 0.2050 0.1213 0.2430 0.0750 0.4067 0.2669 0.3966

T = 10 bias 0.1339 -0.0542 -0.0201 -0.0819 0.0218 -0.1019 -0.0623 -0.1436

(M = 3) std 0.1148 0.0596 0.0423 0.0593 0.0513 0.1094 0.0747 0.0972

rmse 0.1764 0.0806 0.0469 0.1011 0.0557 0.1495 0.0973 0.1734

T = 20 bias 0.1441 -0.0264 -0.0070 -0.0405 0.0254 -0.0173 -0.0085 -0.0617

(M = 4) std 0.0879 0.0284 0.0240 0.0277 0.0353 0.0299 0.0219 0.0406

rmse 0.1687 0.0388 0.0250 0.0491 0.0434 0.0345 0.0235 0.0739

T = 40 bias 0.1517 -0.0130 -0.0021 -0.0200 0.0294 -0.0057 -0.0019 -0.0281

(M = 5) std 0.0657 0.0170 0.0160 0.0166 0.0250 0.0105 0.0089 0.0162

rmse 0.1654 0.0214 0.0161 0.0260 0.0386 0.0119 0.0091 0.0324

T = 80 bias 0.1552 -0.0066 -0.0007 -0.0100 0.0326 -0.0026 -0.0006 -0.0136

(M = 6) std 0.0487 0.0112 0.0109 0.0111 0.0179 0.0056 0.0053 0.0073

rmse 0.1627 0.0130 0.0109 0.0149 0.0372 0.0062 0.0053 0.0154
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Table S.2: Same as Table 2 in main paper, but also reporting pooled CCE estimator of Pe-

saran (2006).

ρ0 = 0.3 ρ0 = 0.9

OLS FLS BC-FLS CCE OLS FLS BC-FLS CCE

T = 5 bias 0.1239 -0.5467 -0.3721 -0.1767 0.0218 -0.9716 -0.7490 -0.3289

(M = 2) std 0.1454 0.1528 0.1299 0.1678 0.0731 0.1216 0.1341 0.2203

rmse 0.1910 0.5676 0.3942 0.2437 0.0763 0.9792 0.7609 0.3958

T = 10 bias 0.1343 -0.1874 -0.1001 -0.0816 0.0210 -0.4923 -0.3271 -0.1414

(M = 3) std 0.1145 0.1159 0.0758 0.0592 0.0518 0.1159 0.0970 0.0971

rmse 0.1765 0.2203 0.1256 0.1008 0.0559 0.5058 0.3412 0.1715

T = 20 bias 0.1451 -0.0448 -0.0168 -0.0407 0.0255 -0.1822 -0.1085 -0.0618

(M = 4) std 0.0879 0.0469 0.0320 0.0277 0.0354 0.0820 0.0528 0.0404

rmse 0.1696 0.0648 0.0362 0.0492 0.0436 0.1999 0.1207 0.0739

T = 40 bias 0.1511 -0.0161 -0.0038 -0.0199 0.0300 -0.0227 -0.0128 -0.0282

(M = 5) std 0.0663 0.0209 0.0177 0.0167 0.0250 0.0342 0.0225 0.0164

rmse 0.1650 0.0264 0.0181 0.0260 0.0390 0.0410 0.0258 0.0326

T = 80 bias 0.1550 -0.0072 -0.0011 -0.0100 0.0325 -0.0030 -0.0010 -0.0136

(M = 6) std 0.0488 0.0123 0.0115 0.0111 0.0182 0.0064 0.0057 0.0074

rmse 0.1625 0.0143 0.0116 0.0149 0.0372 0.0071 0.0058 0.0155
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Table S.3: Analogous to Table 2 in main paper, but with R = 2 correctly specified, and also

reporting pooled CCE estimator of Pesaran (2006).

ρ0 = 0.3 ρ0 = 0.9

OLS FLS BC-FLS CCE OLS FLS BC-FLS CCE

T = 5 bias 0.1861 -0.4968 -0.3323 -0.1002 0.0309 -0.9305 -0.7057 -0.2750

(M = 2) std 0.1562 0.1910 0.1580 0.2063 0.0801 0.1644 0.1754 0.2302

rmse 0.2429 0.5322 0.3680 0.2294 0.0859 0.9449 0.7272 0.3586

T = 10 bias 0.1989 -0.1569 -0.0758 0.0036 0.0326 -0.4209 -0.2732 -0.1040

(M = 3) std 0.1185 0.1018 0.0700 0.1074 0.0543 0.1607 0.1235 0.1070

rmse 0.2315 0.1870 0.1031 0.1074 0.0633 0.4505 0.2998 0.1492

T = 20 bias 0.2096 -0.0592 -0.0185 0.0520 0.0366 -0.0741 -0.0406 -0.0310

(M = 4) std 0.0884 0.0377 0.0287 0.0711 0.0356 0.0859 0.0552 0.0512

rmse 0.2274 0.0702 0.0341 0.0881 0.0511 0.1134 0.0686 0.0599

T = 40 bias 0.2174 -0.0275 -0.0054 0.0759 0.0404 -0.0134 -0.0047 -0.0012

(M = 5) std 0.0649 0.0192 0.0170 0.0500 0.0239 0.0166 0.0122 0.0281

rmse 0.2269 0.0335 0.0179 0.0908 0.0469 0.0214 0.0131 0.0281

T = 80 bias 0.2232 -0.0134 -0.0016 0.0873 0.0433 -0.0052 -0.0012 0.0125

(M = 6) std 0.0472 0.0118 0.0113 0.0364 0.0164 0.0066 0.0058 0.0176

rmse 0.2281 0.0179 0.0114 0.0946 0.0463 0.0084 0.0059 0.0216
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