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ABSTRACT25

Matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS)26

enables acquisition of spatial distribution maps for molecular species in situ. This can27

provide comprehensive insights on the pathophysiology of different diseases. However,28

current sample preparation and MALDI-IMS acquisition methods have limitations in29

preserving molecular and histological tissue morphology, resulting in interfered30

correspondence of MALDI-IMS data with subsequently acquired immunofluorescent staining31

results. We here investigated the histology-compatibility of MALDI-IMS paradigm to image32

neuronal lipids in rodent brain tissue with subsequent immunohistochemistry and fluorescent33

staining of histological features. This was achieved by sublimation of a low ionization energy34

matrix compound, 1,5-diaminonapthalene (1,5-DAN), minimizing the number of low-energy35

laser shots. This yielded improved lipid spectral quality, speed of data acquisition and36

reduced matrix cluster formation along with preservation of specific histological information37

at cellular levels. The gentle, histology compatible MALDI IMS protocol also diminished38

thermal effects and mechanical stress created during nanosecond laser ablation processes39

that resulted in subsequent immuno fluorescence staining but not with classical H&E40

staining on the same tissue section. Furthermore, this methodology proved to be a powerful41

strategy for investigating β-amyloid (Aβ) plaque-associated neuronal lipids as exemplified by 42

performing high-resolution MALDI-IMS with subsequent fluorescent amyloid staining in a43

transgenic mouse model of Alzheimer’s disease (tgSwe).44

45
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INTRODUCTION50

Lipids are the most abundant components of neural cell membranes, having a variety of51

functions in neurobiological processes including metabolism, cell adhesion and migration,52

signal transduction, and apoptosis.1-3 Moreover, they may play roles in the pathogenesis of53

many neurodegenerative diseases, such as in Alzheimer’s disease4, Parkinson’s disease5,54

amyotrophic lateral sclerosis (ALS)6 and multiple sclerosis (MS)7, which all show lipid55

alterations in the central nervous system.4, 5, 8 Therefore, to investigate the spatial distribution56

of neuronal lipids and to disentangle their functional roles in situ, advanced chemical imaging57

techniques, such as imaging mass spectrometry (IMS), are required.9, 1058

IMS allows for examining the molecular architecture in complex biological matrices and59

hence often referred to as molecular histology.11 The technique can be used for spatial60

mapping of neuronal molecules in mammalian brain tissue10, 12, 13, which can be employed in61

the study of neurodegenerative diseases.14, 15 MALDI-IMS has been several times62

demonstrated to be an effective tool for probing of neuronal lipids11, 14, peptides16, 17 and63

proteins in-situ.9, 18 For MALDI-IMS, a desorption enhancing photon-absorbing matrix64

compound19 is applied onto tissue section65

Many sample preparation methods have been developed for improving MALDI-IMS66

performance in order to enhance the analyte signal-to-noise (S/N) ratio, minimize analyte67

delocalization and provide high spatial resolution for lipid molecular species in different tissue68

types.20, 21 In these studies, homogeneous matrix coating has been addressed as a crucial69

step in terms of high spatial resolution. It has been concluded that most matrix coating70

methods including use of solvents have a risk of analyte delocalization, in particular for small71

molecules (e.g. lipids). Therefore, dry matrix coating strategies have been developed for72

high-spatial resolution analysis. Sublimation is a solvent-free, dry approach for matrix73

application in MALDI-IMS21 and was demonstrated to give the best data in terms of signal74
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quality and ion image resolution for lipid molecules allowing improved correlation with75

histological information.20, 2276

In most MALDI imaging studies, histological staining with e.g. hematoxylin and eosin (H&E)77

is commonly performed following the MALDI-IMS analysis on the same tissue section in78

order to correlate ion image data with histological features.23, 24 While H&E staining is a79

histological staining technique to evaluate cell and tissue structures, it is not specific to80

distinct protein epitopes as immunohistochemistry (IHC). However, IHC and fluorescent81

staining following MALDI-IMS analysis on the same tissue sections can be challenging due82

to the potential tissue distortion and epitope degradation as a consequence of laser83

ablation.25 Here, mechanical stress along with thermal denaturation effects induced by84

nanosecond pulse laser ablation25, 26 is likely to impact the morphology, integrity and85

molecular composition of histological tissue section. Consequently, this can impair accurate86

correlation between MALDI-IMS and histological staining data. As a result, the laser ablation87

process on biological tissues should be taken into consideration for efficient multimodal88

imaging analysis schemes, as this can be a major reason for inconclusive correlations.89

Currently, there are only few reports on subsequent immunofluorescent staining following90

MALDI-IMS analysis on the same tissue section, with in part inconclusive IMS/IHC91

correlation results.14, 17, 27 We previously studied amyloid-plaque associated neuronal lipids92

and amyloid-β peptide species in transgenic Alzheimer’s disease (AD) mice using MALDI-93

IMS of lipids14 and peptides17 followed by immunofluorescent staining of plaques on the94

same section. Although co-localization of MALDI ion images and fluorescent amyloid images95

was obtained in these studies for qualitative validation, the IMS/IHC signal alignment was not96

optimal at higher resolution scales. 14, 17 This was particularly prominent for peptide imaging97

as these MALDI experiments require higher laser pulse energies for desorption-ionization of98

large peptides and proteins.28 Since, all of these studies employed a nanosecond Nd:YAG99

laser with structured beam profile, 29 it is relevant to consider the local mechanical and100
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thermal denaturation effects during laser ablation process to enhance MALDI-IMS101

compatibility for subsequent immunofluorescent staining.102

The aim of the present study, was to therefore to investigate the histology compatibility of103

sublimation based matrix deposition for MALDI-IMS spatial profiling of neuronal lipids with104

subsequent multiplexed immunofluorescent staining in mice brain. Here, sublimation with105

1,5-diaminonapthalene (1,5-DAN) as MALDI matrix was found to give the best lipid signals106

in both ionization modes using low laser pulse energies and number of laser shots. This107

further resulted in minimal damage in tissue integrity and morphology for follow up108

immunofluorescent staining on the same tissue. In addition, the final method was109

exemplified on a transgenic Alzheimer’s disease mice model (tgSwe) to examine cortical Aβ 110

plaque pathology-associated lipid profiles in situ.111

112

EXPERIMENTAL SECTION113

Chemicals and Reagents. All chemicals for matrix and solvent preparation were pro-114

analysis grade and obtained from Sigma-Aldrich (St. Louis, MO), unless otherwise specified.115

TissueTek optimal cutting temperature (OCT) compound was purchased from Sakura116

Finetek (AJ Alphen aan den Rijn, The Netherlands). The ddH2O was obtained from a MilliQ117

purification system (Merck Millipore, Darmstadt, Germany).118

119

Animals. C57BL/6 female mice from Charles Rivers Laboratories were used for method120

development (Sulzfeld, Germany). The animals were housed at the animal facility in121

Gothenburg (Laboratory of Experimental Biomedicine, EBM), kept under standard conditions122

of daylight (12-hour light cycle) and provided with food and water ad libitum. Animals were123

delivered with their respective dams that were further separated at postnatal day (PND) 21 of124

the pups. For the analysis, animals were anesthetized with isoflurane and killed by125

decapitation.126
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Transgenic AD mice, 18 months of age, carrying the Swedish mutation (K670N, M671L) of127

human APP (tgSwe) were used and reared ad libitum at the animal facility at Uppsala128

University under a 12/12-hlight/dark cycle.30 All experimental conditions were approved by129

the Animal Research Ethics Committee (Gothenburg committee of the Swedish Agricultural130

Agency and Uppsala University), in accordance with the national animal welfare legislation.131

The following ethical identification number was used: (DNr #20-2013, Gothenburg; DNr132

#C17⁄ 14, Uppsala University). 133

134

Tissue Sampling and Sectioning. The brains were dissected quickly with 3 minutes135

postmortem delay and frozen on dry ice. Frozen tissue sections (12µm) were cut in a136

cryostat microtome (Leica CM 1520, Leica Biosystems, Nussloch, Germany) at 18°C, and137

collected on special-coated, conductive ITO (indium tin oxide) coated glass slides (Bruker138

Daltonics, Bremen, Germany) and stored at -80°C. Prior to matrix deposition by sublimation,139

tissue sections were thawed in a desiccator for 30 minutes under reduced pressure140

(SpeedVac, Eppendorf, Hamburg, Germany).141

142

Sublimation based Matrix Deposition. Matrix deposition was carried out in a sublimation143

apparatus (Sigma Aldrich) as previously described.14 The sublimation protocol was144

optimized with respect to temperature, deposition time and total amount of deposited matrix145

in order to obtain the best detection efficiency for lipids on mice brain tissue. Under stable146

vacuum (0.8 mbar) and temperature (130°C) conditions, we varied the amount of matrix147

coating between 50 and 300μg/cm2. A too thin matrix layer (50-70μg/cm2) yielded very few148

lipid ions, while a too thick matrix layer (200-300μg/cm2) resulted in dominant matrix ions149

(Supporting Information, Figure S-1). With this setup, the optimum matrix layer was found to150

be 120µg/cm2 to give the best lipid signals, which is in a good agreement with previous151

results31. We used optimized sublimation conditions: 20 minutes at a temperature of 130°C152

under a stable vacuum of 0.8 mbar. Homogeneity of the matrix distribution over the analyzed153
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sections was evaluated by monitoring the non-normalized ion intensity of a proposed matrix154

derived [2DAN-2H]+. Ion. 31 (Supporting Information Figure S-2).155

156

MALDI-IMS Analyses. Imaging MS analysis of tissue sections were performed on a MALDI157

TOF/TOF UltrafleXtreme mass spectrometer equipped with SmartBeam II Nd:YAG/355 nm158

laser operating at 1 kHz providing a laser spot diameter down to ~10µm for the ‘minimum’159

focus setting (Bruker Daltonics).29 As the laser beam energy profile (structured) and160

instrumental setup of the here used MALDI instrumentation do not facilitate straight forward161

measurement of exact laser fluence value at a flat target surface, 29 detailed information162

about the laser pulse energy settings is provided as follows: Global laser attenuator setting163

was kept stable at 10% throughout all the experiments and the laser focus set to minimum.164

Attenuator offset was 40% and attenuator range was 10%, for the minimum laser focus. The165

laser shot count of the instrument unit used for this experimentation was about 1501245k (in166

~9 months age).167

The effect of laser energy and number of shots on matrix cluster intensity was evaluated on168

blank glass slides covered with 120µg/cm2 sublimated matrix. Varying laser pulse energies169

(5% increments over attenuator range: 0 to 100%) with n=10 shots were investigated and170

number of laser shots (5, 20, 50, 100, 300, 500) were evaluated at threshold laser energy171

(global offset 10% and attenuator offset 40% with the attenuator/density wheel set to 0%).172

Here the signal intensity (SI) of all 1,5-DAN matrix derived cluster peaks was determined173

using peak picking (centroid, S/N 3) in flexAnalysis (v 3.0, Bruker Daltonics). The mean174

values were statistically compared using ANOVA and Tukey posthoc analysis in origin (v8.1175

originlab, Northampton, MA).176

MS data acquisitions were performed in reflective ion mode over a mass range of 300-2000177

Da with a source accelerating voltage of 25kV in positive and 20kV in negative polarities. The178

detector gain value was kept stable at 2626 V for both ionization modes. A mass resolution179

of M/ΔM 20 000 was achieved in the lipid mass range (i.e., 650−1000 Da). External 180
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calibration was carried out using peptide calibration standard I (Bruker Daltonics). Image data181

were reconstructed, root mean square (RMS) normalized and visualized using Flex Imaging182

v3.0 (Bruker Daltonics). Lipid classifications were determined by comparing mass accuracy183

data with the LIPID MAPS database (Nature Lipidomics Gateway, www.lipidmaps.org).184

185

Immunohistochemistry/Fluorescence and H&E Staining. Prior to staining, sections were186

rinsed in absolute EtOH for 60s, fixed in 95%EtOH/5%AcOH at -20°C for 9 min, 70%EtOH at187

-20°C for 30sec, 70%EtOH at RT for 30sec, followed by 5min PBS, and 5min PBST (0.1%188

v/v Tween 20) wash at RT. Tissue was blocked for 1 hour at RT with blocking solution189

(PBST, 5% NGS, 2% BSA), followed by overnight primary antibody incubation at 4°C. The190

following morning, sections were washed 3x5min with PBST and stained with fluorescent191

secondary antibodies for 1h at RT. Finally, tissues were washed 3x5min with PBST, and192

mounted with Prolong Gold Antifade Mountant with 4',6-diamidino-2-phenylindole (DAPI,193

Thermo Fisher Scientific, Waltham, MA). Both primary and secondary antibodies were194

diluted in PBST containing 0.05% NGS, 0.02% BSA. Anti-III-tubulin (1:250, Abcam,195

Cambridge, UK) and Anti-Glial Fibrillary Acidic Protein (GFAP, 1:500, Abcam,) primary196

antibodies were used. Goat anti-rabbit IgG conjugated to Alexa Fluor 488 (Thermo Fisher197

Scientific) and goat anti-mouse IgG conjugated to Alexa Fluor 555 (Thermo Fisher Scientific)198

were used for visualization. Sections stained in diluent solution without primary antibodies,199

served as negative control. Imaging was performed using a wide field microscope (Axio200

Observer Z1, Zeiss, Jena, Germany) using 10x air objective for overview images and 100x201

oil objective for investigation of laser ablation effects. Image processing was done using the202

ImageJ software (http://rsb.info.nih.gov/ij/). For H&E staining, after MSI the matrix was203

washed away using 2x1 minute submersions in 100% EtOH. Tissue was rehydrated in 70%204

EtOH, 50% EtOH and milliQ water, 2 minutes each. The slide was placed in hematoxylin205

(HistoLab Products, Västra Frölunda, Sweden) for 2 minutes and washed with water for 2206

minutes. The slide was then counterstained in 0.2% Eosin (HistoLab Products) for 2 minutes207

and washed in water for 2 minutes. The section was finally washed and dehydrated in208
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50%EtOH, 70% EtOH and 100% EtOH for 1 minute each. Tissue was mounted with209

Permount mounting medium (eBioscience, Thermo Fisher Scientific). For fluorescent amyloid210

staining, after MALDI-IMS analysis, sections were rinsed in absolute EtOH for 60s, fixed in211

absolute EtOH at −20 °C for 8 min, 70%EtOH at −20 °C for 30 s, 70%EtOH at RT for 30 s, 212

and rinsed for 5min in PBS both prior and after staining. For amyloid staining, 30 min213

incubation in heptameric formyl-thiophene acetic acid (h-FTAA), diluted to a final214

concentration of 3 mM in PBS, was used. Prior to imaging, the tissue was mounted with215

Prolong Gold antifade reagent (Thermo Fisher Scientific) and dried for 2 h at RT. Imaging216

was performed using a wide field microscope (Zeiss Axio Observer Z1).217

218

RESULTS AND DISCUSSION219

In the present study, we investigated the suitability of high spatial resolution lipid imaging220

using MALDI IMS for subsequent immunofluorescent staining. To overcome lateral analyte221

diffusion issues as commonly observed with wet matrix coating approaches (e.g. nebulizers222

and airbrushes), we investigated sublimation based approach for matrix deposition and lipid223

imaging prior to subsequent immunohistochemistry and fluorescent staining. Histology-224

compatibility of laser ablation process has been studied in detail.225

226

Reducing Matrix Cluster Formation Induced by Laser Irradiation.227

Interaction of laser energy with matrix compounds is the crucial step for enhanced ion yields228

in MALDI-MS analysis since all matrix compounds have different optical and physico229

chemical properties.32 In the present study, commonly used matrix compounds, including230

DHB, HCCA and 1,5-DAN were investigated for sublimation and neuronal lipid imaging in231

rodent brain in both ionization modes. The sublimation protocol was used with optimized232

amounts of deposited matrix in accordance with previously described results.31 Here,233

sublimation of DHB and HCCA gave poorer lipid spectral quality (600-1000Da) with the234
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same laser fluences as compared to 1,5-DAN sublimation and MALDI IMS, particularly in235

negative ion mode (Supporting Information Figure S-3). In UV-MALDI, increased laser236

fluences result in high-intensity matrix signals beside fragmentation of matrix- and analyte237

molecules, which causes deterioration of the spectral quality and matrix suppression238

effect.32, 33 Indeed, even slightly increased laser fluences resulted in matrix cluster formation239

when using sublimation of 1,5-DAN for MALDI IMS (Figure 1).240

Upon laser irradiation, 1,5-DAN shows a unique behavior with respect to radical formation in241

contrast to other matrix compounds. Odd-electron radical ion species are M-H+. readily242

formed rather than M-H+ ions, which is justified by its low ionization energy.31 We243

investigated the effect of laser pulse energy and number of laser shots on the total signal244

intensity of matrix derived signals from sublimation based matrix deposition. Increasing laser245

pulse energy and number of laser shots resulted in a sharp increase in the total signal246

intensity of all matrix derived signals in both positive and negative polarities (Figure 1).247

248

Figure 1. Effect of a) laser pulse energy (10 laser shots) and b) number of laser shots (at threshold249

laser pulse energy) on the total signal ion intensity of matrix derived peaks from a sublimation based250

matrix coating (120μg/cm2). Data collected both in positive (red) and negative (black) ionization251

modes. Error bars: SD, (n=3). For both ion modes, statistical significance (p<0.05) was252

observed e.g. between 0 and 15% and 0 and 30% in a) as well as for 0 and 100 shots in b).253

254
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Formation of matrix cluster ions was more prominent in negative ionization mode at the255

same levels of laser fluences as compared with positive ionization mode (Figure1). This256

could be explained by distinct reductive properties and radical ion transfer abilities of 1,5-257

DAN compared with other matrices.31, 34 Here, negative radical species produced by laser258

irradiation (M.-) were shown to cause further reduction reactions via producing H. radicals.31259

This can in turn give rise to a larger number and more intense peaks of negatively charged260

matrix cluster ions as compared with positively charged cluster ion species. Therefore, using261

1,5-DAN as a MALDI matrix could facilitate efficient gas phase ionization of lipid species with262

readily ionized 1,5-DAN matrix ions with very low-energy laser irradiation, particularly in263

negative ionization mode.264

265

Histology Compatibility and Spectral Quality of MALDI-IMS. Beyond extensive matrix266

cluster ion formation and diminished sensitivity by oversampling35, high laser pulse energies267

and large number of laser shots have a severe impact on tissue integrity and morphology.268

This in turn may result in poor histological information after MALDI-IMS analysis. Again, the269

choice of matrix is very relevant as it can have a substantial effect with respect to tissue270

distortion during desorption-ionization process due to the distinct molar UV absorptivity271

values and other physicochemical properties of the different UV absorbing matrix272

compounds.32 For the here investigated matrices, DHB, HCCA and 1,5-DAN, DHB and273

HCCA gave inferior lipid signal intensities (Supporting Information Figure S-3), which in turn274

would require higher laser energies for DHB and HCCA in order to obtain a comparable IMS275

spectral quality. This further supports the hypothesis that 1,5-DAN based MALDI is276

characterized by more gentle desorption and ionization process as compared to other277

matrices. Moreover, the reduced laser energy and number of shots used for 1,5-DAN might278

result in reduced tissue distortion as compared to DHB and HCCA, where higher laser279

energies are needed.280



12

In order, to investigate the histology-compatibility of MALDI-IMS analysis, four different281

regions within a mouse brain cerebellum, including the molecular and granular layers of the282

cerebral cortex and the cerebral white matter (Figure 2a). The regions were analyzed with283

different MALDI parameters in negative polarity using 1,5-DAN sublimation. This included284

varying laser pulse energies and number of laser shots (Figure2b,c). The impact on tissue285

morphology was then evaluated by means of subsequent IHC and fluorescent staining286

experiments (Figure 2a).287

Here, we observed that high laser pulse energies (50% density wheel) resulted in tissue288

distortion with 5 and 100 laser shots (Figure 2a I-II). Moreover, this was accompanied with289

poor MALDI-IMS image quality (Figure 2b I-II) as well as higher number and intensity of 1,5-290

DAN cluster ions in between 300-650 Da mass range (Figure 2c I,II). These extensive291

clusters resulted furthermore in suppressed lipid signals (Figure 2c I,II). In contrast, MALDI292

experiments with low laser pulse energy (threshold energy level), were efficient to protect293

tissue integrity (Figure 2a III-IV) and improved MALDI imaging data. However, a higher294

number of low-energy laser shots (100) still resulted in image distortion, showing signs of295

laser ablation in the IHC images (Figure 2a III) and intense matrix clusters between 300-650296

Da (Figure 2c III).297

On the other hand, cerebral white matter was found to be more resistant to higher laser298

pulse energies and higher number of laser shots, showing less signs of damage compared299

to molecular and granular layers (Figure 2a I-II). This fact points out the great importance of300

mechanical properties of biological tissues to laser ablation, as both the elasticity and301

strength of the tissues can modulate the kinetics and dynamics of the ablation process.25302

The resistant of white matter to the energetic laser pulses and local heating by nanosecond303

pulse durations can be explained by the superior rigidness as this region consists mainly of304

myelinated fiber tracts.36 In turn, the higher susceptibility to laser ablation effects for the305
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molecular- and granular layer can be explained by their soft tissue properties as these layers306

consist mainly of cell bodies 25 with less myelin content.36307

Laser ablation effects on tissue morphology were further investigated on different areas of308

molecular layer within the cerebellum in a sagittal mouse brain tissue section. By varying309

the number of laser shots (5, 20, 50, 100, 200, 300, 500) using threshold laser energy,310

tissue and fluorescent signal distortions were observed starting with 50 laser shots and311

getting prominent with ≥100 laser shots (Supporting Information Figure S-4I-II). Moreover, 312

epitope degradation was prominent as indicated by the decreased tubulin and GFAP313

immunofluorescence, while the DAPI signal was less affected (Supporting Information314

Figure S-4II). In addition, control experiments were performed to investigate whether the315

increased fluorescence background on the laser ablation sites is a result of sole tissue316

damage and autofluorecence or non-specific binding of primary and secondary antibodies317

on the ablated raster sites. Therefore, control experiments were performed without using any318

or solely a secondary antibody following MALDI-IMS analysis with varying number of laser319

shots. The results indicate that ablation-damaged tissue areas display increased320

background in both blue and green channels in fluorescence microscope images321

(Supporting Information Figure S-5II), while no significantly higher fluorescent signal was322

observed with staining using the fluorescently labelled secondary antibody (Supporting323

Information Figure S-5I). This suggests a dominant effect of tissue distortion and324

consequently autofluorescence rather than unspecific binding (Supporting Information Figure325

S-5).326

327
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328

Figure 2. Subsequent IHC and fluorescent staining images of four different sections on mice329
cerebellum region analyzed with different parameters of MALDI imaging mass spectrometry. a I) 100330
of 50%-energy laser shots a II) 5 of 50%-energy laser shots a III) 100 of threshold-energy laser shots331
and a IV) 5 of threshold-energy laser shots in reflective negative ion mode followed by332
immunohistochemistry and fluorescent staining. Corresponding single ion images of PE-p (40:6, m/z333
774.6) and full range MS spectra of the same sections were shown in b I-IV and c I-IV, respectively.334
Highlighted regions in the spectra (650-950 Da) show relative signal intensity of lipids. Arrows in335
between 300-650 Da mass range indicate 1,5-DAN matrix cluster ions. %-energy stands for density336
wheel setting. Imaging data were acquired with a spatial resolution of 10µm. Anti-glial fibrillary acidic337
protein (GFAP, green), anti-III-tubulin (red) and fluorescent stain 4,6-diamidino-2-phenylindole (DAPI,338
blue) were used to visualize radial glial cells, cytoskeleton and cell nuclei, respectively; allowing to339
highlight the molecular layer, the granular layer and the white matter.340

341

Interestingly, using solely threshold laser energy (i.e. global offset: 10%, attenuator offset:342

40%, 0% density wheel), with only 5 laser shots, proved to maintain histological morphology343
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with an undistorted image quality and fluorophore signal as well as protection of protein344

epitopes (Figure 2a IV). These parameters resulted in enhanced spectral information and345

IMS data quality (Figure 2b IV), which is further highlighted by the single ion images of346

phosphatidylethanolamine (PE-p 36:4) indicating a substantial signal increase of this species347

in the molecular layer (Figure 2b IV). Moreover, this approach resulted in a general348

enhancement of lipid signals (in 650-950 Da mass range), as compared to collection of 100349

laser shots, along with suppression of matrix clusters between 350-650 Da (Figure 2c IV).350

These results can be explained by the comparable low ionization energy of 1,5-DAN.351

Although understanding of desorption/ionization process is still unachieved due to the352

complex ionization processes in desorbed matrix-assisted laser desorption plume28, 37,353

analyte ion formation in UV-MALDI was shown to be a convolution of analytes pre-charged354

in the solution (Lucky-Survivor Model) 38 as well as ionization of neutral analytes by the355

ionized matrix ions in the gas phase. 37, 39, 40 Therefore, low energies sufficient for ionization356

of 1,5-DAN molecules can enhance gas phase ionization of lipids by readily ionized matrix357

ions even at very low laser fluences, particular in negative ion mode. As a result, by358

minimizing the oversampling effect and to increase the ionization sensitivity 35, this “gentle”359

irradiation does further enable improved correlation of well-preserved molecular tissue360

morphology with lipid signals, as illustrated for PE-p (40:6, m/z 774.6) species.361

362

Microscale Effects of Laser Ablation following MALDI-IMS. Using only a low number of363

laser shots at low laser pulse energies allowed for comprehensive MALDI-IMS and364

subsequent fluorescence microscopy of the molecular layer, granular layer and the white365

matter of the cerebellum, as visualized with antibodies towards glial fibrillary acidic protein366

(GFAP) and III-tubulin as well as DAPI for nuclear staining (Figure 3).367

368
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369

Figure 3. High resolution immunohistochemistry and fluorescent staining images following MALDI-370
IMS. Immunohistochemistry and fluorescent staining were performed on two cerebellar regions of371
interest (ROI-I: a-d, corresponding to Fig. 2a-III and ROI-II: e-h, corresponding to Fig. 2a-IV). High372
resolution fluorescent microscopy (100x) shows no overlap of laser ablation after MALDI-IMS with (b-373
d) 100 shots and (f-h) 5 shots with laser energy set to threshold (0% density wheel setting). (f-h) Low374
number of laser shots at threshold energy allowed for visualization of radial glial cells (GFAP, green)375
and cell nuclei (DAPI, blue) without laser ablation damage on the brain tissue as compared to b-d376
where tissue distortion is observed. Magnification a,e: (10x); b-d, f-h: (100x).377

378

In particular, by using a higher magnification (100x), a clear visualization of cellular379

structures including nuclei (DAPI) and cytoplasmic protein accumulation (GFAP) was380

possible as laser ablation induced interferences on the tissue surface were abolished, when381

acquiring IMS data with only 5 laser shots (Figure 3 f-h) as compared to collection of 100382

shots (Figure 3 b-d). The results highlight that the application of 1,5-DAN sublimation and383

gentle laser irradiation for lipid MALDI-IMS in negative ion mode preserves the entire384

histological information for subsequent IHC analysis and suggests thereby enhanced385

correlation of molecular information with histological features.386

On the other hand, the IHC results were compared to H&E staining following MALDI IMS.387

H&E is commonly used after MALDI-IMS analysis on the same tissue section to correlate388

IMS data with histological features.23 It is a non-specific chemical staining method, which is389

used to evaluate all histological structures and cells that take up the staining dye. As this is a390

general protein staining method, i.e. not specific for any unique epitope(s), it may not reveal391

distortions of protein structures and cells occurring as a consequence of laser ablation392



17

effects caused by irradiation with energetic laser pulses during desorption-ionization393

process.394

Indeed, in contrast to IHC and fluorescent staining, high resolution microscopy images of395

subsequent H&E staining did not show any laser ablation effects on tissue morphology when396

acquiring MALDI-IMS data with 200 laser shots per pixel area at threshold laser pulse energy397

(Figure 4). Furthermore, control experiments have been performed using exactly the same398

tissue pre-treatment for both H&E and IHC staining experiments. Laser ablation effects on399

the tissue morphology were further investigated on different sections of molecular layer with400

varying number of laser shots (5, 50, 100, 200, 300, 500) using threshold laser energy. Here,401

high-resolution microscopy images of H&E staining indicated no signs of laser ablation402

effects up to 500 laser shots (Supporting Information Figure S-6).403

These results can be explained by the non-specific staining of H&E in which hematoxylin and404

eosin stain general nucleic acids and proteins 41. H&E staining involves application of405

hemalum that stains nuclei of cells (and a few other objects, such as keratohyalin granules406

and calcified material).The nuclear staining is followed by counterstaining with an aqueous or407

alcoholic solution of eosin Y, which stains eosinophilic structures in various shades of red,408

pink and orange.41 Interestingly, in the fluorescent staining experiments, the DAPI staining409

intensity was largely unaffected as compared to the antibody labelling (Figure 3c and410

Supporting Figure S4). This further supports the theory that epitope availability is more411

sensitive to laser ablation effects than unspecific histological staining as observed for DAPI412

and H&E.413

414
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415

Figure 4. High resolution H&E staining after MALDI-IMS analysis on the same tissue section. a) H&E416
stained cerebellar region. b) Single ion image of PE-p 40:6 (m/z 774.6) from cerebellar region417
analyzed with MALDI-IMS by acquiring 200 laser shots (at threshold laser pulse energy) per pixel with418
10μm spatial resolution. High resolution microscopy images of (c,d ) MALDI-IMS analyzed and e, f) 419
non-analyzed regional microscopy images show no laser ablation effects with c,e) 20x and d,f) 100x420
magnification.421

422

This in turn is of great relevance, as MALDI imaging applications are commonly based on423

subsequent H&E staining in order to validate and correlate the ion signals to424

histopathologically relevant features. As H&E staining is unspecific, consequences of tissue425

distortion and ion delocalization cannot be detected and quantified. This can in turn lead to426

misalignment issues and false positive results for correlation of multimodal imaging data and427

biological interpretation (Figure 4c,d).428

429

High Resolution MALDI IMS with Subsequent Immunofluorescent Staining. High-430

resolution MALDI-IMS is a suitable approach for improved correlation of MS ion image data431

with histological features.11, 42 We achieved a spatial resolution of 10μm in both positive and 432

negative ionization modes to reach spatially detailed information to be correlated with433

histological features which were visualized by subsequent IHC and fluorescent staining434

(Figure 5a, b). In this case, when using minimum laser focus parameter, no laser ablation435

overlap was observed with 100 of low-energy laser shots (Figure 3a-d) and even no signs of436
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laser ablation with low-energy few number of laser shots (Figure 3e-h) in negative ionization437

mode. Using 1,5-DAN sublimation in conjunction with gentle irradiation in MALDI-IMS438

analysis of neuronal lipids allowed for subsequent immunohistochemistry analysis with439

minimized loss of histological information in negative ion mode (Figure 5a). However, the440

number of laser shots (n=50) at the threshold laser energy (global offset: 10%, att. offset441

40%, 0% density wheel) that was needed to obtain intense lipid signals was higher in positive442

ion mode. This can be due to the fact that 1,5-DAN as a basic matrix compound can act as a443

‘‘proton sponge’’ during desorption-ionization process and suppress the formation of444

positively charged lipid ions in the gas phase. Therefore, in positive ion mode, slight signs of445

laser ablation effects were observed on the tissue surface after high resolution MALDI-IMS446

analysis. (Figure 5b)447

448
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449

Figure 5. High spatial resolution MALDI-IMS of lipids in both a) negative and b) positive ionization450
modes from a sagittal mice cerebellum regions coated with 1,5-DAN sublimation approach and451
acquired with a lateral resolution of 10μm. Anti-glial fibrillary acidic protein (GFAP, green), anti-III-452
tubulin (red) and 4,6-diamidino-2-phenylindole (DAPI, blue) fluorescent stain were used to visualize453
radial glial cells, cytoskeleton and cell nuclei, respectively; allowing to highlight the molecular layer, the454
granular layer and the white matter.455

456

Here histological features of the of the cerebellar regions as outlined by fluorescence457

immunostaining can be visualized and correlated with ion signals of distinct neuronal lipid458

species, including ceramides (CerP 18:0, m/z 644.6), sulfatides (ST 20:4, m/z 890.6) and459

phosphoethanolamines (PE 38:4, m/z 766.6) and phosphoinositols (PI 36:4, m/z 857.5) in460

negative ion mode (Figure 5a) and phosphatidylcholines (PC 32:0, m/z 734.6) and461
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lysophosphatidycholines (LPC 16:0, m/z 496.3 and LPC 18:0, m/z 524.3) in positive ion462

mode (Figure 5b). In detail, PE 38:4 and PC 36:4 were found to localize to the cell body463

dense granular layer as visualized with DAPI, highlighting their role in mammalian neuronal464

cell membranes. In addition, together with CerP 18:0 and PC 40:6, these species also465

localized to the radial glial cell rich molecular layer, as visualized with GFAP, also known for466

presence of granule cell derived parallel fibers. In contrast, sulfatides ST 24:0 and ST467

22:0(OH) predominantly localized to the white matter and in part to the granular layer. This468

can be tied to the abundance of long myelinated axons in the white matter (as visualized with469

anti-III-tubulin) and presence of oligodendrocytes in the granular layer where sulfatides are470

one of the main lipid constituents.43471

472

Enhanced Speed of Data Acquisition for High Spatial Resolution in Negative Ionization473

Mode. High-speed in IMS is needed in order to obtain high spatial resolution ion images of474

larger tissue areas in a reasonable acquisition time35, particularly for sublimated tissue475

samples, where volatile matrices are used that are subjected to high vacuum in the ion476

source.44 For example, acquisition of a small cerebellar region requires 8412 pixel points to477

be analyzed with 10μm spatial resolution (Figure 6a). For high-speed MALDI-TOF IMS, there 478

have been technological advances including high repetition rate lasers, continuous raster479

sampling, and synchronized high repetition laser beam with rapidly moving sample stage.35,480

44, 45 However, the number of laser pulses required per pixel point to obtain intense lipid481

signals can have a substantial effect on the speed of data acquisition.482

483
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484

Figure 6. Illustration of MALDI-IMS experiment of lipids in negative ionization mode using 1,5-DAN485
sublimation, given with a defined a) IHC image of cerebellar region (8412 pixel points with 10μm 486
spatial resolution) and represented by ion image of PE 38:4, m/z 766.6 b)-d). The areas indicate the487
approximate proportion of the cerebellar region that can be measured with indicated number of laser488
shots b) 5, c) 100, d) 300 per pixel point. e) comparative speed of acquisition and percent area of a489
cerebellar region (8412 pixel points) that can be Imaged using different number of laser shots per pixel490
area at 10μm spatial resolution.491

492

Using the optimized 1,5-DAN sublimation approach, only 5 laser shots were needed for493

negative ion lipid imaging, reducing the required amount of time to generate a pixel spectra494

substantially (Figure 6b,e). Considering the number of pixel points (several tens of495

thousands) needed to image a whole brain tissue section at high spatial resolutions, along496

with the required technical- and biological replicates, this approach can substantially reduce497
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the necessary acquisition time to a more reasonable level for biological and clinical498

applications.499

500

Amyloid-β Plaque Associated Neuronal Lipids Imaging Using High Spatial Resolution 501

MALDI-IMS with Subsequent Fluorescent Staining. Finally, in order to further demonstrate502

the potential and relevance of the here described method, we performed high resolution IMS503

and subsequent fluorescent staining on brain tissue in transgenic Alzheimer’s disease (AD)504

tgSwe mice. AD is a chronic, neurodegenerative disorder which is characterized by the505

formation of protein deposits in the brain including intercellular neurofibrillary tangles506

consisting of hyperphosphorylated tau protein46 and extracellular amyloid-β plaques47.507

Recent studies suggest that dysregulated neuronal lipid metabolism may be linked to AD508

pathogenesis, potentially by influencing amyloidogenic processing of the transmembrane509

amyloid precursor protein (APP) and/or the aggregation of amyloid  (A).48, 49 Therefore,510

multimodal chemical imaging tools are needed in order to delineate Aβ plaque-associated 511

neuronal lipid species. We therefore investigated TgSwe mice that overexpress β-amyloid 512

(Aβ) due to having the human APP KM670/671NL mutation and develop intraneuronal Aβ 513

aggregates at six months and extracellular plaques at 12 months. We utilized the here514

described method for rapid, high-spatial resolution (10μm), histology-compatible MALDI-IMS 515

of neuronal lipid species on a cortical region followed by subsequent fluorescent amyloid516

staining50 of cortical Aβ aggregates (Figure 7). 517

518

519
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520

Figure 7. Imaging of amyloid plaque associated neuronal lipid species using high resolution MALDI-521
IMS with subsequent fluorescent staining. a) bright-field image of sagittal tgSwe mice brain tissue522
section. b) high resolution (10μm) MALDI-IMS analyzed cortical region using the method in Fig 2a IV. 523
c,e) ion image of Ceramide (18:0, m/z 564.6) species which is correlated with d,f) high resolution524
fluorescent microscopy image of amyloid aggregates.525

526

The results demonstrate a conclusive correlation of MALDI-IMS derived ion image data of527

e.g. ceramide species (18:0, m/z 564.6) and fluorescent microscopy images of amyloid528

aggregates. This in turn suggests a role of plaque-associated ceramide elevation in AD529

pathology as previously reported in AD patients51 as well as in another transgenic AD models530

14. Identification of ceramide (18:0, m/z 564.6) species was based on its characteristic531

fragment ions52 using MALDI-LIFTTM based MS/MS that was performed directly on the532

plaques in situ (Supporting Information, Figure S-7). Here, an accurate correlation of the IMS533

data to IHC annotated amyloid plaques is essential in order to correctly identify plaque534

pathology associated lipid species. This highlights further the relevance of non-impaired535

tissue and protein morphology as achieved with the here presented multimodal imaging536

methodology.537

CONCLUSIONS538

In this study, we demonstrated that elaborate optimization of MALDI-IMS parameters539

enhanced the performance of the MALDI imaging of brain lipids. By using a comparably low-540

ionization energy matrix compound, 1,5-DAN, histological information after IMS analysis was541
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preserved along with enhanced lipid spectra quality and data acquisition speed. Subsequent542

immunofluorescent stainings revealed laser fluence-dependent distortion of tissue543

morphology, which was not detected with commonly used H&E staining. Finally, the544

improved methodology was successfully applied to spatially profile amyloid plaque-545

associated neuronal lipid species such as ceramide (Cer18:0, m/z 564.6) in a transgenic546

mouse model of Alzheimer’s disease. The technique can be a powerful approach to probe547

lipid pathology of neurodegenerative diseases enhancing the corresponding information of548

MALDI-IMS and immunohistochemistry and/or fluorescent staining methods.549

550
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