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We consider the possibility of grand unification of the SU(3)c ⊗ SU(3)L ⊗ U(1)X model in an SU(6) 
gauge unification group. Two possibilities arise. Unlike other conventional grand unified theories, in 
SU(6) one can embed the 331 model as a subgroup such that different multiplets appear with different 
multiplicities. Such a scenario may emerge from the flux breaking of the unified group in an E(6) F-theory 
GUT. This provides new ways of achieving gauge coupling unification in 331 models while providing the 
radiative origin of neutrino masses. Alternatively, a sequential variant of the SU(3)c ⊗ SU(3)L ⊗ U(1)X
model can fit within a minimal SU(6) grand unification, which in turn can be a natural E(6) subgroup. 
This minimal SU(6) embedding does not require any bulk exotics to account for the chiral families while 
allowing for a TeV scale SU(3)c ⊗ SU(3)L ⊗ U(1)X model with seesaw-type neutrino masses.
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1. Introduction

The discovery of the Higgs boson established the existence of 
spin-0 particles in nature and this opened up the new era in look-
ing for extensions of the Standard Model (SM) at accelerators. It is 
now expected that at higher energies, the SM may be embedded in 
larger gauge structures, whose gauge symmetries would have been 
broken by the new Higgs scalars. So, we can expect signals of the 
new gauge bosons, additional Higgs scalars as well as the extra 
fermions required to realize the higher symmetries. One of the ex-
tensions of the SM with the gauge group SU(3)c ⊗ SU(3)L ⊗ U(1)X
[1] provides strong promise of new physics that can be observed at 
the LHC or the next generation accelerators [2–7]. Recently there 
has been a renewed interest in this model as it can provide novel 
ways to understand neutrino masses [8–19].

The SU(3)c ⊗ SU(3)L ⊗ U(1)X model proposed by Singer, Valle 
and Schechter (SVS) [2] has the special feature that it is not 
anomaly free in each generation of fermions, but only when 
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all the three generations of fermions are included the theory 
becomes anomaly free. As a result, different multiplets of the 
SU(3)c ⊗ SU(3)L ⊗ U(1)X group appear with different multiplicity 
and as a result it becomes difficult to unify the model within usual 
grand unified theories. For this reason string completions have 
been suggested [20]. In this article we study how such a theory 
can be unified in a larger SU(6) gauge theory that can emerge from 
a E(6) Grand Unified Theory (GUT) [21]. We find that the anomaly 
free representations of the SVS 331 model can all be embedded in 
a combination of anomaly free representations of SU(6), which in 
turn can be potentially embedded in the fundamental and adjoint 
representations of the group E(6) motivated by F-theory GUTs with 
matter and bulk exotics obtained from the flux breaking mecha-
nism [22–25].

Interestingly, the SVS 331 model can also be refurbished in an 
anomaly free multiplet structure which can be right away embed-
ded in a minimal anomaly free combination of representations of 
SU(6) as an E(6) subgroup. We refer to this new 331 model as the 
sequential 331 model. This scheme is particularly interesting since 
its embedding in SU(6) does not require any bulk exotics to ac-
count for the chiral families; and in that sense it provides a truly 
minimal unification scenario in the same spirit akin to the minimal 
SU(5) construction [26].
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The article is organized as follows. In Section 2 we discuss the 
basic structure of the SVS SU(3)c ⊗ SU(3)L ⊗ U(1)X model whereas 
Section 3 describes the sequential SU(3)c ⊗ SU(3)L ⊗ U(1)X model. 
In Section 4 we then analyze the resulting renormalization group 
running of the gauge couplings in the SVS model with and with-
out additional octet states, and discuss necessary conditions for 
gauge unification. In Section 5 we then embed the different vari-
ants of the SU(3)c ⊗ SU(3)L ⊗ U(1)X model in an SU(6) unification 
group and demonstrate successful unification scenarios. Section 6
concerns the experimental constraints from achieving the correct 
electroweak mixing angle and satisfying proton decay limits. We 
conclude in Section 7.

2. The SVS SU(3)c ⊗ SU(3)L ⊗ U(1)X model

The SU(3)c ⊗ SU(3)L ⊗ U(1)X extension of the SM was origi-
nally proposed to justify the existence of three generations of 
fermions, as the model is anomaly free only when three genera-
tions are present. Such a non-sequential model, which is generically 
referred to as the 331 model, breaks down to the SM at some 
higher energies, usually expected to be in the TeV range, mak-
ing the model testable in the near future. The symmetry breaking: 
SU(3)c ⊗ SU(3)L ⊗ U(1)X → SU(3)c ⊗ SU(2)L ⊗ U(1)Y allows us to 
identify the generators of the 321 model in terms of the genera-
tors of the 331 model. Writing the generators of the SU(3)L group 
as

T3 = 1

2
I3 =

⎛
⎝ 1

2 0 0
0 − 1

2 0
0 0 0

⎞
⎠ and

T8 = 1

2
√

3
I8 = 1

2
√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠

with I3 = diag[1, −1, 0] and I8 = diag[1, 1, −2], (1)

we can readily identify the SM hypercharge and the electric charge 
as

Y = 1√
3

T8 + X I3×3 = 1

6
I8 + X I3×3 and

Q = T3 + Y = 1

2
I3 + 1

6
I8 + X I3×3 , (2)

where X is the U (1)X charge and I3×3 is the 3 × 3 identity matrix. 
This allows us to write down the fermions and the representations 
in which they belong as

Q iL =
⎛
⎝ uiL

diL
DiL

⎞
⎠ ≡ [3,3,0], Q 3L =

⎛
⎝bL

tL

T L

⎞
⎠ ≡ [3,3∗,1/3],

uiR ≡ [3,1,2/3], diR ≡ [3,1,−1/3], DiR ≡ [3,1,−1/3]
bR ≡ [3,1,−1/3], tR ≡ [3,1,2/3], T R ≡ [3,1,2/3],

ψaL =
⎛
⎝ eaL

νaL

NaL

⎞
⎠ ≡ [1,3∗,−1/3], eaR ≡ [1,1,−1]. (3)

The generation index i = 1, 2 corresponds to the first two gener-
ations with the quarks uL,R , dL,R , D L,R and cL,R , sL,R , SL,R . For the 
leptons, the generation index is a = 1, 2, 3.

There are several variants of the model that allow slightly dif-
ferent choices of fermions as well as their baryon and lepton num-
ber assignments. Here we shall restrict ourselves to the one which 
contains only the quarks with electric charge 2/3 and 1/3 and no 
lepton number (L). In this scenario all quarks (usual ones and the 
exotic ones) carry baryon number (B = 1/3) and no lepton num-
ber (L = 0), while all leptons carry lepton number (L = 1) and no 
baryon number (B = 0). Notice that in Ref. [10] the lepton number 
is defined as L = 4/

√
3 T8 +L, where U (1)L is a global symmetry 

and a Z2 symmetry is introduced to forbid a coupling like ψLψLφ0, 
in connection with neutrino masses. Since the charge equation 
given in Eq. (2) remains the same for this assignment, the follow-
ing discussion regarding Renormalization Group Equations (RGE) in 
the SVS model remains valid for this assignment as well.

For the symmetry breaking and the charged fermion masses, 
the following Higgs scalars and their vacuum expectation values 
(vevs) are assumed,

φ0 ≡ [1,3∗,2/3] and φ1,2 ≡ [1,3∗,−1/3],

〈φ0〉 =
⎛
⎝k0

0
0

⎞
⎠ , 〈φ1〉 =

⎛
⎝ 0

k1
n1

⎞
⎠ , 〈φ2〉 =

⎛
⎝ 0

k2
n2

⎞
⎠ . (4)

Here we assume k0,1,2 ∼ mW to be of the order of the elec-
troweak symmetry breaking scale and n1,2 ∼ M331 to be the 
SU(3)c ⊗ SU(3)L ⊗ U(1)X symmetry breaking scale. We shall not 
discuss here the details of fermion masses and mixing, which can 
be found in Refs. [9,10].

3. The sequential SU(3)c ⊗ SU(3)L ⊗ U(1)X model

In this model the fields are assigned in a way such that the 
anomalies are cancelled for each generation separately. The multi-
plet structure is given by

Q aL =
⎛
⎝ uaL

daL

DaL

⎞
⎠ ≡ [3,3,0], uaR ≡ [3,1,2/3],

daR ≡ [3,1,−1/3], DaR ≡ [3,1,−1/3],

ψaL =
⎛
⎝ e−

aL
νaL

N1
aL

⎞
⎠ ≡ [1,3∗,−1/3], ξaL =

⎛
⎝ E−

aL
N2

aL
N3

aL

⎞
⎠ ≡ [1,3∗,−1/3],

χaL =
⎛
⎝ N4

aL
E+

aL
e+

aL

⎞
⎠ ≡ [1,3∗,2/3]. (5)

It is straightforward to check that each family is anomaly free. 
In order to drive symmetry breaking and generate the charged 
fermion masses, we assume a Higgs sector and vevs similar to the 
SVS 331 model.1 The Yukawa Lagrangian for the quark sector can 
be written as

Lquarks = yua Q aLuaRφ∗
0 + yi

da
Q aLdaRφ∗

i + yi
Da

Q aL DaRφ∗
i + h.c. ,

(6)

with a = 1, 2, 3, i = 1, 2 and where we neglect any flavor mix-
ing. After the chain of spontaneous symmetry breaking the up-type 
quarks obtain a mass term

mua = yua k0,

while the down-type and vector-like down-type quarks form a 
mass matrix in the (d, D) basis given by

ma
dD =

(
y1

da
k1 + y2

da
k2 y1

Da
k1 + y2

Da
k2

y1
da

n1 + y2
da

n2 y1
Da

n1 + y2
Da

n2

)
. (7)

1 A model with similar fermion content and with k1 = n2 = 0 in the scalar sector 
was discussed in Ref. [27] using the trinification group SU(3)c × SU(3)L × SU(3)R.
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Note that in the cases y1
da

= y2
da

= y1
Da

= y2
Da

≡ yd; or k1 = k2 = k
and n1 = n2 = n the determinant of the above Yukawa matrix van-
ishes giving mda = 0 and mDa = y1

da
k1 + y2

da
k2 + y1

Da
n1 + y2

Da
n2. 

However, in the absence of any symmetries forcing the above con-
ditions, the down quarks obtain mass as a result of the mixing 
with the vector-like quarks. One can determine it perturbatively 
by expanding the Yukawa contributions in terms of ki/ni 
 1 so 
as to obtain

mda =
(

y1
da

k1 + y2
da

k2

)
−

(
y1

Da
k1 + y2

Da
k2

) y1
da

n1 + y2
da

n2

y1
Da

n1 + y2
Da

n2
+ · · · ,

mDa =
(

y1
da

k1 + y2
da

k2

)
+

(
y1

Da
n1 + y2

Da
n2

)
− ∣∣Ma

dD

∣∣/(
y1

Da
n1 + y2

Da
n2

)
+ · · · ,

where∣∣Ma
dD

∣∣ =
(

y1
da

k1 + y2
da

k2

)(
y1

Da
n1 + y2

Da
n2

)
−

(
y1

Da
k1 + y2

Da
k2

)(
y1

da
n1 + y2

da
n2

)
.

This structure can be used to account for the SM quark masses 
as well as the heavier vector-like quark mass limits from the LHC.

Turning now to the lepton sector, the relevant Yukawa terms 
are given by

Lleptons = εαβγ

[
ψ T

αL C−1
(

y1ξβLφ0γ + yi
2χβLφiγ

)
+ ξ T

αL C−1 yi
3χβLφiγ

]
+ h.c. , (8)

where α, β, γ are the SU(3)L tensor indices ensuring antisymmet-
ric Dirac mass terms, C is the charge conjugation matrix, and 
i = 1, 2. After the symmetry breaking, these Yukawa terms give 
rise to the mass matrices for charged and neutral leptons. In the 
basis (e, E) the mass matrix is given by

meE =
(

− (
y1

2k1 + y2
2k2

) (
y1

2n1 + y2
2n2

)
− (

y1
3k1 + y2

3k2
) (

y1
3n1 + y2

3n2
)
)

, (9)

with the eigenvalues given by

me = −
(

y1
2k1 + y2

2k2

)
+

(
y1

3k1 + y2
3k2

) y1
2n1 + y2

2n2

y1
3n1 + y2

3n2
+ · · · ,

mE =
(

y1
3n1 + y2

3n2

)
−

(
y1

2k1 + y2
2k2

)
− ∣∣Ma

eE

∣∣/(
y1

3n1 + y2
3n2

)
+ · · · ,

where∣∣Ma
eE

∣∣ =
(

y1
2n1 + y2

2n2

)(
y1

3k1 + y2
3k2

)
−

(
y1

2k1 + y2
2k2

)(
y1

3n1 + y2
3n2

)
.

For the case of neutral leptons the mass matrix can be written 
as:

mνN

=

⎛
⎜⎜⎜⎝

0 0 y1k0 0 − (
y1

2n1 + y2
2n2

)
0 0 0 −y1k0

(
y1

2k1 + y2
2k2

)
y1k0 0 0 0

(
y1

3k1 + y2
3k2

)
0 −y1k0 0 0 − (

y1
3n1 + y2

3n2
)

− (
y1

2n1 + y2
2n2

) (
y1

2k1 + y2
2k2

) (
y1

3k1 + y2
3k2

) − (
y1

3n1 + y2
3n2

)
0

⎞
⎟⎟⎟⎠,

(10)
in the basis (ν, N1, N3, N2, N4), where N1, N3 are SU(2)L isosin-
glets and ν, N2, N4 are components of doublets. Next, we rotate 
the above mass matrix by an orthogonal transformation m′

νN =
RT mνN R , where

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1
2

1
2

1
2

1
2

− 1√
2

1
2

1
2 0 0

1√
2

1
2

1
2 0 0

0 1
2 − 1

2
1
2

1
2

0 0 0 1√
2

− 1√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

This yields the rotated mass matrix m′
νN given by

m′
νN

=

⎛
⎜⎜⎜⎜⎝

0 0 0 u√
2

− x−z
2

u√
2

+ x−z
2

0 −u 0 (X−Z)+(x+z)
2
√

2
− (X−Z)+(x+z)

2
√

2

0 0 u − (X−Z)−(x+z)
2
√

2
(X−Z)−(x+z)

2
√

2
u√
2

− x−z
2

(X−Z)+(x+z)
2
√

2
− (X−Z)−(x+z)

2
√

2
− X+Z√

2
0

u√
2

+ x−z
2 − (X−Z)+(x+z)

2
√

2
(X−Z)−(x+z)

2
√

2
0 X+Z√

2

⎞
⎟⎟⎟⎟⎠,

(12)

where

u = y1k0, X =
(

y1
2n1 + y2

2n2

)
, x =

(
y1

2k1 + y2
2k2

)
,

z =
(

y1
3k1 + y2

3k2

)
, Z =

(
y1

3n1 + y2
3n2

)
.

Now we recall that k0,1,2 ∼ mW is of the order of the electroweak 
symmetry breaking scale, while and n1,2 ∼ M331 is of the order of 
the SU(3)c ⊗ SU(3)L ⊗ U(1)X symmetry breaking scale, and hence 
one expects that X, Z � u, x, z. If we further assume X + Z �
X − Z , then we can identify the 44 and 55 entries as the heaviest 
in the mass matrix given in Eq. (12) and these rotated isodoublet 
states form a pair of heavy quasi Dirac neutrinos with mass of the 
order of the SU(3)c ⊗ SU(3)L ⊗ U(1)X symmetry breaking scale. We 
can now readily use perturbation theory to obtain the masses for 
the three remaining lighter states. Up to second order in perturba-
tion theory we obtain two Dirac states with mass of the order of 
the electroweak symmetry breaking scale ±u = ±y1k0 and a light 
seesaw Majorana neutrino with mass 2u(z − x)/(X + Z). With this 
we see that the model has enough flexibility to account for the 
observed pattern of fermion masses. It is not our purpose here to 
present a detailed study of the structure of the fermion mass spec-
trum, but only to check its consistency in broad terms.

While a detailed description of the collider phenomenology is 
beyond the scope of this work, we would like to comment that 
there is a rich set of phenomena associated to the production of 
new fermionic states at high energies. If the heavy gauge bosons 
are accessible at the LHC, the exotic quarks and leptons can be ef-
ficiently produced with gauge coupling strength. For example, the 
heavy quasi Dirac neutrinos could be pair-produced at the LHC 
through a Z ′ resonance, pp → Z ′ → Ni Ni . They would then decay 
through SM currents via their admixture with the light neutrinos, 
in a manner similar to [28], Ni → �1W (∗) → � + 2 jets, 2� + Emiss. 
The produced signal would be lepton number conserving due to 
the quasi Dirac nature of the heavy neutrinos. These SM scale 
heavy neutrinos may also be searched for through production via 
SM W and Z processes but this is suppressed by their admixture 
with the light neutrinos.
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4. Renormalization group equations and gauge coupling 
unification

In this section we study the SVS model RGEs to explore if unifi-
cation of the three gauge couplings [29] can be obtained in the 
SU(3)c ⊗ SU(3)L ⊗ U(1)X theory at a certain scale MU , without 
any presumptions about the nature of the underlying group of 
grand unification [10]. Using the RGEs we express the hypercharge 
(and X) normalization and the unification scale as a function of 
SU(3)c ⊗SU(3)L ⊗U(1)X breaking scale. Next we study the allowed 
range of SU(3)c ⊗ SU(3)L ⊗ U(1)X breaking scale such that one can 
obtain a guaranteed unification of the gauge couplings. First we 
discuss the SVS model discussed in section 2. Then, we study the 
impact of adding three generations of leptonic octet representa-
tions [1, 8, 0] that can give gauge coupling unification for a TeV 
scale SU(3)c ⊗ SU(3)L ⊗ U(1)X breaking while driving an interest-
ing radiative model for neutrino mass generation [10].

The evolution for running coupling constants at one loop level 
is governed by the RGEs

μ
∂ gi

∂μ
= bi

16π2
g3

i , (13)

which can be written in the form

1

αi(μ2)
= 1

αi(μ1)
− bi

2π
ln

(
μ2

μ1

)
, (14)

where αi = g2
i /4π is the fine structure constant for i-th gauge 

group, μ1, μ2 are the energy scales with μ2 > μ1. The beta-
coefficients bi determining the evolution of gauge couplings at 
one-loop order are given by

bi = −11

3
C2(G) + 2

3

∑
R f

T (R f )
∏
j 
=i

d j(R f )

+ 1

3

∑
Rs

T (Rs)
∏
j 
=i

d j(Rs). (15)

Here, C2(G) is the quadratic Casimir operator for the gauge bosons 
in their adjoint representation,

C2(G) ≡
{

N if SU (N),

0 if U (1).
(16)

On the other hand, T (R f ) and T (Rs) are the Dynkin indices of 
the irreducible representation R f ,s for a given fermion and scalar, 
respectively,

T (R f ,s) ≡
⎧⎨
⎩

1/2 if R f ,s is fundamental,

N if R f ,s is adjoint,

0 if R f ,s is singlet,
(17)

and d(R f ,s) is the dimension of a given representation R f ,s under 
all gauge groups except the i-th gauge group under consideration. 
An additional factor of 1/2 is multiplied in the case of a real Higgs 
representation.

The electromagnetic charge operator is given by

Q = T3 + Y = T3 + 1√
3

T8 + X, (18)

where the generators (Gell-Mann matrices) are normalized as 
Tr(Ti T j) = 1

2 δi j . We define the normalized hypercharge operator 
Y N and XN as

Y = nY Y N , X = nX XN , (19)

such that we have
n2
Y = 1

3
+ n2

X , (20)

and the normalized couplings are related by

n2
Y

(
αN

Y

)−1 = 1

3
α−1

3L +
(

n2
Y − 1

3

)(
αN

X

)−1
, (21)

where

αN
Y = n2

Y αY , αN
X =

(
n2

Y − 1

3

)
αX , α3L = α2L . (22)

Now using Eqs. (13), (21), (22) we obtain

α−1
U = 1

n2
Y − 1

3

{
α−1

em(M Z ) cos2 θw(M Z ) − 1

3
α−1

2L (M Z )

− bUN
Y − 1

3 b2L

2π
ln

(
M X

M Z

)
− bUN

X

2π
ln

(
MU

M X

)}
,

α−1
U = α−1

2L (M Z ) − b2L

2π
ln

(
M X

M Z

)
− b3L

2π
ln

(
MU

M X

)
,

α−1
U = α−1

3C (M Z ) − b3C

2π
ln

(
M X

M Z

)
− bX

3C

2π
ln

(
MU

M X

)
. (23)

Here, the SM running is described by the SU(3)C coefficient b3C , 
the SU(2)L coefficient b2L and the U(1)Y unnormalized coefficient 
bUN

Y . Likewise, in the unbroken SU(3)c ⊗ SU(3)L ⊗ U(1)X phase, the 
gauge running coefficients for the SU(3)C , SU(3)L and unnormal-
ized U(1)X components are bX

3C , b3L and bUN
X , respectively. The 

scale M Z corresponds to the Z boson-pole, the 331 symmetry 
breaking scale is denoted by M X and MU is the scale of unifi-
cation for the normalized gauge couplings. From the above set of 
equations the unification scale MU can be obtained as a function 
of M X ,

MU = M X

(
M X

M Z

)− b3C −b2L
b X

3C −b3L exp

[
2π

α−1
3C (M Z ) − α−1

2L (M Z )

bX
3C − b3L

]
.

(24)

Similarly, n2
Y can be expressed as a function of M X ,

n2
Y = 1

3
+

[
α−1

em(M Z ) cos2 θw(M Z ) − 1

3
α−1

2L (M Z )

− bUN
Y − 1

3 b2L

2π
ln

(
M X

M Z

)
+ bUN

X

{
1

2π

b3C − b2L

bX
3C − b3L

ln

(
M X

M Z

)

− α−1
3C (M Z ) − α−1

2L (M Z )

bX
3C − b3L

}][
α−1

2L (M Z ) − b2L

2π
ln

(
M X

M Z

)

+ b3L

{
1

2π

b3C − b2L

bX
3C − b3L

ln

(
M X

M Z

)

− α−1
3C (M Z ) − α−1

2L (M Z )

bX
3C − b3L

}]−1

. (25)

The above two relations are valid provided bX
3C 
= b3L and (bX

3C −
b3L) 
= (b3C − b2L), which are satisfied in the cases that we shall 
discuss below. Furthermore, we take M X ≤ MU ≤ 1017 GeV and 
assume that 331 is the only gauge group (in other words M X is 
the only intermediate scale) between M Z and the unification scale 
MU .
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Fig. 1. (Left) Allowed range for SU(3)c ⊗ SU(3)L ⊗ U(1)X symmetry breaking scale M X for guaranteed unification. The solid line represents MU as a function of M X . The 
dashed and dot-dashed lines correspond to MU = 1017 GeV and MU = M X respectively. (Right) The hypercharge normalization factor n2

Y as a function of the 331 symmetry 
breaking scale M X . The shaded region represents the allowed region n2

Y ≥ 1
3 with the dashed line corresponding to the lower limit n2

Y = 1
3 . The solid line gives n2

Y as a 
function of M X and the red dot-dashed line shows the standard SU (5) normalization n2

Y = 5
3 .

Fig. 2. Gauge coupling running in the SVS Model with 331 symmetry breaking scale M X = 7.9 × 1016 GeV, demonstrating successful gauge unification at the scale MU =
8.05 × 1016 GeV with n2

Y = 1.3. The right plot shows the magnified view of gauge coupling running around M X .
4.1. The minimal SVS model

The first case of interest is the minimal scenario described 
in section 2. The relevant gauge quantum numbers are given in 
Eqs. (3), (4). The Higgs sector involves three SU(3)L triplets, namely 
the minimal set necessary for adequate symmetry breaking and 
generation of fermion masses. First we notice that the model de-
scribed in Ref. [10] has the same RGE evolution, since the extra 
gauge singlets added to the fermion spectrum to generate neu-
trino masses do not enter the RGEs. For the SM the one-loop 
beta-coefficients are given by b2L = −19/6, bUN

Y = 41/6, b3C = −7, 
while in the SU (3)c × SU (3)L × U (1)X phase they are given by 
b3L = −13/2, bUN

X = 26/3, bX
3C = −5.

In Fig. 1 (left) we plot the allowed range for M X . The intersec-
tion of the line corresponding to MU evaluated as a function of 
M X in Eq. (24) with the lines for MU = M X and MU = 1017 GeV
gives the lower and upper bound on M X respectively such that 
there is a guaranteed unification. In this scenario, the scale M X of 
SU(3)c ⊗SU(3)L ⊗U(1)X breaking is therefore always high and very 
close to the unification scale MU .

Next, in Fig. 1 (right) we plot the hypercharge normaliza-
tion factor n2

Y as a function of SU(3)c ⊗ SU(3)L ⊗ U(1)X symme-
try breaking scale M X . The dashed horizontal line represents the 
lower limit n2

Y = 1
3 of the allowed value for n2

Y . As can be seen 
from the figure, for the allowed M X range from the condition 
M X ≤ MU ≤ 1017 GeV the hypercharge normalization n2

Y is almost 
constant ≈ 1.3 and well above the allowed lower limit.
Finally, in Fig. 2 we give an example of gauge coupling run-
ning with respect to the 331 symmetry breaking scale M X =
7.9 × 1016 GeV. It demonstrates that successful gauge unification 
at the scale MU = 8.05 × 1016 GeV with n2

Y = 1.3 can be achieved, 
albeit this requires a very high scale of SU(3)c ⊗ SU(3)L ⊗ U(1)X
breaking very near to the unification scale.

4.2. The SVS model with fermionic octets

In this model, in addition to the field content of model I, we in-
clude three generations of fermion octets � with the assignments 
under the SU(3)c ⊗ SU(3)L ⊗ U(1)X group given by

� ≡ [1,8∗,0]. (26)

The Higgs sector involves the same three SU(3)L triplets as 
before. Although this model has the same content as the one con-
sidered in Ref. [10], here we take a completely different approach 
to unification. Indeed, we do not consider the usual SU(5) normal-
ization for the hypercharge and the octet mass scale is the same as 
the 331 symmetry breaking scale. In this model, the neutrinos are 
massless at tree level, however at one-loop level the exchange of 
gauge bosons gives rise to dimension-nine operator which gener-
ates neutrino masses after 331 symmetry breaking [10]. For the 
SM the one-loop beta-coefficients remain the same as Model I, 
while in the SU(3)c ⊗ SU(3)L ⊗ U(1)X phase they are given by 
b3L = −1/2, bUN

X = 26/3, bX
3C = −5.

In Fig. 3 (left) we plot the allowed range for M X for which 
unification is guaranteed at a scale M X ≤ MU ≤ 1017 GeV. Inter-
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Fig. 3. Same as Fig. 1, but for the SU(3)c ⊗ SU(3)L ⊗ U(1)X SVS model with three additional fermionic octets. The purple dotted line corresponds to the lower limit of MU

allowed by the current experimental limits on the lifetime of the proton decay.
Fig. 4. Gauge coupling running in the SVS Model adding three generations of 
leptonic octets with SU(3)c ⊗ SU(3)L ⊗ U(1)X symmetry breaking scale at M X =
3000 GeV, demonstrating successful gauge unification at the scale MU = 1014.9 GeV
with n2

Y = 1.8.

estingly, in this model we find that for a SU(3)c ⊗ SU(3)L ⊗ U(1)X
symmetry breaking scale M X as low as TeV it is possible to 
achieve unification. Note that in contrast to Ref. [10], here we 
do not assume another intermediate scale corresponding to the 
fermion octet mass scale in addition to M X . Formally, unifica-
tion can thus be achieved for any scale M X between M Z and 
MU , however, MU � 1015.5 GeV is disfavored by the current ex-
perimental limits on the lifetime of the proton decay [30]. This 
consequently puts a lower limit of the order of M X � 105 GeV on 
the SU(3)c ⊗ SU(3)L ⊗ U(1)X breaking scale, although we should 
emphasize that we here do not specify the GUT group and thus 
cannot predict the proton decay rate accurately.

In Fig. 3 (right) we plot the hypercharge normalization factor 
n2

Y as a function of SU(3)c ⊗ SU(3)L ⊗ U(1)X symmetry breaking 
scale M X . In this case as well, for the allowed M X range from the 
condition M X ≤ MU ≤ 1017 GeV the hypercharge normalization n2

Y
is well above its allowed lower limit.

In Fig. 4 we show an example gauge coupling running with 
SU(3)c ⊗ SU(3)L ⊗ U(1)X symmetry breaking scale M X =3000 GeV, 
demonstrating successful gauge coupling unification at a scale 
MU = 1014.9 GeV with n2

Y = 1.8. Thus, from the perspective of a 
low SU(3)c ⊗ SU(3)L ⊗ U(1)X symmetry breaking scale within the 
reach of accelerator experiments like the LHC (∼ O (TeV)) this 
model is the most interesting candidate leading to a successful 
gauge coupling unification. In addition to the new gauge bosons, 
the model can harbor a plethora of new states associated to the 
new exotic fermions as well as extra Higgs bosons.
5. SU(6) grand unification

We consider the possibility of grand unification of the SU(3)c ⊗
SU(3)L ⊗ U(1)X model in an SU(6) gauge unification group. Two 
possibilities arise. Unlike other conventional grand unified theories, 
in SU(6) one can have different components of the 331 subgroup 
with different multiplicity. Such a scenario may emerge from the 
flux breaking of the unified group in an E(6) F-theory GUT. This 
provides new ways of achieving gauge coupling unification in 331 
models. Alternatively, a sequential variant of SU(3)c ⊗ SU(3)L ⊗
U(1)X model can have a minimal SU(6) grand unification, which 
in turn can be a natural E(6) subgroup. This minimal SU(6) em-
bedding does not require any bulk exotics to account for the chiral 
families and allows for a TeV scale SU(3)c ⊗ SU(3)L ⊗ U(1)X model.

We now demonstrate how the SU(3)c ⊗ SU(3)L ⊗ U(1)X model 
fermions can be embedded in an SU(6) grand unified gauge group. 
Our main consideration is to explore whether the combinations 
of the SU(6) gauge group representations form an anomaly free 
set, which can contain all the required fermions. In the subsequent 
subsections we discuss how different multiplicities of the SVS ver-
sion of the SU(3)c ⊗ SU(3)L ⊗ U(1)X model can be explained when 
this SU(6) grand unified model is embedded in an E(6) F-theory 
and how the sequential SU(3)c ⊗ SU(3)L ⊗ U(1)X model can be 
embedded in a minimal anomaly free combination of representa-
tions of SU(6) as an E(6) subgroup. For the minimal SVS version 
of the SU(3)c ⊗ SU(3)L ⊗ U(1)X model, gauge coupling unification 
can be obtained by including both the matter multiplets in the 
27-dimensional fundamental representations of E(6) as well as the 
bulk exotics from the 78-dimensional adjoint representations of 
E(6). In particular the octet of SU(3)L coming from the bulk plays a 
crucial role in allowing the unification of the gauge couplings with 
a low 331 symmetry breaking scale. On the other hand, the em-
bedding of sequential 331 model in SU(6) does not require any 
bulk exotics to account for the chiral multiplets and imply, by 
adding three generations of U(1)X neutral fermionic octets, one can 
obtain SU(6) unification with a TeV scale SU(3)c ⊗ SU(3)L ⊗ U(1)X
breaking scale.

We shall first write down some of the product decompositions 
of the group SU(6):

6 × 6 = 15a + 21s,

6 × 6̄ = 1 + 35,

6 × 15 = 20 + 70,

6 × 21 = 56 + 70. (27)

The SU(6) has SU(3)c ⊗ SU(3)L ⊗ U(1)X as a maximal subgroup 
with the same rank. For convenience we write down some 
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of the representations of SU(6) under this maximal subgroup 
SU(3)c ⊗ SU(3)L ⊗ U(1)X:

6 = [3, 1, −1/3] + [1, 3, 1/3],
15 = [3̄, 1, −2/3] + [1, 3̄, 2/3] + [3, 3, 0],
20 = [1, 1, −1] + [1, 1, 1] + [3, 3̄, 1/3] + [3̄, 3, −1/3],
21 = [3, 3, 0] + [6, 1, −2/3] + [1, 6, 2/3],
35 = [1, 1, 0] + [8, 1, 0] + [1, 8, 0] + [3, 3̄, −2/3]

+ [3̄, 3, 2/3],
56 = [10, 1, −1] + [1, 10, 1] + [6, 3, −1/3] + [3, 6, 1/3],
70 = [6,3,−1/3] + [3,6,−1/3] + [3, 3̄,1/3] + [3̄,3,−1/3]

+ [8,1,−1] + [1,8,1]. (28)

The anomalies for the various representations of the group SU(6) 
are

A[6] = 1, A[15] = 2, A[20] = 0, A[21] = 10, A[35] = 0,

A[56] = 54, A[70] = 27. (29)

We now turn to two concrete model constructions.

5.1. SU(6) grand unification of the SVS model

It can be easily verified that all fermions of the SU(3)c ⊗
SU(3)L ⊗ U(1)X model proposed by SVS (discussed in section 2) 
can be included in the anomaly free combination of representa-
tions under SU(6):

6̄ + 6̄ + 15 + 20.

There will be some extra fermions and the multiplicity of the dif-
ferent representations are now different. It is to be noted that 
these states can be naturally embedded in an E(6) theory. We start 
with the maximal SU(2) × SU(6) subgroup of E(6), and write down 
the decomposition:

27 = [2, 6̄] + [1, 15]
78 = [1, 35] + [2, 20] + [3, 1]
Thus the SU(3)c ⊗ SU(3)L ⊗ U(1)X anomaly free representations of 
the SVS model can all be embedded in a combination of anomaly 
free representations of SU(6), which in turn can be embedded in 
the fundamental and adjoint representations of the group E(6). The 
next question is how to match the multiplicity of the different 
representations of the SVS 331 model, which is nontrivial. At this 
stage we resort to the symmetry breaking at the GUT scale induced 
by flux breaking through the Hosotani mechanism [31]. Assigning 
particular geometry to the flux breaking, we identify the different 
states with the different algebraic varieties, and then the intersec-
tion numbers would give us the multiplicities of the different rep-
resentations. A detailed study of such E(6) F-theory GUTs [22–25]
is beyond the scope of this article and we shall rather take a 
phenomenological approach to the problem. We consider the re-
quired representations to match the low energy phenomenological 
requirements. The first step is to keep the known fermions light 
and also to have SU(3)c ⊗ SU(3)L ⊗ U(1)X symmetry breaking scale 
as low as TeV, while at the same time requiring for gauge coupling 
unification.

Considering the 6̄ representation of SU(6), which contains the 
down antiquarks dc

L with hypercharge Y = 1/3, isospin lepton dou-
blet containing eL and νL with Y = −1/2, and NL with Y = 0; 
we can get the normalization for the hypercharge from T r(Y 2) =
Fig. 5. Gauge coupling running in the SVS Model with three generations of lep-
tonic octets with 331 symmetry breaking scale M X = 3000 GeV and octet mass 
scale M8 = 9000 GeV, demonstrating successful gauge unification at the scale 
MU = 1015.5 GeV with nY = √

5/3 and nX = 2/
√

3.

5/6n−2
Y in the notation of Eq. (19). The U(1)Y normalization de-

fined in Eq. (19) is given by nY = √
5/3 and using Eq. (20) we 

obtain the U(1)X normalization given by nX = 2/
√

3, which is be-
low the normalizations required for a guaranteed unification in 
Fig. 1 and Fig. 3. However, it is still possible to obtain gauge 
coupling unification following the prescription in Ref. [10], where 
the octet scale is decoupled from the SU(3)c ⊗ SU(3)L ⊗ U(1)X
symmetry breaking scale and is assumed to lie between the 
SU(3)c ⊗ SU(3)L ⊗ U(1)X symmetry breaking scale and unification 
scale. Here, the octets belong to 35 of SU(6), which belongs to the 
bulk exotics coming from the 78-dimensional adjoint representa-
tions of E(6).

Using Eq. (15) the one-loop beta-coefficients bi can be calcu-
lated for the different phases. For the phase between the elec-
troweak symmetry breaking scale and the SU(3)c ⊗ SU(3)L ⊗ U(1)X
symmetry breaking scale (M Z to M X) the one-loop beta-coefficients 
are given by b2L = −19/6, bY = 41/10, b3C = −7. For the phase 
between the SU(3)c ⊗ SU(3)L ⊗ U(1)X symmetry breaking scale 
and the octet mass scale (M X to M8) the one-loop beta-coefficients 
are given by b3L = −13/2, bX = 13/2, b331

3C = −5. Finally, for the 
phase between the octet mass scale to the unification scale (M8 to 
MU ) the one-loop beta-coefficients are given by b8

3L = 2n − 13/2, 
where n is the number of generations of the fermionic octets 
(� ≡ [1, 8∗, 0]), b8

X = 13/2, b8
3C = −5.

In Fig. 5 we plot the gauge coupling running of SVS SU(3)c ⊗
SU(3)L ⊗ U(1)X model with the field content given in Eqs. (3), (4)
and three generations of fermionic octets with SU(3)c ⊗ SU(3)L ⊗
U(1)X symmetry breaking scale M X = 3000 GeV and octet mass 
scale M8 = 9000 GeV, demonstrating successful gauge unifica-
tion at the scale MU = 1015.5 GeV with nY = √

5/3 and nX =
2/

√
3. A relative modest variation of the octet mass scale from 

the SU(3)c ⊗ SU(3)L ⊗ U(1)X scale, M8/M X = 3, therefore lifts the 
scale of successful unification from the value MU = 1014.9 GeV
found in Fig. 4 and thus relaxes the tension with proton decay 
limits, cf. Section 6.

5.2. SU(6) grand unification of the sequential 
SU(3)c ⊗ SU(3)L ⊗ U(1)X model

It is easy to verify from Eq. (27) that each generation of the 
fermionic multiplets of the sequential 331 model written in Eq. (5)
fits perfectly in the anomaly free combination of SU(6) represen-
tations: 6̄ + 6̄′ + 15, where 6̄ contains dc

L ≡ [3, 1, −1/3] and ψL ≡
[1, 3∗, −1/3]; 6̄′ contains Dc ≡ [3, 1, −1/3] and ξL ≡ [1, 3∗, −1/3]; 
L
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Fig. 6. Gauge coupling running in the sequential 331 Model with three generations 
of fermionic octets with SU(3)c ⊗ SU(3)L ⊗ U(1)X symmetry breaking scale M X =
3000 GeV and octet mass scale M8 = 8 × 107 GeV, demonstrating successful gauge 
unification at the scale MU = 1015.5 GeV with nY = √

5/3 and nX = 2/
√

3.

and 15 contains uc
L ≡ [3∗, 1, −2/3], χL ≡ [1, 3∗, 2/3] and Q L ≡

[3, 3, 0]. Now the fundamental 27 of E(6) branches under the max-
imal SU(2) ⊗ SU(6) subgroup as 27 = [2, 6̄] + [1, 15]. Thus three 
27s of E(6) contain three sets of 6̄ + 6̄′ + 15 accommodating the 
three generations of the fermionic multiplets of the sequential 331 
model. However the minimal content of the sequential 331 model 
does not lead to a successful gauge coupling unification. However, 
by adding three generations of fermionic octets again leads to a 
successful gauge coupling unification.

For the phase between the electroweak symmetry breaking 
scale and the SU(3)c ⊗ SU(3)L ⊗ U(1)X symmetry breaking scale 
(M Z to M X ) the one-loop beta-coefficients are given by b2L =
−19/6, bY = 41/10, b3C = −7. For the phase between the SU(3)c ⊗
SU(3)L ⊗ U(1)X symmetry breaking scale and the octet mass scale 
(M X to M8) the one-loop beta-coefficients are given by b3L =
−9/2, bX = 13/2, b331

3C = −5. Finally, for the phase between the 
octet mass scale to the unification scale (M8 to MU ) the one-
loop beta-coefficients are given by b8

3L = 2n − 9/2, where n is 
the number of generations of the fermionic octets (� ≡ [1, 8∗, 0]), 
b8

X = 13/2, b8
3C = −5.

In Fig. 6 we plot the gauge coupling running of the sequen-
tial SU(3)c ⊗ SU(3)L ⊗ U(1)X model with the field content given 
in Eqs. (4), (5) and three generations of fermionic octets with 
SU(3)c ⊗ SU(3)L ⊗ U(1)X symmetry breaking scale M X = 3000 GeV
and octet mass scale M8 = 8 × 107 GeV, demonstrating successful 
gauge unification at the scale MU = 1015.5 GeV with nY = √

5/3
and nX = 2/

√
3. In this scenario, the octet mass scale has to be 

detached rather strongly from the SU(3)c ⊗ SU(3)L ⊗ U(1)X scale in 
order to achieve successful unification.

6. sin2 θw and proton decay in SU(6) grand unification

Using the RGEs and the relations among the coupling con-
stants corresponding to different gauge groups one can express 
sin2 θw(M Z ) in terms of the different scales associated with the 
SU(6) grand unified theory. Noting that for SU(6) grand unification 
we have nY = √

5/3 and nX = 2/
√

3, the relation between normal-
ized couplings at the scales M Z and M X are given by

α−1
2L (M Z ) = α−1

em(M Z ) − 5

3
αN

Y
−1

(M Z ), (30)

αN
Y

−1
(M X ) = 1

5
α−1

3L (M X ) + 4

5
αN

X
−1

(M X ). (31)

Using Eq. (30) it is straightforward to obtain
sin2 θw(M Z ) ≡ αem(M Z )

α2L(M Z )

= 3

8
+ 5

8
αem(M Z )

[
α−1

2L (M Z ) − αN
Y

−1
(M Z )

]
. (32)

Finally, using Eqs. (14), (31) the above equation can be written in 
the form

sin2 θw(M Z )

= 3

8
+ 5

8
αem(M Z )

[
4

5

{
b3L

2π
ln

(
M8

M X

)
+ b8

3L

2π
ln

(
MU

M8

)}

+ (b2L − bY )

2π
ln

(
M X

M Z

)
− 4

5

bX

2π
ln

(
MU

M X

)]
, (33)

which can be readily used to obtain the prediction for sin2 θw(M Z ). 
For example, in the sequential 331 model taking SU(3)c ⊗SU(3)L ⊗
U(1)X symmetry breaking scale M X = 3000 GeV, octet mass scale 
M8 = 8 × 107 GeV, and unification scale MU = 1015.5 GeV we ob-
tain sin2 θw(M Z ) � 0.231, which is consistent with the electroweak 
precision data [30].

Turning to the prediction for proton decay, we note that be-
ing a non-supersymmetric scenario the gauge d = 6 contribu-
tions for proton decay are most important here. An analysis of 
all SU(3)c ⊗ SU(2)L ⊗ U(1)Y invariant operators [32–35] that can 
induce proton decay in SU(6) is beyond the scope of this article 
and will be addressed in a separate communication. Here we will 
consider the decay mode p → e+π0, which is constrained by ex-
perimental searches to have a life time τ expt

p ≥ 1 × 1034 [30]. The 
relevant effective operators in the physical basis are given by [36,
37]

O(ec
α,dβ) = c(ec

α,dβ)εi jkuc
i Lγ

μu jLec
α Lγμdkβ L,

O(eα,dc
β) = c(eα,dc

β)εi jkuc
i Lγ

μu jLdc
kβ L

γμeα L; (34)

where

c(ec
α,dβ) = k2

1

[
V 11

1 V αβ

2 + (V 1 V U D)1β(V 2 V †
U D)α1

]
,

c(eα,dc
β) = k2

1 V 11
1 V βα

3 + k2
2(V 4 V †

U D)β1 + (V 1 V U D V †
4 V 3)

1α;
α = β 
= 2. (35)

Here i, j, k = 1, 2, 3 are the color indices and α, β = 1, 2; V 1,2,3,4

and V U D are the mixing matrices V 1 = U †
C U , V 2 = E†

C D , V 3 =
D†

C E , V U D = U † D; where U , D, E are the unitary matrices di-

agonalizing the Yukawa couplings e.g. U T
C YU U = Y diag

U . k1 =
gGUT/M(X,Y ) and k2 = gGUT/M(X ′,Y ′) , where M(X,Y ), M(X ′,Y ′) ∼
MGUT are the masses of the superheavy gauge bosons and gGUT
is the coupling constant at the GUT scale. The decay rate for 
p → e+π0 mode is given by

�(p → e+π0) = mp

16π f 2
π

A2
L |αH |2(1 + D + F )2

×
[
|c(e,dc)|2 + |c(ec,d)|2

]
, (36)

where mp = 938.3 MeV is the proton mass, fπ = 139 MeV is 
the pion decay constant, AL is the long distance renormaliza-
tion factor; D, F and αH are parameters of the chiral Lagrangian. 
For a rough estimate, taking αH (1 + D + F ) ∼ 0.012 GeV3 [38,
39]; AR = AL ASD

R ∼ 3, where ASD
R is the short distance renormal-

ization factor; the parameter depending on the mixing matrices 
Fq(V ) ∼ 5, we obtain

�−1(p → e+π0) ∼ 1036 yrs

(
α−1

GUT

35

)2 (
MU

1016 GeV

)4

. (37)
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Now noting that MU = 1015.5 GeV and α−1
GUT ∼ 35 in the SVS 

and sequential 331 models, the lifetime of the proton decay mode 
p → e+π0 comes out to be2 ∼ 1034 yrs, which is consistent with 
the current experimental limit [30].

7. Discussion and outlook

In this paper we have considered the possibility of conventional 
non-supersymmetric grand unification of extended electroweak 
models based upon the SU(3)c ⊗ SU(3)L ⊗ U(1)X gauge framework 
within an SU(6) gauge unification group. In contrast to other con-
ventional grand unified theories, in SU(6) one can have different 
components of the SU(3)c ⊗ SU(3)L ⊗ U(1)X subgroup with differ-
ent multiplicity. Such scenarios may emerge from the flux breaking 
of the unified group in an E(6) F-theory GUT framework. While it 
allows for successful unification, the required 331 scale is typically 
very close to unification.

However, the sequential addition of a leptonic octet provides a 
way of achieving gauge coupling unification at 331 scales accessi-
ble at collider experiments. Alternatively, we have also considered 
a sequential variant of the SU(3)c ⊗ SU(3)L ⊗ U(1)X model that can 
have a minimal SU(6) grand unification, which in turn can be a 
natural E(6) subgroup. Such minimal SU(6) embedding does not 
require any bulk exotics in order to account for the chiral families 
and allows for a TeV scale SU(3)c ⊗ SU(3)L ⊗ U(1)X model as well 
as seesaw-induced neutrino masses.

In both cases the gauge coupling unification is associated to the 
presence of sequential a leptonic octet at some intermediate scale 
between the 331 scale, which lies in the TeV range, and the unifi-
cation scale. It is important to stress that the presence of the octet 
plays a key role in the mechanism of neutrino mass generation. In 
other words, the same physics that drives unification is responsible 
for the radiative origin of neutrino masses [10].
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