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Abstract 16 

Composite films were sprayed from mixtures of water soluble hydroxypropyl methylcellulose 17 

(HPMC) and either nanofibrillated cellulose (NFC) or cellulose nanocrystals (CNC). Fiber 18 

diameter was similar for both nanocelluloses but fiber length was several µm for NFC and 19 

about 200 nm for CNC. Films were characterized for morphology, swelling, mass loss and 20 

transport properties. NFC-HPMC films swelled less than CNC-HPMC films; with a HPMC 21 

content of 20wt% NFC-HPMC and CNC-HPMC films presented swelling of 7 and 75 g/g, 22 

respectively. The swelling strongly influenced water transport across the films, with slower 23 

transport for CNC-based materials compared to NFC-based materials. The properties of NFC-24 

based films were comparable to previous results using microfibrillated cellulose (MFC) with 25 

heterogeneous structural content and fiber lengths of ~10 µm. The findings have implications 26 

for using nanocellulose to modulate material properties in wet-state applications, with effects 27 

being in strong contrast when using as a hardening filler in dry materials. 28 

 29 

Keywords: Cellulose nanocrystals, composite films, controlled release, microfibrillated 30 

cellulose, nanofibrillated cellulose, structure.  31 
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1. Introduction 34 

In the search for renewable materials to replace fossil-based plastics, pure nano-dimensioned 35 

cellulose and composite films have received great interest as barrier materials in recent years 36 

[1-6]. The majority of investigations have focused on dry-state barriers and gas permeability. 37 

However, recently such systems have also received interest for use as a barrier against liquid 38 

[5-9]. Recent advances in chemistry and processing of nanocellulose have greatly facilitated 39 

such development [3, 10]. Three different types of cellulose, with varying lengths and 40 

diameters are commonly studied: nanofibrillated cellulose (NFC), microfibrillated cellulose 41 

(MFC) and cellulose nanocrystals (CNC). NFC is also sometimes referred to as 42 

microfibrillated cellulose, nanofibrils and/or microfibrils, and typically presents diameters of 43 

some nanometres to about 100 nm and lengths of several micrometers, while CNC typically 44 

presents similar ranges in diameters, but lengths of some hundreds of nanometers, or possibly 45 

longer if sourced from non-plant organisms [3]. The larger length compared to diameter 46 

results in large aspect ratios for both NFC and CNC, with that of NFC typically being more 47 

than an order of magnitude larger than that of CNC (Table 1). 48 

Nanosized cellulose with large aspect ratios is finding use as a filler to improve mechanical 49 

properties in dry [11] and wet [12] materials. Along those lines NFC and CNC have started to 50 

receive interest for use in controlled release applications; NFC for modulating substance 51 

release by delayed diffusion through the nano-microporous network [7, 13, 14] and CNC as a 52 

carrier that physically adsorbs substances onto its surface [15, 16]. Previous work in our 53 

group revealed that MFC films produced via solvent casting formed swollen nano-54 

microporous films in the wet-state and that the permeability and swelling could be controlled 55 

by adding the food- and pharmaceutically-approved water-soluble polymer hydroxypropyl 56 

methyl cellulose (HPMC) to prepare composite films [7]. In contrast to conventional 57 

controlled release films where HPMC can be used as a pore former to increase the 58 

permeability [17], the permeability decreased with increasing HPMC content in the MFC 59 

films. It was shown that the presence of HPMC modulated the film structure and swelling 60 

properties, and that a large portion of the HPMC remained in the films after submersion. It 61 

was also shown that the water permeability increased when 20% (w/w) HPMC was added to 62 

the films, but decreased when an amount larger than 35% (w/w) HPMC was added to the 63 

composite films.  64 

 65 
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 66 

Sample 

name 

Length (nm) Width 

(nm) 

Aspect 

ratio
a
 

Surface 

chemistry 

Surface 

charges 

(Zeta 

potential) 

Preparation 

method 

Notes 

MFC
 b,c

 500-10 000’s 1-

1000’s 

>1-200 OH N/A From 

commercial 

bleached Kraft 

pulp: Mechanical 

pre-treatment 

followed by 

homogenization. 

Highly 

heterogeneous; 

containing 

particles, fibers 

and fiber 

clusters, 

ranging from 

nanometers to 

hundreds of 

micrometers in 

size.  

NFC
b
 500-2000 4-20 >100 OH N/A From softwood 

sulfite dissolving 

pulp: Enzymatic 

pre-treatment 

followed by 

homogenization 

Predominantly 

nanofibres  

CNC
b
 170 (50-500) 17 (3-5)  ~10 OH and 

sulfate 

-42 mV From 

microcrystalline 

cellulose: Acid 

hydrolysis 

Only 

nanocrystals 

observed 

a
From length and width estimates. 67 

b
Values estimated from the AFM and light scattering done in our group. Values in bracket reported from 68 

literature [18]. 69 

c
Values from a previous characterization [19]. 70 

Table 1. Colloidal characteristics of used celluloses. 71 

 72 

In this study, it was hypothesized that the swelling and water permeability of pure and 73 

composite films from three different nano-dimensioned celluloses (NFC, MFC and CNC) 74 

would depend on the aspect ratio of the used cellulose. The permeability, swelling and 75 

structure of spray-dried films of pure cellulose or composites containing HPMC were 76 
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analyzed and results were compared with solvent-casted MFC-HPMC films from our previous 77 

work [7]. The structure of the cellulose fibers was characterized with atomic force microscopy 78 

(AFM) and dynamic light scattering (DLS) for the CNC. Film structures were characterized 79 

with scanning electron microscopy (SEM) and the water permeability was determined using 80 

radiolabeled (tritated) water. Swelling behavior of the composite films was determined 81 

through gravimetric analysis. The results provide important information on the performance 82 

and robustness of nanocellulose films in the wet state with regard to structure and preparation 83 

conditions. The findings are highly relevant for the utilization of nano-dimensioned cellulose 84 

in materials for which controlled transport properties are of major importance, for example 85 

controlled release of pharmaceutical drugs or wound care products. 86 

 87 

2. Materials and methods 88 

Sodium hydroxide (anhydrous pellets, reagent grade ≥98%), dialysis membrane Dowex 89 

Marathon MR-3 hydrogen form, polyethyleneimine (50% (w/v), Mw 750 000), and sulfuric 90 

acid (ACS reagent, 95.0-98.0% (w/w)) were purchased form Sigma-Aldrich, Germany. 
3
[H]-91 

water and scintillation liquid Ultima Gold® were purchased from Perkin Elmer, USA and 92 

used as received. HPMC (Metolose 90SH100 SR), and microcrystalline cellulose (Avicel PH-93 

101 NF) were gifts from Shin-Etsu Chemical Co., Ltd., Tokyo, Japan and FMC BioPolymer, 94 

USA, respectively. NFC generation 1 was kindly provided by Innventia AB, Sweden, and was 95 

produced from softwood sulfite dissolving pulp by enzymatic treatment with subsequent 96 

homogenization [20]. Water was purified with Millipore Milli-Q Purification system 97 

(resistivity > 18.2 MΩ cm). 98 

2.1. Production of cellulose nanocrystals (CNC) 99 

CNC were prepared by adapting the preparation method earlier reported [21, 22]. Briefly, 100 

40 g of microcrystalline cellulose (Avicel PH-101 NF) was dispersed in 400 ml Milli-Q water 101 

in a 2 liter Erlenmeyer flask while stirred and cooled by an ice bath. Sulfuric acid was added 102 

drop-wise to reach a final concentration of 64% (w/w) while the temperature was kept below 103 

20°C. The reaction was initiated by heating the mixture to 45°C, and left to react under 104 

vigorous stirring for 70 minutes. The reaction was quenched with a 10-fold addition of 105 

deionized water and was centrifuged at 5100 rpm (Sigma 4K15 centrifuge, UK) in 5 minutes 106 

cycles where the supernatant was discarded and replaced by deionized water. This was 107 
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repeated until the supernatant became turbid. The cellulose was put on dialysis against 108 

deionized water, which was changed two times daily until the conductivity did not differ from 109 

the pure deionized water. The dialyzed cellulose was then ion exchanged (Dowex Marathon 110 

MR-3 resin, hydrogen form) under continuous stirring for 48 h. The mixture was filtered 111 

through a fritt disc glass funnel (n°2) to separate the cellulose from the resin. The cellulose 112 

was finally sonicated (Vibracell Sonicator, Sonics and Materials Inc., Danbury, CT) at 40% 113 

output in three cycles of 14 minutes each, and subsequently titrated by conductometry with a 114 

NaOH solution (0.02 M). A final centrifugation step was carried out to remove large 115 

aggregates (5100 rpm, 5 minutes), resulting in suspension with a dry weight of ~0.5% (w/w). 116 

The suspension was concentrated up to 1% (w/w) by rotary evaporation.  117 

2.1.2. Characterization of nanocelluloses 118 

The NFC and CNC were imaged with a NTEGRA Prima from NT-MDT (Ireland) in tapping 119 

mode under ambient air conditions (23°C and 48% relative humidity). No image processing 120 

except flattening was made. AFM measurements were performed using a single crystal silicon 121 

tip with a radius of 10 nm (NT-MDT, NSG01). Samples were prepared as follow: a 20 µl 122 

0.1% w/v polyethyleneimine drop was put on a mica sheet freshly cleaved for three minutes 123 

then rinsed with water and dried with nitrogen gas. Subsequently a 20µl drop 0.05% w/w 124 

CNC or NFC suspension was deposited on the mica surface for three minutes, then rinsed and 125 

dried with nitrogen gas.  126 

2.2. Preparation and characterization of composite films 127 

The NFC was diluted with Milli-Q water to a final concentration of 1% (w/w) and was 128 

dispersed for 1 minute at 24,000 rpm using a homogenizer (DI 18 basic, Ika). The CNC 129 

suspension was used at 1% (w/w). A 3% (w/w) stock solution of HPMC was prepared in 130 

Milli-Q water. Mixtures containing 0, 10, 20, 27 and 35% (w/w) HPMC and CNC or NFC 131 

were prepared by weighing. Finally, the total NFC-HPMC concentration was adjusted to 1 % 132 

(w/w) and the total CNC/HPMC to 0.5 % (w/w). Each mixture was sprayed with a spray gun 133 

onto a weighing boat placed on a rotating heated metal plate to ensure homogeneous spraying. 134 

To reduce the evaporation time the films were heated from above with hot air. Finally, the 135 

weighing boat was placed in an oven at 40-50°C for further drying overnight. The CNC-136 

HPMC films obtained were transparent while the NFC-HPMC films were partly opaque. 137 
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2.2.1. Swelling tests and loss of mass 138 

The swelling tests were performed on cut-out square film pieces with weights in the range of 139 

5 to15 mg using a dissolution bath. The films were placed in USP-1 baskets that were 140 

submerged in 900 ml Milli-Q water at 37°C under stirring at 50 rpm. At specific times, the 141 

baskets with the films inside were taken out, carefully dried with paper tissues, and the 142 

weights were measured. The swelling ratio was calculated as: 143 

   
     

  
     (1) 144 

where SR is the swelling ratio, W1 is the initial weight of film, and W2 is the weight of swelled 145 

film derived as: 146 

           (2) 147 

where BF is the weight of basket with swelled film, and B0 is the average weight of the same 148 

cage without film but exposed to the same conditions (n ≥ 10 samples).  149 

For the CNC-HPMC films the swelling was measured for 100 minutes (due to rapid loss of 150 

mass). For the NFC-HPMC films, the measurement was conducted for 180 minutes (same 151 

time as the mass transport tests).  152 

After the swelling tests, the film pieces were placed in an oven and dried over night at 50°C. 153 

The weights of the dried film pieces were measured and the loss of mass index was calculated 154 

as: 155 

    
     

  
         (3) 156 

where LM is the loss of mass, W1 is the initial weight of the film and W3 is the weight of the 157 

dried film. 158 

2.2.2. Film morphology 159 

The cross-sections were studied using a scanning electron microscope (Leo Ultra 55 FEG-160 

SEM, LeoElectron Microscopy Ltd, UK) with a secondary electrons detector at 3 kV in 161 

vacuum. Prior to analysis, films swollen for 30 minutes were frozen in liquid nitrogen and 162 

freeze-dried. Samples of film as prepared and freeze-dried were coated with a thin gold layer 163 

to avoid charging of the samples.  164 
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2.2.3. Mass transport properties 165 

Mass transport measurements were performed in diffusion cells at 37°C under stirring 166 

(200 rpm). Details on the setup can be found elsewhere [23]. Briefly, 15 ml of pre-heated 167 

Milli-Q water was added simultaneously to both compartments, followed by immediate 168 

addition of 10 µl
 3
[H]-labelled water to the donor chamber. The permeation was monitored by 169 

taking out samples of 500 µl from the acceptor compartment at determined times, and 170 

immediately replacing them with equal amounts of pre-heated Milli-Q water. Samples were 171 

assayed with scintillation liquid, Ultima Gold®, and analyzed in a liquid scintillation counter 172 

(Tri-Carb B2810TR, Perkin-Elmer, USA). When a sample containing tritiated water is mixed 173 

with the scintillation liquid a signal expressed in DPM (disintegrations per minute) is 174 

obtained. The signal is proportional to the concentration of 
3
[H]-labelled water.  175 

The accumulated radioactivity, RAn, in the acceptor compartment at time t was determined as: 176 

                    
    

       
        (4) 177 

where RAsample n is the radioactivity in sample n that is withdrawn at time t with a volume of 178 

Vsample, and Vtot is the total volume in the acceptor chamber.  179 

The normalized radioactivity in the acceptor, NRA, at time t for sample n was calculated as:  180 

       
      

       
 100%   (5) 181 

Where RD is the initial radioactivity in the donor compartment. The water mass transport was 182 

calculated by plotting NRA as function of the time. It is assumed during the course of the 183 

experiment that the amount of 
3
[H]-labelled water transferred from the donor chamber to the 184 

acceptor chamber is negligible in comparison with the starting concentration in the donor 185 

chamber. 186 

3. Results and discussion 187 

3.1. Characterization of the nanocelluloses 188 

Atomic force microscopy (AFM) was used to characterize the morphology of the NFC and 189 

CNC. MFC has been previously characterized [19]. From Fig. 1 it is evident that the length of 190 

NFC much exceeded that of CNC, while the diameter was similar. The CNC showed 191 

diameters between 10 to 20 nm and lengths of approximately 200 nm, yielding an aspect ratio 192 
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of about 10, in agreement with previous reports [18, 21, 24]. The NFC had a fiber diameters 193 

in the range 4-20 nm, lengths of up to 2 μm and aspect ratios >100. In contrast, the MFC was 194 

highly heterogeneous, containing both smaller fragments with low aspect ratio, extremely 195 

long and entangled nanofibers, and microfibers and bundles [19]. Thus, the three materials 196 

represented distinctively different nanocelluloses. CNC had a low aspect ratio compared to 197 

NFC and MFC. On the other hand, the structural content of MFC was highly heterogeneous 198 

compared to that of NFC and CNC. See Table 1 for summary of the structural properties of 199 

CNC, NFC and MFC.  200 

 201 

 202 

Figure 1. Atomic force microscopy (AFM) image recorded in tapping mode of NFC (left) and 203 

CNC (right) on a glass plate coated with polyethylenimine at 23°C and 48% relative 204 

humidity. 205 

 206 

3.2. Characterization of the composite films 207 

3.2.1. Swelling behavior 208 

In previous work it was reported that the swelling of MFC-HPMC composite films increased 209 

with HPMC content and that a fraction of the of the HPMC was released from the films [7]. In 210 

this study, the swelling behavior of CNC-HPMC and NFC-HPMC films was investigated in 211 

Milli-Q water at 37°C for 100 and 180 minutes, respectively (Fig. 2a-b) and the results were 212 

compared with those previously reported for MFC-HPMC films (Fig. 3). Due to the fragile 213 

nature of CNC-HPMC composites, a modified method involving placement of the films in 214 
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baskets was used for submerging the films in the present work, see Materials and Methods. 215 

Even under these protective conditions the CNC-HPMC films with ≥ 20% HPMC rapidly lost 216 

mass and were fragmented, only maintaining coherency for about 100 minutes. CNC films 217 

containing less than 20% HPMC (w/w) remained coherent for the 180 minutes of the 218 

experiment (pure CNC films actually maintained structural integrity for more than one week). 219 

The swelling of NFC-HPMC films was possible to measure for 180 minutes.  220 

The swelling of the NFC-HPMC films over time is presented in Fig. 2a. The films turned 221 

from opaque to white when exposed to the Milli-Q water. Regardless of HMPC content, the 222 

samples presented rapid initial swelling so that a plateau was reached already at the first time-223 

point of 10 minutes. The largest swelling ratio of 11 g/g was obtained for the film with 35% 224 

(w/w) HPMC content. Generally, the swelling increased with increasing HPMC content, but 225 

the swelling’s dependence on HPMC content may be non-trivial over time. A detailed 226 

analysis was not possible given the magnitude of the error bars. 227 

The CNC-HPMC films presented a different trend in swelling with HPMC content (Fig. 2b) 228 

than the NFC-HPMC films. First, not all films reached a plateau within the 100 minutes of the 229 

experiment. It was noted that films with high HPMC content lost material over the 230 

experiment, as substantiated by the sample with 35% HPMC decreasing in weight between 231 

the last time points. Secondly, the CNC-HPMC films exhibited swelling ratios about ten times 232 

larger than the NFC-based films. Pure CNC films presented rapid initial swelling and reached 233 

a plateau at 6 g/g after 10 minutes, the value was slightly larger than for pure NFC films, but 234 

the behavior was qualitatively similar. The film containing 10% HPMC had larger swelling 235 

than the pure CNC film and did not reach plateau. At the same time the swelling ratio was 236 

lower for this film compared to CNC-based films containing more HPMC. The highest 237 

swelling ratio of around 75 g/g was obtained for the film containing 20% HPMC after 100 238 

minutes, at which time the swelling was still increasing. The films containing 27% and 35% 239 

HPMC presented similar swelling behavior to the one with 20% HPMC up to 30 minutes. 240 

After this time the 20% HPMC film continued to swell, while the latter 27 and 35% HPMC 241 

films seems to reach a plateau at about 40 g/g. This was likely due to the swelling being 242 

counteracted by material being eroded from the films. To summarize, for CNC-HPMC films 243 

the swelling was larger and seemed to have a more complicated dependence on the HPMC 244 

content than for NFC-HPMC films. 245 

 246 
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(a) (b) 247 

 248 

Figure 2. Swelling ratio versus time for (a) NFC and (b) CNC films with 0% (□), 10% (), 249 

20% (♦), 27% (○) and 35% (■) w/w HPMC. Error bars indicate standard deviation (n = 3). 250 

In Fig. 3 comparison is made between the swelling ratios of CNC- (white), NFC- (grey) and 251 

MFC-based (black) films with varying HPMC content. The swelling ratios are reported up to 252 

100 minutes for the CNC-based films and at 180 minutes the NFC- and MFC-based films. It 253 

can be seen that the swelling ratio is highest for CNC-HPMC films for all amounts of added 254 

HPMC.  255 
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 256 

Figure 3. Swelling ratio for CNC-HPMC (white) after 100 minutes, NFC-HPMC (grey) and 257 

MFC-HPMC films (black) after 180 min. Error bars indicate standard deviation for CNC and 258 

NFC (n = 3). Data for MFC-HPMC are from [7]. 259 

For pure nanocellulose films the swelling ratio, measured as relative increase of mass, 260 

depends on the water ingress and displacement in the system. The water in swollen films of 261 

pure nanocellulose can be considered in two ways: (i) water is adsorbed to the surface of the 262 

nanocelluloses and to some extent penetrate into the nanocellulose fibers (leading to swelling 263 

of the nanofiber itself) and/or (ii) the pores are partly filled with water through capillary 264 

transport. The water transport can deform the film and lead to an increase of the macroscopic 265 

dimensions and a corresponding substantial decrease of the nanocellulose concentration. It is 266 

impossible to completely distinguish between these scenarios. However, if the main 267 

contribution to the swelling was water uptake of the fibers, a smaller swelling ratio would be 268 

expected for the crystalline CNC film compared to the two fibrous nanocelluloses. Since the 269 

opposite was observed (see Fig 3), it seems likely that the dominating mechanism for water 270 

uptake was capillary transport of water into the inter-cellulose space in the films.  271 

The high swelling ratio of 75 g/g for 20% (w/w) CNC-HPMC composites and the swelling of 272 

the composite films in general can be rationalized by looking at the mechanism behind 273 

swelling of materials from water-soluble polymers. The first important step in this discussion 274 

is the mechanistic understanding of swelling of pure HPMC films, which coincides with the 275 

mechanism described in the literature for swelling of HPMC matrixes in controlled drug 276 

applications [25, 26]. When a dry HPMC material is exposed to water it will diffuse into the 277 

material, resulting in a water-concentration gradient. The water will plasticize the glassy 278 
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HPMC, causing a transition to the rubbery state, in which the swollen material is best 279 

described as a semi-dilute polymer solution [27]. The rate of the water ingress into the 280 

material is determined in-part by water´s chemical potential gradient. One major factor that 281 

drives water diffusion and facilitates the dilution of the system (here seen as swelling) is the 282 

gain in conformation entropy of the HPMC chains. The dilution lead to a decrease in the 283 

polymer concentrations and when the HPMC concentration is close to or below the overlap 284 

concentration, the polymer will be disentangled and released from the surface of the film [28].  285 

An interesting observation is that the swelling ratio versus time reaches a plateau for several 286 

of the HPMC/nanocellulose films (see Figs. 2a-b). To give a plausible explanation for this one 287 

need to discuss the factors counteracting the swelling process. These films contain a highly 288 

percolated fiber network that will prevent welling when the energy gain from further water 289 

absorption is balanced by the energy cost to deform the film. The shear modulus is higher for 290 

a network of longer fibers compared to that of a corresponding network of shorter fibers [29]. 291 

As such the energy cost of deformation should increase with fiber length. Therefore, for the 292 

same amount of HPMC, i.e. the main driving force to swell the network, films of long fibers 293 

should present a lower equilibrium swelling than films of short fibers. This explains why 294 

films based on short CNC fibers swelled more than films based on longer NFC and MFC 295 

fibers for the same HPMC content (Fig 3).  296 

The swelling ratio of a pure HPMC matrix tablet is known to be around 2, i.e. much less than 297 

what we observed for HPMC:nanocellulose films. A tentative explanation is that the highly 298 

percolated nature of the nanocellulose in the films provided a resistant armature that 299 

maintained film integrity and allow further swelling well beyond the point at which HPMC 300 

dissolve when used in a pure form.  301 

In conclusion, we suggest that the driving force for swelling of HPMC-nanocellulose films is 302 

the presence of HPMC and that the counteracting force is the percolated network of 303 

nanocellulose, with longer NFC and MFC fibers restricting swelling more than shorter CNC 304 

fibers. 305 

 306 

3.2.2. Loss of mass from films during swelling 307 

The mass loss was determined at the final time point of the experiment and is presented in 308 

Fig. 4. The mass loss of NFC-based films appeared to have a linear dependence on HPMC 309 
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content. Compared to the films based on MFC the loss of mass was less for all HPMC 310 

contents. This could be explained by that the heterogeneous MFC contained significant 311 

amounts of small-sized particles and aggregates of low aspect ratios [7]. Those aggregates 312 

might not have been effectively entangled in the MFC network and could thus leave the films. 313 

Interestingly, for both NFC and MFC the mass loss was less than the mass content of highly 314 

soluble HPMC. For CNC-based films the mass loss was similar as for NFC at HPMC contents 315 

of 0 and 10% (w/w). However, above 10% (w/w) HPMC there was a dramatic increase in 316 

mass loss for the CNC-based films and the mass loss was larger than the mass corresponding 317 

to HPMC content, meaning that a fraction of the CNC was lost as well. This dramatic increase 318 

in mass loss above 10% (w/w) HPMC content is in agreement with the mechanism for release 319 

of materials from hydrophilic matrix systems [28]. As mentioned above, the release of HPMC 320 

from pure HPMC matrix occurs when the dilution of the polymer reaches the regime of the 321 

so-called overlap concentration, where individual chains begin to be released. In a refined 322 

model accounting for shear forces around the matrix, the overlap concentration is replaced by 323 

a critical polymer concentration at the outermost layer of the hydrophilic matrix. At the 324 

critical concentration the semi-dilute polymer solution cannot withstand the shearing forces 325 

caused by the stirring and therefore the polymer chains are released in the surrounding media. 326 

A similar mechanism can be applied to the HPMC-nanocellulose films. The nanocellulose 327 

network can withstand the shear forces above its percolation threshold. With an increased 328 

swelling the fiber concentration decreases and at high degrees of swelling the fibers can be 329 

eroded.  330 

For the composite structures of HPMC and NFC or MFC, the ingress of water in the fiber 331 

network leads to dilution of the fiber network and HPMC. At low swelling ratios the strong 332 

armature nanocellulose fiber network can withstand the shear forces. However, hydrated 333 

HPMC will be diluted to concentrations around or below the overlap concentration and so that 334 

thus HPMC can disentangle and diffuse out from the films.  335 

In the case of CNC-HPMC films the counteracting forces from the cellulose network on the 336 

swelling are low. For films with 10% (w/w) initial HPMC content a swelling ratio of 40 g/g 337 

and loss of mass of 7.4% was recorded after 100 minutes. The combined concentration of 338 

HPMC and CNC can be calculated to 2.2% (w/w) in this state (assuming a density equal to 339 

one). This is in the range of the percolation threshold of CNC [30, 31]. It is therefore likely 340 

that most of the HPMC had diffused out from the films but that the CNC network withstood 341 

the shear forces. Films with 20% (w/w) initial HPMC content presented a swelling ratio of 75 342 
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g/g and a mass loss of 60%. The combined concentration of HPMC and CNC can be 343 

calculated to 0.5% (w/w). This concentrations is below the percolation threshold of CNC and 344 

is in the range or below the overlap concentration of the HPMC used in this study [25]. Thus 345 

the mass loss was attributed both to dissolution of HPMC and erosion of the weak CNC 346 

network. 347 

In conclusion, the loss of mass for both CNC- and NFC-HPMC composite films is suggested 348 

to be mainly due to dissolution of HPMC. However, for CNC-HPMC films with HPMC 349 

content above 10% the high swelling ratio and corresponding decrease in CNC concentration 350 

led to both HPMC and CNC being released from the films. This mechanism explain the 351 

swelling behavior of CNC-HPMC films and why the swelling of the 35 % (w/w) CNC-HPMC 352 

film seemingly passed through a maximum gravimetric swelling ratio over time. The same 353 

phenomenon is observed for hydrophilic matrix tablets [32, 33]. 354 

 355 

 356 

Figure 4. Loss of mass after swelling for CNC-HPMC (♦) (swollen for 100 min) and NFC-357 

HPMC (■) and MFC-HPMC () (swollen for 180 min) films. Error bars indicate standard 358 

deviation (n = 3).The dashed grey line represent the maximal theoretical loss of HPMC.  359 

 360 

3.2.3. Film morphology 361 

The surface and cross-section morphology of the films prior to and after exposure to water 362 

was investigated with SEM. The surface of the films was homogeneous and did not show any 363 
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distinct features. Fig. 5 shows the cross section of the CNC (a and c) and NFC (b and d) films 364 

containing 20% (w/w) HPMC. Fig 5a-b are images of the cross-section of dry films cleaved 365 

before exposure to water and Fig. 5c-d are the cross-section of the corresponding films after 366 

exposure to water for 30 minutes, followed by quenching in liquid nitrogen, cleavage and 367 

freeze-drying.  368 

 369 

Figure 5. SEM Micrograph of a NFC and CNC films composed of 20% HPMC (w/w). (a) and 370 

(c) show the cross-section of CNC films after preparation before and after exposure to water, 371 

repesctively. Specimen (b) and (d) show the cross-section of the NFC films treated in the same 372 

way. The films exposed to water (c and d) were frozen in liquid nitrogen, cleaved and then 373 

freeze-dried. Note the 100 times larger scale bar in (c) compared to the other films. 374 

 375 
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The cross-section of the films after preparation showed that the CNC-based film was smother 376 

compared to the more fragmented/layered character of NFC based film, where each layer was 377 

estimated to be between 100 to 250 nm (Fig. 5). After exposure to water a highly swollen 378 

foam-like porous structure with large pores above 20 µm randomly oriented was observed for 379 

the CNC film, whereas the NFC films seemed to keep their layered structure aligned with the 380 

surface, in line with previous report for MFC [7]. Further interpretation on the pore-structure 381 

is rendered difficult as liquid nitrogen treatment is known to generate artifacts.  382 

It seemed that the presence of HPMC did not significantly change the nanocellulose film 383 

forming properties, with CNC being more homogeneous while NFC formed a layered 384 

structure as previously observed [34, 35]. 385 

3.2.4. Mass transport properties 386 

Having established differences in swelling behavior and film structure between CNC-based 387 

and NFC-based films and the similarity of the latter with MFC-based films, the wet-state 388 

barrier properties of the films were investigated. Tritiated water was used to monitor the water 389 

transport through the films at 37°C with stirring in both donor and acceptor compartments.  390 

Pure films of CNC were too fragile to be placed in the diffusion cells, while pure NFC films 391 

as well as the composites could be analyzed. The corresponding data for the MFC-HPMC 392 

films was interpolated from previous work to simplify comparison [7]. The time dependency 393 

of the normalized radioactivity, NRA, of the tritiated water accumulated in the acceptor was 394 

plotted for CNC-, NFC- and MFC-HPMC films with various HPMC contents, as shown Fig. 395 

6. 396 

As expected from the similarities in swelling behavior and structure, the NFC-HPMC and 397 

MFC-HPMC presented similar mass transport properties. In addition, for both systems the 398 

transport across the films was decreased with increasing HPMC content. For the CNC-based 399 

films, the water transport through the films was slower than for NFC and MFC. As mentioned 400 

earlier, the CNC-films became very fragile and only the preparation with 10% (w/w) HPMC 401 

remained intact during the 180 minutes of the experiment. The transport of the tritiated water 402 

through the CNC-based films was similar irrespective of the HPMC content except for the 403 

higher fraction of HPMC (35% (w/w)) which showed lower mass transport rate. The trend in 404 

the transport through the nanocellulose films with different HPMC content can be more 405 
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clearly seen by looking at the fraction of tritiated water in the acceptor compartment at a fixed 406 

time of 60 minutes (Fig. 7).  407 

(a) (b)    (c) 408 

 409 

 410 

Figure 6. Normalized radioactivity in the acceptor after transport of tritiated water through 411 

films containing 0% (), 10% (), 20% (), 27% (○) and 35% () (w/w) HPMC. Error 412 

bars indicate standard deviation (n = 3). (a) CNC-HPMC; (b) NFC-HPMC; and (c) MFC-413 

HPMC (n = 2 or 3). The same y-scale was used for all plots for a better comparison of the 414 

systems. 415 

The mass transport rate across films depends on several of factors such as the level of 416 

hindrance the penetrant meets during the transport, typically fibers or polymer chains, the 417 

pathway for transport or the porosity of the system, for example. The CNC films will be more 418 

diluted (due to larger swelling and larger loss of mass) and thus have higher porosity than the 419 

NFC films. These properties should give larger mass transport for the CNC films compared to 420 

the NFC films. At the same time, an increased swelling of the films usually reduces the mass 421 

transport rate across the films due to an increased diffusion path. Fig. 7 shows that transport 422 

across CNC films was lower for all HPMC contents compared to the NFC and MFC films. 423 
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This means that the reduction in mass transport due to the large swelling is dominating over 424 

the pore formation and dilution of the nanocellulose films.  425 

In summary, pure NFC films and HPMC containing composites presented wet-state barrier 426 

properties almost identical to those of MFC-based films, despite differences in structural 427 

content of the two nanofibril celluloses and between film preparation methods. The results 428 

indicate that the barrier properties are robust with regard to film preparation and structural 429 

content of the used nanofibril cellulose. In contrast, the CNC-based films did display a lower 430 

permeability, but the films were highly unstable and their use as a wet-state barrier seems 431 

limited. Potential solutions to this problem could be to increase the stability of the films by 432 

incorporating a swellable polymer that forms a crosslinked network in situ. 433 

 434 

Figure 7. Normalized radioactivity in the acceptor after transport of water through films 435 

composed of CNC-HPMC () NFC-HPMC () and MFC-HPMC () films after 60 436 

minutes. 437 

 438 

Conclusion 439 

In this study, we investigated film properties for mixtures of the pharmaceutical approved 440 

cellulosic derivative HPMC with three different types of nanocelluloses. The length of the 441 

nanocelluloses in the HPMC:nanocellulose composite films appeared essential as it: (i) 442 

determined the structure of the formed composites: (ii) greatly impacted the films properties 443 

(swelling, mass transport, mass loss and integrity). Furthermore, a mechanistic model 444 
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explaining the observed dependence on the fiber length was suggested. Briefly, long fibers in 445 

the network generate larger resistance to deformation than short fibers, resulting in larger 446 

swelling for networks of short fibers (like CNC). The main driving force for swelling in these 447 

composites was the presence of the hydrophilic polymer (HPMC), which swelled and partly 448 

dissolved in water. The fiber network acted as an armature, which allowed a very large 449 

swelling of 75 g/g for the 20% (w/w) CNC-HPMC film after 100 minutes. At the same time, 450 

the mass loss of this film was as high as 60%, resulting in mechanical instability. For practical 451 

applications stable films are required and it is therefore important to tune the swelling by 452 

carefully choosing the length of used nanocellulose. For example, films from longer NFC 453 

fibers, also with 20% (w/w) HPMC, presented more restricted swelling (7 g/g) and were 454 

stable in water for more than a week. The increased diffusion length across the films due to 455 

swelling was the dominating factor in determining the water transport across the 456 

nanocellulose composite films. Even though the CNC-HPMC films were less dense and had 457 

larger mass loss, the water transport across them was slower than across corresponding NFC-458 

HPMC films. Finally, all film properties were similar for films based on MFC or NFC, even 459 

though the films were prepared using very different methods. The NFC-HPMC films were 460 

sprayed using a spray gun, followed by drying at 50C for several hours. MFC-HPMC films 461 

were produced by solvent casting for three weeks at under controlled conditions at 30C. This 462 

indicates that the choice of manufacturing method for the films has much less influence on the 463 

film properties than the aspect ratio of the nanocellulose. The findings are highly relevant for 464 

further developments towards use of nanocellulose in wet-state applications 465 
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Abstract 16 

Composite films were sprayed from mixtures of water soluble hydroxypropyl methylcellulose 17 

(HPMC) and either nanofibrillated cellulose (NFC) or cellulose nanocrystals (CNC). Fiber 18 

diameter was similar for both nanocelluloses but fiber length was several µm for NFC and 19 

about 200 nm for CNC. Films were characterized for morphology, swelling, mass loss and 20 

transport properties. NFC-HPMC films swelled less than CNC-HPMC films; with a HPMC 21 

content of 20wt% NFC-HPMC and CNC-HPMC films presented swelling of 7 and 75 g/g, 22 

respectively. The swelling strongly influenced water transport across the films, with slower 23 

transport for CNC-based materials compared to NFC-based materials. The properties of NFC-24 

based films were comparable to previous results using microfibrillated cellulose (MFC) with 25 

heterogeneous structural content and fiber lengths of ~10 µm. The findings have implications 26 

for using nanocellulose to modulate material properties in wet-state applications, with effects 27 

being in strong contrast when using as a hardening filler in dry materials. 28 

 29 

Keywords: Cellulose nanocrystals, composite films, controlled release, microfibrillated 30 

cellulose, nanofibrillated cellulose, structure.  31 

Graphical abstract: 32 
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1. Introduction 34 

In the search for renewable materials to replace fossil-based plastics, pure nano-dimensioned 35 

cellulose and composite films have received great interest as barrier materials in recent years 36 

[1-6]. The majority of investigations have focused on dry-state barriers and gas permeability. 37 

However, recently such systems have also received interest for use as a barrier against liquid 38 

[5-9]. Recent advances in chemistry and processing of nanocellulose have greatly facilitated 39 

such development [3, 10]. Three different types of cellulose, with varying lengths and 40 

diameters are commonly studied: nanofibrillated cellulose (NFC), microfibrillated cellulose 41 

(MFC) and cellulose nanocrystals (CNC). NFC is also sometimes referred to as 42 

microfibrillated cellulose, nanofibrils and/or microfibrils, and typically presents diameters of 43 

some nanometres to about 100 nm and lengths of several micrometers, while CNC typically 44 

presents similar ranges in diameters, but lengths of some hundreds of nanometers, or possibly 45 

longer if sourced from non-plant organisms [3]. The larger length compared to diameter 46 

results in large aspect ratios for both NFC and CNC, with that of NFC typically being more 47 

than an order of magnitude larger than that of CNC (Table 1). 48 

Nanosized cellulose with large aspect ratios is finding use as a filler to improve mechanical 49 

properties in dry [11] and wet [12] materials. Along those lines NFC and CNC have started to 50 

receive interest for use in controlled release applications; NFC for modulating substance 51 

release by delayed diffusion through the nano-microporous network [7, 13, 14] and CNC as a 52 

carrier that physically adsorbs substances onto its surface [15, 16]. Previous work in our 53 

group revealed that MFC films produced via solvent casting formed swollen nano-54 

microporous films in the wet-state and that the permeability and swelling could be controlled 55 

by adding the food- and pharmaceutically-approved water-soluble polymer hydroxypropyl 56 

methyl cellulose (HPMC) to prepare composite films [7]. In contrast to conventional 57 

controlled release films where HPMC can be used as a pore former to increase the 58 

permeability [17], the permeability decreased with increasing HPMC content in the MFC 59 

films. It was shown that the presence of HPMC modulated the film structure and swelling 60 

properties, and that a large portion of the HPMC remained in the films after submersion. It 61 

was also shown that the water permeability increased when 20% (w/w) HPMC was added to 62 

the films, but decreased when an amount larger than 35% (w/w) HPMC was added to the 63 

composite films.  64 

 65 
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 66 

Sample 

name 

Length (nm) Width 

(nm) 

Aspect 

ratio
a
 

Surface 

chemistry 

Surface 

charges 

(Zeta 

potential) 

Preparation 

method 

Notes 

MFC
 b,c

 500-10 000’s 1-

1000’s 

>1-200 OH N/A From 

commercial 

bleached Kraft 

pulp: Mechanical 

pre-treatment 

followed by 

homogenization. 

Highly 

heterogeneous; 

containing 

particles, fibers 

and fiber 

clusters, 

ranging from 

nanometers to 

hundreds of 

micrometers in 

size.  

NFC
b
 500-2000 4-20 >100 OH N/A From softwood 

sulfite dissolving 

pulp: Enzymatic 

pre-treatment 

followed by 

homogenization 

Predominantly 

nanofibres  

CNC
b
 170 (50-500) 17 (3-5)  ~10 OH and 

sulfate 

-42 mV From 

microcrystalline 

cellulose: Acid 

hydrolysis 

Only 

nanocrystals 

observed 

a
From length and width estimates. 67 

b
Values estimated from the AFM and light scattering done in our group. Values in bracket reported from 68 

literature [18]. 69 

c
Values from a previous characterization [19]. 70 

Table 1. Colloidal characteristics of used celluloses. 71 

 72 

In this study, it was hypothesized that the swelling and water permeability of pure and 73 

composite films from three different nano-dimensioned celluloses (NFC, MFC and CNC) 74 

would depend on the aspect ratio of the used cellulose. The permeability, swelling and 75 

structure of spray-dried films of pure cellulose or composites containing HPMC were 76 
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analyzed and results were compared with solvent-casted MFC-HPMC films from our previous 77 

work [7]. The structure of the cellulose fibers was characterized with atomic force microscopy 78 

(AFM) and dynamic light scattering (DLS) for the CNC. Film structures were characterized 79 

with scanning electron microscopy (SEM) and the water permeability was determined using 80 

radiolabeled (tritated) water. Swelling behavior of the composite films was determined 81 

through gravimetric analysis. The results provide important information on the performance 82 

and robustness of nanocellulose films in the wet state with regard to structure and preparation 83 

conditions. The findings are highly relevant for the utilization of nano-dimensioned cellulose 84 

in materials for which controlled transport properties are of major importance, for example 85 

controlled release of pharmaceutical drugs or wound care products. 86 

 87 

2. Materials and methods 88 

Sodium hydroxide (anhydrous pellets, reagent grade ≥98%), dialysis membrane Dowex 89 

Marathon MR-3 hydrogen form, polyethyleneimine (50% (w/v), Mw 750 000), and sulfuric 90 

acid (ACS reagent, 95.0-98.0% (w/w)) were purchased form Sigma-Aldrich, Germany. 
3
[H]-91 

water and scintillation liquid Ultima Gold® were purchased from Perkin Elmer, USA and 92 

used as received. HPMC (Metolose 90SH100 SR), and microcrystalline cellulose (Avicel PH-93 

101 NF) were gifts from Shin-Etsu Chemical Co., Ltd., Tokyo, Japan and FMC BioPolymer, 94 

USA, respectively. NFC generation 1 was kindly provided by Innventia AB, Sweden, and was 95 

produced from softwood sulfite dissolving pulp by enzymatic treatment with subsequent 96 

homogenization [20]. Water was purified with Millipore Milli-Q Purification system 97 

(resistivity > 18.2 MΩ cm). 98 

2.1. Production of cellulose nanocrystals (CNC) 99 

CNC were prepared by adapting the preparation method earlier reported [21, 22]. Briefly, 100 

40 g of microcrystalline cellulose (Avicel PH-101 NF) was dispersed in 400 ml Milli-Q water 101 

in a 2 liter Erlenmeyer flask while stirred and cooled by an ice bath. Sulfuric acid was added 102 

drop-wise to reach a final concentration of 64% (w/w) while the temperature was kept below 103 

20°C. The reaction was initiated by heating the mixture to 45°C, and left to react under 104 

vigorous stirring for 70 minutes. The reaction was quenched with a 10-fold addition of 105 

deionized water and was centrifuged at 5100 rpm (Sigma 4K15 centrifuge, UK) in 5 minutes 106 

cycles where the supernatant was discarded and replaced by deionized water. This was 107 



6 
 

repeated until the supernatant became turbid. The cellulose was put on dialysis against 108 

deionized water, which was changed two times daily until the conductivity did not differ from 109 

the pure deionized water. The dialyzed cellulose was then ion exchanged (Dowex Marathon 110 

MR-3 resin, hydrogen form) under continuous stirring for 48 h. The mixture was filtered 111 

through a fritt disc glass funnel (n°2) to separate the cellulose from the resin. The cellulose 112 

was finally sonicated (Vibracell Sonicator, Sonics and Materials Inc., Danbury, CT) at 40% 113 

output in three cycles of 14 minutes each, and subsequently titrated by conductometry with a 114 

NaOH solution (0.02 M). A final centrifugation step was carried out to remove large 115 

aggregates (5100 rpm, 5 minutes), resulting in suspension with a dry weight of ~0.5% (w/w). 116 

The suspension was concentrated up to 1% (w/w) by rotary evaporation.  117 

2.1.2. Characterization of nanocelluloses 118 

The NFC and CNC were imaged with a NTEGRA Prima from NT-MDT (Ireland) in tapping 119 

mode under ambient air conditions (23°C and 48% relative humidity). No image processing 120 

except flattening was made. AFM measurements were performed using a single crystal silicon 121 

tip with a radius of 10 nm (NT-MDT, NSG01). Samples were prepared as follow: a 20 µl 122 

0.1% w/v polyethyleneimine drop was put on a mica sheet freshly cleaved for three minutes 123 

then rinsed with water and dried with nitrogen gas. Subsequently a 20µl drop 0.05% w/w 124 

CNC or NFC suspension was deposited on the mica surface for three minutes, then rinsed and 125 

dried with nitrogen gas.  126 

2.2. Preparation and characterization of composite films 127 

The NFC was diluted with Milli-Q water to a final concentration of 1% (w/w) and was 128 

dispersed for 1 minute at 24,000 rpm using a homogenizer (DI 18 basic, Ika). The CNC 129 

suspension was used at 1% (w/w). A 3% (w/w) stock solution of HPMC was prepared in 130 

Milli-Q water. Mixtures containing 0, 10, 20, 27 and 35% (w/w) HPMC and CNC or NFC 131 

were prepared by weighing. Finally, the total NFC-HPMC concentration was adjusted to 1 % 132 

(w/w) and the total CNC/HPMC to 0.5 % (w/w). Each mixture was sprayed with a spray gun 133 

onto a weighing boat placed on a rotating heated metal plate to ensure homogeneous spraying. 134 

To reduce the evaporation time the films were heated from above with hot air. Finally, the 135 

weighing boat was placed in an oven at 40-50°C for further drying overnight. The CNC-136 

HPMC films obtained were transparent while the NFC-HPMC films were partly opaque. 137 
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2.2.1. Swelling tests and loss of mass 138 

The swelling tests were performed on cut-out square film pieces with weights in the range of 139 

5 to15 mg using a dissolution bath. The films were placed in USP-1 baskets that were 140 

submerged in 900 ml Milli-Q water at 37°C under stirring at 50 rpm. At specific times, the 141 

baskets with the films inside were taken out, carefully dried with paper tissues, and the 142 

weights were measured. The swelling ratio was calculated as: 143 

   
     

  
     (1) 144 

where SR is the swelling ratio, W1 is the initial weight of film, and W2 is the weight of swelled 145 

film derived as: 146 

           (2) 147 

where BF is the weight of basket with swelled film, and B0 is the average weight of the same 148 

cage without film but exposed to the same conditions (n ≥ 10 samples).  149 

For the CNC-HPMC films the swelling was measured for 100 minutes (due to rapid loss of 150 

mass). For the NFC-HPMC films, the measurement was conducted for 180 minutes (same 151 

time as the mass transport tests).  152 

After the swelling tests, the film pieces were placed in an oven and dried over night at 50°C. 153 

The weights of the dried film pieces were measured and the loss of mass index was calculated 154 

as: 155 

    
     

  
         (3) 156 

where LM is the loss of mass, W1 is the initial weight of the film and W3 is the weight of the 157 

dried film. 158 

2.2.2. Film morphology 159 

The cross-sections were studied using a scanning electron microscope (Leo Ultra 55 FEG-160 

SEM, LeoElectron Microscopy Ltd, UK) with a secondary electrons detector at 3 kV in 161 

vacuum. Prior to analysis, films swollen for 30 minutes were frozen in liquid nitrogen and 162 

freeze-dried. Samples of film as prepared and freeze-dried were coated with a thin gold layer 163 

to avoid charging of the samples.  164 



8 
 

2.2.3. Mass transport properties 165 

Mass transport measurements were performed in diffusion cells at 37°C under stirring 166 

(200 rpm). Details on the setup can be found elsewhere [23]. Briefly, 15 ml of pre-heated 167 

Milli-Q water was added simultaneously to both compartments, followed by immediate 168 

addition of 10 µl
 3
[H]-labelled water to the donor chamber. The permeation was monitored by 169 

taking out samples of 500 µl from the acceptor compartment at determined times, and 170 

immediately replacing them with equal amounts of pre-heated Milli-Q water. Samples were 171 

assayed with scintillation liquid, Ultima Gold®, and analyzed in a liquid scintillation counter 172 

(Tri-Carb B2810TR, Perkin-Elmer, USA). When a sample containing tritiated water is mixed 173 

with the scintillation liquid a signal expressed in DPM (disintegrations per minute) is 174 

obtained. The signal is proportional to the concentration of 
3
[H]-labelled water.  175 

The accumulated radioactivity, RAn, in the acceptor compartment at time t was determined as: 176 

                    
    

       
        (4) 177 

where RAsample n is the radioactivity in sample n that is withdrawn at time t with a volume of 178 

Vsample, and Vtot is the total volume in the acceptor chamber.  179 

The normalized radioactivity in the acceptor, NRA, at time t for sample n was calculated as:  180 

       
      

       
 100%   (5) 181 

Where RD is the initial radioactivity in the donor compartment. The water mass transport was 182 

calculated by plotting NRA as function of the time. It is assumed during the course of the 183 

experiment that the amount of 
3
[H]-labelled water transferred from the donor chamber to the 184 

acceptor chamber is negligible in comparison with the starting concentration in the donor 185 

chamber. 186 

3. Results and discussion 187 

3.1. Characterization of the nanocelluloses 188 

Atomic force microscopy (AFM) was used to characterize the morphology of the NFC and 189 

CNC. MFC has been previously characterized [19]. From Fig. 1 it is evident that the length of 190 

NFC much exceeded that of CNC, while the diameter was similar. The CNC showed 191 

diameters between 10 to 20 nm and lengths of approximately 200 nm, yielding an aspect ratio 192 
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of about 10, in agreement with previous reports [18, 21, 24]. The NFC had a fiber diameters 193 

in the range 4-20 nm, lengths of up to 2 μm and aspect ratios >100. In contrast, the MFC was 194 

highly heterogeneous, containing both smaller fragments with low aspect ratio, extremely 195 

long and entangled nanofibers, and microfibers and bundles [19]. Thus, the three materials 196 

represented distinctively different nanocelluloses. CNC had a low aspect ratio compared to 197 

NFC and MFC. On the other hand, the structural content of MFC was highly heterogeneous 198 

compared to that of NFC and CNC. See Table 1 for summary of the structural properties of 199 

CNC, NFC and MFC.  200 

 201 

 202 

Figure 1. Atomic force microscopy (AFM) image recorded in tapping mode of NFC (left) and 203 

CNC (right) on a glass plate coated with polyethylenimine at 23°C and 48% relative 204 

humidity. 205 

 206 

3.2. Characterization of the composite films 207 

3.2.1. Swelling behavior 208 

In previous work it was reported that the swelling of MFC-HPMC composite films increased 209 

with HPMC content and that a fraction of the of the HPMC was released from the films [7]. In 210 

this study, the swelling behavior of CNC-HPMC and NFC-HPMC films was investigated in 211 

Milli-Q water at 37°C for 100 and 180 minutes, respectively (Fig. 2a-b) and the results were 212 

compared with those previously reported for MFC-HPMC films (Fig. 3). Due to the fragile 213 

nature of CNC-HPMC composites, a modified method involving placement of the films in 214 



10 
 

baskets was used for submerging the films in the present work, see Materials and Methods. 215 

Even under these protective conditions the CNC-HPMC films with ≥ 20% HPMC rapidly lost 216 

mass and were fragmented, only maintaining coherency for about 100 minutes. CNC films 217 

containing less than 20% HPMC (w/w) remained coherent for the 180 minutes of the 218 

experiment (pure CNC films actually maintained structural integrity for more than one week). 219 

The swelling of NFC-HPMC films was possible to measure for 180 minutes.  220 

The swelling of the NFC-HPMC films over time is presented in Fig. 2a. The films turned 221 

from opaque to white when exposed to the Milli-Q water. Regardless of HMPC content, the 222 

samples presented rapid initial swelling so that a plateau was reached already at the first time-223 

point of 10 minutes. The largest swelling ratio of 11 g/g was obtained for the film with 35% 224 

(w/w) HPMC content. Generally, the swelling increased with increasing HPMC content, but 225 

the swelling’s dependence on HPMC content may be non-trivial over time. A detailed 226 

analysis was not possible given the magnitude of the error bars. 227 

The CNC-HPMC films presented a different trend in swelling with HPMC content (Fig. 2b) 228 

than the NFC-HPMC films. First, not all films reached a plateau within the 100 minutes of the 229 

experiment. It was noted that films with high HPMC content lost material over the 230 

experiment, as substantiated by the sample with 35% HPMC decreasing in weight between 231 

the last time points. Secondly, the CNC-HPMC films exhibited swelling ratios about ten times 232 

larger than the NFC-based films. Pure CNC films presented rapid initial swelling and reached 233 

a plateau at 6 g/g after 10 minutes, the value was slightly larger than for pure NFC films, but 234 

the behavior was qualitatively similar. The film containing 10% HPMC had larger swelling 235 

than the pure CNC film and did not reach plateau. At the same time the swelling ratio was 236 

lower for this film compared to CNC-based films containing more HPMC. The highest 237 

swelling ratio of around 75 g/g was obtained for the film containing 20% HPMC after 100 238 

minutes, at which time the swelling was still increasing. The films containing 27% and 35% 239 

HPMC presented similar swelling behavior to the one with 20% HPMC up to 30 minutes. 240 

After this time the 20% HPMC film continued to swell, while the latter 27 and 35% HPMC 241 

films seems to reach a plateau at about 40 g/g. This was likely due to the swelling being 242 

counteracted by material being eroded from the films. To summarize, for CNC-HPMC films 243 

the swelling was larger and seemed to have a more complicated dependence on the HPMC 244 

content than for NFC-HPMC films. 245 

 246 
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(a) (b) 247 

 248 

Figure 2. Swelling ratio versus time for (a) NFC and (b) CNC films with 0% (□), 10% (), 249 

20% (♦), 27% (○) and 35% (■) w/w HPMC. Error bars indicate standard deviation (n = 3). 250 

In Fig. 3 comparison is made between the swelling ratios of CNC- (white), NFC- (grey) and 251 

MFC-based (black) films with varying HPMC content. The swelling ratios are reported up to 252 

100 minutes. It can be seen that the swelling ratio is highest for CNC-HPMC films for all 253 

amounts of added HPMC.  254 

 255 

Figure 3. Swelling ratio for CNC-HPMC (white) after 100 minutes, NFC-HPMC (grey) and 256 

MFC-HPMC films (black) after 180 min. Error bars indicate standard deviation for CNC and 257 

NFC (n = 3). Data for MFC-HPMC are from [7]. 258 
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For pure nanocellulose films the swelling ratio, measured as relative increase of mass, 259 

depends on the water ingress and displacement in the system. The water in swollen films of 260 

pure nanocellulose can be considered in two ways: (i) water is adsorbed to the surface of the 261 

nanocelluloses and to some extent penetrate into the nanocellulose fibers (leading to swelling 262 

of the nanofiber itself) and/or (ii) the pores are partly filled with water through capillary 263 

transport. The water transport can deform the film and lead to an increase of the macroscopic 264 

dimensions and a corresponding substantial decrease of the nanocellulose concentration. It is 265 

impossible to completely distinguish between these scenarios. However, if the main 266 

contribution to the swelling was water uptake of the fibers, a smaller swelling ratio would be 267 

expected for the crystalline CNC film compared to the two fibrous nanocelluloses. Since the 268 

opposite was observed (see Fig 3), it seems likely that the dominating mechanism for water 269 

uptake was capillary transport of water into the inter-cellulose space in the films.  270 

The high swelling ratio of 75 g/g for 20% (w/w) CNC-HPMC composites and the swelling of 271 

the composite films in general can be rationalized by looking at the mechanism behind 272 

swelling of materials from water-soluble polymers. The first important step in this discussion 273 

is the mechanistic understanding of swelling of pure HPMC films, which coincides with the 274 

mechanism described in the literature for swelling of HPMC matrixes in controlled drug 275 

applications [25, 26]. When a dry HPMC material is exposed to water it will diffuse into the 276 

material, resulting in a water-concentration gradient. The water will plasticize the glassy 277 

HPMC, causing a transition to the rubbery state, in which the swollen material is best 278 

described as a semi-dilute polymer solution [27]. The rate of the water ingress into the 279 

material is determined in-part by water´s chemical potential gradient. One major factor that 280 

drives water diffusion and facilitates the dilution of the system (here seen as swelling) is the 281 

gain in conformation entropy of the HPMC chains. The dilution lead to a decrease in the 282 

polymer concentrations and when the HPMC concentration is close to or below the overlap 283 

concentration, the polymer will be disentangled and released from the surface of the film [28].  284 

An interesting observation is that the swelling ratio versus time reaches a plateau for several 285 

of the HPMC/nanocellulose films (see Figs. 2a-b). To give a plausible explanation for this one 286 

need to discuss the factors counteracting the swelling process. These films contain a highly 287 

percolated fiber network that will prevent welling when the energy gain from further water 288 

absorption is balanced by the energy cost to deform the film. The shear modulus is higher for 289 

a network of longer fibers compared to that of a corresponding network of shorter fibers [29]. 290 

As such the energy cost of deformation should increase with fiber length. Therefore, for the 291 
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same amount of HPMC, i.e. the main driving force to swell the network, films of long fibers 292 

should present a lower equilibrium swelling than films of short fibers. This explains why 293 

films based on short CNC fibers swelled more than films based on longer NFC and MFC 294 

fibers for the same HPMC content (Fig 3).  295 

The swelling ratio of a pure HPMC matrix tablet is known to be around 2, i.e. much less than 296 

what we observed for HPMC:nanocellulose films. A tentative explanation is that the highly 297 

percolated nature of the nanocellulose in the films provided a resistant armature that 298 

maintained film integrity and allow further swelling well beyond the point at which HPMC 299 

dissolve when used in a pure form.  300 

In conclusion, we suggest that the driving force for swelling of HPMC-nanocellulose films is 301 

the presence of HPMC and that the counteracting force is the percolated network of 302 

nanocellulose, with longer NFC and MFC fibers restricting swelling more than shorter CNC 303 

fibers. 304 

 305 

3.2.2. Loss of mass from films during swelling 306 

The mass loss was determined at the final time point of the experiment and is presented in 307 

Fig. 4. The mass loss of NFC-based films appeared to have a linear dependence on HPMC 308 

content. Compared to the films based on MFC the loss of mass was less for all HPMC 309 

contents. This could be explained by that the heterogeneous MFC contained significant 310 

amounts of small-sized particles and aggregates of low aspect ratios [7]. Those aggregates 311 

might not have been effectively entangled in the MFC network and could thus leave the films. 312 

Interestingly, for both NFC and MFC the mass loss was less than the mass content of highly 313 

soluble HPMC. For CNC-based films the mass loss was similar as for NFC at HPMC contents 314 

of 0 and 10% (w/w). However, above 10% (w/w) HPMC there was a dramatic increase in 315 

mass loss for the CNC-based films and the mass loss was larger than the mass corresponding 316 

to HPMC content, meaning that a fraction of the CNC was lost as well. This dramatic increase 317 

in mass loss above 10% (w/w) HPMC content is in agreement with the mechanism for release 318 

of materials from hydrophilic matrix systems [28]. As mentioned above, the release of HPMC 319 

from pure HPMC matrix occurs when the dilution of the polymer reaches the regime of the 320 

so-called overlap concentration, where individual chains begin to be released. In a refined 321 

model accounting for shear forces around the matrix, the overlap concentration is replaced by 322 
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a critical polymer concentration at the outermost layer of the hydrophilic matrix. At the 323 

critical concentration the semi-dilute polymer solution cannot withstand the shearing forces 324 

caused by the stirring and therefore the polymer chains are released in the surrounding media. 325 

A similar mechanism can be applied to the HPMC-nanocellulose films. The nanocellulose 326 

network can withstand the shear forces above its percolation threshold. With an increased 327 

swelling the fiber concentration decreases and at high degrees of swelling the fibers can be 328 

eroded.  329 

For the composite structures of HPMC and NFC or MFC, the ingress of water in the fiber 330 

network leads to dilution of the fiber network and HPMC. At low swelling ratios the strong 331 

armature nanocellulose fiber network can withstand the shear forces. However, hydrated 332 

HPMC will be diluted to concentrations around or below the overlap concentration and so that 333 

thus HPMC can disentangle and diffuse out from the films.  334 

In the case of CNC-HPMC films the counteracting forces from the cellulose network on the 335 

swelling are low. For films with 10% (w/w) initial HPMC content a swelling ratio of 40 g/g 336 

and loss of mass of 7.4% was recorded after 100 minutes. The combined concentration of 337 

HPMC and CNC can be calculated to 2.2% (w/w) in this state (assuming a density equal to 338 

one). This is in the range of the percolation threshold of CNC [30, 31]. It is therefore likely 339 

that most of the HPMC had diffused out from the films but that the CNC network withstood 340 

the shear forces. Films with 20% (w/w) initial HPMC content presented a swelling ratio of 75 341 

g/g and a mass loss of 60%. The combined concentration of HPMC and CNC can be 342 

calculated to 0.5% (w/w). This concentrations is below the percolation threshold of CNC and 343 

is in the range or below the overlap concentration of the HPMC used in this study [25]. Thus 344 

the mass loss was attributed both to dissolution of HPMC and erosion of the weak CNC 345 

network. 346 

In conclusion, the loss of mass for both CNC- and NFC-HPMC composite films is suggested 347 

to be mainly due to dissolution of HPMC. However, for CNC-HPMC films with HPMC 348 

content above 10% the high swelling ratio and corresponding decrease in CNC concentration 349 

led to both HPMC and CNC being released from the films. This mechanism explain the 350 

swelling behavior of CNC-HPMC films and why the swelling of the 35 % (w/w) CNC-HPMC 351 

film seemingly passed through a maximum gravimetric swelling ratio over time. The same 352 

phenomenon is observed for hydrophilic matrix tablets [32, 33]. 353 



15 
 

 354 

 355 

Figure 4. Loss of mass after swelling for CNC-HPMC (♦) (swollen for 100 min) and NFC-356 

HPMC (■) and MFC-HPMC () (swollen for 180 min) films. Error bars indicate standard 357 

deviation (n = 3).The dashed grey line represent the maximal theoretical loss of HPMC.  358 

 359 

3.2.3. Film morphology 360 

The surface and cross-section morphology of the films prior to and after exposure to water 361 

was investigated with SEM. The surface of the films was homogeneous and did not show any 362 

distinct features. Fig. 5 shows the cross section of the CNC (a and c) and NFC (b and d) films 363 

containing 20% (w/w) HPMC. Fig 5a-b are images of the cross-section of dry films cleaved 364 

before exposure to water and Fig. 5c-d are the cross-section of the corresponding films after 365 

exposure to water for 30 minutes, followed by quenching in liquid nitrogen, cleavage and 366 

freeze-drying.  367 
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 368 

Figure 5. SEM Micrograph of a NFC and CNC films composed of 20% HPMC (w/w). (a) and 369 

(c) show the cross-section of CNC films after preparation before and after exposure to water, 370 

repesctively. Specimen (b) and (d) show the cross-section of the NFC films treated in the same 371 

way. The films exposed to water (c and d) were frozen in liquid nitrogen, cleaved and then 372 

freeze-dried. Note the 100 times larger scale bar in (c) compared to the other films. 373 

 374 

The cross-section of the films after preparation showed that the CNC-based film was smother 375 

compared to the more fragmented/layered character of NFC based film, where each layer was 376 

estimated to be between 100 to 250 nm (Fig. 5). After exposure to water a highly swollen 377 

foam-like porous structure with large pores above 20 µm randomly oriented was observed for 378 

the CNC film, whereas the NFC films seemed to keep their layered structure aligned with the 379 

surface, in line with previous report for MFC [7]. Further interpretation on the pore-structure 380 

is rendered difficult as liquid nitrogen treatment is known to generate artifacts.  381 
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It seemed that the presence of HPMC did not significantly change the nanocellulose film 382 

forming properties, with CNC being more homogeneous while NFC formed a layered 383 

structure as previously observed [34, 35]. 384 

3.2.4. Mass transport properties 385 

Having established differences in swelling behavior and film structure between CNC-based 386 

and NFC-based films and the similarity of the latter with MFC-based films, the wet-state 387 

barrier properties of the films were investigated. Tritiated water was used to monitor the water 388 

transport through the films at 37°C with stirring in both donor and acceptor compartments.  389 

Pure films of CNC were too fragile to be placed in the diffusion cells, while pure NFC films 390 

as well as the composites could be analyzed. The corresponding data for the MFC-HPMC 391 

films was interpolated from previous work to simplify comparison [7]. The time dependency 392 

of the normalized radioactivity, NRA, of the tritiated water accumulated in the acceptor was 393 

plotted for CNC-, NFC- and MFC-HPMC films with various HPMC contents, as shown Fig. 394 

6. 395 

As expected from the similarities in swelling behavior and structure, the NFC-HPMC and 396 

MFC-HPMC presented similar mass transport properties. In addition, for both systems the 397 

transport across the films was decreased with increasing HPMC content. For the CNC-based 398 

films, the water transport through the films was slower than for NFC and MFC. As mentioned 399 

earlier, the CNC-films became very fragile and only the preparation with 10% (w/w) HPMC 400 

remained intact during the 180 minutes of the experiment. The transport of the tritiated water 401 

through the CNC-based films was similar irrespective of the HPMC content except for the 402 

higher fraction of HPMC (35% (w/w)) which showed lower mass transport rate. The trend in 403 

the transport through the nanocellulose films with different HPMC content can be more 404 

clearly seen by looking at the fraction of tritiated water in the acceptor compartment at a fixed 405 

time of 60 minutes (Fig. 7).  406 

 407 

 408 

 409 

 410 
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(a) (b)    (c) 411 

 412 

 413 

Figure 6. Normalized radioactivity in the acceptor after transport of tritiated water through 414 

films containing 0% (), 10% (), 20% (), 27% (○) and 35% () (w/w) HPMC. Error 415 

bars indicate standard deviation (n = 3). (a) CNC-HPMC; (b) NFC-HPMC; and (c) MFC-416 

HPMC (n = 2 or 3). The same y-scale was used for all plots for a better comparison of the 417 

systems. 418 

The mass transport rate across films depends on several of factors such as the level of 419 

hindrance the penetrant meets during the transport, typically fibers or polymer chains, the 420 

pathway for transport or the porosity of the system, for example. The CNC films will be more 421 

diluted (due to larger swelling and larger loss of mass) and thus have higher porosity than the 422 

NFC films. These properties should give larger mass transport for the CNC films compared to 423 

the NFC films. At the same time, an increased swelling of the films usually reduces the mass 424 

transport rate across the films due to an increased diffusion path. Fig. 7 shows that transport 425 

across CNC films was lower for all HPMC contents compared to the NFC and MFC films. 426 

This means that the reduction in mass transport due to the large swelling is dominating over 427 

the pore formation and dilution of the nanocellulose films.  428 
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In summary, pure NFC films and HPMC containing composites presented wet-state barrier 429 

properties almost identical to those of MFC-based films, despite differences in structural 430 

content of the two nanofibril celluloses and between film preparation methods. The results 431 

indicate that the barrier properties are robust with regard to film preparation and structural 432 

content of the used nanofibril cellulose. In contrast, the CNC-based films did display a lower 433 

permeability, but the films were highly unstable and their use as a wet-state barrier seems 434 

limited. Potential solutions to this problem could be to increase the stability of the films by 435 

incorporating a swellable polymer that forms a crosslinked network in situ. 436 

 437 

Figure 7. Normalized radioactivity in the acceptor after transport of water through films 438 

composed of CNC-HPMC () NFC-HPMC () and MFC-HPMC () films after 60 439 

minutes. 440 

 441 

Conclusion 442 

In this study, we investigated film properties for mixtures of the pharmaceutical approved 443 

cellulosic derivative HPMC with three different types of nanocelluloses. The length of the 444 

nanocelluloses in the HPMC:nanocellulose composite films appeared essential as it: (i) 445 

determined the structure of the formed composites: (ii) greatly impacted the films properties 446 

(swelling, mass transport, mass loss and integrity). Furthermore, a mechanistic model 447 

explaining the observed dependence on the fiber length was suggested. Briefly, long fibers in 448 

the network generate larger resistance to deformation than short fibers, resulting in larger 449 

swelling for networks of short fibers (like CNC). The main driving force for swelling in these 450 
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composites was the presence of the hydrophilic polymer (HPMC), which swelled and partly 451 

dissolved in water. The fiber network acted as an armature, which allowed a very large 452 

swelling of 75 g/g for the 20% (w/w) CNC-HPMC film after 100 minutes. At the same time, 453 

the mass loss of this film was as high as 60%, resulting in mechanical instability. For practical 454 

applications stable films are required and it is therefore important to tune the swelling by 455 

carefully choosing the length of used nanocellulose. For example, films from longer NFC 456 

fibers, also with 20% (w/w) HPMC, presented more restricted swelling (7 g/g) and were 457 

stable in water for more than a week. The increased diffusion length across the films due to 458 

swelling was the dominating factor in determining the water transport across the 459 

nanocellulose composite films. Even though the CNC-HPMC films were less dense and had 460 

larger mass loss, the water transport across them was slower than across corresponding NFC-461 

HPMC films. Finally, all film properties were similar for films based on MFC or NFC, even 462 

though the films were prepared using very different methods. The NFC-HPMC films were 463 

sprayed using a spray gun, followed by drying at 50C for several hours. MFC-HPMC films 464 

were produced by solvent casting for three weeks at under controlled conditions at 30C. This 465 

indicates that the choice of manufacturing method for the films has much less influence on the 466 

film properties than the aspect ratio of the nanocellulose. The findings are highly relevant for 467 

further developments towards use of nanocellulose in wet-state applications 468 

 469 
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