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Abstract

Let (M,J) be an almost complex manifold. We show that the infinite-
dimensional space T of totally real submanifolds in M carries a natural
connection. This induces a canonical notion of geodesics in T and a
corresponding definition of when a functional f : T → R is convex.

Geodesics in T can be expressed in terms of families of J-holomorphic
curves in M ; we prove a uniqueness result and study their existence. When
M is Kähler we define a canonical functional on T ; it is convex if M has
non-positive Ricci curvature.

Our construction is formally analogous to the notion of geodesics and
the Mabuchi functional on the space of Kähler potentials, as studied by
Donaldson, Fujiki and Semmes. Motivated by this analogy, we discuss
possible applications of our theory to the study of minimal Lagrangians
in negative Kähler–Einstein manifolds.

1 Introduction

Let (M,J) be a 2n-dimensional manifold endowed with an almost complex struc-
ture. Given p ∈M , we say an n-plane π in TpM is totally real if J(π)∩π = {0},
i.e. if TpM is the complexification of π. An n-dimensional submanifold L is to-
tally real if TpL is totally real in TpM for all p ∈ L. This gives a decomposition

TpM = TpL⊕ J(TpL).

Although totally real submanifolds are a natural object in complex geometry,
they cannot be studied using purely complex analytic tools. They are, in a
sense, the opposite of complex submanifolds; in fact, they are “maximally non-
complex”, where maximal also refers to their dimension. Furthermore, the defin-
ing condition is an open one so their “moduli space” T is infinite-dimensional.

It might seem reasonable to conclude that this class of submanifolds is too
weak to carry interesting geometry. In this paper we will prove the contrary
by initiating a study of the global geometric features of the space T . Further
results in this direction appear in the companion paper [11]; other applications
appear in [12].
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Geodesics on T . Our first main result, described in Section 2.1, is that T
admits a natural connection, inducing a notion of geodesics. In simpler language,
we discover that there exists a notion of canonical 1-parameter deformations of
a totally real submanifold L, in any given direction. This is rather striking:
there is no analogue of this fact known in other spaces of submanifolds. In some
sense this observation is the “global version” of the definition of totally real
submanifolds, which says the “normal” space TpM/TpL and tangent space TpL
are canonically isomorphic via J . In other words, the extrinsic and intrinsic
geometry of L coincide; geodesics are, in a sense, the extrinsic analogue of the
integral curves of tangent vector fields.

A convex functional. The geodesics induce a notion of convex functionals
f : T → R: specifically, those which are convex in one variable when restricted
to each geodesic. A second striking fact is provided by the following example.
Consider M = C, so that T is the space of curves: in this situation we prove
that the standard length functional is convex in our sense. Interestingly, this
turns out to be a reformulation of a classical result due to Riesz concerning
certain convexity properties of integrals of the form r 7→

∫
|u(reiθ)| dθ, where u

is a subharmonic function on an annulus.
The length functional uses the metric on C, so in higher dimensions it is

natural to focus on Kähler, more generally almost Hermitian, manifolds M and
look for an analogous functional on T . A first guess might be the standard Rie-
mannian volume functional but, in our context, this is rather unnatural because
it does not encode the totally real condition. In the literature [2] one finds a
second “volume functional”, tailored specifically to totally real submanifolds.

To understand this alternative functional, the key observation is that there
exists a second, equivalent, definition of the totally real condition: L is to-
tally real if and only if the pullback operation for forms defines an isomorphism
KM |L ' Λn(L;C). One can view this as another manifestation of the “extrin-
sic=intrinsic” property of totally real submanifolds. When L is oriented it turns
out that KM |L admits a canonical section. Integrating this (real) n-form on L
defines the “J-volume functional”, which agrees with the length functional in
dimension 1 but is in general different to the Riemannian volume functional.

Our second main result, stated in Section 5.4, is that, in the appropriate
setting, this functional is convex in our sense. It is perhaps worth emphasizing
that the notion of geodesics lies entirely within the realm of complex analysis:
a priori, it has no relationship to Kähler geometry. Our convexity result thus
reveals a new form of compatibility between complex and metric data.

Applications to minimal Lagrangian submanifolds. This brings us to
our study of the relationship between the J-volume and the Riemannian vol-
ume. The outcome is especially interesting when M is a Kähler–Einstein (KE)
manifold with negative scalar curvature.

Recall that an n-dimensional submanifold L in M is Lagrangian if the am-
bient Kähler form vanishes when restricted to L. Lagrangian submanifolds are
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a key topic in symplectic geometry. In the Kähler case it is particularly fruitful
to study interactions between symplectic and Riemannian properties of L. For
example, it is well-known that (i) in KE manifolds the mean curvature flow pre-
serves the Lagrangian condition and (ii) in negative KE manifolds the minimal
Lagrangians are strictly stable for the standard Riemannian volume.

Fact (i) is the starting point for [11]. Our goal here is to further investigate
fact (ii). Specifically, when M is negative KE we show the following.

• The J-volume provides a lower bound for the standard Riemannian vol-
ume. The two functionals coincide on Lagrangian submanifolds.

• The critical points of the J-volume are exactly the minimal Lagrangian
submanifolds. It thus “weeds out” the additional critical points (non-
Lagrangian minimal submanifolds) of the standard Riemannian volume.

• The J-volume is strictly convex with respect to our geodesics. For a
minimal Lagrangian this is the global counterpart of the aforementioned
infinitesimal stability property.

It is thus clear that the J-volume provides good control over minimal La-
grangians. No such convexity holds for the Riemannian volume functional.

A moment map. The above results fit into a larger picture. Indeed, the geo-
metric features of T resemble those of two other well-known infinite-dimensional
spaces which appear in Kähler geometry: the integrable (0, 1)-connections on
a Hermitian vector bundle E, i.e. the holomorphic structures on E, and the
Kähler potentials in a given Kähler class. In both cases we have the following.

• A canonical connection and notion of geodesics, related to an infinite-
dimensional group action and its formal “complexification”.

• A convex functional.

• A moment map encoding the group action, whose zero set coincides with
the critical point set of the functional.

Following this lead, in Section 8 we show the geometry of T can be rephrased
in terms of the formal complexification of the group of (orientation-preserving)
diffeomorphisms of L and of a moment map induced by the J-volume functional.
In particular, in the negative KE context it follows that minimal Lagrangians
can be re-interpreted as the zero set of a moment map.

Open problems. Our results naturally lead to questions about minimal La-
grangians and their relationship with the geometry of negative KE manifolds.

In the analogous problem for Kähler potentials, the moment map serves
to relate the existence of critical points of the functional to algebraic stability
properties of the manifold, whilst the uniqueness of these points is related to the
convexity of the functional. This formalism thus provides a useful understanding
of the geometry of Fano manifolds, and was indeed one of the ingredients of the
recently accomplished existence theory for positive KE metrics.
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By contrast, the existence of KE-flat (Calabi–Yau) metrics was solved by
Yau in the 1970s. Currently, the main questions here are related to calibrated
geometry, mirror symmetry and its applications to String Theory in Physics.

Given that the existence of negative KE metrics was also solved in the 1970s,
by Aubin and Yau, one might wonder what are the most interesting open ques-
tions in this context. Our results provide evidence that minimal Lagrangians
are closely related to deep aspects of this geometry. They also show that the
J-volume is a useful tool with which to probe this relationship.

On a technical level, a key feature of the space of Kähler potentials was
its amenability to analytic methods. This led (across 20 years) to a complete
existence theory for geodesics and to the corresponding extension of convexity
results. The main analytic question we set up in this paper is whether an
analogous theory is possible for geodesics in T . In Section 3 we provide a
reformulation of the geodesic equation in terms of families of J-holomorphic
curves intersecting the initial submanifold L. In the holomorphic setting this
helps elucidate key features of the equation, by allowing us to use standard
techniques from one complex variable to build examples and counterexamples
to the existence of solutions. It also provides a fairly complete understanding of
the uniqueness problem for geodesics. It is clear however that the final answer
to these questions will require substantial effort, on a different technical scale.
More generally, it seems worthwhile investigating the properties of geodesics in
relation to other classical problems in complex analysis. After this work was
complete it was pointed out to us by László Lempert that the notion of geodesics,
in the 1-dimensional case, had already been investigated in unpublished work
by Birgen [1] in relation to Levi-flat hypersurfaces and polynomial hulls. Work
in progress by Maccheroni [13] shows that the notion of geodesics also finds
applications to the study of complex-analytic properties of minimal Lagrangians.

A second significant problem is the existence and uniqueness of minimal
Lagrangians in negative KE manifolds. As for Kähler potentials, existence may
be related to a stability-type condition on the given data while our convexity
result provides some information on global uniqueness properties, cf. Section 8.
Other aspects of the uniqueness question are discussed in [8] and in [12].

Thanks to Filippo Bracci, Robert Bryant, Simon Donaldson, Jonny Evans,
Pavel Gumenyuk, Dominic Joyce, Claude LeBrun, László Lempert, Fulvio Ricci
and Chris Wendl for useful conversations and invaluable insights.

2 The space of totally real submanifolds

To start, let us make three initial choices:

• a 2n-dimensional manifold (M,J) with an almost complex structure;

• an oriented n-dimensional manifold L;

• a totally real immersion ι : L→M .1

1This choice serves only to determine the homotopy class of immersions we will study.
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It will be important to maintain the distinction between immersions of L and
their corresponding images, i.e. “submanifolds”. In general, a submanifold is an
equivalence class of immersions, up to reparametrization via a diffeomorphism of
L. Since the orientation of L will play a role, we are interested in a slightly more
refined notion: an oriented submanifold is an equivalence class of immersions,
up to reparametrization by orientation-preserving diffeomorphisms.

The totally real condition is preserved under reparametrization, so it is well-
defined on the space of (oriented) submanifolds. We now define our two main
spaces of interest.

• Let P be the space of totally real immersions of L into M which are
homotopic, through totally real immersions, to the given ι.

• Let T be the space of oriented totally real submanifolds obtained as the
quotient of P by the group2 Diff(L) of orientation-preserving diffeomor-
phisms of L.

We shall view π : P → T , where π is the natural projection, as a principal
fibre bundle with respect to the obvious right group action of Diff(L). The
totally real condition is open in the Grassmannian of tangent n-planes in M ,
so it is a “soft” condition: in particular, P is an open subset of the space of
all immersions. It thus has a natural Fréchet structure, making it an infinite-
dimensional manifold. Given any ι ∈ P, we can identify TιP with the space of
all sections of (the pull-back of) the bundle TM over L.

Moreover, T is (at least formally) also an infinite-dimensional manifold.
Given L ∈ T , its tangent space TL T can be obtained via the infinitesimal ana-
logue of the operation which quotients immersions by reparametrization. Specif-
ically, TL T can be identified with sections of the bundle TM/TL ' J(TL) '
TL; we conclude that TL T ' Λ0(TL). The key point is that the totally real
condition provides a canonical subspace in TM transverse to TL and a canonical
isomorphism of this space with TL; i.e. the (extrinsic) “normal” bundle (defined
via quotients) is canonically isomorphic to the (intrinsic) tangent bundle.

Remark The action of Diff(L) might not be free; it is guaranteed to be free
only for embeddings. We will not worry about this issue, just as we will not be
concerned about precise definitions of infinite-dimensional manifolds, Lie groups
and bundles. Everything concerning such matters is taken as purely formal, but
it provides vital insight into the geometry of T . We refer to [9] for one approach
to infinite-dimensional geometry and analysis which could be applied here.

Remark Some orientable manifolds, e.g. n-spheres Sn, admit an orientation-
reversing diffeomorphism φ. In this case, reparametrization by φ defines a nat-
ural Z2-action on the space of immersions; two initial choices of totally real
immersion related this way define different (non-homotopic) spaces P, thus T .
Other orientable manifolds do not admit such diffeomorphisms: e.g. CP2. In this
case there is no distinction between submanifolds and oriented submanifolds.

2To simplify notation we omit any reference to the orientation.
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2.1 A canonical connection and geodesics

Differentiating the action of Diff(L) at ι ∈ P we obtain a subspace Vι of the
tangent bundle TιP, canonically isomorphic to the Lie algebra Λ0(TL) of vector
fields on L. The space Vι is the kernel of π∗[ι] : TιP → Tπ(ι) T and is given by

Vι = {ι∗X : X ∈ Λ0(TL)}.

Consider
Hι := J(Vι) = {Jι∗X : X ∈ Λ0(TL)}.

This space gives a complement to Vι, in the sense that there is a decomposition

TιP = Vι ⊕Hι.

Varying ι in P we obtain a distribution H in TP.
Let ϕ ∈ Diff(L) and let ι ∈ P. Let Rϕ denote the right action of ϕ on P,

i.e. Rϕι = ι ◦ ϕ. We now show that the distribution H is right-invariant.

Lemma 2.1 Let ϕ ∈ Diff(L) and ι ∈ P. Then (Rϕ)∗Hι = HRϕι.

Proof: Let Jι∗X ∈ Hι. Then Jι∗X ∈ TιP, so by definition there exists a curve
ιt in P with ι0 = ι and dιt

dt |t=0 = Jι∗X. Thus we may calculate for p ∈ L:

(Rϕ)∗Jι∗|pX|p =
d

dt
(Rϕ ◦ ιt)|t=0,p =

d

dt
(ιt ◦ ϕ)|t=0,p =

dιt
dt
|t=0,ϕ(p)

= Jι∗|ϕ(p)X|ϕ(p) = Jι∗|ϕ(p) ◦ ϕ∗|p ◦ ϕ−1
∗ |ϕ(p)X|ϕ(p)

= J(ι∗ ◦ ϕ∗)|p(ϕ−1
∗ X)|p.

Hence (Rϕ)∗Jι∗X = J(Rϕι)∗(ϕ
−1
∗ X) ∈ HRϕι. �

By Lemma 2.1 and the general theory of principal fibre bundles, H defines a
connection on the principal fibre bundle P.

Recall from the general theory that any representation ρ of Diff(L) on a
vector space E defines an associated vector bundle P ×ρ E over T ; each fibre
of this bundle is isomorphic to E. Such a bundle has an induced connection.
Parallel sections of this bundle can be described as follows. Choose a curve of
submanifolds Lt in T . Choose a horizontal lift ιt, i.e. a curve in P satisfying
π(ιt) = Lt and d

dt ιt ∈ Hιt . Choose any (t-independent) vector e ∈ E. Then the
section [(ιt, e)] of P ×ρ E, defined along Lt, is parallel. We can obtain all such
parallel sections simply by varying e.

In particular, using the adjoint representation of Diff(L) on its Lie algebra
gives the vector bundle P ×ad Λ0(TL). It is of fundamental importance to us
that this bundle is canonically isomorphic to the tangent bundle of T , via

P ×ad Λ0(TL) ' T (T ), [ι,X] 7→ π∗[ι](Jι∗X). (1)

Remark When M is complex (so J is integrable), we revisit (1) in Sections 6.2
and 6.4 from another viewpoint, as a consequence of Proposition 6.1.
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The isomorphism (1) implies that the connection given by H on P induces a
connection on T (T ). We can then describe parallel vector fields on T as above.
Finally, recall that a curve Lt is a geodesic if its tangent vector field d

dt (Lt) is
parallel. We thus obtain the following characterization of geodesics in T .

Lemma 2.2 A curve Lt in T is a geodesic if and only if there exists a curve
of immersions ιt and a fixed vector field X in Λ0(TL) such that π(ιt) = Lt and

d

dt
ιt = Jιt∗(X). (2)

This implies that [ιt∗X, Jιt∗X] = 0, for all t for which Lt is defined.

Proof: The form of (2) proves ιt is horizontal, and X ∈ Λ0(TL) plays the role
of e ∈ E in the general theory. Assume Lt is a geodesic defined for t ∈ (−ε, ε).
Let x(s) be an integral curve of X on L, defined for some s ∈ (a, b). Then

f(s, t) : (a, b)× (−ε, ε)→M, f(s, t) = ιt(x(s))

is an immersed surface in M and ιt∗X, Jιt∗X represent its coordinate vector
fields in the s and t directions, respectively. As such, they commute. �

Remark The existence of a canonical connection on the space of totally reals
appears to be rather surprising. One might wonder why this is not true for
the space S of all submanifolds. Although one can show there is a canonical
right-invariant horizontal distribution on the space of all immersions I, defined
by sections of the normal bundle, one seems unable to view T (S) as a vector
bundle associated to I, so it does not receive an induced connection. In other
words, the group action on I encodes only intrinsic information, and in general
one cannot encode the extrinsic geometry of the normal bundle intrinsically.

2.2 Convexity

Given geodesics, one has a natural definition of convex functionals on T .

Definition 2.3 A functional F : T → R is convex if and only if it restricts to
a convex function in one variable along any geodesic in T .

In the absence of existence results for geodesics, this notion could be vacuous.
However, in the presence of geodesics, convex functionals provide powerful tools
for analysing the geometry of T . We thus now turn to the existence problem.

3 The geodesic equation

Once one has a notion of geodesics on a manifold M, there are two key exis-
tence issues which arise: (i) the Cauchy problem, i.e. the short-time existence
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of geodesics given an initial point and direction, and (ii) the boundary value
problem, i.e. the existence of geodesics between two points in M.

WhenM is finite-dimensional, or infinite-dimensional and Banach, the first
problem is purely local and can be solved via the standard existence theory
for ordinary differential equations. The second problem concerns the global
properties of M and relates to the definition of geodesic completeness.

In our case the manifold T is infinite-dimensional but only Fréchet, so exis-
tence and uniqueness results for geodesics are non-trivial. The goal of this sec-
tion is to rephrase our notion of geodesics in terms of families of J-holomorphic
curves in (M,J). This has several advantages.

• It offers a geometrically appealing reformulation of the geodesic equation.

• It clarifies the nature of the geodesic equation, indicating for example that
it is not elliptic; however, it can be written as a family of elliptic equations.

• It opens the door to standard tools in the theory of one complex variable.

This viewpoint will lead us, at least when M is complex, to a complete solution
of the uniqueness question. It does not give a complete answer to the exis-
tence problem, but it does yield useful insight by providing both examples and
counterexamples and by suggesting a slight weakening of the notion of solution.

3.1 A reformulation of the geodesic equation

We distinguish three cases: the Cauchy problem, geodesic rays and the boundary
value problem.

The Cauchy problem. Assume we have an initial L0 ∈ T and initial di-
rection in TL0

T , which may be identified with a smooth vector field X on the
abstract manifold L. Ideally, the initial value problem for the geodesic equation
(2) can then be solved as follows.

1. Choose an initial parametrization ι0 of the submanifold L0.

2. Consider the flow defined by X on L; choose an integral curve x = x(s)
of X, where s ∈ I := (a, b).

3. Seek a J-holomorphic curve ι(s, t) : I×(−ε, ε)→ (M,J) such that ι(s, 0) =
(ι0 ◦ x)(s). Here, I × (−ε, ε) has its standard complex structure.

4. Varying the integral curve x gives a family of J-holomorphic curves ι.
Since each point of L belongs to some integral curve, fixing the time pa-
rameter t defines a map ιt : L→M which coincides with ι0 for t = 0.

If the J-holomorphic curves depend smoothly on the integral curves, ιt will be
smooth. Since immersions form an open set in the space of maps, ιt will be an
immersion for small t. Finally, the ιt solve (2) by construction.

Though appealing, this procedure entails some difficulties. In particular, we
observe the following.
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• Fix X. To obtain a map defined on L for each t ∈ (−ε, ε) we need to be
able to choose ε independent of the integral curve.

• Moreover, we would like to find appropriate “uniformly bounded” vector
fields such that ε is independent of the specific X. This is related to the
possibility of defining an “exponential map” from a ball in TL0

T into T .

To proceed we must determine the correct framework within which to analyze
our J-holomorphic equations. We are trying to solve an elliptic problem on I ×
(−ε, ε) by prescribing data inside the domain rather than, say, on the boundary.
Notice that the domain itself is not prescribed as ε is to be determined. To
tackle this problem, it is natural to use the “method of characteristics”. The
initial data is assigned on the curve I × {0} ⊂ I × (−ε, ε): this curve is non-
characteristic for our equation, so the method makes sense.

Here, the only general existence result available is the Cauchy–Kowalevski
theorem, which requires real analytic initial data. This regularity restriction is
rather strong: from the geometric viewpoint one wants geodesics in the space of
smooth immersions, built as above using maps C∞

(
I×(−ε, ε),M

)
. On the other

hand, when M is complex, standard regularity theory implies that any solution
is complex analytic with respect to s + it. In particular, if the solution exists,
the initial data ι0 ◦ x(s) must be real analytic. We conclude that the analytic
setting is actually natural for the geodesic problem stated above, where the
Cauchy–Kowalevski theorem provides strong existence results in Theorem 3.2.

This same reasoning also demonstrates an obstruction to the existence of
solutions to the Cauchy problem when the initial data is only assumed to be
smooth. It is thus important to introduce a weaker notion of geodesic, as follows.

Geodesic rays. In the standard theory of one complex variable, one often
studies maps defined on closed domains: holomorphic on the interior, but only
smooth or continuous up to the boundary. This leads us to the following.

Definition 3.1 Fix L0 ∈ T and JX ∈ TL0
T . A geodesic ray starting from L0

with direction JX is a curve of submanifolds Lt in T , for t ∈ [0, ε), for which
there exists a curve of immersions ιt, for t ∈ [0, ε), with the following properties:

• ιt is smooth on L× [0, ε);

• for t ∈ (0, ε), ιt solves the geodesic equation (2);

• ι0 parametrizes L0.

The existence problem for geodesic rays is manifestly different from the Cauchy
problem previously described.

The boundary value problem. We can now define geodesics between two
submanifolds L0 and L1 in T as geodesic rays interpolating between them.

To prove the existence of such a geodesic it is necessary to find a vector field
X on L and smooth, totally real immersions ιt : L→M , for t ∈ [0, 1], so that:
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• (x, t) 7→ ιt(x) is smooth on L× [0, 1];

• for t ∈ (0, 1), ιt solves (2);

• ι0, ι1 parametrize L0, L1.

As above, we can decompose a geodesic ray into a family of J-holomorphic
curves parametrized by the integral curves of X on L, thus defined on domains
I× [0, ε). For the boundary value problem, each curve provides a J-holomorphic
filling between the boundary data prescribed by ι0 on I×{0} and ι1 on I×{1}.

Remark If X defines a geodesic ray for t ∈ [0, ε) then −X defines a geodesic
ray for t ∈ (−ε, 0] and the two induced families Lt coincide, up to time reversal.

3.2 Existence in the real analytic case

The goal of this section is to prove the existence of an “exponential map” on T
in the real analytic context, with respect to a Fréchet-type metric, as follows.

Theorem 3.2 Let L be a compact real analytic n-manifold, let (M,J) be a real
analytic almost complex 2n-manifold such that J is also real analytic, and let
ι0 : L → M be a real analytic, totally real immersion. Fix m,R > 0 and let
B(m,R) be the space of real analytic vector fields X on L with3

‖∇kX‖C0 ≤ mk!/Rk for all k ≥ 0. (3)

There exists ε > 0 (depending on m,R) such that, for each X ∈ B(m,R), there
is a geodesic (Lt)t∈(−ε,ε) in T given by immersions ιt : L → M satisfying (2)
and ιt|t=0 = ι0.

In the above generality, the proof is an application of the Cauchy-Kovalewski
theorem (see e.g. [16, Chapter 10 Theorem 4]). The key ingredient in this
theorem goes under the name “method of majorants”. If J is integrable the
proof of Theorem 3.2 is more transparent, and the non-integrable case works
with the same method. We thus limit ourselves to the integrable setting.

To simplify, identify L with its image ι0(L) ⊂ M . For each p ∈ L, choose
an open polydisk Pi ⊆ Cn serving as a holomorphic coordinate chart for M ,
such that Vi := Pi ∩ Rn is a coordinate chart for L. Then choose Ui 3 p which
is open and compactly contained in Vi. By compactness of L we can extract a
finite number of domains so that the Ui cover L. We now proceed in two steps.

1. Given m,R > 0 we find ε > 0 such that, for X satisfying (3) and x0 ∈ Ui,
there exists a unique real analytic integral curve x : (−ε, ε) → Vi of X
with x(0) = x0.

2. We then show that each complexified power series x(s+it), for |s+it| < ε,
takes values in Pi. Up to identifications, this allows us to define ιt(s) :=
x(s+ it) for |s| < ε/

√
2, |t| < ε/

√
2. By varying x0 ∈ Ui we see that ιt is

well-defined on L, and satisfies (2) by construction.

3Here, ∇ and the norm are defined with respect to some choice of metric on L: since L is
compact, all metrics are equivalent.
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The integral curve equation is a system of ODEs of the form ẋ(s) = X(x(s)).
The existence of a unique smooth solution follows from standard ODE the-
ory. For the proof of Step 1, we review how the method of majorants shows
that this solution is real analytic and furnishes a radius of convergence of the
corresponding power series. It suffices to focus on the scalar ODE case.

Suppose we have open sets 0 ∈ U ⊂ V ⊆ R with U compactly contained in
V . Assume we want to solve the scalar ODE:

ẋ(s) = f(x(s)), x(0) = x0 ∈ U, (4)

where f is any real analytic function defined on V satisfying

‖f (k)‖C0(U) ≤ mk!/Rk for all k ≥ 0; (5)

equivalently, for any x0 ∈ U the coefficients of the power series representation
f(x) =

∑
an(x− x0)n satisfy an ≤ m/Rn. Recall the following definition.

Definition 3.3 The power series A(x) =
∑
Anx

n is a majorant of the power
series a(x) =

∑
anx

n, and we write a << A, if |an| ≤ An for all n ≥ 0.

If a << A it follows that (i) if A converges with radius RA then a converges
with radius Ra ≥ RA, and (ii) if we fix ε ∈ (0, RA) we can uniformly bound the
values of a: |a(x)| ≤

∑
|an||x|n ≤

∑
Anε

n = A(ε), for all |x| ≤ ε.
Consider first x0 = 0. The bounds (5) on f show that, if F (x) = mR/(R−x)

then the power series of f based at 0 satisfies f << F . The method of majorants
shows, by examining the induced equations on the higher derivatives, that the
power series of the solution x(s) of (4) satisfies x << ξ, where ξ solves

ξ̇(s) = F (ξ(s)), ξ(0) = 0. (6)

For arbitrary x0 ∈ U consider the power series of f based at x0: f(x) =
∑
an(x−

x0)n. If we set y(s) := x(s) − x0 so that y(0) = 0 we find ẏ =
∑
any

n. The
bounds (5) imply that this equation for y can again be compared with (6), so
that y << ξ. We conclude that x << ξ + x0.

Equation (6) can be explicitly solved, which gives the radius of convergence
of ξ in terms of m,R. We thus obtain (i) a lower bound on the radius of
convergence of x(s), for any f satisfying (5) and initial data x0 ∈ U , and (ii)
an upper bound on the values of |x(s)| for s ∈ (−ε, ε) in terms of ξ(ε) + x0. In
particular, since U is compactly contained in V , by restricting ε we may assume
that all solutions x(s), for x0 ∈ U , are contained in V . Step 1 can be proved by
applying the same reasoning to ẋ = X(x) in each coordinate chart Vi.

Our assumption that J is integrable allows us to complexify this data by
simply complexifying the corresponding power series; if J were only almost-
complex this is where we would use the Cauchy–Kovalewski theorem to prove
the existence of such complexified data, i.e. to obtain solutions x(s, t) of the
equation

∂x

∂t |(s,t)
= J(x)

∂x

∂s |(s,t)
, x(s, 0) = x(s).

11



Notice that, although x(s) is contained in Vi, we should not automatically as-
sume that the values of x(s+ it), for |s+ it| < ε, are contained in Pi. However,
our method of bounding |x(s)| applies also to |x(s + it)|: this follows from the
general fact that one can bound |

∑
an(s+ it)n| with

∑
|an||s+ it|n.

As explained in Step 2, this concludes the proof of Theorem 3.2.

3.3 Example: the 1-dimensional case

We now turn to smooth data. It is instructive to study the Cauchy problem
in the simplest case, where M = C and L0 is a smooth, closed, Jordan curve.
Recall that C \ L0 has two components: one bounded, one unbounded. We
view L0 as an embedding ι0 = ι0(θ) of the abstract manifold L := R/2πZ. For
dimensional reasons any such embedding is totally real. To be concrete, we use
the standard orientation on L defined by increasing angles and we assume the
embedding is chosen so that L0 is oriented in the anti-clockwise direction.

By our definition, geodesics through L0 are generated by a choice of tangent
vector field X. Since L is parallelizable and has the canonical, positively ori-
ented, vector field ∂θ, we have X = f∂θ, for some f : L→ R. The corresponding
geodesic in T is determined by the 1-parameter family of curves

ι : L× (−ε, ε)→ C

such that ι = ι0 for t = 0 and

∂ι

∂t
= if

∂ι

∂θ
. (7)

This coincides with the geodesic equation (2). In particular, when f ≡ 1 this
means that ι is holomorphic with respect to the standard complex structure on
the cylinder L× (−ε, ε). We can use the biholomorphism with the annulus

φ : L× (−ε, ε)→ A := {e−ε < |z| < eε}, φ(θ, t) := e−teiθ (8)

to reparametrize ι as a holomorphic map g := ι ◦ φ−1 : A → C. Our choice of
orientations imply that, as t increases from 0, the geodesics invade the bounded
component of C \ L0.

We now show that the f ≡ 1 case is, in some sense, general. Indeed, using
the ideas of Section 3.1, we can integrate X = f∂θ. If f has no zeros, i.e. X
never vanishes, then the integral curve through any point of L is periodic and its
parameter set is compact: we can identify it with S1

R := R/2πRZ, for some R >
0. The integral curve is then a (possibly orientation-reversing) diffeomorphism

S1
R → L, s 7→ θ(s) such that θ′ = f ◦ θ. (9)

The map ι(θ(s), t) is holomorphic on the cylinder S1
R×(−ε, ε) (with the standard

complex structure). Again, we can use the biholomorphism with the annulus

φ : S1
R × (−ε, ε)→ AR := {e−ε/R < |z| < eε/R}, φ(θ, t) := e−t/Reiθ/R (10)
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to reparametrize ι as a holomorphic map g : AR → C. Notice that this implies
a rescaling of the initial vector field X.

We summarize this discussion as follows.

Lemma 3.4 Fix L0 and a nowhere-vanishing vector field X as above. Then,
up to a rescaling of X, the geodesic family of curves Lt defined by this data is
equivalent to a holomorphic map g defined on an annulus in C containing S1.
Each Lt is the image under g of some circle {|z| = r}; in particular L0 is the
image of S1 and X corresponds to ±∂θ depending on the sign of f .

Assume, for example, f > 0. Then, as the radial parameter r decreases from
1, the corresponding curves invade the bounded component of C \ L0.

Remark Our discussion above indicates that the 1-dimensional case has a spe-
cial feature. Recall from Lemma 2.1 that the horizontal distribution H on P is
invariant under reparametrization. This means we can find all geodesics through
L0 by fixing any initial parametrization ι0 and considering all possible vector
fields: the geodesic in T defined by a different choice (ι0 ◦ φ,X) will coincide
with the geodesic defined by (ι0, φ∗X). Thus, in general there is no advantage
to changing the parametrization. In dimension 1, however, Diff(L) acts transi-
tively on the non-vanishing vector fields (up to a change of scale). Above, we
use this to bring X into “standard form” ∂θ, thus reducing the geodesic equa-
tion (2) to the standard Cauchy–Riemann equation. However, note that, when
f < 0, this strategy clashes with our initial decision to work with oriented sub-
manifolds, i.e. to only use orientation-preserving diffeomorphisms: this is easily
fixed by the observation that the geodesics defined by X and −X coincide, up
to time reversal. To find all geodesics, it it thus enough to concentrate on those
for which f > 0. A similar remark applies to vector fields with zeros (see below).

If the vector field X = f∂θ has zeros, then between any two zeros the new
parameter set will be R and the geodesic equation (2) pulls back to the standard
Cauchy–Riemann equation on R × (ε, ε). The zeros correspond to stationary
points of the family of curves.

As already mentioned, there is a necessary condition for the existence of
solutions to this equation: the initial curve must be real analytic. This condition
is also sufficient: given a local power series expansion of ι0 with respect to the
real variable θ, we obtain a holomorphic extension by replacing θ with θ + it.

In Section 3.1, in order to remain in the smooth category, we introduced
geodesic rays. Using the above ideas, we can study geodesic rays in the 1-
dimensional case and obtain a conclusion analogous to Lemma 3.4. In particular,
the geodesic ray defined by L0 and a non-vanishing vector field X is equivalent
to a holomorphic map g defined on an annulus in C of the form R1 < |z| < 1,
smooth up to |z| = 1. Elliptic regularity theory shows that, if the boundary
data is smooth, then g is smooth up to |z| = 1 even if in Definition 3.1 we
assumed the geodesic ray were only continuous with respect to t, at t = 0.

These results allow us to study the existence of geodesics using holomorphic
function theory.

13



Geodesics via Fourier theory. We showed above that an initial curve L0

and non-vanishing vector field X can be parametrized (up to rescaling X) via a
map γ : S1 → C and the standard vector field ∂θ. By Lemma 3.4, this data de-
fines a geodesic if and only if it admits a holomorphic extension g on an annulus
A. Recall from standard theory that such g admit a Laurent power series rep-
resentation

∑∞
n=−∞ anz

n, convergent on A. The coefficients an coincide with
the Fourier coefficients of the periodic function γ. It follows that the existence
of g, i.e. of the geodesic, depends on the convergence of the formal power series
defined by the Fourier coefficients of γ.

Recall that the Fourier coefficients of the curve are square-summable. Con-
versely, given a square-summable sequence of coefficients an ∈ C, for n ∈ Z,
we can ask whether it defines a curve γ : S1 → C admitting a holomorphic
extension g. Let p1(z) =

∑−∞
n=−1 anz

n and p2(z) =
∑∞
n=0 anz

n.

• If p1 and p2 have radii of convergence R1 < 1 and R2 > 1 respectively,
then the Laurent series p1 + p2 converges on the annulus R1 < |z| < R2

and defines an embedding γ of S1. The image curve L0 admits a geodesic
corresponding to ∂θ.

• If p1 has radius of convergence R1 < 1 and p2 has radius of convergence
1 and converges for |z| = 1, then the Laurent series p1 + p2 converges on
R1 < |z| ≤ 1 and defines an embedding γ of S1. The image curve L0

admits a geodesic ray corresponding to ∂θ.

• If p1 and p2 have radius of convergence 1 and converge for |z| = 1 then
the Laurent series degenerates: it converges only on S1, defining a curve
L0 which does not admit a geodesic or geodesic ray corresponding to ∂θ.

Example 3.5 Set an := 1/nlogn for n ≥ 1. Then
∑∞
n=1 anz

n has radius of
convergence 1 and converges absolutely for |z| ≤ 1, together with all derivatives.
Adding this to any series

∑−∞
n=−1 anz

n with radius of convergence R1 < 1 gives
smooth curves which admit geodesic rays but not geodesics corresponding to
∂θ. We can also combine it with

∑−∞
n=−1 |n|− log |n|zn to obtain a smooth curve

which admits neither a geodesic nor a geodesic ray corresponding to that ∂θ.
To obtain examples which are only continuous, set an := 1/n2.

Geodesics via the Riemann Mapping Theorem. Choose two closed Jor-
dan curves L0, L1 in C which do not intersect. Let Ω be the region contained
between these curves. A version of the Riemann mapping theorem, cf. [4, Theo-
rem 5.8], proves that there exists an annulus A and a biholomorphism g : A→ Ω
which extends continuously to the boundary; if L0, L1 are smooth then the bi-
holomorphism extends smoothly to the boundary. The restriction to the bound-
ary provides parametrizations of L0, L1; setting X = ∂θ the theorem shows that
for any two curves as above it is possible to solve the boundary value problem.

Remark Notice the regularizing behaviour of the geodesic equation (2) even
for the boundary value problem: for all intermediate times t ∈ (0, 1), the corre-
sponding curves are real analytic.
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Concluding remarks. We summarize what we have learned from the 1-
dimensional theory. Given an embedded curve L0 ⊂ C, we showed the following.

• Infinitesimal deformations correspond to parametrizations (via integration
of the tangential vector field f∂θ).

• A geodesic in a given direction corresponds to a holomorphic extension of
the corresponding parametrization.

• Examples show certain curves do not admit geodesics in certain directions.

• Given any curve L0, there always exist infinite geodesic rays departing
from it (corresponding to the arbitrary choice of a second curve L1).

This suggests the existence question for geodesics is non-trivial, but not vac-
uous. A similar situation occurs in the analogous theory concerning Kähler
metrics, cf. Section 7. There a weak notion of geodesics was found, leading to
a satisfactory existence theory. We expect something similar is needed here.
In particular, observe that our geodesic equation (2) is first order, rather than
second order as one might except: this corresponds to the fact that, in keeping
with the principal fibre bundle viewpoint, it is expressed in terms of the velocity
vector (being constant) rather than of the curve. Developing alternative expres-
sions for geodesics and further investigation of the properties of the connection
may contribute key ingredients to the existence theory.

3.4 Further results

Some of these same ideas can be extended to higher dimensions.

Existence and non-existence results when M = Cn. Consider a com-
pact totally real submanifold L0 in Cn and a tangent vector field X. Choose
an integral curve x = x(s) and a parametrization ι0, with components ιi0. If
the curve x is closed we can study the existence of holomorphic extensions of
γ := ι0 ◦ x(s) exactly as when n = 1, by examining its component functions
ιi0 ◦ x(s). This does not work if the curve is open, parametrized by R. Notice
however that the image of γ is contained in L0, so it is bounded. We can thus
interpret γ as a (smooth) tempered distribution and replace the role of Fourier
coefficients with Fourier transforms. In particular, we expect to obtain informa-
tion concerning existence of holomorphic extensions of γ using the Paley–Wiener
theorems. It is known for example, cf. [15, Theorem 7.23], that if the transform
of γ has compact support then γ admits an entire holomorphic extension (sat-
isfying certain growth conditions). Notice that in this case the transform of γ
will generally not be smooth, otherwise it would be L2 so γ would also be L2.

This applies also to any complex manifold M , as long as the submanifold is
contained in one chart.
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Uniqueness of geodesics. Perhaps the most interesting feature of our refor-
mulation of the geodesic equation (2) is that it gives a fairly complete answer
to the uniqueness question. Indeed, by restricting ι0 to each integral curve we
see that it suffices to prove the following claim: any two J-holomorphic maps
ι(s, t), ι′(s, t) which coincide for t = 0 coincide for all t.

In the holomorphic case (when J is integrable) the proof is simple. As
above, ι corresponds locally to a collection of holomorphic functions, defined by
its components in Cn. Uniqueness for the Cauchy problem then follows from the
standard identity principle for holomorphic functions. Uniqueness for geodesic
rays follows instead from the standard reflection principle.

If J is only almost complex the situation is more subtle. Uniqueness for the
Cauchy problem is then a consequence of the “unique continuation theorem” for
J-holomorphic curves, cf. [14, Theorem 2.3.2]. It seems reasonable that, using
results in the literature, one could also prove uniqueness for geodesic rays.

Remark In the real analytic case the uniqueness of real analytic solutions is
part of the Cauchy–Kowalevski theorem. One might hope to improve on this,
obtaining uniqueness in the smooth category, using Holmgren’s uniqueness the-
orem, cf. [17, Chapter 21]. However, Holmgren’s theorem concerns only linear
equations and this corresponds to an important difference between the holomor-
phic and pseudo-holomorphic equations. In the former case, in local coordinates,
the operator J is constant so the Cauchy–Riemann equation is indeed linear.
Holmgren’s theorem thus applies to give an alternative proof of the uniqueness
of geodesics and geodesic rays. In general almost complex manifolds, instead,
the Cauchy–Riemann equation is not locally linear.

3.5 Example: the 1-dimensional case, continued

We now examine the notion of geodesic convexity from Definition 2.3 in the
1-dimensional case by exhibiting an example of a convex functional. This func-
tional is well-known: it is the standard length functional. Its convexity is a
rather striking fact, and it is worth emphasizing it by giving two proofs. The
first relies on the specific nature of the geodesic equation by bringing into play
basic holomorphic function theory. As above, it assumes we have reparametrized
the curve by integrating f∂θ, but it requires that the domain remains compact.
This first proof also leads to a monotonicity result for the length functional.
The second proof is a direct geometric calculation, and holds for all f .

Proposition 3.6 The length functional on closed curves in C is convex in the
sense of Definition 2.3.

Proof: For the first proof, assume we are given a holomorphic map on the cylinder

γ : S1
R × (−ε, ε)→ C,
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where S1
R = R/2πRZ. Let w = s + it denote the complex variable on the

cylinder and λ = λ(t) : (−ε, ε)→ R the length of the curve γ(·, t). Explicitly,

λ =

∫ 2πR

0

∣∣∣∣∂γ∂s
∣∣∣∣ ds =

∫ 2πR

0

∣∣∣∣ ∂γ∂w
∣∣∣∣ ds.

We want to prove that λ is convex with respect to t.
The biholomorphism z = φ(s, t) in (10) allows us to reformulate the problem

in terms of a map g = g(z) : AR → C such that γ = g ◦ φ. Notice that g is
holomorphic if and only if γ is holomorphic and their complex derivatives satisfy
| ∂γ∂w | = (1/R)|φ∂g∂z |. Using polar coordinates on C and setting

Λ(r) :=

∫ 2π

0

∣∣∣∣z ∂g∂z
∣∣∣∣ dθ,

it follows that λ(t) = Λ(e−t/R). It thus suffices to prove that Λ ◦ exp is convex,
i.e. that on any segment [t1, t2] the graph of t 7→ Λ(et) is below the graph of
the linear function passing through the points (t1,Λ(et1)), (t2,Λ(et2)).

Notice that z ∂g∂z is holomorphic, so its norm u := |z ∂g∂z | is a subharmonic
function on the annulus. Convexity is then a classical result due to Riesz and
proved as follows. Let v denote the harmonic function on the annulus A := {z :
r1 ≤ |z| ≤ r2} ⊆ AR such that v coincides with u on the boundary. Notice that

d

dr

∫ 2π

0

v(reiθ) dθ =

∫ 2π

0

d

dr
v(reiθ) dθ =

1

r

∫ 2π

0

∂v

∂n
(reiθ) dσ,

where dσ = r dθ. Since v is harmonic, the divergence theorem shows that

r 7→
∫ 2π

0
∂v
∂n dσ is constant, so by subharmonicity∫ 2π

0

u(reiθ) dθ ≤
∫ 2π

0

v(reiθ) dθ = a log r + b,

for some constants a, b ∈ R; our choice of boundary data implies that equality
holds when r = r1 or r = r2. Changing variables we obtain the desired property
of Λ(et).

Similar methods show that if g extends to a holomorphic function on the
disk then Λ(r) is non-decreasing, so λ(t) is non-increasing.

For the second proof, we first parametrize the curve by arclength: it is thus
the image of some map γ0(s), where s ∈ L. Choose a vector field X = f∂s and
let γ(s, t) = γt(s) be a family of curves satisfying the corresponding geodesic
equation (7). Set γ′ := ∂γ

∂s and γ̇ := ∂γ
∂t for a cleaner exposition.

The length functional along γt is given by

λ(γt) =

∫
L

|γ′t|ds.
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We first calculate

d

dt
λ(γt) =

∫
L

∂

∂t
〈γ′t, γ′t〉

1
2 ds =

∫
L

|γ′t|−1〈γ̇t′, γ′t〉ds.

Then

d2

dt2
λ(γt) =

∫
L

|γ′t|−1
(
〈γ̈t′, γ′t〉+ |γ̇t′|2

)
− |γ′t|−3〈γ̇t′, γ′t〉2ds.

Since |γ′t|−1γ′t is a unit tangent vector we have that

∂

∂s

(
|γ′t|−1γ′t

)
= |γ′t|−1γ′′t − |γ′t|−3〈γ′′t , γ′t〉γ′t = iκt|γ′t|−1γ′t,

where κt is the curvature of γt. Therefore,

γ′′t = |γ′t|−2〈γ′′t , γ′t〉γ′t + iκtγ
′
t.

Hence,

γ̇t
′ =

∂

∂s
γ̇t =

∂

∂s
(ifγ′t) = ifγ′′t + if ′γ′t = −fκtγ′t + i(f ′ + f |γ′t|−2〈γ′′t , γ′t〉)γ′t.

Moreover,

γ̈t =
∂

∂t
(ifγ′t) = if γ̇t

′ = −f(f ′ + f |γ′t|−2〈γ′′t , γ′t〉)γ′t − if2κtγ
′
t.

Since we will be taking no further t derivatives and γ0 was arbitrary we can
now set t = 0 without loss of generality. In this case, because |γ′0| = 1 we see
that 〈γ′′0 , γ′0〉 = 0 and thus γ′′0 = iκγ′0 where κ0 is the curvature of γ0. Hence,

γ̇t
′|t=0 = −fκ0γ

′
0 + if ′γ′0 and γ̈t|t=0 = −ff ′γ′0 − if2κ0γ

′
0.

We therefore see that

γ̈t
′|t=0 = −(ff ′)′γ′0 − ff ′γ′′0 − i(f2κ0)′γ′0 − if2κ0γ

′′
0

= (f2κ2
0 − (ff ′)′)γ′0 − i(ff ′κ0 + (f2κ0)′)γ′0.

Putting these formulae together we see that

〈γ̈t′′, γ′t〉|t=0 = f2κ2
0 − (ff ′)′, |γ̇t′|2|t=0 = f2κ2

0 + (f ′)2, 〈γ̇t′, γ′t〉2 = f2κ2
0.

We deduce that

d2

dt2
λ(γt)|t=0 =

∫
L

f2κ2
0 − (ff ′)′ + f2κ2

0 + (f ′)2 − f2κ2
0 ds

=

∫
L

(f ′)2 + f2κ2
0 ds ≥ 0

since
∫
L

(ff ′)′ds = 0. Therefore the length λ(γt) is a convex function of t. �
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4 A canonical volume functional

In higher dimensions the standard Riemannian volume functional is not convex
with respect to our notion of geodesics. This is hardly surprising: when n ≥ 2
the totally real condition is an extra assumption, but the volume functional does
not interact with this condition. The goal of this section is to show that, for
totally reals, there is an alternative volume functional which (i) is canonical, (ii)
depends on the totally real condition and (iii) is convex in certain situations.

To define this functional we need an alternative characterization of totally
real planes: an n-plane π in TpM is totally real if and only if α|π 6= 0 for all (or,
for any) α ∈ KM (p) \ {0}, where KM is the canonical bundle of (M,J).

Notice that n-planes π in TpM which are not totally real contain a complex
line: a pair {X,JX} for some X ∈ TpM \ {0}. We call such n-planes partially
complex. We then say that an n-dimensional submanifold is partially complex
if this condition holds in the strongest sense, i.e. if each of its tangent spaces is
partially complex.

Let TR+ denote the Grassmannian bundle of oriented totally real n-planes
in TM and let π ∈ TR+(p). Let v1, . . . , vn be a positively oriented basis of π.
We can then define v∗j ∈ T ∗pM ⊗ C by

v∗j (vk) = δjk and v∗j (Jvk) = iδjk.

This allows us to define a non-zero form v∗1 ∧ . . . ∧ v∗n ∈ KM (p).
The form we have constructed depends on the choice of basis v1, . . . , vn. We

fix this by assuming we have a Hermitian metric h on KM , and then define

σ[π] =
v∗1 ∧ . . . ∧ v∗n
|v∗1 ∧ . . . ∧ v∗n|h

∈ KM (p).

This form has unit norm and is now independent of the choice of basis.
We have thus defined a map between bundles4 σ : TR+ → KM covering the

identity. We also see that the restriction of σ[π] to π is a real-valued n-form.
Now let ι : L → M be an n-dimensional totally real immersion. We can

then obtain global versions of the above constructions as follows.

Canonical bundle over L. Let KM [ι] denote the pullback of KM over L, so
the fibre of KM [ι] over p ∈ L is the fibre of KM over ι(p) ∈ M . This defines a
complex line bundle over L which depends on ι.

Observe that any complex-valued n-form α on TpL defines a unique n-form
α̃ on Tι(p)M by identifying TpL with its image via ι∗ and setting, e.g.,

α̃[ι(p)](Jι∗(v1), . . . , Jι∗(vn)) := inα[p](v1, . . . , vn).

The totally real condition implies that this is an isomorphism: KM [ι] is canoni-
cally isomorphic, via ι∗, with the (ι-independent) bundle Λn(L,C) := Λn(L,R)⊗
C of complex-valued n-forms on L.

4In fact, σ maps into the unit circle bundle in KM .
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Canonical section. Now we use the fact that L is oriented. Hence, Λn(L,R)
is trivial, so KM [ι] also is. We build a global section of KM [ι] using our previous
linear-algebraic construction: p 7→ ΩJ [ι](p) := σ[ι∗(TpL)]. We call ΩJ [ι] the
canonical section of KM [ι]. Restricting ΩJ [ι] to ι∗(TpL) yields a real-valued
positive n-form on ι(L), thus a volume form volJ [ι] := ι∗(ΩJ [ι]) on L: we call
it the J-volume form of L, defined by ι.

When L is compact we obtain a “canonical volume”
∫
L

volJ [ι], for ι ∈ P.
One may see that if ϕ ∈ Diff(L) then volJ [ι ◦ ϕ] = ϕ∗(volJ [ι]), just as for the
standard volume form, thus∫

L

volJ [ι ◦ ϕ] =

∫
L

ϕ∗ volJ [ι] =

∫
L

volJ [ι].

Hence the canonical volume descends to T to define the J-volume functional

VolJ : T → R, L 7→
∫
L

volJ [ι],

where ι is any parametrization representing the submanifold L.
Already in this context it would be possible to study its first variation, thus

characterizing its critical points. Using the connection on T one could also define
its second variation, studying the stability properties of the critical points. We
will do this below, in the presence of additional structure and hypotheses on M
which will allow us to determine a useful expression for the first variation and
a simplified formula for the second variation.

Notation. From now on we will sometimes simplify notation by dropping the
reference to the specific immersion used. Since this is standard practice in other
contexts, e.g. when discussing the standard Riemannian volume, we expect it
will not create any confusion.

5 The J-volume in the Hermitian context

Assume now that (M,J) is almost Hermitian, i.e. we have a Riemannian metric
g on M compatible with J , so J is an isometry defining a Hermitian metric h
on M . We also choose a unitary connection ∇̃ on M .

Let L be an oriented totally real submanifold of (M,J). In Riemannian
geometry it is customary to work with tangential and normal projections πT,
π⊥ and the Levi-Civita connection ∇. This however does not make use of the
totally real condition which implies that, for any p ∈ L, any vector Z ∈ TpM can
be written uniquely as Z = X + JY where X,Y ∈ TpL. This splitting induces
projections πL, πJ by setting πL(Z) = X and πJ(Z) = JY : these are the natural
projections in this context. The following fact is a simple computation.

Lemma 5.1 πL ◦ J = J ◦ πJ and J ◦ πL = πJ ◦ J .

The structures on M induce structures h, ∇̃ on KM , which we can use to
define the J-volume form on L.
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Notice that, in contrast to Section 4 where we only had a complex structure,
we now have the 2-form ω(·, ·) = g(J ·, ·). In this section we can thus also discuss
Lagrangian submanifolds, defined by the condition ι∗ω̄ = 0.

5.1 The J-volume versus the Riemannian volume

In the almost Hermitian context, given an immersion ι, we can define the usual
Riemannian volume form volg, using the induced metric g. It is useful to com-
pare this with the J-volume form, cf. also [11].

Let e1, . . . , en be a positive orthonormal basis for π and set hij = h(ei, ej),
where h is the ambient Hermitian metric. We wish to calculate |e∗1 ∧ . . . ∧ e∗n|h.
Observe that h(., ej) = hkje

∗
k since

h(ei, ej) = hij = hkje
∗
k(ei)

and
h(Jei, ej) = ihij = ihkje

∗
k(ei) = hkje

∗
k(Jei).

Thus
h(., e1) ∧ . . . ∧ h(., en) = (detChij)e

∗
1 ∧ . . . ∧ e∗n.

Hence
|e∗1 ∧ . . . ∧ e∗n|h = (detChij)

−1|h(·, e1) ∧ . . . ∧ h(·, en)|h.

We now notice that

|h(·, e1) ∧ . . . ∧ h(·, en)|2h = detChij

so
|e∗1 ∧ . . . ∧ e∗n|h = (detChij)

− 1
2 . (11)

We therefore find that

volJ =
e∗1 ∧ . . . ∧ e∗n
|e∗1 ∧ . . . ∧ e∗n|h

|π = (detChij)
1/2 volg .

We can now obtain a well-defined function

ρJ : TR+ → R, ρJ(π) := volJ(e1, . . . , en) = (detChij)
1/2,

because this quantity is independent of the orthonormal basis e1, . . . , en.
Restricting ρJ to an oriented totally real submanifold L, we obtain the iden-

tity: volJ = ρJ volg.
Notice that h = g − iω and that, using the obvious notation for the compo-

nents of g and ω with respect to e1, . . . , en,

detChij =

√
det

(
gij ωij
−ωij gij

)
.

We see that
ωij = g(Jei, ej) and − ωij = g(ei, Jej).
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We deduce that detC hij =
√

det(gab) where gab is the matrix of g with respect
to the basis {e1, . . . , en, Je1, . . . , Jen}. Therefore

detChij = volg(e1, . . . , en, Je1, . . . , Jen).

We deduce a second expression for ρJ :

ρJ(π) =
√

volg(e1, . . . , en, Je1, . . . , Jen). (12)

Hence we see that ρJ(π) ≤ 1 with equality if and only if π is Lagrangian.
More generally, given any basis v1, . . . , vn for π, we can write

ρJ(π) =

√
volg(v1, . . . , vn, Jv1, . . . , Jvn)

|v1 ∧ · · · ∧ vn|ḡ
. (13)

We can set ρJ(π) = 0 when π is partially complex and extend the map σ to
all n-planes, just setting σ[π] = 0 if π is partially complex. This is particularly
reasonable in this almost Hermitian setting, where there is a natural topology
on the Grassmannian of n-planes: this choice of extension of σ would be justified
by the fact that it is the unique one which preserves the continuity of σ.

Applying these observation to submanifolds we deduce the following.

Lemma 5.2 For any compact oriented n-dimensional submanifold L in an al-
most Hermitian manifold (M,J, g), we have VolJ(L) ≤ Volg(L) with equality if
and only if L is Lagrangian. In particular, VolJ and Volg coincide to first order
on Lagrangians.

Proof: The first statement follows from (12). To prove the second, let Lt be a
1-parameter family of totally real submanifolds such that L0 is Lagrangian. Set
f(t) := VolJ(Lt) and g(t) := Volg(Lt). Then f ≤ g so g−f ≥ 0. Equality holds
when t = 0: this is a minimum point, so it is necessarily critical. It follows that
f ′(0) = g′(0). Since this holds for any 1-parameter family, we obtain the desired
conclusion. �

5.2 First variation of the J-volume

Proposition 5.3 Let ιt : L → Lt ⊆ M be a one-parameter family of totally
real submanifolds in an almost Hermitian manifold and let ∂

∂t ιt|t=0 = Z.
Set ι = ι0 and g = ι∗ḡ. If Z = X + JY for tangent vectors X,Y then

∂

∂t
volJ [ιt]|t=0 = g

(
πL
(
∇̃ei Z + T̃ (Z, ei)

)
, ei
)

volJ [ι]

= div(ρJX) volg +g
(
πL
(
∇̃ei JY + T̃ (JY, ei)

)
, ei
)

volJ [ι],

where at p ∈ L we have that e1, . . . , en is a g-orthonormal basis for TpL.
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Notice that the quantities which appear in the above formulae are invariant
under changes of orthonormal basis and so are globally defined.

Proof: Let p ∈ L, let x1, . . . , xn be normal coordinates at p with respect to g
and let ei = ∂

∂xi
: this defines an orthonormal basis for TpL. Since we have Lt =

ιt(L) = ι(L, t) where ι(x, t) := ιt(x), we may consider coordinates (x1, . . . , xn, t)
near (p, 0) in L × (−ε, ε), so then ι∗(

∂
∂t ) = Z at t = 0. Notice that since

(x1, . . . , xn, t) is a coordinate system on L× (−ε, ε) we see that [Z, ei] = 0.
Recall that the J-volume form is given at p by

volJ [ι] = ρJ(π) volg =
√

volg(e1, . . . , en, Je1, . . . , Jen) volg,

where π = Tι(p)L. We wish to calculate

∂

∂t
volJ [ιt]|t=0 =

∂

∂t

√
volg(e1(t), . . . , en(t), Je1(t), . . . , Jen(t)) volgt |t=0

at p, where e1(t), . . . , en(t) is orthonormal at ιt(p) ∈ Lt with respect to gt = ι∗t ḡ
and ei(0) = ei for all i. This computation can be simplified by noticing that

volJ [ιt] = ρJ(t) volg,

where ρJ(t) =
√

volg((ιt)∗e1, . . . , (ιt)∗en, J(ιt)∗e1, . . . , J(ιt)∗en). Indeed, set-
ting πt = Tιt(p)Lt and using the formulae (13) for ρJ , we find

volJ [ιt](e1, . . . , en) = ρJ(πt) volgt(e1, . . . , en)

=

√
volg((ιt)∗e1, . . . , (ιt)∗en, J(ιt)∗e1, . . . , J(ιt)∗en)

|(ιt)∗e1 ∧ · · · ∧ (ιt)∗en|ḡ
· |e1 ∧ · · · ∧ en|ι∗t ḡ

=
√

volg((ιt)∗e1, . . . , (ιt)∗en, J(ιt)∗e1, . . . , J(ιt)∗en).

It therefore suffices to compute

∂

∂t
ρJ(t) =

∑n
i=1 volg((ιt)∗e1, . . . ,

∂
∂t (ιt)∗ei, . . . , (ιt)∗en, J(ιt)∗e1, . . . , J(ιt)∗en)

2ρJ(t)

+

∑n
i=1 volg((ιt)∗e1, . . . , (ιt)∗en, J(ιt)∗e1, . . . ,

∂
∂tJ(ιt)∗ei, . . . , J(ιt)∗en)

2ρJ(t)
. (14)

Setting t = 0 so that ∂
∂t |t=0 = ∇̃Z and the denominator becomes 2ρJ we have

∂

∂t
ρJ(t)|t=0 =

∑n
i=1 volg(e1, . . . , ∇̃Z ei, . . . , en, Je1, . . . , Jen)

2ρJ

+

∑n
i=1 volg(e1, . . . , en, Je1, . . . , ∇̃Z Jei, . . . , Jen)

2ρJ
.
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Notice that

n∑
i=1

volg(e1, . . . , ∇̃Z ei, . . . , en, Je1, . . . , Jen)

=

n∑
i=1

volg(e1, . . . , πL ∇̃Z ei, . . . , en, Je1, . . . , Jen)

=

n∑
i=1

g(πL ∇̃Z ei, ei) volg(e1, . . . , en, Je1, . . . , Jen)

=

n∑
i=1

g(πL ∇̃Z ei, ei)ρ2
J .

Similarly, using Lemma 5.1

n∑
i=1

volg(e1, . . . ,en, Je1, . . . , ∇̃Z Jei, . . . , Jen)

=

n∑
i=1

volg(e1, . . . , en, Je1, . . . , πJJ ∇̃Z ei, . . . , Jen)

=

n∑
i=1

g(πJJ ∇̃Z ei, Jei) volg(e1, . . . , ei, . . . , en, Je1, . . . , Jen)

=

n∑
i=1

g(πL ∇̃Z ei, ei)ρ2
J .

Thus,
∂

∂t
ρJ(t)|t=0 = g(πL ∇̃Z ei, ei)ρJ .

Since [Z, ei] = 0, we have that

∇̃Z ei = ∇̃ei Z + T̃ (Z, ei) + [Z, ei] = ∇̃ei Z + T̃ (Z, ei),

where T̃ is the torsion of ∇̃. The first part of the result follows.
We see that for Z = X tangential

∂

∂t
volJ [ιt]|t=0 = LX volJ [ι] = d(ρJXy volg),

using Cartan’s formula, which gives the result. �

Now suppose that L is compact (without boundary). We can then define
the J-volume of L as before, using (12), by:

VolJ(L) =

∫
L

volJ =

∫
L

ρJ volg =

∫
L

√
volg(e1, . . . , en, Je1, . . . , Jen) volg,

where e1, . . . , en is an orthonormal basis for each tangent space.
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We now compute the first variation of VolJ . By Proposition 5.3 if Z =
X + JY for X,Y tangential then

∂

∂t
VolJ(Lt)|t=0 =

∫
L

g
(
πL
(
∇̃ei JY + T̃ (JY, ei)

)
, ei
)

volJ (15)

since
∫
L

div(ρJX) volg = 0 by Stokes’ Theorem. Hence it is enough to restrict
to Z = JY . Our final result is phrased in terms of a “J-mean curvature vector
field” defined as follows.

We use the metric ḡ to define the transposed operators

πtJ : TpM → (TpL)⊥, πtL : TpM → (J(TpL))⊥.

Observe that (J(TpL))⊥ = J(TpL)⊥ since X ∈ (J(TpL))⊥ if and only if for all
Y ∈ TpL,

g(Y, JX) = −g(JY,X) = 0,

which means JX ∈ (TpL)⊥ and thus X ∈ J(TpL)⊥. Then, using the tangential
projection πT defined using g, one may check that

πTJ ∇̃πtL : TpL× TpL→ TpL

is C∞-bilinear on its domain, so it is a tensor and its trace is a well-defined
vector on L. We now set

HJ := −J(trL(πTJ ∇̃πtL)). (16)

This is a well-defined vector field on L, taking values in the bundle J(TL). We
refer to [11] for an alternative expression for HJ .

Proposition 5.4 Let ιt : L→ Lt ⊆M be compact totally real submanifolds in
an almost Hermitian manifold and let ∂

∂t ιt|t=0 = X + JY for X,Y tangential.
Then

∂

∂t
VolJ(Lt)|t=0 = −

∫
L

g(JY,HJ + SJ) volJ

where, given p ∈ L and an orthonormal basis e1, . . . , en for TpL we have HJ

given by (16) and

SJ = −g(πLT̃ (Jej , ei), ei)Jej . (17)

Proof: Using the definition of HJ in (16), we calculate that

g
(
πL
(
∇̃ei JY + T̃ (JY, ei)

)
, ei
)

= g(∇̃ei JY + T̃ (JY , ei), π
t
Lei)

= −g(JY , ∇̃ei πt
Lei) + g(T̃ (g(JY, Jej)Jej , ei), π

t
Lei)

= −g(JY , ∇̃ei πt
Lei) + g(JY, Jej)g(T̃ (Jej , ei), π

t
Lei)

= −g(JY , ∇̃ei πt
Lei) + g(JY , g

(
T̃ (Jej , ei), π

t
Lei)Jej)

= −g
(
JY,−JπTJ

(
∇̃ei πt

Lei − g
(
πLT̃ (Jej , ei), ei)Jej

))
= −g

(
JY,HJ − g

(
πLT̃ (Jej , ei), ei)Jej

)
,
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where we used −JπTJ(JX) = JX. The formula follows from (15). �

Remark If we define a Riemannian metric G on T by

GL(JX, JY ) =

∫
L

g(X,Y ) volJ

for JX, JY ∈ TL T then the downward gradient vector field of the J-volume
functional VolJ on T with respect to G is given by HJ +SJ . The corresponding
flow (the “J-mean curvature flow”) is studied in [11].

5.3 Second variation of the J-volume

We now study the stability of critical points of the J-volume, so we calculate
the second variation of the J-volume form. This generalises calculations in [2,
Proposition 3], which built on the second variation of volume of Lagrangians in
Kähler manifolds derived by Chen, Leung and Nagano [3, Theorem 4.1].

Proposition 5.5 Let ιs,t : L→ Ls,t ⊆ M be a two-parameter family of totally
real submanifolds in an almost Hermitian manifold and let ∂

∂s ιs,t|s=t=0 = W

and ∂
∂t ιs,t|s=t=0 = Z. Then

∂2

∂s∂t
volJ [ιs,t]|s=t=0

=

(
g(πLJ(∇̃ei W + T̃ (W, ei)), ej)g(πLJ(∇̃ej Z + T̃ (Z, ej)), ei)

− g(πL(∇̃ei W + T̃ (W, ei)), ej)g(πL(∇̃ej Z + T̃ (Z, ej)), ei)

+ g
(
πL
(
∇̃ei W + T̃ (W, ei)

)
, ei
)
g
(
πL
(
∇̃ej Z + T̃ (Z, ej)

)
, ej
)

+ g(πL(R̃(W, ei)Z + ∇̃ei ∇̃W Z), ei)

+ g(πL(∇̃W T̃ (Z, ei) + T̃ (∇̃W Z, ei) + T̃ (Z, ∇̃ei W + T̃ (W, ei))), ei)

)
volJ [ι],

where at p ∈ L we have that e1, . . . , en is an orthonormal basis for TpL.

Notice again that these quantities are independent of the orthonormal basis
chosen for TpL and hence are globally defined.

Proof: Let p ∈ L. We choose coordinates (x1, . . . , xn, s, t) on L × (−ε, ε) ×
(−ε, ε) in a similar manner to the proof of Proposition 5.3, so that (x1, . . . , xn)
are normal coordinates at p, ei = ∂

∂xi
and ∂

∂s , ∂
∂t pushforward to W and Z

respectively at t = 0. Hence [W, ei] = [Z, ei] = 0, as before.
Moreover, as in the proof of Proposition 5.3 we see that

volJ [ιs,t] = ρJ(s, t) volg
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where

ρJ(s, t) =
√

volg((ιs,t)∗e1, . . . , (ιs,t)∗en, J(ιs,t)∗e1, . . . , J(ιs,t)∗en).

By (14) we have that

∂

∂t
ρJ(s, t)2

=

n∑
i=1

volg((ιs,t)∗e1, . . . ,
∂

∂t
(ιs,t)∗ei, . . . , (ιs,t)∗en, J(ιs,t)∗e1, . . . , J(ιs,t)∗en)

+

n∑
i=1

volg((ιs,t)∗e1, . . . , (ιs,t)∗en, J(ιs,t)∗e1, . . . ,
∂

∂t
J(ιs,t)∗ei, . . . , J(ιs,t)∗en).

Hence we may calculate, substituting ∇̃W for ∂
∂s |s=t=0 and ∇̃Z for ∂

∂t |s=t=0:

∂2

∂s∂t
ρJ(s, t)2|s=t=0

=
∑
i 6=j

volg(e1, . . . , ∇̃Z ei, . . . , ∇̃W ej , . . . , en, Je1, . . . , Jen)

+

n∑
i=1

volg(e1, . . . , ∇̃W ∇̃Z ei, . . . , en, Je1, . . . , Jen)

+

n∑
i,j=1

volg(e1, . . . , ∇̃Z ei, . . . , en, Je1, . . . , ∇̃W Jej , . . . , Jen)

+
∑
i 6=j

volg(e1, . . . , en, Je1, . . . , ∇̃Z Jei, . . . , ∇̃W Jej , . . . , Jen)

+

n∑
i=1

volg(e1, . . . , en, Je1, . . . , ∇̃W ∇̃Z Jei, . . . , Jen)

+

n∑
i,j=1

volg(e1, . . . , ∇̃W ei, . . . , en, Je1, . . . , ∇̃Z Jej , . . . , Jen). (18)

The first and fourth terms in (18) both give∑
i 6=j

(
g(πL ∇̃Z ei, ei)g(πL ∇̃W ej , ej)− g(πL ∇̃Z ei, ej)g(πL ∇̃W ej , ei)

)
ρ2
J

=
∑
i,j

(
g(πL ∇̃Z ei, ei)g(πL ∇̃W ej , ej)− g(πL ∇̃Z ei, ej)g(πL ∇̃W ej , ei)

)
ρ2
J .

The second and fifth terms in (18) both give

n∑
i=1

g(πL ∇̃W ∇̃Z ei, ei)ρ2
J .
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Finally, the third and sixth terms in (18) both give∑
i,j

(
g(πL ∇̃Z ei, ei)g(πL ∇̃W ej , ej)− g(πJ ∇̃Z ei, Jej)g(πLJ ∇̃W ej , ei)

)
ρ2
J

=
∑
i,j

(
g(πL ∇̃Z ei, ei)g(πL ∇̃W ej , ej) + g(πLJ ∇̃Z ei, ej)g(πLJ ∇̃W ej , ei)

)
ρ2
J .

Clearly, by (14), we have:

∂2ρJ(s, t)

∂s∂t
=

1

2ρJ(s, t)

(
∂2ρJ(s, t)2

∂s∂t
− 2

∂ρJ(s, t)

∂s

∂ρJ(s, t)

∂t

)
,

∂ρJ(s, t)

∂s

∂ρJ(s, t)

∂t
|s=t=0 =

∑
i,j

g(πL ∇̃Z ei, ei)g(πL ∇̃W ej , ej)ρ
2
J ,

and hence

∂2ρJ(s, t)

∂s∂t
|s=t=0

=
(∑
i,j

g(πL ∇̃Z ei, ei)g(πL ∇̃W ej , ej)−
∑
i,j

g(πL ∇̃Z ei, ej)g(πL ∇̃W ej , ei)

+
∑
i,j

g(πLJ ∇̃Z ei, ej)g(πLJ ∇̃W ej , ei) +

n∑
i=1

g(πL ∇̃W ∇̃Z ei, ei)
)
ρJ .

Replacing ∇̃W ei = ∇̃ei W + T̃ (W, ei) (since [W, ei] = 0) and similarly for Z
gives the first three terms in the statement. For the remaining terms, we have

∇̃W ∇̃Z ei = ∇̃W (∇̃ei Z + T̃ (Z, ei))

= R̃(W, ei)Z + ∇̃ei ∇̃W Z

+ (∇̃W T̃ )(Z, ei) + T̃ (∇̃W Z, ei) + T̃ (Z, ∇̃W ei).

Again replacing ∇̃W ei = ∇̃ei W + T̃ (W, ei) gives the final terms. �

A simple special case is as follows.

Corollary 5.6 Use the notation of Proposition 5.5. If W = Z = X tangential
then

∂2

∂t2
volJ [ιt]|t=0 = div(X div(ρJX)) volg .

Proof: We can see this from

∂2

∂t2
volJ [ιt]|t=0 = LXLX volJ [ι] = d(Xyd(ρJXy volg))

using Cartan’s formula twice. �

A more important case is the following.
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Proposition 5.7 Use the notation of Propositions 5.4 and 5.5. If W = Z =
JY where Y is tangential and M is Kähler, then

∂2

∂t2
volJ [ιt]|t=0 =− div(Y div(ρJY )) volg +

(
div(ρJY )

ρJ

)2

volJ [ι]

+ g(JY,HJ)2 volJ [ι]− Ric(Y, Y ) volJ [ι]

− g(πJ(∇JY JY +∇Y Y ), HJ) volJ [ι]

+ div
(
ρJπL(∇JY JY +∇Y Y )

)
volg .

Proof: In this setting ∇̃ = ∇, the Levi-Civita connection, and T̃ = 0. Hence by
Proposition 5.5 we have

∂2

∂t2
volJ [ιt]|t=0

=
(
g(πLJ∇eiJY, ej)g(πLJ∇ejJY, ei)− g(πL∇eiJY, ej)g(πL∇ejJY, ei)

+ g
(
πL∇eiJY, ei

)
g
(
πL∇ejJY, ej

)
+ g(πL(R(JY, ei)JY +∇ei∇JY JY ), ei)

)
volJ [ι]. (19)

Moreover, Proposition 5.5 and Corollary 5.6 give us that

div(Y div(ρJY )) volg

=
(
g(πLJ∇eiY, ej)g(πLJ∇ejY, ei)− g(πL∇eiY, ej)g(πL∇ejY, ei)

+ g
(
πL∇eiY, ei

)
g
(
πL∇ejY, ej

)
+ g(πL(R(Y, ei)Y +∇ei∇Y Y ), ei)

)
volJ [ι].

We observe that, since ∇J = 0 as M is Kähler,

g(πLJ∇ei(JY ), ej)g(πLJ∇ej (JY ), ei)− g(πL∇ei(JY ), ej)g(πL∇ej (JY ), ei)

= g(πL∇eiY, ej)g(πL∇ejY, ei)− g(πLJ∇eiY, ej)g(πLJ∇ejY, ei).

Hence, we see that(
g(πLJ∇ei(JY ), ej)g(πLJ∇ej (JY ), ei)

− g(πL∇ei(JY ), ej)g(πL∇ej (JY ), ei)
)
ρJ

= −div(Y div ρJY ) + g
(
πL∇eiY, ei

)
g
(
πL∇ejY, ej

)
ρJ

+ g(πL(R(Y, ei)Y +∇ei∇Y Y ), ei)ρJ . (20)

We see that, using the Kähler condition,

g(πLR(JY, ei)JY, ei) = −g(πJR(JY, ei)Y, Jei) = −g(R(Y, πt
JJei)JY, ei)

= g(R(Y, πt
JJei)Y, Jei) = g(πJR(Y, Jei)Y, Jei).
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We deduce that

g(πLR(JY,ei)JY, ei) + g(πLR(Y, ei)Y, ei)

= g(πLR(Y, ei)Y, ei) + g(πJR(Y, Jei)Y, Jei) = −Ric(Y, Y ).

Therefore, using (19) and (20) we see that

∂2

∂t2
volJ [ιt]|t=0 =− div(Y div(ρJY )) volg +g(πL∇eiY, ei)2 volJ [ι]

+ g(πL∇eiJY, ei)2 volJ [ι]− Ric(Y, Y ) volJ [ι]

+ g(πL∇ei(∇JY JY +∇Y Y ), ei) volJ [ι]

As in Propositions 5.3 and 5.4, since here T̃ = 0, we see that

g(πL∇eiY, ei) =
div(ρJY )

ρJ
, g(πL∇eiJY, ei) = −g(JY,HJ),

and

g(πL∇ei(∇JY JY +∇Y Y ), ei) =
div
(
ρJπL(∇JY JY +∇Y Y )

)
ρJ

− g
(
πJ(∇JY JY +∇Y Y ), HJ

)
.

The result now follows. �

We deduce the following important second variation of the J-volume func-
tional in the Kähler setting, as an immediate corollary of Proposition 5.7.

Proposition 5.8 Let ιt : L→ Lt ⊆M be compact totally real submanifolds in
a Kähler manifold and let ∂

∂t ιt|t=0 = JY for Y tangential. Then

∂2

∂t2
VolJ(Lt)|t=0 =

∫
L

((
div(ρJY )

ρJ

)2

+ g(JY,HJ)2 − Ric(Y, Y )

− g(πJ(∇JY JY +∇Y Y ), HJ)

)
volJ (21)

If L is a critical point of VolJ , so HJ = 0, then all the terms in the integrand
in (21) are automatically non-negative except for −Ric(Y, Y ), so we can ensure
non-negativity by imposing an ambient curvature condition. We deduce the
following, which first appeared in [2].

Corollary 5.9 In a Kähler manifold with Ric ≤ 0 (respectively, Ric < 0), the
critical points of the J-volume functional are stable (respectively, strictly stable).

Remark We can repeat our discussion in the almost Hermitian setting, but
the appearance of torsion terms means the second variation formula is more
complicated and does not, as far as we are aware, naturally lead to a stability
property for the critical points of the J-volume functional as in the Kähler case.
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5.4 Convexity of the J-volume

Stability is an infinitesimal condition. We now want to show that we can obtain
a much stronger result by taking into account our notion of geodesics in T .

To start, notice that if Ric(Y, Y ) ≤ 0 then everything in the second variation
formula (21) is non-negative except potentially for −g(πJ(∇JY JY +∇Y Y ), HJ).
We also see that, by locally extending Y in a neighbourhood of L,

∇JY JY +∇Y Y = J(∇JY Y − J∇Y Y ) = J [JY, Y ].

Hence, if we deform L in a direction JY such that [JY, Y ] = 0, which is equiva-
lent to the local diffeomorphisms of L generated by Y and the deformations of L
generated by JY commute, then VolJ is convex in the direction JY , in the sense
that the second variation is non-negative. This condition is precisely guaranteed
by our notion of geodesic from Lemma 2.2 so we deduce the following.

Theorem 5.10 In a Kähler manifold with Ric ≤ 0 (respectively, Ric < 0),
the J-volume functional is convex (respectively, strictly convex) in the sense of
Definition 2.3.

5.5 Critical points of the J-volume

Analogously to the Riemannian setting we say that a totally real submanifold
is J-minimal if it is a critical point for the J-volume, i.e. if HJ = 0.

Recall from Lemma 5.2 that the J-volume coincides with the standard vol-
ume on Lagrangians and that the sets of J-minimal Lagrangians and minimal
Lagrangians coincide. In [11] we show that this result can be improved by adding
assumptions on the ambient manifold. Specifically, we prove the following.

Proposition 5.11 Assume M is Kähler-Einstein with Ric 6= 0. Then the sets
of J-minimal totally real submanifolds and minimal Lagrangians coincide.

The case of Kähler Ricci-flat, in particular Calabi–Yau, manifolds is special.
In this case, by a calibration argument, J-minimal totally real submanifolds are
VolJ -minimizers: we call them “special totally real submanifolds”, in analogy
with the well-known class of special Lagrangians, and study them in [11].

The following uniqueness result is a simple consequence of strict convexity.

Corollary 5.12 Let M be a Kähler manifold with Ric < 0 and L0 ∈ T be
J-minimal. Let Γ ⊆ T denote the set of totally real submanifolds which can be
connected to L0 by a geodesic ray. Then L0 is the unique J-minimal submanifold
in Γ.

6 Abstract framework

We now introduce an abstract framework which will help us clarify and continue
to analyze the structure of T .
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6.1 A canonical connection on homogeneous spaces

Let G be a finite-dimensional Lie group. Let L and R denote the left and right
multiplication operators, Ad the adjoint action of G on G and ad its differential,
inducing an action of G on TeG. Let g denote the Lie algebra of G, i.e. the
space of L-invariant vector fields. In the course of this section it will be useful
to emphasize the distinction between TeG and g, using the notation

TeG→ g, X 7→ X̃

to refer to the isomorphism induced by L.
Given X ∈ TeG, consider the 1-dimensional subgroup of diffeomorphisms of

G defined by the flow φt of X̃:

d

dt
φt = X̃|φt

, φ0 = Id. (22)

The isomorphisms (Lg)∗ : TeG → TgG identify each tangent space with TeG,
thus inducing a canonical way to differentiate vector fields. This yields a con-
nection on TG, known as the canonical L-invariant connection. The parallel
vector fields are the elements of g, so the flowlines of φt are the geodesics of
this connection. In particular, the geodesics through e are the 1-parameter sub-
groups exp(tX) := φt(e). The L-invariance of the connection implies that L
preserves the geodesics. This is reflected in the fact that, for any g ∈ G, Lgφt
coincides with the flowline passing through g.

Now fix a closed subgroup H. Assume there exists a decomposition

TeG = TeH ⊕M, for some adH -invariant subspace M.

Let h, m denote the corresponding L-invariant distributions on G so that TG =
h ⊕ m. Consider the projection π : G → G/H, viewed as an H-principal fibre
bundle. Notice that h is tangent to the RH -action: choosing g ∈ G and a
1-parameter subgroup ht in H, we see that

d

dt
Rhtg|t=0 =

d

dt
ght|t=0 = (Lg)∗

d

dt
ht|t=0 ∈ h|g.

This is a manifestation of the fact that L-invariant vector fields are the funda-
mental vector fields of the R-action.

We also see m is RH -invariant: given X ∈M so that (Lg)∗X ∈ m|g, we have

(Rh)∗(Lg)∗X = (Lg)∗(Rh)∗X = (Lg)∗(Lh)∗Y = (Lgh)∗Y ∈ m|gh,

where we use that M is adH -invariant so (Lh−1)∗(Rh)∗X = Y , for some Y ∈M .
The splitting TG = h ⊕ m thus defines a connection on the principal fibre

bundle, and induced connections on all associated bundles G ×ρ V , where ρ is
a G-action on the vector space V . The following result shows that one of these
bundles is particularly relevant to the geometry of G/H.
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Proposition 6.1 There is an isomorphism

G×adH M → T (G/H), [g,X] 7→ π∗(Lg)∗X.

Thus G/H has a canonical connection induced from the connection m on the
principal bundle G. Geodesics in G/H are of the form π(gt), where gt is a
horizontal curve in G satisfying, for some fixed X ∈M ,

d

dt
gt = (Lgt)∗X (equivalently,

d

dt
gt = X̃|gt).

In other words, geodesics in G/H are the projections of geodesics in G defined
by the canonical L-invariant connection, with initial direction in M .

6.2 Geometry of complexified Lie groups

Let Gc be a complexified Lie group, i.e. a complex Lie group with Lie algebra
isomorphic to g⊗ C. We now study the homogeneous space Gc/G.

The maps L and R are holomorphic, so each operator adg : TeG
c → TeG

c

commutes with the complex structure J on Gc. This implies that M := J(TeG)
is adG-invariant, so we can apply the above theory using the splitting g⊗ C =
g⊕ ig. According to Proposition 6.1, there is an isomorphism

Gc ×adG (JTeG)→ T (Gc/G), [g, JX]→ π∗(Lg)∗(JX) = π∗J(Lg)∗X. (23)

It follows that Gc/G has a canonical connection, whose geodesics are the
projection of curves gt in Gc satisfying, for some X ∈ TeG,

d

dt
gt = J(Lgt)∗X, (24)

which is an ODE on Gc. If Gc is infinite-dimensional there may be no solutions;
however, if a solution does exist for a given initial point, it will exist for any ini-
tial point because (24) is L-invariant. In particular, the solution corresponding
to the initial point e ∈ Gc is the 1-parameter subgroup exp(tJX) ⊂ Gc.

We can also try to integrateX, obtaining a 1-parameter subgroup exp(sX) ⊂
G. Assume these subgroups exist. Consider the real 2-dimensional distribution
in TGc generated by X and JX. Since the Lie bracket commutes with J
we see that [X,JX] = 0, so the distribution is integrable and our integrations
yield a 1-dimensional complex abelian Lie subgroup of Gc, spanned by exp(sX),
exp(tJX). Abstractly, it is the complexification of the Lie group exp(sX); it is
isomorphic to S1×R or to C depending on whether exp(sX) is compact or not.

Summarizing, the geodesics in Gc/G are equivalent (through projection and
L-invariance) to the real 1-parameter subgroups in Gc generated by JX, or to
the complex 1-parameter subgroups in Gc generated by X, for X ∈ TeG.

The above applies also to the boundary value problem for geodesics in Gc/G:
any geodesic γ(t), for t ∈ [a, b], interpolating between two points in Gc/G lifts to
a holomorphic map Σ→ Gc, where Σ := S1× [a, b] or R× [a, b], with prescribed
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boundary values. More generally one can study the existence of holomorphic
maps Σ → Gc with given boundary values, where Σ is any Riemann surface
with boundary.

Notation. From now on we will often relax the distinction between TeG and
g, and the corresponding distinction between X and X̃.

Definition 6.2 A function f : Gc/G→ R is strictly convex if it is strictly con-
vex when restricted to all geodesics in Gc/G. Equivalently, if the lifted function
F := π∗f : Gc → R satisfies

JX(JX(F )) =
d2

dt2
(F ◦ gt) > 0,

for all geodesics gt in Gc with velocity JX, for some X ∈ TeG.

Proposition 6.3 Any strictly convex function f : Gc/G→ R lifts to a Kähler
potential F := π∗f on Gc.

Proof: Consider the 2-form ωf := i∂∂̄F = 1
2dd

cF defined on Gc. By construction
it is of type (1, 1). We need to show that it is positive, i.e. that the symmetric
tensor ωf (·, J ·) is positive definite. This is a pointwise statement which must
be tested on every vector in TgG

c = (g + ig)|g, for all g ∈ Gc. Equivalently, it
suffices to prove that ωf is positive when restricted to any complex line. Since
ig is totally real of maximal dimension, it must intersect the line so we may
assume our line is generated by a vector X in ig. For our computation it is then
sufficient to consider the restriction of F to the submanifold of Gc obtained by
integrating the vector fields X, JX. We now see our problem corresponds to the
n = 1 case of the following fact: given f : Rn → R and F := π∗f : R2n → R, if
f is strictly convex then i∂∂̄F is positive. Indeed, it is simple to compute that

i∂∂̄F = i
∂2F

∂zi∂zj
dzi ∧ dzj = 2

∑
i,j

∂2f

∂xi∂xj
dxi ∧ dyj ,

i∂∂̄F ((X,Y ), (−Y,X)) = 2
∂2f

∂xi∂xj
xixj + 2

∂2f

∂xi∂xj
yiyj .

Trivially, ωf is closed so the result follows. �

Proposition 6.3 shows that any strictly convex function f on Gc/G defines
a Kähler structure ωf on Gc. As G acts holomorphically on Gc and preserves
the Kähler potential, it preserves ωf . Let Crit(f) = {p ∈ Gc/G : df|p = 0} be
the set of critical points of f .

Proposition 6.4 The action of G on Gc, endowed with a Kähler structure ωf ,
is Hamiltonian with moment map

µf := −1

2
dcF =

1

2
dF ◦ J : Gc → g∗.

In particular, µ−1
f (0) = π−1Crit(f) . Since f is strictly convex, Crit(f) is either

empty or a unique point, so µ−1
f (0) is either empty or a unique G-orbit in Gc.
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Proof: For any X ∈ g, duality with g∗ defines a function

µf ·X := −1

2
iXd

cF : Gc → R.

We need to show that X is the Hamiltonian vector field associated to µf , i.e.
d(−iXdcF ) = 2iXωf . Using Cartan’s formula, we see

d(−iXdcF ) = −LXdcF + iXdd
cF = LX(dF ◦ J) + 2iXωf .

The first term vanishes because both F and J are preserved by the action of G.
To conclude, notice that g ∈ Gc lies in µ−1

f (0) if and only if (dF ◦J)|g(X) =
dF|g(JX) = 0 for all X ∈ g. Since F is G-invariant this is equivalent to dF|g = 0,
thus df|π(g) = 0. �

6.3 Existence of critical points via a stability condition

The interpretation of critical points of f : Gc/G→ R as zeros of a moment map
is geometrically interesting but in itself does not bring us closer to understanding
whether, in any specific situation, such points exist. If however we can embed
Gc with its given structures into a larger Kähler manifold M , we can sometimes
apply the following general framework for studying this existence problem.

Let (M, g, J, ω) be a Kähler manifold endowed with a G-action preserving g
and J . To simplify matters we assume this action is free. Let us assume that
Gc also acts on M , preserving J : this gives a family of Gc-orbits in M . As a
first step, we are interested in finding situations where each orbit O admits a
canonical function F such that ω|O = i∂∂̄F as in Proposition 6.3. An example
of this is as follows.

Assume M is polarized, i.e. there is a holomorphic line bundle L over M
with a Hermitian metric such that the Chern connection has curvature Θ = iω.
Recall the standard formula for Θ in terms of a local holomorphic section: Θ =
∂̄∂ log |σ|2. It follows that ω̄ = i∂∂̄ log |σ|2. If the action of G is Hamiltonian,
the moment map yields a canonical lift of the infinitesimal action of G to the
total space of L, cf. [6, Section 6.5] for details. Let us assume this integrates
to an action of Gc. Any point in L then generates a Gc-orbit Õ which projects
to a Gc-orbit O in M . Let us think of Õ as the graph of a non-vanishing
holomorphic section σ : O ⊂ M → L. Consider the function F := log |σ|2 :
O → R. By construction G preserves the Hermitian metric so F = π∗f , for
some f : Gc/G ' O/G→ R. It turns out that f is strictly convex in our sense;
the formula for ω corresponds exactly to the situation of Proposition 6.3.

In the above situation we say an orbit O is stable if f is proper, so it admits
a critical point. Let Ms denote the set of points in M whose corresponding
Gc-orbits are stable. According to Proposition 6.4 there is a 1:1 mapping

Ms/Gc ' µ−1
f (0)/G.

The key point is that, in specific situations, stability of a given orbit can some-
times be tested using purely holomorphic information on M and the Gc-action.
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We thus get a correspondence between holomorphic and symplectic data on M ,
addressing the existence of critical points of the functions f .

Summarizing: if we can embed our given complexified group Gc, endowed
with the structure ωf defined by a strictly convex function f : Gc/G→ R, into
some Kähler M with a Gc-action so that it coincides with one of these orbits,
then we can hope to test the existence of critical points of f by verifying some
type of “stability condition” on that orbit.

6.4 Extension to infinitesimal complexifications

Finite-dimensional examples of stability and its relation to existence problems
are a classical topic of Algebraic Geometry, related to Geometric Invariant The-
ory and the Kempf–Ness theorem.

Gauge theory provided the first context in which this abstract framework
arose in an infinite-dimensional setting: this is related to the Hitchin–Kobayashi
conjecture concerning the existence of Hermitian–Einstein connections on a
given Hermitian vector bundle E over a Kähler manifold, cf. [6] for details.
In this case G is the group of unitary transformations of E, and its complexifi-
cation Gc is the group of automorphisms of E.

In general when G is infinite-dimensional there does not exist a complexifi-
cation Gc, cf. [10]. The above theory can thus not be applied. For this reason
Donaldson [5] introduced a slightly weaker notion of “infinitesimal complexifi-
cation” of G. In this framework we can recover the above results, as follows.

Definition 6.5 Let Z be a smooth manifold. Assume there exists a vector space
V and an injection

V → Λ0(TZ), X 7→ X̃

such that the vector fields X̃ define a parallelization of TZ, thus TZ ' Z × V .
Assume further that the space of vector fields X̃ is closed under the Lie bracket

on Z. We then get an induced Lie bracket on V such that [̃X,Y ] = [X̃, Ỹ ].
The above data defines an infinitesimal Lie group Z with Lie algebra V .

Definition 6.6 Let (Z, J) be a complex manifold. Assume there exists a Lie
group G acting freely on the right on Z and preserving J . Given X ∈ g, let X̃ be
the corresponding fundamental vector field: specifically, if X is the infinitesimal
deformation of the 1-parameter subgroup gt then

X̃|ζ :=
d

dt
(ζ · gt)|t=0.

This defines an injection g→ Λ0(TZ) preserving the corresponding Lie brackets.
Consider the extended map

g⊗ C→ Λ0(TZ), X + iY 7→ X̃ + JỸ . (25)

Assume (25) is injective and provides a parallelization of TZ. As G preserves
J , we have LX̃J = 0, i.e. [X̃, JY ] = J [X̃, Y ] for all Y ∈ Λ0(TZ). The vanishing
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of the Nijenhuis tensor implies that also LJX̃J = 0. It follows that the image of
the map (25) is closed under the Lie bracket on Z and that this Lie bracket is
J-linear, i.e. the image is a complex Lie algebra. Thus (25) defines a complex
Lie algebra isomorphism onto its image.

We then say that Z is an infinitesimal complexification of G.

Given Z and G as above, we can view π : Z → Z/G as a principal G-bundle.
The fundamental vector fields X̃ define the “vertical space”, i.e. the kernel
of π∗. The space of fields JX̃ defines a complementary distribution, which is
G-invariant because G preserves J . In other words, the splitting

TZ ' g⊕ ig

defines a connection on Z, thus on all associated bundles.
A priori there is no adjoint action of G on ig, because there is no actual

group Gc inducing it. We can however define an ad hoc action using the adjoint
action of G on g, as follows:

adG : G→ GL(ig), adg(iX) := i adg(X). (26)

This allows us to define the associated bundle Z ×adG (ig).

Proposition 6.7 There is an isomorphism

Z ×adG (ig)→ T (Z/G), [ζ,X] 7→ π∗(JX̃|ζ).

Proof: The main issue is to check that the map is well-defined, i.e. that the im-

ages of [ζ ·g, adg−1X] and of [ζ,X] coincide. It suffices to prove that ˜adg−1X |ζ·g =

(X̃|ζ) · g, which is a simple computation. �

Remark When Z = Gc is a standard complexification, this construction coin-
cides with the previous one in (23) because (Lg)∗X is the fundamental vector

field X̃ of the right action of G on Gc.

As above, it follows that Z/G has a canonical connection whose geodesics are
the projection of curves ζt in Z satisfying, for some X ∈ TeG,

d

dt
ζt = JX̃|ζt .

As in Section 6.2 this is an ODE: solving it corresponds to integrating the vector
field ζt 7→ JX̃|ζt in Z. This problem is G-invariant, but here there is no notion of
Gc-invariance. We can complexify geodesics by combining them with solutions
to d

dsζs = X̃|ζs , thus obtaining holomorphic curves in Gc.
The analogues of Propositions 6.3 and 6.4 continue to hold in this context.
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7 Kähler potentials and cscK metrics

In Section 6.4 we mentioned that the ideas of Section 6 can be usefully applied
to gauge theory. A second geometric setting in which this abstract framework
proves itself useful is the search for constant scalar curvature Kähler (cscK)
metrics on a complex manifold (M,J) within a given Kähler class [ω0]. In this
case the appropriate Lie group G does not admit a formal complexification,
so it is necessary to work with the infinitesimal complexifications described in
Section 6.4. The goal of this section is to provide an overview of this problem
so as to emphasize analogies with our main topics: totally real submanifolds,
the existence of geodesics and the search for critical points of the J-volume.

Let M be a compact manifold. The space Diff(M) can be given the structure
of an infinite-dimensional Lie group with Lie algebra X := Λ0(TM). As for any
Lie group, Tζ Diff(M) is spanned by (Lζ)∗X for X ∈ X , or, by (Rζ)∗Y = Y ◦ ζ
for Y ∈ X . Thus, tangent vectors at ζ are sections of the pullback bundle
ζ∗TM . If (Lζ)∗X = (Rζ)∗Y , then X and Y are related by the ad-action, which
coincides with the standard “pushforward” action: adζ(X) = dζ|ζ−1(X|ζ−1).

If M has a complex structure J , Diff(M) receives an induced complex struc-
ture J(X|ζ) := (JX)|ζ . The smooth structure on Diff(M) is defined so that the
corresponding Lie bracket can be calculated in terms of the Lie bracket on X :
it follows that the Nijenhuis tensor of J vanishes on Diff(M) if this is true on
M . The right action R preserves J but L does not, so Diff(M) is a complex
manifold but not a complex Lie group.

Now assume (M,J, ω0) is Kähler. Consider the space H of Kähler structures
in the cohomology class defined by ω0. This is a convex subspace of the space
of 2-forms on M . According to the ∂∂̄-lemma, any such ω can be written as

ω = ωf := ω0 + i∂∂̄f,

for some f ∈ C∞(M). The potential f is well-defined only up to a constant; we
can choose a canonical representative for f using a normalization functional I :
C∞(M)→ R introduced by Bando and Mabuchi, with the following properties.

• There is a 1:1 identification

I−1(0) ' H, f 7→ ωf . (27)

• The tangent space at f ∈ I−1(0) is

TfI
−1(0) = {h ∈ C∞(M) :

∫
M

h volωf
= 0}.

We will alternatively denote this space C∞ωf
(M).5

Using this identification, for any f ∈ H we define

Qf := {ζ ∈ Diff(M) : ζ∗ωf = ω0}.
5We refer to [5] for details.
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Let Q ⊂ Diff(M) denote the union of all such Qf . Consider the right action of
the subgroup of Hamiltonian diffeomorphisms G := Ham(M,ω0) on Diff(M).
Each Qf is an orbit of this action so π : Q → H is a principal G-bundle.

For any symplectic structure ω we let Ham(X , ω) denote the Lie algebra
of Ham(M,ω). Its elements are the vector fields Xω

h satisfying the equation
dh = ω(Xω

h , ·), for some function h : M → R. In the Kähler setting it follows
that Xω

h = −J∇ωh, where ∇ω is the gradient operator defined by the induced
metric g := ω(·, J ·). We can choose h uniquely by ensuring it belongs to C∞ω (M).
We can then identify the Lie algebra Ham(M,ω) with the Lie algebra C∞ω (M),
endowed with the natural Poisson bracket on functions (up to sign).

Lemma 7.1 The adjoint action of Diff(M) on X satisfies

adζ(X
ω0

h ) = X
ωf

h◦ζ−1 ,

for all ζ ∈ Qf . Furthermore, if h ∈ C∞ω0
(M) then h ◦ ζ−1 ∈ C∞ωf

(M).

Proof: One can check that the two vector fields coincide when contracted with
ωf . The normalization property of h ◦ ζ−1 is a straightforward computation. �

The vertical space of the fibration π at a point ζ ∈ Qf is the subspace
(Lζ)∗Ham(X , ω0) of TζQ. It follows from Lemma 7.1 that (Lζ)∗Ham(X , ω0) =
(Rζ)∗Ham(X , ωf ) = Ham(X , ωf )|ζ . One can check that there is a splitting

TζQ = Ham(X , ωf )|ζ ⊕ J Ham(X , ωf )|ζ .

Hence, Q is an infinitesimal complexification of Ham(M,ω0) in the sense of
Definition 6.6. Equivalently, TQ is parallelized by the map

C∞ω0
(M)⊗ C→ Λ0(TQ), h+ ik 7→

(
ζ 7→

(
X
ωf

h◦ζ−1 + JX
ωf

k◦ζ−1

)
|ζ

)
.

We thus learn that H = Q/G has a canonical connection. As above, the
geodesics are the curves ft ⊂ H obtained by projection of solutions ζt ⊂ Q to

d

dt
ζt = J

(
X
ωft

h◦ζ−1
t

)
|ζt
, (28)

where h is a time-independent function in C∞ω0
(M) and ζt ∈ Qft . As mentioned

in Section 6.4 we can also integrate d
dsζs = X̃|ζs := (X

ωf

h◦ζ−1
s

)|ζs , thus obtaining

holomorphic curves in Q: these are the complexified Hamiltonian flows in [5].
According to our identifications, the right-hand side of (28) projects to the

tangent vector h ◦ ζ−1
t ∈ TftH, so the projected equation is

d

dt
ft = h ◦ ζ−1

t , (29)

for some t-independent h. We can incorporate this condition into the equation
by noticing that h = d

dtft ◦ ζt = ḟt ◦ ζt (notice the change in notation). The
geodesic equation on H is thus

ḣ = f̈t|ζt + dḟt|ζt(ζ̇t) = 0.
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We can express the right-hand side of (28) as the gradient ∇ωft (ḟt). We thus
arrive at the final expression for geodesics on H:

f̈t|ζt + |∇tḟt|ζt |
2
t = 0, (30)

where we use ∇t, | · |t to indicate we are using the metric induced by ωft .

Remark It is useful to compare (29) and (30): the former is first order, ex-
pressing the fact that ḟt coincides with a parallel vector field; the latter is second
order and uses that C∞(M) is a vector space, thus has a natural connection.
In other words, (30) describes geodesics of the canonical connection on Q/G in
terms of the natural connection on C∞(M).

We now turn to the problem of finding cscK metrics in H. It turns out that
there is a functional f : H → R, due to Mabuchi, with the following properties:

• f is convex with respect to the geodesics defined above;

• the critical points of f are precisely the potentials of cscK metrics in H.

Now consider the space J of integrable complex structures on M which are
compatible with ω0. Let G := Ham(M,ω0) act on J by pullback. It can be
shown that J has a canonical Kähler structure which is preserved by the action
of G. Furthermore, it is possible to embed Q, together with the Kähler structure
defined by f according to Proposition 6.3, into J : this is described e.g. in [7,
Chapter 9], so we do not review it here. As in Section 6.2, this embedding
provides strong geometric motivation for the Yau–Tian–Donaldson conjecture
concerning stability conditions related to the existence of a cscK metric in H.

8 Complexified diffeomorphism groups

Let (M,J) be a complex manifold. In Section 7 we argued that Diff(M) inherits
a complex structure which is formally integrable. The same construction applies
to the space of immersions I of L into M ; the space P is then an open subset
of I, so it is formally an infinite-dimensional complex manifold. The action
of Diff(L) by reparametrization preserves the complex structure. We can thus
reformulate the material of Section 2 in terms of the formalism of Section 6. We
conclude the following.

• P is an infinitesimal complexification of Diff(L).

• Proposition 6.7 applies to P, proving that the tangent space T (T ) can be
identified with the adjoint bundle associated to P.

• The connection and geodesics defined in Section 3 coincide with those
defined in Section 6.4.

• When M is Kähler and Ric(M) < 0, Proposition 6.3 shows that the
functional VolJ defines a Kahler structure ωJ on P. Proposition 6.4 also
applies, showing that the critical points of VolJ can be interpreted as the
zero set of a moment map.
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Remark A theorem of Bruhat and Whitney [18] shows that any real analytic
L can be “complexified”, i.e. embedded as a totally real submanifold into an
appropriate complex manifold (M,J). It thus defines a space P. It follows that
the corresponding group Diff(L) admits an infinitesimal complexification even
though it may not admit a genuine complexification [10].

A special case of the above occurs when M is negative Kähler–Einstein:
in this case, using Proposition 5.11, we obtain a reformulation of minimal La-
grangians in terms of the zero set of a moment map. The analogies with the
theory of cscK metrics and Hermitian–Einstein connections lead to the following
question, which seems worthy of further pursuit.

Question Can the existence of minimal Lagrangians in negative KE mani-
folds be related to a stability condition concerning (M, g, J, ω̄) and the chosen
homotopy class T ?

In [12] we study a different existence question: given a minimal Lagrangian
for a negative KE metric on M , we prove the existence of minimal Lagrangians
with respect to small KE perturbations of that metric.

Concerning uniqueness, one can again formulate several different questions
depending on the set of submanifolds one chooses to work with. As seen in
Corollary 5.12, a minimal Lagrangian L0 is unique within the set of totally real
submanifolds which can be connnected to L0 via a geodesic ray: in some sense
this is a global statement, but of course it is of interest only in the presence of
a good existence theory for geodesics. In [12] we discuss the question of local
uniqueness, i.e. within a neighbourhood of a minimal Lagrangian L0 in T .
Existence and uniqueness conjectures in the context of Fukaya categories are
formulated in [8].
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[10] László Lempert, The problem of complexifying a Lie group, Multidimen-
sional complex analysis and partial differential equations (São Carlos,
1995), Contemp. Math., vol. 205, Amer. Math. Soc., Providence, RI, 1997,
pp. 169–176.

[11] Jason D. Lotay and Tommaso Pacini, From Lagrangian to totally real ge-
ometry: coupled flows and calibrations, available on www.arxiv.org.

[12] , Uniqueness and persistence of minimal Lagrangian submanifolds,
available on www.arxiv.org.

[13] Roberta Maccheroni, work in progress.

[14] Dusa McDuff and Dietmar Salamon, J-holomorphic curves and symplectic
topology, American Mathematical Society Colloquium Publications, vol. 52,
American Mathematical Society, Providence, RI, 2004.

[15] Walter Rudin, Functional analysis, second ed., International Series in Pure
and Applied Mathematics, McGraw-Hill, Inc., New York, 1991.

[16] Michael Spivak, A comprehensive introduction to differential geometry. Vol.
V, second ed., Publish or Perish, Inc., Wilmington, Del., 1979.
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