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Abstract: It is a key challenge to explore an efficient, stable and low-cost catalyst for oxygen 

evolution reaction (OER). Herein, we show a facile strategy to significantly enhance 

electrocatalytic activity and stability of crystalline α-FeOOH by rapid heat treatment. We 

identify that crystalline α-FeOOH not only shows electrocatalytic activity is as high as the 

benchmark FeOOH catalyst (amorphous γ-FeOOH), but also the highest stability among all 

FeOOH electrocatalysts for OER in alkaline solutions. Our findings not only deepen the 

fundamental understanding of the OER process on these materials but also guide further 

development of new low-cost electrocatalysts for energy storage via water splitting. 

 1. Introduction 

Water electrolysis is a promising approach to store intermittent renewable energy, e.g. 

from solar, wind and tidal sources, into clean hydrogen. [1-4] The oxygen evolution reaction 

(OER), a four-electron process, is the rate-limiting step in the process due to its slow kinetics 

and a high overpotential. It is of great significance to discover more efficient, stable and 

earth-abundant alternatives to these commercial electrocatalysts. Recently, the first-row 

transition metal oxy-hydroxides, including Fe, Co, Ni and Mn elements, have received 

extensive attention due to their high efficiency and low cost. [5-24] In previous studies, the 

OER activity of single metal oxy-hydroxides is usually considered to follow the order Ni > 

Co > Fe > Mn, inversely proprortional to ionic radius. [7] However, most recent reports 



suggested that the intrinsic OER activity follows the order of Fe > Co > Ni > Mn, by 

exclusion of the effect of low concentration Fe impurities in NiOOH or CoOOH. [13-16] 

Since Fe is the most efficient, low cost and nontoxic element among the transition metals, 

it is very desirable to develop a FeOOH electrocatalyst. Unfortunately, previously reported 

pure FeOOH electrocatalysts are highly unstable in alkaline electrolyte at a high anodic 

potential, due to fast oxidization into soluble FeO4
2−. [14, 17, 18] Moreover, the phase and 

crystallinity of electrocatalysts play key roles in their electrocatalytic performance. Previous 

studies suggested that γ-FeOOH shows higher electrocatalytic activity than α-FeOOH. [19, 20] 

Moreover, it was concluded that an amorphous sample usually outperforms a crystalline 

sample [21].This has stimulated the majority of studies on amorphous FeOOH, prepared either 

by electro-deposition (ED) or photoelectron-deposition methods. [18, 22-24] In this study, a 

facile chemical bath deposition (CBD) method was used to prepare a well-crystallized α-

FeOOH film. The crystallized α-FeOOH after rapid heat treatment demonstrates 

electrocatalytic activity as high as the amorphous γ-FeOOH, but is much more stable. To the 

best of our knowledge, this crystallized α-FeOOH is the most stable pure FeOOH 

electrocatalysts in an alkali solution, without compromising the catalytic performance. 

2. Experimental section 

2.1 Preparation and Heat Treatment of FeOOH Films 

Crystallized α-FeOOH films were prepared by a chemical bath deposition method. 

Aqueous solution of 0.02 M FeSO4 was used as Fe source and nothing else was added into 

the solution. α-FeOOH films were obtained on FTO substrates (TEC 15, Pilkington NSG) 

after depositing at 70°C for 72h. Amorphous -FeOOH film was prepared by a conventional 

electrodeposition method as a reference [9, 11]. A three-electrode cell was applied to deposit 

the film samples. A FTO substrate, Pt mesh and SCE were used as a working electrode, a 

counter electrode and a reference electrode, respectively. Deposition electrolyte was aqueous 

solution of 0.1 M FeSO4 and 0.05 M NaNO3. -FeOOH films were electrodeposited on FTO 

substrates at -0.8 V VS. SCE for 400 seconds at room temperature.  

In order to shorten calcination time, a quenching method was used to heat the samples 

following our previous method. [25]The samples were directly put into a muffle furnace with 

different temperatures, directly taken out and quenched to room temperature quickly. 

2.2 Characterization of Samples 

  The crystal structures of the films were measured by grazing incidence X-ray diffraction 

(GIXRD, Bruker D8 Advance with CuKα radiation (λ=1.54 Å) equipped with a PSD 



LynxEye silicon-strip detector). The morphologies of samples were examined with a 

scanning electron microscope (SEM, JEOL JSM-7401F). The binding energies of Fe2p and 

O1s in different depths of the samples were investigated by X-ray photoelectron spectroscopy 

(XPS, Thermo Scientific K-alpha). The binding energy was calibrated by C1s (284.8 eV) and 

relative concentrations of different oxygen was calculated with the CasaXPS software. 

Raman spectra were measured by a laser Raman spectrophotometer (Renishaw InVia) for 

excitation wavelengths of 514 nm. After stability measurement, the pH of KOH aqueous 

solution was adjusted to 0 with HCl solution and Fe3+ was analysed by ICP (Thermo 

Scientific, iCAP6000). 

2.3 Electrochemical Properties Measurement 

   The electrochemical properties of the samples were tested in a three-electrode cell at room 

temperature using an electrochemical analyzer (Ivium technology). The electrolyte was 1 M 

KOH aqueous solution (pH~14). A FeOOH film, Pt mesh and SCE were used as a working 

electrode, a counter electrode and a reference electrode, respectively. Cyclic voltammetry 

was performed with a scan rate of 10 mV s-1. A RHE potential was calculated following the 

formula: VRHE = VSCE+ 0.059pH + 0.241. No iR correction facility was employed. The 

electrochemical impedance spectra (EIS) of the samples were measured using with a 10 mV 

amplitude perturbation. Faradaic efficiency of oxygen was measured as follows. Before a 

Faradaic efficiency measurement, the cell was sealed and purged by Ar for half an hour until 

no O2 or N2 was detected. Evolved O2 was detected by an off-line gas chromatograph with a 

TCD detector (Varian 430). 

2.4 Simulation method 

  The interactions between α-FeOOH (goethite) surfaces and water were investigated using 

periodic Density Functional Theory (DFT) implemented in the VASP code [26]. A plane wave 

cutoff of 520 eV was selected, with the Projector Augmented Wave method used to treat core 

electrons [27]. A semicore projector was used for Fe, including p and s states. The GGA+U 

approach was used to provide an accurate treatment of localised electron states, with Ueff set 

to 5.0 eV[28]. The details can be found in Supporting Information. 

3.Results and Discussion 

3.1 Crystal structures and crystalline of α-FeOOH by CBD and γ-FeOOH by ED 

 



 

Figure 1 XRD (a) and Raman spectra (b) of as-deposited FeOOH thin films by ED and CBD 

methods, respectively; Crystal structures of -FeOOH (c) and α-FeOOH (d). 

In principle, it is more appropriate to investigate intrinsic activity of an electrocatalyst on a 

thin film than a powder sample to minimize the influences of extrinsic factors, such as 

geometric surface area, mass and electron transport.[5] Since the most efficient FeOOH 

electrocatalysts were prepared by the ED method in previous studies, herein, we focus on 

comparing electrocatalytic activity and stability between a well-crystallized α-FeOOH by the 

CBD method and -FeOOH by the ED method. Figure 1 shows XRD patterns and Raman 

spectra of the as-deposited -FeOOH and the α-FeOOH films, respectively. No evident 

diffraction peaks are observed in the ED sample (Figure 1 (a)), indicating that the prepared 

FeOOH film is amorphous, in agreement with previous reports using similar ED methods [11, 

15, 20, 22-24]. In contrast, two evident peaks exist for the CBD sample, which can be assigned to 

(021) and (111) of an α-FeOOH (JCPDS No. 29-0713). The intensity ratio of peak (021) to 

(111) is 0.3 in a random α-FeOOH polycrystal, and it is 1.7 in this sample, indicating 

preferred orientation along (021). Raman spectra were further used to characterize the 

samples due to its sensitivity in short range (see Figure 1 b). Clearly broad Raman peaks of -

FeOOH can be observed in the ED sample [29]; however, sharp Raman peaks of α-FeOOH are 

observed on the CBD sample [29], in agreement with the XRD results. In other words, an 

amorphous -FeOOH and a crystalline α-FeOOH have been successfully prepared for 

comparative study. Crystal structures of - and α- FeOOH are shown in Figures 1(c) and (d), 



respectively. The γ phase is a layered structure of double chains of Fe(O,OH)6 octahedra with 

shared edges, and the layers are held together by hydrogen bonds. The α phase can be 

described as parallel double chains of edge-sharing Fe(O,OH)6 octahedra and linked to 

neighboring double chains by corner sharing. The crystal structure of α-FeOOH indicates it is 

thermodynamically more stable than γ-FeOOH. [30] 

 

3.2 Effects of rapid heat treatment on OER activities of α-FeOOH and γ-FeOOH 

 

 

 

 

 

 

 

 

Figure 2 (a) Electrocatalytic activities of amorphous γ-FeOOH and crystalline α-

FeOOH before and after calcination at 300°C/5min in air; Electrolyte: 1 M KOH 

aqueous solution, scan rate: 10 mV/s, without iR-correction. (b) Faradic efficiency of 

O2 on α-FeOOH after calcination at 300°C for 5min. Electrolyte: 1M KOH aqueous 

solution, potential: 1.65 VRHE.  

 

In this study, we found that rapid heat treatment had significant effect on electrocatalytic 

activities of the as-deposited samples and the results are shown in Figure 2 (a). The onset 

potential (50 µA/cm2) of the as-deposited amorphous γ-FeOOH film is about 1.54 VRHE, 

close to a reported value. [11] However, the as-deposited α-FeOOH sample indicates a much 

higher onset potential, about 1.63 VRHE, which suggests an inferior electrocatalytic 

performance to the amorphous γ-FeOOH film, in agreement with the literature. [20] After 

calcination at 300°C for 5 min in air, an onset potential of α-FeOOH cathodically shifts about 

80 mV, to a similar level to the γ-FeOOH. The current density increases about 50-fold at 1.6 

VRHE, compared with the as-prepared α-FeOOH. Faradic efficiency of O2 is close to 90% at 

1.65 VRHE (Figure 2b), which confirms that a lower onset potential after heat treatment is 

from oxygen evolution reaction. On the contrary, an onset potential of the γ-FeOOH shifts 

anodically and the corresponding current density at 1.6 VRHE decreases by about 40% after 

the same heat treatment. 
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    In order to elucidate the mechanism of the rapid heat treatment enhanced 

electrocatalytic activity, different characterizations were carried out on the α- and the 

γ-FeOOH before and after calcination at 300°C for 5 min. From XRD (Figure S1a), 

Raman (Figure S1b) and SEM (Figure S2) results, there are no new phases and evident 

morphology variation, which is reasonable, given the very short heat treatment time. 

Moreover, we measured the electrochemical surface area of the samples before and 

after the heat treatment (See Figure S3). The results suggest that there is little change 

in the surface area of the two samples, which means the electrochemical area does not 

contribute to the improved activity.  

3.3 A possible mechanism for enhanced OER activity on α-FeOOH by rapid heat 

treatment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3  (a) Electrocatalytic activities of the α-FeOOH samplescalcined at different 

temperatures for 5 min; Electrolyte: 1 M KOH aqueous solution, scan rate: 10 mV/s, 

without iR-correction. Inset figure, overpotential (10 mA/cm2) vs. calcination temperatures, 

with iR-correction. (b) XRD patterns and (c) Raman spectra of the α-FeOOH samples 

calcined at different temperatures for 5 min. (d) XPS of O1s on the surfaces of the α-FeOOH 

calcined at different temperatures for 5 min 

 

    In order to investigate the mechanism of improved activity after rapid heat treatment, the 

as-deposited α-FeOOH samples were calcined at different temperatures for 5min and the 
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electrocatalytic activities are shown in Figure 3 (a). The activity of the α-FeOOH does not 

increase after calcined at 170°C for 5min. Even though the sample was calcined at 170°C for 

a much longer time (12h), the activity of the sample still did not increase (not shown here). 

However, the activities of the α-FeOOH sample increase after calcined at higher temperatures 

(250°Cand 300°C) for 5min. The results suggest that there is a critical temperature to activate 

the as-deposited α-FeOOH. Different characterization, including XRD, Raman and XPS were 

used to investigate variation of the samples and the results are shown in Figure 3 (b), (c) and 

(d) respectively. From XRD and Raman results, phase and crystalline of the α-FeOOH 

samples do not change after calcined at 300°C or lower temperatures. In order to investigate 

the thermal decomposition of α-FeOOH, a TG curve of the sample was measured and the 

result is shown in Figure S4.The result is in agreement with previous report.[31] When the 

sample was calcined at temperature lower than 230°C, physically adsorbed water evaporates, 

leading to gradual weight loss. A sharp weight loss is observed in the range of 230°C to 

300°C, which are assigned to dehydration of chemically bonded water, including in the bulk 

and on the surface. The FeOOH samples became α-Fe2O3 when they were calcined at 300°C 

for 30 min and 60 min (see Figure S5). Here, we focus on comparing the activity and stability 

of α-FeOOH and γ-FeOOH. Therefore, a longer calcination time is out of the scope of this 

study.  

XPS was then used to provide surface information of the α-FeOOH samples before 

and after calcination at 300°C or lower temperatures. The binding energies of Fe2p in 

the two samples remain similar after the rapid heat treatment, while the binding 

energies of O1s change (see Figure S6). Three binding energies of O1s (529.4 eV, 

530.8 eV and 532.2 eV) are observed on the surface of the as-deposited α-FeOOH 

sample, which are assigned to O2- species, OH- group and adsorbed H2O molecules, 

respectively (see Figure S7). [32]Also, the XPS spectra of O1s at different depths in the 

a-FeOOH sample were measured. Peaks of water molecules decrease markedly at a 

depth of 5 nm into the as-deposited α-FeOOH, which suggests that most water 

molecules exist on the surface of the sample (see Figure S8). Figure 3d shows the XPS 

of O1s on the surfaces of the α-FeOOH after calcined at different temperatures for 5 min. 

Surface adsorbed water on the as-deposited α-FeOOH sample does not change after 

calcination at 170°C, and decreases after the rapid heat treatment at 250 and 300°C for 

5 min. If the calcination temperature is not high enough, it is impossible to remove the 

surface chemically adsorbed water, which is in agreement with the TG result. In 

contrast, less adsorbed water molecules are observed on the surface of the γ-FeOOH, 



which does not change after the rapid heat treatment (see Figures S9). Previous studies 

suggest that the adsorption energy of molecular water on the surface of α-FeOOH was 

much lower than on γ-FeOOH and water was more readily chemisorbed on the surface 

of α-FeOOH than γ-FeOOH. [33, 34]Therefore, removing surface adsorbed water is a 

possible reason for improved activity of α-FeOOH after heat treatment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 (a) Electrocatalytic activities of the as-deposited α-FeOOH without 

calcination before and a sample soaked in KOH aqueous solution for 80h; (b) XRD 

patterns of the as-deposited α-FeOOH before and after aged in KOH aqueous 

solutionfor 80h; (c) Electrocatalytic activities of the as-deposited α-FeOOH and the 

sample soaked in KOH aqueous solution for different times;(d)XPS of O1s on the 

surface the as-deposited α-FeOOH before and after aged in KOH aqueous solution for 

different times. Electrolyte: 1 M KOH aqueous solution, scan rate: 10 mV/s, without 

iR-correction. 

 

In order to further investigate the effect of surface chemically bonded water on the 

electrocatalytic activity of the α-FeOOH sample. The as-deposited α-FeOOH without 

calcination was soaked in 1M KOH aqueous solution for different times at room temperature. 

Figure 4(a) indicates the electrocatalytic activity of the as-deposited α-FeOOH before and 

after soaked in aqueous solution for 80 h. Since the sample is not calcined at high 

temperature, no any phase transition happens in the α-FeOOH sample (see Figure 4b). The 
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electrocatalytic activity of the α-FeOOH sample after soaked in aqueous solution decreases 

so much and the onset potential shifts to positive (see Figure 4a). Moreover, the 

electrocatalytic activity of the soaked sample was the lowest when measured for the first scan, 

obviously increased for the second scan, and then kept constant after the third scan. Even 

though, the stable performance of the α-FeOOH sample after soaked in the aqueous solution 

is still much lower than the sample before soaked. When the α-FeOOH was soaked in the 

aqueous solution, water was physically and chemically adsorbed on the surface of α-FeOOH, 

respectively. The physically adsorbed water can be removed easily when the sample is 

measured at a high anodic potential. However, the chemically adsorbed water is very robust 

and cannot be removed by the anodic potential, which will cover on surface active sites of α-

FeOOH and decrease the activity of the sample. The stable activities (after 4 scans) of the 

samples soaked in the aqueous solution for different times were also measured and the results 

are shown in Figure 4c. Obviously, the electrocatalytic activities of the α-FeOOH decrease 

with increasing the soaking time. Meanwhile, the concentration of surface adsorbed water 

increases with increasing the soaking time (see Figure 4d). Therefore, our results suggest the 

more chemically absorbed water on the surface α-FeOOH, the worse activity is. 

Water adsorption properties of the (021) surface of the α-FeOOH are simulated by 

Density Functional Theory (DFT) to understand the relationship between the activity 

of α-FeOOH with surface chemically adsorbed water, see Figures 5 (a) and (b). The 

calculation details and the qualitative analysis are demonstrated in the Supporting 

Information. This (021) surface was chosen as it is the preferred orientation suggested 

by the XRD pattern, Figure 1a. This surface exposes Fe atoms with only five Fe-O 

bonds, where an Fe-O6 octahedra is cleaved in half with the removal of one apex 

oxygen atom. There are two Fe sites, where Fe binds to three protonated oxygens (A 

site), and where Fe binds to two protonated oxygens (B site) (see Figure 5 (a)). Initial 

water adsorption is expected to be dissociative in the A site, with adsorbed OH- 

binding to the fivefold Fe, and the proton binding to an adjacent bridging surface 

oxygen. This has an exothermic reaction free energy of –1.038 eV/H2O. This is a 

strong chemisorption, and is reflective of the chemical bond formed between the OH 

and Fe.  The second water molecule then binds in molecular form to the B site. In 

contrast to the first hydroxlation, there is a significant reduction in the reaction energy 

for the second hydroxylation, at –0.620 eV/H2O, this binding is still significant. From 

inspection, we note that the Fe–O distance is significantly longer than bulk, at 2.415 Å 

compared to the bulk value of 2.057 Å, suggesting that no chemical bond has formed. 



Rather, we note the presence of significant hydrogen bonding, as indicated by a short 

O…H bond length of 1.643 Å, and charge density difference analysis. A hydrogen 

bond forms between the H2O molecule and the surface oxygens. Hydrogen-bonded 

adsorbed water is robust on this surface and cannot be split under an anodic potential, 

which prevents adsorption and oxidization of OH- on the B site in an alkali solution 

and limits the activity of α-FeOOH. After hydrogen-bonded adsorbed water is 

removed, allowing the interaction of OH- (in alkali solutions) with the B sites, 

increasing the active site density on the surface of α-FeOOH and leading to higher 

activity (see Figure 5c). 

 

Figure 5 (a) Illustration of the (021) surface of α-FeOOH. Two different 

undercoordinated Fe sites, A and B, are distinguished by binding to number of 

protonated oxygens. Arrows indicate surface bridging oxygen. (b) Charge density 

difference for the second molecular hydroxylation on the (021) surface. Yellow 

represents charge accumulation, blue charge depletion. The isosurface contour is 

drawn at 0.005 e/Å3. (c) A proposed mechanism for improved electrocatalytic activity 

of α-FeOOH after rapid heat treatment.  

 



3.4 Stability of α-FeOOH and γ-FeOOH in 1M KOH aqueous solution after rapid heat 

treatment 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 I-t curves of α-FeOOH and γ-FeOOH before and after calcination at 300°C 

for 5 min (a). SEM images of as-deposited γ-FeOOH method before (b) and after (c) i-

t; SEM images of as-deposited α-FeOOH method before (d) and after (e) i-t; 

Electrolyte: 1M KOH aqueous solution, Potential:  2.1 VRHE.  

 

Apart from a highly efficient α-FeOOH, stability is the other key factor for practical 

applications for OER. Hereafter, we investigated the stability of the α-FeOOH and 

compared it with the widely used γ-FeOOH. Figure 6 (a) indicates accelerated aging 

curves at a high potential of 2.1 VRHE. For the as-deposited γ-FeOOH, the current 

decreases very quickly, and all γ-FeOOH were dissolved into the electrolyte and no γ-

FeOOH sample only bare FTO substrates can be observed after 8h i-t measurement 

(see Figures 6 b and c). The results are in good agreement with previous studies that 

FeOOH by ED method is easily oxidised to soluble FeO4
2- at a high anodic potential in 

an alkaline solution, which hinders the application of FeOOH as a robust 

electrocatalyst. [17, 18]It is interesting to note that the stability of γ-FeOOH increases a 

little after the heat treatment, however, it is still completely dissolved after 15 h i-t 

measurement. Therefore, heat treatment cannot prevent the amorphous γ-FeOOH 

dissolving into the alkaline electrolyte. For the as-deposited α-FeOOH, the current 

density decreases more slowly than the as-deposited γ-FeOOH. However, SEM results 

indicate no morphology variation on the as-deposited α-FeOOH after i-t measurement 

(see Figure 6 d and e). Moreover, XRD and Raman further confirm the stability of the 
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as-deposited α-FeOOH sample as no structure change is evident (see Figure S10). 

After i-t measurement, the adsorbed water concentration on the surface of as-deposited 

α-FeOOH increases from 20% to 27%.Indeed, we found that the current could be 

mostly recovered when the as-deposited sample after i-t measurement was calcined at 

300°C for 5 min. Moreover, ICP results suggest that about 3% Fe3+ ions to the bulk 

were dissolved into the solution after stability measurement. Therefore, the current 

decrease of the as-deposited α-FeOOH comes from re-adsorption of chemically 

bonded water on the surface and trace dissolution of the sample. The electrocatalytic 

stability of the as-deposited α-FeOOH sample was remarkably improved after the 

rapid heat treatment, and only decreased about 10% after 52 h at such a high anodic 

potential of 2.1 VRHE (See Figure 6a). In contrast, the current of γ-FeOOH with the 

same heat treatment decreases 10% only for 1.3 h measurement. The results suggest 

the treated crystalline α-FeOOH reveals a 40 times longer lifetime than that of 

amorphous γ-FeOOH. To our best knowledge, the crystallized α-FeOOH after heat 

treatment indicates the highest stability among all reported pure FeOOH 

electrocatalsyts for oxygen evolution reaction in an alkali solution. [14, 16-18, 35]The 

higher stability of the α-FeOOH than the γ-FeOOH is due to higher crystallinity and a 

more stable phase. 

 

 

 

 

 

 

 

 

 

Figure 7(a) XPS of O1s on the surfaces of α-FeOOH calcined at 300°Cfor 5 min before and 

after 52 h i-t measurement with a potential of 2.1 VRHE and aged in 1M KOH aqueous 

solution for 52h without a potential, respectively. (b) Electrocatalytic activities of α-FeOOH 

calcined at 300°C 5 min before and after 52 h i-t measurement with a potential and aged in 

1M KOH aqueous solution for 52 h without a potential, respectively. Electrolyte: 1 M KOH 

aqueous solution, scan rate: 10 mV/s, without iR-correction. 
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It is critical to ensure α-FeOOH OER electrocatalysts to resist water re-adsorption on the 

heat treated surface of sample during electrochemical measurement in an aqueous solution. 

Here, we investigated the effect of a bias on surface water re-adsorption on the α-FeOOH 

sample and the results are shown in Figure 7.When a heat-treated α-FeOOH was soaked in a 

1M KOH aqueous solution for 52 h without an anodic potential, water was re-adsorbed on the 

surface of the sample very easily (see Figure 7a) and the activity of the heat-treated α-FeOOH 

decreased dramatically (see Figure 7b). However, when an anodic potential was applied on 

the heat-treated sample, XPS measurement indicates much less lower surface adsorbed water 

on the sample than that without an anodic potential. Therefore, the anodic potential can 

substantially prevent water re-adsorption chemical on the surface of α-FeOOH in an aqueous 

solution. It is possible that the potential facilitates the oxidation of OH- ions to O2, thus 

providing a clean surface for subsequent water adsorption. 

 

4. Conclusion 

In summary, a reproducible and economic method was used to prepare crystallized 

α-FeOOH OER electrocatalyst. The current density of crystallized α-FeOOH increases 

by about 50-fold at 1.6 VRHE after rapid heat treatment. The crystallized α-FeOOH 

sample after rapid heat treatment demonstrates electrocatalytic activity as high as 

amorphous γ-FeOOH but a 40 times longer. The improved electrocatalytic activity is 

possibly attributed to the removal of surface chemically adsorbed water. Our strategy 

of removing surface water by rapid heat treatment means that α-FeOOH a promising 

OER electrocatalyst. This study also deepens the understanding of OER at interfaces 

between electrocatalyst and water. 
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