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Decline in both telomere length and physical fitness over the life course may contribute to increased risk of sev-
eral chronic diseases. The relationship between telomere length and aerobic and muscular fitness is not well char-
acterized. We examined whether there are cross-sectional associations of mean relative leukocyte telomere
length (LTL) with objective measures of aerobic fitness, muscle strength, and muscle endurance, using data on
31-year-old participants of the Northern Finland Birth Cohort 1966 (n = 4,952–5,205, varying by exposure-
outcome analysis). Aerobic fitness was assessed by means of heart rate measurement following a standardized
submaximal step test; muscular fitness was assessed by means of a maximal isometric handgrip strength test
and a test of lower-back trunk muscle endurance. Longer LTL was associated with higher aerobic fitness and bet-
ter trunk muscle endurance in models including adjustment for age, sex, body mass index, socioeconomic posi-
tion, diet, smoking, alcohol consumption, physical activity level, and C-reactive protein. In a sex-stratified
analysis, LTL was not associated with handgrip strength in either men or women. LTL may relate to aspects of
physical fitness in young adulthood, but replication of these findings is required, along with further studies to help
assess directions and causality in these associations.

aerobic fitness; biological aging; handgrip strength; Northern Finland Birth Cohorts; telomere length

Abbreviations: BMI, body mass index; CRP, C-reactive protein; LTL, leukocyte telomere length; qPCR, quantitative real-time
polymerase chain reaction; TL, telomere length.

Reduced aerobic and muscular fitness are hallmarks of
the aging process and manifest as physical inactivity, frailty,
and sarcopenia (muscle wastage) in old age (1, 2). Declining
fitness may raise the risks of both morbidity and mortality:
Poor fitness is associated with increased risk of a number of
age-related chronic diseases and all-cause mortality (3, 4).
Currently, the biological mechanisms underlying the decline
in aerobic and muscular fitness with age are incompletely
understood. One factor that may be related to both long-
term cardiorespiratory health and muscle performance is
telomere length (TL).

Telomeres are heterochromatin structures formed of repeti-
tive DNA sequences and specialized proteins which cap the
ends of chromosomes (5). Telomeres are progressively eroded
during successive rounds of mitosis, with additional attrition

attributed to oxidative stress and inflammation (6, 7). There is
wide variation in TL between individuals of equal chrono-
logical age, due to differences in both genetic factors and en-
vironmental determinants (8–10). When telomeres reach a
critically short threshold, they can trigger cellular senescence
or apoptosis, along with associated metabolic changes, sug-
gesting a potential mechanism by which shortened telomeres
could raise disease risk with increasing age (7). Shorter age-
adjusted mean leukocyte telomere length (LTL) is associated
with decreased longevity and a range of chronic diseases
(5, 11, 12), and TL may be causally related to some of these
(8). However, it is unclear what role (if any) TL plays in the
decline in physical fitness with age, whether long-term vari-
ation in physical activity modifies TL over time, or whether
there is a bidirectional relationship between these factors.
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Several cross-sectional and prospective studies have ex-
amined objective measures of physical fitness in relation to
either LTL or TL from skeletal muscle. A positive associ-
ation of TL with aerobic fitness has been reported (tested
by either submaximal or maximal oxygen consumption)
(13–15), along with inconsistent but largely null findings
for associations with handgrip strength (16–24). However,
most studies to date have had relatively small sample sizes
(only 2 have had more than 1,000 study participants),
many have used elderly participants or special groups (e.g.,
endurance athletes), and several have lacked multiple stan-
dardized measures of aerobic fitness and different aspects
of muscle fitness.

The aim of this study was to test for cross-sectional as-
sociations of LTL with objective measures of aerobic fit-
ness and muscle strength and endurance in a large sample
of Finnish participants at 31 years of age. We hypothesized
that shorter LTL would be associated with lower aerobic
fitness, handgrip strength, and trunk muscle endurance and
that any associations would be partly mediated by low-
grade inflammation.

METHODS

Participants

The Northern Finland Birth Cohort 1966 is a prospective
birth cohort study that aimed to recruit all pregnant women
living in the provinces of Oulu and Lapland in northern
Finland with expected delivery dates in 1966 (25). A total
of 12,058 live-born offspring, all of white European ethnic
origin, were enrolled in the cohort. Detailed information on
the infants and their parents was collected starting pre-
natally, with further follow-up thereafter. In 1997, all liv-
ing offspring (then aged 31 years) with known addresses
were contacted and sent a postal questionnaire. A subset of
8,463 offspring residing in the areas of Oulu, Lapland, and
Helsinki was also invited to undergo a clinical assessment,
which included blood sampling. Of these participants,
6,033 attended the assessment. Informed written consent
for the use of the data was obtained, and approval was
granted by the Ethics Committee of the Northern Ostroboth-
nia Hospital District in Oulu, Finland, in accordance with the
Declaration of Helsinki. For this study, analysis samples var-
ied according to availability of physical fitness test data. The
number of persons with valid information on LTL, fitness
test measures, and all relevant covariates ranged from 4,952
to 5,205 (Figure 1).

Telomere length

Blood samples drawn at the 31-year follow-up assess-
ment in 1997 were collected between 8:00 AM and 11:00
AM, following an overnight fast by participants. Samples
were stored at −70°C until thawed for analyses. Mean rela-
tive LTL was measured in genomic DNA samples prepared
from peripheral blood leukocytes using a multiplex quantita-
tive real-time polymerase chain reaction (qPCR) method
(26), with modifications as described previously (27). Briefly,
the multiplex qPCR method is based on a measure of the

amplification of the telomeric DNA sequence (T) relative to
that of a single copy gene (S) in each test sample, and nor-
malized using a common reference DNA sample. This pro-
vides “T/S ratios” for each DNA sample, which are used as
mean relative LTL values for participants. The overall mean
coefficient of variation for T/S values of duplicate test sam-
ples on the same plate was 5%, and the mean interrun coeffi-
cient for randomly selected samples was 6.2%.

Physical fitness measures

At the 31-year clinical assessment, 4 teams of research
nurses supervised the measurements of aerobic and muscu-
lar fitness, performed anthropometric measurements, and
carried out medical examinations (28). Before the fitness
tests, participants were interviewed to exclude those with
cardiovascular diseases or orthopedic problems. Fewer than
10% of participants were excluded from the analyses due
to incomplete tests (most commonly, individuals did not
undertake the step and/or trunk endurance tests because of
acute ill health or pregnancy).

To measure submaximal aerobic fitness, participants
undertook a 4-minute step test, making 23 ascents and de-
scents onto a bench per minute in time to a metronome. Par-
ticipants were shoeless during the test; bench heights were
33 cm for females and 40 cm for males. Heart rates were
measured before and immediately after exercise using a
heart rate monitor handle (Fitwatch by Polar Electro, Kem-
pele, Finland), and these measures were used as an indicator
of participants’ aerobic fitness—lower heart rates (beats/
minute) after the step test indicating higher fitness (29).

Muscle strength was tested using measures of the max-
imal isometric handgrip strength (kg) of the dominant hand,
using a hand dynamometer (Newtest, Oulu, Finland). Parti-
cipants were standing with the hand beside the trunk but not
touching it. Grip width was adjusted to hand size. The high-
est value from 3 attempts (lasting 2–4 seconds) was used as
the test result.

Muscle endurance was assessed using a lower-back trunk
muscle extension test (the Biering-Sorensen test) (30). Parti-
cipants lay prone with their lower body lying on a stand and
their upper body unsupported from the level of the anterior
superior iliac spine upwards, with their arms beside their
trunk and with their legs held down by a research nurse. Par-
ticipants then held their upper torsos horizontally for as long
as possible, for assessment of the isometric endurance ca-
pacity of trunk extensor muscles. Testing was stopped if the
upper torso was no longer maintained horizontally or when
4 minutes had elapsed (regardless of whether or not the par-
ticipant could continue), to avoid damaging the trunk mus-
cles. Duration of the test performance (from 0 seconds to
240 seconds) was then used as a measure of endurance.

Covariates

The following variables were regarded as potential con-
founders of associations of LTL with physical fitness vari-
ables: age, sex, adiposity (measured by body mass index
(BMI)), socioeconomic position, diet quality, smoking, and
alcohol consumption. Effect(s) of adjustment for physical
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activity on associations and potential mediation by C-reactive
protein (CRP), a marker of low-grade inflammation, were also
investigated.

BMI (weight (kg)/height (m)2) was derived from height and
weight measured at the clinical assessment. BMI was derived
from self-reported questionnaire responses if assessment mea-
surements were unavailable (<0.2% of the sample).

Information on socioeconomic position, diet, smoking, al-
cohol intake, and physical activity was recorded from the
31-year follow-up postal questionnaire. Socioeconomic po-
sition was defined from responses on occupation and em-
ployment status, with the following categories: unskilled
worker, skilled worker, professional, farmer, or other (re-
tired, student, or long-term unemployed). A 6-category diet
quality variable was calculated (0 = healthiest, 5 = un-
healthiest) from frequencies of intake of several food groups
in the prior 6 months (31). Alcohol consumption was calcu-
lated as a continuous variable (intake in g/day) from detailed
questions on type, strength, and frequency of alcoholic

drinks consumed. Leisure-time physical activity was calcu-
lated as metabolic equivalent of task hours per week, based
on frequency and duration of both light and brisk physical
activity (32). Three smoking status variables were derived
from questions: never/ever smoking; current number of cig-
arettes smoked per day (continuous scale); and current user
or nonuser of alternative tobacco products (cigars, pipes,
snuff, or chewing tobacco).

Serum high-sensitivity CRP concentrations were deter-
mined by immunoenzymometric assay (Medix Biochemica,
Espoo, Finland), using the same clinical samples as those
used for LTL measurement. The intra- and interassay coeffi-
cients of variation were 4.2% and 5.2%, respectively.

Statistics

In analyses of association, LTL was considered the ex-
posure of interest and physical test measures were the out-
come variables, which allowed more effective modeling of
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Figure 1. Derivation of the study sample, Northern Finland Birth Cohort 1966 (NFBC1966), 1966–1997. LTL, leukocyte telomere length.
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the trunk muscle endurance data and consistency of presen-
tation across all models. However, there are plausible rea-
sons for anticipating that any associations between LTL and
physical fitness could represent a bidirectional relationship,
particularly regarding aerobic fitness as a possible determi-
nant of LTL (see commentary in the Discussion).

A natural logarithmic (logn) transformation was applied to
LTL measurements (T/S ratios) to obtain an approximately
normal distribution of this variable for use in all regression
models. The logn-transformed LTL was z scored for models,
so that results were expressed per 1-standard-deviation change
in logn-transformed LTL. We used multivariable linear regres-
sion models to examine associations of LTL with aerobic
fitness and handgrip strength and to adjust for potential con-
founders and mediators. The trunk muscle endurance distribu-
tion was right-censored because a large proportion of the
analysis sample (27%) endured the full test duration. Thus, we
modeled trunk muscle endurance as an outcome in a survival
analysis using Cox proportional hazards regression, where
hazard ratios reflected the risk of participants’ failing to com-
plete the test at some point within 4 minutes.

We constructed several models investigating each potential
exposure-outcome association. In model 1, we adjusted for
age and sex. In model 2, we included further adjustment for
potential confounding by BMI, socioeconomic position, diet
quality, smoking, and alcohol consumption. Model 3 included
the adjustments in model 2 plus CRP to examine potential me-
diation of associations by inflammation. Model 4 included the
adjustments described for model 2 plus physical activity, to
examine whether this affected the magnitude of any associa-
tions. A random-effects term (calculated by maximum likeli-
hood estimation) was included in linear regression models to
account for batch effects in LTL measurements. Robust stan-
dard errors were used in survival models. Handgrip strength
has a bimodal distribution due to separate modal values for
males and females, so we stratified all analyses of LTL and
handgrip strength by sex. Therefore, adjustments in these
models did not include sex.

Further to main analyses, we tested for interactions be-
tween sex and LTL in association with aerobic fitness and
trunk endurance. Possible nonlinearity of associations of
LTL with aerobic fitness and handgrip strength was tested by
examining fractional polynomial statistics and examining
graphical plots. Proportionality in Cox models was examined
using Kaplan-Meier curves for 3 categories of the z-scored
logn-LTL distribution. In case there were inaccuracies in the
qPCR measurement of extreme LTL values, we repeated the
main-model analyses after excluding a small number of par-
ticipants with LTL-value outliers (≥3 standard deviations
from the mean of the logn-transformed T/S ratio distribution;
48–51 persons were excluded, varying by LTL-outcome
model). We also conducted additional analyses for a sub-
sample of participants with complete information on aerobic
fitness, handgrip strength, and trunk endurance (n = 4,733).
In these analyses, we constructed models with adjustments
identical to those of the main analyses, plus 1 further model
with mutual adjustment for all physical fitness variables—
that is, to examine the LTL–aerobic fitness association
adjusted for handgrip strength and trunk endurance and to

examine the LTL–trunk endurance association adjusted for
aerobic fitness and handgrip strength.

RESULTS

Table 1 shows the characteristics of the Northern Finland
Birth Cohort 1966 participants included in the analyses,
along with information on those excluded because of miss-
ing data. Generally, there were few notable differences be-
tween included and excluded participants; those excluded
were on average slightly younger, had lower alcohol con-
sumption, and had higher CRP levels and higher aerobic fit-
ness (lower average heart rates indicating higher aerobic
fitness).

Web Table 1 (available at http://aje.oxfordjournals.org/)
shows the characteristics of participants across 5 categories
of the mean relative LTL distribution. There were decreasing
trends in age, BMI, percentage of ever smokers, use of alter-
nate tobacco products, alcohol consumption, CRP, and step-
test heart rate across fifths of the LTL distribution (P’s for
trend ≤ 0.06). Current smoking was also lower in the highest
LTL fifth than in lower categories (P for trend = 0.10). There
were increasing trends in percent female, diet quality, and
trunk muscle endurance across fifths of the distribution (all
P’s ≤ 0.02).

Results from multivariable linear regression examining
the association of LTL with aerobic fitness are shown in
Table 2. In model 1, which adjusted for age and sex, longer
LTL was associated with higher aerobic fitness. This associ-
ation was attenuated slightly, but remained, after adjustment
for potential confounding by BMI, socioeconomic position,
smoking status, diet quality, and alcohol consumption. BMI
adjustment was responsible for most of this attenuation.
There was a small degree of further attenuation with ad-
ditional adjustment for CRP in model 3. Adjustment for
physical activity in addition to other potential confounders
(but not CRP) in model 4 produced results nearly identical
to those from model 2.

Table 3 shows results from multivariable linear regression
analyses examining associations of LTL with handgrip
strength (stratified by sex) and results from Cox proportional
hazards analyses of the association of LTL with trunk mus-
cle endurance (for the full sample). There was no evidence
of an association of LTL with handgrip strength in either
men or women in any model. In contrast, longer LTL was
associated with higher trunk muscle endurance (as evi-
denced by a lower hazard ratio for failing to complete the
test with increasing LTL). This association remained after
adjustment for all potential confounders, CRP, and physical
activity (models 2–4).

There was no evidence of effect modification by sex in
LTL–aerobic fitness and LTL–trunk endurance associations
(P’s for interactions with sex were 0.74 and 0.35, respec-
tively). There was also no evidence that associations exam-
ined in linear regression models deviated from linearity (for
nonlinear terms, all P’s ≥ 0.29) or that Cox hazard ratios de-
viated from proportionality across survival curves. Web
Tables 2 and 3 show results from main-model analyses
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repeated after exclusion of extreme LTL outlier values (≥3
standard deviation). These reflected the same pattern of re-
sults as that seen in the main models for aerobic fitness and
handgrip strength. The slight attenuation of the LTL–trunk
muscle endurance association observed between model 1
and subsequent models in the main analyses was more

pronounced in the outlier-exclusion analyses, particularly in
models that adjusted for CRP and physical activity, which
brought the results closer to the null. Finally, in models that
mutually adjusted for the physical fitness measures (Web
Tables 4 and 5), the LTL–aerobic fitness association was at-
tenuated slightly after the inclusion of adjustments for

Table 1. Characteristics of Northern Finland Birth Cohort 1966 Participants Included in Analyses of Telomere Length and Physical Fitness and
Those Excluded Because of Missing Data on 1 or More Variables, 1966–1997

Analysis Samplea Excluded Participants (n ≤ 739)
P for

Differenceb% Mean (SD) Median (IQR) No.
Missing % Mean (SD) Median (IQR)

Age, years 31.2 (0.3) 634 31.1 (0.3) 0.001

Sex, % male 48.3 722 51.7 0.18

Body mass indexc 24.7 (4.2) 690 24.7 (4.4) 0.97

Socioeconomic position 645 0.27

Farmer 3.8 2.3

Professional 23.9 22.8

Skilled worker 30.7 32.3

Unskilled worker 25.7 25

Otherd 16 17.7

Physical activity, MET-hours per
week

11.3 (3.8–20.6) 662 10.3 (3.6–22.0) 0.47

Diet quality (lower score indicates
a better diet)

669 0.74

0 7.5 6.7

1 24.3 26

2 30.2 28.7

3 26.6 25.9

4 or 5 11.5 12.7

Tobacco use

Ever smoking (vs. never) 63.4 633 63.2 0.93

Current smoking, cigarettes/day
(n = 1,916)

10 (6–20) 229 12 (7–20) 0.75

Alternate tobacco productse 3.4 4.7 0.08

Alcohol consumption, g/day 4.2 (1.1–10.9) 526 3.5 (0.8–8.4) 0.002

C-reactive protein, mg/L 0.75 (0.36–1.87) 556 0.82 (0.38–2.22) 0.05

Leukocyte telomere length
(T/S ratiof)

1.14 (0.92–1.42) 390 1.14 (0.92–1.41) 0.61

Step test heart rate, beats/minute 148.2 (17.3) 583 145.7 (17.5) 0.001

Handgrip strength, kg

Men 49.6 (8.8) 279 49.5 (9.3) 0.88

Women 28.2 (6.3) 351 28.1 (6.1) 0.81

Trunk muscle endurance, seconds 170 (127–240) 585 172 (125–240) 0.92

Abbreviations: IQR, interquartile range; MET, metabolic equivalent of task; SD, standard deviation.
a Characteristics of participants included in any of the 3 main analyses of associations between leukocyte telomere length and fitness variables

(n ≤ 5,284).
b P for difference in characteristics between excluded and included participants, based on a 2-tailed t test, Kruskal-Wallis test, or χ2 test.
c Weight (kg)/height (m)2.
d Retired, student, long-term unemployed, or not defined.
e Pipes, cigars, chewing tobacco, or snuff.
f Amplification of the telomeric DNA sequence (T) relative to that of a single copy gene (S) in each test sample.
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handgrip strength and trunk muscle endurance. Similarly,
the inclusion of adjustments for aerobic fitness and handgrip
strength slightly attenuated the association of LTL with
trunk muscle endurance in comparison with the confounder-
adjusted model.

DISCUSSION

Findings

Our findings support the hypothesis that longer LTL is as-
sociated with higher aerobic fitness and trunk muscle endur-
ance (but not with handgrip strength) in young adulthood.
The slight attenuation of the association between aerobic

fitness and LTL after adjustment for CRP suggests that in-
flammatory pathways may partly mediate the relationship
between TL and cardiorespiratory fitness. Given that LTL
was associated with trunk muscle endurance but not with
handgrip strength, our findings suggest that TL may relate
differently to varying aspects of muscular fitness in young
adults.

The association that we observed between an objective
measure of aerobic fitness and LTL is consistent with some
previously reported correlations of LTL with maximal oxy-
gen consumption in small numbers of endurance-trained
athletes (13, 14), and also with a positive association of LTL
with submaximal aerobic fitness in a cross-sectional survey
of the US population (n = 1,764; mean age 34 years) (15).
There are plausible mechanisms linking physical activity,
aerobic fitness, and TL. Exercise increases aerobic fitness,
while also increasing the cellular availability of nitric oxide
(which protects cells from oxidative stress). In addition,
exercise regimens appear to up-regulate expression of the
telomerase reverse transcriptase gene (TERT) and other
telomere-maintenance genes in mice (33), as well as in skel-
etal muscle of humans (34). Our finding that adjustment for
CRP attenuated the association somewhat would also be
consistent with underlying biology between TL and aerobic
fitness, if long-term regular exercise suppressed low-grade
inflammation—a condition hypothesized to shorten telo-
meres (35). Alternatively, given that higher adiposity is as-
sociated with increased inflammation, it is possible that the
CRP adjustment resulted in the removal of some residual
confounding by adiposity, if this was incompletely con-
trolled for in the previous model (with fat mass being mea-
sured imprecisely by BMI).

Lack of association of LTL with handgrip strength in our
data set is also consistent with most of the past studies inves-
tigating this trait in population-based samples of various
ages (16–24). However, the observed association between
LTL and trunk muscle endurance (and an association of

Table 3. Associations of Leukocyte Telomere Length with Handgrip Strength (Stratified by Sex) and Trunk Muscle Endurance (Not Stratified) in
Adults Aged 31 Years From Northern Finland Birth Cohort 1966, 1966–1997

Model

Handgrip Strength, kg
Trunk Muscle Endurance (n = 4,964)

Men (n = 2,505) Women (n = 2,700)

βa 95% CI P Value βa 95% CI P Value HRb 95% CI P Value

Model 1c −0.3 −0.6, 0.1 0.15 0.03 −0.2, 0.3 0.78 0.93 0.90, 0.96 <0.001

Model 2d −0.2 −0.5, 0.2 0.33 0.1 −0.2, 0.3 0.60 0.96 0.93, 0.99 0.02

Model 3e −0.2 −0.5, 0.2 0.28 0.03 −0.2, 0.3 0.78 0.97 0.94, 1.00 0.03

Model 4f −0.2 −0.5, 0.2 0.32 0.1 −0.2, 0.3 0.60 0.97 0.94, 0.99 0.02

Abbreviations: CI, confidence interval; HR, hazard ratio; LTL, leukocyte telomere length; SD, standard deviation.
a Beta coefficients represent the average difference in handgrip strength per 1-SD increase in logn-transformed LTL.
b HRs represent the difference in the chances of failing to complete the trunk muscle endurance test per 1-SD increase in logn-transformed LTL

(lower HRs indicating higher trunk endurance).
c Model 1—adjusted for age and LTL measurement batch (plus sex in the trunk muscle endurance analysis).
d Model 2—adjusted for model 1 variables plus body mass index, socioeconomic position, diet quality, smoking status, and alcohol

consumption.
e Model 3—adjusted for model 2 variables plus C-reactive protein.
f Model 4—adjusted for model 2 variables plus physical activity.

Table 2. Associations of Leukocyte Telomere Length With Aerobic
Fitness in Adults Aged 31 Years From Northern Finland Birth Cohort
1966 (n = 4,952), 1966–1997

Model βa 95% CI P Value

Model 1b −0.7 −1.2, −0.2 0.004

Model 2c −0.5 −1.0, −0.1 0.03

Model 3d −0.5 −1.0, −0.01 0.05

Model 4e −0.5 −1.0, −0.1 0.03

Abbreviations: CI, confidence interval; LTL, leukocyte telomere
length.

a Beta coefficients represent the average difference in heart rate
(beats/minute) per 1-standard-deviation increase in mean relative
LTL (lower heart rates indicating higher aerobic fitness).

b Model 1—adjusted for age, sex, and LTL measurement batch.
c Model 2—adjusted for model 1 variables plus body mass index,

socioeconomic position, diet quality, smoking status, and alcohol
consumption.

d Model 3—adjusted for model 2 variables plus C-reactive protein.
e Model 4—adjusted for model 2 variables plus physical activity.
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LTL with isokinetic knee extensor strength, reported else-
where (36)) could indicate a relationship between TL and
muscle performance that is not well reflected by aspects of
muscle function measured by handgrip strength or by other
fitness parameters commonly measured in cohort studies of
elderly subjects, such as walking speed or chair-rise tests.
Experimental evidence suggests that there may be a role for
TL in determining muscle function. Although skeletal mus-
cle is a postmitotic tissue (where a lack of cell replication
means there is no age-related telomere loss), its maintenance
depends upon pools of progenitor satellite cells, which could
be reduced in size with age if shortened telomeres trigger
senescence/apoptosis (37). It is unclear whether telomere
deterioration could produce meaningful proportions of crit-
ically short TL by young adulthood (as in our sample) to
induce cellular senescence or apoptosis and, in turn, affect
muscle function. Other potential mechanisms might explain
how TL variation above critically short thresholds could
affect muscle performance, such as complex interactions
between telomeres, production of the p53 protein, and mito-
chondrial function (38). Thus, TL could affect muscular fit-
ness directly and also have an impact on aerobic fitness by
influencing the capacity for exercise. This would be partic-
ularly relevant in later life, when telomere dysfunction
increases, muscle function declines sharply, and physical
activity typically decreases (2). If this evidence has not aris-
en due to residual confounding or chance, such pathways
could therefore be bidirectional.

Although physical activity is a determinant of physical
fitness, adjustment for activity levels had little impact on the
observed associations. Self-reported variation in activity be-
tween individuals is prone to measurement error (39), and
more complete adjustment for variation may have attenuated
the associations. However, measurement of physical activity
records behavior, whereas physical fitness is an adaptive state
determined by both heritable and environmental factors, some
of which could also be related to LTL independently of activ-
ity (e.g., shared genetic components). It is worth noting that
the association of LTL with trunk endurance was attenuated
slightly after the small number of samples with outlier LTL
measures was excluded from analyses. However, we were un-
able to determine whether extreme values represented true
biological outliers (which could have helped produce a stron-
ger association via more pronounced effects) or assay
artifacts.

Strengths and limitations

This study’s main strengths were the use of a very large,
nonselective, and homogeneous population sample and the
possession of data on several objective measures of phys-
ical fitness. The principal limitation of this research was its
cross-sectional design, which restricts inferences on cau-
sality or directions of associations. A second limitation is
that TL was measured from leukocytes, rather than from
cell types that would possibly be more relevant to our hy-
potheses (e.g., from skeletal muscle). However, measures
of TL between tissues have been shown to correlate
strongly, including to a high degree between leukocytes

and skeletal muscle (40), and blood is the most practicable
tissue to collect for measuring TL in large-scale epidemio-
logic settings.

Conclusions

Our findings provide firm evidence that LTL is associated
with measures of aerobic and muscular fitness in young
adults. These associations may reflect biological pathways
involving telomeres that underlie the age-related declines in
aerobic and muscular fitness. Disparities between these find-
ings and similar past studies could be attributable to differ-
ences in sample sizes, the types of physical fitness measures
used, and/or methods of measurement (objective or subjec-
tive measures, maximal or submaximal tests). Further re-
search is necessary to examine whether our results for
aerobic fitness and muscle endurance can be replicated in
other large studies with comparable, objective measures of
physical fitness. Ideally, these studies would build upon our
research by employing a longitudinal design, which could
facilitate assessment of average changes in LTL and phys-
ical fitness in relation to each other over 2 or more time
points and help with inference about the directions of asso-
ciations. With the identification of genetic variants that are
robustly associated with LTL, aerobic fitness, and muscle
performance (already available for LTL (8)), it may be pos-
sible to conduct “Mendelian randomization” studies to assist
with inferences about causality and resolve questions on the
directions of associations. These studies could also help in-
vestigators assess the lifelong contribution of these traits to
the development of inactivity, frailty, sarcopenia, and/or as-
sociated disease outcomes in old age (41). This would pro-
vide insights into the scope of possible hazard mitigation
through improvements in TL and aerobic and muscular fit-
ness within populations.
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