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Ultrasound computed tomography (USCT) is a non-invasive imaging technique that provides infor-

mation about the acoustic properties of soft tissues in the body, such as the speed of sound (SS) and

acoustic attenuation (AA). Knowledge of these properties can improve the discrimination between

benign and malignant masses, especially in breast cancer studies. Full wave inversion (FWI) meth-

ods for image reconstruction in USCT provide the best image quality compared to more approxi-

mate methods. Using FWI, the SS is usually recovered in the time domain, and the AA is usually

recovered in the frequency domain. Nevertheless, as both properties can be obtained from the same

data, it is desirable to have a common framework to reconstruct both distributions. In this work, an

algorithm is proposed to reconstruct both the SS and AA distributions using a time domain FWI

methodology based on the fractional Laplacian wave equation, an adjoint field formulation, and a

gradient-descent method. The optimization code employs a Compute Unified Device Architecture

version of the software k-Wave, which provides high computational efficiency. The performance of

the method was evaluated using simulated noisy data from numerical breast phantoms. Errors were

less than 0.5% in the recovered SS and 10% in the AA. VC 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4976688]

[CCC] Pages: 1595–1604

I. INTRODUCTION

Ultrasound computed tomography (USCT) is a non-

invasive radiation-free medical imaging technique with

promising capabilities to resolve soft tissue structures in the

body. In this technique, the tissue is imaged using a set of

ultrasound transducers that are located surrounding a region

of interest (Ruiter et al., 2012; Medina-Vald�es et al., 2015).

Each of the transducers acts as the source of an ultrasound

field in turn, while the rest of the transducers record the tem-

poral ultrasound signals that carry information about the dif-

ferent structures encountered during propagation. The

complete data set is used to recover the spatial distribution of

acoustic properties within the region of interest. Many geo-

metrical configurations for the transducer locations have been

investigated (Johnson et al., 2007; Duric et al., 2015; Kretzek

et al., 2015). A common arrangement consists of a ring of

transducers that can be vertically displaced along its central

axis to scan the whole breast plane by plane. This configura-

tion ensures that both scattered and direct waves are detected

within each two-dimensional (2D) imaging plane.

The acoustical property most studied with transmission

USCT is the speed of sound (SS), as it is well correlated with

the density of the material (Mast, 2000). Therefore, its use has

been proposed for breast cancer detection (Duric et al., 2008;

Li et al., 2008a,b; Simonetti et al., 2009; Boyd et al., 2010; Li

et al., 2014; Duric et al., 2015) as it may yield images with

similar contrast and, therefore, analogous structural information

to images obtained from x-ray mammograms. As a result,

imaging the SS could provide a useful alternative to detect

breast cancer with relatively low-cost setups, avoiding the radi-

ation dose and painful breast compression required in x-ray

mammography. On the other hand, acoustic attenuation (AA)

can provide enhanced contrast for different tissue types com-

pared to SS (Mast, 2000). AA varies more with tissue type than

density or SS, so it may improve significantly the detectability

of masses in the breast. The combination of both SS and AA

images may also allow better discrimination between benign

and malignant masses (Duric et al., 2009; Andr�e et al., 2013).

Several methods have been proposed to reconstruct

transmitted USCT data (Devaney, 1981, 1982; Wiskin et al.,

a)Portions of this work were presented in “Full-wave attenuation reconstruc-

tion in the time domain for ultrasound computed tomography,” IEEE 13th

International Symposium on Biomedical Imaging (ISBI), Prague, Czech

Republic, 13–16 April 2016.
b)Also at: Department of Medical Physics and Biomedical Engineering,

University College London, Gower Street, London, WC1E 6BT, United

Kingdom. Electronic mail: mailyn01@ucm.es
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2007; Li et al., 2009; Roy et al., 2010; Simonetti et al.,
2009; Perez-Liva et al., 2015; Wang et al., 2015).

Approximate models, such as the Born or Rytov lineariza-

tion or ray-tracing algorithms that employ the principles of

geometrical optics are usually used (Devaney, 1981, 1982;

Li et al., 2009). Codes based on approximate models typi-

cally exhibit fast convergence but limited spatial resolution,

which is an important limitation for breast imaging consider-

ing the dimensions of the breast and the size of the lesions

that must be detected. Alternatively, algorithms that directly

solve the wave equation, also known as full wave inversion

(FWI) methods, have shown the best results in terms of

detectability, resolution, and artifact control (Wiskin et al.,
2007; Roy et al., 2010; Anis et al., 2014; Li et al., 2014;

Wang et al., 2015). These methods have been mostly

adapted from the geophysical techniques of waveform

tomography (Tarantola, 1987; Song et al., 1995; Pratt et al.,
2007). FWI not only facilitates the detection of very small

masses, but also provides additional details of the shape and

margins of the structures of the breast, which could play a

role in the discrimination between benign and malignant

structures (Fornage et al., 1989). The use of FWI has been

limited due to its computational burden, as it involves solv-

ing a large-scale ill-posed non-linear optimization problem.

Fortunately, the significant acceleration provided by parallel

processing with graphics processing units (GPUs) has

allowed a considerable reduction in execution times.

Combined with the use of optimized numerical methods to

solve the wave equation (Treeby and Cox, 2010a; Treeby

et al., 2012; Treeby and Cox, 2014), the efficiency of image

reconstruction using FWI can be significantly improved.

Currently, the FWI methods used to reconstruct the SS

and the AA are quite different. The reconstruction of SS

(Wiskin et al., 2007; Roy et al., 2010; Anis et al., 2014;

Wang et al., 2015) is generally performed in the time

domain neglecting the presence of AA. In contrast, the

reconstruction of AA using FWI, despite being extensively

studied in seismology (Tarantola, 1987; Song et al., 1995;

Pratt et al., 2007), has been far less studied in the context of

USCT. In previous works (Pratt et al., 2007; Li et al., 2014;

Sandhu et al., 2016), a frequency domain FWI formulation

for USCT was introduced to obtain the quality factors of the

tissues (which indicates the energy loss per cycle) to charac-

terize the AA. The method employs a combination of several

carefully chosen fixed-frequencies (working from long to

short wavelengths), which requires the solution of several

minimization problems and increases the computational cost

of the inversion process. Moreover, the mean-squared cost

function generally employed in FWI often exhibits a large

number of local minima, particularly at high frequencies.

Fixed-frequency algorithms are vulnerable to getting stuck

on erroneous solutions (Mast, 1999; Lin et al., 2000). This

calls for the use of time-domain methods where the entire

bandwidth of the signals can be employed during reconstruc-

tion (Lin et al., 2000). As SS and AA can be obtained from

the same transmitted data, it is desirable to have a common

reconstruction framework capable of exploiting, in a compu-

tationally efficient manner, the image-quality advantages

provided by FWI methods. In this work, a FWI strategy for

USCT to recover both the SS and AA distributions in the

time domain is proposed.

The remainder of the paper is structured as follows.

First, in Sec. II, the problem is introduced, including a

description of the acoustic forward model, the optimization

approach used to reconstruct the acoustic parameters of

interest, and the derivation of the expressions for the func-

tional gradients used in the optimization. In Sec. III, the

main features of the optimization code are described. In Sec.

IV, the performance of the proposed method is tested with

two cases of simulated data: an ideal case of noiseless data

with a simple numerical phantom and a realistic numerical

breast phantom using noisy data. Section V contains a dis-

cussion and summary.

II. ALGORITHM FORMULATION

A. Notation and forward model

Consider a lossy medium in which the acoustic absorp-

tion follows a frequency power law of the form

a ¼ a0x
y; (1)

where a0 is the absorption proportionality coefficient in Np

(rad/s)�y m�1, x is the temporal frequency in rad/s, and y is

the power law exponent [for the current work, this is

assumed to be constant and equal to 1.5, the value given for

breast tissue in Duck (1990)]. The linear propagation of

acoustic waves in this medium can be described by the frac-

tional Laplacian wave equation (Chen and Holm, 2004;

Treeby and Cox, 2010b; Treeby et al., 2012)

�a
2pðr; tÞ ¼ Sðr; tÞ: (2)

Here pðr; tÞ is the acoustic pressure as a function of spatial

position r and time t, S is a source term, and �a
2 denotes the

lossy D’Alembertian operator

�a
2 � 1

c2

@2

@t2
�r2 � s1 �r2ð Þy=2 @

@t
� s2 �r2ð Þ yþ1ð Þ=2

;

(3)

where c is the SS. The final two terms in Eq. (3) account for

acoustic absorption and dispersion, where s1 and s2 are given

by

s1 ¼ �2a0cy�1; s2 ¼ 2a0cy tan
py

2

� �
: (4)

In the preceding equations, c and a0 may vary as a function

of spatial position r.

B. Inverse problem

The task in USCT is to recover the spatial distribution

of the acoustic medium properties using experimental meas-

urements recorded by an array of ultrasound transducers,

where each transducer acts as the source in turn. Here, the

SS and AA distributions, given by the functions c(r) and

a0(r), respectively, are obtained using an iterative process.
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This process minimizes the global norm of the deviations

between the experimental pressure field measured at the

receiver positions pobs and the signals p at the same locations

simulated using a numerical model

e ¼ 1

2

XM

m¼1

ðT

0

p rm; tð Þ � pobs rm; tð Þ
h i2

dtþ lRTV: (5)

Given a ring array comprised of N detectors, here, m repre-

sents each of the M ¼ NðN � 1Þ pairs of emitter-receiver

transducers of the tomographic ultrasound setup, rm defines

the positions of the receiving transducers, T is the length of

the time window employed to record the signals, l is a regu-

larization parameter, and RTV is a regularization function that

aims to encode a priori information about the actual solution.

FWI is typically ill-posed, its solution is not unique,

and the property maps may not be reconstructed stably

because of insufficient data being available and because the

data are affected by noise (Jackson, 1972). Consequently,

regularization is required in order to get a unique and stable

solution and to eliminate artifacts due to noise. Here, an

edge-preserving regularization method based on total varia-

tion (TV) is used (Rudin et al., 1992). This avoids over-

smoothing and acts to preserve the edge information of the

reconstructed images. The TV regularization term can be

written as

RTV ¼
X

i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x;i;j þ n2
y;i;j þ h

q
; (6)

where nx;i;j and ny;i;j are the derivatives of the acoustical

property n with respect to x and y, respectively, at the pixel

ði; jÞ. The parameter h ensures that RTV is continuously

differentiable.

To perform the minimization, the functional gradient of

the cost function defined in Eq. (5) with respect to the acous-

tic property being recovered (i.e., the Frechet derivative) is

employed. This provides the direction in the vector space of

the unknowns in which the distribution must be modified at

each iterative step of the reconstruction algorithm to mini-

mize the error (Norton, 1999). However, the cost function

given in Eq. (5) is affected by both c and a0 distributions. To

reduce the complexity of solving the optimization problem

over both distributions simultaneously, an alternating mini-

mization algorithm is used (Niesen et al., 2009). In this tech-

nique, the optimization problem is divided into two sub-

problems, one in which c is estimated for a fixed a0 and

another in which a0 is estimated for a fixed c. Once the

expressions for the functional gradient are known for both

distributions of interest independently, i.e., @e=@c to update

the SS using a fixed AA map, and @e=@a0 to update the AA

map based on a fixed SS map, they can be used in a

gradient-based minimization algorithm. Here, the method of

steepest descent is used, where the update equations for the

SS and AA are given by

cnþ1 rð Þ ¼ cn rð Þ þ kc
n @e

n

@c
; (7)

a0
nþ1 rð Þ ¼ a0

n rð Þ þ ka0

n @e
n

@a0

: (8)

Here, kn is the step size for the nth iteration, which is calcu-

lated using a line-search method (Snyman, 2005).

C. Functional gradient to update the sound speed
distribution

The derivative of the error functional e with respect

to the SS (i.e., the functional gradient) can be found from

Eq. (5),

@e
@c
¼
XM

m¼1

ðT

0

p rm; tð Þ � pobs rm; tð Þ
h i @p rm; tð Þ

@c
dt

þ lrRTV; (9)

where rRTV is the gradient of the regularization function

RTV, which can be calculated numerically (Peyr�e, 2009). An

efficient way to calculate the functional gradient given by Eq.

(9) can be found using the adjoint approach (Norton, 1999).

First, an equation for the derivative inside the integral (the

Jacobian) can be found by considering that a perturbation to

the SS, Dc, at a point rp will cause a small change Dpðr; tÞ in

the pressure field. Noting that ðxþ DxÞa � xa þ axa�1Dx, a

perturbed version of Eq. (2) can be written as

1

c2
�

2Dcd r� rpð Þ
c3

� �
@2

@t2
�r2

�

þ2 cy�1þ y�1ð Þcy�2Dcd r� rpð Þ
� �

ao �r2ð Þy=2 @

@t

�2 cyþ ycy�1Dcd r� rpð Þ
� �

ao tan
py

2

� �
�r2ð Þ yþ1ð Þ=2

�

� pþDpð Þ ¼ S: (10)

Using Eq. (2), discarding small terms, and dividing by Dc
suggests the following equation for the dependence of the

pressure field on the SS:

�a
2 @p

@c
¼ 2

c3
d r � rpð Þ

� �
@2

@t2

�

�2 y� 1ð Þcy�2d r � rpð Þao �r2ð Þy=2 @

@t

þ2ycy�1d r � rpð Þao tan
py

2

� �
�r2ð Þ yþ1ð Þ=2

�
p:

(11)

The corresponding adjoint wave equation can be defined as

(Norton, 1999)

�a
2p�ðr;T� tÞ¼

XM

m¼1

pðrm;tÞ�pobsðrm;tÞ�dðr�rmÞ:
	

(12)

Note, practically this can be implemented by defining the

adjoint source term as the time-reversed difference between

simulated pðrm; tÞ and measured pobsðrm; tÞ data through a
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change of variables t! T � t, solving for the adjoint field

p�ðr; tÞ and then again reversing in time to give p�ðr; T � tÞ.
Alternatively, the wave model could be run backward in time.

Next, multiplying Eq. (11) by p�ðr; T � tÞ and Eq. (12)

by @p=@c, subtracting the resulting two expressions and then

integrating over time and space gives

@e
@c rpð Þ

¼
ðT

0

p� rp;T� tð Þ C1þC2þC3ð Þp rp; tð ÞdtþC4;

C1 ¼
2

c3

@2

@t2
; C2 ¼�2a0 y� 1ð Þcy�2 �r2ð Þy=2 @

@t
;

C3 ¼ 2a0ycy�1 tan
py

2

� �
�r2ð Þ yþ1ð Þ=2

; C4 ¼ lrRTV;

(13)

where we have used Eq. (9) and the fact thatÐ Ð
fp��a

2ð@p=@cÞ � ð@p=@cÞ�a
2p�g dt dV ¼ 0: As the point

of the perturbation rp is arbitrary, Eq. (13) holds for any r.

When the relative contributions of the terms C1p; C2p,

and C3p in Eq. (13) to the overall solution is analyzed numeri-

cally (using typical SS and AA values for several soft tissues),

it can be seen that the terms C2 and C3 are several orders of

magnitude smaller than C1. Consequently, these terms can be

neglected from the expression of the functional gradient in

order to simplify and speed up the calculations. The resulting

approximate expression for the gradient is therefore

@e
@c
�
ðT

0

2

c3

@2p

@t2

� �
p� T � tð Þ dtþ lrRTV; (14)

which coincides with previous works for the lossless

medium approximation (Zhou et al., 1995; Wang et al.,
2015).

D. Functional gradient to update the attenuation
distribution

Following the same methodology in Sec. II C, the func-

tional gradient with respect to the absorption coefficient is

given by

@e
@a0

¼
XM

m¼1

ðT

0

p rm; tð Þ � pobs rm; tð Þ
h i @p rm; tð Þ

@a0

dt

þ lrRTV: (15)

A small change in the absorption coefficient Dao at point rp

will result in a small change in the pressure field Dp. The

perturbed wave equation can be written as

1

c2

@2

@t2
�r2 þ 2cy�1 ao þ Daod r � rpð Þ


 � �r2ð Þy=2 @

@t

�

�2cy ao þ Daod r � rpð Þ

 �

tan
py

2

� �
�r2ð Þ yþ1ð Þ=2

�

� pþ Dpð Þ ¼ S: (16)

Discarding small terms and using Eq. (2) yields

�a
2 @p

@ao
¼ �2cy�1d r � rpð Þ �r2ð Þy=2 @p

@t

þ 2cyd r � rpð Þtan
py

2

� �
�r2ð Þ yþ1ð Þ=2

p:

(17)

As above, multiplying Eq. (17) by p�ðT � tÞ and Eq.

(12) by @p=@a0, subtracting the resulting two expressions,

and then integrating over time and space gives an expression

for the functional gradient in terms of the forward and

adjoint fields

@e
@a0

¼
ðT

0

p� r; T � tð Þ �2cy�1 �r2ð Þy=2 @

@t

�

þ 2cy tan
py

2

� �
�r2ð Þ yþ1ð Þ=2

�
p r; tð Þ dtþ lrRTV:

(18)

Here we have used Eq. (15) and the fact that
Ð Ð
fp� �a

2ð@p=
@a0Þ � ð@p=@a0Þ�a

2p�g dt dV ¼ 0: Note that the fractional

Laplacian term in Eq. (18) becomes simpler to compute in

the Fourier domain (Chen and Holm, 2004; Treeby and Cox,

2010b)

ð�r2Þypðr; tÞ ¼ F�1fk2yF pðr; tÞ½ �g; (19)

where F and F�1 are the forward and inverse Fourier trans-

forms, respectively, and k is the wave number matrix.

III. ALGORITHM IMPLEMENTATION

A. Numerical implementation

In this work, the fractional Laplacian wave equation

given in Eq. (2), used for forward and backward propaga-

tion of the pressure field, is solved using a parallelized GPU

version of the open-source k-Wave toolbox written in Cþþ
and Compute Unified Device Architecture (CUDA)

(Treeby and Cox, 2010a; Treeby et al., 2012). This uses the

k-space pseudospectral method to discretize the governing

equations, which allows accurate simulations close to the

Nyquist limit of two grid points per minimum wavelength.

Compared to conventional finite-difference methods, this

significantly reduces the size of the computational grid and,

consequently, the memory and execution time needed for

realistic domain sizes. In order to facilitate integration with

the CUDA version of k-Wave, the entire optimization algo-

rithm was implemented in Cþþ.

B. Comparison with finite difference estimations

In order to verify the expressions obtained in Secs. II C

and II D for the functional gradients, they were compared to

functional gradients calculated using a computationally

expensive finite difference approximation. The SS distribu-

tion was perturbed at each point in turn along a given line by

a small amount Dc, and the change in the error functional De
was recorded. In this way a finite difference gradient can be

1598 J. Acoust. Soc. Am. 141 (3), March 2017 P�erez-Liva et al.



computed as De=Dc: This process was repeated in the same

way for the AA distribution to obtain the finite difference

gradient De=Dao. For both tests, the SS and the AA distribu-

tions shown in Figs. 1(a) and 1(b) were used. A circular

array of 200 transducers with a diameter of 128 mm and a

central frequency of 1 MHz was employed for the simula-

tions using k-Wave. Both distributions were perturbed along

the line y¼ 64 mm. Figures 1(c) and 1(d) show the compari-

son between the finite difference functional gradients and

those obtained using the adjoint method [Eqs. (14) and (18)].

Both methods give similar gradients, verifying that the

adjoint method was formulated and implemented correctly.

C. Order for the alternating minimization method

As described in Sec. II B, we propose to reconstruct the

SS and AA maps using an alternating minimization method.

In order to optimize both distributions independently, it is

important to follow a certain order in the optimization pro-

cess. This can be illustrated with a simple numerical example.

Consider the recovery of SS and AA maps in a homogeneous

medium with c¼ 1440 m/s and a0¼ 0.5 dB/[MHzy cm] using

a ring array with radius 54 mm and N ¼ 200 uniformly distrib-

uted transducers. Using a single emitter, the global error result-

ing from testing a range of values of SS (1400–1500 m/s)

and AA (0–1 dB/[MHzy cm)] can be calculated using Eq. (5).

As noise is not included in this example, the term l in Eq. (5)

can be set to zero. Due to the symmetry of the problem, it is

not necessary to extend the calculations to all 200 emitters.

The resulting error distribution is given in Fig. 2. The SS

optimization has a relatively small dependence on the initial

AA map. For the range of AA values tested, it is possible to

reach the minimum of the global error with respect to the SS

distribution, regardless of the initial AA map. This is also evi-

dent in Eq. (14), which shows that the update of the SS distri-

bution is independent on the AA distribution. By contrast, the

optimal reconstruction of AA strongly depends on the accu-

racy of the SS map. It is necessary to be close to the actual

SS map to converge to the correct AA distribution.

Moreover, as Eq. (18) contains an explicit dependence on the

SS distribution, small deviations in the SS distribution from

the true values may propagate and create significant artifacts

in the reconstructed a0 distribution. Therefore, in the recon-

struction of AA, it is important to use a SS distribution as

close as possible to the actual one. Consequently, in order to

minimize both distributions, a reasonable approach is to first

solve for the SS distribution with an initial estimation of the

AA, and then employ this SS distribution to recover the

actual AA distribution.

D. Ordered subsets method

The functional gradients given in Eqs. (14) and (18)

require running the computational model to solve the wave

equation twice per iteration: once for the forward propaga-

tion of the pressure field generated by the emitter to obtain p,

and a second time for the backward propagation to obtain

the adjoint field p�. This operation has to be performed

sequentially for each emitter in each iteration. This means

that the total number of times the wave equation needs to be

solved per iteration is twice the number of transducers

(to obtain p and p�), plus the number of evaluations the

line-search algorithm may need. In many tomographic

reconstruction problems with a high level of computational

burden, the ordered-subsets method has been used to

improve the tractability of calculations without significantly

compromising image quality (Hudson and Larkin, 1994).

This approach consists of splitting the data into subsets

which each contain a fraction of the total number of projec-

tions (here a projection is understood as the data recorded

for all the receivers connected with a single emitter). The

FIG. 1. Comparison between the functional gradients obtained using finite

differences and the adjoint method. (a) SS distribution employed for the

simulations. (b) AA distribution. (c) Comparison of functional gradients for

the SS. The gradient is taken through the SS map at the position shown with

the white dashed line. (d) Comparison of functional gradients for the acous-

tic absorption.

FIG. 2. (Color online) Example of the global error behavior (normalized to

the maximum value) around the actual SS and AA values for a homoge-

neous distribution of acoustic material properties. The intersection of the

true values (which corresponds to the global minimum) is shown with the

white dashed square.
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functional gradients are computed for each projection of the

set but instead of using the global error functional as defined

in Eq. (5) for all the possible emitter-receiver pairs, an

approximation to the error functional is used instead for each

subset. This is defined as the difference between the

observed and the estimated signals for the subset M0 of emit-

ters and receiver pairs m0 for the subset s,

es � 1

2

XM0
m0¼1

ðT

0

p rm0 ; tð Þ � pobs rm0 ; tð Þ
h i2

dtþ lRTV:

(20)

The functional gradients of the error are calculated

using similar expressions to Eqs. (14) and (18) but in this

case, the fields p� and p are computed only with those emit-

ter and receiver pairs included in the given subset. The

same process is repeated for all subsets to complete a

full iteration. This way, the entire data set from all the

emitter-detector pairs are employed in a full iteration, but

the estimation of the image is updated several times per

iteration, speeding up convergence.

E. Initial sound speed and attenuation estimates

As an initial estimate of the SS and AA distributions, a

reconstruction based on filtered back projection (FBP) was

employed. This is based on a high-frequency approximation

of the wave equation, which neglects the refraction experi-

enced when passing through media with different SS, i.e.,

the propagation of waves is described by straight lines con-

necting emitter and receiver pairs. FBP can provide a very

fast first estimation of the acoustical properties under study

(�0.3 s for the cases studied in Sec. IV). To obtain the FBP-

SS image, the first arrival or time-of-flight values of the sig-

nals between the emitters and the receivers were calculated

(Perez-Liva et al., 2015). These time-of-flight values were

obtained using the cross correlation between the source and

the received signals. For the case of the FBP-AA image, the

amplitude decay method was employed (Li et al., 2008a).

The values used to perform the backward projection in this

case were calculated as the amplitude at the central fre-

quency in the power spectrum of the recorded time-domain

signals relative to water. The inverse radon transform with

spline interpolation and Ram-Lak filter with a Hann window

was employed to perform the FBP reconstruction in both

cases (Kak and Slaney, 2001).

F. Algorithm overview

The complete reconstruction process is performed

according to the scheme shown in Fig. 3. First, the data are

split randomly into the desired number of subsets. The pres-

sure field p generated by each emitter of the subset with the

starting values of SS and AA is then computed using

k-Wave [which solves Eq. (2)] and recorded in all the pixels

of the computational grid. Next, the adjoint source is com-

puted employing the time-reversed difference between the

simulated and measured pressure field at each receiver’s

position. Using the adjoint source term, the adjoint field p� is

then computed and recorded in all the pixels in the grid,

again using k-Wave. After that, the contribution to the func-

tional gradient for this projection is calculated (denoted FGe

in Fig. 3). This process is repeated for all the emitters

included in the subset to obtain an estimate of the functional

FIG. 3. Flow chart of the reconstruction algorithm used to update the SS

and AA distributions.
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gradient for the subset (denoted FGs in Fig. 3). As the TV

term that enters in the functional gradient [Eqs. (14) and

(18)] is common to all the emitters of the subset, this is

computed at the end of the subset. Next, the line-search

algorithm is run and after the step size is obtained, the

acoustic distribution is updated according to Eq. (7) for

the SS and Eq. (8) for the AA. To complete a full-

iteration, the same process is repeated for all subsets.

Finally, a convergence criterion (discussed in Sec. IV A)

is evaluated. If it is not fulfilled, the updated distribution

is used as the starting value for the next iteration. The

whole process is repeated until the convergence criterion

is satisfied.

IV. NUMERICAL EXPERIMENTS

A. Overview of the numerical experiments

In order to test the performance of the proposed algo-

rithm, simulated data from two numerical phantoms were

generated using typical values of SS and AA in water and

several constituents of the breast tissue (Szabo, 2004; Duck,

1990). The numerical experiments were performed in 2D to

reduce computation times. The USCT geometry was a ring

array of radius 54 mm with N ¼ 200 uniformly distributed

transducers. This circular configuration is employed in sev-

eral prototypes of USCT scanner for breast cancer detection

(Duric et al., 2009; Li et al., 2008b; Andr�e et al., 2013;

Medina-Vald�es et al., 2015) and ensures a constant spatial

resolution and good angular coverage. The simulations were

conducted on a 128 mm� 128 mm grid represented by

256� 256 grid points with a 20 grid point perfectly matched

layer positioned outside the domain (Treeby and Cox,

2010a). The simulations to obtain the reference data were

performed sequentially from emitter 1 to 200 using all 200

receivers for each transmitter. The pressure field at the detec-

tor positions in Cartesian space was calculated from the pres-

sure at the grid points at each time step via linear

interpolation. The transmitted signal was a Gaussian envel-

oped three-cycle sinusoidal tone burst with a 1 MHz central

frequency. The signals were sampled for 854 time points

with a time step of 100 ns. The simulation time for each pro-

jection for a single emitter was 0.43 s using an Intel (Santa

Clara, CA) Core i7-3930K CPU (central processing unit) at

3.20 GHz with an NVIDIA GeForce GTX 780 GPU.

Each image update was performed using the functional

gradient estimated from 4 emitters, i.e., the total data were

divided into 50 subsets. Based on initial tests, this number of

subsets provides a significant improvement in the total

reconstruction time (�50� with respect to the use of one

subset, i.e., using all the data in each image update), without

introducing artifacts in the reconstruction. One full-iteration,

using the signals from all 200 emitters, consists of 50 image

updates. The convergence criterion employed was the slope

of a line fitted to the norm of the global error as a function of

the image updates. The reconstructions were stopped when

the slope for an entire iteration (in this case 50 images

updates) was less than 0.1.

B. Reconstruction of an ideal case

First, a simple numerical phantom consisting of a

homogenous map of water covering the whole field-of-view

with two centered spots with either a change in SS or AA

was investigated (Fig. 4). In this example, the image was

reconstructed from noiseless data, and no regularization was

employed. This allows the limits of the reconstruction

method to be evaluated. The SS distribution was recon-

structed using a FBP reconstruction for the initial SS distri-

bution. The FBP-SS image is shown in Fig. 4(b) and was

obtained in 0.3 s. As the goal of this ideal case was to test

the limits of the algorithms, the actual map of AA was

employed when updating the SS distribution. Similarly, the

AA distribution was reconstructed using the actual map of

the SS (although in this case the SS is reconstructed

FIG. 4. (Color online) Reconstruction of a noiseless ideal case. (a)

Reference SS map. (b) Initial SS map reconstructed using FBP. (c)

Reconstructed SS map. (d) Profiles through the SS maps for the reference,

FBP initial guess, and reconstructed image at the line y¼ 64 mm. (e)

Reference AA map. (f) Initial AA map reconstructed using FBP. (g)

Reconstructed AA map. (h) Profiles through the AA maps for the reference,

FBP initial guess, and reconstructed image at the line y¼ 64 mm.
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perfectly), and a FBP reconstruction for the initial AA distri-

bution. The FBP-AA image is shown in Fig. 4(f) and was

also obtained in 0.3 s. The results of the reconstruction

of the SS and AA maps are shown in Figs. 4(c) and 4(g).

One-dimensional profiles across the reconstructions are

shown in Figs. 4(d) and 4(h). In this ideal case, the method is

able to achieve a perfect recovery of the margins and values

of both the SS and AA distributions. This demonstrates the

capability of the algorithm to obtain the correct solution for

both distributions in the absence of noise and when the alter-

nate acoustic distribution is available (i.e., the AA to recover

the SS and vice versa). It also demonstrates the advantages

of the FWI formulation over ray-tracing algorithms. The

reconstruction of each acoustical property in this example

was obtained in 27 min using two iterations.

C. Reconstruction of a realistic simulated breast
phantom

A numerical phantom with several structures simulating

breast tissue was also investigated (see Figs. 5 and 6). After

the forward simulation, random Gaussian noise was added to

the recorded data to give a signal-to-noise ratio (SNR) of

50 dB. This is similar to the SNR achievable with our experi-

mental USCT prototype (Medina-Vald�es et al., 2015; Perez-

Liva et al., 2015). Due to the presence of noise in the data,

the TV-based edge-preserving regularization explained in

Sec. II B was employed in the reconstructions. In this case,

the parameters l and h [see Eqs. (5) and (6)] were set to

l¼ 9� 10�6 and h¼ 0.2 for the SS regularization, and

l¼ 1� 10�8 and h¼ 0.2 for the AA regularization. These

values gave adequate artifact control without significantly

compromising the image quality. The reconstructed SS and

AA maps were obtained with two iterations (27 min). Even

though these reconstruction times are reasonable, this could

be further reduced in the future by using alternative optimi-

zation schemes, such as the quasi-Newton method (Snyman,

2005).

To quantify the quality of the reconstructions, the mean

and standard deviation of the pixel values within several

regions of interest (ROIs) located inside the lesions and

structures of the numerical phantom were obtained and com-

pared with the expected values in those ROIs (Table I). The

noise level (ratio of the standard deviation and mean value

inside the ROIs) and bias (difference between expected and

mean values) of the reconstructed images were also calcu-

lated for each ROI. Furthermore, profiles across the recon-

structed distributions were taken to obtain the resolution of

the reconstructed images. This was estimated as the distance

required for the edge response to rise from 10% to 90% (Li

et al., 2014). Resolution was calculated at the phantom-

water interface.

As can be seen in Fig. 5(c), the SS distribution can be

recovered with high accuracy. The bias between the recon-

structed and expected values is below 0.5% for all ROIs.

Moreover, the regularization employed in the reconstruction

algorithm significantly reduces the effect of noise. The noise

level is below 0.9% for all ROIs and the edges of the differ-

ent structures are preserved. The resolution was estimated to

be �1 mm, which is close to the wavelength at the central

frequency of the signals.

In comparison, the reconstructed AA distribution is

more sensitive to noise and strongly dependent on any errors

FIG. 5. (Color online) Reconstruction of the SS for a breast phantom. (a)

Reference SS map. The numbers correspond to regions of interest (ROIs) given

in Table I. (b) Initial SS map reconstructed using FBP. (c) Reconstructed SS

map. (d) Profiles through the SS maps for the reference, FBP initial guess, and

reconstructed image at the line y¼ 53 mm (shown with the white dashed line).

FIG. 6. (Color online) Reconstruction of the AA for a breast phantom. (a)

Reference AA map. (b) Initial AA map reconstructed using FBP. (c)

Reconstructed AA map using the converged SS map. (d) Profiles through

the AA maps for the reference, FBP initial guess, and reconstructed image

at the line y¼ 53 mm (shown with the white dashed line).
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present in the reconstructed SS distribution. There are two

main contributions to noise. First, errors in the SS map will

affect the trajectory of the propagating waves and, conse-

quently, the attenuation experienced between the source and

emitter pairs. Second, for the misfit function given in Eq.

(5), the differences between simulated and observed signals

due to AA are much smaller than the differences due to time

misalignments coming from changes in the SS, i.e., the

selected cost function is much more sensitive to variations in

SS than in AA (Tejero et al., 2015). This may be an impor-

tant limitation when noise is comparable to the differences

between simulated and observed signals due to attenuation,

as in this case the adjoint source will be dominated by noise.

This highlights the fact the AA estimate is very sensitive to

the SNR in the data and the accuracy of the reconstructed SS

map.

In this example, the maximum noise level in the recon-

structed AA map was 18% and the bias between simulated

and expected values in the selected ROIs was typically

below 10%. The exception is within water (ROI 8) where

higher bias was observed. This is due to the very small atten-

uation coefficient in water, and the large difference in the

AA values with respect to the other soft tissues. A possible

improvement of the methods would be to identify the water

region from the SS map, and use this to constrain the recon-

struction of AA. The estimated resolution in the recon-

structed AA map was �6 mm.

For reference, these results can be compared to the per-

formance of using a frequency domain formulation of the

adjoint field to obtain the functional gradients for the SS and

the AA. For example, in Li et al. (2014), both the SS and

AA distributions were investigated using a numerical phan-

tom and noiseless data. For the SS, similar resolution can be

obtained using both formulations (on the order of the acous-

tic wavelength). For the AA case, the performance of both

methods is also similar (Pratt et al., 2007; Li et al., 2014;

Sandhu et al., 2016) and the reconstruction is, as reported

here, dependent on the errors in the reconstructed SS distri-

bution. Therefore, noisy distributions are obtained as a result

for the AA with both methods. One distinct advantage of the

time domain formulation presented here is that it avoids hav-

ing to select the right set of frequencies to be inverted and

the appropriate number of iterations to perform at each fre-

quency. This seems to be a key requirement of the frequency

domain formulation needed to mitigate the ripples encoun-

tered in the reconstructed distributions (Li et al., 2014;

Sandhu et al., 2016).

V. SUMMARY AND CONCLUSIONS

In this work, a time domain full-wave inversion algo-

rithm for the reconstruction of both the SS and AA distri-

butions in USCT is proposed. The algorithm is based on

an adjoint formulation derived from the fractional

Laplacian wave equation, and allows both distributions to

be efficiently reconstructed within a common framework.

The efficacy of the algorithm is demonstrated with two

numerical examples. In the ideal case of noiseless data

and given the exact distribution of the alternate material

parameter (i.e., AA to recover SS, and SS to recover AA),

both the AA and SS distributions can be reconstructed per-

fectly. In the more general case using a realistic geometry,

Gaussian noise added to the reference signals, and a FBP

reconstruction for the initial estimations, the proposed

algorithm is capable of recovering accurately the shape

and values of the structures in the image. Compared to

ray-tracing algorithms, the results obtained demonstrate

significant improvements in resolution and accuracy.

Moreover, comparison of the resolution and noise of the

reconstructed images with previous studies based on fre-

quency domain algorithms supports the equivalence of

both formulations. However, the time domain formulation

presented here avoids the need to select the appropriate

set of frequencies, a step required by the frequency

domain formulations. The main limitation is the high

dependence of the AA reconstruction on any errors pre-

sent in the reconstructed SS and the noise in the signals.

In future, it would be useful to explore other possible

ways to define the misfit function to mitigate this. While

the convergence rates for the current study are reasonable,

the use of other optimization schemes might also increase

the rate of convergence. The application of this method

for the reconstruction of real data, and the extension to

three dimensions (3D) will be explored as part of future

work.
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