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Abstract

BACKGROUND: Large-scale transmission radiography scanners are used

to image vehicles and cargo containers. Acquired images are inspected for

threats by a human operator or a computer algorithm. To make accurate de-

tections, it is important that image values are precise. However, due to the

scale (∼ 5m tall) of such systems, they can be mechanically unstable, caus-

ing the imaging array to wobble during a scan. This leads to an effective

loss of precision in the captured image.

OBJECTIVE: We consider the measurement of wobble and amelioration

of the consequent loss of image precision.

METHODS: Following our previous work, we use Beam Position Detec-

tors (BPDs) to measure the cross-sectional profile of the X-ray beam, al-

lowing for estimation, and thus correction, of wobble. We propose: (i) a

model of image formation with a wobbling detector array; (ii) a method of

wobble correction derived from this model; (iii) methods for calibrating sen-

sor sensitivities and relative offsets; (iv) a Random Regression Forest based

method for instantaneous estimation of detector wobble; and (v) using these

estimates to apply corrections to captured images of difficult scenes.

RESULTS: We show that these methods are able to correct for 87% of im-

age error due wobble, and when applied to difficult images, a significant

visible improvement in the intensity-windowed image quality is observed.

CONCLUSIONS: The method improves the precision of wobble affected

images, which should help improve detection of threats and the identifica-

tion of different materials in the image.
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1 Introduction1

Large-scale transmission radiography has become an essential tool for detecting2

threats inside vehicles and cargo containers. Threats may be related to customs3

(drugs, counterfeit goods, banned imports, stowaways, stolen cars) or security4

(firearms, improvised explosive devices, special nuclear materials, missiles) [8,5

22–26]. Transmission radiography systems have become a mainstay of customs6

and border agencies around the world, and are finding increasing use in areas such7

as defence and the security of critical infrastructure, ports and events.8

Images acquired by large-scale transmission radiography (Fig. 1) are inspected9

by a human operator or increasingly by computer algorithm [8, 18]. Detection of10

threats by operators is assisted by intensity manipulation (e.g. windowing, loga-11

rithms, histogram equalisation) and pseudo-colouring [3]. Additionally, scanners12

that acquire images at multiple photon energies permit material separation [14] to13

be visualised based on differential absorption. On the basis of this visual inspec-14

tion, the operator will either flag the vehicle for manual inspection or allow it to15

continue unimpeded.16

In order to detect threats, high spatial resolution and accurate image values are17

required [16]. The former, because threats may be small, and the latter because18

threats may be shielded by other cargo or only revealed by subtle differential ab-19

sorption. State-of-the-art transmission systems offer imaging of vehicle contents20

at resolutions of a few mm/pixel [11] and precisions of 16 bits. In some systems,21

mechanical instability (i.e. wobble) leads to effective loss of precision. Whilst22

large-scale X-ray Computed Tomography (CT) could alleviate the issues of wob-23

ble and shielding, such systems are not widely deployed because they are too24
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expensive and inefficient to be competitive [2, 27].25

In our previous work [19] we proposed that wobble can be measured using26

Beam Position Detectors (BPDs) which are placed perpendicular to the imaging27

array (Fig. 2). Wobble was estimated by performing Gaussian model fitting to the28

BPD data to obtain instantaneous beam position estimates. These instantaneous29

estimates were Bayesian fused with an estimate from an Auto-Regression (AR)30

to make estimates more robust at scanning moments where the BPD was non-31

uniformly obscured by an object in the scanned scene. The wobble estimates were32

then used to make corrections to air-only images in order to quantify performance.33

We determined that we could correct 70% of image error due to wobble.34

In this work, we follow a similar approach using BPDs but with several new35

contributions: (i) a model of image formation in the presence of wobble and36

other scanner design imperfections such as variable imaging sensor misalign-37

ments, variable sensor responses, and source fluctuation; (ii) improved wobble38

estimation using a Random Regression Forest (RRF) model for improved instan-39

taneous estimation of wobble and its uncertainty; (iii) improved image correction40

by estimating the relative offsets of sensors; and (iv) estimation of sensor sensi-41

tivities by Sum of Squared Error (SSE) minimisation model fitting. Furthermore,42

we extend testing of image correction methods to include qualitative evaluation43

on images of complicated scenes.44

In Sec. 2, we set out the technical background and review related work. In45

Sec. 3, we give a precise description of the effects of wobble and a method of46

image correction based on using BPD measurements to estimate fixed (i.e. sensor47

sensitivities, sensor offsets, and beam geometry) and dynamic (i.e. wobble and48

photon flux) system parameters. In Sec. 4 we propose a method for estimating the49
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dynamic system parameters. Finally, in Sec. 5, we test these methods on images50

that we have collected from a Rapiscan Eagle R©G60, a large-scale transmission51

X-ray gantry system, modified by the addition of four BPDs.52

2 Background and related work53

Large-scale transmission radiography scanners operate either in portal or traverse54

mode, and are sometimes capable of both [17]. In portal mode the scanner is sta-55

tionary and the scene moves between the source and imaging array at a controlled56

speed. In traverse mode the detector and source move either side of the stationary57

scene. Portal mode is most useful in high-throughput scenarios; vehicles can drive58

through the scanner arch without the driver having to exit the vehicle, or a rail-59

scanner can scan multiple cargo containers carried by train at up to 60 km/h [18].60

Traverse mode is useful in security scenarios where an unoccupied vehicle cannot61

be interfered with, such as if it is suspected to be a car- or truck-bomb, or if it62

needs to be covertly inspected so as not to raise suspicions. The traverse mode63

is also useful for scanning lines of stationary cargo containers at ports [17]. The64

traverse mode has advantages in some cases: (i) the scanned vehicle is unoccu-65

pied, so higher doses can be used, resulting in higher precision images; (ii) there66

is greater control over scanning speed and detector-object distance resulting in67

less spatial warping of the captured image; and (iv) they have a compact scanning68

footprint [15].69

In the traverse mode, the imaging array may wobble as it moves across the70

scene due to uneven ground or vibrations from the engine (truck systems), os-71

cillations in the boom (truck and rail systems), or due to wind or vibrations from72
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traffic (truck and rail systems). This has a particular impact when operators search73

for threats placed in dense scenes, since under intensity windowing [3] the wob-74

ble artefact becomes apparent (Fig. 3). Furthermore, wobble reduces the quality75

of material separation images [14], since their computation is dependent on pre-76

cise values. Discrimination of high atomic numbers is particularly important as it77

can reveal smuggled nuclear materials, or their shielding [4, 15]. Wobble occurs78

in both truck-mounted and gantry systems. In truck-mounted systems wobble is79

variable from scan to scan, but in gantry systems it is systematic. In this work we80

study a gantry system, since it allows determination of the wobble ground truth,81

but our methods can equally be applied to truck-mounted systems.82

To our knowledge, other than our previous work [19], there have been no pub-83

lications on addressing wobble in large-scale transmission radiography. However,84

wobble leads to artefacts in a range of imaging devices, including micro-CT and85

C-arm CT. We describe the most relevant work here and how it relates to the86

wobble effect that we attempt to measure and correct in this work.87

C-arm CT systems suffer from wobble as the gantry rotates. This means that88

individual projections are translated relative to those captured by an ideal wobble-89

free device. Researchers note that the wobble of the C-arm gantry is often repeat-90

able over periods of up to two years and so wobble artefacts can be corrected by91

a one-off system calibration [6, 21]. This is similar to some large-scale transmis-92

sion systems, particularly those that are in fixed deployment and the gantry moves93

along rails, where the wobble effect tends to be systematic. However, in truck-94

mounted systems wobble is much more unpredictable due to variable scan speed95

and variation in the topology of the surface that the truck traverses. Moreover, in96

C-arm CT wobble artefacts tend to lead to a blurring effect in the reconstructed97
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image due to the misalignment of individual projections, whereas in large-scale98

transmission systems, wobble mostly leads to image intensity variations as the99

fan-beam comes in and out of alignment with the detectors. Indeed, geometric100

image distortions can be observed if wobble is particularly severe, but this will be101

the focus of later work.102

Silver et al. [21] propose a method for determining and correcting wobble in103

C-arm CT. The authors assume that the wobbling motion of the C-arm is identi-104

cal for each image capture process, and so calibrate wobble correction based on a105

phantom image. The phantom consists of a helical structure of tungsten carbide106

spheres (pellets). The calibration computes wobble coefficients that are used di-107

rectly in image reconstruction to obtain a wobble-artefact free image. The wobble108

coefficients are determined by fitting a mapping from physical space to projec-109

tion space using least-squares. Fahrig and Holdsworth [6] also adopt a calibration110

approach to determine projection translations. They use bi-cubic spline interpola-111

tion to determine translated projections. Since the calibration process determines112

translations at discrete gantry angles, they linearly interpolate between them to113

obtain estimates for intermediate projection angles if required.114

Wobble is also observed in micro-CT systems, but the wobble manifests in115

the rotation table since the detector and source are kept stationary [20]. In this116

case, wobble again leads to a blurring effect in the image, quite different to the117

effect observed in large-scale transmission systems. Authors have investigated118

image-based, calibration and online methods to correct for wobble.119

Sasov et al. [20] investigate and evaluate an image-based and a calibration-120

based method. The image-based method is an iterative compensation scheme,121

which first does an initial reconstruction using filtered back-projection, yielding122
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a blurry wobble affected image. Estimates of projection translations, to compen-123

sate for wobble, are determined by comparing the original projections with cor-124

responding forward-projected image estimates. The comparison is done either by125

cross-correlation or least-squares. Under these translations a new reconstruction126

is made and the process is iterated until the reconstructed image is satisfactory.127

The calibration-based method, measures wobble in a short reference scan directly128

before or after image capture to determine the compensatory translations of indi-129

vidual projections. They measure the position of the focal spot, relative to a metal130

pin placed in the scene, by fixing a fine metal mesh to the X-ray source. The au-131

thors claim that the second method is more suitable for slow drifts (wobble) and132

that the approach is faster and less computationally demanding than the iterative133

based method. However, the image-based method has the advantage of working134

purely on measured image values.135

Zhao et al. [29] propose an online method, which uses capacitive distance sen-136

sors to measure the wobble of the rotation table in Micro-CT. The measurements137

are used to translate individual projections to compensate for the displacement of138

the rotation table due to wobble. The authors report that the methods improve139

images by 53.1% and 65.5% when calibrating projections in the horizontal and140

vertical directions, respectively.141

Due to the unpredictable component (e.g. wind, uneven topology, vibrations)142

of wobble in large-scale transmission radiography, it is not possible to correct143

wobble purely by calibration. Image-based methods that do not use BPDs or144

any prior knowledge about large-scale radiography, such as Total Variation (TV)145

denoising or Translation Invariant Wavelet Shrinkage (TIWS) [12], may be ap-146

plicable. However, such methods are difficult to use in practice without prior147
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knowledge on the severity of the wobble artefact, which we measure (online) in148

this work. In this contribution we use both a calibration procedure and an online149

method. The calibration procedure is used to estimate a number of parameters150

that are fixed for a given system, including: misalignments of imaging sensors;151

the collimated width of the fan-beam; and the sensitivities of individual sensors152

due to housing attenuation and their intrinsic response. The online component, is153

for the estimation of wobble and estimation of the fluctuation in the photon flux,154

which can both vary unpredictably during a traverse mode scan. We describe these155

methods in the next section.156

3 A model of image formation with wobble157

To describe image formation with a wobbling detector, we use three coordinate158

systems (Fig. 4). We denote: the coordinates of imaging sensor pixels along the159

Γ-shaped imaging array (image vertical) by y ∈ Y; the time coordinates indexing160

each scanning moment during image acquisition (image horizontal) by t ∈ T; and161

the coordinates along the orientation of the BPDs (perpendicular to the beam and162

imaging array) by x ∈X. The origin x = 0 is taken as the vertical midline (dashed163

line in Fig. 4) of the imaging array.164

The formation process of an image Ity ∈R+ is described as follows. The X-ray165

source emits a photon flux At ∈ N at scanning moment t. This flux is collimated166

into a fan-beam of width βy, which has a spatial distribution on the imaging plane167

according to168

exp
(
−(bty−dy)

2/(2β
2
y )
)
. (1)
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The parameters bty ∈ X define the displacements of the beam cross-section max-169

imum from the vertical midline: when wobble occurs this varies with t and y;170

without wobble only with y. The parameters dy ∈ X are the horizontal offsets of171

the imaging sensors from the vertical midline. For a given linear ID with endpoint172

offsets {δl,δu} we constrain dy to a linear function173

dy := (yu− yl)
−1((yu− y)δl +(y− yl)δu), where yl < y < yu. (2)

The X-ray photons pass through the scene and interact via absorption and scat-174

tering, and we denote the scene transmission by Sty ∈ [0,1]. This is dependent on175

the thickness and type of material composing the scene. The final measured im-176

age is determined according to a sensitivity factor Ry ∈ [0,1], which incorporates177

(i) the fraction of photons that are transmitted through the sensor housing and not178

absorbed or scattered, and (ii) the fraction of photons impinging on the detector179

that are counted (the intrinsic response of a sensor).180

Therefore, the final image, assuming no cross-pixel effects such as photon181

scatter or detector cross-talk, is approximated by182

Ity = At · exp
(
−(bty−dy)

2/(2β
2
y )
)
·Sty ·Ry. (3)

The scene transmission Sty is the physical quantity that we are trying to mea-183

sure, therefore the ideal image is184

Sty︸︷︷︸
ideal

= Ity︸︷︷︸
raw

·(At · exp
(
−(bty−dy)

2/(2β
2
y )
)
·Ry)

−1︸ ︷︷ ︸
correction factor

. (4)

To obtain the ideal image, one must estimate the different components of the185
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correction factor. In the portal scanning mode, correction is straightforward. Ab-186

sence of wobble means that bty = by, so that all that needs to be dealt with is:187

1. image column variations due to fluctuations of the photon source At ;188

2. image row variations due to sensitivity Ry, and the fixed position and geom-189

etry of the beam exp
(
−(by−dy)

2/(2β 2
y )
)
;190

3. image pixel variations due to Poisson variation in the number of photons191

that reach an imaging sensor.192

The image column and row variations (1 & 2) can be corrected by normalising193

the columns and rows in the image respectively. In this work we do not attempt to194

correct for Poisson variation (3), however there are several denoising algorithms195

for Poisson-distributed noise [5, 10] in the literature. Note that Poisson variation196

can also be ameliorated by increasing the beam intensity or exposure time, but197

this has implications on safety and cost.198

In the traverse scanning mode, where wobble does occur, the correction is199

complicated. The beam position bty now varies with t as well as y, and the imag-200

ing sensor offsets dy must now also be estimated. These and the other parameters201

in the correction factor (Eq. 4) can be separated into two classes; (i) system pa-202

rameters (βy,{δl,δu} and Ry) that are estimated in a one-off calibration which we203

describe below, and (ii) dynamic parameters (bty, At) that are estimated per time-204

point (online). The source variation At is straightforward to address by taking the205

mean pixel response of an ID close to the source at each timepoint. In the remain-206

der of this paper we work on At-corrected images. In Sec. 4 we describe a method207

to estimate bty.208
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In the one-off calibration, for each BPD we estimate βy (beam width at the209

BPD location) and Rx (the sensitivity of the sensors along the BPD). For each ID,210

we estimate {δl,δu} (the misalignments of the ID at its endpoints) and Ry (the211

sensitivity of the sensors along the ID). The estimates are determined by model212

fitting to data collected during a traverse (wobbling) scan of an air-only scene.213

Although wobble has a detrimental effect on image precision, we benefit from214

wobble in these estimations since it allows us to disentangle (i) βy and Rx, and (ii)215

bty and {δl,δu}.216

The calibration is two-step and summarised as follows. First, we perform a217

Sum of Squared Errors (SSE) minimisation model fit using a Gaussian model of218

the fan-beam incident on the BPD, masked by the sensor sensitivities. In the fitted219

model, the Gaussian centre is allowed to vary freely with time but the beam width220

and sensitivities are unvarying. Having estimated the unvarying beam widths and221

the time-varying beam positions at each BPD, we linearly interpolate these to the222

positions of the sensors of the IDs. With these estimated, next we model fit to223

determine the ID parameters. We perform a SSE fit to the data from each ID to224

jointly estimate {δl,δu} and Ry. The SSE is taken between the ideal image (raw225

image multiplied by correction factor, as in Eq. 4) and a uniform unit-valued im-226

age. The correction factor is composed using the interpolated βy and bty estimates227

(from the first step), and the estimated parameters {δl,δu} and Ry.228

4 Wobble estimation algorithm229

To estimate wobble for inhomogeneous scenes, we need to estimate bty at each230

BPD and then interpolate these estimates along the IDs. However, the simple231
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model fitting of the previous section is not applicable for inhomogeneous scenes.232

At some scanning moments the beam will be distorted from a Gaussian shape, and233

at other moments it will be undetectable due to dense loads. To cope with this,234

we estimate the beam position at time t by fusing an instantaneous estimate b̂inst235

(with uncertainty σ̂inst), with an estimate b̂prior (with uncertainty σ̂prior), based on236

the previous n beam position estimates.237

4.1 Instantaneous estimation238

The profile (Dtx) measured at each instant by a BPD, is a multiplicative combi-239

nation of (i) the beam profile (Ptx), (ii) the scene transmission (Stx), and (iii) the240

sensitivity (Rx). We estimate the beam profile from the measured profile, fixed es-241

timates of the sensitivity (Sec. 3), and dynamic estimates of the scene transmission242

estimated from previous timepoints of the BPD signal, according to243

P̂tx = Dtx/(R̂x Ŝtx). (5)

This estimation works well in cases where the scene is not too dense (Fig. 5, 1b244

& 2b); but when it is the estimated beam profile can be inaccurate due to (i) the245

low (noise-dominated) sensor signal, or (ii) deviation of photon trajectories due to246

scatter (Fig. 5, 3b).247

We estimate the scene transmission function Ŝtx using measurements of the248

BPD as it slides across the scene. A given pixel on the BPD samples each point, at249

its y-value, in the scene (Fig. 6). Plotting the response of this pixel as a function of250

time gives an estimate of the scene transmission function. Since each of the BPD251

sensors also sample each point in the scene, we can construct a similar estimate252

13



for each sensor. The final estimate of Ŝtx is obtained by taking a weighted average253

of the estimates from each of the sensors. We take the weighted average to reduce254

noise in the estimate from sensors that are aligned with the low signal tails of the255

Gaussian cross-section.256

With the estimate of the beam profile (P̂tx), we can estimate the instantaneous257

beam position binst and its uncertainty σinst. The estimator should be able to deal258

with non-linear relationships in the data and be able to produce data dependent259

uncertainty estimates. We have experimented with using Gaussian model fitting,260

as used in Ref. [19], but find that the non-normal distribution of the errors makes261

estimation of the uncertainty unreliable.262

In this contribution, we use a Random Regression Forest (RRF) [1] to con-263

struct a robust estimator of the beam position from the beam profile estimates. A264

RRF model is based on an ensemble of decision trees and is capable of modelling265

non-linear relationships as required. Each tree in the RRF produces an estimate266

of the beam position. We obtain estimates of the instantaneous beam position b̂inst267

and its uncertainty σ̂inst by taking the mean and standard deviation of the tree re-268

sponses, respectively. We observe, for this study, that the standard deviation of269

the tree responses has a strong correlation with the actual error in the beam posi-270

tion estimate. Other advantages of RRF is that it is fast to train and deploy, and271

resistant to overfitting.272

In the RRF, Nt trees are constructed top-down with bagging and random sub-273

space sampling. Internal nodes are split using standard thresholding, and opti-274

mised according to the Residual Sum of Squares (RSS). At each split m features275

(i.e. BPD pixels; elements of P̂tx at fixed t) are randomly sampled. For stop-276

ping criteria, we do not set a maximum tree depth and enforce a minimum of two277
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samples per split. To tune Nt and m, we first set m to the recommended default278

(m = 1/3×# features = 5) for regression. We then vary Nt and assess the RMSE279

to choose a sufficient number of trees so that the RMSE is stable, but not so many280

that training and inference are slow. With the Nt fixed, we then vary m from 3 to281

12 to find the optimal RMSE, before verifying Nt again as before. By this method282

we determined that Nt = 500 was adequate and the default m = 5 was optimal.283

In this work we use the randomforest-matlab implementation of RRFs [9].284

For training, the ground truth values of the beam displacement were obtained by285

use of a gantry system in traverse mode, described later in Sec. 5. We train a286

separate RRF for each BPD, using 1.4×105 measurements from five independent287

scans so that there is no overlap with the test images used in Sec. 5.288

4.2 Estimation based on previous estimates289

In cases where the BPD is heavily obscured (low signal-to-noise), the RRF-based290

instantaneous estimate will give a poor estimate of the beam position and a high291

uncertainty. In these cases, we want the beam position estimate to be sensible,292

and to achieve this we incorporate information about prior beam positions using293

an Auto-Regression (AR). The wobble of the detector array is partly deterministic294

(consider a swinging pendulum), but also stochastic due to the variable scanning295

surface, wind and vibrations. An AR is capable of learning some of the determin-296

istic wobble whilst allowing for stochastic variation. It is also simple to implement297

and fast to compute. Additionally, we observe (Fig. 7) that the beam position trace298

has a high frequency component due to fluctuations of the photon source, possi-299

bly originating from electronic circuitry; and a low frequency component due to300
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the wobble of the imaging array. The high frequency component makes simple301

estimation, based on the previous timepoint, unreliable. An AR, however, allows302

incorporation of n previous timepoints, where n can be tuned on data to achieve303

best performance. Moreover, the AR approach effectively smooths out erroneous304

estimates from previous timepoints, but is beneficial over other smoothing filters305

(e.g. median filter) since it is possible to propagate previous errors to be used in306

fusion (Sec. 4.3) with the instantaneous estimate.307

The AR model predicts the current beam position based on a linear combina-308

tion of the previous n beam positions with an added, normally distributed, pertur-309

bation310

bt = ∑
t ′

wt ′bt−t ′+N(0,ε2) s.t. ∑
t ′

wt ′ = 1, (6)

where 1≤ t ′ ≤ n.311

The Auto-Regression (AR) weights wt ′ are determined by model fitting Eq. 6312

to an independent air scan. The constraint ∑wt ′ = 1 ensures that the model does313

not have an unrealistic systematic drift. The uncertainty ε is determined by ap-314

plying the model to a second air-only scan and computing the Root-Mean-Square315

Error (RMSE). The fitted model is used to generate the prior beam position esti-316

mate and its uncertainty according to:317

b̂prior = ∑
t ′

wt ′ b̂t−t ′ , σ̂
2
prior = ∑

t ′
wt ′σ̂

2
t+t ′+ ε

2. (7)

Note that the uncertainties from previous timepoints are propagated when forming318

this estimate, so that if the AR operates on previous estimates that are highly319

uncertain they are incorporated into the AR uncertainty, which is useful in the320

fusion step.321
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4.3 Fusion of estimates322

To incorporate the information from the previous timepoints, we fuse the estimates323

from the AR and RRF models according to their uncertainties. The fusion should324

weight the final estimate more towards the AR if the RRF-based estimate is more325

uncertain (e.g. due to low signal-to-noise). Equally, if the AR uncertainty is326

high, because many of the previous n RRF-based estimates were also uncertain,327

but the next instantaneous estimate is very certain, then the fusion should weight328

more towards the RRF-based instantaneous estimate. To achieve, this we use a329

Bayesian fusion, which is equivalent to a Kalman Filter [7]. This approach is330

illustrated in Fig. 8.331

To estimate the beam position b̂t and its uncertainty σ̂t , we Bayesian fuse the332

instantaneous estimate b̂inst and it uncertainty σ̂inst (Sec. 4.1) with a prior estimate333

b̂prior and its uncertainty (Sec. 4.2). This is expressed as:334

b̂t =(b̂instσ̂
2
prior+ b̂priorσ̂

2
inst)/(σ̂

2
prior+σ̂

2
inst), with σ̂

2
t =(σ̂2

priorσ̂
2
inst)/(σ̂

2
prior+σ̂

2
inst).

(8)

This weights the two beam position estimates by their uncertainty. If the un-335

certainty of an estimate is low then that estimate contributes more to the fused336

estimate. In particular, if the instantaneous estimate is uncertain because of dense337

shielding, the prior estimate will be relied on; but when it is certain (the RRF trees338

agreeing with each other) it will dominate the overall estimate.339
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5 Results340

For the purposes of this study, and to test out our methods, we collected data using341

a modified Rapiscan Eagle R©G60 transmission X-ray scanner. We rotated four of342

the IDs by 90◦ to become BPDs. The BPDs were placed at the extremes of the343

vertical boom and the horizontal boom, so that there were two BPDs per boom.344

The wobble characteristics are different at each location, for example wobble is345

most severe at the bottom of the vertical boom. Note that in a commercial im-346

plementation of BPDs, the system would have a full set of IDs with additional347

detectors for BPDs, but we have adopted this modification in experiments to re-348

duce cost. We collected air-only images in portal and traverse modes, and several349

traverse mode scans of objects (e.g. trucks, forklifts, scissor lifts) were performed.350

The scanner operates at 90Hz and has a pixel size of 5.6mm, giving an effective351

spatial resolution of roughly 3mm. The scanner uses a Bremsstrahlung beam with352

a cut-off energy of 6MeV. This is the same energy used in commercial systems,353

and gives enough penetration to achieve reasonable signal-to-noise ratio on the354

BPD for most objects.355

We adopted a gantry set-up, since it provides a ground truth for wobble. Wob-356

ble is observed in both gantry and truck-mounted systems, with a similar ampli-357

tude and frequency composition. However, for a gantry system, wobble is the358

same (modulo alignment) for each scan, but variable for truck-mounted systems.359

The gantry system allows us to obtain an accurate ground truth by aligning wobble360

estimates from an air-scan with the air parts of an object scan.361
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5.1 System parameter estimation362

The system parameters βy (beam width), Ry (sensitivities) and dy (imaging sensor363

offsets) were estimated according to Sec. 3, and are shown in Fig. 9. Small and364

large y-values correspond to the bottom and top of the image, or the vertical and365

horizontal parts of the Γ-shaped imaging array, respectively. The gaps in y-values366

are where an ID has been removed or rotated to form a BPD.367

The estimate of βy (Fig. 9.a) increases as you go along the horizontal of the368

Γ-shaped imaging array and away from the source due to beam dispersion; it then369

decreases as you go along the vertical of the Γ-shaped imaging array and slightly370

closer to the source. The sensitivities Ry (Fig. 9.b) have a lot of variation between371

adjacent imaging sensors due to their intrinsic response and due to variations in372

the housing of the Γ-shaped array. The estimated offsets of the IDs (Fig. 9.c) are373

of the order of a few mm, which when compared to their 10cm length is plausible374

for a human engineer placing them during the construction of the scanner, and is375

indeed within the manufacturing tolerance of a scanning device of this scale (6m376

tall). Note that the piecewise-linear nature of dy is due to the linear constraint377

places on each ID (Eq. 2).378

5.2 Wobble estimation379

The AR was trained on an air-only traverse mode image. Fig. 10(a) shows the380

RMSE performance of the trained AR on an independent air-only test image as a381

function of the number (n) of previous timepoints considered. As n is increased382

the RMSE decreases, reaching a minimum at n = 64, before the RMSE begins383

to grow. When n gets too large the model overfits and performance deteriorates.384
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We choose n = 32 since the RMSE is near optimal but requires half the number385

of parameters. The AR weights for n = 32 are shown in Fig. 10(b). It shows386

that more importance is placed on the most recent b estimates as expected. The387

oscillating structure is the AR system’s way of coping with the high frequency388

component of the beam movement.389

To assess the performance of the proposed beam position estimates, we test390

performance on “easy”, “intermediate” and “difficult” scenarios from the col-391

lected data. For each, we compare the new RRF-based method for instantaneous392

estimation to the old Gaussian-based method from Ref. [19]. We also compare393

the RRF-based method instantaneous method, with the fused estimate which we394

refer to as RRF-AR.395

For the “easy” scenario (Fig. 11), the RRF instantaneous estimate (green) is396

mostly accurate, with most estimates close to the ground truth (black). The old397

Gaussian-based method (red) gives wildly inaccurate estimates when the BPD is398

occluded by an object thus resulting in a non-Gaussian BPD profile. However,399

the RRF yields estimates much closer to the ground truth, in these cases. These400

estimates are made very accurate when fused with the AR (blue), since the RRF401

trees give variable responses which results in a larger uncertainty, so the fusion402

gives more weight to the AR. In particular, in Fig. 11(d) the fused estimate is403

much closer to the ground truth than the RRF on its own.404

In the “intermediate” scenario (Fig. 12). The old Gaussian-based method does405

even worse, and again the RRF-based method appears relatively robust to non-406

Gaussian BPD profiles, where the Gaussian-based method fails. In this scenario,407

fusion with AR, does not give a large change in estimates over just using the RRF,408

since the RRF trees are confident in their estimate; there is not a large amount of409
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variability in their votes. However, an improvement is seen in Fig. 12(d)410

For the “difficult” scenario in Fig. 13, the old Gaussian-based method does411

even worse. The RRF-based instantaneous estimator appears far more robust,412

with estimates much closer to the ground truth, however the performance is not as413

great as in the “easy” and “intermediate” scenarios. The fused estimates exhibit414

a bias (see 13.f) where the RRF performs poorly over a long time period. This415

happens where the total signal on the BPD is close to the background noise level416

(it is very heavily occluded by a truck engine), and hence the RRF finds it diffi-417

cult to make accurate estimates of the beam position. This is reflected in the RRF418

uncertainty, and so the fused estimate puts full weight on the AR estimate, which419

results in a constant fused beam position estimate until a good instantaneous es-420

timate is achieved. So the AR has forced the fused estimate into giving sensible421

estimates. Since the BPD signal is so low in this object and it occupies a large422

number of timepoints, we reason that it would be impossible to obtain an accurate423

instantaneous estimate by any method based on the current BPD set-up.424

For each of the scenarios (easy, intermediate, and difficult), we have quanti-425

fied the performance of the methods in terms of: accuracy; bias; precision; and426

Mean Absolute Error (MAE) for the worst 5%, 1%, and 0.1% of timepoints. We427

include the worst MAEs since particularly bad timepoints can be lost in the ac-428

curacy, precision, and bias metrics, particularly if there are many air-only time-429

points where estimation is straightforward. Moreover, wildly inaccurate wobble430

estimates could lead to column artefacts in the image after correction so are unde-431

sirable. The results are given in Table 2. For the “intermediate” and “difficult”432

scenarios, the RRF-based instantaneous estimation offers roughly an order-of-433

magnitude improvement across all metrics, over the old Gaussian-based method.434
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For the “easy” scenario, this improvement is approximately 3-fold; the Gaussian435

method is already quite good at dealing with simple objects. By fusing the RRF436

with the AR (RRF-AR), the performance increases across most metrics, particu-437

larly for worst MAEs, however, there is little change (or a slight worsening for the438

“intermediate” scenario) in the overall accuracy. In the “easy” scenario there is439

roughly a 15% improvement in the MAE for the worst 5% of timepoints. For the440

“intermediate” case the improvement drops so about 5%. Finally, for the “diffi-441

cult” scenario the worst 1% MAE improves by about 3%. Greater improvements442

are seen for the MAE of the worst 0.1% of timepoints.443

5.3 Image correction444

We first assess the image correction method on an air-only scene. For air-only445

images, wobble estimation is straightforward, since the BPD profile is not dis-446

torted by obscuring objects in the scene. However, air-only images allow us to447

visualise and fully quantify the improvement from wobble correction. We can448

assess image quality based on the fact that a perfect (normalised) transmission449

air-only image would have all pixel values equalling unity. Image precision can450

therefore be assessed by computing the Root-Mean-Square (RMS) deviation or451

Peak Signal-to-Noise Ratio (PSNR) from this ideal.452

In Fig. 14, we show air-only images from traverse and portal mode scans453

and their full correction split into stages. The stages are: sensitivity Ry cor-454

rection (Fig. 14.b&f); wobble and ID offset exp(−(bty−d2
y )/2β 2

y ) correction455

(Fig. 14.c&g); and source variation At correction (Fig. 14.d&h). Images have456

been intensity windowed so that the wobble effect is visible in (Fig. 14.f). Note457
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the visible difference between images (Fig. 14.b) and (Fig. 14.f), this difference458

is mostly due to wobble. The PSNR drops from 109dB to 77.2dB, from portal459

image (Fig. 14.b) to traverse image (Fig. 14.f) due to the wobble artefact. After460

wobble correction, to obtain image (Fig. 14.g), most of the wobble artefact is vis-461

ibly improved. Indeed, the wobble correction improves the PSNR by 21.3dB but462

is unable to achieve the portal mode PSNR.463

To make quantitative assessment of the effects visible in Fig. 15, the RMS464

deviations of the traverse and portal mode air-only images, before and after the465

different corrections, were used to deduce the magnitude of the noise sources466

before and after correction. Table 1 shows that wobble increases overall image467

noise, and has also reduced our ability to correct for sensor sensitivity, ID offset,468

and source variation. Although it is possible to correct for 99% of sensor sensitiv-469

ity, the magnitude of sensor sensitivity is so large that it is still the most dominant470

source of noise in the corrected image. Source variation was the least successfully471

corrected and this is apparent in Fig. 15, since the corrected images (Fig. 14.d&h)472

have some slightly visible column artefacts. Finally, we are able to correct 87%473

of wobble, thus outperforming our previous work [19], which did not incorporate474

sensor offset estimates into the correction.475

The results for corrections applied to traverse mode images of a scissor lift476

and a forklift truck are shown in Fig. 15. Images have been intensity windowed,477

to the same range, to make the wobble artefact visible. The wobble correction is478

obtained using the Bayesian-fused beam position estimate. The red boxes indi-479

cate image regions most effected by wobble, and the green boxes show the same480

regions but after wobble correction. There is a visible improvement in the wob-481

ble artefact after wobble correction, showing that a good level of correction is482
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obtained even when the BPDs pass through dense objects such as a fork-lift truck.483

Fig. 16 shows image corrections on a truck image. Since the truck occupies484

most of the image, it is more difficult to see the effects of wobble and the cor-485

rections. The most obvious places are the steps up to the driver’s cabin and the486

area surrounding the test object. These are indicated by the red boxes in Fig. 16.b.487

After wobble correction (green boxes in Fig. 16.c), the artefact is reduced so that488

the driver’s steps and the test object become visible. In Fig. 16.i&ii we plot a col-489

umn and row of pixels, respectively. In each, the red trace is from Fig. 16.b before490

wobble correction, and the blue trace is from Fig. 16.c after wobble correction.491

The pixels are taken from image lines that should have approximately constant492

(or piece-wise constant) pixel values. However, due to the wobble artefacts they493

are distorted from constancy. The wobble correction corrects a large part of this494

distortion.495

6 Discussion496

We have proposed a series of image corrections to ameliorate detector wobble497

artefacts in large-scale transmission radiography. The corrections were derived498

by considering a model of X-ray image formation in the presence of a wobbling499

detector. The correction relies on the estimation of a number of fixed system pa-500

rameters and dynamic parameters which vary during a scan. The fixed parameters501

include sensor sensitivities, sensor misalignments, and the width of the X-ray fan-502

beam. The dynamic parameters include the position of the beam at different points503

along the detector array, and the fluctuation of the number of photons emitted by504

the source. We proposed a method for estimating the fixed system parameters by505
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model fitting to an air calibration image.506

Wobble is more difficult to estimate, and we adopt a similar approach, using507

Beam Position Detectors (BPDs), to our previous work [19]. BPDs are placed508

perpendicular to the imaging array, and measure the cross-sectional profile of the509

photon beam after interaction with the scene, allowing the position of the beam to510

be determined and hence detector wobble to be measured. In our previous work,511

we measured wobble by fitting a Gaussian model to the beam profile to extract an512

instantaneous estimate of the beam position. This was Bayesian-fused with a prior513

estimate based on an Auto-Regression (AR). In this contribution, we proposed a514

new instantaneous estimator based on a Random Regression Forest (RRF). We515

first estimate the true beam profile, as if the beam had not been attenuated by the516

scene, and then estimate the beam position and its uncertainty by taking the mean517

and standard deviation of the responses from the RRF, respectively.518

To test the wobble estimation and image correction methods, we collected519

image data of several objects ranging in difficulty from a small scissor lift to a520

large truck. We used a commercial scanner, which we modified by rotating four521

imaging detectors by 90◦ to act as BPDs. Our new RRF-based approach to instan-522

taneous estimation performs significantly (an order of magnitude in most cases)523

better than Gaussian fitting [19]. Moreover, its fusion with an AR achieves re-524

sults close to ground truth, even for difficult objects, and performs better than the525

RRF by 3-15% in the worst cases. It struggles for cases where the object has a526

low signal-to-noise ratio for long durations in the scan, and we believe that this527

problem cannot be solved by wobble estimation based solely on BPD readings,528

unless one can accurately predict future beam positions from a limited number529

of accurate prior position estimates. This is unlikely due to the stochastic na-530
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ture of wobble originating from uneven scanning surfaces or wind. Incorporation531

of measurement devices, such as accelerometers placed along the imaging array,532

may improve estimates even where there is almost no BPD signal due to object533

occlusion. This will be a focus of future work.534

The wobble and system parameter estimates were used to apply corrections535

to images. We applied corrections to traverse and portal mode air-only images536

and achieved an 87% reduction in image error due to detector wobble, thus im-537

proving on our previous work [19]. The wobble correction method was also ap-538

plied to difficult images of objects and a notable qualitative improvement in the539

intensity-windowed image quality was observed, clarifying dense regions of the540

scene and mitigating human error. The method should also allow for improved541

material discrimination in images captured from dual-energy scanners in traverse542

mode. State-of-the-art material discrimination, for cargo, is performed by taking543

the log-ratio (or difference) of images at different energies, and relies on subtle544

differences between the images [13, 14, 28]. But in commercial traverse-mode545

systems material discrimination is often inaccurate due to image noise, including546

from wobble (Fig. 3). And so wobble correction as a pre-processing step could547

help improve material discrimination accuracy. Testing this, and fully quantifying548

the effect of wobble on material discrimination, will be left to future work.549

Future work will include experimenting with other measurement devices, such550

as accelerometers, to improve the prior estimate of the beam position in cases551

where the RRF fails to obtain accurate estimates over long time-periods due to552

large, dense objects such as a truck engine. Potentially, beam position estimation553

could be improved by using more BPDs or even a 2D imaging array, and this will554

be explored. Additionally, we will investigate the severity and correction of geo-555

26



metric distortions caused by extremely heavy wobble. Such distortions can cause556

straight lines to become wavy, which potentially impacts on the performance of557

human operators searching for threats, particularly if their shape is distorted in an558

unnatural way.559
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Tables646

Scan mode Noise source Symbol Before After Reduction
sensor sensitivity Ry 0.2305 0.0000 100%
offset of ID endpoints {δl,δu} 0.0013 0.0000 100%

portal wobble bty 0.0000 0.0000 –
source variation At 0.0030 0.0000 100%
photon count – 0.0029 0.0029 0%
sensor sensitivity Ry 0.2305 0.0026 99%
offset of ID endpoints {δl,δu} 0.0013 0.0004 72%

traverse wobble bty 0.0185 0.0054 87%
source variation At 0.0030 0.0004 74%
photon count – 0.0029 0.0029 0%

Table 1: RMS deviation contributions from different noise sources before and

after corrections for: sensor sensitivity; Imaging Detector (ID) offsets; wobble;

and source fluctuation. We do not attempt to correct Poisson noise in the photon

counts.
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Scenario Meth. Acc. Bias Prec. 5% 1% 0.1%
Gauss. 0.105 0.003 0.105 0.300 0.818 2.085

Easy RRF 0.033 0.004 0.033 0.122 0.168 0.203
RRF-AR 0.030 0.006 0.029 0.104 0.140 0.167
Gauss. 0.470 -0.010 0.470 1.751 3.523 5.846

Intermediate RRF 0.019 -0.001 0.019 0.073 0.125 0.170
RRF-AR 0.021 -0.001 0.021 0.069 0.111 0.149
Gauss. 0.637 -0.135 0.623 2.012 3.329 5.670

Difficult RRF 0.052 -0.008 - 0.052 0.188 0.262 0.310
RRF-AR 0.052 -0.014 0.050 0.191 0.253 0.284

Table 2: Performance metrics for: (i) the old Gaussian-based method of instan-

taneous estimation (Gauss.); (ii) the proposed Random Regression Forest based

method for instantaneous estimation (RRF); and (iii) the Bayesian fusion of the

RRF estimates with an Auto-Regression (RFF-AR). The metrics computed are:

Accuracy (Acc.); Bias; Precision (Prec.); and the Mean Absolute Error (MAE) for

the worst 5%, 1% and 0.1% of estimates. RRF gives over an order-of-magnitude

improvement in accuracy over Gauss. for intermediate and difficult scenarios, and

3-fold for the easy scenario. RRF-AR gives a 3-18% improvement (over RRF) in

the MAE of the worst 1% and 0.1% depending on the difficulty, with least im-

provement seen in the difficult scenario.

Figure captions647

Fig. 1: A raw transmission X-ray image of a cargo container containing vehi-648

cles and vehicle parts (top) and an intensity manipulated version (bottom). Inten-649

sity manipulation is often used to reveal details in the image when searching for650

threats.651
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652

Fig. 2: A typical transmission radiography system. Translation of the scene rel-653

ative to the source and detector produces image columns, whilst each image row654

corresponds to a single sensor position in the imaging array. The set-up, consid-655

ered in this paper, has been modified by addition of four Beam Position Detectors656

(BPDs) which are are detector strips oriented at 90◦ to the imaging array. These657

allow the intensity profile across the beam width to be measured.658

659

Fig. 3: An X-ray image of a fork-lift truck from a mobile scanner with mechanical660

instability (left) and the same image with material discrimination applied (right).661

The image grey-levels have been windowed to make visible the small changes in662

image value due to wobble. Wobble leads to a rippling curtain effect across the663

image. Each rectangular test piece corresponds to a single material of uniform664

thickness. The wobble artefact effects the classification of material type; the clas-665

sification of a single test piece can change from plastic through to steel due to666

wobble. This results in a colour change across the test piece (indicated by red667

arrow) in the material discrimination image, where there should be no change.668

669

Fig. 4: Left: Part of the imaging array showing two misaligned Imaging De-670

tectors (IDs), a Beam Position Detector (BPD), and a wobbling fan-beam. The671

magnitude of the wobble and the sensor misalignments have been exaggerated in672

this figure. The offsets dy for individual imaging sensors are confined to a linear673

function determined by the offsets {δl,δu} of the ID endpoints. The fuzzy bars674

illustrate the fan-beam incident on the imaging array. The Gaussian (width βy675

and position bty) shows the profile of the fan-beam on the BPD. Right: A later676
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timepoint t2 > t1. Due to wobble, the fan-beam has moved relative to the imaging677

array so that the intensity recorded by the imaging detectors has changed. This678

leads to an effective loss of image precision. Correction requires estimation of679

the beam displacements bty and the offsets dy to be estimated. The bty, dense in t680

and y, can be interpolated from estimates dense in t but computed at the sparse y681

values where BPDs are located.682

683

Fig. 5: Examples of the estimated beam profile P̂tx (green) computed by dividing684

the measured Beam Position Detector (BPD) profile Dtx (black) by estimates of685

the scene transmission Ŝtx (red) and the sensor sensitivity R̂x (blue). Left: Example686

of a homogeneous scene, and thus the estimate Ŝtx is flat, resulting in a Gaussian687

P̂tx. Middle: Example of an inhomogeneous scene, the resulting P̂tx is approxi-688

mately Gaussian. Right: Example of a dense inhomogeneous scene, where the689

resulting P̂tx is non-Gaussian which we attribute to photon scatter.690

691

Fig. 6: Left: Illustration of a Beam Position Detector (BPD) being translated692

across a scene during a scan. At consecutive timepoints t = {1,2, . . . ,T} a given693

sensor (green) samples consecutive points in the scene. Right: plotting these sam-694

ples as a function of t yields an estimate of the scene transmission. Each BPD695

sensor gives a similar estimate, and we perform a weighted average of them to696

reduce the noise in the final estimate Ŝtx. Sensors towards the ends of the BPD,697

which receive low signal, are given a lower weighting in the average than those698

near the Gaussian centre which receive a higher signal.699

700

Fig. 7: Left: Beam position bty as function of time t during a wobbling air scan.701
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Right: A zoom so that the high frequency component of the wobble is visible.702

703

Fig. 8: Demonstration of Bayesian fusion of a prior estimate (black) and an in-704

stantaneous estimate (red) to obtain a fused estimate (blue). The width of the705

Gaussian correspond to the uncertainty on the estimate, and their centroid to the706

estimate value. The x-axis can be imagined as the Beam Position Detector (BPD).707

In (a) the prior has a higher certainty than the instantaneous estimate and so the708

fused estimate is weighted towards the prior, in (c) the opposite is true. In (b) both709

estimates have equal certainty and so the fused estimate compromises between the710

two.711

712

Fig. 9: Estimated system parameters: (a) beam width, βy; (b) sensor sensitivities,713

Ry; and (c) horizontal imaging sensor offsets from the vertical, dy. The dashed714

horizontal line marks the transition from the vertical (below) part of the Γ-shaped715

imaging array, to the horizontal (above). The black dots indicate the y-positions716

of the Beam Position Detectors (BPDs). Gaps in y-values are where an Imaging717

Detector (ID) has been removed or rotated to form a BPD in the experimental718

set-up. The beam width increases (decreases) as the distance from source to the719

array increases (decreases), due to dispersion. The sensitivities fluctuate between720

adjacent sensors due to their different intrinsic responses. The estimated sensor721

offsets are piece-wise linear because they are grouped by ID, and are of the order722

of a few mm which is within the manufacturing tolerance of a system of this scale.723

724

Fig. 10: Auto-Regression (AR) model fit: (a) The Root-Mean-Square Error725

(RMSE) performance of the AR for different numbers of previous timepoints n726
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included in the model (dashed line indicates the standard deviation of the beam po-727

sition, red circle indicates the near-optimal n = 32); and (b) the learnt AR weights728

wt ′ when n = 32. The RMSE decreases as the number of timepoints n included in729

the model increases, it reaches an optimum at around n = 64, before rising again730

due to overfitting. The AR weights have larger magnitude for the most recent731

timepoints (t ′ =−1,−2) as expected, because these are most informative for pre-732

dicting the next beam position. The oscillating structure in the weights is the AR’s733

way of coping with the high frequency wobble component.734

735

Fig. 11: Beam position estimates for the “easy” scenario. In (a) the new Ran-736

dom Regression Forest (RRF) based method (green) for instantaneous estimation737

is compared to the old Gaussian-based method (red), and the ground truth (black).738

In (c) the RRF-based method (green) for instantaneous estimation is compared739

to its Bayesian fusion with an Auto-Regression (AR; blue), and the ground truth740

(black). Plots (c & d) show zooms for the most difficult region. The old Gaussian-741

based method gives wildly inaccurate estimates (t/Px = 400) where the BPD pro-742

files are occluded and so measure a non-Gaussian profile. The RRF yields much743

more accurate estimates, and is improved further (relative to the ground truth)744

when fused with the AR (see d).745

746

Fig. 12: Beam position estimates for the “intermediate” scenario. In (a) the new747

Random Regression Forest (RRF) based method (green) for instantaneous esti-748

mation is compared to the old Gaussian-based method (red), and the ground truth749

(black). In (c) the RRF-based method (green) for instantaneous estimation is com-750

pared to its Bayesian fusion with an Auto-Regression (AR; blue), and the ground751
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truth (black). Plots (b & d) show zooms for the most difficult regions. In this case,752

the old Gaussian-based method behaves very erratically (t/Px ∈ [1100,1600]),753

the RRF method gives estimates much closer to the ground truth. However, some754

RRF-estimates are inaccurate (d), but these are improved when fused with the AR755

since the RRF trees give a larger uncertainty than the AR prior estimate.756

757

Fig. 13: Beam position estimates for the “difficult” scenario. In (a) the new Ran-758

dom Regression Forest (RRF) based method (green) for instantaneous estimation759

is compared to the old Gaussian-based method (red), and the ground truth (black).760

In (d) the RRF-based method (green) for instantaneous estimation is compared761

to its Bayesian fusion with an Auto-Regression (AR; blue), and the ground truth762

(black). Plots (b, c, e, & f) show zooms for the most difficult regions. The RRF763

struggles to give accurate estimates in (c), because the BPD is passing across a764

truck engine, which is very dense and therefore the signal-to-noise is very low.765

This increases the RRF uncertainty, and so the fused estimate puts full weight on766

the AR estimate, which results in a constant estimate (f) until a better RRF esti-767

mates are achieved. So the AR has forced the Bayesian fusion into giving sensible768

estimates. This also occurs in (b) and (f) but to a much lesser extent.769

770

Fig. 14: Images of portal (a-d) and traverse (e-h) mode air-only scans at different771

stages of correction, including: the raw image; the image after correction for sen-772

sor sensitivities; the image after correction for wobble (and sensor offsets); and773

the final image after after source correction. Corrected images have been intensity774

windowed so that the wobble artefact is visible in (b). For each image, the Peak775

Signal-to-Noise Ratio (PSNR) is given in decibels (dB). A noiseless and artefact-776

38



free air-only image should be uniform. The wobble artefact is clearly visible in the777

traverse image after the sensitivities have been corrected (f), and it is not visible in778

the portal mode image (b) since this mode is not effected by wobble. The PSNR779

is reduced by 31.8dB by the wobble artefact. After wobble correction (g) there is780

a visible improvement in the artefact, and the PSNR has improved by 21.3dB.781

782

Fig. 15: Images from traverse mode scans of a scissor lift (a-e) and a fork-lift783

truck (f-j), after a series of corrections for: sensor sensitivities (b & g); wobble784

and Imaging Detector (ID) offsets (c & h); and source variation (d & i). Cor-785

rected images have been intensity windowed so that the wobble artefact is visible786

in (b) and (g). The final images (e & j) are the non-windowed versions of (d & i).787

The red boxes indicate regions where wobble is particularly visible, and the green788

boxes indicates the same regions after wobble correction. There is a clear visible789

improvement in the wobble artefact after correction, and so wobble measurement790

and correction works well even when BPDs are heavily occluded by dense object.791

792

Fig. 16: Images from a traverse mode scan of a truck, after a series of corrections793

for: sensor sensitivities (b); wobble and Imaging Detector (ID) offsets (c); and794

source variation (d). Corrected images have been intensity windowed so that the795

wobble effect is visible in (b). The final image (e) is the non-windowed version796

of (d). The red boxes indicate regions around the driver’s steps and a test object,797

where wobble is particularly visible. The green boxes indicate the same regions798

after wobble correction and one can see a visible improvement in the wobble799

artefact. The plots (i) and (ii) show traces of the pixel intensities across a column800

and row in the image, respectively. The red traces are uncorrected for wobble and801
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taken from (b), whilst the blue traces are corrected for wobble and taken (c). The802

red traces should be approximately (piece-wise in ii) constant, however they are803

distorted by wobble. The wobble correction corrects most of this distortion.804
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