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a b s t r a c t 

This paper tackles the problem of automatic detection of knee osteoarthritis. A computer system is built 

that takes as input the body kinetics and produces as output not only an estimation of presence of the 

knee osteoarthritis, as previously done in the literature, but also the most discriminating parameters 

along with a set of rules on how this decision was reached. This fills the gap of interpretability between 

the medical and the engineering approaches. We collected locomotion data from 47 subjects with knee 

osteoarthritis and 47 healthy subjects. Osteoarthritis subjects were recruited from hospital clinics and 

GP surgeries, and age and sex matched healthy subjects from the local community. Subjects walked on a 

walkway equipped with two force plates with piezoelectric 3-component force sensors. Parameters of the 

vertical, anterior–posterior, and medio-lateral ground reaction forces, such as mean value, push-off time, 

and slope, were extracted. Then random forest regressors map those parameters via rule induction to the 

degree of knee osteoarthritis. To boost generalisation ability, a subject-independent protocol is employed. 

The 5-fold cross-validated accuracy is 72.61% ± 4.24%. We show that with 3 steps or less a reliable clinical 

measure can be extracted in a rule-based approach when the dataset is analysed appropriately. 

© 2017 The Authors. Published by Elsevier Ltd on behalf of IPEM. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Osteoarthritis (OA) rates are rising, in part a reflection of our

rowing ageing population. Currently OA is the second leading

ause of disability [1] , and one of the most common forms of

rthritis worldwide, accounting for 83% of the total OA burden [2] .

he global prevalence of knee OA is over 250 million people [2] ,

ccording to Vos et al . Currently diagnosis of OA is based upon

atient-reported symptoms and X-rays. The alternative is MRI but

his is associated with high cost and is rarely used until symptoms

rogress and patients are referred for specialist surgical opinion.

hus effective management and early identification of knee OA is a

ey health issue and is of interest to the population at large as well

s a range of clinicians and health service managers. The method
Abbreviations: Osteoarthritis, OA; Ground reaction forces, GRFs. 
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resented here represents an effective solution with significantly

ower costs compared to MRIs and ultimately aims to be used as a

art of standard clinical assessment for the general population, in

ontrary to imaging that requires severe symptoms to be present.

or all the aforementioned reasons, our vision and our long-term

otivation is to develop a diagnostic tool for automatic detection

f early markers of knee OA that does not act as a black box for

he clinical personnel, as is the common case today. 

In this paper, we propose a computer system that uses compu-

ational methods from the area of machine learning to estimate

he degree of knee OA. This approach overcomes limitations of

revious methods, such as Astephen et al . [4] , Federolf et al . [6] ,

eynon et al . [8] , Deluzio and Astephen [9] , and Mezghani et al .

11] , in the sense that it (i) automatically estimates the degree

f knee OA by recognising patterns that are more discriminating

f knee OA; (ii) discriminates the most important parameters for

eaching its decision; and (iii) produces a set of rules that have

 clear clinical rationale. Machine learning concerns the construc-

ion of computer systems that are able to learn from data. Such

pproaches have recently been adopted by the biomechanical field
en access article under the CC BY license. 
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Table 1 

Mean value and standard deviation about the age, 

height, weight, and sex of the control and the knee 

OA subjects. 

Controls Knee OA 

(47 subjects) (47 subjects) 

Age (years) 54.4 (13.3) 58.1 (12.7) 

Height (mm) 1705.7 (88.9) 1695.8 (113.2) 

Weight (kg) 69.4 (10.6) 76.2 (14.4) 

Male/Female 22/25 22/25 
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with great effect. The common trend in biomechanics research is to

consider individual parameters such as flexion moment peak value,

or rotation moment, as done by Kaufman et al . [3] and then sta-

tistically test if there are significant differences in each parame-

ter between the patients and normal subjects. However, machine

learning looks at the complexity of the data as a whole [4] , over-

coming limitations that arise from hypothesis testing using indi-

vidual parameters, thereby losing the richness and complexity of

the data. For example, machine learning can be used to interpret

electromyographic, kinematic and kinetic data from the knee, hip

and ankle joints during gait and has been shown to be able to

separate healthy patients, mild, and severe knee OA according to

Haber et al . [5] . Federolf et al. [6] identified systematic differences

between healthy and medial knee-osteoarthritic gait using prin-

cipal component analysis. In this study we analyse parameters of

ground reaction forces (GRFs) to estimate using an objective scale

the degree of knee OA and to extract parameters that differenti-

ate more effectively between normal and knee OA subjects. To the

best of the authors’ knowledge, this is the first study on detect-

ing knee OA via analysing the GRFs using random forests. We be-

lieve that a purely data-driven approach yields objective measures

and patterns useful for both biological and clinical advancement

as suggested by Faisal et al . [7] . Emphasis is given on detecting pa-

rameters with physical meaning and in inducting rules that remain

fully interpretable even to non-data analysis experts. The guidance

rules may be adopted in a routine clinical visit to provide support

to healthcare professionals during decision-making. Our final aim

is to derive a software tool that can be used either to assist the

physician when diagnosing new patients or to train students to di-

agnose patients. 

Previous biomedical studies by Beynon et al . [8] , Deluzio and

Astephen [9] , Moustakidis et al . [10] , and Mezghani et al . [11] have

discriminated between subjects with knee OA versus normal sub-

jects, as detailed below. For example Beynon et al . [8] explored

the use of sagittal/frontal/transverse plane range of motion and the

peak vertical ground reaction force during the stance phase of gait

and cadence. They were able to discriminate knee OA subjects (to-

tal 30 subjects, 15 with knee OA, 6 gait cycles per subject) using

the Dempster-Shafer theory of evidence. Depending on whether

the proposed method’s heuristic values are computed by descrip-

tive statistics or provided by an expert, the system had a perfor-

mance of 90% or 96.7% respectively. In another study by Deluzio

and Astephen [9] 50 patients with end-state knee OA and 63 con-

trol subjects performed five walking trials. Knee flexion angle, flex-
Table 2 

Basic statistics and signal processing features that are computed 

computed. 

GRZ-Z GRF-X GRF-Y 

Maximum, mean, median, and standard deviation and the differe

Skewness, kurtosis, interquartile range, 75th percentile, and 90th

Energy and the power spectral density of each leg. 

The length of the stance phase, along with the Spearman correlat
on moment, and adduction moment were classified using linear

iscriminant analysis after principal component analysis, achieving

 93% correct classification. More recently, GRFs have been stud-

ed. Wavelet analysis by Moustakidis et al . [10] has shown that a

eduction in peak anterior–posterior ground reaction forces during

he stance phase occurs in knee OA subjects (12 healthy, 24 with

nee OA). They were grouped in no, moderate, and severe OA cat-

gories with a 93.4% performance. A second study by Mezghani

t al . [11] calculated the coefficients of a polynomial expansion

nd the coefficients of wavelet decomposition for 16 healthy and

6 tibiofemoral knee OA subjects. A nearest neighbour classifier

chieved accuracies ranging from 67% to 91%, depending on the set

f parameters. 

The main objective of this work is to give emphasis to clini-

ians’ rationale. That is the reason why we refrain from abstract

athematical approaches such as wavelet packet decomposition as

one by Moustakidis et al. [10] , as they lack a direct physical in-

erpretation. Moreover, we consider all the trials provided by each

ubject, rather than averaging across trials in order to calculate the

ean GRFs, as is the case of Mezghani et al . [11] . Averaging dis-

egards the intra-subject variability. While previous work focussed

n predicting discrete outcomes, our approach provides a continu-

us number between 0 and 2, since we felt that clinicians would

alue a continuous output, rather than a yes/no answer, whilst at

he same time reflecting the progressive degenerative nature of

steoarthritis. Very few previous studies provide an alternative to

iscrete predictions. Beynon et al . [8] provided a level of belief that

 subject has knee OA or is normal and the associated level of un-

ertainty. Finally, our approach does not adopt any ad hoc heuris-

ics, like the one proposed by Beynon et al . [8] . 

It is worth mentioning that the focus of machine learning does

ot have to be knee OA prediction. For example, the authors Favre

t al . [12] applied neural networks to predict knee adduction mo-

ent during walking based on ground reaction force and anthro-

ometric measurements, whereas Begg and Kamruzzaman [13] ap-

lied support vector machines to discriminate young from elderly

ubjects exploiting kinetic and kinematic parameters, and Muniz

t al . [14] evaluated Parkinson disease exploiting GRFs. Accordingly,

he proposed system here is tackling the problem of estimating the

resence of knee OA via a rule based approach that concurrently

stimates the most discriminating features of the pathology. How-

ver, it could also be utilised to analyse additional musculoskeletal

iseases, like back pain, given the respective kinetic parameters for

ts re-training. 

. Materials and methods 

In this study, subjects diagnosed with OA were recruited, along

ith gender and age matched control subjects. We collected lo-

omotion data from 47 subjects with knee osteoarthritis and 47

ealthy subjects. The mean value and the standard deviation be-

ween normal and knee OA subjects of the age, height, weight,

nd sex for the 47 controls and the 47 knee OA subjects are de-

icted in Table 1 . Ethical approval for this study was obtained from

he South West London Research Ethics Committee and written in-
for all three axes. Additionally, axis-specific parameters are 

nces between the aforementioned values for the both legs. 

 percentile. 

ion between the two legs. 
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Fig. 1. (a) GRF-Z for the left foot of control subjects. The blue curve corresponds 

to the mean GRF-Z curve, whereas the purple shaded region indicates the precision 

of plus minus one standard deviation. Parameter 1 is the second peak, parameter 2 

is the first peak, parameter 3 is the minimum of the middle stance value, Param- 

eters 4, 5, and 6 are the respective time stamps of the aforementioned extremes. 

Parameter 7 is the difference of parameter 2 minus parameter 1. Two ratios are 

also calculated: the first is the ratio of parameter 1 over parameter 3 and the sec- 

ond ration is that of parameter 2 over parameter 3. (b) GRF-X for the left foot of 

control subjects. The blue curve corresponds to the mean GRF-X curve, whereas the 

purple shaded region indicates the precision of plus minus one standard deviation. 

Parameter 1 the minimum during loading response, parameter 2 is the maximum 

of middle stance, parameter 3 is the minimum of the joint middle stance, param- 

eter 4 the maximum of terminal stance, and parameter 5 is the minimum of the 

terminal stance. Parameters 7, 8, 9, and 10 are the respective time stamps of the 

aforementioned extremes. (c) GRF-Y for the left foot of control subjects. The blue 

curve corresponds to the mean GRF-Y curve, whereas the purple shaded region in- 

dicates the precision of plus minus one standard deviation. Parameter 1 is the peak 

and parameter 2 is the minimum value of the stance phase. Parameters 3 and 4 are 

the respective time stamps of the aforementioned extremes. 

e  

i  

b  

t  

l  
ormed consent was obtained from all participants. Control sub-

ects were recruited from local university and hospital staff and

tudents. OA subjects were recruited from hospital clinics and lo-

al General Practitioner (GP) clinics. Presence of OA was confirmed

rom medical reports and clinical examination by their practitioner.

ubjects were excluded from the study if they reported any neuro-

ogical or musculoskeletal condition other than knee OA, rheuma-

oid or other systemic inflammatory arthritis, morbid obesity (Body

ass Index > 35 kg/m 

2 ) or had undergone previous surgical treat-

ent for knee OA. 

Subjects were asked to walk at their self-selected walking speed

long a 6 m walkway embedded with two force plates (Kistler Type

286B, Kistler Instrumente AG, Winterthur, Switzerland). Kistler

ype 9286B force plate exploits piezoelectric 3-component force

ensors. It has 4 measuring elements, one at each corner of the

0 0 mm × 40 0 mm force plate. It has a rigidity of ≈12 N/ μm for

he x and the y axes and of ≈8 N/ μm for the z axis. The linear-

ty for all GRFs is < ±0.2% FSO and the respective hysteresis equals

 0,3% FSO. Measuring range is −2.5 to 2.5 kN for GRFX and GRFY,

hereas the respective range for GRFZ is 0 to 10 kN. Each sub-

ect was barefoot and unaware of the force plates embedded in the

alkway. Each subject was asked to walk along the walkway three

imes. Trials with no clean force plate strike were excluded. A max-

mum of three trials were recorded for the left and right foot. The

ignals from the force plates were recorded using an analogue sig-

al data acquisition card provided with the Vicon system (Vicon

otion Systems Ltd, Oxford, UK) and the Vicon Nexus software at

 sampling rate of 10 0 0 Hz. 

GRF data was extracted, normalised to the subject’s body

eight (N/kg), to reduce inter-subject variability due to weight,

nd time-normalised to the entire gait cycle using linear interpo-

ation. Next, statistical parameters were extracted for each axis. A

ist of those that are common among the three axes is available in

able 2 . 

Additionally, axis-specific parameters are extracted. For the Z-

xis the first peak, second peak, and minimum of the mid stance

alues were calculated along with the time stamps of those events.

urthermore, the differences between the values recorded from

ach leg were calculated. Also, the difference between the first

eak and the second peak was calculated. Finally, two ratios were

alculated: the ratio of the 1st peak value over the minimum

alue during mid-stance and the ratio of the 2nd peak value over

he minimum value during middle stance. The difference between

he two aforementioned ratios was also calculated. The aforemen-

ioned parameters are graphically depicted in Fig. 1 (a). For the X-

xis, the minimum during loading response, the maximum of mid

tance, the maximum of terminal stance, and the minimum of mid

tance and terminal stance were considered. Once again the time

tamps of those values are taken into account. Those parameters

an be seen in Fig. 1 (b). Accordingly, for the Y-axis, the maximum

nd the minimum values are taken into account along with the re-

pective time stamps, as is demonstrated in Fig. 1 (c). For each GRF

everal slopes are defined between two successive extremes. The

sterisks in Fig. 1 denote the extremes. Additional extremes exist

t the beginning and the end of the stance phase. For example, the

RF of the Z-axis has one slope defined from the beginning of the

ait cycle to the 1st peak. This protocol also applies for the GRFs

or X and Y-axes. More specifically, 6 slopes were calculated for the

RF over X-axis and 3 for the Y-axis. 

The advantage of this parameter extraction method is that these

arameters bear a physical meaning. The more abrupt the slopes,

he quicker that phase occurred relative to the gait cycle. Interquar-

ile range, as well as median is more robust to outliers than the

ean. Spearman correlation between left and right legs estimates

he strength of the associations of the gait patterns, since knee OA

ufferers tend to overload one leg at the expense of the other, as
videnced in Duffell et al . in [15] . It is normal to assume that even

f just one knee suffers from OA the patterns of the other knee may

e altered. GRF-Z demonstrates two peaks, the first reflects weight

ransfer from the heel to the mid-foot and the second one is re-

ated to the ball of the foot for push-off, as mentioned by Alaqtash
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Fig. 2. One of the regression trees comprising the random forest for the GRF over Z -axis. The regression tree is built using a random subset of the parameters extracted 

for GRF-Z. The highlighted area in the trapezoid is demonstrated in more detail in Fig. 3 , so as to give a more detailed idea of the rule induction. A value of 0 indicates a 

training subject that has no knee OA, of 1 that is clinically diagnosed with OA in one knee and with 2 suffering OA in both knees. 
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et al. in [16] . Also, there is a minimum during the stance phase.

These three extremes define an M-shape. The ratios that are cal-

culated for GRF-Z are estimations of its M shape, as explained by

Alaqtash et al. [16] and Takahashi et al . [17] . 

With respect to the ensemble, random forests take the input

parameters, traverse them with every tree in the forest, and then

average the responses over all the trees. Specifically, each tree con-

siders a different random subset of the parameters. By this proce-

dure, called bagging , different trees have different training param-

eter sets. Moreover, for each tree node a subset of the training pa-

rameter set is considered. The final regression value is obtained by

averaging the regression values of the random trees, as proposed

by Breiman [18] . Random forests need no cross-validation accord-

ing to Breiman [18] , this procedure happens inherently by selecting

a subset of parameters for every tree and node. Random forests

perform parameter selection automatically. If a feature is of poor

discriminating ability it will not appear in any node of the trees

comprising the forest. Accordingly, if a feature is highly informa-

tive it will not only appear in several trees, but will also have a

tendency to appear to nodes that are more close to the root, as ex-

plained by Chen and Ishwaran [19] . Here, a Matlab (Matlab 2012b,

The MathWorks Inc., Natick, MA, 2012) implementation of random

forests is utilised. To select the most informative parameters, we

compute the increase in prediction error if the values of that pa-

rameter are permuted across the out-of-bag observations. Out-of-

bag observations are those that are left out during the construction

of each tree. Since we construct each tree using a different boot-

strap sample from the original data that includes the two thirds

of the cases, the remaining one-third is left out, constituting the

out-of-bag observations. The increase in the prediction error if the

values of that parameter are permuted across the out-of-bag obser-

vations is computed for every tree, then averaged over the entire

ensemble and divided by the standard deviation over the entire

ensemble. For this work, we report the 3 most informative param-

eters per axis. We used half of the subjects’ trials for creating the

random forest and the other half for testing in a subject indepen-
 G  
ent manner. This means that the two sets (training and testing)

re disjoint, to ensure good generalisation ability. The output of the

ethod is a regression value ranging from 0 to 2, in order to sup-

ort clinicians with their decisions. We focus on regression instead

f classification since we believe that for a clinician it is more use-

ul to obtain a continuous value rather than whether the subject

oes or does not have knee OA. Also, OA is a degrading disease.

he closer this value is to 0 the more probable the subject under

onsideration is a healthy one, i.e. exhibits no knee OA. A value

f 2 equates to both knees suffering from severe OA. In all, a pa-

ient may be considered to exhibit no OA if the system calculates

 value less than 0.5. 

The performance of our system was assessed in a subject-

ndependent manner, i.e. by completely separating the training

ata (used to create the random forests) from the test data (used

o assess the performance). Specifically, we trained each regression

orest on half the number of trials, which corresponded to 48 sub-

ects. Half of them were suffering from knee OA and the remain-

er were healthy. We then tested the efficiency of the proposed

pproach on the remaining trials carried out by 46 subjects. This

eans that the testing data has never been seen before by the re-

ression forest, rendering the system robust to generalisation and

anding of new, unknown subjects. The experimental protocol is

ubject-independent. If a subject’s trial is included in the training

et, then all the trials of this subject are part of the training set and

re not used in the test set. This way, the system is able to handle

fficiently an unknown subject; is robust; and permits generaliza-

ion. Since each subject provides up to 3 gait cycles, the output

s averaged over the gait cycles, so as to have one final regression

alue per subject per GRF plane. 

. Results 

For visualisation purposes, one tree out of the ten that comprise

he random forest is depicted. Accordingly, a tree that traverses

RF-Z is depicted in Fig. 2 and the respective trees for GRF-X and
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Fig. 3. A part of the highlighted branch of the regression tree depicted in Fig. 2 . The 

branch, which is given by means of a flowchart, follows a rule induction approach 

to reach conclusions on the degree of knee OA based on binary decisions of the 

parameters extracted. A value of 0 indicates a training subject that has no knee OA, 

of 1 that is clinically diagnosed with OA in one knee and with 2 suffering OA in 

both knees. 
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RF-Y are depicted in electronic supplementary material, Figs. S1

nd S2, respectively. A close up of one branch of the tree demon-

trated in Fig. 2 can be seen in Fig. 3 . The aim of Fig. 3 is to fo-

us solely on one branch of the tree, so as to provide a better in-

ight to the nature of the binary rule induction implemented by

rees. 

With respect to GRF-Z the 3 parameters that bear the most dis-

riminating power are ( Fig. 4 ): (1) the ratio of the peak push off

alue over the minimum value during mid-stance. As it is demon-

trated in Fig. 4 subjects that suffer from knee OA have a tendency

o apply less force during mid-stance. (2) The slope defined from

he first peak to the minimum value between the first and second

eak ( Fig. 4 (b)) that is related to the reduction on the GRF-Z due

o knee flexion. (3) The slope defined from the beginning of the

ait cycle to the first peak, as depicted in Fig. 4 (a) that is related

o weight acceptance. This means that OA subjects have flatter GRF

atterns when compared to normal subjects and that knee OA sub-

ects have a more gradual weight acceptance. 

For the GRF-X axis the most important parameters are ( Fig. 5 ):

1) the minimum value obtained before the end of the stance

hase for the left leg, as depicted in Fig. 5 (b) that is related to

he medio-lateral force at toe off. (2) The slope between the sec-
nd peak and the toe off of the right leg ( Fig. 5 (c)), that is related

o moving medially from the peak lateral force. (3) The slope de-

ned from the first minimum value of the gait cycle to the first

eak ( Fig. 5 (a)), that is related to development of the lateral force

uring weight acceptance. 

For the GRF-Y axis the most important parameters are ( Fig. 6 ):

1) the difference in standard deviation between the two legs of

nterior–posterior force. (2) The time stamp of the minimum value

f the left leg, as shown in Fig. 6 (b), that is the time of the peak

ush off in posterior direction. (3) The slope from the maximum

alue to the minimum value for the left leg, as demonstrated in

ig. 6 (a), that is the shear force moving from the peak anterior

reaking force to the peak posterior push off force. 

We can consider that the proposed approach classifies a subject

orrectly if: (1) the subject declares that he/she has no OA and the

roposed approach output ≤0.5 or (2) the subject suffers from knee

A and the proposed approach output > 0.5. In any other case a

isclassification occurs. The results for this protocol are depicted

n Table 3 (a) for GRF-Z, Table 3 (b) for GRF-X, and Table 3 (a) for

RF-Y. Table 3 (d) refers to the linear combination per subject for

ll GRFs, i.e. the final regression value for each subject is the mean

f the regression values calculated for GRFZ, GRFX, and GRFY. Ad-

itional figures of merit are calculated for the confusion matrixes

resented in Table 3 . Those comprise sensitivity, specificity, accu-

acy and F1 score and are demonstrated in Table 4 . 

With respect to regression accuracy the mean squared error for

he GRF-Z is 0.64, for the GRF-X it is 0.67, and for GRF-Y it is 0.64.

f we combine the three axes in a linear manner, i.e. if we con-

ider as final regression value per subject the mean value over all

hree axes, then the mean squared error drops to 0.59. It is noted

hat the regression values are averaged across trials for the same

ubject due to the subject-independent protocol. 

Also, to prove the stability, robustness, and generalisation

bility of the proposed method, a 5-fold cross validation is

erformed. Once again, the subjects for the 5 different train-

ng/testing splits are selected in a subject-independent manner. In

he cross-validated case, the combined over the three axes mean

quared error is 0.44 ± 0.09, whereas the mean accuracy equals

2.61% ± 4.24%. 

To overcome the limitations that bilateral knee OA subjects are

ntroducing, an alternative configuration of the dataset is tested. In

his case, all subjects with OA in both knees, along with their age

nd gender matched were removed. This leaves us with 36 sub-

ects that exhibit OA in one knee along with their 36 respective

ge and gender matched subjects. The rest of the computer system

onfiguration remains the same. The results for this protocol are

epicted in Table 5 (a) for the linear combination per subject for all

RFs, whereas the figures of merit are demonstrated in Table 5 (b).

o comment on those results, accuracy for all GRFs has risen from

5.22% to 77.78%. This can be attributed to the fact that the exclu-

ion of the subjects that have OA in both knees leads to a more

omogeneous dataset, so the discrimination between the two cat-

gories is more consistent. 

To compare the trials, for the case of unilateral knee OA and

heir controls, we calculated the frequency of subjects that (i) had

 trials classified correctly, (ii) had 2 trials classified correctly, (iii)

ad 1 trial classified correctly, and (iv) had no trial classified cor-

ectly. 22 subjects (or 61.1%) belong to the first category; 6 subjects

or 16.7 %) belong to the second category; 4 subjects (or 11.1%) be-

ong to the third category; and 4 subjects (or 11.1%) belong to the

hird category. 

. Discussion 

This paper presents a novel computer system that automatically

i) estimates the degree of knee OA based on GRFs; (ii) discrim-
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Fig. 4. GRF-Z for control subjects and knee OA subjects per leg. The blue curve corresponds to the mean GRF-Z curve, whereas the purple shaded region indicates the 

precision of plus minus one standard deviation. The most discriminative parameter, indicated by 1 is a measure of the M-shape of the GRF-Z. The second parameter is the 

slope noted by 2 and the third parameter is the slope indicated by 3. Subject specific examples for each of the discriminating parameter are zoomed in the upper part of 

the figure. The blue curve is produced by a subject with no OA, whereas the blue one by a subject that suffers knee OA. 
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inates the most important parameters for reaching its decision;

those parameters are in fact in line with the literature, as detailed

later on this Section and (iii) produces a set of rules, presented in

this paper as binary decision trees, that can be alternatively seen

as a set of if-then-else arguments; these rules we propose are easy

from a clinical perspective. 

Additional experimental results demonstrating the effect of

thresholding as well as using alternative machine learning tech-

niques, namely support vector machines, as well as additional

training/testing splits, namely leave-one-subject-out, are presented

in Supplementary Material. 

The presented protocol leads to a high number of false neg-

atives. Approximately 20% of subjects that claimed they did not

have knee OA, presented with gait patterns similar to those of sub-

jects that suffer knee OA. This may potentially be attributed to the

fact that our healthy population were not investigated for joint ab-

normalities using imaging. As such, they may had early unknown

signs of knee joint changes that led them to work with a gait pat-

tern that bears some resemblance with that seen in people with

knee OA. However, this is a speculation and would require further

research to validate. Our findings clearly indicate that for verifi-

cation an imaging assessment of the healthy subjects is required.

Radiographic assessment of the healthy subjects is part of our pro-

posed future work. 

Our method has its own limitations. First of all, the method is

not validated against radiographic imaging, such as X-rays or MRIs

which often are used for OA diagnosis. However, using figures in
he scientific literature indicates that less than 50% of people with

vidence of OA on plain radiographs have symptoms related to

hese findings as proved by Hannan et al. [33] . Therefore, the ‘clin-

cal endpoint’ is more difficult to establish as explained by Hunter

t al . [34] . To conclude, the work of Zhang et al . [35] proves that

here is no gold standard in the diagnosis of knee OA. However

he knee OA subjects were identified by experienced orthopaedic

linicians and GPs based on their clinical examination findings and

edical records. A fraction of knee OA subjects had been referred

rom their GP for an X-ray or MRI (however, these images were not

lways available and any grading of OA severity is dependent of the

xpertise of their clinician). Healthy volunteers were assessed for

ny exclusions criteria such as knee pain or limitation in functional

bility, but did not have this confirmed through imaging; as such

hey may have had early signs of OA that were undetected. How-

ver, this study aims to work as a proof of concept, rather than

 validation study. The next step is to obtain ethics and funding

o recruit a larger number of subjects all of which will undergo

RI at the respective hospital department at the time of data col-

ection. This will allow us to confirm the presence or absence of

maging signs of knee OA. Also, the results although clinically rel-

vant cannot be used in the everyday clinical practice without fur-

her work including validating the suitability of the selected fea-

ures as knee OA markers and, ultimately, risk factors. 

On the advantage side, the parameters that we discriminate as

ost informative in this study are in line with the findings in the

elated literature. OA subjects are thought to adopt gait compensa-
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Fig. 5. GRF-X for control subjects and knee OA subjects per leg. The blue curve corresponds to the mean GRF-X curve, whereas the purple shaded region indicates the 

precision of plus minus one standard deviation. The minimum value obtained before the end of the stance phase for the left leg, denoted by ‘ ∗ ’, as well as by “1” is the most 

discriminative parameter. The second more discriminative parameter is the slope denoted with 2, and accordingly 3 indicates the slope that is ranked third with respect to 

discriminative power. Subject specific examples for each of the discriminating parameter are zoomed in the upper part of the figure. The blue curve is produced by a subject 

with no OA, whereas the blue one by a subject that suffers knee OA. 
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ion strategies to reduce pain or the moments generated about the

nee. Such strategies may provide insight into the altered parame-

ers noted here. For example, reduced gait speeds may be adopted

y patients in order to reduce medial compartment loading in OA

ubjects, as suggested by Mündermann et al. [20] , through reduc-

ion of GRF-Z peak amplitude and loading rate as demonstrated

y Zeni and Higginson [21] . Reduced knee excursion in the sagit-

al plane during the stance phase of gait has been reported in knee

A subjects by Childs et al . [22] as well as by Schmitt and Rudolph

23] and related to weakness of the quadriceps muscle; this would

lso affect the rate of force development in GRF-Z. Other strategies

re thought to alter medio-lateral knee loading according to Simic

t al . [24] , including increased varus thrust as proposed by Chang

t al . [25] and lateral trunk lean, which is thought to change the

ocation of the centre of the mass in the frontal plane as explained

y Mündermann et al . [26] and Hunt et al . [27] and would there-

ore alter GRF-X. Increased trunk lean was also associated with

ain in OA subjects as shown by Bechard et al . [28] . Finally, al-

erations in foot (toe-out) angle, are postulated to mediate medio-

ateral knee forces and pain as suggested by Bechard et al. [28] ,

ynn and Costigan [29] , and Simic et al. [30] and would alter shear

orces both in the medio-lateral and antero-posterior directions. 

Comparing the work shown here with the previous research

resented by Kotti et al . in [31] , the main difference lies on the

esearch focus and methodology. The work of Kotti et al . [31] fo-

used on understanding the motor behaviour by deconstructing its
omplexity. In more detail, it was studied how to deconstruct GRFs

nto a low-dimensional space and if this deconstruction of GRFs

as capable of discriminating between subjects with and with-

ut knee OA. Considering the methodology, probabilistic princi-

al component analysis (PPCA) was used for dimensionality reduc-

ion and the classification was done by means of a Bayes classifier.

ll the axes were considered concurrently, that is no results were

vailable per axis, and no feature engineering took place. The use

f PPCA means that a direct physical interpretation of the results

as not possible. Moreover, the approach presented by Kotti et al .

31] was not designed exclusively for GRFs and could be trans-

erred to other signals, such as EMGs, since no feature engineer-

ng is required. On the common methodology side, both works are

ubject-independent and use a cross-validated protocol. 

The advantages of our method compared with the related re-

earch summarized in the Introduction Section that also uses GRFs

that is Moustakidis et al . [10] and Mezghani et al . [11] ), are that

i) a greater number of subjects is exploited; (ii) the experimen-

al protocol is subject-independent; and (iii) the experimental pro-

ocol is 50% training/50% testing. However, this has an effect on

he accuracy of the results presented here. For example, Mous-

akidis et al . [10] report an accuracy of 93.4%, using a subject-

ependent 10-fold cross validation protocol over 214 trials of just

6 subjects. Accuracy is boosted since the experimental protocol

s both subject-dependent and 90% training/10% testing, thus less

hallenging than the subject-independent 50% training/50% testing
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Fig. 6. GRF-Y for control subjects and knee OA subjects per leg. The blue curve corresponds to the mean GRF-Y curve, whereas the purple shaded region indicates the 

precision of plus minus one standard deviation. The first most informative parameter is the minimum value during pre-swing indicated by 1. The slope stated by 2 is the 

second most informative parameter, whereas the third one is the total standard deviation of the GFRZ-Y curve. Subject specific examples for each of the discriminating 

parameter are zoomed in the upper part of the figure. The blue curve is produced by a subject with no OA, whereas the blue one by a subject that suffers knee OA. 
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exploited in this work and also due to the feature engineering, ren-

dering the features not directly clinically interpretable. Also, the

2 force plates used by Moustakidis et al . [10] are embedded into

a treadmill, rather than in a walkway, as in the presented ap-

proach. There is an argument in the research community whether

treadmill gait data are different from overground walking gait ac-

cording to Warabi et al . [32] . Referring to the system presented

by Mezghani et al . [11] , the experimental protocol in this case is

leave-one-subject out, so subject independent, but still less chal-

lenging than the leave-half-the-subjects-out tested here. The num-

ber of subjects is 42, so less than half of those tested for this pa-

per. Moreover, we consider all the trials provided by each subject,

rather than averaging across trials in order to calculate the mean

GRFs, as is the case of Mezghani et al . [11] . Averaging disregards

the intra-subject variability, rendering the problem less complex.

One of the main advantages of our approach is that it simulta-

neously discriminates between subjects that have knee OA by ex-

tracting the most informative parameters. Our aim is to create a

clinically relevant tool that enables the physician to see the in-

fluence of each parameter upon discrimination, as suggested by

Beynon et al . [8] . Also, in both cases we need to identify whether

the proposed tool makes decisions in line with clinical opinion. Ad-

ditionally, our study has a common point with that of Moustakidis

et al . [10] , since they both decompose the complex knee OA prob-

lem into simpler binary sub-problems via tree structures. However,

for the random forest approach, its robustness is mathematically
roven, it is robust to overfitting, and it does not utilise heuristics

hat are subjectively defined. An additional advantage of this study

s that since we do not transform our initial parameters we do not

eed to map them back to the original space, where they have a

hysical meaning. Such a mapping is subjective and may lead to

mbiguities. For example, the parameters derived by Deluzio and

stephen in [9] , namely the knee flexion moments during stance,

nee adduction moments during the stance phase, and knee flex-

on ranges of motion throughout the gait cycle are qualitative ob-

ervations. In our work the parameters are strictly, quantitatively

efined. The same argument applies to discrete wavelet decompo-

ition, where a mother wavelet Symlet is utilised to capture the

emporal information in the work of Mezghani et al. [11] . However,

t is unclear which temporal information was retained and why. Fi-

ally, this study takes extra care to use a subject-independent pro-

ocol to boost generalization. Subject dependent protocols can lead

o systems of higher accuracy, since a subject already seen during

raining is re-tested during the testing phase, as done by Beynon

t al . [8] . However, such systems may not be robust when they ac-

ually see a subject outside of the training population. 

. Conclusion 

To conclude this paper has proved the suitability of random

orests for analysing ground reaction forces in order to distinguish

nee OA patients from healthy ones. Moreover, it has managed to
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Table 3 

Confusion matrixes using the 0.5 knee OA threshold when exploiting (a) GRF-Z, (b) GRF-X, (c) GRF-Y, and (d) combined for all three 

axes. In case a subject has more than one trial available, the final regression value is calculated by averaging over the trials. 

 

GRFZ Estimated by the 

regression forest 

No OA Has OA 

True 

value 

No OA 14 9 

Has OA 7 16 

 

GRFX Estimated by the 

regression forest 

No OA Has OA 

True 

value 

No OA 9 14 

Has OA 4 19 

   (a)     (b) 

GRFY Estimated by the 

regression forest 

No OA Has OA 

True 

value 

No OA 10 13 

Has OA 4 19 

GRF-Z, GRF-X and 

GRF-Y 

Estimated by the 

regression forest 

No OA Has OA 

True 

value 

No OA 11 12 

Has OA 4 19 

(c) (d)   

Table 4 

Figures of merit, namely sensitivity, specificity, accuracy, and F1 score for the confusion matrixes exhibited 

in Table 3 , specifically for (a) GRF-Z, (b) GRF-X, (c) GRF-Y, and (d) combined for all three axes. 

GRFZ 

sensitivity 69.57% 

specificity 60.87% 

accuracy 65.22% 

F1 score 66.67% 

GRFX 

sensitivity 82.61% 

specificity 39.13% 

accuracy 60.87% 

F1 score 67.86% 

   (a)     (b) 

 GRFY 

sensitivity 82.61% 

specificity 43.48% 

accuracy 63.04% 

F1 score 69.09% 

GRF-Z, GRF-X and GRF-Y 

Sensitivity 82.61% 

Specificity 47.83% 

Accuracy 65.22% 

F1 score 70.37% 

(c) (d)   
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Table 5 

(a) Confusion matrix for the case of unilateral knee OA subjects. In this case subjects exhibiting OA in both 

knees, along with their age and gender matched ones have been excluded. The rest of the computer system 

configuration remains the same. (b) Figures of merit for the confusion matrix that appears in Table 5 (a). 

 

GRF-Z, GRF-X and 

GRF-Y  

Knee OA in one knee 

Estimated by the 

regression forest 

No OA Has OA 

True 

value 

No OA 14 4 

Has OA 4 14 

 

GRF-Z, GRF-X and GRF-Y 

sensitivity 77.78% 

specificity 77.78% 

accuracy 77.78% 

F1 score 77.78% 

   (a)     (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

provide a set of 9 features, 3 per axis, that are more discriminative

of knee OA. The suitability of those features has been verified by

the related bibliography. However, our method manages to com-

bine those features in a rule-based way, instead of using them in-

dependently. Moreover, the rule-based core of the proposed system

is close to the clinical rationale. To boost intra-subject consistency

subjects were asked to walk along the walkway 3 times. Mean

squared error is 0.44 ± 0.09, whereas the mean accuracy equals

72.61% ± 4.24% in a subject-independent protocol. However, further

studies are needed to validate those findings as well as to col-

lect data whose ground truth is derived through imaging. Our ul-

timate clinical vision is to create an objective, sensitive, diagnostic

tool and to personalise health care, since each individual patient

traverses the regression trees in a unique way. 
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