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Abstract

In a range of animal species, exposure of the brain to general anaesthesia without surgery
during early infancy may adversely affect its neural and cognitive development. The mecha-
nisms mediating this are complex but include an increase in brain cell death. In humans,
attempts to link adverse cognitive development to infantile anaesthesia exposure have
yielded ambiguous results. One caveat that may influence the interpretation of human stud-
ies is that infants are not exposed to general anaesthesia without surgery, raising the possi-
bility that surgery itself, may contribute to adverse cognitive development. Using piglets, we
investigated whether a minor surgical procedure increases cell death and disrupts neuro-
developmental and cognitively salient gene transcription in the neonatal brain. We randomly
assigned neonatal male piglets to a group who received 6h of 2% isoflurane anaesthesia or
a group who received an identical anaesthesia plus 15 mins of surgery designed to replicate
an inguinal hernia repair. Compared to anesthesia alone, surgery-induced significant
increases in cell death in eight areas of the brain. Using RNAseq data derived from all 12
piglets per group we also identified significant changes in the expression of 181 gene tran-
scripts induced by surgery in the cingulate cortex, pathway analysis of these changes sug-
gests that surgery influences the thrombin, aldosterone, axonal guidance, B cell, ERK-5,
eNOS and GABA, signalling pathways. This suggests a number of novel mechanisms by
which surgery may influence neural and cognitive development independently or synergisti-
cally with the effects of anaesthesia.

PLOS ONE | https://doi.org/10.1371/journal.pone.0173413 March 29, 2017

1/15


https://doi.org/10.1371/journal.pone.0173413
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173413&domain=pdf&date_stamp=2017-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173413&domain=pdf&date_stamp=2017-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173413&domain=pdf&date_stamp=2017-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173413&domain=pdf&date_stamp=2017-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173413&domain=pdf&date_stamp=2017-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173413&domain=pdf&date_stamp=2017-03-29
https://doi.org/10.1371/journal.pone.0173413
https://doi.org/10.1371/journal.pone.0173413
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7910/DVN/AIZU5P
http://dx.doi.org/10.7910/DVN/AIZU5P

@° PLOS | ONE

Cell death, gene transcription and surgery

Centre’s funding scheme. This study was funded
by the MRC (Grant: MR/J00457X/1) as part of a
larger project. DAA was funded by the Basque
Government Postdoctoral Program
(POS_2013_1_191). The funders had no role in
study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

Introduction

There is considerable debate concerning the possibility that exposure of the developing brain
to general anesthesia may adversely affect cognitive development. Well controlled studies in a
range of animal species (including piglets) have provided clear evidence that early develop-
mental exposure to general anesthesia, without surgery leads to increases in cell death, reduc-
tions in neuro and synapto-genesis, a disruption to the expression of cognitively salient genes
and deficits in cognitive function that persist throughout life [1-10]. In humans, attempts to
definitively link cognitive dysfunction to infantile anesthetic exposure have yielded ambiguous
results. Several studies have suggested that exposure to general anesthesia and surgery is asso-
ciated with an increased risk of adverse cognitive development, a risk which increases follow-
ing protracted or multiple procedures [11-14]. However, other studies have concluded that
there is no association between anesthetic exposure and adverse cognitive development [14-
16]. One potential confounder, of human clinical studies, that affects their interpretation is
that infants undergo both general anesthesia and surgery, which makes the dissociation of
their potential effects impossible. Another is that infants who undergo anesthesia and surgery
are usually compared with healthy controls, raising the possibility that the data derived from
the anesthesia and surgery cohorts, is reflective of the fact that infants who require surgery
early in life have underlying medical or developmental problems that may be associated with a
vulnerability to cognitive dysfunction [15]. The recent GAS consortium study [17] avoided
these two potential confounders by using randomised infants (approx 60 weeks of age) with an
identical inguinal hernia repair supported by either conscious regional or servoflurane based
general anesthesia. Although extrapolation of cognitive function at 2 years to that in adulthood
is problematic, this important study suggested that exposure to a single episode of servoflurane
anesthesia (median of 52 mins) is not associated with an increased risk of adverse cognitive
development at this age.

We have recently demonstrated that in neonatal male piglets 6h of exposure to 2% isoflur-
ane exposure (without surgery) induces increases in cell death, microglial activation and dis-
rupts the developmentally appropriate expression of genes supporting neurodevelopment and
cognitive function [10]. Our study in conjunction with others in both animals and humans
was derived from the hypothesis that the primary deleterious effects of anesthesia and surgery
on the developing brain, derive from exposure to anesthesia [1-17]. In contrast to these studies
we hypothesised that the experience of surgery itself may contribute to increases in cell death
and a disruption to developmentally appropriate gene expression, therefore our study investi-
gated whether a brief surgical procedure compared with anesthesia exposure alone induced: 1)
an increase in cell death and 2) significant changes in gene transcription in the developing neo-
natal piglet brain. In an earlier rodent study, a minor peripheral noxious stimuli exacerbated
the cell death induced by anesthesia [18]. We randomly assigned neonatal malepiglets to a con-
trol group who received 6h of 2% isoflurane anesthesia (with midolazam pre-sedation, and
fentanyl analgesia) or a group who underwent an identical anesthetic treatment plus 15 min of
surgery within 1h of the induction of anesthesia, designed to replicate an inguinal hernia
repair. The piglet model of anesthesia and surgery used in this study adds a strong pre-clinical
aspect to this study, as it allows the surgery to be applied as it would in a clinical setting with
extensive physiological support. This support includes regulated ventilation, maintenance of
cardiac output, blood volume and electrolytes. At a 6h time point we then assessed brain cell
death using terminal deoxynucleotidyl transferase-mediated deoxyuridine-triphosphate (d-
UTP) nick-end labelling (TUNEL) and analysed changes in gene transcription in the cingulate
cortex using RNAseq.
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Materials and methods
In-vivo procedures

Experiments were approved by the UK Home Office and the UCL Ethics board and performed
under UK Home Office Guidelines [Animal (Scientific Procedures) Act, 1986] and EEC direc-
tive 86/609/EEC. Twenty four Large White male piglets were obtained from a specialist, iso-
lated, disease free pig breeding facility (location details on request) and randomly assigned to
either a control group (n = 12) who received 6h of 2% isoflurane anesthesia (with 0.2mg/ kg-1
midolazam pre-sedation, 3mcg/k/h™ fentanyl analgesia) or a group (n = 12) who received an
identical anesthetic treatment plus 15 mins of surgery and closure designed to replicate an
inguinal hernia repair within 1h of the induction of anesthesia. Piglets were sedated with mida-
zolam (i.m 0.2mg kg'') and initially received isoflurane 2.5-3% v/v via a facemask prior to
endotracheal intubation (Portex endotracheal tube, Smiths Medical, Ashford, Kent, UK), anes-
thesia was maintained with 2% isoflurane for 6h following line insertion and intubation. The
study was designed so the anesthesia regime was equivalent in both control (anesthesia) and
treatment group (anesthesia plus surgery) and the anesthesia concentration was maintained at
2% in both groups. No significant blood loss was observed during surgery or closure. Local
cutaneous anesthesia was not applied to the surgery site and no movement of the pig was
observed when the initial incision was made. Piglets were mechanically ventilated, partial pres-
sure of oxygen (PaO,) and carbon dioxide (PaCO,) were maintained at 8-13kPa and 4.5-
6.5kPa respectively. Fractional inspired oxygen concentrations were maintained at 21% and
arterial oxygen saturation was monitored throughout by pulse oximetry (Nonin Medical,
Plymouth, MN, UK).

Umbilical arterial and venous catheters were inserted for infusion of maintenance fluids
(10% dextrose, 60ml/kg/day), fentanyl (Mercury Pharma, Co Dublin, Eire, 3mcg kg h™),
antibiotic prophylaxis (single doses of benzylpenicillin 50mg kg™ (Genus Pharma, Berkshire,
UK) and gentamicin 2.5mg kg™' (Pathion, Wiltshire, UK)) and to facilitate the continuous
monitoring of heart rate and arterial blood pressure. Hourly arterial blood was taken to mea-
sure PaO,, PaCO,, pH, electrolytes, urea, creatinine, glucose, lactate and blood haematocrit
(Table 1). Arterial lines were maintained by infusing 0.9% saline solution (0.3ml h'!, with
sodium heparin (1 TU ml")). Subjects received continuous physiological monitoring and
intensive life support throughout. Infusions of 0.9% saline (10ml kg™') and dopamine (5-
15mcg kg™ min™") were given, where necessary, to maintain mean arterial blood pressure
>40mmHg.

Assessment of cell death

Piglets were euthanized with pentobarbital, brains perfused with phosphate buffered saline, fol-
lowed by 4% phosphate buffered paraformaldehyde and post-fixed in 2% paraformaldehyde in
PBS (all at pH 7.4 and 4°C) for 10d. The right hemisphere was embedded in paraffin and sec-
tioned (5um). Representative sections were stained with haematoxylin and eosin (H&E) to assist
with the identification of neuroanatomical locations. Cell death was assessed using TUNEL his-
tochemistry, briefly sections were pre-treated for 15mins in 3% hydrogen peroxide, pre-digested
with protease K (15mins, 20ug ml 65°C, Promega, Southampton, UK), incubated with
TUNEL solution (2h, 37°C, Roche, Burgess Hill, UK), and visualized using avidin-biotinylated
horseradish complex (ABC, Vector Laboratories, Peterborough, UK) and diaminobenzidine/
H,0, (DAB, Sigma, Poole, UK). Sections were then dehydrated and cover-slipped with DPX
(VWR, Leighton Buzzard, UK). Quantification of cell death was undertaken blind to treatment,
for each piglet 2 sections were assessed at Bregma levels 00 and -2.0 (5mm apart), consistency of
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Table 1. Physiological variables compared in neonatal piglets subjected to anesthesia alone (control) and anesthesia and surgery. Body weight,
post-natal age and duration of anesthesia were compared at baseline using an unpaired t-test. Physiological parameters were compared at baseline (BL) and

at 1h intervals until termination, no statistically significant intergroup differences were observed using a repeated measures ANOVA.

Physiological parameter Time Group mean (¥SD)
Anesthesia Anesthesia + Surgery
Post-natal age (h) - 22.58 (8.61) 24.92 (5.12)
Body weight (kg) - 1.85 (0.16) 1.83(0.13)
Duration of anaesthesia (h) - 6.63(0.17) 6.77 (0.27)
Heart rate (BPM) BL 140 (17) 139 (13)
1h 150 (14) 145 (18)
2h 150 (15) 157 (13)
3h 148 (20) 158 (14)
4h 158 (23 161 (15)
5h 168 (32) 162 (17)
6h 170 (23) 160 (15)
MABP mmHg BL 47.8 (5.6) 42.0 (4.6)
1h 46.2 (6.5) 41.7 (7.5)
2h 45.9 (6.6) 47.6 (8.5)
3h 41.5(7.8) 41.2(5.2)
4h 43.7 (11.7) 40.7 (3.7)
5h 40.5 (5.6) 39.5(2.5)
6h 39.6 (5.2) 38.8 (3.3)
Rectal temp "'C BL 38.1(1.2) 37.9(1.1)
1h 38.6 (1.1) 37.6 (1.2)
2h 38.4 (1.0) 38.3 (1.1)
3h 38.0(1.0) 38.5(0.4)
4h 38.2(1.2) 38.5(0.6)
5h 38.2 (1.0) 38.4 (0.4)
6h 38.5(0.9) 38.4 (0.4)
PaO, kPa BL 15.8 (8.8) 18.2(8.5)
1h 13.2 (4.9) 16.6 (6.8)
2h 15.2 (7.6) 12.8 (6.6)
3h 11.3(3.7) 11.9 (6.5)
4h 12.8 (3.3) 12.3(6.7)
5h 13.3 (4.0) 12.9(7.4)
6h 11.5(2.4) 15.0 (8.2)
PaCO, kPa BL 4.82(0.91) 5.14 (1.64)
1h 6.47 (1.25) 5.28 (1.99)
2h 6.16 (1.60) 5.32(0.86)
3h 6.25 (0.78) 5.93(1.18)
4h 6.57 (1.30) 5.90 (0.68)
5h 5.97 (1.29) 5.52 (1.02)
6h 6.20 (1.60) 5.38 (1.25)
pH BL 7.5(0.1) 7.4(0.2)
1h 7.4(0.9) 7.4 (0)
2h 7.4(0.1) 7.4 (0)
3h 7.4 (0) 7.5(0.1)
4h 7.4(0.1) 7.4(0.1)
5h 7.4 (0.1) 7.5(0.1)
6h 7.4 (0.1) 7.5(0.1)

(Continued)
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Table 1. (Continued)

Physiological parameter Time Group mean (xSD)
Anesthesia Anesthesia + Surgery
BE mmol/L BL 8(4) 6 (6)
1h 6 (4) 5(4)
2h 6 (3) 3(3)
3h 6 (3) 5(4)
4h 6 (3) 6 (4)
5h 6 (4) 6 (5)
6h 6 (4) 7 (5)
Lactate mmol/L BL 3.6(1.2) 5(1.7)
1h 3.3(1.3) 5(1.9)
2h 3.8 (2.0) 4 (2.5)
3h 3.9(1.4) 6(2.2)
4h 3.6 (1.5) .0(1.9)
5h 3.4(1.7) .9(1.8)
6h 3.3(1.5) .5(2.0)
Glucose mmol/L BL 5.0 (1.3) 4 (1.0)
1h 6.6 (1.1) .3(1.0)
2h 7.3(0.9) .9 (1.0)
3h 7.5(1.0) .0(0.9)
4h 7.2(1.1) .0(0.8)
5h 74(1.2) 2(1.2)
6h 9.6 (0.81) .8(0.7)
Calcium mmol/L BL 1.4 (0.1) .2(0.5)
1h 1.5(0.1) 4(0.1)
2h 1.5(0.1) .5(0.1)
3h 1.4(0.2) .5(0.1)
4h 1.5(0.1) .5(0.1)
5h 1.4(0.2) 5(0.1)
6h 1.5(0) .5(0.1)

https://doi.org/10.1371/journal.pone.0173413.t001

counting with regard to individual areas was maintained by reference to haematoxylin and
eosin stained sections. TUNEL-positive nuclei were counted in three non-overlapping fields of
view at x40 magnification (sampling area was 0.075mm? per field of view of view), values pooled
converted to cells per mm” and means used for analysis. Cell death was assessed as an overall
effect and separately in the cingulate, motor, somatosensory, insula and pyriform cortices, peri-
ventricular white matter, internal capsule, caudate nucleus, putamen and thalamus.

RNA-seq

At euthanasia a fresh, un-perfused biopsy of the right anterior cingulate cortex (adjacent to the
sulcus at 5mm posterior to bregma) was taken, placed in RNAlater solution (Qiagen, West
Sussex, UK), frozen in liquid nitrogen and stored at -80°C until processing (n = 12 anesthesia,
n = 12 anesthesia and surgery). RNA was extracted using the standard protocol for animal tis-
sues supplied with the RNAeasy Midi kit (Qiagen, West Sussex, UK). RNA was assessed using
a Nanodrop spectrophotometer (NanoDrop, Wilmington, DE, USA) and Agilent 2100 Bioana-
lyser (Agilent, Santa Clara, CA, USA) and all samples had a spectral 260/280 ratio of between
2.05-2.13, and a RIN of 9.9-10.
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Briefly, mRNA was isolated from total RNA using Oligo dT beads to pull down Poly-Ade-
nylated transcripts. The purified mRNA was fragmented using chemical fragmentation (heat
and divalent metal cation) and primed with random hexamers. cDNA was generated using
Reverse Transcriptase and random primers. Samples were processed using Illumina’s TruSeq
RNA sample prep kit version 2 (p/n RS-122-2001) according to the manufacturer’s instruc-
tions, with the following variations in protocol, 250ng total RNA was used as starting material,
fragmentation was carried out for 10 instead of 8mins and 12 cycles of PCR were used. The
overhanging ends of the cDNA fragments were repaired using an End Repair enzyme mix, this
has a 3’ to 5" exonuclease activity which removes 3’ overhangs and polymerase activity which
fills in the 5" overhangs. The blunt ended cDNA was “A-tailed” at the 3’ end to prevent self-
ligation during the addition of the Adaptors (as Adaptors have a complementary “T-tail”).
Indexing Adaptors were ligated to the A-Tailed cDNA. These adaptors contain sequences that
allow the libraries to be amplified by PCR, bind to the flow cell and be uniquely identified by
way of a 6bp Index sequence. Finally, a PCR was carried out to amplify only those cDNA frag-
ments that had adaptors bound to both ends. Libraries to be multiplexed in the same run were
pooled in equimolar quantities and calculated from both qPCR and Bioanalyser fragment anal-
ysis. Samples were sequenced in a 24-plex pool on a NextSeq 500 instrument (Illumina, San
Diego, US) using a 43bp paired end run and an average of 20 million read pairs were generated
for each sample. Data was channelled into Genespring GX12 (Agilent, California, USA) and
first normalized and summarized using the Robust Multi-array Analysis (RMA) algorithm.
Data was filtered, as per normal array analysis protocols, to include only those probe sets fall-
ing between the 20" and 100" percentile after normalization. As we used a biologically rele-
vant sample size of 12 piglets per group we employed a threshold of 1.3 fold change and a p-
value of at least 0.05.

Statistics

Thresholds for statistical significance was p<0.05. Physical parameters, were compared using
repeated measures ANOVA. Saline and dopamine treatment were compared using a Kruskal-
Wallis equality of populations rank test. Cell death was compared using an analysis of variance
model, overall differences between means and treatment differences for the two treatment
groups are presented with 95% C.Ls. Analysis of gene expression was performed using a one-
way ANOVA followed by a moderated T-test post-hoc test and a Benjami-Hochberg FDR
multiple testing correction and p-values calculated asymptotically using endogenous Gene-
spring GX12 software.

Results
Physiological parameters are not significantly altered by 15 mins of
inguinal surgery

There were no significant intergroup differences in body weight or age. Physiological parame-
ters were controlled to within normal values throughout, with no statistically significant differ-
ences in physiological parameters or blood pressure support (saline or dopamine) observed
between the two groups (Table 1).

15 minutes of surgery increases cell death in the brain

Cell death assessed by TUNEL staining and statistical results are illustrated in Figs 1 and 2 and
Table 2. An increase in cell death was observed following surgery as an overall effect of
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A B

0.15mm

Fig 1. Representative TUNEL sections. At x20 magnification from the anesthesia group (A) and anesthesia + surgery group (B).

https://doi.org/10.1371/journal.pone.0173413.9001

treatment across all ten areas examined (<0.0001) (Figs 1 and 2, Table 2). Cell death in piglets
who underwent 15 min of inguinal surgery was significantly higher than that in piglets exposed
to isoflurane anaesthesia alone in the cingulate, motor, somatosensory and pyriform cortices,
the internal capsule, caudate nucleus and thalamus (Figs 1 and 2, Table 2). In the insula cortex,
periventricular white matter and putamen there were no significant increases in cell death in
piglets who underwent surgery.

A B === Anesthesia + Surgery
7 p-val<0.001 9071 m=m=  Anesthesia
L 681 <l
£ £
E 6671 g
H g 701
»n 647 2
g 627 v 601
% F
= 60t o
% % 50 + « _
F 58 + 2 /
40 }
56 1
54 30 _I + } .: ' + .3 ; ; ;
Anesthesia Anesthesia cing mCtx sCtx ins  pyr pvwm ic caud put thal
+ Surgery

Fig 2. Quantification of TUNEL histology. There was an overall increase in the estimated mean TUNEL-positive cells per mm? (pooled across
regions and R0/ R1 levels) in the anesthesia + surgery group versus anesthesia alone. On regional assessment there was a significant increase in
TUNEL positive cells in the anesthesia + surgery group versus anesthesia alone in the cingulate cortex (cing), motor cortex (mCtx), somatosensory
cortex (sCtx), pyriform cortex (pyr), internal capsule (ic), caudate (caud) and thalamus (thal). No significant increases were observed in the insula
cortex, periventricular white matter (pvwm) or putamen (put).

https://doi.org/10.1371/journal.pone.0173413.9002
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Table 2. Statistical details of TUNEL counts for all 9 regions and overall, cell death in 7 regions was increased in the anesthesia + surgery group
versus anesthesia alone. Statistical significance is indicated in bold.

Brain area Difference in mean TUNEL count 95% CI p-val
Cingulate cortex 11.0 (3.7, 18.2) 0.003
Motor cortex 10.7 (34.0, 18.0) 0.004
Somatosensory cortex 12.0 (4.8,19.0) 0.001
Insula cortex 0.4 (-22.2,9.7) 0.938
Pyriform cortex 9.2 (2.0, 16.5) 0.013
Pvwm 5.7 (-1.3,12.9) 0.113
Internal capsule 12.2 (2.9, 21.5) 0.011
Caudate 10.0 (2.7,18.9) 0.043
Putamen 8.5 (-0.79, 17.8) 0.073
Thalamus 13.0 (3.6,17.8) 0.007
All areas 9.80 (6.61,13.0) 0.001

https://doi.org/10.1371/journal.pone.0173413.t002

15 mins of surgery induces significant changes in the expression of 181
gene transcripts in the cingulate cortex

All gene expression data is reported as fold-change from the anaesthesia treatment group only.
Surgery induced significant changes in the expression of 181 gene transcripts at a threshold of
+1.3 fold change, of these 163 gene transcripts were up-regulated and 18 were down-regulated
(all 181 transcripts are available online as S1 Table and RN Aseq data files are available as S1
Dataset). Analysis of functional significance using Ingenuity Pathway Analysis software dem-
onstrated that surgery activated a number of pathways that may mediate adverse neural and
cognitive development, the top 10 canonical pathways in order of significance are; thrombin
signalling, aldosterone signalling in epithelial cells, axonal guidance signalling, B-cell receptor
signalling, ERK-5 (or big MAP-kinase 1) signalling, glioma signalling, breast cancer regulation
by stathmin 1, eNOS signalling, iCOS-iCOSL signalling in helper T-cells and growth hormone
signalling. The top 10 pathways are illustrated in Fig 3 and the complete pathway analysis out-
put is available online as S2 Table). Empirical observations of gene function also suggest that
surgery also affected calcium signalling (7/181) and phosphoinosiditide function (6/181). We
also observed that surgery induced changes in two gamma-amino-butyric acid type A subunits
and the GABA-signalling pathway although this was not in the Top Ten pathways generated.

Discussion

In a pre-clinical neonatal piglet model we demonstrate that 15 min of surgery completed
within 1h of the induction of anesthesia, similar to an infant inguinal hernia repair in duration,
location and area of tissue explored [17], increases cell death and induces significant changes
in the expression of 181 gene transcripts in the anterior cingulate cortex when compared to a
6h exposure of 2% isoflurane and fentanyl (3mcg kg™ h™) alone. In combination with our
prior data [10, 18], this finding indicates that animal models of “anesthesia alone” may be sub-
optimal for assessing the likely consequences of exposure to anesthesia plus surgery, employed
in human trials.

Whilst it is clearly established that early developmental exposure of the developing brain to
commonly used general anesthesic agents without surgery induces significant increases in cell
death in a range of animal species [1, 3, 4], this is the first observation that a brief surgical pro-
cedure increases cell death and induces transcriptional changes that are additional to those
induced by exposure to anesthesia alone in a biologically relevant sample size of 12 animals
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p-value ratio positive z-score . negative z-score no pattern available
up-regulation down-regulation regulation non-apparent
-log (p-value)
0.0 1.0 2.0 3.0 4.0 5.0

Thrombin signaling

Aldosterone signaling in epithelial cells
Axonal guidance signaling

B cell receptor signaling

ERKS5 signaling

Glioma signaling

Breast cancer regulation
by Stathmin 1
eNOS signaling

iCOS-iCOSL signaling
in T helper cells

Growth hormone signaling

p-value threshold

Fig 3. Pathway analysis illustrating the top ten canonical pathways affected by 15 mins of surgery. A positive z-score suggests an
increase in pathway activity, the darker the orange colour the higher the increase in pathway activity. Our data suggests that surgery increases
signalling in the thrombin, aldosterone, B-cell, ERK-5, eNOS, iCOS-iCOSL signalling in T-helper cells and growth hormone signalling pathways.
A grey colour indicates that axon guidance signalling and breast cancer signalling by stathmin-1 is perturbed by surgery but its direction is not-
apparent. Values are derived by the change in relative expression compared with the control group (fold change). This data suggests that
surgery affects endothelial function, neural plasticity and inflammatory processes.

https://doi.org/10.1371/journal.pone.0173413.9003

per group. We have recently demonstrated that 6h exposure to isoflurane (in an identical man-
ner to our control group) induces significant increases in the death of both neurons and oligo-
dendrocytes [10]. The additional increases in cell death we observe following surgery are
modest and although we have not carried out a quantitative double labelling study it is likely
that the additional cell death we have observed also reflects the death of both neurons and
oligodendrocytes.

Surgery even when accompanied by anesthesia is a sensory insult, which results in tissue
damage and inflammation [19], stress [20] and developmentally inappropriate nocieceptive
stimuli [18-21]. The piglets in our model, are less likely to have experienced “stress and
pain” during the procedure than a human infant, as they did not have an underlying medical
condition to act as a primary stressor, they were also sedated immediately on reception to
our facility, were given fentanyl pain relief throughout and were unconscious throughout the

PLOS ONE | https://doi.org/10.1371/journal.pone.0173413 March 29, 2017 9/15


https://doi.org/10.1371/journal.pone.0173413.g003
https://doi.org/10.1371/journal.pone.0173413

@° PLOS | ONE

Cell death, gene transcription and surgery

procedure. They will have experienced a developmentally inappropriate nocieceptive stimuli
from the surgery, but are unlikely to have experienced additional “stress and pain” either
during the procedure or before. We chose the anterior cingulate to investigate transcrip-
tional changes as it is important for the mediation of pain, anesthesia and cognitive function
[22, 23, 24]. Our transcriptional data suggests a number of mechanisms that may contribute
to an increase in cell death and exert adverse effects on neural or cognitive development.
Our pathway analysis data suggests that a brief surgical procedure disrupts developmentally
appropriate thrombin, aldosterone, B cell receptor, ERK-5, eNOS, growth hormone and
iCOS-iCoSL helper T cell signalling in the brain by increasing activity in these pathways. It
also suggests that surgery perturbs signalling in the axon guidance pathway in a manner that
is neither, positive or negative (Fig 3 and S2 Table). A disruption to any or all of these signal-
ling pathways may have pathological effects that may lead to developmentally inappropriate
alterations in neural development and cognitive function. The thrombin signalling pathway
is important in coagulation, normal neural development, vascular endothelial cell growth
and the neural response to trauma [24, 25]. At low concentrations thrombin influences neu-
ron and astrocyte development, induces glial cell proliferation and exerts a neuroprotective
effect, however at high concentrations thrombin disrupts the function of the blood brain bar-
rier and induces oedema and inflammation [26, 27]. Aldosterone signalling acts in neural
epithelial tissues to mediate oxidative stress, inflammation, water and electrolyte homeostasis
and is thought to be important in the pathophysiology of hypertension and stroke [28-30].
Developmentally and environmentally appropriate spatiotemporal control of axon growth
and guidance is of crucial importance for the developmental remodelling and maturation of
neural circuits and disruptions to this process may lead to a delay in the maturation of, and
lifelong changes to neural function [31-34]. Disruption to B-cell signalling may affect a num-
ber of B-cell functions, including survival, apoptosis, proliferation, and differentiation into
antibody-producing cells or memory B cells [35, 36]. The ERK-5 (aka big mitogen-activated
protein kinase-1) signalling cascade is activated by a range of growth factors, cytokines and
cellular stresses. Targeted inactivation of ERK-5 has also demonstrated that it is important
for vascular integrity and in endothelial cells ERK-5 is required to restrain apoptosis, regulate
hypoxia, tumour angiogenesis and cell migration [37, 38]. The role of eNOS signalling in the
regulation of vascular tone, cellular proliferation, leukocyte adhesion and platelet aggrega-
tion is well established and its modification is thought to exert neuroprotective effects in a
number of brain injury models [39-43]. iCOS-iCOSL signalling derived from helper T-cells
provides the required signal to promote B-cell survival and functional maturation [44]. Both
the growth hormone receptor and growth hormone itself is expressed widely in the brain
and is thought to be important for neurogenesis, cell survival, myelin synthesis, dendritic
branching and a range of cognitive functions [45-47]. Other changes observed include the
upregulation of two GABA 4 subunit transcripts and the GABA-A pathway, which is particu-
larly salient given this pathway is a major target of anesthetic drugs [48] and that GABA 4
receptor expression is regulated by inflammation [49, 50].

This genomic data needs further exploration in other model systems, but this data has
important implications for the future development of neuroprotective strategies in neonates
and infants undergoing anesthesia and surgery. Three themes arise from our genomic data
that surgery induces an alteration in endothelial function (thrombin, aldosterone, ERK-5 and
eNOS signalling) [24, 30, 37-43], inflammation (B-cell receptor, GABA-A and iCOS-iCOSL
T-helper cell signalling) [35, 36, 44] and neural plasticity (axonal, GABA , and growth hor-
mone signalling) [31, 34, 45, 46, 48, 50]. Developmentally inappropriate perturbations to any
of these processes have the potential to contribute to the development of adverse neural and
cognitive development. Our results are also interesting and surprising in that whilst our
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changes in gene expression are modest, the surgery that induced them was a very brief 15 min
procedure carried out 6h previously, it is likely that longer more complex surgical procedures
(1h or so) will induce significantly more robust increases in both cell death and changes in
gene expression supporting endothelial function, neural plasticity and inflammation, which
could potentially contribute to a higher risk of adverse neural development. Of course it is also
unclear whether these genomic changes are transient or not. For example, while this is
unknown at present, long-term changes in GABA 4 expression could contribute to the detri-
mental effects of repeat anesthesia exposure. Our genomic data is both unusual and robust in
that we have employed biologically salient sample sizes of 12 animals per group for our RNA-
seq analysis, this is an important consideration as due to biological variability and the stochias-
tic nature of gene expression there is a debate concerning the importance of “read depth”
versus “number of replicates” in accurately assessing the number of significantly differentially
expressed genes independently of their fold change. It has been suggested due to these pro-
cesses that 12 replicates is a minimum group size to detect the majority of these changes
regardless of “read depth” [51, 52], however most studies only use 3-6 replicates. Our
approach using 12 replicates has detected changes in the expression of 181 genes even after
correction for repeated measures (using a Benjamini-Hochberg test). Our data does have some
limitations as gene expression is a stochiastic and dynamic process and our data is derived
from one 6h time point only, it would be interesting for example to do a longitudinal gene
expression study at a number of time points following a surgical procedure, especially in the
weeks following surgery but our data suggests multiple new avenues of enquiry for this field of
research.

Caveats associated with our study

Our study was designed as a succinct proof of concept study which clearly demonstrates that a
brief period of surgery induces increases in cell death and changes in expression of genes
important for neurodevelopment and cognitive function. Our study does have limitations in
that we only sampled changes in cell death and gene expression at one 6h time point. It is
therefore possible that cell death in both the control group and the group that underwent sur-
gery would continue to increase for a 24h period and then decline. This conceivably could
result in the convergence or divergence in the incidence of cell death between the two groups,
which could affect the interpretation of our data. Our anesthesia treatment is also very long
which does limit its clinical relevance as very few infants undergo 6h of anesthesia. Our piglets
were also anesthetised throughout the procedure and were not allowed to reawaken following
the surgical procedure, which may affect how our data in interpreted in relation to human
studies. We also compared cell death and gene expression in male pigs only, this was a deliber-
ate decision on our part as the effects of exposure to isoflurane and surgery may be sexually
dimorphic, isoflurane in particular is known to increase brain cell death equivalently in both
genders but induces cognitive deficits in males but not females [53]. This may be an important
confounding factor when interpreting human data as some studies have suggested that neona-
tal anesthesia exposure is associated with attention deficit hyper-activity disorder [14], a pat-
tern of cognitive development that is more common in males [54].

Conclusions

The recent publication of preliminary cognitive data from the GAS consortium derived from
comparing two groups of infants who were both exposed to a short surgical procedure, con-
cluded that exposure to a single exposure of servoflurane anesthesia is not associated with an
increased risk of adverse cognitive development at the age of 2 [17]. Our observations
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suggesting that surgery itself increases cell death adds an extra layer of complexity which may
inform the interpretation of this and human studies that have attempted to link cognitive dys-
function to infantile exposure [11-17]. This suggests the need for further research into the
mechanisms by which surgery itself may influence the development of the brain independently
or synergistically with the effects of anaesthesia including how the severity and duration of
both interact. Whilst the relationship between developmental anaesthesia exposure and the
potential induction of cognitive deficits is complex and the subject of considerable debate, our
data demonstrates that a brief surgical procedure increases cell death and alters the expression
of genes important for endothelial function, inflammation and neural plasticity.

Supporting information

S1 Table. Gene transcripts responsive to 15 minutes of surgery. Surgery induced significant
changes in the expression of 181 gene transcripts at a threshold of +1.3 fold change, of these
163 gene transcripts were up-regulated and 18 were down-regulated. Analysis of gene expres-
sion was performed using a one-way ANOVA followed by a moderated T-test post-hoc test
and a Benjami-Hochberg FDR multiple testing correction and p-values calculated asymptoti-
cally using endogenous Genespring GX12 software. A brief summary of function is included
with each gene transcript.

(DOC)

$2 Table. Canonical pathways represented by a brief 15 min period of surgery. Analysis
was conducted using Ingenuity Pathway Analysis software on 181 gene transcripts expressed
differentially in piglets exposed to a brief period of surgery.

(XLS)

S1 Dataset. RN Aseq datafiles. Each piglet has a separate sheet.
(XLS)

Acknowledgments

This work was undertaken at University College London Hospitals/University College Lon-
don, which received a proportion of funding from the UK Department of Health’s National
Institute for Health Research Biomedical Research Centre’s funding scheme.

Author Contributions

Conceptualization: NJR PG RS.

Data curation: KDB GK.

Formal analysis: KDB NJR.

Funding acquisition: NJR.

Investigation: KDB GK IF ERF MH ME JR DAA BC JH.
Methodology: NJR KDB RS PG.

Project administration: KDB NJR.

Resources: KDB GK IF ERF MH ME JR DAA BC JH BF PG RS NJR.
Supervision: NJR.

Visualization: KDB.

PLOS ONE | https://doi.org/10.1371/journal.pone.0173413 March 29, 2017 12/15


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0173413.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0173413.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0173413.s003
https://doi.org/10.1371/journal.pone.0173413

@° PLOS | ONE

Cell death, gene transcription and surgery

Writing - original draft: KDB.

Writing - review & editing: KDB NJR RS.

References

1.

10.

11.

12

13.

14.

15.

16.

17.

Brambrink AM, Back SA, Riddle A, Gong X, Moravic MD, Dissent GA. Isoflurane induced apoptosis of
oligodendrocytes in the neonatal primate brain. Ann. Neurol. 2012 Oct; 72 (4): 525-35. https://doi.org/
10.1002/ana.23652 PMID: 23109147

Briner A, Nikonenko I, De Roo M, Dayer A, Muller D, Vutskis L. Developmental stage dependent persis-
tent impact of propofol anesthesia on dendritic spines in the rat medial prefrontal cortex. Anesthesiology
2011 Aug; 115 (2): 282—93. https://doi.org/10.1097/ALN.0b013e318221fbbd PMID: 21701379

Creeley CE, Dikranian KT, Dissen GA, Back SA, Ulney JW, Brambrink AM. Isoflurane-induced apopto-
sis of neurons and oligodendrocytes in the fetal rhesus macaque brain. Anesthesiology 2014 Mar;
120 (3): 626—38. https://doi.org/10.1097/ALN.0000000000000037 PMID: 24158051

Istaphanous GK, Ward CG, Nan X, Hughes EA, McCann JC, McAuliffe, et al. Characterization and
quantification of isoflurane-induced developmental apoptotic cell death in mouse cerebral cortex.
Anesth Analg 2013 Apr; 116 (4): 845-54. https://doi.org/10.1213/ANE.Ob013e318281e988 PMID:
23460572

Jevtovic-Todorovic V, Hartmann RE, Izumi Y, Benshoff ND, Dickranian K, Zorumski CF, et al. Early
exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat
brain and persistent learning deficits. J Neurosci. 2003 Feb 1; 23 (3): 876-82. PMID: 12574416

Paule MG, Li M, Allen RR, Liu F, Zou X, Hotchkiss C, et al. Ketamine anesthesia during the first week of
life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicol Teratol. 2011 Mar-Apr;
33(2): 220-30. https://doi.org/10.1016/j.ntt.2011.01.001 PMID: 21241795

Raper J, Alvarado MC, Murphy KL, Baxter MG. Multiple Anesthetic Exposure in Infant Monkeys Alters
Emotional Reactivity to an Acute Stressor. Anesthesiology. 2015 Nov; 123 (5): 1084-92. https://doi.
org/10.1097/ALN.0000000000000851 PMID: 26313293

Sanchez V, Feinstein SD, Lunardi N, Joksovic PM, Boscolo N, Todorovic SM, et al. General Anesthesia
Causes Long-term Impairment of Mitochondrial Morphogenesis and Synaptic Transmission in Develop-
ing Rat Brain. Anesthesiology 2011 Nov; 115 (5): 992—1002. https://doi.org/10.1097/ALN.
0b013e3182303a63 PMID: 21909020

Wu J, Bie B, Naguib M. Epigenetic Manipulation of Brain-derived Neurotrophic Factor Improves Mem-
ory Deficiency Induced by Neonatal Anesthesia in Rats. Anesthesiology 2015 Mar; 124 (3): 624—40.

Broad KD, Hassell J, Fleiss B, Kawano G, Ezzati M, et al. Isoflurane Exposure Induces Cell Death,
Microglial Activation and Modifies the Expression of Genes Supporting Neurodevelopment and Cogni-
tive Function in the Male Newborn Piglet Brain. PLoS One 2016 Nov 29; 11(11): e0166784. https://doi.
org/10.1371/journal.pone.0166784 PMID: 27898690

DiMaggio C, Sun LS, Kakavouli A, Byrne MW, Li G. A retrospective cohort study of the association of
anesthesia and hernia repair surgery with behavioral and developmental disorders in young children. J
Neurosurg Anesthesiol 2009 Oct; 21 (4): 286-91. https://doi.org/10.1097/ANA.0b013e3181a71f11
PMID: 19955889

DiMaggio C, Sun LS, Li G. Early childhood exposure to anesthesia and risk of developmental and
behavioral disorders in a sibling birth cohort. Anesth Analg 2011 113 (5): 1143-51. https://doi.org/10.
1213/ANE.Ob013e3182147f42 PMID: 21415431

Ing C, DiMaggio C, Whitehouse A, Hegarty MK, Brady J, von Ungern-Sternberg BS. Long-term differ-
ences in language and cognitive function after childhood exposure to anesthesia. Pediatrics 2012 Sep;
130(3): e476-85. hitps://doi.org/10.1542/peds.2011-3822 PMID: 22908104

Sprung J, Flick RP,Katusic SK, Colligan RC, Barbaresi WJ, Bojunic K, et al. Attention-deficit/hyperactiv-
ity disorder after early exposure to procedures requiring general anesthesia. Mayo Clin Proc 2012 Feb;
87 (2): 120-29. https://doi.org/10.1016/j.mayocp.2011.11.008 PMID: 22305025

Bartels M, Althoff RR, Boomsma DI. Anesthesia and cognitive performance in children: no evidence for
a causal relationship. Twin Res Hum Genet 2009 Jun; 12(3): 246—253. https://doi.org/10.1375/twin.12.
3.246 PMID: 19456216

Hansen TG, Pederen JK, Hanneberg SW, Pedersen DA, Murray JC, Morton N, et al. Academic perfor-
mance in adolescence after inguinal hernia repair in infancy: a nationwide cohort study. Anesthesiology
2011 May; 114(5): 1075-1085.

Davidson AJ, Disma N, deGraff JC, Withington DE, Dorris L, Bell G, et al. Neurodevelopmental outcome
at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an

PLOS ONE | https://doi.org/10.1371/journal.pone.0173413 March 29, 2017 13/15


https://doi.org/10.1002/ana.23652
https://doi.org/10.1002/ana.23652
http://www.ncbi.nlm.nih.gov/pubmed/23109147
https://doi.org/10.1097/ALN.0b013e318221fbbd
http://www.ncbi.nlm.nih.gov/pubmed/21701379
https://doi.org/10.1097/ALN.0000000000000037
http://www.ncbi.nlm.nih.gov/pubmed/24158051
https://doi.org/10.1213/ANE.0b013e318281e988
http://www.ncbi.nlm.nih.gov/pubmed/23460572
http://www.ncbi.nlm.nih.gov/pubmed/12574416
https://doi.org/10.1016/j.ntt.2011.01.001
http://www.ncbi.nlm.nih.gov/pubmed/21241795
https://doi.org/10.1097/ALN.0000000000000851
https://doi.org/10.1097/ALN.0000000000000851
http://www.ncbi.nlm.nih.gov/pubmed/26313293
https://doi.org/10.1097/ALN.0b013e3182303a63
https://doi.org/10.1097/ALN.0b013e3182303a63
http://www.ncbi.nlm.nih.gov/pubmed/21909020
https://doi.org/10.1371/journal.pone.0166784
https://doi.org/10.1371/journal.pone.0166784
http://www.ncbi.nlm.nih.gov/pubmed/27898690
https://doi.org/10.1097/ANA.0b013e3181a71f11
http://www.ncbi.nlm.nih.gov/pubmed/19955889
https://doi.org/10.1213/ANE.0b013e3182147f42
https://doi.org/10.1213/ANE.0b013e3182147f42
http://www.ncbi.nlm.nih.gov/pubmed/21415431
https://doi.org/10.1542/peds.2011-3822
http://www.ncbi.nlm.nih.gov/pubmed/22908104
https://doi.org/10.1016/j.mayocp.2011.11.008
http://www.ncbi.nlm.nih.gov/pubmed/22305025
https://doi.org/10.1375/twin.12.3.246
https://doi.org/10.1375/twin.12.3.246
http://www.ncbi.nlm.nih.gov/pubmed/19456216
https://doi.org/10.1371/journal.pone.0173413

@° PLOS | ONE

Cell death, gene transcription and surgery

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

international multicentre, randomised controlled trial. Lancet 2016 Jan 16; 387(10015): 239-50. https://
doi.org/10.1016/S0140-6736(15)00608-X PMID: 26507180

Shu'Y, Zhou Z, Wan Y, Sanders RD, Li M, Pac-Soo CK et al. Nociceptive stimuli enhance anesthetic-
induced neuroapoptosis in the rat developing brain. Neurobiol Dis 2012 Feb; 45 (2): 743-50. https://
doi.org/10.1016/j.nbd.2011.10.021 PMID: 22075165

Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, et al. Role of interleukin-1 beta in
postoperative cognitive dysfunction. Ann Neurol 2010 Sep; 68 (3): 360-8. https://doi.org/10.1002/ana.
22082 PMID: 20818791

Aisa B, Elizalde N, Tordera R, Lasheras B, Del Rio J, Ramirez MJ. Effects of neonatal stress on markers
of synaptic plasticity in the hippocampus: implications for spatial memory. Hippocampus 2009 Dec;
19 (12): 1222—1231. https://doi.org/10.1002/hipo.20586 PMID: 19309038

Hartley C, Pooron R, Goksan S, Worley A, Boyd S, Rodgers R, et al. Noxious stimulation in children
receiving general anaesthesia evokes an increase in delta frequency brain activity. Pain 2014 Nov; 155
(11): 2368-76. https://doi.org/10.1016/j.pain.2014.09.006 PMID: 25218826

Langsjo JW, Alkire MT, Kaskinbro K, Hayama H, Maksimow A, Kaisti KK, et al. Returning from oblivion:
imaging the neural core of consciousness. J Neurosci 2012 Apr 4; 32(14); 4935-43 (2012). hitps://doi.
org/10.1523/JNEUROSCI.4962-11.2012 PMID: 22492049

Tracey |. Imaging pain. Br J Anaesth 2008 Jul; 101 (1): 32-9. https://doi.org/10.1093/bja/aen102 PMID:
18556697

Krenzlin H, Lorenz V, Danckwardt S, Kempski O, Alessandri B. The Importance of Thrombin in Cerebral
Injury and Disease. Int J Mol Sci. 2016 Jan 11; 17 (1).

Martorell L, Martinez-Gonzalez J, Crespo J, Calvayrac O, Badimon L. Neuron-derived orphan receptor-
1 (NOR-1) is induced by thrombin and mediates vascular endothelial cell growth. J Thromb Haemost.
2007 Aug; 5 (8): 1766—73. https://doi.org/10.1111/j.1538-7836.2007.02627.x PMID: 17596136

Wang H, Reiser G. Thrombin signalling in the brain: The role of protease-activated receptors. Biol
Chem 2003 Feb; 384 (2): 193—202. https://doi.org/10.1515/BC.2003.021 PMID: 12675511

Lee KR, Kawai N, Kim S, Sagher O, Hoff JT. Mechanisms of edema formation after intracerebral hem-
orrhage: Effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in
a rat model. J Neurosurg. 1997; 86 (2): 272-278. https://doi.org/10.3171/jns.1997.86.2.0272 PMID:
9010429

Dinh QN, Young MJ, Evans MA, Drummond GR, Sobey CG, Chrissobolis S. Aldosterone-induced oxi-
dative stress and inflammation in the brain are mediated by the endothelial cell mineralocorticoid recep-
tor. Brain Res. 2016 Apr 15; 1637: 146-53. https://doi.org/10.1016/j.brainres.2016.02.034 PMID:
26923165

Wang HW, Huang BS, Chen A, Ahmad M, White RA, Leenan FH. Role of brain aldosterone and miner-
alocorticoid receptors in aldosterone-salt hypertension in rats. Neuroscience. 2016 Feb 9; 314: 90—
105. https://doi.org/10.1016/j.neuroscience.2015.11.055 PMID: 26656220

Geerling JC, Loewy AD. Aldosterone in the brain. Am J Physiol Renal Physiol 2009 Sep; 297 (3):
F559-76. https://doi.org/10.1152/ajprenal.90399.2008 PMID: 19261742

Helmbrecht MS, Soeller H, Castiblanco-Urbina MA, Winzeck S, Sundermeier J, Theis FJ. A critical
period for postnatal adaptive plasticity in a model of motor axon miswiring. PLoS One. 2015 Apr 13;
10(4): e0123643. https://doi.org/10.1371/journal.pone.0123643 PMID: 25874621

Van Battum EY, Brignani S, Pasterkamp RJ. Axon guidance proteins in neurological disorders. Lancet
Neurol. 2015 May; 14 (5): 532—46. https://doi.org/10.1016/S1474-4422(14)70257-1 PMID: 25769423

Tillo M, Ruhrberg C, Mackenzie F. Emerging roles for semaphorins and VEGFs in synaptogenesis and
synaptic plasticity. Cell Adh Migr. 2012 Nov-Dec; 6 (6): 541-6. https://doi.org/10.4161/cam.22408
PMID: 23076132

Shen K, Cowan CW. Guidance molecules in synapse formation and plasticity. Cold Spring Harb Per-
spect Biol 2010 Apr; 2 (4): a001842. https://doi.org/10.1101/cshperspect.a001842 PMID: 20452946

Harwood NE, Batista FD. New insights into the early molecular events underlying B cell activation.
Immunity 2008; 28 (5): 609—19. https://doi.org/10.1016/j.immuni.2008.04.007 PMID: 18482567

Harwood NE, Batista FD. Early events in B cell activation. Annu Rev Immunol 2010; 28: 185-210.
https://doi.org/10.1146/annurev-immunol-030409-101216 PMID: 20192804

Roberts OL, Holmes K, Mdiller J, Cross DA, Cross MJ. ERK5 and the regulation of endothelial cell func-
tion. Biochem Soc Trans. 2009 Dec; 37(Pt 6): 1254-9. https://doi.org/10.1042/BST0371254 PMID:
19909257

Nithianandarajah-Jones GN, Wilm B, Goldring CE, Milller J, Cross MJ. ERKS5: structure, regulation and
function. Cell Signal 2012 Nov; 24 (11): 2187-96. https://doi.org/10.1016/j.cellsig.2012.07.007 PMID:
22800864

PLOS ONE | https://doi.org/10.1371/journal.pone.0173413 March 29, 2017 14/15


https://doi.org/10.1016/S0140-6736(15)00608-X
https://doi.org/10.1016/S0140-6736(15)00608-X
http://www.ncbi.nlm.nih.gov/pubmed/26507180
https://doi.org/10.1016/j.nbd.2011.10.021
https://doi.org/10.1016/j.nbd.2011.10.021
http://www.ncbi.nlm.nih.gov/pubmed/22075165
https://doi.org/10.1002/ana.22082
https://doi.org/10.1002/ana.22082
http://www.ncbi.nlm.nih.gov/pubmed/20818791
https://doi.org/10.1002/hipo.20586
http://www.ncbi.nlm.nih.gov/pubmed/19309038
https://doi.org/10.1016/j.pain.2014.09.006
http://www.ncbi.nlm.nih.gov/pubmed/25218826
https://doi.org/10.1523/JNEUROSCI.4962-11.2012
https://doi.org/10.1523/JNEUROSCI.4962-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22492049
https://doi.org/10.1093/bja/aen102
http://www.ncbi.nlm.nih.gov/pubmed/18556697
https://doi.org/10.1111/j.1538-7836.2007.02627.x
http://www.ncbi.nlm.nih.gov/pubmed/17596136
https://doi.org/10.1515/BC.2003.021
http://www.ncbi.nlm.nih.gov/pubmed/12675511
https://doi.org/10.3171/jns.1997.86.2.0272
http://www.ncbi.nlm.nih.gov/pubmed/9010429
https://doi.org/10.1016/j.brainres.2016.02.034
http://www.ncbi.nlm.nih.gov/pubmed/26923165
https://doi.org/10.1016/j.neuroscience.2015.11.055
http://www.ncbi.nlm.nih.gov/pubmed/26656220
https://doi.org/10.1152/ajprenal.90399.2008
http://www.ncbi.nlm.nih.gov/pubmed/19261742
https://doi.org/10.1371/journal.pone.0123643
http://www.ncbi.nlm.nih.gov/pubmed/25874621
https://doi.org/10.1016/S1474-4422(14)70257-1
http://www.ncbi.nlm.nih.gov/pubmed/25769423
https://doi.org/10.4161/cam.22408
http://www.ncbi.nlm.nih.gov/pubmed/23076132
https://doi.org/10.1101/cshperspect.a001842
http://www.ncbi.nlm.nih.gov/pubmed/20452946
https://doi.org/10.1016/j.immuni.2008.04.007
http://www.ncbi.nlm.nih.gov/pubmed/18482567
https://doi.org/10.1146/annurev-immunol-030409-101216
http://www.ncbi.nlm.nih.gov/pubmed/20192804
https://doi.org/10.1042/BST0371254
http://www.ncbi.nlm.nih.gov/pubmed/19909257
https://doi.org/10.1016/j.cellsig.2012.07.007
http://www.ncbi.nlm.nih.gov/pubmed/22800864
https://doi.org/10.1371/journal.pone.0173413

@° PLOS | ONE

Cell death, gene transcription and surgery

39.

40.

41.

42,

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Schwarzmaier SM, Terpolilli NA, Dienel A, Gallozzi M, Shinzel R, Tegtmeier F. Endothelial nitric oxide
synthase mediates arteriolar vasodilatation after traumatic brain injury in mice. J Neurotrauma 2015
May 15; 32 (10): 731-8. https://doi.org/10.1089/neu.2014.3650 PMID: 25363688

Lundblad C, Gréande PO, Bentzer P. Hemodynamic and histological effects of traumatic brain injury in
eNOS-deficient mice. J Neurotrauma 2009 Nov; 26 (11): 1953—-62. https://doi.org/10.1089/neu.2009.
0955 PMID: 19929218

Garry PS, Ezra M, Rowland MJ, Westbrook J, Pattinson KT. The role of the nitric oxide pathway in brain
injury and its treatment from bench to bedside. Exp Neurol. 2015 Jan; 263: 235—43. https://doi.org/10.
1016/j.expneurol.2014.10.017 PMID: 25447937

Rocha-Ferreira E, Rudge B, Hughes MP, Rahim AA, Hristova M, Robertson NJ. Immediate Remote
Ischemic Postconditioning Reduces Brain Nitrotyrosine Formation in a Piglet Asphyxia Model. Oxid
Med Cell Longev 2016; 2016: 5763743. https://doi.org/10.1155/2016/5763743 PMID: 27379176

Lin HY, Wu CL, Huang CC. The Akt-endothelial nitric oxide synthase pathway in lipopolysaccharide pre-
conditioning-induced hypoxic-ischemic tolerance in the neonatal rat brain. Stroke. 2010 Jul; 41 (7):1543—
51. https://doi.org/10.1161/STROKEAHA.109.574004 PMID: 20508195

Zheng B, Xu G, Chen X, Mannova E, Han S. ICOSL mediated signalling is essential for the survival and
functional maturation of germinal centre B cells through the classical NF-kB pathway. The Journal of
Immunology. Vol 194 (1 Supplement) 131.9.

Waters MJ, Blackmore DG. Growth hormone (GH), brain development and neural stem cells. Pediatr
Endocrinol Rev 2011 Dec; 9 (2): 549-53. PMID: 22397139

Devesa P, Agasse F, Xapelli S, Aimenglo C, Devesa J, Malva JO. Growth hormone pathways signalling
for cell proliferation and survival in hippocampal neural precursors from postnatal mice. BMC Neurosci
2014 Aug 26; 15:100. https://doi.org/10.1186/1471-2202-15-100 PMID: 25156632

Webb A. O’Reilly MA, Clayden JD, Seunarine KK, Chang WK, Dale N. Effect of growth hormone defi-
ciency on brain structure, motor function and cognition. Brain. 2012 Jan; 135 (Pt 1): 216—27. https://doi.
org/10.1093/brain/awr305 PMID: 22120144

Antkowiak B, Rudolph U. New insights in the systemic and molecular underpinnings of general anes-
thetic actions mediated by y-aminobutyric acid Areceptors. Curr Opin Anaesthesiol. 2016 Aug; 29 (4):
447-53.

Sanders RD, Godlee A, Fujimori T, Goulding J, Xin G, Salek-Ardakani S, et al. Benzodiazepine aug-
mented y-amino-butyric acid signaling increases mortality from pneumonia in mice. Crit Care Med.
2013 Jul; 41(7): 1627-36. PMID: 23478657

Sanders RD, Grover V, Goulding J, Godlee A, Gurney S, Snelgrove R et al. Immune cell expression of
GABAA receptors and the effects of diazepam on influenza infection. J Neuroimmunol 2015 May 15;
282: 97-103. https://doi.org/10.1016/j.jneuroim.2015.04.001 PMID: 25903735

Hansen KD, Wu Z, Irizarry RA, Lee JT. Sequencing technology does not eliminate biological variability.
Nat Biotechnol 2011 Jul 11; 29 (7): 572-3. https://doi.org/10.1038/nbt.1910 PMID: 21747377

Schurch NJ, Schofield P, Gierlinski M, Cole C, Sherstnev A et al. How many biological replicates are
needed in an RNAseq experiment and which differential expression tool should you use? RNA 2016
Jun; 22 (6): 839-51. hitps://doi.org/10.1261/rna.053959.115 PMID: 27022035

Lee BH, Chan JT, Kraeva E, Petersen K, Sall JW. Isoflurane exposure in newborn rats induces long
term cognitive dysfunction in males but not females. Neuropharmacology 2014 Aug; 83: 9—17. https:/
doi.org/10.1016/j.neuropharm.2014.03.011 PMID: 24704083

Rucklidge JJ. Gender differences in attention-deficit/ hyperactivity disorder. Psychiatr Clin North Am
2010 Jun; 33(2): 357-73. https://doi.org/10.1016/j.psc.2010.01.006 PMID: 20385342

PLOS ONE | https://doi.org/10.1371/journal.pone.0173413 March 29, 2017 15/15


https://doi.org/10.1089/neu.2014.3650
http://www.ncbi.nlm.nih.gov/pubmed/25363688
https://doi.org/10.1089/neu.2009.0955
https://doi.org/10.1089/neu.2009.0955
http://www.ncbi.nlm.nih.gov/pubmed/19929218
https://doi.org/10.1016/j.expneurol.2014.10.017
https://doi.org/10.1016/j.expneurol.2014.10.017
http://www.ncbi.nlm.nih.gov/pubmed/25447937
https://doi.org/10.1155/2016/5763743
http://www.ncbi.nlm.nih.gov/pubmed/27379176
https://doi.org/10.1161/STROKEAHA.109.574004
http://www.ncbi.nlm.nih.gov/pubmed/20508195
http://www.ncbi.nlm.nih.gov/pubmed/22397139
https://doi.org/10.1186/1471-2202-15-100
http://www.ncbi.nlm.nih.gov/pubmed/25156632
https://doi.org/10.1093/brain/awr305
https://doi.org/10.1093/brain/awr305
http://www.ncbi.nlm.nih.gov/pubmed/22120144
http://www.ncbi.nlm.nih.gov/pubmed/23478657
https://doi.org/10.1016/j.jneuroim.2015.04.001
http://www.ncbi.nlm.nih.gov/pubmed/25903735
https://doi.org/10.1038/nbt.1910
http://www.ncbi.nlm.nih.gov/pubmed/21747377
https://doi.org/10.1261/rna.053959.115
http://www.ncbi.nlm.nih.gov/pubmed/27022035
https://doi.org/10.1016/j.neuropharm.2014.03.011
https://doi.org/10.1016/j.neuropharm.2014.03.011
http://www.ncbi.nlm.nih.gov/pubmed/24704083
https://doi.org/10.1016/j.psc.2010.01.006
http://www.ncbi.nlm.nih.gov/pubmed/20385342
https://doi.org/10.1371/journal.pone.0173413

