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ABSTRACT: For applications of metal−organic frameworks
(MOFs) such as gas storage and separation, flexibility is often
seen as a parameter that can tune material performance. In this
work we aim to determine the optimal flexibility for the shape
selective separation of similarly sized molecules (e.g., Xe/Kr
mixtures). To obtain systematic insight into how the flexibility
impacts this type of separation, we develop a simple analytical
model that predicts a material’s Henry regime adsorption and
selectivity as a function of flexibility. We elucidate the complex
dependence of selectivity on a framework’s intrinsic flexibility
whereby performance is either improved or reduced with
increasing flexibility, depending on the material’s pore size
characteristics. However, the selectivity of a material with the pore size and chemistry that already maximizes selectivity in the
rigid approximation is continuously diminished with increasing flexibility, demonstrating that the globally optimal separation
exists within an entirely rigid pore. Molecular simulations show that our simple model predicts performance trends that are
observed when screening the adsorption behavior of flexible MOFs. These flexible simulations provide better agreement with
experimental adsorption data in a high-performance material that is not captured when modeling this framework as rigid, an
approximation typically made in high-throughput screening studies. We conclude that, for shape selective adsorption
applications, the globally optimal material will have the optimal pore size/chemistry and minimal intrinsic flexibility even though
other nonoptimal materials’ selectivity can actually be improved by flexibility. Equally important, we find that flexible simulations
can be critical for correctly modeling adsorption in these types of systems.

■ INTRODUCTION

Metal−organic frameworks (MOFs) have garnered significant
attention in the scientific community due to their potential
applications ranging from gas storage and separations to
catalysis and sensors.1−6 The diversity of applications for which
MOFs are currently being investigated arises primarily from
their highly tunable chemical and geometric properties since
the combinatorics of their nodal composition, consisting of
secondary building units (SBUs) and ligands, leads to an
enormous number of possible structures.7 An interesting
consequence of such structural diversity is that the flexibility
of these materials can be exploited in various ways to yield
improved performance in a variety of applications.8 Focusing
on gas storage and separations, flexibility has been exper-
imentally and computationally examined in the contexts of
breathing,9−11 swelling,12 rotatable and flexible linkers,13,14

shape memory,15 complex lattice deformation,16 subnetwork

displacement,17 negative gas adsorption,18,19 and its strong
influence on diffusion,20 all with the ultimate goal of exploiting
these phenomena to obtain desirable adsorption properties.
Such breadth presents interesting challenges and opportunities
for experimental and computational characterization of
flexibility in MOFs and for determination of how it can be
utilized for the design of better gas adsorbents.
MOFs with dynamic constituents (i.e., rotatable and flexible

ligands)13 have pore spaces that can change in size and/or
shape, while the unit cell volume and shape remains constant. A
natural question that arises is whether this phenomenon can be
optimized for specific applications in gas separations, and our
work highlights how controlling this intrinsic flexibility of
MOFs can optimize these materials for shape selective
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adsorption. An example of such an application is the separation
of Xe/Kr mixtures where the most selective materials have a
pore size and shape commensurate with the adsorbates,21 and
thus we illustrate our findings in the context of the widely
studied Xe/Kr separations.22,23

To study the effect of intrinsic flexibility on the separation of
tight fitting molecules, we have developed a simple model that
allows us to compute the selectivity in the Henry regime as a
function of the flexibility of a material. Our model quantitatively
and systematically demonstrates that intrinsic flexibility can
either increase or decrease selectivity for a given material based
on its pore size characteristics. However, an interesting
consequence will follow: Achieving the globally optimal
separation performance necessitates not only having a material
with the ideal pore size and chemistry but also finding materials
that simultaneously minimize intrinsic flexibility. Next we
compare these results to Xe/Kr adsorption data obtained from
screening the CoRE MOF database24 when each structure’s
flexibility is modeled via a classical force field (FF) recently
used in the literature.25 It is important to note that when high-
throughput computational studies are employed to elucidate
stucture−property relationships,26−29 they are almost exclu-
sively performed using the rigid structure approximation (see
details of ref 30 for the only exception to our knowledge). This
approximation is considered a safe assumption when
thermodynamic fluctuations are assumed to average out the
framework atoms’ locations to their initial values, and so
intrinsic flexibility is assumed to have no effect. However, by
relaxing this approximation and using flexible simulations to
screen a database of MOFs, we observe that flexibility has the
same impact on adsorption behavior trends as shown by the
analytical model. We then select several MOFs from the
screening to study in further detail the effect of flexibility on
each material’s performance in Xe/Kr separations and finally
show that flexibility is necessary to yield better agreement with
experimental adsorption data of a high performance MOF
system known as SBMOF-1.23 Thus, we not only quantitatively
and systematically demonstrate the impacts of flexibility on
shape selective adsorption through models and simulations but
also are able to answer the more fundamental question of
whether controlling intrinsic flexibility can optimize material
performance in this type of separation application.

■ METHODS: ANALYTICAL MODEL
The effects of intrinsic flexibility in MOFs on Henry regime adsorption
are elucidated by an analytical model of a flexible pore and direct
simulations of flexible MOF materials. The details of the direct
simulations are explained in the Methods: Direct Simulations section.
For our analytical model, we construct a spherical pore of radius Rp
consisting of a wall of carbon atoms. The visualization of this model is
presented in Figure 1. A continuum approximation31 is invoked such
that an adsorbate does not interact with discrete atomic centers but
rather with a uniform surface density of atoms, η = 1 atom /(π × 1.2
Å2). This surface density is chosen to be slightly higher than that of
graphene since adsorbates can interact with atoms beyond the pore
wall in real MOF materials. This approximation will permit an
integrable expression for the Henry coefficient, or the measure of a
material’s affinity for an adsorbate in the limit of infinite dilution.32

The adsorption energy of one adsorbate within the spherical pore is
dependent only on the r coordinate due to spherical symmetry, as
shown in Figure 1. Determination of this energy requires an
integration of the host−adsorbate interaction across the pore surface,
which in turn requires an expression for the distance between the
adsorbate and any point on the surface, given by dw in eq 1:

ϕ ϕ= + −d r R R r R r( , , ) 2 cos( )w p p
2 2

p (1)

When the interactions between the adsorbate and the pore wall are
computed by a pairwise Lennard-Jones potential and smeared across
the entire surface of the sphere rather than computed by discrete
pairwise distances (as is the case in a direct simulation), the total
adsorption energy takes the form of the integral in eq 2:
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where ϵij is the depth of the potential energy well and σij is the distance
between the adsorbate and the wall at which the potential energy is
zero. Using this expression for the adsorbate interaction energy, we
can now calculate the Henry coefficient, which is often computed in
simulations via the expectation value in eq 3:32

β β= ⟨ − ⟩+K Uexp( )H (3)

where β is (kBT)
−1 and U+ is the total interaction energy of a randomly

inserted ghost adsorbate. This expectation value can be rewritten as an
integral over the pore volume by substitution of eq 2 for U+. The
resulting eq 4 yields an integrable formula for the rigid pore Henry
coefficient (KH,r) for a given radius Rp with spherical volume Vp:
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Next, flexibility is introduced into the model by allowing Rp to
change according to a Gaussian distribution. Now the flexible Henry
coefficient (KH,f) is a function of the mean pore radius, ⟨Rp⟩, and the
width of the Gaussian distribution of the radius, σp, as shown in eq 5:
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The pore radius is bounded between Rmin and Rmax. Note that in the
limiting case as σp approaches 0, the Gaussian distribution becomes a
delta function, δ(⟨Rp⟩), and we recover the rigid pore approximation

Figure 1. Visualization of a cross-section of the spherical pore model.
The blue circle represents the adsorbate, and the gray spheres
represent the pore wall carbon atoms whose interaction energies are
“smeared” across the surface of the sphere with uniform density η. Due
to the spherical symmetry, the total adsorption energy of an adsorbate
at a given location r′ is simply an integral over the azimuth angle ϕ.
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such that KH,f(⟨Rp⟩, 0) = KH,r(⟨Rp⟩). Hence the KH,f can be calculated
over a range of average pore radii and distribution widths to
demonstrate how the Henry coefficient depends on both the average
size and strength of fluctuations inside a flexible pore. KH,f is calculated
for both Xe and Kr (KH,f

Xe and KH,f
Kr , respectively) and the infinite

dilution selectivity of the flexible model, Sf follows as the ratio of these
two quantities in eq 6. The selectivity of the rigid model is just the
ratio of the rigid Henry coefficients in eq 7:
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■ METHODS: DIRECT SIMULATIONS
In addition to the analytical model, direct simulations are employed
using various computational techniques to demonstrate the effects of
intrinsic flexibility on the Henry regime adsorption properties in
MOFs. Ideally one would like to exclusively use ab initio calculations to
describe such flexibility, but these are prohibitively expensive for large
systems and long simulation times that are required to obtain
sufficiently accurate results for these materials. Therefore, we rely on
force-field-based molecular simulations and corroborate their perform-
ance with ab initio methods on a computationally feasible system. We
elaborate the details of these simulation techniques starting with the
description of the force fields used for classical molecular dynamics
(MD) simulations of flexible materials, followed by a description of ab
initio MD based on density functional theory (DFT). Finally we
describe how the Henry coefficients are evaluated in these flexible
materials as well as the calculation of geometric properties which are
necessary to evaluate how the pore sizes change in MOFs between the
rigid approximation and flexible simulations.
Force Field Computed Framework Dynamics. There exists a

large diversity of metal−ligand chemistry in the CoRE MOF
database24 (here we only study the materials for which density
derived electrostatic and chemical, or DDEC, charges33 have been
obtained), the entirety of which cannot be described by any single
classical force field (Dreiding,34 UFF,35 BTW,36 UFF4MOF,37 etc.). In
order to treat all materials on equal footing, we utilize the universal
force field (UFF) for all framework bonded potentials except for the
coordination bonds between metals and organic species. For bond and
angle potentials that are centered on the metal ions, the equilibrium
harmonic bond length and equilibrium harmoic angle are modified to
the crystallographic values read from the structure file.25 This
approximation is quite useful in that it allows us to simulate framework
dynamics in the canonical ensemble, i.e., constant number of particles,
volume, and temperature (NVT), for a vast majority of the CoRE
MOF structures without significant unphysical distortions in the
framework resulting from poor fits to UFF geometries. In a previous
work we have demonstrated that this approximation is even sufficient
to capture bulk moduli trends as calculated by DFT in various
MOFs.25 This force field is hereon referred to as UFF-fix-metal (UFF-
FM), and details on its implementation are presented in the SI.
To benchmark our classically generated dynamics using the UFF-

FM approximation, we additionally performed an in-depth inves-
tigation of framework dynamics for one particular MOF, known as
SBMOF-138 with reference code KAXQIL in the Cambridge Structural
Database (CSD) that displays excellent Xe selectivity.23 We implement
an additional classical force field which models metal−ligand
coordination solely through Lennard-Jones interactions and electro-
statics whereby dummy cation beads serve to delocalize the charge of
the metal ion and preserve the octahedral geometry of the Ca2+ ions in
the framework. While the model was originally developed to simulate
solvation of cations,39 recent work has illustrated this model’s
applicability in simulating MOF dynamics and deformation.16 All
potentials other than the metal−ligand interactions were modeled with
standard UFF potentials, and the model is hereon referred to as the

UFF-cationic-dummy-model (UFF-CDM) with additional implemen-
tation details provided in the SI.

For generating an ensemble of structures from a MD run over
which the Henry coefficient can be computed, each CoRE MOF from
ref 24 was simulated with UFF-FM in the NVT ensemble using the
open source LAMMPS software package (http://lammps.sandia.
gov).40 The Nose−Hoover thermostat was used with a temperature
of 298 K, and the structure was equilibrated for 30 ps, followed by a
production run of 30 ps. During the production run, a framework
configuration was saved every ps to give a total of 30 snapshots upon
which the Henry coefficients could be calculated via the ensemble
average in eq 3. Justification for the number of snapshots necessary is
elaborated in the Porosity Characterization section. The same MD
methods were used to simulate SBMOF-1 with UFF-CDM. Charges
for UFF-FM simulations were taken from ref 24, while charges for
UFF-CDM were derived from electronic structure calculations (see
the subsequent section) and calculated according to the procedure
discussed in the SI. Each MOF was simulated with periodic boundary
conditions, and a cutoff radius of 12.5 Å was imposed for nonbonded
interactions. Supercells were generated such that the perpendicular
components of the cell vectors were at least two times the cutoff
radius.

Ab Initio Computed Framework Dynamics. All DFT
calculations have been performed using the CP2K code, which uses
a mixed Gaussian/plane-wave basis set.41,42 We employed double-ζ
polarization quality Gaussian basis sets43 and a 400 Ry plane-wave
cutoff for the auxiliary grid, in conjunction with the Goedecker−
Teter−Hutter pseudopotentials.44,45 All DFT calculations, including
single point energies, geometry/cell optimizations, and ab initio
molecular dynamics simulations (AIMD), were performed using the
PBE functional,46 with Grimme’s D3 van der Waals correction (PBE
+D3).47 This method was shown to give very good agreement with
experimental structural data on several MOFs which we studied
previously48,49 and on rare gas dimers and trimers.47,50 The
counterpoise method51 was used to correct for basis set superposition
errors in all binding energy calculations. AIMD simulations within the
Born−Oppenheimer approximation were performed in the canonical
(NVT) ensemble at the PBE+D3 level of theory. A time step of 0.5 fs
was used for the integration of the equation of motion. Different
supercell sizes were considered for the AIMD simulations, and each
AIMD simulation was performed for a duration of 10 ps (20,000 MD
steps following 2000 MD steps of equilibration run with a strong
thermostat coupling) and at a temperature of 298 K, which was
controlled by the canonical sampling through velocity rescaling
thermostat52 using a time constant of 50 fs. The initial structure was
taken from the experimentally resolved crystal structure of SBMOF-1
and geometry optimized.38

For implementation of UFF-CDM, partial atomic charges are also
needed (see SI). The partial atomic charge analysis was performed
using the REPEAT method proposed by Campana et al.,53 which was
recently implemented into the CP2K code based on a restrained
electrostatic potential framework.54 We have used charges determined
from this scheme recently in our grand canonical Monte Carlo
simulations of CO2 adsorption in MOF-74,29,55 and we obtained very
good agreement with experiment on adsorption isotherms.

Flexible Henry Coefficient Calculation. The Henry coefficient,
KH, was previously defined in eq 3 as the Boltzmann weighted average
of the interaction energy of a randomly inserted ghost particle,32 and it
measures a material’s affinity for an adsorbate in the limit of infinite
dilution. This quantity can be simulated in porous materials by the
Widom insertion method,56 and in the rigid pore approximation, the
average in eq 3 is calculated by attempting ghost particle insertions on
the single framework configuration specified by experimental single
crystal X-ray diffraction or by DFT optimization. For flexible materials,
however, we compute this ensemble average over many different
framework snapshots generated from a MD simulation rather than just
a single configuration. For both the rigid and the flexible framework
simulations, the same force field is used to describe the nonbonded
framework−adsorbate interactions. These nonbonded interactions are
modeled with a pairwise Lennard-Jones potential where the framework
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atom ϵ and σ parameters are taken from the UFF,35 and the noble gas
ϵ and σ parameters are taken from the force field of Boato.57 Individual
pairwise interaction parameters are obtained by Lorentz−Berthelot
mixing rules. The Widom insertions for both the flexible and rigid
Henry coefficients described above were performed in the RASPA
software package58 at a temperature of 298 K.
Porosity Characterization. A geometric description of porous

materials known as the pore size distribution (PSD) was calculated in
the Zeo++ software package59 using high-accuracy settings for several
selected flexible CoRE MOFs. At each snapshot from the NVT
simulation, one PSD calculation was performed which produces a
histogram of pore sizes. The overall PSD in a flexible material is the
cumulative histogram of individual histograms from each NVT
snapshot. A probe radius of 1.2 Å (smaller than the radius of either
Xe or Kr) was used to ensure that both open pores and narrow
constrictions are captured and can be visualized. In order to correctly
perform the ensemble average in eq 3, it is evident that the PSD must
be converged, i.e., the cumulative, normalized distribution does not
change with the addition of more NVT snapshots. With the SBMOF-1
system, performing a UFF-FM simulation of 10 ps with snapshots
generated every 0.5 ps for a total of 20 snapshots produces a nearly
identical PSD to the longer simulation procedure described previously,
hence either is sufficient for performing the ensemble average.
The final PSD can then be mapped in a semiquantitative way to the

Gaussian variables (σp and ⟨Rp⟩) used in the analytical model
described previously (eqs 5 and 6). The difference is that atoms
constituting the pore wall in a real MOF are not always carbon (as is
imposed in the analytical model to allow it to be solvable) nor are
pores in real systems perfectly spherical. Therefore, some variation
between the model and direct simulations is always expected when
atoms constituting the pore walls in a given structure have different
UFF parameters and do not form a perfectly spherical shell. Thus, the
limitation of the analytical model is that it cannot be used to directly
map a computed PSD to exact values of the Henry coefficients and
selectivity for a particular MOF. In other words, it does not replace the
need to actually compute the Henry coefficient with Widom insertions
on the accumulated snapshots from the NVT simulation. However, it
does an excellent job of reproducing the trends of selectivity’s
dependence on flexibility as is seen in the following Results and
Discussion section.

■ RESULTS AND DISCUSSION
Intrinsic flexibility effects on Henry regime adsorption behavior
are discussed in five main points:

(1) First, the analytical model is presented which quantita-
tively assesses the effects on Henry regime adsorption of
tight-fitting molecules as a function of pore flexibility.

(2) Next, the analytical model’s results show that accounting
for the systematic effects of intrinsic flexibility are critical
for the design and/or identification of the best

performing materials in this shape selective adsorption
application.

(3) Next, the CoRE MOF database is screened using flexible
models to not only validate the conclusions drawn from
the analytical model but also to demonstrate the
discrepancies of the rigid pore approximation.

(4) Next, four CoRE MOFs are selected to specifically detail
the ways in which flexibility affects a material’s potential
for Xe/Kr separation.

(5) Finally, the ideas developed thus far are applied to the
SBMOF-1 system, and we demonstrate the necessity of
using flexibility to obtain better agreement between
experimental results and computational predictions of
Xe/Kr adsorption properties.

Flexibility and the Analytical Model.We have developed
both a rigid (eq 4) and flexible (eq 5) pore model to obtain
insight into flexibility’s effects on Xe/Kr Henry coefficients.
The dependence of KH on the pore radius and distribution
width is shown in Figure 2. The most interesting consequence
of flexibility is that the pore sizes resulting in the largest KH,r are
the most overpredictive of KH,f and the pore sizes with smaller
KH,r are the most under-predictive of KH,f. The size of these
over(under-)predictions is strongly dependent on the strength
of pore size fluctuations (σp), which is shown in Figure 2a (Xe)
and Figure 2b (Kr) when differing σp values are plotted. The
overpredictions occur since there exists a finite probability that
the pore deviates from the optimal size, even when the most
probable configuration is the optimal size. The under-
predictions occur since there exists a finite probability that
the pore can adopt the optimal size, even though the most
probable configuration is not the optimal size. Thus, the main
observation from this analysis is that, even if relatively small
fluctuations (σp < 0.4 Å) in a flexible pore average out such that
⟨Rp⟩ is equivalent to Rp in the rigid approximation, the flexible
pore Henry coefficient can differ significantly. We will see in
subsequent discussions that, similar to the green curve in Figure
2, σp ≈ 0.3 Å for SBMOF-1.
More interesting than just KH from an applications

perspective is the infinite dilution selectivity of Xe/Kr, which
was formulated for flexible and rigid pores in eqs 6 and 7,
respectively. The selectivity for the flexible pore model was
calculated over the bounds 2.5 Å < ⟨Rp⟩ < 10.0 and 0.0 Å < σp <
1.0 Å and mapped over this two-dimensional space, as shown in
Figure 3. It is immediately evident from Figure 3a that, since
the contours are not vertical lines, the rigid pore approximation
will yield a different selectivity than a flexible pore (i.e., when σp

Figure 2. Broadening of the flexible Henry coefficient profile, KH,f(⟨Rp⟩, σp), is calculated for increasing values of the pore size distribution width, σp
= {0.0, 0.07, 0.31, 1.0}, for both (a) a Xe adsorbate and (b) a Kr adsorbate.
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≠ 0). Figure 3b additionally reveals extremely sharp gradients
in Sf(⟨Rp⟩, σp) when ⟨Rp⟩ is slightly smaller than the optimal
size (∼4.7 Å) for Xe selectivity.
There are three distinct situations where a flexible pore can

result in significantly different predicted selectivity than a rigid
pore. First, the optimal pore for Xe selectivity in this analytical
model has ⟨Rp⟩ ≈ 4.7 Å and σp = 0 Å. Yet fluctuations on the
order of σp ≈ 0.6 Å can reduce the selectivity of such a pore by
a factor of 2. Second, a rigid pore predicted to be Kr selective
can very easily be nonselective or even Xe selective if the pore
undergoes small fluctuations (σp ≈ 0.15 Å). Third, predicted
selectivity can be quite different when flexible and rigid ⟨Rp⟩ are
not equivalent. If thermal fluctuations in a flexible pore do not
average out to the same value as the rigid pore, Sr can vastly
overpredict Sf. For example, if a rigid pore has Rp = 4.7 Å and
overestimates the average flexible pore ⟨Rp⟩ by 0.6 Å, the rigid
selectivity could be reduced by a factor of 50. The sensitivity of
adsorption properties to small changes in pore sizes has been
shown in the literature when different DFT methods were used
to optimize the crystal structure.60−62 However, we are
highlighting an entirely different situation where the average
pore size changes due to flexibility, an effect which we will
demonstrate for real MOF systems later on. Most interestingly,
the global optimum for selectivity as a function of flexibility
occurs for an entirely rigid pore. This is discussed further in the
Flexibility and Optimal Separations section.
Flexibility and Optimal Separations. We have system-

atically demonstrated how we expect shape selective adsorption
separations to have an intricate, nontrivial dependence on
intrinsic flexibility, having chosen the specific application of Xe/
Kr separations to illustrate our findings. Figure 4 summarizes
how this information can be exploited for the design and
prediction of better separation materials. To construct this
figure, we have extracted Sf from Figure 3 at constant σp and
normalized the x-axis of ⟨Rp⟩ by ⟨Rp⟩opt such that the optimal
selectivity for a given σp occurs at a value of 1. The global
optimum of Sf in (⟨Rp⟩,σp) space occurs when σp = 0.
This clearly demonstrates that designing MOFs with the

optimal combination of pore size and chemistry is not sufficient
to achieve a global optimum in performance; one must
minimize intrinsic flexibility while simultaneously realizing the
optimal average pore size to achieve the best separation. It also
demonstrates that, while fluctuations reduce the selectivity of
the optimally rigid pore, sufficiently large fluctuations expand
the range of average pore sizes (or the number of MOFs) for

which flexibility can improve selectivity. Nonetheless, the global
optimum in ⟨Rp⟩ and σp space occurs for σp = 0. In other
words, if one could design the perfectly optimal rigid pore with
the ideal size and chemical composition, increasing flexibility
would only lead to worse performance. These results provide a
guiding principle in the rational design of nanoporous materials
for shape selective separations and are validated when studying
the effects of flexibility on Xe/Kr adsorption in real systems, i.e.,
the CoRE MOF database, which is the focus of subsequent
discussion.

Flexibility in CoRE MOF Screening. From the analytical
model it is evident that flexibility is important when a material’s
pores approach the same size as the adsorbed molecules. For a
correct screening it is therefore important to take framework
flexibility into account, and to do this, we calculate Sf with the
reported CoRE MOF experimental structure as the starting
framework configuration and input for UFF-FM. Three plots
are instructive for comparison with the results from the
analytical model.
First, the Henry coefficient of Xe in the flexible material

(KH,f
Xe ) is plotted versus the corresponding rigid Henry

coefficient (KH,r
Xe ) in Figure 5, and each material is color

Figure 3. Selectivity of Xe to Kr mapped onto the average pore radius (x dimension) and the distribution width of the radius (y dimension) for the
fluctuating pore model. The color scale in (a) is a linear scale of the flexible selectivity, Sf, whereas the color in (b) is the log10 scale of Sf to better
emphasize the gradients that exist over small changes in ⟨Rp⟩ and σp.

Figure 4. Flexible selectivity from the analytical model is plotted as a
function of ⟨Rp⟩ divided by the optimal pore size, ⟨Rp⟩opt, such that the
point of optimal selectivity is normalized to 1 for all values of σp. This
demonstrates that maximizing selectivity is achieved not simply by
having the optimal pore size but also by simultaneously minimizing
intrinsic flexibility. Although, interestingly, pore sizes that are smaller
than the optimal size can have their selectivity significantly improved
with increasing flexibility.
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coded by their largest included sphere (Di).
59 For materials

with very large Di, the rigid and flexible calculations tend to give
equitable results for the Xe Henry coefficient. However, for
smaller pores and those that are the optimal size for Xe
selectivity, orders of magnitude discrepancy can exist between
the calculated Henry coefficients for the flexible structure and
the rigid approximation. This discrepancy is attributed to pore
size fluctuations, slight changes in ⟨Rp⟩, or a combination of
both, all of which is clearly demonstrated by the results of the
analytical model shown in Figures 2 and 3.
Second, Figure 6 plots the flexible selectivity versus the rigid

selectivity, and data points are color coded by the material’s KH,f
Xe

such that the most interesting materials in terms of Xe affinity
are colored yellow. Purple colored materials by comparison are
expected to have very low infinite dilution uptake. The rigid
approximation performs decently for some structures which
remain on the y = x line of parity. However, there is very
noticeable scatter, and considering flexibility can result in
orders of magnitude deviation. Among top performing
structures from the entire screening, Sr almost always
overestimates Sf, supporting our conclusion that rigid pores
are the globally optimal solution since, if a material already
achieves the optimal pore size for a given chemistry,
fluctuations will only reduce the selectivity. Medium perform-
ing structures tend to have both significant over(under-
)estimations, while the lowest performing rigid structures
tend to exhibit a huge underestimation of the selectivity. This
systematic dependency is visualized another way in Figure 6b,
where the histogram shows that, among top performing
structures, simulating flexibility reduces performance in ∼95%
of materials. By contrast, for the lowest performing MOFs,
flexibility increases performance in ∼90% of the materials. The
red highlighted regions in Figure 6a show where the rigid and
flexible simulations predict reverse selectivity. Thus, a pore that
was a good fit for Xe can become too small (lower right
region), or one that was too small can become enlarged and
favorable by intrinsic flexibility (upper left region) and result in
a material with large selectivity for Xe. This systematic behavior
has already been predicted by the solution of the analytical
model shown in Figure 3.
Finally, we plot the relative error of the rigid approximation

(Sf/Sr) in log10 scale versus Di in Figure 7. We observe exactly

what one might expect given the results of the analytical model.
The divergence of Sf from Sr increases as the pore size decreases
and is very significant in the range of Di for optimal Xe
selectivity. Additionally, the analytical model is mapped onto
the screening results in Figure 7 by converting ⟨Rp⟩ to Di via eq
8:

= ⟨ ⟩ −D R D2i p carbon (8)

where Dcarbon = 3.4 Å is the van der Waals diameter of a carbon
atom. The black, red, and purple lines represent Sf/Sr for σp
values of 0.005, 0.04, and 0.35, respectively. The trend in the
screening data is captured well by the analytical model despite
its simplicity in assuming all pore wall atoms are carbon and are
arranged in a perfectly spherical shell. Superimposing the
analytical model in this way also does not account for when the
flexible and rigid ⟨Rp⟩ are not identical for a particular material.
This effect, which is demonstrated in subsequent discussion,
would additionally change how the analytical model is mapped
on Figure 7. Most importantly, these analyses demonstrate that
the screening results agree with the analytical model: The best
rigid approximation materials (which ignore framework

Figure 5. Flexible Xe Henry coefficient (KH,f
Xe ) is plotted versus the

rigid Xe Henry coefficient (KH,r
Xe ). The color-coding of materials by

their largest included sphere shows that the rigid approximation tends
to perform worse as a material’s pore size decreases.

Figure 6. (a) Flexible selectivity is plotted versus rigid approximation
selectivity for screened CoRE MOFs. Highlighted regions in red
demonstrate areas where the rigid approximation and the flexible
simulations predict reverse selectivity of one another. Materials are
color coded by the log10 value of the flexible Xe Henry coefficient, KH,f

Xe

[mol (kg Pa)−1], to highlight the best flexible materials for Xe infinite
dilution uptake. (b) A histogram view of the same data is shown. The
red histogram shows that the larger the rigid selectivity becomes (i.e.,
the more optimal the pore size and chemistry), the more frequently
that flexibility actually reduces the performance.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.7b01688
J. Am. Chem. Soc. 2017, 139, 5547−5557

5552

http://dx.doi.org/10.1021/jacs.7b01688


fluctuations) overestimate the selectivity when flexibility is
considered.
We caution that our screening calculations were not

performed using a pocket-blocking algorithm since flexibility
in points of constriction in the pore network makes the
accessibility of pockets a function of time. Instead the screening
results are only visualized for structures where KH,r

Xe > 1 × 10−8

mol/(kg·Pa) as an approximate way to filter out nonporous
structures. We closely investigate and explain the performance
of selected structures, for which we manually ensure that
pockets of inaccessibility do not exist, via comparison to the
analytical model in the following section.
Flexibility in Selected CoRE MOFs. Several MOFs are

selected from the screening study to illustrate in greater detail
the various ways in which flexibility changes the selectivity by
comparison to the rigid structure approximation. For these
structures, NVT simulations show that the rigid pore
approximation does not present a good statistical representa-
tion of the PSD when the host framework fluctuates at room
temperature. Figure 8 presents a visual analysis of flexibility in
four selected CoRE MOFs and demonstrates how thermal
fluctuations affect the PSD and thus the Xe/Kr selectivity. For
each material we show the flexible/rigid PSD as well as
visualization of the rigid structure (left image) and a snapshot
of the flexible structure (right image) from the UFF-FM MD
run. The corresponding flexible and rigid Henry coefficients
and selectivity are summarized in Table 1.
In Figure 8a, UVEXAV (MIL-120)63 demonstrates a

situation where the selectivity remains unaffected by flexibility.
The rigid PSD reveals two pores that are very close in size, but
notably the flexible PSD shows a continuous distribution with
approximately the same mean, resulting in unchanged KH and
Sf ≈ Sr. Figure 8b highlights FALQOA,64 a material for which
flexibility reduces Sr. The rigid PSD demonstrates a pore that is
of very favorable size for Xe adsorption which shrinks only
slightly throughout the MD run. However, the sensitivity of the
Henry coefficient to ⟨Rp⟩ is sufficient to lower KH,f

Xe by an order
of magnitude and halve the selectivity when flexibility is
considered. The most complex PSD in this set of examples is
exhibited by GIYSAJ (RPF-4),65 as shown in Figure 8c for

which flexibility serves to slightly enhance the selectivity.
Flexible simulations show that the smallest pore can essentially
be blocked due to ring rotation and the large pore shifts to a
higher mean value. Both effects serve to decrease the Henry
coefficients in the flexible structure but in such a way as to
slightly raise the selectivity overall. AMUCOB (BioMIL-2)66 in
Figure 8d presents arguably the most interesting behavior, as it
is Kr selective under the rigid pore approximation but very Xe
selective when flexibility is considered due to an overall increase
in pore size. AMUCOB is just one of several CoRE MOFs to
display this phenomena as previously discussed with Figure 6.
Additionally, we note that each structure’s flexible selectivity is
higher than the experimental selectivity of SBMOF-1, a material
which is the focus of discussion in the following section.

Flexibility in SBMOF-1. The screening data and the
analytical model demonstrate that when a given material
already has the optimal pore size to maximize selectivity,
increasing intrinsic pore flexibility only serves to reduce the
selectivity performance. This effect can be shown in the context
of a particular well-known Xe/Kr separations system. Here our
flexibility calculations are benchmarked against experimental
results for the highly performing Xe/Kr separation material,
SBMOF-1, to once again show that pore flexibility reduces the
performance in selectivity of optimal rigid materials. This
system was chosen since it was identified as the best performer
from a high-throughput screening study22 but showed a large
discrepancy between experimental and computational Henry
coefficients when using the rigid pore approximation.23 Thus,
we focus on this structure to show how consideration of
framework flexibility better aligns computations with experi-
ments and reduces the optimal selectivity. DFT/PBE+D3,
UFF-FM, and UFF-CDM were all used to model framework
dynamics in SBMOF-1, and the resulting Henry coefficient and
selectivity calculations are summarized in Table 2. The rigid
structure approximation of SBMOF-1 (KAXQIL) has the
optimal pore size for maximizing the Xe Henry coefficient and
selectivity. However, considering flexibility reduces these
quantities and leads to better agreement with experiments.
UFF-CDM generated dynamics provide the best agreement
with experiments, and there exists a significant decrease in the
Henry coefficients and selectivity when compared to the rigid
pore approximation.
This decrease in Henry coefficients fundamentally arises

from thermal disordering in SBMOF-1, visualized in Figure 9.
The impact of flexibility on the PSD for each dynamics method
is quantitatively shown in Figure 10. While the rigid pores are
of optimal size for maximizing selectivity, the existence of
flexibility in all cases leads to pore size fluctuations and a
shrinking of average pore size away from its optimal value. As
predicted by the analytical model, both effects can serve to
reduce the Henry coefficients (of both Xe and Kr) and the
overall selectivity of the material.
For DFT/PBE+D3, only a small number of unit cell

replications is computationally feasible. Interestingly, 1 × 2 ×
1, 2 × 2 × 1, and 1 × 3 × 1 simulations all display different
PSDs, suggesting that the flexibly determined PSD can be
system size dependent, since the system is simply too
constrained when considering only one and two replications
in certain crystallographic directions. Similar finite size effects
have recently been reported where multiple unit cell
replications were necessary to observe crystallographic
deformations.16 However, the key feature is that the mean
pore size always decreases leading to reduced Henry

Figure 7. Relative error from the rigid structure approximation, Sf/Sr,
is plotted in log10 scale against Di. Each material is color-coded by
log10[Sr]. The screening results are compared to the analytical model
where the solid black, red, and purple lines represent Sf(Di, σp =
0.005)/Sr(Di), Sf(Di, σp = 0.04)/Sr(Di), and Sf(Di, σp = 0.35)/Sr(Di),
respectively.
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coefficients of both adsorbates, which is accompanied by a
reduction in the selectivity. The identical trend is observed in
the larger classical simulations. Thus, a major finding from this
analysis is that, for all flexible simulation methods, the
thermodynamic fluctuations do not average out to the rigid
pore approximation. Different methods (classical vs ab initio)
for host framework dynamics yield similar evolution of the
PSD’s from the rigid to flexible simulations, and the computed
KH,f is always in better agreement with experiments due to the
decrease in ⟨Rp⟩.

It should be noted that the nonbonded parameters for

guest−framework interactions also have an effect on the

predicted Henry coefficients and selectivity. We find that the

Boato and UFF parameters for guest−framework interactions

do not perfectly replicate the DFT/PBE+D3 potential energy

surface, which is shown in the SI. Regardless, the data presented

here show the large dependence of the adsorption properties

on flexibly induced changes in the pore size.

Figure 8. Evolution of the PSD after NVT dynamics is shown for four CoRE MOFs, with the experimental structure (left image) and a snapshot
from the flexible simulation (right image). Sections (a−d) show specific cases for which flexibility has no effect, degrades, enhances, or reverses the
Xe/Kr selectivity, respectively.

Table 1. Flexible and Rigid Henry Coefficients and Selectivity for the Four CoRE MOFs Shown in Figure 8

KH,f [mol/(kg·Pa)] KH,r [mol/(kg·Pa)]

CSD code Xe Kr Xe Kr Sf Sr

UVEXAV 1.0 × 10−2 3.5 × 10−4 1.1 × 10−2 3.8 × 10−4 29 29
FALQOA 2.1 × 10−3 4.5 × 10−5 1.3 × 10−2 1.6 × 10−4 47 81
GIYSAJ 8.9 × 10−4 3.0 × 10−5 1.4 × 10−3 5.3 × 10−5 30 26
AMUCOB 4.3 × 10−4 2.5 × 10−5 2.9 × 10−6 5.2 × 10−6 17 0.56
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■ CONCLUSIONS
The chemical tunability of MOFs is constantly exploited to
create adsorption sites with a high selectivity. However, in the
case of shape selective adsorption separations where the pore
size and shape are commensurate with similarly sized
adsorbates like Xe/Kr, the efficiency of these adsorption sites
for separations relies on subtle geometric differences, which we
have shown to be strongly influenced by flexibility. In this work
we have systematically addressed the nontrivial dependence of
selectivity on intrinsic flexibility, providing a comprehensive
outlook for the design and/or identification of optimal shape
selective separation materials in the context of Xe/Kr mixtures.
Quantification of the effect of flexibility on the separation of
Xe/Kr mixtures using an analytical model and molecular
simulations shows that some materials’ selectivity can be
increased, while others’ decreased by flexibility. However, for
those materials already displaying the optimal pore size for a
given pore chemistry, increasing pore size fluctuations serve
only to further decrease selectivity. Hence the design of a
globally optimal separation must not only focus on optimizing
pore size and chemistry but also on minimizing intrinsic
flexibility. From an experimental design point of view, one must
simultaneously aim for MOFs with ligands, coordination
environments, and topologies that constitute the most rigid
framework possible and the optimal pore size and chemistry to
achieve maximum possible selectivity.
An equally important part of this work discusses the validity

of the rigid framework approximation in shape selective
adsorption applications. In most computational high-through-

put screening studies, the MOF structure is assumed to be rigid
for computational efficiency reasons, and we investigated
whether this assumption has biased the selection of optimal
materials. Our results show that, among the top performing
structures in the rigid framework approximation, simulations
accounting for flexibility lead to a reduction of selectivity in
∼95% of these materials. Conversely, this screening also
demonstrated that fluctuations alone can cause a material to
reverse its selectivity when the average pore size is less than the
optimal value for Xe adsorption. Among the lowest performing
structures in the rigid framework approximation, ∼90% of these
materials had their selectivity increased when accounting for
framework flexibility. These results suggest that flexibility
should be considered in shape selective screening studies for
the highest degree of accuracy possible and to achieve the best
ranking of high-performance materials.
SBMOF-1, which was recently crowned as the material with

the highest Xe/Kr selectivity from a computational screening of
rigid MOFs, was re-evaluated with flexibility using both ab initio
and classical MD calculations. This resulted in better agreement
with experimental data. Naturally the question then arises if
there are materials which can be experimentally demonstrated
to have better Xe/Kr selectivity than SBMOF-1. We have
presented four structures (CSD reference codes UVEXAV,
FALQOA, GIYSAJ, and AMUCOB) identified in our screening
study whose predicted Sf is higher than the experimental
selectivity of SBMOF-1 and used each structure’s PSD
evolution in NVT simulations to observe how flexibility affects
Xe and Kr Henry regime uptake. Through a variety of MD
methods, we demonstrated that flexibility always serves to

Table 2. Henry Coefficients and Selectivity in SBMOF-1 for
the Rigid Pore Approximation and Various Framework
Dynamics Methodsa

KH [mol/(kg·Pa)]

description flexibility Xe Kr SXe/Kr

experimental data N/A 3.84 × 10−4 2.37 × 10−5 16
KAXQIL deposited
structure

no 1.45 × 10−2 2.70 × 10−4 54

KAXQIL DFT optimized no 1.03 × 10−2 2.20 × 10−4 47
AIMD (1 × 2 × 1) yes 7.49 × 10−3 1.85 × 10−4 41
AIMD (2 × 2 × 1) yes 6.80 × 10−3 1.77 × 10−4 38
AIMD (1 × 3 × 1) yes 6.68 × 10−3 1.72 × 10−4 39
UFF-FM yes 6.24 × 10−3 1.67 × 10−4 37
UFF-CDM yes 3.18 × 10−3 1.28 × 10−4 25
aThe “Description” column gives the simulation type (and number of
unit cell replications used in the AIMD simulation), and the
“Flexibility” column denotes a flexible simulation. Experimental data
from ref 23 is included.

Figure 9. DFT optimized cell (replicated 3 × 6 × 2) is depicted on the
left, while a snapshot from a MD trajectory generated with UFF-CDM
is depicted on the right. Thermal disordering of the structure results in
a change in the PSD accessible to Xe/Kr adsorbates.

Figure 10. Evolution of the PSD is shown from the rigid structure (red
histogram) to the flexible structure (green histogram). (a−c) PSD for
1 × 2 × 1, 2 × 2 × 1, and 1 × 3 × 1 AIMD, respectively, where the
rigid structure corresponds to the DFT minimized framework. (d)
PSD for UFF-FM with the rigid structure corresponding to the
KAXQIL experimentally resolved framework. and (e) PSD for UFF-
CDM where the rigid structure is the DFT minimized framework.
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reduce the Henry coefficients of Xe and Kr and selectivity in
SBMOF-1, bringing better alignment between experimental
results and computational predictions for this material’s
adsorption properties.
The concepts developed in this work can now be applied to

other shape selective separations. Such an example would be
CO2/CH4 separations where, like Xe/Kr mixtures, the kinetic
diameters of both adsorbates are of similar size. Here one
would expect intrinsic flexibility to affect the Henry regime
selectivity as well. Similar to Xe/Kr separations, there would
exist an optimal pore size and chemistry that maximizes the
rigid selectivity for one of the adsorbates, but the more flexible
this optimal pore is, the more the selectivity will be reduced.
And while our analytical model only accounts for isotropic pore
deformations, it would also be useful to develop another model
in which an additional flexibility parameter characterizes the
degree of anisotropy of the pore deformation since CH4 is an
isotropic particle but CO2 is not. This development of more
intricate analytical models in conjunction with a similar
screening of flexible CoRE MOFs could lead to new insights
regarding the usefulness of MOFs for CO2/CH4 separations.
Finally, we re-emphasize that we have focused on predicting

Henry regime selectivity. However, both the analytical model
and the flexible screening methods could be extended to obtain
selectivity at higher pressures with additional assumptions and
more computational cost, respectively. In the cases of higher
pressure, the adsorption behavior will then depend on the exact
potential energy profile of the host as a function of the pore
size, since less energetically favorable conformations of the
framework can be stabilized with increasing chemical potential.
Thus, it is likely that new insights will be obtained for the
selectivity dependence at higher pressures. Such future work
will have two major benefits. First, we will understand if the
trends observed in this work between flexibility and separation
performance hold at high pressure (where many separations are
performed). Second, we will be able to determine over what
pressure ranges Henry’s law is applicable in flexible materials
and whether it differs from the Henry regime pressure range in
the rigid pore approximation.
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Feŕey, G.; Margiolaki, I.; Fink, G.; Morais, C.; Taulelle, F. Chem.
Mater. 2011, 23, 39−47.
(64) Zhuang, G.; Chen, W.-x.; Zeng, G.-n.; Wang, J.-g.; Chen, W.-l.
CrystEngComm 2012, 14, 679−683.
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