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Abstract

Since the mid ’80s, compiler writers for functional languages (especially lazy ones) have been writing
papers about identifying and exploiting thunks and lambdas that are used only once. However, it
has proved difficult to achieve both power and simplicity in practice. In this paper we describe a
new, modular analysis for a higher-order language, which is both simple and effective. We prove the
analysis sound with respect to a standard call-by-need semantics, and present measurements of its use
in a full-scale, state-of-the-art optimising compiler. The analysis finds many single-entry thunks and
one-shot lambdas and enables a number of program optimisations. This paper extends our preceding
conference publication (Sergey et al. 2014) with proofs, expanded report on evaluation and a detailed
examination of the factors causing the loss of precision in the analysis.

1 Introduction

Consider these definitions, written in a purely functional language like Haskell:

wurble1, wurble2 :: (Int -> Int) -> Int

wurble1 k = sum (map k [1..10])

wurble2 k = 2 * k 0

f1 :: [Int] -> Int

f1 xs = let ys = map costly xs

in wurble (\n. sum (map (+ n) ys))
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Here we assume that costly is some function that is expensive to compute and wurble

is either wurble1 or wurble2. If we replace ys by its definition, we could transform f1

into f2:

f2 xs = wurble (\n. sum (map (+ n) (map costly xs)))

An optimising compiler can now use short-cut deforestation to fuse the two maps into
one, eliminating the intermediate list altogether, and offering a substantial performance
gain (Gill et al. 1993).

Does this transformation make the program run faster or slower? It depends on wurble!
For example, wurble1 calls its function argument ten times, so if wurble = wurble1,
function f2 would compute costly ten times for each element of xs; whereas f1 would
do so only once. On the other hand if wurble= wurble2, which calls its argument exactly
once, then f2 is just as efficient as f1, and short-cut deforestation can improve it further.

The reverse is also true. If the programmer writes f2 in the first place, the full laziness
transformation (Peyton Jones et al. 1996) will float the sub-expression (map costly xs)

out of the \n-expression, so that it can be shared. That would be good for wurble1 but bad
for wurble2.

What is needed is an analysis that can provide a sound approximation of how often a
function is called – we refer to such an analysis as a cardinality analysis. An optimising
compiler can then use the results of the analysis to guide its transformations. In this paper
we provide just such an analysis:

• We define two different, useful forms of cardinality, namely (a) how often a function is
called, and (b) how often a thunk is forced in a lazy language (Section 2). Of these, the
former is relevant under both call-by-need and call-by-value, while the latter is specific
to call-by-need.

• We present a backwards analysis that can soundly and efficiently approximate both
forms of cardinality for a non-strict, higher-order language (Section 3). A significant
innovation is our use of call demands to model the usage of a function; this makes the
analysis both powerful and modular.

• We prove that our algorithm is sound; for example if it claims that a function is called
at most once, then it really is (Section 4). This proof is not at all straightforward,
because it must take account of sharing — that is the whole point! So we cannot use
standard denotational techniques, but instead must use an operational semantics that
models sharing explicitly.

• We formalise a number of program optimisations enabled by the results of the cardinality
analysis, prove them sound and, what is equally important, improving in the sense
of Moran & Sands (1999) (Section 5).

• We have implemented our algorithm by extending the Glasgow Haskell Compiler (GHC),
a state-of-the-art optimising compiler for Haskell. Happily, the implementation builds
directly on GHC’s current strictness and absence analyser, and is both simple and effi-
cient (Section 6).

• We measured how often the analysis finds one-shot lambdas and single-entry thunks
(Section 7); and how much this knowledge improved the performance of real programs
(Sections 7.1–7.2). The analysis proves quite effective in that many one-shot lambdas
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and single-entry thunks are detected (in the range 0-30%, depending on the program).
Improvements in performance are modest but consistent (a few percent): programs al-
ready optimised by GHC are a challenging target!
• We also measure how precise the analysis is, by comparing the static results with dy-

namic measurements using an instrumented runtime (Section 7.3), and explain the typi-
cal cases where the analysis as designed cannot be more precise.

Before this work, GHC conservatively assumed that every thunk could be entered more
than once, and every lambda called more than once, thus losing useful opportuities for opti-
misation, as quantified in Section 7. We discuss other related work in Section 8. Distinctive
features of our work are (a) the notion of call demands, (b) a full implementation measured
against a state-of-the-art optimising compiler, and (c) the combination of simplicity with
worthwhile performance improvements due to enabled optimisations.

This is a longer version of a paper “Modular, Higher-Order Cardinality Analysis in
Theory and Practice” by Sergey et al. (2014), containing proofs, an expanded report on
evaluation, and detailed examination of the factors causing the loss of precision in the
analysis.

2 What is cardinality analysis?

Cardinality analysis answers three inter-related questions, in the setting of a non-strict,
pure functional language like Haskell:

• How many times is a particular, syntactic lambda-expression called (Section 2.1), a
question that is complicated by currying in a higher-order language like Haskell (Sec-
tion 2.2)?
• Which components of a data structure are never evaluated; that is, are absent (Sec-

tion 2.3)?
• How many times is a particular, syntactic thunk evaluated (Section 2.4)?

2.1 Call cardinality

We saw in the introduction an example where it is helpful to know when a function calls its
argument at most once. A lambda that is called at most once is called a one-shot lambda,
and they are fairly common in functional programming: for example, a continuation is
usually one-shot. So cardinality analysis can be a big win when optimising continuation-
heavy programs.

Nor is that all. As we saw in the Introduction, inlining under a one-shot lambda (to
transform f1 into f2) allows short-cut deforestation to fuse two otherwise-separate calls
of map. But short-cut deforestation itself introduces many calls of the function build:

build :: (forall b. (a -> b -> b) -> b -> b) -> [a]

build g = g (:) []

You can see that build calls its argument exactly once, and inlining ys in calls like
(build (\cn. ...ys...)) turns out to be crucial to making short-cut deforestation
work in practice. Gill devotes a section of his thesis to elucidating this point (Gill 1996,
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Chapter 4.3). Gill lacked an analysis for one-shot lambdas, so his implementation (which
was extant in GHC until recently) relied on a gross hack: he taught GHC’s optimiser to
behave specially for build itself, and a couple of other functions. No user-defined function
will have this good behaviour. Our analysis subsumes the hack, by providing an analysis
that deduces the correct one-shot information for build, as well as many other functions.

2.2 Currying

In a higher-order language with curried functions, we need to be careful about the details.
For example, consider

f3 a = zowzy a (\x.let t = costly x in \y. t+y)

zowzy1 a g = g 2 a + g 3 a

zowzy2 a g = sum (map (g a) [1..1000])

If zowzy was zowzy1, then in f3 it would be best to inline t at its use site, thus:

f4 a = zowzy1 a (\x.\y. costly x + y)

The transformed f4 is much better than f3: it avoids allocating a thunk for t, and avoids
allocating a function closure for the \y. But if f3 called zowzy2 instead, such a transforma-
tion would be disastrous. Why? Because zowzy2 applies its argument g to one argument a,
and the function thus computed is applied to each of 1000 integers. In f3 we will compute
(costly a) once, but f4 will compute it 1000 times, which is arbitrarily bad.

So our analysis of zowzy2 must be able to report “zowzy2’s argument g is called1 once,
and the result is called many times”. We formalise this by giving a usage signature to
zowzy, like this:

zowzy1 :: U → Cω(C 1(U ))→•
zowzy2 :: U → C 1(Cω(U ))→•

The notation Cω(C 1(U )) is a usage demand: it describes how a (function) value is used.
The demand type U → Cω(C 1(U ))→ • describes how a function uses its arguments,
therefore it gives a usage demand for each argument2. Informally, the C 1(d) means “this
argument is called once, and the result is used with usage d”, whereas Cω(d) means “this
argument may be called many times, with each result used with usage d”. The U means
“is used in some unknown way (which includes not being used at all)”. Note that zowzy1’s
second argument precise usage is Cω(C 1(U )), not Cω(Cω(U )); that is, in all cases the
result of applying g to one argument is then called only once.

2.3 Absence

Consider this function

f x = case x of (p,q) -> <cbody>

1 We will always use “called” to mean “applied to one argument”.
2 The “•” has no significance; we are just used to seeing something after the final arrow!
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A strictness analyser can see that f is strict in x, and so can use call-by-value. Moreover,
rather than allocate a pair that is passed to f, which immediately takes it apart, GHC uses
a worker/wrapper transformation to pass the pieces separately, thus:

f x = case x of (p,q) -> fw p q

fw p q = <cbody>

Now f (the “wrapper”) is small, and can be inlined at f’s call sites, often eliminating
the allocation of the pair; meanwhile fw (the “worker”) does the actual work. Strictness
analysis, and the worker/wrapper transform to exploit its results, are hugely important to
generating efficient code for lazy programs (Peyton Jones & Partain 1994; Peyton Jones &
Santos 1998).

In general, f’s right-hand side often does not have a syntactically visible case ex-
pression. For example, what if f simply called another function g that was strict in x?
Fortunately the worker/wrapper transform is easy to generalise. Suppose the right-hand
side of f was just <fbody>. Then we would transform to

f x = case x of (p,q) -> fw p q

fw p q = let x = (p,q) in <fbody>

Now we hope that the binding for x will cancel with case expressions in <fbody>, and
indeed it usually proves to be so (Peyton Jones & Santos 1998).

But what if <fbody> did not use q at all? Then it would be stupid to pass q to fw. We
would rather transform to:

f x = case x of (p,q) -> fw p

fw p = let x = (p, error "urk") in <fbody>

This turns out to be very important in practice. Programmers seldom write functions with
wholly-unused arguments, but they frequently write functions that use only part of their
argument, and ignoring this point leads to large numbers of unused arguments being passed
around in the “optimised” program after the worker-wrapper transformation. Absence anal-
ysis has therefore been part of GHC since its earliest days (Peyton Jones & Partain 1994),
but it has never been formalised. In the framework of this paper, we give f from the last
code fragment a usage signature like this:

f ::U (U ,A)→•

The U (U ,A) indicates that the argument is a product type; that is, a data type with just
one constructor. The A (for “absent”) indicates that f discards the second component of
the product. The top-level U indicates that the overall argument has been used, and could
have been omitted, but we keep it for the uniformity of the notation.

2.4 Thunk cardinality

Consider these definitions

f :: Int -> Int -> Int

f x c = if x > 0 then c + 1 else

if x == 0 then 0 else c - 1



6 I. Sergey, D. Vytiniotis, J. Breitner and S. L. Peyton Jones

g y = f y (costly y)

Since f is not strict in c, g must build a thunk for (costly y) to pass to f. In call-by-
need evaluation, thunks are memoised. That is, when a thunk is evaluated at run-time, it
is overwritten with the value so that if it is evaluated a second time the already-computed
value can be returned immediately. But in this case we can see that f never evaluates its
second argument more than once, so the memoisation step is entirely wasted. We call these
single-entry thunks.

Memoisation is not expensive, but it is certainly not free. Operationally, a pointer to the
thunk must be pushed on the stack when evaluation starts, it must be black-holed to avoid
space leaks (Jones 1992), and the update involves a memory write. If cardinality analysis
can identify single-entry thunks, as well as one-shot lambdas, that would be a Good Thing.
And so it can: we give f the usage signature:

f :: ω∗U → 1∗U →•

The “ω ∗” modifier says that f may evaluate its first argument more than once, while the
“1∗” says that it evaluates its second argument at most once.

2.5 Call vs evaluation

For functions, there is a difference between being evaluated once and called once, because
of Haskell’s seq function. For example:

f1 g = g ‘seq‘ 1 -- f1 :: 1∗U →•
f2 g = g ‘seq‘ g 2 -- f2 :: ω∗C 1(U )→•
f3 g = g 3 -- f3 :: 1∗C 1(U )→•

The function seq evaluates its first argument (to head-normal form) and returns its second
argument. If its first argument is a function, the function is evaluated to a lambda, but not
called. Notice that f2’s usage type says that g is evaluated more than once, but applied only
once. For example consider the call

f (\x. x + y)

How many times is y evaluated? It depends on f, indeed. For f equal to f1 the answer is
zero; for f2 and f3 it is one.

3 Formalising cardinality analysis

We now present our analysis in detail. The syntax of the language we analyse is given in
Fig. 1. It is quite conventional: just lambda calculus with pairs and (non-recursive) let-
expressions. Constants κ include literals and primitive functions over literals, as well as
Haskell’s built-in seq. We use A-normal form (Sabry & Felleisen 1992) so that the issues
concerning thunks show up only for let and not also for function arguments.
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Expressions and values

e ::= x | v | e x | let x = e1 in e2 | case e1 of (x1,x2)→ e2
v ::= κ | λx.e | (x1,x2)

Annotated expressions and values

e ::= x | v | e x | let x m
= e1 in e2 | case e1 of (x1,x2)→ e2

v ::= κ | λmx.e | (x1,x2)

Usage demands and multi-demands

d ::= Cn(d) |U (d†
1 ,d

†
2 ) |U |HU

d† ::= A | n∗d
n ::= 1 | ω
m ::= 0 | 1 | ω

Non-syntactic demand equalities

Cω (U ) ≡ U
U (ω∗U ,ω∗U ) ≡ U

U (A,A) ≡ HU

Usage types

τ ::= • | d†→ τ

Usage type expansion

d†→ τ � d†→ τ

• � ω∗U →•

Free-variable usage environments (fv-usage)

ϕ ::= (x :d†),ϕ | ε

Auxiliary notation on environments
ϕ(x ) = d† when (x :d†) ∈ ϕ

A otherwise

Usage signatures and signature environments

ρ ::= 〈k ; τ ; ϕ〉 k ∈ Z>0
P ::= (x :ρ),P | ε

transform(〈k ; τ ; ϕ〉,d) = 〈τ ; ϕ〉 if d v C 1(. . .k -fold . . .C 1(U ))
= 〈ω∗τ ; ω∗ϕ〉 otherwise

Fig. 1: Syntax of terms, values, usage types, and usage environments.

3.1 Usage demands

Our cardinality analysis is a backwards analysis over an abstract domain of usage demands.
As with any such analysis, the abstract domain embodies a balance between the cost of
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µ(d†) =m

µ(A) = 0 µ(n∗d) = n

d†
1 &d†

2 = d†
3 d†

1 td
†
2 = d†

3

A&d† = d†

d† &A = d†

n1∗d1 &n2∗d2 = ω∗(d1 &d2)

Atd† = d†

d†tA = d†

n1∗d1tn2∗d2 = (n1tn2)∗(d1td2)

d1 &d2 = d3 d1td2 = d3

d &U = U
U &d = U

d &HU = d
HU &d = d

Cn1(d1)&Cn2(d2) = Cω (d1td2)

U (d†
1 ,d

†
2 )&U (d†

3 ,d
†
4 ) = U (d†

1 &d†
3 ,d

†
2 &d†

4 )

d tU = U
U td = U

d tHU = d
HU td = d

Cn1(d1)tCn2(d2) = Cn1tn2(d1td2)

U (d†
1 ,d

†
2 )tU (d†

3 ,d
†
4 ) = U (d†

1 td
†
3 ,d

†
2 td

†
4 )

Fig. 2: Demands and demand operations.

the analysis and its precision. Our particular choices are expressed in the syntax of usage
demands, given in Fig. 1. A usage demand d is one of the following:

• U (d†
1 ,d

†
2 ) applies to pairs. The pair itself is evaluated and its first component is used as

described by d†
1 and its second by d†

2 .
• C n(d) applies to functions. The function is called at most n times, and on each call the

result is used as described by d . Call demands are, to the best of our knowledge, new.
• U , or “used”, indicating no information; the demand can use the value in an arbitrary

way.
• HU , or “head-used”, is a special case; it is the demand that seq places on its first

argument: seq ::HU →U →•.

A usage demand d always uses the root of the value exactly once; it cannot express absence
or multiple evaluation. That is done by d†, which is either A (absent), or n∗d indicating
that the value is used at most n times in a way described by d . In both C n(d) and n∗d ,
the multiplicity n is either 1 or ω (meaning “many”). Notice that a call demand C n(d) has
a d inside it, not a d†: if a function is called, its body is evaluated exactly once. This is
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ϕ1 &ϕ2 = ϕ3 ϕ1tϕ2 = ϕ3

ϕ1 &ϕ2 = {(x :d†
1 &d†

2 ) | ϕi (x ) = d†
i }

ϕ1tϕ2 = {(x :d†
1 td

†
2 ) | ϕi (x ) = d†

i }

τ1t τ2 = τ3

(d†
1 → τ1)t (d†

1 → τ2) = (d†
1 td

†
2 )→ (τ1t τ2)

τ t• = •

〈τ1 ; ϕ1〉t 〈τ2 ; ϕ2〉= 〈τ3 ; ϕ3〉

〈τ1 ; ϕ1〉t 〈τ2 ; ϕ2〉 = 〈τ1t τ2 ; ϕ1tϕ2〉

n∗d†
1 = d†

2 n∗τ1 = τ2 n∗ϕ1 = ϕ2

1∗d† = d†

ω∗d† = d† &d†

n∗• = •
n∗(d†→ τ) = (n∗d†)→ (n∗τ)

n∗ϕ = {x : n∗ϕ(x ) | x ∈ dom(ϕ)}

n1tn2 = n3

1t1 = 1 ω tn = ω n tω = ω

a v b

a v b ⇔ (a tb) = b

Fig. 3: Operations on demand types and usage environments, and generic partial order.

different for pairs; the demand (d†
1 ,d

†
2 ) must have d† demands as the sub-components. For

example, if we have

let x = (e1, e2) in fst x + fst x

then e1 is evaluated twice. So the usage demand for x is ω∗U (ω∗U ,A)

Both U and HU come with some non-syntactic equalities, denoted by ≡ in Fig. 1 and
necessary for the proof of well-typedness (Section 4). For example, U is equivalent to a
pair demand whose components are used many times, or a many-call-demand where the
result is used in an arbitrary way. Similarly, for pairs HU is equivalent to U (A,A), while
for functions HU is equivalent to C 0(A), if we had such a thing. In the rest of the paper
all definitions and metatheory are modulo-≡ equivalence (checking that all our definitions
respect ≡ is routine and, hence, omitted).
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P Ì e ↓ d ⇒ 〈τ ; ϕ〉 e

(x : ρ) ∈ P 〈τ ; ϕ〉= transform(ρ,d)
VARDN

P Ì x ↓ d ⇒ 〈τ ; ϕ &(x :1∗d)〉 x

x /∈ dom(P)
VARUP

P Ì x ↓ d ⇒ 〈• ; (x :1∗d)〉 x

P Ì e ↓ de ⇒ 〈τ ; ϕ〉 e
LAM

P Ì λx.e ↓ Cn (de)⇒ 〈ϕ(x )→ τ ;n∗(ϕ\x )〉 λ
nx.e

P Ì λx.e ↓ Cω(U )⇒ 〈τ ; ϕ〉 e′
LAMU

P Ì λx.e ↓U ⇒ 〈τ ; ϕ〉 e′

LAMHU
P Ì λx.e ↓HU ⇒ 〈τ ; ε〉 λ

1x.e

P Ì e1 ↓ C 1(d)⇒ 〈d†
2→τr ; ϕ1〉 e1 P Ì∗y ↓ d†

2 ⇒ ϕ2
APPA

P Ì e1 y ↓ d ⇒ 〈τr ; ϕ1 &ϕ2〉 e1 y

P Ì e1 ↓ C 1(d)⇒ 〈• ; ϕ1〉 e1 P Ì∗y ↓ ω∗U ⇒ ϕ2
APPB

P Ì e1 y ↓ d ⇒ 〈• ; ϕ1 &ϕ2〉 e1 y

P Ì∗x1 ↓ d†
1 ⇒ ϕ1 P Ì∗x2 ↓ d†

2 ⇒ ϕ2
PAIR

P Ì (x1,x2) ↓U (d†
1 ,d

†
2 )⇒ 〈• ; ϕ1 &ϕ2〉 (x1,x2)

P Ì (x1,x2) ↓U (ω∗U ,ω∗U )⇒ 〈• ; ϕ〉 e
PAIRU

P Ì (x1,x2) ↓U ⇒ 〈• ; ϕ〉 e

PAIRHU
P Ì (x1,x2) ↓HU ⇒ 〈• ; ε〉 (x1,x2)

P Ì er ↓ d ⇒ 〈τ ; ϕr 〉 er
P Ì es ↓U (ϕr (x ),ϕr (y))⇒ 〈 ; ϕs〉 es

CASE
P Ì case es of (x ,y)→ er ↓ d ⇒ 〈τ ; ϕr\x ,y &ϕs〉 case es of (x ,y)→ er

P Ì∗x ↓ d†⇒ ϕ

ABS
P Ì∗x ↓A⇒ ε

P Ì x ↓ d ⇒ 〈τ ; ϕ〉 x
MULTI

P Ì∗x ↓ n∗d ⇒ n∗ϕ

Fig. 4: Algorithmic cardinality analysis specification, Part 1.
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3.2 Usage analysis

The analysis itself is shown in Fig. 4 and 5. The main judgement form is written thus

P Ì e ↓ d ⇒ 〈τ ; ϕ〉 e′

which should be read thus: in signature environment P , and under usage demand d , the
term e places demands 〈τ ; ϕ〉 on its components, and elaborates to an annotated term e′.
The syntax of each of these components is given in Fig. 1, and their roles in the judgement
are the following:

• The signature environment P maps some of the free variables of e to their usage signa-
tures, ρ (Section 3.5). Any free variable outside the domain of P has an uninformative
signature.
• The usage demand, d , describes the degree to which e is evaluated, including how many

times its sub-components are evaluated or called.
• Using P , the judgement transforms the incoming demand d into the demands 〈τ ;ϕ〉 that
e places on its arguments and free variables respectively:

— The usage that e places on its argument is given by τ , which gives a demand d† for
each argument.

— The usage that e places on its free variables is given by its free-variable usage (fv-
usage), ϕ , which is simply a finite mapping from variables to usage demands.

• We will discuss the elaborated expressions e′ in Section 3.7.

For example, consider the expression

e = λx . case x of (p,q)→ (p, f True)

Suppose we place demand C 1(U ) on e , so that e is called, just once. What demand does
e then place on its arguments and free variables?

ε Ì e ↓ C 1(U )⇒ 〈1∗U (ω∗U ,A)→• ;{f 7→ 1∗C 1(U )}〉

That is, e will use its argument once, its argument’s first component perhaps many times,
but will ignore its arguments second component (the A in the usage type). Moreover e will
call f just once.

In short, we think of the analysis as describing a demand transformer, transforming a
demand on the result of e into demands on its arguments and free variables.

3.3 Pairs and case expressions

With these definitions in mind, we can look at some of the analysis rules in Fig. 4. Rule
PAIR explains how to analyse a pair under a demand U (d†

1 ,d
†
2 ). We simply analyse the two

components, under d†
1 or d†

2 respectively, and combine the results with “&”. The auxiliary
judgement Ì∗ (Fig. 4) deals with the multiplicity of the argument demands d†

i .
The “&” operator, pronounced “both”, is defined for demands in Fig. 2, and for demand

types and usage environments in Fig. 3. It combines the free-variable usages ϕ1 and ϕ2.
For the most part the definition is straightforward, but there is a very important wrinkle for
call demands:
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P Ì e1 ↓U ⇒ 〈τ1 ; ϕ1〉 e1 τf = ϕ1(y)→ τ1

P , f :〈k ; τf ; ϕ1\y 〉 Ì e2 ↓ d ⇒ 〈τ ; ϕ2〉 e2

ϕ2(f )v n ∗Cn1(. . .(Cnk (. . .) . . .))
LETDN

P Ì let f = λy1 . . .yk.e1 in e2 ↓ d ⇒ 〈τ ; (ϕ2\f )〉
 let f

n
= λn1y1 . . .λ

nk yk.e1 in e2

P Ì e1 ↓U ⇒ 〈τ1 ; ϕ1〉 e1 τf = ϕ1(y)→ τ1 ϕ2(f ) =A

P , f :〈k ; τf ; ϕ1\y 〉 Ì e2 ↓ d ⇒ 〈τ ; ϕ2〉 e2 LETDNABS
P Ì let f = λy1 . . .yk.e1 in e2 ↓ d ⇒ 〈τ ; (ϕ2\f )〉

 let f
0
= λ 1y1 . . .λ

1yk.e1 in e2

P Ì e2 ↓ d ⇒ 〈τ ; ϕ2〉 e2

n∗dx = ϕ2(x ) P Ì e1 ↓ dx ⇒ 〈 ; ϕ1〉 e1 LETUP
P Ì let x = e1 in e2 ↓ d ⇒ 〈τ ; ϕ1 &(ϕ2\x )〉 let x

n
= e1 in e2

P Ì e2 ↓ d ⇒ 〈τ ; ϕ2〉 e2 A= ϕ2(x )
LETUPABS

P Ì let x = e1 in e2 ↓ d ⇒ 〈τ ; ϕ2\x 〉 let x
0
= e1 in e2

Fig. 5: Algorithmic cardinality analysis specification, Part 2 (let-rules).

C n1(d1)&C n2(d2) = Cω(d1td2)

The “ω” part is easy, since n1 and n2 are both at least 1. But note the switch from & to
the least upper bound t! To see why, consider what demand this expression places on f:

f 1 2 + f 3 4

Each call gives a usage demand for f of 1∗C 1(C 1(U )), and if we use & to combine that
demand with itself we get ω∗Cω(C 1(U )). The inner “1” is a consequence of the switch to
t, and rightly expresses the fact that no partial application of f is called more than once.
That is, one can think of the & operator as of adding two multi-demands, whereas t is
reminiscent to taking the maximum of two multi-demands.

The other rules for pairs PAIRU, PAIRHU, and case expressions CASE should now be
readily comprehensible, (ϕr\x ,y stands for the removal of {x ,y} from the domain of ϕr ).
In these rules, as well as in LAMU, the pressed demands are treated modulo the syntactic
equalities from Fig. 1 (e.g., HU ≡U (A,A)).

3.4 Lambda and application

Rule LAM for lambdas expects the incoming demand to be a call demand C n(de). Then it
analyses the body e with demand de to give 〈τ ; ϕ〉. If n = 1 the lambda is called at most
once, so we can return 〈ϕ(x )→ τ ;ϕ\x 〉; but if n = ω the lambda may be called more than
once, and each call will place a new demand on the free variables. The n∗ϕ operation on
the bottom line accounts for this multiplicity, and is defined in Fig. 3. Rule LAMU handles
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an incoming demand of U by treating it just like Cω(U ), while LAMHU deals with the
head-used demand HU , where the lambda is not even called so we do not need to analyse
the body, and e is obtained from e by adding arbitrary annotations. Similarly the return type
τ can be any type, since the λ -abstraction is not going to be applied, but is only head-used.
Dually, given an application (e y), rule APPA analyses e with demand C 1(d), reflecting
that e is here called once. This returns the demand 〈d†

2 → τ2 ; ϕ1〉 on the context. Then we
can analyse the argument under demand d†

2 , using Ì∗, yielding ϕ2; and combine ϕ1 and
ϕ2. Rule APPB applies when analysing e1 yields the less-informative usage type •.

3.5 Usage signatures

Suppose we have the term

let f = \x.\y. x True in f p q

We would like to determine the correct demands on p and q, namely 1∗C 1(U ) and
A respectively. The gold standard would be to analyse f’s right-hand side at every call
site; that is, to behave as if f were inlined at each call site. But that is not very modular;
with deeply nested function definitions, it can be exponentially expensive to analyse each
function body afresh at each call site; and it does not work at all for recursive functions.
Instead, we want to analyse f, summarise its behaviour, and then use that summary at each
call site. This summary is called f’s usage signature. Remember that the main judgement
describes how a term transforms a demand for the value into demands on its context. So a
usage signature must be a (conservative approximation of this) demand transformer.

There are many ways in which one might approximate f’s demand transformer, but rule
LETDN (Fig. 5) uses a particularly simple one:

• Look at f’s right-hand side λy1 . . .λyk.e1, where e1 is not a lambda-expression.
• Analyse e1 in demand U , giving 〈τ1 ; ϕ1〉.
• Record the triple 〈k ; ϕ(y)→ τ1 ; ϕ1\y〉 as f’s usage signature in the environment P

when analysing the body of the let.

Now, at a call site of f, rule VARDN calls transform(ρ,d) to use the recorded usage
signature ρ to transform the demand d for this occurrence of f.

What does transform(〈k ; τ ; ϕ〉,d) do (Fig. 1)? If the demand d on f is stronger than
C 1(. . .C 1(U )), where the call demands are nested k deep, we can safely unleash 〈τ ; ϕ〉
at the call site. If not, we simply treat the function as if it were called many times, by
unleashing 〈ω∗τ ; ω∗ϕ〉, multiplying both the demand type τ and the usage environment
ϕ (Fig. 3), considering it to be the result of the transform . Rule LETDNABS handles the
case when the variable is not used in the body, annotating the corresponding lambda with
one-shot demands, in order to enable let-in floating, described in Section 5.2.

3.6 Thunks

The LETDN rule unleashes (an approximation to) the demands of the right-hand side at
each usage site. This is good if the right-hand side is a lambda, but not good otherwise, for
two reasons. Consider
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let x = y + 1 in x + x

How many times is y demanded? Just once! The thunk x is demanded twice, but x’s thunk
is memoised, so the y + 1 is evaluated only once. So it is wrong to unleash a demand on
y at each of x’s occurrence sites. Contrast the situation where x is a function

let x = \v. y + v in x 42 + x 239

Here y really is demanded twice, and LETDN does that. Another reason that LETDN would
be sub-optimal for thunks is shown here:

let x = (p, q) in case x of (a, b) -> a

The body of the let places usage demand 1∗U (U ,A) on x, and if we analysed x’s right-
hand side in that demand we would see that q was unused. So we get more information if
we wait until we know the aggregated demand on x, and use it to analyse its right-hand side.

This idea is embodied in the LETUP rule, used if LETDN does not apply (i.e., the right-
hand side is not a lambda). Rule LETUP first analyses the body e2 to get the demand ϕ2(x )

on x ; then analyses the right-hand side e1 using that demand. Notice that the multiplicity
n of the demand that e2 places on x is ignored; that is because the thunk is memoised.
Otherwise the rule is quite straightforward. Rule LETUPABS deals with the case when the
bound variable is unused in the body. Instead of removing the binding x from the elaborated
program, we preserve the syntactic structure of the expressions, in order to simplify the
proof of soundness of the analysis in Section 4.

3.7 Elaboration

How are we to take advantage of our analysis? We do so by elaborating the term during
analysis, with annotations of two kinds, as described by the grammar in Fig. 1:

• let-bindings carry an annotation m ∈ {0,1,ω}, to indicate how often the let binding
is evaluated.

• Lambdas λmx.e carry an annotation m ∈ {0,1,ω}, to indicate how often the lambda is
called. The symbol 0 serves as an indicator that the lambda is not supposed to be called
at all.

Fig. 4 and 5 show the elaborated terms after the “ ”. The operational semantics (Sec-
tion 4) gets stuck if we use a thunk or lambda more often than its claimed usage; and the
optimising transformations (Section 5) are guided by the same annotations.

3.8 A more realistic language

The language of Fig. 1 is stripped to its bare essentials. Our implementation handles all of
Haskell, or rather the Core language to which Haskell is translated by GHC. In particular:

• Usage signatures for constants κ are predefined.
• All data types with a single constructor (i.e., simple products) are treated analogously to

pairs in the analysis.
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Heaps

H ::= ε | [x m7→ Exp(e)],H | [x m7→ Val(v)],H

Stacks

S ::= ε | (• y) : S | #(x ,m) : S | ((x ,y)→ e) : S

Auxiliary definitions

split(λmx . e) = (λm1x.e,λm2x.e) where m1 +m2 =m

split(v) = (v,v) otherwise

〈H0 ; e0 ;S0〉 ↪−→ 〈H1 ; e1 ;S1〉

ELET 〈H ;let x m
= e1 in e2 ;S〉 ↪−→ 〈H, [x m7→ Exp(e1)] ; e2 ;S〉

ELKPE 〈H, [x m7→ Exp(e)] ;x ;S〉 ↪−→ 〈H ; e ; #(x ,m) : S〉 if m ≥ 1
ELKPV 〈H, [x m+17→ Val(v)] ;x ;S〉 ↪−→ 〈H, [x m7→ Val(v1)] ;v2 ;S〉

s.t. split(v)=(v1,v2)

EUPD 〈H ;v ; #(x ,m+1) : S〉 ↪−→ 〈H, [x m7→ Val(v1)] ;v2 ;S〉
s.t. split(v)=(v1,v2)

EBETA 〈H ; λmx.e ; (• y) : S〉 ↪−→ 〈H ; e[y/x ] ;S〉 if m ≥ 1
EAPP 〈H ; e y ;S〉 ↪−→ 〈H ; e ; (• y) : S〉
EPAIR 〈H ;case es of (x ,y)→ er ;S〉 ↪−→ 〈H ; es ; ((x ,y)→ er ) : S〉
EPRED 〈H ; (x1,x2) ; ((y1,y2)→ er ) : S〉 ↪−→ 〈H ; er [x1/y1,x2/y2] ;S〉

Fig. 6: Heaps, stacks and a non-deterministic counting operational semantics. The guards
for counting restrictions are highlighted by grey boxes.

• Recursive data types with more than one constructor and, correspondingly, case ex-
pressions with more than one alternative (and hence also conditional statements) are
supported. The analysis is more approximate for such types: the only usage demands
that apply to such types are U and HU not U (d†

1 ,d
†
2 ). Furthermore, case expressions

with multiple branches give rise to a least upper bound t combination of usage types,
as usual.
• Recursive functions and let-bindings are handled, using the standard kind of fixed-point

iteration, with a conservative approximation in case of excessive iterations (Section 6.5).

4 Soundness of the analysis

We establish the soundness of our analysis in a sequence of steps. Soundness means that
if the analysis claims that, say, a lambda is one-shot, then that lambda is only called once;
and similarly for single-entry thunks. We formalise this property as follows:

• We present an operational semantics, written ↪−→, for the annotated language that counts
how many times thunks have been evaluated and λ -abstractions have been applied. The
semantics simply gets stuck when these counters reach zero and then an associated thunk
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is accessed or lambda is invoked, which will happen only if the claims of the analysis
are false (Section 4.1).
• Our goal is to prove that if an expression e is elaborated to e by the analysis, then e

in the instrumented semantics behaves identically to e in a standard un-instrumented
call-by-need semantics (Section 4.3). For reasons of space we omit the rules for the
un-instrumented call-by-need semantics which are completely standard (Sestoft 1997),
and are identical to the rules of Fig. 6 if one simply ignores all the annotations and the
multiplicity side-conditions. We refer to this semantics as −→.
• We prove soundness by giving a type system for the annotated terms, and showing

that for well-typed terms, the instrumented semantics ↪−→ simulates −→, in a type-
preserving way.

4.1 Counting operational semantics

We present a simple counting operational semantics for annotated terms in Fig. 6. This
is a standard semantics for call-by-need, except for the fact that multiplicity annotations
decorate the terms, stacks, and heaps. The syntax for heaps, denoted with H, contains
two forms of bindings, one for expressions [x

m7→ Exp(e)] and one for already evaluated
expressions [x m7→ Val(v)]. The multiplicity m ∈ {0,1,ω} denotes how many more times
are we allowed to de-reference this particular binding. The stacks, denoted with S, are just
lists of frames. The syntax for frames includes application frames (• y), which store a
reference y to an argument, case-frames ((x ,y)→ e), which account for the execution of a
case-branch, and update frames of the form #(x ,m), which take care of updating the heap
when the active expression reduces to a value. The first component of an update frame is a
name of a variable to be updated, and the second one is its thunk cardinality.

Rule ELET allocates a new binding on the heap. The rule EBETA fires only if the
cardinality annotation is non-zero; it de-references an Exp(e) binding and emits an update
frame. Rules EBETA, EAPP, EPAIR and EPRED are standard. Note that the analysis does
not assign zero-annotations to lambdas, but we need them for the soundness result.

Rule ELKPV de-references a binding for an already-evaluated expression [x
m7→ Val(v)],

and in a standard semantics would return v leaving the heap unaffected. In our counting
semantics however, we need to account for two things. First, we decrease the multiplicity
annotation on the binding (from m + 1 to m in rule ELKPV). Moreover, the value v can
in the future be used both directly (since it is now the active expression), and indirectly
through a future de-reference of x . We express this by non-deterministically splitting the
value v, returning two values v1 and v2 whose top-level λ -annotations sum up to the
original (see split in Fig. 6). Our proof needs only ensure that among the non-deterministic
choices there exists a choice that simulates −→. Rule EUPD is similar except that the heap
gets updated by an update frame.

4.2 Checking well-annotated terms

We would like to prove that if we analyse a term e , producing an annotated term e, then if
e executes for a number of steps in the standard semantics −→, then execution of e does
not get stuck in the instrumented semantics ↪−→ of Fig. 6. To do this we need to prove
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ρ ∈ d 7→ 〈τ ; ϕ〉 P ::= ε | P ,(x :ρ)

P ` e ↓ d ⇒ 〈τ ; ϕ〉

(x : ρ) ∈ P 〈τ ; ϕ〉= ρ(d)
TVARDN

P ` x ↓ d ⇒ 〈τ ; ϕ &(x :1∗d)〉

x /∈ dom(P)
TVARUP

P ` x ↓ d ⇒ 〈• ; (x :1∗d)〉

d v Cn (de) m ≥ n P ` e ↓ de ⇒ 〈τ ; ϕ〉
TLAM

P ` λ
mx.e ↓ d ⇒ 〈ϕ(x )→ τ ;n∗(ϕ\x )〉

d vHU
TLAMHU

P ` λ
mx.e ↓ d ⇒ 〈τ ; ε〉

P ` e1 ↓ C 1(d)⇒ 〈τ1 ; ϕ1〉
τ1 � d†

2 → τr P ∗̀ y ↓ d†
2 ⇒ ϕ2

TAPP
P ` e1 y ↓ d ⇒ 〈τr ; ϕ1 &ϕ2〉

d vU (d†
1 ,d

†
2 ) P ∗̀ x1 ↓ d†

1 ⇒ ϕ1 P ∗̀ x2 ↓ d†
2 ⇒ ϕ2

TPAIR
P ` (x1,x2) ↓ d ⇒ 〈• ; ϕ1 &ϕ2〉

P ` er ↓ d ⇒ 〈τ ; ϕr 〉
P ` es ↓U (ϕr (x ),ϕr (y))⇒ 〈 ; ϕs〉

TCASE
P ` case es of (x ,y)→ er ↓ d ⇒ 〈τ ; ϕr\x ,y &ϕs〉

m ≥ µ(ϕ2(x )) ϕ2(x )v n ∗d1

P ` e1 ↓ d1⇒ 〈τ1 ; ϕ1〉 P `t e1 : ρ

P ,(x :ρ) ` e2 ↓ d ⇒ 〈τ ; ϕ2〉 TLETDN
P ` let x m

= e1 in e2 ↓ d ⇒ 〈τ ; (ϕ2\x )〉

m ≥ n P ` e2 ↓ d ⇒ 〈τ ; ϕ2〉
n∗dx = ϕ2(x ) P ` e1 ↓ dx ⇒ 〈 ; ϕ1〉 TLETUP

P ` let x m
= e1 in e2 ↓ d ⇒ 〈τ ; ϕ1 &(ϕ2\x )〉

P ` e2 ↓ d ⇒ 〈τ ; ϕ2〉 A= ϕ2(x )
TLETUPABS

P ` let x m
= e1 in e2 ↓ d ⇒ 〈τ ; ϕ1 &(ϕ2\x )〉

P ∗̀ x ↓ d†⇒ ϕ

TABS
P ∗̀ x ↓A⇒ ε

P ` x ↓ d ⇒ 〈τ ; ϕ〉
TMULTI

P ∗̀ x ↓ n∗d ⇒ n∗ϕ

P `t e : ρ

∀d1,d2.d1 v d2 =⇒ ρ(d1)v ρ(d2)

∀d ,ϕ,τ.(P ` e ↓ d ⇒ 〈τ ; ϕ〉) =⇒ 〈τ ; ϕ〉 v ρ(d)
WFTRANS

P `t e : ρ

Fig. 7: Generalized demand transformers ρ , transformer environments P , and well-
annotated terms with respect to a type τ and a usage environment ϕ .
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preservation and progress lemmas, showing that each step takes a well-annotated term to a
well-annotated term, and that well-annotated terms do not get stuck.

Fig. 7 says what it means to be “well-annotated”, using notation from Fig. 1–3. The
rules look very similar to the analysis rules of Fig. 4–5, except that we check an annotated
term, rather than producing one. For example, rule TLAM checks that the annotation on a
λ -abstraction (m) is at least as large as the call cardinality we press on this λ -abstraction
(n). As evaluation progresses the situation clarifies, so the annotations may become more
conservative than the checker requires, but that is fine.

A more substantial difference is that instead of holding concrete demand transformers ρ

as the analysis does (Fig. 1), the environment P holds generalised demand transformers ρ .
A generalised demand transformer is simply a monotone function from a demand to a pair
〈τ ; ϕ〉 of a type and a usage environment (Fig. 7). In the TLETDN rule, we make use of
the auxiliary function µ (Fig. 2) and clairvoyantly choose any such transformer ρ , which
is sound for the RHS expression – denoted with P `t e1 : ρ . We still check that e1 can be
type checked with some demand d1 that comes from type-checking the body of the let

(ϕ2(x )). In rule TVARDN we simply apply the transformer ρ to get a type and fv-usage
environment.

Rule WFTRANS imposes two conditions necessary for the soundness of the transformer.
First, it has to be a monotone function on the demand argument. Second, it has to soundly
approximate any type and usage environment that we can attribute to the expression. One
can easily confirm that the intensional representation used in the analysis satisfies both
properties for the λ -expressions bound with LETDN.

Because these rules conjure up functions ρ out of thin air, and have universally quantified
premises (in WFTRANS), they do not constitute an algorithm. But for the very same reasons
they are convenient to reason about in the metatheory, and that is the only reason we need
them. In effect, Fig. 7 constitutes an elaborate invariant for the operational semantics.

4.3 Soundness of the analysis

The first result is almost trivial.

Lemma 4.1 (Analysis produces well-typed terms)
If P Ì e ↓ d ⇒ 〈τ ; ϕ〉 e then P ` e ↓ d ⇒ 〈τ ; ϕ〉.

We would next like to show that well-typed terms do not get stuck. To present the main
result we need some notation first.

Definition 4.1 (Unannotated heaps and stacks and erasure)
We use H and S to refer to an un-instrumented heap and stack respectively. We use e\ = e

to mean that the erasure of all annotations from e is e , and we define S\ = S and H\ = H

analogously.

We can show that annotated terms run for at least as many steps as their erasures would
run in the un-instrumented semantics:

Theorem 4.1 (Safety for annotated terms)
If ε ` e1 ↓HU ⇒ 〈τ ; ε〉 and e1 = e\1 and 〈ε ; e1 ; ε〉 −→k 〈H ; e2 ;S 〉 then there exist H, e2

and S, such that 〈ε ; e1 ; ε〉↪−→k 〈H ; e2 ;S〉, H\ =H , S\ = S and e\2 = e2.
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Unsurprisingly, to prove this theorem we need to generalise the statement to talk about a
single-step reduction of a configuration with arbitrary (but well-annotated) heap and stack.
Hence we introduce a well-annotated configuration relation, denoted ` 〈H ; e ; S〉, that
extends the well-annotation invariant of Fig. 7 to configurations. For reasons of space, we
only give the statement of the theorem below, and defer the details of the well-annotation
relation to Appendix A.

Lemma 4.2 (Single-step safety)
Assume that ` 〈H1 ; e1 ; S1〉. If 〈H\

1 ; e\1 ; S\1〉 −→ 〈H2 ; e2 ;S2〉 in the un-instrumented se-
mantics, then there exist H2, e2 and S2, such that 〈H1 ; e1 ;S1〉 ↪−→ 〈H2 ; e2 ;S2〉, H\

2 = H2,
e\2 = e and S\2 = S2, and moreover ` 〈H2 ; e2 ;S2〉.

Notice that the counting semantics is non-deterministic, so Lemma 4.2 simply ensures
that there exists a possible transition in the counting semantics that always results in a
well-typed configuration. Lemma 4.2 crucially relies on yet another property, below.

Lemma 4.3 (Value demand splitting)
If P ` v ↓ (d1 &d2)⇒〈τ ;ϕ〉 then there exists a split split(v) = (v1,v2) such that: P ` v1 ↓
d1⇒ 〈τ1 ; ϕ1〉 and P ` v2 ↓ d2⇒ 〈τ2 ; ϕ2〉 and moreover τ1 v τ , τ2 v τ and ϕ1 &ϕ2 v ϕ .

Why is Lemma 4.3 important? Consider the following

let x = v in case x 3 of (y,z) -> x 4

The demand exercised on x from the body of the let-binding will be C 1(U )&C 1(U )=

Cω(U ) and hence the value v will be checked against this demand (using the LETUP

rule), unleashing an environment ϕ . However, after substituting v in the body (which is
ultimately what call-by-need will do) we will have checked it against C 1(U ) and C 1(U )

independently, unleashing ϕ1 and ϕ2 in each call site. Lemma 4.3 ensures that reduction
never increases the demand on the free variables of the environment, and hence safety is
not compromised. It is precisely the proof of Lemma 4.3 that requires demand transformers
to be monotone in the demand arguments, ensured by WFTRANS.

Theorem 4.2 (Safety of analysis)
If ε Ì e1 ↓ HU ⇒ 〈τ ; ε〉 e1 and 〈ε ; e1 ; ε〉 −→k 〈H ; e2 ;S 〉, then there exist H, e2 and
S, such that 〈ε ; e1 ; ε〉↪−→k 〈H ; e2 ;S〉, H\ =H , S\ = S and e\2 = e2.

The proof is just a combination of Lemma 4.1 and Theorem 4.1.

5 Optimisations

We discuss next the two optimisations enabled by our analysis.

5.1 Optimised allocation for thunks

We show here that for 0-annotated bindings there is no need to allocate an entry in the
heap, and for 1-annotated ones we don’t have to emit an update frame on the stack. Within
the chosen operational model, this optimisation is of dynamic flavour so we express this
by providing a new, optimising small-step machine for the annotated expressions. The new
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〈H0 ; e0 ;S0〉=⇒ 〈H1 ; e1 ;S1〉

OPT-ELETA 〈H ;let x 0
= e1 in e2 ;S〉 =⇒ 〈H ; e2 ;S〉

OPT-ELETU 〈H ;let x n
= e1 in e2 ;S〉 =⇒ 〈H, [x n7→ Exp(e1)] ; e2 ;S〉 where n ≥ 1

OPT-ELKPEM 〈H, [x ω7→ Exp(e)] ;x ;S〉 =⇒ 〈H ; e ; #(x ,ω) : S〉
OPT-ELKPEO 〈H, [x 17→ Exp(e)] ;x ;S〉 =⇒ 〈H ; e ;S〉
OPT-ELKPV 〈H, [x ω7→ Val(v)] ;x ;S〉 =⇒ 〈H, [x ω7→ Val(v)] ;v ;S〉
OPT-EUPD 〈H ;v ; #(x ,ω) : S〉 =⇒ 〈H, [x ω7→ Val(v)] ;v ;S〉
OPT-EBETA 〈H ; λmx.e ; (• y) : S〉 =⇒ 〈H ; e[y/x ] ;S〉
OPT-EAPP 〈H ; e y ;S〉 =⇒ 〈H ; e ; (• y) : S〉
OPT-EPAIR 〈H ;case es of (x ,y)→ er ;S〉 =⇒ 〈H ; es ; ((x ,y)→ er ) : S〉
OPT-EPRED 〈H ; (x1,x2) ; ((y1,y2)→ er ) : S〉 =⇒ 〈H ; er [x1/y1,x2/y2] ;S〉

Fig. 8: Optimised counting semantics.

semantics is defined in Fig. 8. We will show that programs that can be evaluated via the
counting semantics (Fig. 6) can be also evaluated via the optimised semantics in a smaller
or equal number of steps.

The proof is a simulation proof, hence we define relations between heaps / optimised
heaps, and stacks / optimised stacks that are preserved during evaluation.

Definition 5.1 (Auxiliary ∝-relations)
We write e1 ∝ e2 iff e1 and e2 differ only on the λ -annotations. H1 ∝ H2 and S1 ∝ S2 are
defined in Fig. 9.

For this optimisation the annotations on λ -abstractions play no role, hence we relate any
expressions that differ only on those.

Fig. 9 tells us when a heap H is related with an optimised heap Hopt with the relation
H∝Hopt . As we have described, there are no 07→ bindings in the optimised heap. Moreover,
notice that there are no bindings of the form [x

17→ Val(v)] in either the optimised or
unoptimised heap. It is easy to see why: every heap binding starts life as [x

m7→ Exp(e)].
By the time Exp(e) has become a value Val(v), we have already used x once. Hence, if
originally m = ω then the value binding will also be ω (in the optimised or unoptimised
semantics). If it was m = 1 then it can only be 0 in the un-optimised heap and non-existent
in the optimised heap. If it was m = 0 then no such bindings would have existed in the
optimised heap anyway.

The relation between stacks is given with S ∝ Sopt . Rule SSIM2 ensures that there are
no frames #(x ,1) in the optimised stack. In fact during evaluation it is easy to observe that
there are not going to be any update frames #(x ,0) in the original or optimised stack.

We can now state the optimisation simulation theorem.

Theorem 5.1 (Optimised semantics)
If 〈H1 ;e1 ;S1〉∝ 〈H2 ;e2 ;S2〉 and 〈H1 ;e1 ;S1〉 ↪−→ 〈H′1 ;e′1 ;S′1〉 then there exists k ∈ {0,1}
such that 〈H2 ; e2 ;S2〉=⇒k 〈H′2 ; e′2 ;S′2〉 and 〈H′1 ; e′1 ;S′1〉 ∝ 〈H′2 ; e′2 ;S′2〉.

Proof
The proof is by case analysis on the ↪−→ relation:
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HSIM1
ε ∝ ε

H1 ∝ H2
HSIM2

H1, [x
07→ Exp(e)] ∝ H2

H1 ∝ H2
HSIM3

H1, [x
07→ Val(v)] ∝ H2

n ≥ 1 H1 ∝ H2 e1 ∝ e2
HSIM4

H1, [x
n7→ Exp(e1)] ∝ H2, [x

n7→ Exp(e2)]

H1 ∝ H2 v1 ∝ v2
HSIM5

H1, [x
ω7→ Val(v1)] ∝ H2, [x

ω7→ Val(v2)]

SSIM1
ε ∝ ε

S1 ∝ S2
SSIM2

(#(x ,1) : S1) ∝ S2

S1 ∝ S2
SSIM3

(• y) : S1 ∝ (• y) : S2

S1 ∝ S2
SSIM4

(#(x ,ω) : S1) ∝ (#(x ,ω) : S2)

e1 ∝ e2 S1 ∝ S2
SSIM5

((x ,y)→ e1) : S1 ∝ ((x ,y)→ e2) : S2

Fig. 9: Auxiliary simulation relation ∝ for heaps and stacks.

• Case ELET. We have two cases to consider. If m ≥ 1 then it is obvious. If m = 0 then
H′1 = H1, [x

07→ Exp(e1)] and H′2 = H2 and H′1 ∝ H2 as required.
• Case ELKPE. In this case we have that:

〈H1, [x
m7→ Exp(e1)] ;x ;S1〉 ↪−→ 〈H1 ; e ; #(x ,m) : S1〉

given that m ≥ 1. Then either OPT-ELKPEM or OPT-ELKPEO will fire:

— If m = ω the result follows trivially.
— If m = 1 then S′1 = #(x ,1) : S1 and S′2 = S2 and by rule SSIM2 we are done.

• Case ELKPV. By the side condition m = m ′+ 1 it can only be that m = 1 or m =

ω . By the heap invariant for H1 and an easy induction it has to be that m = ω . The
corresponding rule that can fire in the optimised semantics is OPT-ELKPV and the result
is trivial.
• Case EUPD. We have that:

〈H1 ; v ; #(x ,n) : S1〉 ↪−→ 〈H1, [x
m7→ Val(v1)] ; v2 ;S1〉

where n = m + 1 and split(v) = (v1,v2). Therefore, since n = m + 1, it has to be the
case that n = ω or n = 1.

— If n = ω then rule OPT-EUPD gives the result.
— Let n = 1. Then, assume that 〈H1 ; v ; #(x ,n) : S1〉 ∝ 〈H2 ; v ;S2〉 which will happen

if S1 ∝ S2. However, in this case, m = 0, which means that it also must be the case
that 〈H1, [x

m7→ Val(v1)] ; v2 ;S1〉 ∝ 〈H2 ; v2 ;S2〉 so we are done in 0 steps (hence we
have =⇒k and not just =⇒ in the statement of the theorem).
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• Case EBETA follow directly from the rule OPT-EBETA.
• Case EAPP follows by OPT-EAPP.
• Cases EPRED and EPAIR follow directly from rules OPT-EPRED and OPT-EPAIR.

Notice that the counting semantics may not be able to take a transition at some point due
to the wrong non-deterministic choice but in that case the statement of Theorem 5.1 holds
trivially. Finally, we tie together Theorems 5.1 and 4.2 to get the following result.

Theorem 5.2 (Analysis is safe for optimised semantics)
If Ì e1 ↓HU ⇒〈τ ;ε〉 e1 and 〈ε ;e1 ;ε〉 −→n 〈H ;e2 ;S 〉 then 〈ε ;e1 ;ε〉=⇒m 〈H ;e2 ;S〉
s. t. e\2 = e2, m ≤ n , and there exist H2 and S2 such that H\

2 = H and S\2 = S and H2 ∝ H

and S2 ∝ S.

Theorem 5.2 says that if a program e1 evaluates in n steps to e2 in the reference seman-
tics, then it also evaluates to the same e2 (modulo annotation) in the optimised semantics
in n steps or fewer; and the heaps and stacks are consistent. Moreover, the theorem has
informative content on infinite sequences. For example it says that for any point in the
evaluation in the reference semantics, we will no later have reached a corresponding inter-
mediate configuration in the optimised semantics with consistent heaps and stacks.

5.2 let-in floating into one-shot lambdas

As discussed in Section 2, we are interested in the particular case of let-floating (Pey-
ton Jones et al. 1996): moving the binder into the body of a lambda-expression. This
transformation is trivially safe, given obvious syntactic side conditions (Moran & Sands
1999, §4.5), however, in general, it is not beneficial. Here we describe the conditions under
which let-in floating makes things better in terms of the length of the program execution
sequence.

We start by defining let-in floating in a form of syntactic rewriting:

Definition 5.2 (let-in floating for one-shot lambdas)

let z
m1= e1 in (let f

m2= λ 1x . e in e2)

=⇒ let f
m2= λ 1x . (let z

m1= e1 in e) in e2,

for any m1, m2 and z /∈ FV (e2).

Next, we provide a number of definitions necessary to formulate the so called improve-
ment result (Moran & Sands 1999). The improvement is formulated for closed, well-
formed configurations. For a configuration 〈H ; e ; S〉 to be closed, any free variables in
H, e and S must be contained in a union dom(H)∪ dom(S), where dom(H) is a set of
variables bound by a heap H, and dom(S) is a set of variables marked for update in a stack
S. A configuration is well-formed if dom(H) and dom(S) are disjoint.

Definition 5.3 (Convergence)
For a closed configuration 〈H ; e ;S〉,

〈H ; e ;S〉 ⇓N def
= ∃H′,v . 〈H ; e ;S〉 ↪−→N 〈H′ ; v ; ε〉

〈H ; e ;S〉 ⇓≤N def
= ∃M . 〈H ; e ;S〉 ⇓M and M ≤N
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The following theorem shows that local let-in floating into the body of a one-shot lambda
does not make the execution longer.

Theorem 5.3 (Let-in float improvement)
For any H and S, if

〈H ;let z
m1= e1 in (let f

m2= λ
1x . e in e2) ;S〉 ⇓N

and z /∈ FV (e2), then

〈H ;let f
m2= λ

1x . (let z
m1= e1 in e) in e2 ;S〉 ⇓≤N .

Proof sketch: Let us refer to the first configuration as q and the second as q ′. We say that
two heaps, H1 and H2, are related (H1 ' H2) iff they are of the form

H1 = H0, [z
m7→ e1], [f1

m17→ λn1x . e], . . . , [fk
mk7→ λnk x . e]

H2 = H0, [f1
m17→ λn1x . ez ], . . . , [fk

mk7→ λnk x . ez , ]

for some H0 and k , where ez = (let z
m
= e1 in e); and e, e1 and z are from the statement

of the theorem, and ∑
k
i=1ni = 1.3

The proof goes in four stages.

1. It is the case that q evaluates in two steps to some q1 = 〈H1 ; e2 ;S〉 and q ′ evaluates in
one step to some q2 = 〈H2 ;e2 ;S〉 such that H1 'H2. Now we need to show that q2 will
make at most one step more than q1 before they both terminate.

2. Taking (H1'H2) and the stacks and expressions being the same for both configurations
as an invariant, we show that both configurations will make a step simultaneously, so
the invariant is preserved until some fk is in the configuration focus. Then we pass to
the next stage.

3. If fk is in the focus of both configurations, we consider the stack. If S = ε the case is
done. (And so too if S contains a case alternative because both computations will be
stuck.) If S = #(x ,n) : S′ then we update the heap in both branches in a '-preserving
way, so we are back to stage (2). If S= (• y) : S′ then the “optimised” program makes
one additional step to allocate z , and we pass to the last stage of the proof.

4. For the rest of the execution we can show that the programs will execute in lockstep
with a simulation argument taking the invariant almost as in stage (2), but now with
∑

k
i=1ni = 0 and z being allocated in the second heap too.

�

Even though Theorem 5.3 gives a termination-dependent result, its proof goes via a
simulation argument, hence it is possible to state the theorem in a more general way without
requiring termination.

6 Implementation

We have implemented the cardinality analyser by extending the demand analysis machin-
ery of the Glasgow Haskell Compiler (version 7.8 and later), available publicly from its
open-source repository:

3 The Val(·)/Exp(·) distinction does not affect the core of the proof.
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http://git.haskell.org/ghc

We elaborate on some implementation specifics in this section.

6.1 Analysis

The implementation of the analysis was straightforward, because GHC’s existing strictness
analyser is already cast as a backwards analysis, exactly like our new cardinality analysis.
So the existing analyser worked unchanged; all that was required was to enrich the domains
over which the analyser works.4 In total, the analyser increased from 900 lines of code to
1,140 lines, an extremely modest change.

We run the analysis twice, once in the middle of the optimisation pipeline, and once
near the end. The purpose of the first run is to expose one-shot lambdas, which in turn
enable a cascade of subsequent transformations (Section 6.3). The second analysis finds the
single-entry thunks, which are exploited only by the code generator. This second analysis
is performed very late in the pipeline (a) so that it sees the result of all previous inlining
and optimisation and (b) because the single-entry thunk information is not robust to certain
other transformations (Section 6.4).

6.2 Absence

GHC exploits absence in the worker/wrapper split, as described in Section 2.3: absent
arguments are not passed from the wrapper to the worker.

6.3 One-shot lambdas

As shown in Section 5.2, there is no run-time payoff for one-shot lambdas. Rather, the
information enables some important compile-time transformations. Specifically, consider

let x = costlyv in . . .(λy. . . .x . . .) . . .

If the λy is a one-shot lambda, the binding for x can be floated inside the lambda, without
risk of duplicating the computation of costly. Once the binding for x is inside the λy ,
several other improvements may happen:

• It may be inlined at x ’s use site, perhaps entirely eliminating the allocation of a thunk
for x .
• It may enable a rewrite rule (eg foldr/build fusion) to fire.
• It may allow two lambdas to be replaced by one. For example

f= λv.let x = costlyv in λy. . . .x . . .

=⇒ f= λv.λy. . . .(costlyv) . . .

The latter produces one function with two arguments, rather than a curried function that
returns a heap-allocated lambda (Marlow & Peyton Jones 2006).

4 This claim is true in spirit, but in practice we substantially refactored the existing analyser when
adding usage cardinalities.

http://git.haskell.org/ghc
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6.4 Single-entry thunks

The code that GHC compiles for a thunk begins by pushing an update frame on the stack,
which includes a pointer to the thunk. Then the code for the thunk is executed. When
evaluation is complete, the value is returned, and the update frame overwrites the thunk
with an indirection to the value (Peyton Jones 1992). It is easy to modify this mechanism
to take advantage of single-entry thunks: we do not generate the push-update-frame code
for single-entry thunks. There is a modest code size saving (fewer instructions generated)
and a modest runtime saving (a few store instructions saved on thunk entry, and a few more
when evaluation is complete).

Take care though! The single-entry property is not robust to program transformation. For
example, common sub-expression elimination (CSE) can combine two single-entry thunks
into one multiple-entry one, as can this sequence of transformations:

let y
1
= e in let x = y+0 in x ∗x

Identity of + =⇒ let y
1
= e in let x = y in x ∗x

Inline x =⇒ let y
1
= e in y ∗y Wrong!

This does not affect the formal results of the paper, but it is the reason that our second run
of the cardinality analysis is immediately before code generation.

6.5 Handling of recursive functions

For our formal presentation we had the liberty to assume that let-expressions are non-
recursive, in rule LETDN in Fig. 5. In reality, lets are recursive, and GHC has to deal with
them. Ideally, we would like to find the least usage signature ρ so that

P , f :ρ Ì e1 ↓U ⇒ 〈τ1 ; ϕ1〉 e1 ρ = 〈k ; ϕ1(y)→ τ1 ; ϕ1\y 〉
P , f :ρ Ì e2 ↓ d ⇒ 〈τ ; ϕ2〉 e2 ϕ2(f )v n ∗Cn1(. . .(Cnk (. . .) . . .))

P Ì let f = λy1 . . .yk.e1 in e2 ↓ d ⇒ 〈τ ; (ϕ2\f )〉 let f
n
= λn1y1 . . .λ

nk yk.e1 in e2

holds. But that is itself a recursive specification and hence non-executable.
Therefore, we employ a usual fixed-point iteration. We start with the most optimistic

signature ρ0 = 〈k ;A→ ·· · → A→ • ; ε〉 which claims that f uses neither any of its k

arguments nor its free variables5 and calculate

P , f :ρi Ì e1 ↓U ⇒ 〈τ1 ; ϕ1〉 ei1 ρi+1 = 〈k ; ϕ1(y)→ τ1 ; ϕ1\y 〉 .

If we have ρ i = ρ i+1 for some i , we found the desired fixed-point. We analyse the body

P , f :ρi Ì e2 ↓ d ⇒ 〈τ ; ϕ2〉 e2 ϕ2(f )v n ∗Cn1(. . .(Cnk (. . .) . . .))

and obtain

P Ì let f = λy1 . . .yk.e1 in e2 ↓ d ⇒ 〈τ ; (ϕ2\f )〉 let f
n
= λn1y1 . . .λ

nk yk.e
i
1 in e2 .

Note that, unless the let is not actually recursive, e2 will put a demand on both f and
its other free variables. The strictness signature of f will (eventually) mention the free

5 In the implementation, which is combined with GHC’s strictness analysis, the initial signature is
actually “hyperstrict”, i.e., that of a bottoming function.
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variables of e2, so the demands put on the free variables are necessary multiple-use, and
no 1∗ annotation that is not hidden behind a C n( ) demand will survive there, even when
in fact there is only one use in the complete recursion. This is one cause of imprecision
(Section 7.3).

Unfortunately, our domain (i.e., the cpo of usage signatures ρ) does not have finite height
and therefore it is not guaranteed that this iteration terminates. If no fixed-point is found
after a finite number of steps (currently 10), we abort the search. In order to obtain a sound
result, we re-analyse e1 one final time, this time with a most pessimistic signature ρ∞. If the
domain of triples had a top element, that would be a suitable choice, but such an element
would have to mention all variables in its usage of free variables, which is not expressible.
Instead, we use ϕ10, the free-variable usage component of ρ10, which mentions all free
variables that are relevant to e2, but possibly with a demand that is too good to be true, and
adjust that pessimistically:

ρ
∞ = 〈k ;U → ··· →U →• ;{x :U | x ∈ dom(ϕ10)}〉

This signature is larger than any analysis result that we expect for e2 and hence a conser-
vative assumption.

After analysing e1 and e2 using ρ∞ as the signature for f , i.e.

P , f :ρ∞ Ì e1 ↓U ⇒ 〈τ1 ; ϕ1〉 e1

P , f :ρ∞ Ì e2 ↓ d ⇒ 〈τ ; ϕ2〉 e2 ϕ2(f )v n ∗Cn1(. . .(Cnk (. . .) . . .)),

we obtain

P Ì let f = λy1 . . .yk.e1 in e2 ↓ d ⇒ 〈τ ; (ϕ2\f )〉 let f
n
= λn1y1 . . .λ

nk yk.e1 in e2 .

6.6 Accelerating fixed-point computation

Running the analyser on nested recursive definitions can be expensive at compile-time. For
instance, for two functions f and g, such that g is nested under f, the analyser must find a
fixed-point for the inner function g at each iteration of the fixed-point computation for func-
tion f. To remedy this, we use the simple widening strategy from the literature (Henglein
1994), based on the observation that iterations of the fixed-point process for f generates
a monotonically increasing sequence of usage signatures for f. Therefore, each time we
begin the fixed-point process for g, the environment contains values that are no smaller (in
the demand partial order) than the corresponding values the previous time we encountered
g. It follows that the correct fixed-point for g will be greater than the correct fixed-point
found on the previous iteration of f. Therefore we can begin the fixed-point process for
g not with the bottom value, but rather with the result of the previous analysis. In the
implementation, this result is conveniently available in the elaborated term e1.

We also improve it a bit more by splitting the environment component ϕ of a usage
signature, separating variables with multiple-use demands from the other ones. The intu-
ition is that multiple-use demands cannot be increased any further, and, therefore, do not
contribute to the fixed-point computation.
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Program Syntactic 1S-λ Syntactic 1U-Thunks Runtime 1U-Thunks

anna 4.0% 7.2% 2.9%
banner 14.3% 20.0% 5.3%
boyer2 3.3% 20.0% 0.0%
bspt 5.0% 15.4% 1.5%
cacheprof 7.6% 11.9% 5.1%
calendar 5.7% 0.0% 0.2%
circsim 2.6% 4.0% 3.0%
constraints 2.0% 3.2% 4.5%
cryptarithm1 0.0% 0.0% 5.3%
cryptarithm2 0.6% 3.0% 74.0%
cse 4.2% 2.8% 1.8%
eliza 0.0% 0.0% 48.7%
expert 3.4% 4.3% 3.9%
fem 19.2% 17.6% 1.7%
fft2 6.6% 0.0% 0.4%
fluid 7.3% 4.6% 2.3%
fulsom 5.4% 7.3% 8.0%
gamteb 40.2% 22.0% 0.9%
gcd 12.5% 0.0% 0.0%
gen regexps 5.6% 0.0% 0.2%
hpg 5.2% 0.0% 4.1%
integer 8.3% 0.0% 0.0%
knights 10.4% 23.4% 1.3%
life 3.2% 0.0% 1.8%
lift 2.1% 0.0% 1.1%
listcopy 11.5% 21.4% 1.8%
mandel 12.3% 4.2% 3.9%
mkhprog 27.4% 20.8% 5.8%
nucleic2 3.5% 3.1% 3.2%
parser 7.5% 24.7% 1.4%
partstof 5.8% 10.7% 0.1%
puzzle 16.5% 28.0% 68.9%
reptile 10.2% 13.8% 1.0%
rewrite 6.7% 6.0% 19.9%
scc 0.0% 0.0% 0.8%
solid 5.5% 2.4% 0.0%
sphere 7.8% 6.2% 20.0%
typecheck 3.9% 9.4% 0.9%
wheel-sieve1 10.5% 0.0% 0.0%
x2n1 0.0% 0.0% 0.1%

... and 50 more programs

Arithmetic mean 10.3% 12.6% 5.5%

Table 1: Analysis results for nofib: ratios of syntactic one-shot lambdas, syntactic single-
entry thunks and runtime entries into single-entry thunks.
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7 Evaluation

To measure the accuracy of the analysis, we counted the proportion of (a) one-shot lambdas
and (b) single-entry thunks. In both cases, these percentages are of the syntactically occur-
ring lambdas or thunks respectively, measured over the code of the benchmark program
only, not library code. Table 1 shows the results reported by our analysis for programs
from the nofib benchmark suite (Partain 1993). For the sake of presentation, in the table
we show the most interesting programs with non-trivial contributions to the overall analysis
statistics. The numbers are quite encouraging. One-shot lambdas account for 0-30% of all
lambdas (with the arithmetic mean being 10.3%), while single-entry thunks are 0-23% of
all thunks (with the arithmetic mean 12.6%).

The static (syntactic) frequency of single-entry thunks may be very different to their
dynamic frequency in a program execution, so we instrumented GHC to measure the latter.
(We did not measure the dynamic frequency of one-shot lambdas, because they confer
no direct performance benefit.) The “Runtime 1U-Thunks” column of Table 1 gives the
dynamic frequency of single-entry thunks in the same nofib programs. Note that these
statistics include single-entry thunks from libraries, as well as the benchmark program
code. The results vary widely. Most programs do not appear to use single-entry thunks
much, while a few use many, up to 74% for cryptarithm2.

It is important to note that the results of the optimised execution, although related
with the numbers of one-shot lambdas and single-entry thunks in the nofib programs
themselves, are much likely caused by the analysis results and the subsequent optimisations
for the standard libraries.

7.1 Optimising nofib programs

In the end, of course, we seek improved runtimes, although the benefits are likely to be
modest. One-shot lambdas do not confer any performance benefits directly; rather, they
remove potential obstacles from other compile-time transformations. Single-entry thunks,
on the other hand give an immediate performance benefit, by omitting the push-update-
frame code, but it is a small one.

Table 2 summarises the effect of cardinality analysis when running the nofib suite.
“Allocation” is the change in how much heap was allocated when the program is run and
“Runtime” is a change in the actual program execution time.

In Section 2.1 we mentioned a hack, used by Gill in GHC, in which he hard-coded the
call-cardinality information for three particular functions: build, foldr and runST. Our
analysis renders this hack redundant, as now the same results can be soundly inferred.
We therefore report two sets of results: relative to an un-hacked baseline, and relative to a
hacked baseline. In both cases the binary size of the (statically) linked binaries falls slightly
but consistently (2.0% average), which is welcome. This may be due to less push-update-
frame code being generated, but it’s virtually impossible to say for sure: any change that
affects inlining (which discovering one-shot-lambdas certainly does) has knock-on effects
propagate down the long optimisation pipeline, with unpredictable consequences for code
size.
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Program
Allocation Runtime

No hack Hack No hack Hack

anna -2.2% -0.2% +0.1% +0.1%
banner +3.5% -0.1% -0.0% -0.0%
boyer2 -0.4% -0.4% +0.0% -0.0%
bspt -2.2% -0.0% -0.0% +0.0%
cacheprof -7.5% -0.6% -6.0% -1.7%
calendar -9.2% +0.2% -0.0% -0.0%
circsim -7.5% -0.0% -4.3% -2.0%
constraints -0.9% -0.0% -1.2% -0.2%
cryptarithm1 -0.0% -0.0% +2.3% +0.0%
cryptarithm2 -0.3% -0.0% -2.3% -0.0%
cse -4.6% -0.0% +0.0% +0.0%
eliza -2.2% -0.1% +0.0% +0.0%
expert -1.8% -0.1% -0.0% -0.0%
fem -2.2% -0.0% -0.0% -0.0%
fft2 -34.8% -0.0% +0.0% -0.0%
fluid -3.4% -0.0% -0.0% -0.0%
fulsom -0.7% -0.0% -0.0% +1.8%
gamteb +3.1% +0.5% +0.0% +0.0%
gcd -15.5% -0.0% -0.0% -0.0%
gen regexps -1.0% -0.1% -0.0% -0.0%
hpg -2.0% -1.0% -0.1% -0.0%
integer -0.0% -0.0% -8.8% -6.6%
knights -1.9% -0.0% +0.0% +0.0%
life -0.8% -0.0% -3.4% +0.0%
lift -1.9% -0.0% -0.0% -0.0%
listcopy +1.2% -0.0% +0.1% +0.1%
mandel -1.9% -0.0% +0.0% +0.0%
mkhprog -11.9% +0.1% -0.0% -0.0%
nucleic2 -14.1% -10.9% +0.0% +0.0%
parser -0.2% -0.2% +0.0% +0.0%
partstof -95.5% -0.0% -0.0% -0.0%
puzzle -8.2% -0.0% +0.1% +0.1%
reptile -2.7% -0.0% -0.0% -0.0%
rewrite -6.6% -0.0% -0.0% -0.0%
scc -0.3% -0.4% -0.0% -0.0%
solid -0.6% -0.0% +0.0% +0.0%
sphere -1.5% -1.5% -0.0% -0.1%
typecheck -0.5% -0.0% +0.1% -0.1%
wheel-sieve1 -18.7% -0.0% -4.0% +0.7%
x2n1 -29.9% -0.0% -0.0% -0.0%

... and 50 more programs

Best improvement 95.5% 10.9% 8.8% 6.6%
Worst degradation 3.5% 0.5% 2.3% 2.6%
Geometric mean improvement 6.0% 0.3% 1.8% 1.0%

Table 2: Cardinality analysis-enabled optimisations for nofib.
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Program Runtime 1U-Thunks No-Opt Runtime Runtime ∆

binary-trees 49.4% 66.83 s -9.2%
fannkuch-redux 0.0% 158.94 s -3.7%
n-body 5.7% 38.41 s -4.4%
pidigits 8.8% 41.56 s -0.3%
spectral-norm 4.6% 17.83 s -1.7%

Table 3: Optimisation of the programs from the Computer Language Benchmark Game.

Considering allocation, the numbers relative to the un-hacked baseline are quite encour-
aging, but relative to the hacked compiler the improvements are modest: the hack was very
effective! Otherwise, only one program, nucleic2 shows a significant (11%) reduction in
allocation, which turned out to be because a thunk was floated inside a one-shot lambda
and ended up never being allocated, exactly as advertised. One can notice, though, that the
new compiler sometimes performs worse than the cardinality-unaware versions in a very
few benchmarks in nofib. In a highly optimising compiler with many passes it is very
hard to ensure that every “optimisation” always makes the program run faster; and, even if
a pass does improve the program per se, to ensure that every subsequent pass will carry out
all the optimisations that it did before the earlier improvement was implemented. The data
show that we do not always succeed (even comparing to the un-hacked baseline compiler).

A shortcoming of nofib suite is that runtimes tend to be short and very noisy: even
with the execution key slow only 18 programs from the suite run for longer than half
second (with a maximum of 2.5 seconds for constraints). Among those long-runners
the biggest performance improvement is 8.8% (for integer), with an average of 2.3%.
To produce more realistic average numbers for the whole nofib suite, we have re-run the
suite several times. As a result, some short-running outliers have been averaged out, and
overall runtime statistics for individual programs has slightly changed comparing to the
conference version of this paper (Sergey et al. 2014).

For more realistic numbers, we measured the improvement in runtime, relative to the
hacked compiler, for several programs from the Computer Language Benchmarks Game.6

The results are shown in Table 3. All programs were run with the official shootout settings
(except spectral-norm, to which we gave a bigger input value of 7500) on a 2.7 GHz
Intel Core i7 OS X machine with 8 Gb RAM. These are uncharacteristic Haskell programs,
optimised to within an inch of their life by dedicated Haskell hackers. There is no easy meat
to be had, and indeed the heap-allocation changes are so tiny (usually zero, and -0.2% at
the most in the case of binary-trees) that we omit them from the table. However, we
do get one joyful result: a solid speedup of 9.2% in binary-trees due to fewer thunk
updates. As you can see, nearly half of its thunks entered at runtime are single-entry.

6 http://benchmarksgame.alioth.debian.org/

http://benchmarksgame.alioth.debian.org/
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Library Syntactic 1S-λ Syntactic 1U-Thunks Benchmark name Allocation ∆

attoparsec 32.8% 19.3% benchmarks -7.1%

binary 16.8% 0.9%
bench -0.2%
builder -0.3%
get -4.3%

bytestring 5.3% 4.3%
boundcheck -0.5%
all -6.6%

cassava 26.4% 9.8% benchmarks -0.7%

Table 4: Analysis and optimisation results for selected hackage libraries.

7.2 Real-world programs

To test our analysis and the cardinality-powered optimisations on some real-world pro-
grams, we chose a number of continuation-heavy libraries from the hackage repository:7

attoparsec, a fast parser combinator library, binary, a lazy binary serialisation library,
bytestring, a space-efficient implementation of byte-vectors, and cassava, a parsing
and encoding library for CSV-files.

These libraries come with accompanying benchmark suites, which we ran both for the
baseline compiler and the cardinality-powered one. Table 4 contains the ratios of syntactic
one-shot lambdas and single-entry thunks for the libraries, as well relative improvement in
memory allocation for particular benchmarks. Since we were interested only in the absolute
improvement against the state of the art, we made our comparison with respect to the
contemporary version of (hacked) baseline GHC. The encouraging results for attoparsec
are explained by its relatively high ratio of one-shot lambdas, which is typical for parser
combinator libraries.

GHC itself is a very large Haskell program, written in a variety of styles, so we compiled
it with and without cardinality-powered optimisations, and measured the allocation and
runtime improvement when using the two variants to compile several programs. The results
are shown in Table 5. As in the other cases, we get modest but consistent improvements.

7.3 Precision and missed opportunities

After having formally established that our changes are semantically correct, and empir-
ically that they are beneficial, one might still wonder how complete they are: does our
analysis find all single-entry thunks and one-shot functions, and if not, what opportunities
did it miss? Any static analysis will be approximate, but it would not be surprising if the
analysis missed some low-hanging fruit.

7 http://hackage.haskell.org/

http://hackage.haskell.org/
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Program LOC
GHC Allocation ∆ GHC Runtime ∆

No hack Hack No hack Hack

anna 5740 -1.6% -1.5% -0.8% -0.4%
cacheprof 1600 -1.7% -0.4% -2.3% -1.8%
fluid 1579 -1.9% -1.9% -2.8% -1.6%
gamteb 1933 -0.5% -0.1% -0.5% -0.1%
parser 2379 -0.7% -0.2% -2.6% -0.6%
veritas 4674 -1.4% -0.3% -4.5% -4.1%

Table 5: Compilation of large nofib programs with optimised GHC.
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Closure types: T: thunk, I: indirection, C: value

Fig. 10: Heap during evaluation of a thunk t (un-instrumented runtime)

In this section we report on a study in which we use a specially instrumented version
of the compiler to make dynamic, runtime measurements to see how often each thunk is
entered in an actual program run. Then we compare these runtime figures with the results
of the static analysis.

In this study we focus only on single-entry thunks. One could imagine doing a similar
study for one-shot lambdas, but we leave that as further work.

7.3.1 Runtime instrumentation

Our goal is this: for every dynamically allocated instance of a thunk, we want to observe
how often it is used.

To see why this cannot be observed in an unmodified version of the runtime, let us recall
how thunks are evaluated in GHC. At run time, a thunk is represented as a closure that is
stored in the heap, referencing its program code as well as the values captured by its free
variables, as pictured in Fig. 10. Upon its first use, the closure is entered, i.e., jumped to.
Immediately after that, the thunk code T performs the following actions:

1. First, it replaces the closure by a black hole, a special type of closure used to mark
values under evaluation,

2. Next, pushes an update frame, which will be activated later, onto the stack,
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3. Then, it runs the actual code of the closure, which will eventually evaluate to a
value C.

4. This value is then returned via the stack to the update frame, which replaces the black
hole by an indirection I, pointing to the returned value C; see Fig. 10(b).

5. Finally, the value is returned to the code that triggered the evaluation of the thunk T.
Any subsequent use of a pointer to (what used to be) the thunk T enters the indirection I,
which simply returns the value C. We might hope to count the number of times T is used
by counting the number of times the indirection is entered.

However, the next run of the garbage collector replaces a pointer to the indirection I by
a direct pointer to the indirection’s target C (Fig. 10(c)). Hence, after garbage collection,
only the final value remains in the heap, without any indication that this value came from
our original thunk T. Therefore, we have no way to relate any subsequent uses of this value
to the original thunk T, whose runtime cardinality we were planning to measure.

In order to observe all uses of a thunk, we implemented a new type of closures in GHC’s
runtime, dubbed counting indirection (CI). When entered, these indirections behave as
normal indirections, i.e., they evaluate the closure they are pointing to. The important
difference is that the garbage collector does not erase them, but instead copies them like
any other closure. More precisely, we do the following:

• When dynamically allocating a thunk in the heap, we allocate two heap objects, the
thunk itself T, and a counting indirection CI that points to T (Fig. 11(a)).
• As well as pointing to T, the dynamically allocated counting indirection also contains

— CI.cnt: a pointer to a static data structure, CNT.
— CI.entries: a private count of the number of times the indirection has been entered.

• There is a single, static CNT record for each syntactic closure, or allocation site A. The
CNT record contains three fields8

— CNT.allocs: the number of times allocation site A has been executed; that is, how
many thunks have been allocated by A.

— CNT.once: the number of those thunks that have been entered exactly once
— CNT.multi: the number of those thunks that have been entered more than once.

When the counting indirection is entered the first time (CI.entries = 0), it increments
CI.entries, and the CNT.once counter in the static CNT record. If it is entered a second
time (CI.entries = 1), it again increments CI.entries, decrements CNT.once and increments
CNT.multi. Further uses of the counting indirection simply increase CI.entries.

A particular instance of this modified scenario is depicted in Fig. 11(a), where the
counter CNT records indicates that so far 10 closure instances have been allocated, out of
which 2 have been used at most once and 5 were used multiple times. After the first eval-
uation of the newly allocated thunk, the private CI.entries field is incremented, along with
CNT.once (Fig 11(b)). After the second entry, CI.entries becomes 2, while the CNT.multi
field has gone from 5 to 6, recording that one more instance of this thunk has been entered
more than once (Fig 11(c)).

8 The static CNT record contains additional fields, not relevant to the discussion.
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Fig. 11: Heap during evaluation of a thunk t (instrumented runtime)

syntactic thunks dynamic thunks
determined to be determined to be

observed single entry multi entry single entry multi entry

never used 19 525 157444 1,608,128
entered once 1,310 3,498 4,893,280 171,101,068
multiple times 0 3,653 0 66,457,533

Table 6: Precision of the analysis: Allocated thunks

7.3.2 Evaluating soundness and completeness

This instrumentation allowed us to check the actual implementation for two things:

• Soundness. Does the executing program enter any thunk multiple times that the analysis
determined as single-entry? If so, the analysis is wrong.
• Completeness. How many thunks are thought to be multiple-entry by the analysis, but

are entered only once during execution? Perhaps a more precise analysis could find more
single-entry thunks?
Of course, in a different execution of the same program, the same syntactic thunk might
be entered more than once, so the analysis is not necessarily at fault. Moreover the
analysis is necessarily approximate. But still, it is worth a manual analysis of these
apparently missed opportunities.

We compiled programs from the nofib benchmark suite with the instrumentation de-
scribed above, linked them against an uninstrumented base library and ran each program
once. We obtained the results in Table 6. The first pair of columns, “syntactic thunks”,
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Extended Syntax

n ::= 1 | ω P(r)
m ::= 0 | 1 | ω P(r)
r ::= datacon | fix | cpe | both | . . .

d†
1 &d†

2 = d†
3 d1 &d2 = d3

n1∗d1 &n2∗d2 = (n1 &n2)∗(d1td2) Cn1(d1)tCn2(d2) = Cn1 &n2(d1td2)

n1tn2 = n3 n1 &n2 = n3

1t1 = 1 1&1 = ω {both}
1tω r = ω r 1&ω r = ω (r ∪{both})
ω r t1 = ω r ω r &1 = ω (r ∪{both})

ω r1tω r2 = ω (r1∪ r2) ω r1 &ω r2 = ω (r1∪ r2∪{both})

Fig. 12: Modified syntax and operations to track reasons of precision loss.

gives the results by allocation site. For example, across all the program runs, there were 19
allocation sites that were determined to be single-entry, but were never entered at all.

The second pair of columns, “dynamic thunks”, gives the result by dynamically allocated
thunk instances. This emphasises those thunks that are evaluated most often; allocation
sites with very few instances don’t matter much. For example, across all program runs
there were 4,893,280 thunks allocated at allocation sites marked single-entry, that were
indeed entered exactly once.

On soundness the news is good: the table confirms that every thunk that we determined
to be single-entry (the first column of each pair) was indeed used at most once (the zero
entries in the third row).

On completeness, the news is not so good. Consider all the syntactic thunks (i.e. alloca-
tion sites) whose instances were entered at most once (i.e. the first two rows of the table).
These are the candidates that cardinality analysis might determine as single-entry. But only
1,329 (i.e 1,310+ 19) were so determined, with 4,023 being missed. So we are missing
75% of the plausible opportunities! It get worse when we consider the dynamic-thunk
columns: only 2.8% of the thunks that are actually entered at most once are identified as
such by the analysis.

So what about these 172,709,196 dynamic thunks that were used once or less, but where
our analysis did not predict that? We call them the “plausible opportunity” thunks. The
natural question is: could the analysis have done better for these thunks?

7.4 Missed opportunities

To learn more about the missed opportunities, we extended the usage types so that with
every ω occurring in a demand on a plausible-opportunity thunk, we could also track the
reason for that pessimistic conclusion.
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To that end we extended the type for cardinalities (n and m in Fig 1) to keep track of
a set of reasons, which are just strings injected at various places in the code; for example
the reason datacon is added to the many-used demand put on the arguments of a data
constructor application when the incoming demand on its result is non-informative. The
operations t and & combine reasons from both arguments, as shown in Figure 12. When
reporting the counters of the instrumented runtime presented in the previous section, all
reasons for this particular thunk to not be assumed one-shot are printed along with it.

Using this more detailed analysis, we found that almost all the plausible-opportunity
thunks fall into one of four categories:

1. The large majority of missed opportunities (71.7%) are due to thunks that are stored in
constructors (e.g., in tuples, lists, arrays). There are two reasons for poor precision:

• Our analysis can transport the demand on tuples and other product types into the
argument of constructors. But this is only helpful if the demand on the product type is
known. Since the analysis looks at function definitions before their uses, this works in
the case of f(x,y), where we can use the nested demand information in the strictness
signature of f to get information on x and y. However, if a tuple is returned from a
function such as f x = (x+1, y-1), the demand on the result of f is not known and
we have to assume the thunk x+1 to be used multiple times. Returning a constructor
in this way is a very frequent pattern.

• Currently, our analysis only computes nested demand information for product types.
Extending it to sum types is possible, but experiments using a prototype9 showed no
relevant improvements. This is not surprising, as data constructors of sum types are
routinely returned from functions and thus especially affected by the afore-mentioned
problem. Additionally, extending demand analysis to sum-types poses the problem
of getting precise results for recursive types (which are almost invariably sums), not
addressed by this work.

2. The next frequent case, accounting for 22.2% of missed opportunities, arises from when
the cardinality analysis has to give up because the use of the thunk occurs inside a
recursive function.10 This is often the result of using foldr together with short-cut
deforestation (Gill et al. 1993), and typically results in code of the following shape:

let foo xs = let thunk = f x

in let go [] = thunk

go (x:xs) = g x (go xs)

in go xs

Clearly, the thunk is called at most once, but the call comes from a recursive function go,
where the cardinality analysis has to make the conservative assumption that everything
used by go is used more than once, as discussed in Section 6.5.
In order for our analysis to detect that thunk in foo is called at most once, it would
have to see that

9 provided by Ömer Sinan Aǧacan
10 This number is severely inflated by a single static thunk in fannkuch-redux accounting for

21.0%.
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(a) although it is called from within a recursive function, it is not called together with
the recursive function, so it lies, in a way, on the exit path from the loop,

(b) the recursion here is linear: once it is started, its exit path is executed once, and
(c) the recursion is initially started at most once.
An analysis that is capable of doing such reasoning is Call Arity (Breitner 2015a),
which is a separate analysis in GHC. Call Arity is a forward analysis, while our analysis
is a backwards analysis, so combining the two to improve the handling of recursive
functions is non-trivial and future work.

3. Around 4% of the missed opportunities are thunks created in the last Core-to-Core
pass, which transforms the program into A-normal form, in preparation of lowering
the program to STG. This involves introducing let-bindings for all non-trivial function
arguments. Usually, the pass will use the information found in the function’s strictness
signature and attach it to the newly created thunks, but if there is no such signature, or
the function is not saturated, a conservative assumption is made here. There might be
room for improvement here, but 4% is hardly a fat target.

4. Only 1.3% of the missed opportunities are due to uses of the both operator (&). Such
a case can arise from a call to the function maybe d f mb. The function maybe uses
either d or f (depending on mb), but never both; the analysis does not see that.

Less than 1% of missed opportunities have other reasons (e.g., arguments to primitive
operations); 0.2% of missed opportunities are due to more than one reason.

In short, there does not seem to be a lot of low-hanging fruit here. We are not optimistic
for radical improvements in the treatment of data structures. Probably the best opportunity
is using Call Arity to improve case (2).

8 Related work

8.1 Abstract interpretation for usage and absence

The goal of the traditional usage/absence analyses is to figure out which parts of the
programs are used, and which are not (Peyton Jones & Partain 1994). This question was
first studied in the late 80’s, when an elegant representation of usage analysis in terms of
projections (Hinze 1995) was given by Wadler and Hughes (Wadler & Hughes 1987). Their
formulation allows one to define a backwards analysis — inferring the usage of arguments
of a function from the usage of its result — an idea that we adopted wholesale. Our work
has important differences, notably (a) call demands C n(d), which appear to be entirely
new; and (b) the ability to treat nested lambdas, which requires us to capture the usage of
free variables in a usage signature. Moreover our formal underpinning is quite different to
their (denotational) approach, because we fundamentally must model sharing.

8.2 Type-based approaches

The notion of “single-entry” thunks and “one-shot” lambdas is reminiscent of linear types
(Girard 1995; Turner & Wadler 1999), a similarity that was noticed very early (Launchbury
et al. 1993). Linear types per se are far too restrictive (see, for example, Wansbrough &
Peyton Jones (1999, § 2.2) for details), but the idea of using a type system to express
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usage information inspired a series of “once upon a type” papers11 (Turner et al. 1995;
Gustavsson 1998; Wansbrough & Peyton Jones 1999; Wansbrough 2002).

Alas, a promising idea turned out to lead, step by step, into a deep swamp. Firstly,
subtyping proved to be essential, so that a function that used its argument once could
have a type like Int1 → Int , but still be applied to an argument x that was used many
times and had type Intω (Wansbrough & Peyton Jones 1999). Then usage polymorphism
proved essential to cope with currying: “[Using the monomorphic system] in the entirety of
the standard libraries, just two thunks were annotated as used-once” (Wansbrough 2002,
3.7). Gustavsson advocated bounded polymorphism to gain greater precision (Gustavsson
& Sveningsson 2001), while Wansbrough extended usage polymorphism to data types,
sometimes resulting in data types with many tens of usage parameters. The interaction of
ordinary type polymorphism with all these usage-type features was far from straightfor-
ward. The inference algorithm for a polymorphic type system with bounds and subtyping
is extremely complex. And so on. Burdened with these intellectual and implementation
complexities, Wansbrough’s heroic prototype in GHC (around 2,580 brand-new lines of
code; plus pervasive changes to thousands of lines of code elsewhere) turned out to be
unsustainable, and never made it into the main trunk.

Our system sidesteps these difficulties entirely by treating the problem as a backwards
analysis like strictness analysis, rather than as a type system (even though we use the type
system vocabulary when defining demand types). This is what gives the simplicity to our
approach, but also prevents it from giving “rich” demand signatures to third- and higher-
order functions: our usage types can account uniformly only for the first- and second-
order functions, thanks to call demands. For example what type might we attribute to the
following function?

f x g = g x

The usage of x depends on the particular g in the call, so usage polymorphism would be
called for. This is indeed more expressive but it is also more complicated. We deliberately
limit precision for very higher-order programs, to gain simplicity.

At some level abstract interpretation and type inference can be seen as different sides
of the same coin, but there are some interesting differences. For example, our LETDN and
LETUP rules are explicit about information flow; in the former, information flows from the
definition of a function to its uses, while in the latter the flow is reversed. Type systems use
unification variables to allow much richer information flow — but at the cost of generating
constraints involving subtyping and bounds that are tricky to solve.

Another intriguing difference is in the handling of free variables:

let f = \x. y + x in if b then f 1 else y

How many times is the free variable y evaluated in this expression? Obviously just once,
and LETDN discovers this, because we unleash the demand on y at f’s call site, and take
the least upper bound of the two branches of the if. But type systems behave like LETUP:
compute the demand on f (namely, called once) and from that compute the demand on y.

11 The title, as so often, is due to Wadler.
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Then combine the demand on y from the body of the let (used at most once), and from
f’s right hand side (used at most once), yielding the result that y is used many times. We
have lost the fact that the two uses come from different branches of the conditional.

The fact that our usage signatures include the ϕ component makes them more expressive
than mere types—unless we extend the type system yet further with a polymorphic effect
system (Hage et al. 2007; Holdermans & Hage 2010; Verstoep & Hage 2015). Moreover,
the analysis approach deals very naturally with absence, and with product types such as
pairs, which are ubiquitous. Most of type-based approaches do not do so well here (except
for the type-based analysis by Verstoep & Hage (2015), which handles absence, but has
not been implemented and evaluated in practice).

Comparing to polymorphic effect systems, a weakness of our approach is that as soon
as a value is stored in a data structure, we entirely lose track of its usage cardinality.
Type-based approaches can use usage polymorphism to track usage within data structures.
Consider, for example, a usage-polymorphic data type Tree, defined as follows

data Tree c = Leaf (Int ->c Int)

| Node (Tree c) (Tree c)

where “->c” is a type of functions called no more than c times. So a value of type
(Tree 1) is a tree of called-once functions. This approach works, but when Wansborough
tried it at scale he found that he had to add thousands of cardinality variables to some data
types (Wansbrough 2002, § 6.4.11). So the approach did not appear to scale well at all.

In short, an analysis-based approach has proved much simpler intellectually than the
type-based one, and far easier to implement. One might wonder if a clever type system
might give better results in practice, but Wansbrough’s results (mostly zero change to
allocation; one program allocated 15% more, one 14% less (Wansbrough 2002)) were no
more compelling than those we report. Our proof technique does however share much in
common with Wansbrough and Gustavsson’s work, all three being based on an operational
semantics with an explicit heap. However, ours is the only one that deals with one-shot
lambdas; the others are concerned only with single-entry thunks.

One other prominent type-based usage system is Clean’s uniqueness types (Barendsen &
Smetsers 1996). Clean’s notion of uniqueness is, however, fundamentally different to ours.
In Clean a unique-typed argument places a restriction on the caller (to pass the only copy
of the value), whereas for us a single-entry argument is a promise by callee (to evaluate the
argument at most once). In a related analysis framework by Hage et al. (2007), based on a
polymorphic type-and-effect system, a similar dichotomy is accounted for by two different
subeffecting rules (T-SUBUP) and (T-SUBDOWN).

8.3 Other related work

Call demands, introduced in this paper, appear to be related to the notion of applicative-
ness, employed in the recent work on relevance typing (Holdermans & Hage 2010). In
particular, applicativeness means that an expression is either “guaranteed to be applied
to an argument” (S), or “may not be applied to an argument” (L). In this terminology S

corresponds to a “strong” version of our demands Cω(d), which requires d < U , and L is
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similar to our U . The seq-like evaluation of expressions corresponds to our demand HU .
However, neither call- nor thunk-cardinality are captured by the concept of applicativeness.

Abstract counting or sharing analysis conservatively determines which parts of the pro-
gram might be used by several components or accessed several times in the course of exe-
cution. Early work employed a forward abstract interpretation framework (Goldberg 1987;
Hudak 1986). Since the forward abstract interpreter makes assumptions about arguments
of a function it examines, the abstract interpretation can account for multiple combinations
of those and may, therefore, be extremely expensive to compute.

Recent development on the systematic construction of abstract-interpretation-based static
analyses for higher-order programs, known as abstracted abstract machines (AAM), makes
it straightforward to derive an analyser from an existing small-step operational semantics,
rather than come up with an ad-hoc non-standard one (Van Horn & Might 2010). This
approach also greatly simplifies integration of the counting abstract domain to account for
sharing (Might & Shivers 2006). However, the abstract interpreters obtained this way are
whole-program forward analysers, which makes them non-modular. It would be, however,
an interesting topic for the future work to build a backwards analysis from AAM.

8.4 Related analyses in GHC

Besides the implementation of the cardinality analysis we present there are two further
related analyses employed by the compiler.

The goal of arity analysis (Xu & Peyton Jones 2005) is to enable the transformation
known as lambda-floating by providing an answer to the question “given a function f,
what is the minimal number of arguments f will be always given when called?”. Taking the
number of top-level lambdas is sound, but imprecise. We believe that the information nec-
essary for lambda-floating can be inferred from the results of our cardinality analyser. What
makes us sure is the observation that operationally an inferred call demand C(C(...)) for
a function f indicates that f, whenever used, is applied to at least as many arguments as
there are Cs in the demand.

The goal of Call Arity analysis (Breitner 2015a) is similar: it also tries to determine
a lower bound on the number of arguments a function is given. Motivated by runtime
inefficiencies caused by applying list fusion to left folds, the main strength of the call arity
analysis is that it is able to determine that a thunk or a function is used once even if the
call site lies within a recursive function. In order to do so, it analyses all let-bindings
downwards and returns co-call graphs, indicating which functions and thunks are called
together. For this analysis, an Isabelle formalization exists that proves not only that the
analysis and transformation preserves the semantics, but also and more notable that it does
not degrade the program (Breitner 2015b). A more detailed treatment of the analysis and
its formalization can be found in the third-named author’s thesis (Breitner 2016).

9 Conclusion

The fourth-named author has been trying to crack this problem for nearly two decades.
The tradeoff between precision, information flow, complexity, and implementation payoff,
is a complex one. We now have better news. The cardinality analysis described here is
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simple to implement (it added 250 lines of code to a 140,000 line compiler), and, even in
the presence of the shortcomings and potential precision losses identified in Section 7.3, it
gives real improvements for serious programs, not just for toy benchmarks; for example,
GHC itself (a very large Haskell program) runs 4% faster. In the context of a 20-year-old
optimising compiler, a gain of this magnitude is a solid win.
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Appendix

A Proofs of soundness of the analysis

This appendix provides typing rules for stacks and heaps, omitted from the main paper
body, and proves the soundness of the analysis (Section 4).

A.1 Stack and heap typing for analysis safety

Definition A.1 (Configuration typing)
We write P ` 〈H ;e ;S〉 to mean that there exist d , τ , ϕ1 and ϕ2 such that P ` e ↓ d⇒〈τ ;ϕ1〉
and P `s S ↓ (d ,τ)⇒ ϕ2 and P ` H ∼ (ϕ1 &ϕ2) according to the heap and stack typing
rules of Fig. 13.

Fig. 13 explains how we type stacks and heaps. The judgement P `s S ↓ (d ,τ)⇒ ϕ

intends to identify the fv-usage environment of the stack S, given that the argument that
we intend to place in the hole of the stack has type τ when being imposed with demand
d . Rule SHU deals with the case when we impose no demand on the hole of the stack
– consequently the stack must be empty! Rule SARR deals with the case when the stack
demands the application of the expression in the hole to an argument and hence the shape of
the stack has to be (• y) : S. The corresponding demand that this particular stack expresses
is C 1(d) where d is the demand expressed by the rest of the stack. The following three
rules (SUPDUP, SUPDUPABS, and SUPDDN) correspond to the flavors of LETDN that
we encountered in the typing rules. If we encounter a stack #(x ,n) : S then what is the
demand that is placed on x? In the continuation S the variable x will be immediately used
with some demand d but it might be that the continuation induces further calls to x which
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end up pressing an additional m∗dx . In total the demand that this stack presses on the hole
is d &dx – and it must be the case that the multiplicity n on the stack be higher than the
indirect multiplicity in S (m), plus one, for the immediate pressure on the top of the stack.
This is in-line with our intuition that the only way we can exercise more pressure than just
a linear C 1(d) on a function is via the heap: in the continuation we could potentially be
immediately calling the function but we might as well be calling it indirectly later on. Rule
SUPDUPABS is of similar flavor, only simpler, since the indirect pressure on x is just A.

The SUPDUP and SUPDUPABS rules deal with demand on x being gathered up from
the continuation of the execution, but rule SUPDDN is rather different: if x is bound with a
transformer in P then we – in effect – treat it as if the expression bound by x is inlined so
we only gather the ϕ from the continuation and check that the multiplicity of x is sufficient.

Rule SCASE is interesting, too. The stack has the shape of a case elimination branch.
If there exists a demand d , such that the rhs e can be typed with it, giving 〈τ ; ϕ1〉 and the
stack, when pressed with d , can give ϕ2, then we can simply return ϕ1\x ,y &ϕ2. In this
case the demand pressed on the hole of the stack can be any dp vU (ϕ1(x ),ϕ1(y)).

The heap typing judgement P ` H∼ ϕ ensures that the heap H has enough multiplicity
to withstand the pressure that ϕ will exercise. Rules HPVARABS and HPEMPTY are bor-
ing. However HPVARUP ensures that if ϕ needs to press m ∗d on x then (i) x must have
enough multiplicity in the heap, but also that (ii) the expression or value bound by x can
be checked at this demand yielding a new ϕ1. Finally, (iii) the remaining heap must have
enough multiplicity to withstand the newly unleashed demand from ϕ1.

Rule HPVARDN is simpler: it checks that (i) the multiplicity of x in the heap is high
enough, (ii) the transformer is well-formed for the bound expression, and (iii) the expres-
sion can indeed be typechecked in the demand that ϕ presses.

With these definitions in place we can prove the generalised safety statement, Lemma 4.2,
which is needed for the proof of Theorem 4.1.

A.2 Soundness theorems

The partial order v and the least upper bound t are defined for usage types naturally:

τ1 v τ2 ⇔ (τ1t τ2) = τ2

For usage environments ϕ the partial order is defined as a point-wise lifting of partial
order on multi-demands in their codomains (assuming each ϕ is predetermined with A by
default).

Lemma A.1 (Monotonicity of usage typing)
If the transformer environment P consists of monotone functions and P ` e ↓ d ⇒ 〈τ ; ϕ〉
and d ′ v d then P ` e ↓ d ′⇒ 〈τ ′ ; ϕ ′〉 and τ ′ v τ and ϕ v ϕ ′.

Proof
The intuition is that if we use an expression “less” than how it was originally typed, then
the annotations in it are still adequate, and we get smaller types and environments out.

The proof goes by induction on the typing derivation.

• Case TVARDN follows by monotonicity of the transformer and monotonicity of the
operations on usage environments.
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P `s S ↓ (d ,τ)⇒ ϕ

d vHU
SHU

P `s ε ↓ (d ,τ)⇒ ε

τh � d†
y → τ P ∗̀ y ↓ d†

y P `s S ↓ (d ,τ)⇒ ϕ
SARR

P `s (• y) : S ↓ (C 1(d),τh )⇒ ϕ

x /∈ dom(P) m+1≤ n

P `s S ↓ (d ,•)⇒ ϕ m∗dx = ϕ(x )
SUPDUP

P `s (#(x ,n) : S) ↓ (d &dx ,τ)⇒ ϕ\x

x /∈ dom(P) 1≤ n

P `s S ↓ (d ,•)⇒ ϕ ϕ(x ) =A
SUPDUPABS

P `s (#(x ,n) : S) ↓ (d ,τ)⇒ ϕ\x

(x :ρ) ∈ P n ≥ µ(ϕ(x ))+1

P `s S ↓ (d ,Td
ρ )⇒ ϕ

SUPDDN
P `s (#(x ,n) : S) ↓ (d ,τ)⇒ ϕ\x

dp vU (ϕ1(x ),ϕ1(y))

P ` e ↓ d ⇒ 〈τ ; ϕ1〉 P `s S ↓ (d ,τ)⇒ ϕ2 SCASE
P `s ((x ,y)→ e) : S ↓ (dp ,•)⇒ ϕ1\x ,y &ϕ2

P ` H∼ ϕ

P ` H∼ ϕ

HPVARABS
P ` H∼ ϕ,(x :A)

HPEMPTY
P ` H∼ ε

n ≥m x /∈ dom(P)

P ` e/v ↓ d ⇒ 〈τ ; ϕ1〉 P ` H∼ ϕ &ϕ1 HPVARUP
P ` H, [x n7→ Exp(e)/Val(v)]∼ ϕ,(x :m ∗d)

n ≥m (x :ρ) ∈ P P `t e/v : ρ

P ` e/v ↓ d ⇒ 〈τ1 ; ϕ1〉 P ` H∼ ϕ
HPVARDN

P ` H, [x n7→ Exp(e)/Val(v)]∼ ϕ,(x :m ∗d)

Fig. 13: Stack and heap typing

• Case TVARUP is trivial.
• Case TLAM is an easy application of the induction hypothesis, and then either TLAM

or TLAMHU. Note that this relies on the non-deterministic choice of return type of
TLAMHU which lets us choose the same type as the TLAM used for typing the λ -
abstraction.
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• Case TLAMHU is straightforward.
• Case TPAIR and TCASE are easy applications of the induction hypothesis.
• Case TLETDN follows by induction hypothesis for e2, noting that ρ is monotone by the

assumption P `t e1 : ρ .
• Case TLETUP follows by induction hypothesis and then applying either TLETUP or

TLETABS.
• Case TLETABS follows by induction hypothesis and TLETUP.

Lemma A.2 (Discrete usage signatures are well-formed)

If

e= λ
n1x1 . . .λ

nk xk.e1, n1, . . . ,nk > 0 (1)

P ` e1 ↓U ⇒ 〈τ1 ; ϕ1〉 (2)

〈τ0 ; ϕ0〉= 〈ϕ1(x )→ τ1 ; ϕ1\x 〉 (3)

ρ = λd . transform(〈k ; τ0 ; ϕ0〉,d) (4)

then P `t e : ρ .

Proof

By the typing rule WFTRANS, we need to show that

∀d1,d2.d1 v d2 =⇒ T d1
ρ v T d2

ρ ∧Φ
d1
ρ vΦ

d2
ρ (5)

∀d ,ϕ,τ.(P ` e ↓ d ⇒ 〈τ ; ϕ〉) =⇒ τ v T d
ρ ∧ ϕ vΦ

d
ρ . (6)

The proof of (5) is straightforward, since ρ is a monotonic step-function.
For the second part, let us first define the threshold dt as dt =C 1(. . .k−fold . . .C 1(U ) . . .),

where k -fold stands for applying the constructor (C 1 in this case) k times. We remark that,
by consecutive applications of rule TLAM, we can obtain:

P ` e ↓ dt ⇒ 〈τ0 ; ϕ0〉

Let us assume that P ` e ↓ e⇒ 〈τd ; ϕd〉. We show that τd v τ0 and ϕd v ϕ0 by induction
on the number of λ s k .

• If k = 0 then it can only be that d vU and the result follows by monotonicity (Lemma A.1).
• If k>0 then we have several cases on the shape of d .

— d = U (d†
1 ,d

†
2 ). This can only happen if d v HU and rule TLAMHU was used,

otherwise the lambda is not typeable at all. But HU v dt anyway so this case follows
by monotonicity.

— d =HU . This is similar as above.
— d =Cm(d1). In this case we can invert the TLAM rule used to type e= λn.eb with

Cm(d1), n ≥m , and apply the induction hypothesis for the body eb . We get back a
pair 〈τb ;ϕb〉. If m = 1 then we are easily done by the induction hypothesis. If m =ω



Modular, Higher-Order Cardinality Analysis in Theory and Practice 47

then it is definitely the case that d 6v dt and hence we multiply both components of
〈τb ; ϕb〉 by ω and we are done, using the induction hypothesis.12

— d =U . We observe that d vCω(U ) and hence the case follows as the previous one
using inversion on TLAM.

Lemma A.3 (Analysis produces well-typed terms (Lemma 4.1))
If P Ì e ↓ d ⇒ 〈τ ; ϕ〉 e then P ` e ↓ d ⇒ 〈τ ; ϕ〉.

Proof
The proof is by induction on the height of the derivation P Ì e ↓ d⇒〈τ ;ϕ〉 e. We abuse
the notation, considering a demand signature environment P from the perspective of both
discrete and generalised usage signatures. Obviously, any discrete signature ρ = 〈k ; τ ; ϕ〉
can be considered as a generalised one, ρ , such that

ρ(d)
def
= transform(ρ,d),

where transform(〈k ; τ ; ϕ〉,d) is defined in Fig. 1.

• Case VARDN. Corresponds straightforwardly to the application of rule TVARDN, where
ρ(d) = transform(ρ,d).
• Case VARUP. Straightforward by the rule TVARUP.
• Case LAM. By the rule TLAM. By induction hypothesis, we have P ` e ↓ de ⇒ 〈τ ; ϕ〉.

Moreover, by the formulation of LAM, d = C (de) (exact equality) and m = n , so the
premises of the rule TLAM are fulfilled.
• Case LAMU. Follows by rule TLAM observing that U v Cω(U ).
• Case LAMHU. Straightforward by the rule TLAMHU.
• Case APPA. By induction hypothesis and a simple additional statement relating Ì∗ and
∗̀ (ensuring that variables transformed unde via Ì∗ are well-typed under ∗̀, the proof is

by considering two trivial cases of the corresponding relation), we have

P ∗̀ y ↓ d†
2 ⇒ ϕ2 (7)

P ` e1 ↓ C 1(d)⇒ 〈d†
2 → τr ; ϕ1〉 (8)

Now, let us just take τ1 = d†
2 → τr , so the premises of the rule TAPP are fulfilled.

• Case APPB. By induction, we have

P ∗̀ y ↓ ω∗U ⇒ ϕ2 (9)

P ` e1 ↓ C 1(d)⇒ 〈ω∗U → τr ; ϕ1〉 (10)

Moreover, by the definition of � (Fig. 1),

• � ω∗U →•,

so we just take τ1 = •, which fulfils the premise of the rule TAPP.
• Case PAIR. Straightforward by the typing rule TPAIR, taking d =U (d†

1 ,d
†
2 ).

12 Note that we can guarantee the same result by choosing a different more expressive transform that
only infinitizes the previous types but not the current one, yielding tighter types, but we have not
done that for simplicity.
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• Case PAIRU. Straightforward by the typing rule TPAIR, observing that U v U (ω ∗
U ,ω ∗U ).
• Case PAIRHU. By the typing rule TPAIR, taking d =U (A,A). Both subderivations for

the components of the pair are processed thus via the typing rule TABS, which gives
empty environments (ε) in both cases. Finally, ε &ε = ε , which concludes the proof for
this case.
• Case CASE. By induction hypothesis,

P ` er ↓ d ⇒ 〈τ ; ϕr 〉 (11)

P ` es ↓U (ϕr (x ),ϕr (y))⇒ 〈 ; ϕs〉, (12)

so we can directly apply the typing rule TCASE.
• Case LETUP By induction, we have

P Ì e2 ↓ d ⇒ 〈τ ; ϕ2〉 (13)

n∗dx = ϕ2(x ) (14)

P Ì e1 ↓ dx ⇒ 〈 ; ϕ1〉 (15)

The proof for this case is completed by applying the typing rule TLETUP with m = n .
• Case LETUPABS Straightforward by the rule TLETUPABS.
• Case LETDN. In this case we have that:

P Ì let x = λy1..k.e1 in e2 ↓ d ⇒ 〈τ ; (ϕ2\x )〉
 let x

n
= λn1x1 . . .λ

nk xk.e1 in e2

Let us call the resulting RHS term e= λn1x1 . . .λ
nk xk.e1. By inversion we have that:

P Ì e1 ↓U ⇒ 〈τ1 ; ϕ1〉 e1

τx = ϕ1(y)→ τ1

P , x :〈k ; τx ; ϕ1\y〉 Ì e2 ↓ d ⇒ 〈τ ; ϕ2〉 e2

ϕ2(x )v n ∗C n1(. . .(C nk (. . .) . . .))

Hence it is easy to show by induction and monotonicity that P ` e ↓ (C n1(. . . . . .))⇒
〈 ; 〉. We know that n ≥ µ(ϕ2(x )). Moreover P `t e : ρ for the concrete transform used,
by Lemma A.2. Finally the statement for the body follows by induction hypothesis. The
case is finished by putting these all together and applying rule TLETDN.
• Case LETDNABS. Similar to the case LETDN.

Lemma A.4 (Value splitting (Lemma 4.3))
If P ` v ↓ (d1 &d2)⇒〈τ ;ϕ〉 then there exists a split split(v) = (v1,v2) such that: P ` v1 ↓
d1⇒ 〈τ1 ; ϕ1〉 and P ` v2 ↓ d2⇒ 〈τ2 ; ϕ2〉 and moreover τ1 v τ , τ2 v τ and ϕ1 &ϕ2 v ϕ .

Proof
This is an extremely important property. It says that for a value (and only for values!)
the unleashed environment is additive with respect to the placed demands. This allows
one to use a variable directly (by dereferencing a variable and using it with a particular
continuation) and indirectly in the continuation! Here is the proof, by case analysis on the
shape of the value v:
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• Case v= (x ,y). In this case without loss of generality assume that: d1 =U (d†
1 ,d

†
2 ) and

d2 = U (d†
3 ,d

†
4 ). If one of them is a call demand then their & is not defined, and if one

of them is a naked U or HU then that is equivalent to some U (d†
1 ,d

†
2 ) in terms of how

the result will be typed. The result then follows by monotonicity of the & operation and
Lemma A.5 (see below).

• Case v = λnx.e. In this case, if one of d1 or d2 is less or equal to HU , assume d1,
then the split is by choosing n1 = 0 and n2 = n . The n1 = 0 split uses the TLAMHU
rule assigning the same type as the other split assigns. The other split merely uses the
typing rule that was originally used to type v. If on the other hand no d1 nor d2 is less or
equal to HU then they cannot be non-call-demands either (because their & would not be
defined). Assume then without loss of generality that d1 = C n1(d ′1) and d2 = C n2(d ′2).
(If one of them was U then we simply type it as Cω(U )). Let us use the split induced
by d1 and d2, that is n = n1 +n2. From typing the body e with d1 we will get 〈ϕ ′1(x )→
τ ′1 ;n1 ∗ϕ ′1〉 and similarly 〈ϕ ′2(x )→ τ ′2 ;n2 ∗ϕ ′2〉, where ϕ ′i and τ ′i are the results of typing
e with d ′i respectively. However we know that the body is typeable with d ′1td ′2 resulting
in 〈ϕt(x )→ τt ; (n1 +n2)∗ϕt〉 for v. By monotonicity we get that for i ∈ {1,2}:

ϕ
′
i(x )→ τ

′
i v ϕt(x )→ τt

as required. Moreover we need to show that

n1 ∗ϕ
′
1 &n2 ∗ϕ

′
2 v (n1 +n2)∗ϕt

By monotonicity it suffices to show that:

n1 ∗ϕt&n2 ∗ϕt v (n1 +n2)∗ϕt

and the result follows by the easy-to-show fact that n1 ∗d† &n2 ∗d† v (n1+n2)∗d† for
any d†.

Lemma A.5 (Variable demand splitting)
Assume that the transformer environment P is monotone. If P ∗̀ x ↓ (d†

1 &d†
2 )⇒ 〈τ ; ϕ〉

then P ∗̀ x ↓ d†
1 ⇒ 〈τ1 ; ϕ1〉 and P ∗̀ x ↓ d†

2 ⇒ 〈τ2 ; ϕ2〉 and ϕ1 &ϕ2 v ϕ .

Proof
If x /∈ dom(P) then the result is trivial. If x ∈ dom(P) then there is a transformer (x :ρ)∈P .
First of all let us examine the case where either d†

1 or d†
2 is A. Without loss of generality

assume d†
1 = A. In this case the result is trivial since ϕ2 = ε and ϕ = ϕ1. Assume instead

that d†
1 = n1 ∗d1 and d†

2 = n2 ∗d2. In this case it suffices to show that:

n1 ∗Φ
d1
ρ &n2 ∗Φ

d2
ρ v (n1 +n2)∗Φ

d1 &d2
ρ

However by monotonicity we know that: n1 ∗Φ
d1
ρ v n1 ∗Φ

d1 &d2
ρ and similarly n2 ∗Φ

d2
ρ v

n2 ∗Φ
d1 &d2
ρ so it suffices to show for every binding in Φ

d1 &d2
ρ , call it (y :d†), that it is the

case that:

n1 ∗d† &n2 ∗d† v (n1 +n2)∗d†

This is easy to show using the fact that ω ∗d† = d† &d† = d† & . . . &d† &d†.
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Lemma A.6 (Single-step safety (Lemma 4.2))
Assume that ` 〈H1 ; e1 ; S1〉. If 〈H\

1 ; e\1 ; S\1〉 −→ 〈H2 ; e2 ;S2〉 in the un-instrumented se-
mantics, then 〈H1 ; e1 ;S1〉 ↪−→ 〈H2 ; e2 ;S2〉 such that H\

2 = H2, e\2 = e and S\2 = S2, and
moreover ` 〈H2 ; e2 ;S2〉.

Proof
By induction on the height of the derivation ` 〈H ; e ;S 〉. We proceed by case analysis on
the rule used for −→ in the uninstrumented semantics.

• Case ELET. We have three cases to consider, depending on whether rule TLETUP,
TLETUPABS, or TLETDN is used.

— Case TLETUP. In this case we have that:

P ` let x m
= e1 in e2 ↓ d ⇒ 〈τ ; ϕ1 &ϕ2〉 (16)

n ≤m (17)

P ` e2 ↓ d ⇒ 〈τ ; ϕ2,(x :n ∗d1)〉 (18)

P ` e1 ↓ d1⇒ 〈 ; ϕ1〉 (19)

Moreover:

P `s S ↓ (d ,τ)⇒ ϕS (20)

P ` H∼ ϕ1 &ϕ2 &ϕS (21)

The rule ELET fires in the instrumented semantics as well, giving us a new heap
H, [x

m7→ Exp(e1)]. By using HPVARUP we can conclude:

P ` H, [x m7→ Exp(e1)]∼ ϕ2,(x :n ∗d1)&ϕS (22)

from (17), (19), (21). Hence, from (18), (22), and (20) we conclude that the resulting
configuration is well-typed.

— Case TLETUPABS. Similar but simpler than the case for TLETUP.
— Case TLETDN. In this case we have that:

P ` let x m
= e1 in e2 ↓ d ⇒ 〈τ ; ϕ2〉 (23)

n ≤m (24)

P ` e1 ↓ d1⇒ 〈 ; ϕ1〉 (25)

P `t e1 : ρ (26)

P ,(x :ρ) ` e2 ↓ d ⇒ 〈τ ; ϕ2,(x :d†)〉 (27)

d† v n ∗d1 (28)

Moreover:

P `s S ↓ (d ,τ)⇒ ϕS (29)

P ` H∼ ϕ2 &ϕS (30)

The rule ELET fires in the instrumented semantics as well, giving us a new heap
H, [x

m7→ Exp(e1)]. We need to use HPVARDN to deduce that:

P ,(x :ρ) ` H, [x m7→ Exp(e1)]∼ ϕ2,(x :d†)&ϕS (31)
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which follows from (30), (26), (24), (25). Moreover, from (29) and the observation
that x /∈ fv(S ) it is easy to deduce that P ,(x :ρ) `s S ↓ (d ,τ)⇒ ϕS (simple inductive
weaking proof). From this, and (27) and (31), we get that the resulting configuration
is well typed.

• Case ELKPE. In this case we have two cases depending on how the variable was typed.

— Case TVARUP. In this case we have:

P ` x ↓ d ⇒ 〈• ; (x :1∗d)〉 (32)

where x /∈ dom(P). Moreover:

P `s S ↓ (d ,•)⇒ ϕS (33)

P ` H, [x n7→ Exp(e)]∼ (ϕS )\x ,(x :1∗d &ϕS (x )) (34)

We have two cases: if ϕS (x ) = A then we only press 1∗d on x . If ϕS (x ) =m ∗dx
then we press (1+m)∗ (d &dx ) on x . Let us consider the latter case first:

P ` H, [x n7→ Exp(e)]∼ (ϕS )\x ,(x :(1+m)∗ (d &dx )) (35)

By inverting HPLETUP, it must be that:

n ≥m+1 (36)

P ` H∼ (ϕS )\x &ϕe (37)

P ` e1 ↓ (d &dx )⇒ 〈τ1 ; ϕe〉 (38)

To finish the case by SUPDUP we need to show that:

P `s (#(x ,n) : S) ↓ (d &dx ,τ1)⇒ ϕS\x

which will be the case if we show that:

P `s S ↓ (d ,•)⇒ (ϕS )\x ,(x :m ∗dx )

and also: n ≥ 1+m . The first is exactly (33) and the second is just (36).
If it was the case that ϕS (x ) =A then we could similarly use SUPDUPABS.

— Case TVARDN. In this case we have that

P ` x ↓ d ⇒ 〈T d
ρ ; Φ

d
ρ &(x :1∗d)〉 (39)

Let us assume that bindings are not recursive so x /∈ dom(Φd
ρ ). Moreover:

P `s S ↓ (d ,T d
ρ )⇒ ϕS (40)

P ` H, [x n7→ Exp(e)]∼
Φ

d
ρ &(ϕS )\x ,(x :1∗d &ϕS (x )) (41)

Let us assume that ϕS (x ) = m ∗ dx (the case where ϕS (x ) = A is easier). By rule
HPLETDN this also means that:

P ` H∼Φ
d
ρ &(ϕS )\x

and moreover P ` e ↓ (d &dx )⇒ 〈τe ; ϕe〉 – hence by monotonicity it is also the
case that P ` e ↓ d ⇒ 〈τd ; ϕd〉, and in fact we also have ϕd vΦd

ρ and τd v T d
ρ .
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Now for the right hand side the environment from the expression is ϕd (we press the
demand d ). The environment for the stack-typing is the one we get from: P `s S ↓
(d ,T d

ρ )⇒ΦS\x . Hence we need to show that: P `H∼ ϕe &(ϕS )\x and the result
follows from monotonicity.

• Case ELKPV. Again we have two cases depending on how the variable is typed.

— Case TVARUP. In this case we have

P ` x ↓ d ⇒ 〈• ; (x :1∗d)〉 (42)

where x /∈ dom(P). Moreover:

P `s S ↓ (d ,•)⇒ ϕS (43)

P ` H, [x n7→ Val(v)]∼ (ϕS )\x ,(x :1∗d &ϕS (x )) (44)

Again we have two cases depending on ϕS (x ).

– Case ϕS (x ) =m ∗dx . We know that n ≥ 1+m and hence the expression can take
a step in the counting semantics. From (44) we get that:

P ` H∼ (ϕS )\x &ϕv (45)

where P ` v ↓ (d &dx )⇒ 〈τ ; ϕv 〉.
By Lemma A.4 we get that: P ` v1 ↓ d⇒〈τ1 ;ϕ1〉 and P ` v2 ↓ dx ⇒〈τ2 ;ϕ2〉 such
that ϕ1 &ϕ2 v ϕv , τ1 v τ and τ2 v τ for some v1 and v2 with split(v) = (v1,v2).
To finish the case we need to show that:

H ∼ ϕ1 &ϕ2 &(ϕS )\x

which follows from (45) and strengthening (Lemma A.7).

– Case ϕS (x ) =A. This case is easy as it induces a trivial split for v1 and v2 where
v1 gets a 0 counter if it is a lambda. This reflects the fact that this is never used
indirectly in the continuation but only directly in the stack S .

— Case TVARDN. In this case we have

P ` x ↓ d ⇒ 〈T d
ρ ; Φ

d
ρ &(x :1∗d)〉 (46)

where (x :ρ) ∈ P . Moreover:

P `s S ↓ (d ,T d
ρ )⇒ ϕS (47)

and
P ` H, [x n7→ Val(v)]∼

Φd
ρ &(ϕS )\x ,(x :1∗d &ϕS (x ))

Let us deal with the case when ϕS (x ) =m ∗dx (the case where ϕS (x ) =A is easier).
By inverting rule HPLETDN we get:

P ` H∼ (ϕS )\x &Φ
d
ρ (48)

and moreover P ` v ↓ (d &dx )⇒ 〈 ; ϕv 〉 (i.e. the v is sufficiently annotated). So
the configuration can indeed step and for the right-hand side, by Lemma A.4, we
must have P ` v2 ↓ d ⇒ 〈τ2 ; ϕ2〉 and we must also have P `s S ↓ (d ,τ2)⇒ ϕ ′S . By
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the well-formedness of the transformer it must be that τ2 v T d
ρ and it must also be

ϕ2 v Φd
ρ . Hence by monotonicity ϕ ′S v ϕS as well. To finish the case we need to

show that:

P ` H, [x n ′7→ Val(v1)]∼ (ϕ ′S )\x &ϕ2,(x :ϕ ′S (x ))

By rule HPLETDN it suffices to show two things: First, that P ` H∼ (ϕ ′S )\x &ϕ2 –
this follows by (48) and monotonicity. Second, that if ϕ ′S (x ) = d†, v1 is still typeable
under that d†. However by the splitting lemma A.4 we know that: P ` v1 ↓ dx ⇒〈 ;
ϕ ′1〉 and the result follows by monotonicity since it must be the case that d†vm ∗dx .

• Case EUPD. Similar to ELKPV case.
• Case EBETA. Using the substitution lemma (Lemma A.8).
• Case EAPP. Trivial.
• Case EPAIR. Trivial.
• Case EPRED. Using the substitution lemma (Lemma A.8).

Lemma A.7 (Heap-typing strengthening)
If P ` H∼ ϕ1 and ϕ2 v ϕ1 then P ` H∼ ϕ2.

Proof
Easy induction, appealing to the monotonicity of the typing Lemma A.1.

Lemma A.8 (Substitution)
Assume that P is monotone and P ` e ↓ d⇒〈τ ;ϕ1〉 and x /∈ dom(P). If P ∗̀ y ↓ ϕ1(x )⇒
ϕ2 then P ` e[y/x ] ↓ d ⇒ 〈τe ; ϕe〉 such that ϕe v ϕ1\x &ϕ2 and τe v τ .

Proof
By induction on the derivation P ` e ↓ d ⇒ 〈τ ; ϕ1〉. First of all, if y /∈ dom(P), then the
result follows easily by a renaming. So we will only be concerned with the case when
y ∈ dom(P), in particular (y :ρ) ∈ P .

• Case TVARDN. In this case we know that the variable we exercise pressure on is not x
and therefore the result follows trivially (y is absent).
• Case TVARUP. If the variable is not x then the result follows trivially (y is absent). If it

is x then we have that the pressure on x is (x :1∗d). Then ϕ2 = Φd
ρ &(y :1∗d). For the

substituted expression we get that: ϕe = ϕ2 and τe =T d
ρ . Clearly T d

ρ v • and moreover
ϕ2 v 1∗ϕ2 as required.
• The rest of the cases are straightforward but somewhat tedious applications of the in-

duction hypothesis and monotonicity of typing. They rely on the following property: If
ϕ1(x ) = n1 ∗d1 and ϕ2(x ) = n2 ∗d2 then

n1 ∗Φ
d1
ρ &n2 ∗Φ

d2
ρ v (n1 +n2)∗Φ

d1+d2
ρ

which follows by the monotonicity of the transformer ρ .
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