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Cabello-Severini-Winter and Abramsky-Hardy (building on the framework of Abramsky-Brandenburger) both
provide classes of Bell and contextuality inequalities for very general experimental scenarios using vastly different
mathematical techniques. We review both approaches, carefully detail the links between them, and give simple,
graph-theoretic methods for finding inequality-free proofs of nonlocality and contextuality and for finding states
exhibiting strong nonlocality and/or contextuality. Finally, we apply these methods to concrete examples in
stabilizer quantum mechanics relevant to understanding contextuality as a resource in quantum computation.
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I. INTRODUCTION

A fundamental question of quantum computation (QC)
is to precisely identify the nonclassical features of quantum
mechanics accounting for quantum advantages in compu-
tation. This critical problem is often phrased in terms of
finding properties characterizing those resource states capable
of promoting a computational model to greater power, e.g.,
universal QC. Understanding of quantum resources will
yield both hardware efficiency gains and a theoretical basis
for developing novel applications of quantum information.
Entanglement [1], superposition [2], and discord [3] have been
proposed as candidates but found unsatisfactory as explana-
tions of quantum advantage. Numerous striking results [4–8]
have recently established contextuality as necessary for magic
state distillation (MSD) [9] and measurement-based quantum
computation (MBQC) [10].

Our aim in this paper is to carefully delineate the
connections between the vastly differing frameworks for
contextuality used in these recent results in order to better
understand the role of contextuality in QC and to conceptually
clarify contextuality. We use this connection to give directly
computable graph-theoretic characterizations of the logical
strengths of contextuality and apply these tools to examples in
stabilizer quantum mechanics relevant to QC.

A. Nonlocality and contextuality

Contextuality is a generalization of nonlocality: the notion
that the predictions of quantum mechanics do not admit a
model that is classical in the sense of being locally causal.
That is, one in which, upon conditioning on a causal past,
the joint distributions describing experiments performed at
different sites factorize into distributions associated with each
site [11,12]. Data from a two-site experiment are correlations
p(a,b|A,B) where A,B and a,b are measurement settings and
outcomes respectively. A locally causal model for such data
is a space � of hidden variables, a distribution q on �, and
conditional distributions rA(−|λ),rB(−|λ) on outcomes that
account for the data:

p(a,b|A,B) =
∑
λ∈�

q(λ)rA(a|λ)rB(b|λ).

A Bell inequality is a bound on a weighted sum of correlations
that is satisfied by all data a locally causal model. Data not ad-
mitting any such model exhibit nonlocality. Bell gave the first

such inequality and an entangled quantum state that violates it.
Decades later, entanglement and nonlocality became the basis
of quantum communication protocols, e.g., superdense coding,
quantum teleportation, and quantum cryptography [13–15].

There are degrees of strength of nonlocality. The corre-
lations arising from a Bell state violate a Bell inequality.
Hardy states [16,17] preclude a locally causal model via logical
arguments without the need for inequalities. The Greenberger-
Horne-Zeilinger (GHZ) state [18] is, in a sense defined
below, maximally nonlocal. Nonlocality has been studied as a
resource for communication tasks and it has been recognized
that stronger nonlocality yields greater advantages [19–22].

Contextuality is the notion, due to Kochen and Specker [23],
that a system’s observable properties cannot all be assigned
deterministic outcomes in a manner independent of the method
of observation used to acertain each property. It subsumes non-
locality as a special case since Fine’s theorem [24] tells us that
data admitting a locally causal model also admit one in which
the distributions rA(−|λ),rB(−|λ) are deterministic. Like
nonlocality, contextuality admits a description via inequalities,
e.g., Klyachko et al.’s contextuality inequality [25]. Unlike
nonlocality, contextuality can manifest in single-site systems.

B. Contextuality as a resource in QC

Recently, the hypothesis that contextuality plays a critical
role in enabling quantum computation—analogous to the
role nonlocality plays in superclassical communication—has
received considerable attention. For example, Howard et al. [9]
showed that contextuality is a necessary criterion in finding
those quantum states that are suitable for the magic state
distillation (MSD) protocol [26] which promotes a scheme
of classical computing power to (fault-tolerant) quantum
universality.

A natural question is: does stronger contextuality yield
greater computational advantages? Positive evidence for
this question is given by Raussendorf [10] in the setting
of measurement-based quantum computers (MBQCs) [27].
Further progress on the resource theory of contextuality
necessitates clarification of the strengths of contextuality.

The aforementioned results on contextuality as a resource
rely on mathematical tools developed by Cabello and Severini
and Winter (CSW) [28] and Abramsky and Brandenburger
(AB) [29] which promote the example-based understanding of
nonlocality and contextuality to a higher-level, structural one.
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They apply in any experimental scenario and both provide a
complete set of Bell and contextuality inequalities. However,
they differ vastly in their approach, and how they relate to one
another is not immediately clear. The plurality of perspectives
and vernaculars for describing contextuality constitutes an
obstacle to progress on a computational resource theory of
contextuality.

C. Overview

We first review some definitions and results of CSW and
AB before we

(1) Precisely detail the links between their two furnished
classes of Bell and contextuality inequalities.

(2) Cast the powerful, highly abstract, logical hierarchy
of strengths of contextuality due to AB in terms of graph
invariants in order to render them more tractable as theoretical
tools and enable direct computation using standard software
libraries.

(3) Pose the question, does the logical strength of contex-
tuality of a state correlate with its usefulness as a resource?

We provide three computational examples to demonstrate
how these tools may be used to gain insight into the
contextuality in a QC program.

The first result shows that the sort of contextuality witnessed
by logical contradictions (rather than mere violation of contex-
tuality inequalities) may not be useful in identifying the single-
qutrit states suitable for magic state distillation. However, we
provide evidence that it may be useful in identifying higher-
qudit magic states. The third result addresses the question that
Howard et al. end their paper with the following:

In the qubit case, it is a pressing open question whether a
suitable operationally motivated refinement or quantification
of contextuality can align more precisely with the potential to
provide a quantum speed-up.

Our result asserts that the quantification sought would nec-
essarily need to discriminate between states that are all
maximally contextual. One might hope to achieve this by
considering measures specialized to the particular setting of
stabilizer QM, e.g., [30].

As we shall see, nonlocality is the special case of contextual-
ity where the observables are compatible (i.e., comeasurable)
precisely when they correspond to spatially separated local
measurements. Thus, in the remainder of this paper, we use
the terminology contextuality and contextual inequalities to
include the special cases of nonlocality and Bell inequalities.

II. GENERAL APPROACHES TO CONTEXTUALITY

Both the AB and CSW approaches begin by abstractly
describing physical experiments without making an assump-
tion of simultaneous comeasurability of all properties and by
describing how operational data from such an experiment are
tabulated. The primary question asked of operational data is
whether it can, in principle, be reproduced by a model in which
observables simultaneously possess deterministic values.

AB’s and CSW’s representations of experiments and data
differ significantly. Before delineating their connections, we
review the key structures and results of each.

A. CSW inequalities

CSW employ graph theory to study nonlocality and contex-
tuality for general experimental scenarios. (The basic graph-
theoretic definitions necessary for understanding what follows
are found in Appendix A). An experiment is formalized by
an exclusivity graph. The vertices of such a graph represent
events, or, alternatively, answers to propositions about a system
answerable by the experiment. Vertices that are adjacent
represent mutually exclusive events.

Operational data coming from repeatedly performing the
experiment on a fixed preparation of the system is tabulated
using probabilities pi for each vertex vi . CSW inequalities are
upper bounds on a linear combination of these probabilities:
�iwipi where pi is the likelihood of observing the ith event
and wi � 0 is a coefficient. Such a linear combination is
compactly represented as a weighted graph (G,w).

CSW define a classical model for operational data repre-
sented by a graph G and probabilities pi as a classical sample
space �, an event ei ⊂ � for each vertex vi such that the events
corresponding to adjacent vertices are mutually exclusive (i.e.,
disjoint subsets of �), and a probability distribution μ on �

such that pi is the probability that μ assigns to ei .
For a linear combination �iwipi , represented by the

weighted graph (G,w), one can ask the question, what is
the maximum this sum can achieve if the data pi has a
classical model? CSW show that this maximum is precisely
the weighted independence number of (G,w). Data that violate
any one of these bounds, for some choice of coefficients wi ,
cannot be explained with a classical model. Therefore, CSW
contextuality inequalities are of the form

∑
i

wipi � α(G,w).

A quantum model is a Hilbert space H, projectors Pi ∈
B(H) for each vertex vi such that adjacent vertices are
represented by orthogonal projectors, and a pure state |ψ〉 ∈ H
such that the probabilities pi arise as 〈ψ | Pi |ψ〉. In this case,
the maximum �iwipi can achieve over all quantum models
(i.e., the Cirel’son-type bound) is bounded above by the Lovász
theta number: �iwipi � ϑ(G,w).

Finally, a generalized model1 is simply data pi such that
the sum of probabilities corresponding to all the vertices in a
clique is less than or equal to 1. The maximum �iwipi can
achieve over all generalized models is given by the fractional
packing number: �iwipi � α∗(G,w).

B. The AB sheaf-theoretic approach

In the AB approach,2 an experiment is formally described
by a measurement scenario: a pair (M,C) where M is a

1These models are those that satisfy the consistent exclusivity or E1
principle.

2We give an elementary introduction with simplified terminology.
Curious readers are encouraged to read [29].
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set of abstract labels for measurements and C is the set of
contexts. A context is a set C ⊂ M representing a maximal
set of compatible (i.e., comeasurable) measurements; thus, it
is required that if C is a context, no proper subset of C is
also a context. It is further required that every measurement
m ∈ M is contained in at least one context. Measurement of
each individual m ∈ M yields a value from the outcome set
O (usually {0,1}).

For example, the standard Bell scenario is described with
M = {A0,A1,B0,B1} and contexts C = {{A0,B0}, {A0,B1},
{A1,B0}, {A1,B1}}.

A formal event is a function e : S → O from a set S ⊂ M
of measurements to outcomes; in other words, a joint outcome
for all of the measurements in S. Note that this is a strictly
mathematical construction as it is not assumed that S is a
subset of a context. In other words, the measurements in S

are not assumed to be physically comeasurable. The set of all
formal events for a fixed S is denoted by E(S) = {e : S → O}.
Whenever S ′ ⊂ S, a coarse-graining of a formal event e : S →
O is defined by forgetting the outcomes for measurements in
S but not in S ′; it is denoted by e|S ′ and explicitly defined by
e|S ′ (M ′) = e(M ′) for M ′ ∈ S ′.

The partial distribution sets D(S) are then defined as the
set of all probability distributions on the formal event set of
S, i.e., D(S) = {p : E(S) → [0,1] | �e∈E(S)p(e) = 1}. When-
ever S ′ ⊂ S, the marginal distribution of p ∈ D(S) is defined
by averaging over the the information about measurements in
S but not in S ′; it is denoted by μS

S ′ (p) and explicitly defined,
for e′ ∈ E(S ′), by

μS
S ′ (p)(e′) =

e∈E(S)∑
e|S′=e′

p(e).

Operational data from repeated experiments on a system in
a fixed preparation are tabulated by families of probability
distributions EC ∈ D(C) that are indexed by contexts C ∈
C. They describe the likelihoods of joint outcomes for all
the maximal sets of comeasurable measurements. Such data
are nonsignalling (also known as nondisturbing) when they
yield common marginal distributions for each intersection
of contexts: μC

C∩C ′(EC) = μC ′
C∩C ′(EC ′) for any pair C,C ′ of

contexts. When data obeys this nonsignalling condition, the
distributions EC constitute an empirical model E .

TABLE I. Bell state correlations (top); PR box correlations
(bottom). Each row is a context and a distribution on joint outcomes.

A B 00 01 10 11

A0 B0 1/2 0 0 1/2

A0 B1 3/8 1/8 1/8 3/8

A1 B0 3/8 1/8 1/8 3/8

A1 B1 1/8 3/8 3/8 1/8

A0 B0 1/2 0 0 1/2

A0 B1 1/2 0 0 1/2

A1 B0 1/2 0 0 1/2

A1 B1 0 1/2 1/2 0

An empirical model is local and/or noncontextual precisely
when its predictions can be accounted for by a locally causal
and/or noncontextual hidden variable model. That is, there is a
hidden variable space �, a distribution q on �, and conditional
distributions rM (−|λ) onO for each M ∈ M such that, for any
context C = {M1, . . . ,MN } and e : C → O,

EC(e) =
∑
λ∈�

q(λ)rM1 (o1|λ) · · · rMN
(oN |λ),

where oi = e(Mi) is the outcome of the ith measurement.
Equivalently, an empirical model E is noncontextual when
there is a joint distribution J ∈ D(M) yielding the EC as
marginals: EC = μM

C (J ). Thus, the hidden variable space
can be taken to have the canonical form of � = E(M)
whose canonical hidden variables are functions λ : M → O
and the rM (−|λ) are the deterministic distributions assigning
probability 1 to the outcome λ(M) and 0 to all others. That
an empirical model that arises as a family of marginals
distributions of a single joint probability distribution on all
measurements always admits such a canonical model is a vast
generalization of Fine’s theorem to all experimental scenarios.

Abramsky-Hardy [31] give a complete set of Bell and
contextuality inequalities via logical consistency; AB describe
two natural logical strengths of contextuality. We detail these
tools, and how they may be understood in terms of graph
invariants, below.

III. THE EXCLUSIVITY GRAPH
OF A MEASUREMENT SCENARIO

In this section, we build a CSW exclusivity graph from
AB’s description of an experiment. Explicitly corresponding
the two representations of experiments and data facilitates the
synthesis of insights and tools of each approach.

An observable event is an e ∈ E(C) for some context C ∈
C. They are the elementary events observable in an experiment,
or, alternatively, answers to the most refined questions one can
ask of a system. Given an empirical model E , an observable
event e is impossible when EC(e) = 0; otherwise, it is possible.

Given a probability table for an empirical model, the ob-
servable events correspond to the (empty) cells. An empirical
model provides the actual probabilities. Two observable events
are called mutually exclusive or inconsistent when they assign
different outcomes to a shared measurement.

Definition 1. The exclusivity graph G(M,C) of the mea-
surement scenario (M,C) has vertices given by the observable
events e : C → O where C ∈ C is a context. Two vertices
e1 : C1 → O and e2 : C2 → O are adjacent whenever e1 and
e2 are inconsistent; that is, whenever e1(M) 
= e2(M) for some
measurement M in both C1 and C2.

Acı́n et al. associate a hypergraph with a measurement
scenario via measurement protocols [32, Definition D.1.4].
The nonsignalling conditions of empirical models are en-
coded as clique constraints on this hypergraph’s associated
nonorthogonality graph [32, Definition 2.3.1]. Definition 1 is
isomorphic to the complement of the graph built this way;
see Appendix C for a proof. Here, we focus on directly
constructing the exclusivity graph of a measurement scenario
in order to understand sheaf-theoretic tools in terms of graph
invariants.

032108-3



NADISH DE SILVA PHYSICAL REVIEW A 95, 032108 (2017)

FIG. 1. The exclusivity graph for the standard Bell scenario (left);
labels of measurement settings and outcomes (right). Straight lines
connect exclusive events. The standard CHSH inequality [33] is
derived by giving the grey vertices the weight 1 and the others 0; the
independence number is 3. Circular vertices are the possible events of
a Hardy model. Grey vertices are the possible events of a PR box [34].

Definition 2. The support graph of an empirical model E is
the induced subgraph GE of G(M,C) given by retaining only
the possible events.

These definitions generalize constructions used by Sadiq
et al. [35] and Fritz et al. [36,37] for analyzing nonlocality to
the setting of contextuality.

In our proofs, we repeatedly exploit the following key
connection between the approaches of AB and CSW:

Lemma 1. For any measurement scenario (M,C), there is a
bijective correspondence between canonical hidden variables
λ : M → O and independent sets I ⊂ G(M,C) of size |C|.

As the observable events of a common context form a
clique, the size of an independent set in G(M,C) can contain
at most one observable event from each clique. Thus, the size
of an independent set is bounded by the number of contexts.
Independent sets whose size achieves this upper bound must
contain precisely one event of each context.

Given such an independent set I , one can construct a
canonical hidden variable λI : M → O by defining λI (M) =
e(M) where e : C → O is any event in I such that M ∈ C.
If e′ : C ′ → O is another event in I such that M ∈ C ′, the
fact that e and e′ are not adjacent tells us that e(M) = e′(M);
thus, λI is well defined. Conversely, given a canonical hidden
variable λ : M → O, the set Iλ = {λ|C : C → O | C ∈ C} of
its coarse-grainings form an independent set.

IV. LOGICAL BELL INEQUALITIES

The logical Bell inequalities of (M,C) are a distinguished
class of Bell or contextuality inequalities identified by Abram-
sky and Hardy [31]. Working in the setting of measurements
with binary outcomes3 (O = {0,1}), we can encode observable
events e as propositional formulas f (e) by viewing the
measurements M ∈ M as Boolean variables:4

f (e) =
∧
M∈C

{
M if e(M) = 1,

¬M if e(M) = 0.

3The case of measurements with different outcome sets is easily
reduced to the binary case.

4The symbols ∧, ∨ ,¬ represent AND, OR, NOT respectively.

For example, the two grey events of the last row in Table I are
individually encoded as A1 ∧ ¬B1 and ¬A1 ∧ B1.

Two vertices are adjacent precisely when their formulas are
logically inconsistent, i.e., one cannot assign true or false to
the variables in M in a way making both their formulas true.

Given N Boolean formulas fi that are true with probability
pi , if the formulas are logically inconsistent, then it follows
from elementary probability theory [31, Sec. I A] that∑

pi � N − 1.

A logical Bell inequality is built by choosing a subset of the
observable events Ei ⊂ E(Ci) from each context Ci ∈ C and
constructing the formulas

fi =
∨
e∈Ei

f (e) .

When the formulas fi contain a contradiction, we obtain an
inequality: the sum of the likelihoods of all of the events in all
of the Ei is less than or equal to N − 1.

For example, the grey subset of events of the last row (in
either table) of Table I is encoded as f4 = (A1 ∧ ¬B1) ∨
(¬A1 ∧ B1) or, equivalently, A1 ⇐⇒ ¬B1. The CHSH
inequality is derived by noting that the formulas for all four
rows (A0 ⇐⇒ B0, A0 ⇐⇒ B1, A1 ⇐⇒ B0, A1 ⇐⇒
¬B1) are contradictory and so the sum of probabilities of all the
grey events has a classical bound of 3. The Bell state violates
this bound by 1/4. The PR box maximally violates it by 1.

Theorem 1. Logical Bell inequalities can be seen as exam-
ples of CSW inequalities on the exclusivity graph G(M,C).5

The inequalities are constructed by giving the events of Ei

the integer weight 1 and all other events weight 0. The CSW
bound given by the independence number is tight whereas the
AB bound of N − 1 need not be.

Abramsky and Hardy also define extended logical Bell
inequalities by choosing sets of observable events Ei ⊂ E(Ci)
whose formulas fi are contradictory as above; however, the
coefficients in these inequalities are allowed to be any integer
ki � 0. The upper bound they give, defined in terms of
logical consistency, is, in fact, simply the CSW bound given
by the weighted independence number. As these extended
inequalities have the same integer coefficient for all observable
events of a common context, they form a much smaller class
of contextual inequalities than all possible CSW inequalities
on G(M,C) which allow each individual observable event its
own coefficient. However, they still form a complete class
of contextuality inequalities in the sense that knowing that
an empirical model satisfies only the extended logical Bell
inequalities is sufficient to conclude that it is noncontextual.

The logical interpretation of contextuality inequalities given
by Abramsky and Hardy can be extended to all CSW inequal-
ities: the weighted independence number can be seen as max-
imizing the weighted sum over logically consistent formulas.

V. HARDY’S PARADOX AND LOGICAL CONTEXTUALITY

Considerable work has been done on establishing Bell’s
theorem without inequalities [17,18,38–41]. The idea is to
preclude locally causal models of quantum theory using
knowledge of the mere possibility or impossibility of certain
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correlated events rather than the precise correlations. While the
first proof of Bell’s theorem without inequalities was the GHZ
state, Hardy’s paradox [16] better exemplifies the subtle logical
contradictions at play. As inequality-free proofs of nonlocality
cannot be accomplished with standard Bell states, Hardy’s
paradox can be interpreted as a stronger form of nonlocality
than the mere statistical one. In the AB framework, this
notion is generalized to logical nonlocality and contextuality;
we exploit this to give a graph-theoretic characterization of
operational data that preclude locally causal and noncontextual
models without resort to inequalities.

A state is logically nonlocal or contextual if any locally
causal or noncontextual model that predicts the occurrence
of all empirically observed events must also predict the
occurrence of an event that is not empirically observed. More
formally: there is a possible event e such that any canonical
hidden variable λ : M → O that is compatible with e (i.e., the
coarse-graining λ|C is e) must also predict the occurrence of
an impossible event (there is a context C ′ ∈ C for which λ|C ′

is impossible). A state that satisfies all logical Bell inequalities
cannot be logically contextual.

Finding a graph-theoretic characterisation of logical con-
textuality requires defining a new graph invariant heretofore
unused in the CSW approach:

Definition 3. The independence degree of a vertex v in a
finite graph G is the size of the largest independent set in G that
contains v; the minimal independence number is the minimum
independence degree over all vertices.

Note that the standard independence number of a graph is
the maximum independence degree over all vertices.

Theorem 2. An empirical model E is logically nonlocal or
contextual (i.e., admits an inequality-free proof of nonlocality
or contextuality) if and only if the minimal independence
number of its support graph GE is less than the number of
contexts.5

In Fig. 1, that there is no independent set of 4 circular
vertices that includes the top-left corner vertex proves that
Hardy’s model is logically nonlocal

VI. MAXIMAL NONLOCALITY AND STRONG
CONTEXTUALITY

The notion of maximal nonlocality was introduced by
Elitzur, Popescu, and Rohrlich [42] for states in a standard
Bell experiment and extended to more general nonlocality
experiments by Barrett et al. [43]. AB generalized this notion
to maximal contextuality and gave an equivalent logical notion
called strong contextuality which we exploit to give a simple
graph-theoretic criterion.

Well-known examples of maximally nonlocal empirical
models include GHZ states and PR boxes. Access to maximally
nonlocal resources yields advantages for communication tasks.
For example, sharing an unlimited number of PR boxes
between two parties renders all communication complexity
problems trivial [19].

Strong contextuality is known to play a role in quantum
computation: Raussendorf [10] showed that strong contextu-

5The proof is found in Appendix B.

ality is necessary for allowing certain MBQCs to determinis-
tically compute nonlinear functions.

An empirical model E can be convexly decomposed into a
noncontextual part A and a nonsignalling part Z:

E = τA + (1 − τ )Z.

An empirical model is maximally contextual if admits no
decomposition with nonzero τ .

This is equivalent to strong contextuality: there is no canoni-
cal hidden variable λ : M → O such that the observable event
λ|C is possible for all contexts C ∈ C. An empirical model is
strongly contextual precisely when it maximally violates (by
1) the logical Bell inequality yielded by choosing Ei to be its
possible events in E(Ci). Strongly contextual empirical models
are precisely the convex sums of the nonsignalling polytope’s
contextual vertices [32,44].

Theorem 3. An empirical model E is strongly nonlocal
or contextual if and only if the independence number of its
support graph GE is less than the number of contexts.5

In Fig. 1, that there is no independent set of four grey
vertices proves that the PR box is strongly nonlocal.

VII. APPLICATIONS

We provide computational examples wherein we apply
Theorems 2 and 3 to study the contextuality of quantum states
relative to all stabilizer operations [45].

Recent work of Howard et al. [9] has shown contextuality
with respect to two-qudit stabilizer operations to be a neces-
sary condition for MSD in odd-prime-power qudit systems.
Specifically, they expressed the inequalities describing the
faces of the polytope of quantum states with positive Wigner
function (in the Gross representation [46]) as CSW inequalities
on the orthogonality graph of two-qudit stabilizer projectors.
As a classically efficient simulation algorithm is known for
stabilizer quantum theory augmented with nonstabilizer states
having positive Wigner representation [6], any quantum state
that is noncontextual with respect to stabilizer projectors
cannot serve as a resource to promote stabilizer operations
to superclassical computational power.

A. Qutrit stabilizer operations

In the odd-prime-power qudit cases, where contextuality
is a useful necessary criterion for identifying MSD resource
states, we ask whether stronger forms of contextuality are also
useful. Following Howard et al., we consider contextuality
with respect to two-qutrit stabilizer operations.

Result 1. The states |M〉 ⊗ |M〉, where |M〉 is the qutrit
magic state |M0〉, |E〉, |N ′〉, or |ψUv

〉 [47–49] are neither
logically contextual nor strongly contextual with respect to
two-qutrit stabilizer operations.

Therefore, logical contextuality of |M〉 ⊗ |M〉 is not a
necessary condition for a qutrit state |M〉 to serve as a resource
promoting stabilizer operations to universal QC.

Result 2. The two-qutrit magic state

|CS〉 =
2∑

j,k=0

e
2	i

3 jk2 |j 〉 ⊗ |k〉

[50] is strongly contextual with respect to two-qutrit stabilizer
operations.
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This suggests that stronger forms of contextuality may
play a role in identifying higher-qudit magic states; we leave
further investigation of this to future work. As |CS〉 deter-
ministically yields a non-Clifford gate, this result strengthens
the connection between strong contextuality and advantage
in deterministic computation and communication tasks that is
suggested by the essential role strong contextuality plays in
MBQC [4,10] and zero-error classical communication [51]. It
seems reasonable to conjecture that any magic state exhibiting
such a deterministic property must be strongly contextual.

The support graphs of the aforementioned states are induced
subgraphs of the orthogonality graph of two-qutrit stabilizer
projectors which was was computed using Gross’ discrete
phase space [46]. The phase space for a two-qutrit system is
given by V = (Z3 × Z3) × (Z3 × Z3): intuitively, a position
and momentum variable for each qutrit. The contexts are in
correspondence with the Lagrangian subspaces of V whereas
the stabilizer states can be computed from a Lagrangian
subspace M ⊂ V and a phase point v ∈ V using [46, Lemma
8]. The Lagrangian subspaces are easily enumerated by finding
all linearly independent pairs of vectors and eliminating those
with nonzero symplectic product. Some pairs will generate the
same subspace; this redundancy has to be eliminated.

To reach Result 1, the minimal independence numbers of
the support graphs were computed to be equal to the number
of contexts (40) and thus, by Theorem 2, the states are not
logically contextual and thus not strongly contextual. To reach
Result 2, the independence number of the support graph of
|CS〉 was computed and found to be 34. Thus, by Theorem 3,
|CS〉 is strongly contextual.

B. Qubit stabilizer operations

It is impossible to use mere contextuality as a sufficient
criterion for determining which qubit states are suitable for
MSD as the Peres-Mermin argument5 [52] identifies all two-
qubit states as contextual with respect to two-qubit stabilizer
operations. Howard et al. posed as an open problem whether a
quantification of contextuality could serve as a better criterion.
A close analysis of the Peres-Mermin argument shows that it, in
fact, identifies all two-qubit states as strongly contextual with
respect to two-qubit stabilizer operations. Thus, we suggest a
negative answer to Howard et al.’s question as such a quan-
tification would need to discriminate between states which are
all maximally contextual. While it may still be possible to use
contextuality as a criterion in identifying qubit MSD resources,
it seems that such a measure will have to be specialized to
the setting in question. An interesting workaround to state-
independent contextuality in qubit MSD is provided by [8].

Howard et al. describe noncontextuality with respect to
all stabilizer operations in the sense of obeying all CSW
inequalities on the orthogonality graph of stabilizer projectors.
In order to apply the AB contextuality criteria, it is necessary
to describe this with a physical setting with a measurement
scenario. We chose as the set of measurements M the
15 possible tensor pairs of I,X,Y,Z excluding I ⊗ I . The
contexts are the 15 maximal commuting subsets (of size 3) of
these measurements.

Constructing the graph G(M,C), we see that it is made
up of 15 cliques of 23 formal events: 120 formal observable

events. However, there are only 60 two-qubit stabilizer states.
The resolution of this puzzle is that half of the formal
events represent joint outcomes which are actually impossible
in quantum theory as they do not respect the algebraic
relationships between the quantum measurements.

Result 3. All n-qubit states are strongly contextual with
respect to n-qubit stabilizer operations whenever n > 1.5

Consider n = 2. The exclusivity graph G has as vertices
the rank-1 two-qubit stabilizer projectors; edges connect
orthogonal projectors. We compute α(G) = 12, agreeing with
[53, Table 3], and note that α(Gρ) � α(G) for the empirical
model arising from any quantum state ρ. Since the number of
contexts is 15, it follows from Theorem 3 that ρ is strongly
contextual. For n > 2, an analytic proof that directly extends
the Peres-Mermin argument is given in Appendix B.

The above proof applies Theorem 3 for each quantum state
individually by noting that the support graph of any quantum
state is a subgraph of the support graph of the maximally
mixed state. Generalizing, we see that state-independent strong
contextuality will occur whenever the independence number of
the orthogonality graph of a quantum measurement scenario is
less than the number of contexts. AB identified the connection
between Kochen-Specker-type configurations of vectors and
generic strong contextuality; the arguments of [29, Secs. 7.1,
9.2] or the theory of generalized all-versus-nothing arguments
[54, Sec. 4.2] can also be used to reach Result 3.

VIII. CONCLUSIONS

The above examples clarify the relationship between the
logical strength of contextual resources and computational
power. We intend to further investigate the strength of
contextuaity of higher-qudit magic states. Further development
will also require considering other measures of contextu-
ality and investigating the relationship between measures
of contextuality and other models of quantum computation.
Another important future direction is to clarify the relationship
between the above described notion of contextuality with
Spekkens’ [55,56] notion.

We have shown how to synthesize insights and tools
from both the Cabello-Severini-Winter and Abramsky-
Brandenburger approaches for understanding contextuality of
operational data for very general experimental settings. We
repeatedly exploited the correspondence between canonical
hidden variables for (M,C) and independent sets of maximal
size of G(M,C) which relies on the special structure of
exclusivity graphs arising from measurement scenarios. An
interesting future direction is understanding arbitrary graphs
as contextual sample spaces. It will be necessary to understand
how to complete an abstract graph to one arising from a
measurement scenario. Perhaps additional structure on the
graph will be necessary for this. For example, it may be
necessary to fix a distinguished vertex cover by disjoint
cliques indicating events of a common context; more general
hypergraph-theoretic structure [32] might also be required.
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APPENDIX A: BACKGROUND

1. Graph theory

A (simple, undirected) graph G is a set of vertices V =
{v1, . . . ,vn}, pairs of which may be adjacent, i.e., joined by
an edge. The edges are represented by a set E ⊂ V × V such
that (v,v) /∈ E for any vertex v and such that (v,v′) ∈ E if and
only if (v′,v) ∈ E. That is, no edge joins a vertex to itself and
v and v′ are adjacent whenever v′ and v are. Given a subset
V ′ ⊂ V of vertices, the induced subgraph has V ′ as vertices
and retains all edges (v,v′) ∈ E with v,v′ ∈ V ′.

A weighted graph (G,w) is a graph G together with a
function w : V → R�0 from vertices to non-negative reals.
We denote the weight w(vi) of a vertex vi by wi .

An independent (vertex) set is a subset I ⊂ V such that no
two vertices in I are adjacent: (v,v′) /∈ E whenever v,v′ ∈ I .
A clique is a subset C ⊂ V such that every two distinct vertices
in C are adjacent: (v,v′) ∈ E whenever v,v′ ∈ C and v 
= v′.

The independence number of a graph G is the size of
the largest independent set in G; in terms of Definition 3,
it is the maximal independence degree over all vertices.
The independence number of a weighted graph (G,w) is
the maximum value of the sum

∑
i∈I wi where I is any

independent set.
To define the Lovász theta number ϑ(G,w) of a weighted

graph (G,w) we must first define an orthonormal representa-
tion of a graph G. This is a choice of a unit vector |φ〉 ∈ Rd and
an assignment to each vertex vi a unit vector |ψi〉 ∈ Rd such
that 〈ψi |ψj 〉 = 0 whenever vi and vj are adjacent. The choice
of dimension d can be arbitrary. The Lovász theta number
ϑ(G,w) is then defined to be the maximum

∑
i∈V wi | 〈ψi |φ〉 |2

over all possible orthonormal representations of G.
The fractional packing number α∗(G,w) is the maximum

possible value of the sum
∑

i∈V piwi where {p1, . . . ,pn} is a
choice of a non-negative real number for each vertex such that∑

i∈C pi � 1 for every clique C ⊂ V .

APPENDIX B: PROOFS

Theorem 1. Logical Bell inequalities are derived from
CSW inequalities on the exclusivity graph G(M,C).

Proof. We are given Ei ⊂ E(Ci) such that the formulas
fi are logically inconsistent. The corresponding logical Bell
inequality is ∑

i=1,...,N

∑
j

pij � N − 1

where N is the number of contexts and pij is the probability
of the j th event in Ei . Consider the weighted graph (G,w)
with weights 1 for events in Ei and 0 for all others. The

corresponding CSW inequality is∑
i=1,...,N

∑
j

pij � α(G,w) .

The quantity α(G,w) is simply the size of the largest
independent set of events in ∪Ei . This integer must be strictly
less than N or else these events together yield an assignment
of true or false to all the variables in M, which makes
all the formulas fi true, contradicting their assumed logical
inconsistency. �

Theorem 2. An empirical model E is logically nonlocal or
contextual (i.e., admits an inequality-free proof of nonlocality
or contextuality) if and only if the minimal independence
number of its support graph GE is less than the number of
contexts.

Suppose an empirical model E gives rise to a support graph
GE whose minimal independence number is less than |C|.
This means that there is a possible event e : C → O with
independence degree less than |C|, the number of contexts. If
λ : M → O is a hidden variable compatible with e (that is,
λ|C = e), then the set of events Iλ = {λ|C : C → O | C ∈ C}
is an independent subset of G(M,C) of size |C|. One of these
events cannot be in the support graph GE and is therefore
impossible. As there is a possible event e such that every
compatible hidden variable must predict an impossible event,
E is logically contextual.

Conversely, suppose an empirical model E gives rise to a
support graph GE whose minimal independence number is |C|
and e is a possible event. The event e must be contained in an
independent subset I of GE of size |C|. Construct the hidden
variable λI : M → O by λ(M) = i(M) for some i ∈ I whose
context contains M . Every coarse-graining of λI is in I ⊂ GE
and therefore possible. So, λI is a canonical hidden variable
that is compatible with e that does not predict an impossible
event. We conclude that E is not logically contextual.

Theorem 3. An empirical model E is strongly nonlocal
or contextual if and only if the independence number of its
support graph GE is less than the number of contexts.

If the support graph GE of an empirical model E contains
an independent set I of size |C|, then, as above, construct the
canonical hidden variable λI . Each coarse-graining of λI is
in I ⊂ GE and thus, is possible. Therefore, E not is strongly
nonlocal or contextual.

Conversely, suppose every independent subset of the
support graph GE has size less than |C|. If λ : M → O is
any canonical hidden variable, then the set Iλ of its coarse-
grainings λ|C form an independent subset of G(M,C) of size
|C| and thus at least one i ∈ I is impossible. So, E is strongly
nonlocal or contextual.

Result 4. All n-qubit states are strongly contextual with
respect to n-qubit stabilizer operations whenever n > 1.

Consider the measurement scenario consisting of those
n-qubit Pauli operators whose square is the identity as
measurements and, as contexts, those subsets which generate
maximal Abelian subgroups of the n-qubit Pauli group Pn.
The support graph of the maximally mixed state, i.e., those
formal events which are possible within quantum theory,
is the orthogonality graph of n-qubit stabilizer quantum
mechanics. It has rank-1 stabilizer projections as vertices with
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edges joining orthogonal projections. We must show that the
independence number of this graph is less than the number of
contexts |Cn|.

Suppose for contradiction that I is an independent vertex
subset of size |Cn|. I must contain precisely one projector from
each context for otherwise it will contain projectors onto two
distinct eigenstates for the Paulis of the context which must be
orthogonal and thus adjacent. We denote the projector chosen
from a context C by IC .

Thus, I yields a noncontextual value assignment v : Pn →
{±1, ± i}. For an n-Pauli P ∈ Pn in a context C ∈ Cn, v(P )
is eigenvalue associated by P to the state IC . This eigenvalue
is independent of the choice of context for if P is a member of
both C and C ′, then it associates the same eigenvalue with both
IC and I ′

C ; otherwise, IC and I ′
C belong to different eigenspaces

of P which contradicts the assumption that no pair from I is
orthogonal. We can extend v to all Paulis by multiplicativity.
However, there exists no function v : Pn → {±1,±i} mapping
Paulis to one of their eigenvalues such that v(−P ) = −v(P )
and v(PP ′) = v(P )v(P ′) whenever P and P ′ commute.

We first reproduce the standard Mermin argument for two-
qubit systems. Consider the table of Paulis

Z ⊗ I I ⊗ X Z ⊗ X

I ⊗ Z X ⊗ I X ⊗ Z

Z ⊗ Z X ⊗ X Y ⊗ Y

Each entry has eigenvalues in the set {±1}. The rows and
columns give commuting triples of P2. Suppose a valuation
v satisfying our hypotheses exists and consider the product
of v(P ) over all P in each row or column. Since each entry
appears in one row and one column, this is the product of (±1)2

nine times: 1. However, if we collect the terms into rows and
columns, we find that we are taking the product of v(I ⊗ I )
five times with v(−I ⊗ I ) once. Therefore, the product is −1
and we reach a contradiction.

For the general n > 2 case, we repeat the same argument
only we tensor all of the entries of the table with I⊗(n−2) to
get entries in Pn. This does not change the eigenvalues of
the entries as I has only eigenvalue 1 nor does it affect the
commutativity of the rows and columns. The product of the
rows and columns yields I⊗n five times and −I⊗n once.

APPENDIX C: RELATION TO HYPERGRAPH APPROACH

Here, we show that the graph of Definition 1 coincides with
the complement of the nonorthogonality graph [32, Definition
2.3.1] of the hypergraph [32, Definition D.1.4] associated by
Acı́n et al. with a measurement scenario.

We first recall their relevant definitions before sketching a
proof of the result.

Definition 4 (D.1.2). For a measurement A ∈ M in a mea-
surement scenario (M,C), the induced measurement scenario
M{A} has as measurements all B ∈ M such that A 
= B and
{A,B} is contained within some context C ∈ C. The contexts
are the sets C \ {A} for all C ∈ C such that A ∈ C.

Definition 5 (D.1.3). A measurement protocol T ∈
MP (T ) on a measurement scenario (M,C) is defined
recursively as

(1) Base case: M = ∅
T = ∅

(2) Recursive case: M 
= ∅
T = (A,f ), where A ∈ M is a measurement and f : O →
MP (M{A}) is a function from the outcome set to the set of
all measurement protocols on M{A}.

Definition 6. A protocol outcome α ∈ POut(T ) of a mea-
surement protocol T is defined recursively as

(1) Base case: T = ∅
α = {∅}

(2) Recursive case: T = (A,f )
α = (A,a,α′), where a ∈ O and α′ ∈ POut(f (a)) is a proto-
col outcome of the measurement protocol f (a).

A protocol outcome α yields an observable event s(α) :
C(α) → O where C(α) ∈ C, also defined recursively, that
maps A to a at each stage.

Definition 7 (D.1.4). The contextuality scenario H [M] as-
sociated with a measurement scenario (M,C) is a hypergraph
with all observable events (functions e : C → O from some
context C ∈ C to outcomes) as vertices. Every measurement
protocol T on (M,C) defines a hyperedge in the hypergraph
given by {s(α) : α ∈ POut(T )}.

Definition 8 (2.3.1). The nonorthogonality graph of a con-
textuality scenario H [M] has the same vertices. Two vertices
share an edge if and only if they are not contained within a
common hyperedge.

Lemma 2. Let (M,C) be a measurement scenario. For any
A ∈ M and observable event e : C → O where A ∈ C ∈ C,
there exists a measurement protocol T ∈ MP (M) such that
T = (A,f ) and e = s(α) for some α ∈ POut(T ).

Proof. This follows by applying the recursive hypothesis
to M{A}, A′ ∈ (C \ A), and e|(C\A) → O and choosing f to
map e(A) to the resulting induced measurement protocol. �

Theorem 4. The exclusivity graph G(M,C) of a measure-
ment scenario (M,C) is isomorphic to the graph complement
of the nonorthogonality graph of H [M].

Proof. Suppose e : C → O and e′ : C ′ → O are mutually
exclusive events, i.e., there is a measurement A ∈ C ∩ C ′ such
that e(A) 
= e′(A). We must show that they are contained
within a common hyperedge by constructing a measurement
protocol T = (A,f ) for which e and e′ arise as s(α) and s(α′)
for α,α′ ∈ POut(T ). This can be done by choosing f to
map e(A) to the measurement protocols yielded by applying
Lemma 1 to M{A}, B ∈ (C \ A) and e|(C\A) : (C \ A) → O
(and similarly for e′(A)).

Conversely, suppose two distinct observable events e and
e′ are contained within a common hyperedge. There is thus a
measurement protocol T for which e and e′ arise as s(α) and
s(α′) for α,α′ ∈ POut(T ). The minimal depth at which these
protocol outcomes diverge gives the common measurement
for which e and e′ assign different outcomes. �
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W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).
[15] C. H. Bennett and G. Brassard, in International Conference

on Computer System and Signal Processing, 1984 (IEEE,
Piscataawy, NJ, 1984), pp. 175–179.

[16] L. Hardy, Phys. Rev. Lett. 68, 2981 (1992).
[17] L. Hardy, Phys. Rev. Lett. 71, 1665 (1993).
[18] D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger,

Am. J. Phys 58, 1131 (1990).
[19] W. van Dam, Ph.D. thesis, Faculty of Physical Sciences,

University of Oxford, 1999.
[20] J. Barrett, Phys. Rev. A 75, 032304 (2007).
[21] J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, and D.

Roberts, Phys. Rev. A 71, 022101 (2005).
[22] H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Rev. Mod.

Phys. 82, 665 (2010).
[23] S. Kochen and E. P. Specker, J. Math. Mech. 17, 59 (1967).
[24] A. Fine, Phys. Rev. Lett. 48, 291 (1982).
[25] A. A. Klyachko, M. A. Can, S. Binicioğlu, and A. S. Shumovsky,
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