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Abstract

The two-dimensional (2D) vibronic spectroscopy of molecular trimers is studied theoreti-

cally. The solution of the time-dependent Schrödinger equation is carried out with the multi-

configurational time-dependent Hartree (MCTDH) method which allows for an efficient propaga-

tion of the multi-component wave functions. 2D-spectra are calculated for H- and J-type aggre-

gates incorporating one or two vibrational modes for each monomer. In performing calculations

for monomer, dimer and trimer systems it is documented how the vibronic structure of the 2D-

spectrum changes upon aggregation. This is of importance for the characterization of aggregation

behavior being influenced by experimental conditions such as temperature or concentration.
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I. INTRODUCTION

Ever since the early work of Jelly [1] and Scheibe [2] molecular aggregates have attracted

much attention. Besides their interesting optical properties [3] such systems are of basic

importance to understand photosynthesis [4] and the efficiency of organic photovoltaic de-

vices [5–7]. From a theoretical point of view, exciton theory [8–10] is the starting point

to arrive at a realistic description of e.g., the optical spectroscopy of molecular aggregates.

In an extension of models involving only electronic levels, the role of vibrations has been

addressed very early [11–13], and a thorough numerical example was given for the vibronic

dimer by Fulton and Gouterman [14, 15]. For a comprehensive review on the vibronic the-

ory of aggregates see the recent work by Schröter et al. [16]. An essential quantity is the

magnitude of the electronic matrix element which couples excitonic states in an aggregate

[10, 16], and two-dimensional (2D) spectroscopic methods provide a means to measure this

coupling. Originating from nuclear magnetic resonance spectroscopy [17, 18], such tech-

niques have been successfully applied in the infrared [19–24]. More recently such techniques

were developed in the optical region [25–29]. Recent applications of 2D optical spectroscopy

can be found, e.g., in Refs. [30–45].

Calculations of 2D-spectra are most commonly performed using density-matrix theory

[46–53]. A wave-function based description is also possible [54–56] but system-bath couplings

are difficult to include within this approach. However, it was shown recently that 2D-spectra,

within several approximations, can be efficiently calculated employing stochastic Schrödinger

equations [57, 58]. In this paper we use a wave-function description to arrive at 2D-spectra

and neglect all couplings to a surrounding.

The aggregate Hamiltonians usually employed use internal monomer vibrational degrees

of freedom [10, 16, 59, 60], but it should be kept in mind that intermolecular degrees of

freedom cannot always be ignored [61, 62]. To estimate the computational effort to describe

the dynamics of an aggregate coupled to laser fields as used in 2D photon-echo experiments,

let us regard the molecular trimer (M-M-M) with only a single vibrational coordinate xn

per monomer (n). Such single mode models have been applied to many aggregates [16, 60]

and the role of single- versus multi-mode models was analyzed in Ref. [63]. Besides the

electronic ground state, one has to incorporate three singly excited configurations ((M∗-

M-M), (M-M∗-M), (M-M-M∗)) where any one of the three monomers M is excited upon
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photon absorption. These states have different potential energy surfaces Ven(x1, x2, x3) and

are coupled by off-diagonal potential matrix elements, i.e. the electronic coupling mentioned

above. Furthermore, coupled doubly excited states ((M∗-M∗-M), (M∗-M-M∗), (M-M∗-M∗))

have to be taken into account. Adding the field-matter interaction we thus are faced with

the problem of 7 coupled electronic states, where the dimension of the intramolecular motion

is three.

To obtain a 2D-spectrum, the third-order polarization has to be calculated which involves

loops over two time-variables usually being a pulse delay τ and the detection time t′, see

Sec. II A. It is clear that this involves a large computational effort and one needs an

efficient method for the solution of the time-dependent Schrödinger equation. Fortunately,

the multi-configurational time-dependent Hartree (MCTDH) method [64–66], provides such

a tool. It is then possible to calculate the time-dependent polarization induced by the

external fields. However, this observable contains terms in all orders of the field-matter

interaction and signal fields emitted in many different directions. Because in a photon-echo

2D-arrangement the signal is detected under phase-matching conditions (see, however, the

’phase-cycling’ arrangement where a fluorescence signal is detected [67, 68]) one needs to

extract a signal field in the phase-matching direction. This can be achieved by performing

several calculations with phase tagged electric fields [69, 70], for an alternative method see

Refs. [50, 71].

Within a liquid, the self assembly of molecules critically depends on experimental pa-

rameters such as concentration and temperature. As an example, aggregates of perylene

bisimides were studied under varying experimental conditions [72]. In comparing absorption

[73] and circular dichroism spectra [74] measured at different temperatures and calculated

for different aggregate sizes, information on the average aggregate size could be retrieved.

In this paper we address the question of how 2D-spectra change upon aggregation where a

focus is on the influence of vibrational motion. In Sec. II we briefly introduce the method

to calculate the polarization under phase-matching conditions and also provide details of

the employed model. Trimer spectra calculated for different geometries, incorporating one

or two vibrational degrees of freedom per monomer, are presented in Sec. III. There, we

also compare spectra of monomer, dimer and trimer systems as well as those arising from a

mixture of such species. A summary of the results is given in Sec. IV.
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II. THEORY

A. Calculation of 2D-spectra

Two-dimensional optical spectra result from the dipole interaction of molecular samples

with three laser pulses described by the electric field

~E(t) = ~εE(t) = ~ε

3∑
n=1

gn(t− Tn) cos [ωn(t− Tn)− φn,s] . (1)

Here, the polarization vectors of of all fields are taken as equal (~εn = ~ε) and ωn are the

laser frequencies. The envelope functions gn(t − Tn) are centered at times Tn. The delay

time τ = T2 − T1 is defined as the time difference between the first and the second pulse,

and the detection time t′ = t − T3 starts at the center of the third pulse. Because we here

exclude couplings to a surrounding it is sufficient to treat the case of zero population time

[49], e.g., we set T = T3 − T2 = 0. The phases φn,s are specified below. In our calculations

we determine the projection of the third-order polarization on ~ε.

The central quantity in the calculation of 2D-spectra is the third-order polarization emit-

ted along the direction ~ks = −~k1 + ~k2 + ~k3 (phase-matching), where the ~kn(n = 1, 2, 3)

denote the wave vectors of the three laser fields. We employ a non-perturbative scheme

[69, 70] where first the overall polarization, defined as the expectation value of the projec-

tion µ = ~µ~ε of the transition dipole moment ~µ on ~ε (containing all orders and directions),

is calculated and then the contribution emitted along the direction ~ks is extracted. Under

several assumptions, the number of possible directions can be limited to 12 [70]. Decompos-

ing the polarization P (~Φ) into a Fourier-series with these 12 contributions yields (omitting

the time-arguments):

P (~Φ) =
12∑
q=1

ei(nq
~k1+mq~k2+lq~k3)~x =

12∑
q=1

ei~rq
~ΦsPq, (2)

where ~rq = (nq,mq, lq) runs over the possible combinations of (n,m, l), and ~Φs = (φ1,s, φ2,s, φ3,s)

are fixed phases. To disentangle the directional terms and calculate the polarizations Pq

emitted in the different directions, one performs calculations of the polarization for chosen

phases:

P (τ, t′, ~Φs) = 〈ψ(τ, t′, ~Φs)|µ|ψ(τ, t′, ~Φs)〉 = P̃ (τ, t′, ~Φs) + P̃ ∗(τ, t′, ~Φs). (3)
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The wave functions ψ(τ, t′, ~Φs) are obtained as solutions of the time-dependent Schrödinger

equation for the system coupled to the laser fields. Repeating the calculation for 12 combi-

nations of phases leads to the linear system of equations:
c1,1 c1,2 . . . c1,12

c2,1
. . .

...
...

. . .
...

c12,1 . . . . . . c12,12




P1

P2

...

P12

 =


P̃ (~Φ1)

P̃ (~Φ2)
...

P̃ (~Φ12)

 , (4)

with coefficients cs,q = ei~rq
~Φs . Details of the procedure and the explicit values for the wave

vectors and phases are given in Ref. [70].

A Fourier transform of the component Pq(τ, t
′) of the third order polarization which is

emitted in the ~ks direction leads to the 2D spectrum [75]:

Sq(Eτ , Et′) =
i

(2π)2

∫
dτ

∫
dt′ e−iEτ τ eiEt′ t

′
Pq(τ, t

′). (5)

In calculating the spectra presented in Sec. III, the polarization is convoluted with Gaussians

having a width (full width at half maximum) of 110 fs (spectral resolution of 0.033 eV) in

both directions. This means that the sampled time intervals along τ and t′ can be chosen

as short as 200 fs, where we use a time step of 0.8 fs. To obtain smoother spectra, the

polarization is filled with zeros for times larger than 200 fs before Fourier transforming. If

not noted differently, the spectra discussed below are normalized to their largest peak and

the real (absorptive) part is shown.

B. Model

The aggregate model builds on monomer units having two electronic states |g〉 and |e〉

coupled to a vibrational degree of freedom along the dimensionless coordinate x. The ground

and excited state vibrational Hamiltonians are:

Hg(x) = −1

2

d2

dx2
+

1

2
ω2
vibx

2, (6)

He(x) = −1

2

d2

dx2
+

1

2
ω2
vib(x− xe)2 + ∆E. (7)

The vibrational frequency ωvib is assumed to be identical in the ground and excited state

and is assigned a value of ωvib = 0.175 eV. The displacement in equilibrium position is taken
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as xe = 2.57 (eV)−1/2. These parameters stem from our calculation on perylene bisimide

aggregates [76]. The energy shift is taken as ∆E = 1.0 eV.

The monomer (M) Hamiltonian including the field-matter interaction reads:

HM(x) =

 Hg W (t)

W (t) He

 , (8)

with the time-dependent interaction

W (t) = −µ E(t). (9)

The magnitude of µ is set to a value of one in all calculations.

The dimer Hamiltonian is constructed from two monomer Hamiltonians and contains four

electronic states. Photo absorption from the ground state |g(1), g(2)〉 = |gg〉 leads to the

population of singly excited states |eg〉 (first monomer excited) and |ge〉 (second monomer

excited). These two states are electronically coupled by a constant coupling element J which

we fix to be positive and having the value of 0.25 eV. Finally, the doubly excited state |ee〉

represents an excitation of both monomers. Using the shorthand notation

Hs1s2 = Hs1(x1) +Hs2(x2), (s1, s2) ε (g, e), (10)

where xn is the vibrational mode of monomer (n), we obtain the dimer Hamiltonian as:

HD =


Hgg W (1) W (2) 0

W (1) Heg J W (2)

W (2) J Hge W (1)

0 W (2) W (1) Hee

 . (11)

The system-field-interaction W (n) leading to excitation of monomer (n) is:

W (1) = −µ E(t) f+(γ), (12)

W (2) = −µ E(t) f−(γ). (13)

Here appear the geometry factors f±(γ) which depend on the orientation angle between

the two monomer transition dipole-moments. We use the fixed configuration where the

monomer transition dipole vectors ~µn lie in the (x, y)-plane with the y-axis intersecting the

angle γ between them. The motivation to use this particular geometry is that, for one-

photon absorption, the absorption spectrum calculated within this arrangement is identical
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(within an overall factor) to the one obtained if the orientational average is performed [77]

which, however, is not true for a 2D-spectrum [51]. An average over molecular orientations

results in different intensities of certain peaks appearing in the spectra. This is not essential

for the present investigation and thus we do not address this averaging here, and we restrict

the calculations to the fixed molecular orientation. For an (x, y)-polarized electric field with

polarization vector ~ε = (1, 1, 0) one finds [78]:

f±(γ) = cos
γ

2
± sin

γ

2
. (14)

Most of our considerations are restricted to parallel (γ = 0◦) and antiparallel (γ = 180◦)

dipole geometries. This, because we fix the excited state coupling to a positive number,

corresponds to the case of a H- and J-aggregate, respectively. For a J-aggregate (named

after Jelly [1]), the one-photon absorption from the ground state leads to excitation of the

lowest band of the excitonic manifold. On the other hand, for the γ = 0◦ geometry, the

absorption band of an aggregate shows a hypsochromic (H) shift with respect to the monomer

absorption.

The trimer Hamiltonian contains, besides the common ground state, three singly and

three doubly excited states of the form |s1s2s3〉 = |s1(1), s2(2), s3(3)〉 with the corresponding

vibrational Hamiltonians

Hs1s2s3 = Hs1(x1) +Hs2(x2) +Hs3(x3), (s1, s2, s3) ε (g, e). (15)

Note that the triply excited state |eee〉 does not need to be included because the resulting

signal is not emitted along the phase-matching direction. Each singly excited state possesses

two monomeric units in the ground state, and in the doubly excited states only one monomer

remains in the ground state. One-photon transitions couple the manifold of singly excited

states with the ground state and the singly excited states with the three doubly excited

states. Here we only regard trimers with next-neighbor couplings excluding the case of

cyclic geometries where the first and last monomer are coupled. The trimer Hamiltonian
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then reads:

HT =



Hggg W (1) W (2) W (3) 0 0 0

W (1) Hegg J 0 W (2) W (3) 0

W (2) J Hgeg J W (1) 0 W (3)

W (3) 0 J Hgge 0 W (1) W (2)

0 W (2) W (1) 0 Heeg J 0

0 W (3) 0 W (1) J Hege J

0 0 W (3) W (2) 0 J Hgee


. (16)

In our calculations, we assume that the couplings between the singly excited states and

between the doubly excited states are identical. The fixed orientation of the monomeric

transition dipole-moments is treated in a similar way as for the dimer [79]. Within the

planar geometry ~µ2 points along the y-axis and the moments ~µ1 and ~µ3 are rotated by

angles ∓γ with respect to ~µ2. This leads to the interaction terms:

W (m) = −µE(t)fm(γ), (17)

with the angular factors

f1(γ) = cos γ + sin γ, f2(γ) = 1, f3(γ) = cos γ − sin γ. (18)

For comparison, we also regard purely electronic systems. In these cases, the monomer

vibrational Hamiltonians are numbers, i.e. Hg(x) = 0 and He(x) = ∆E, respectively.

Then, the dimer and trimer problems reduce to those of coupled 4-level and 7-level systems,

respectively.

The field strengths are taken such that the maximal value of the dipole coupling (µgn(0))

is 0.03 eV. This corresponds to a field strength (for our value of µ = 1 a.u.) of about 3.5

× 1010 W/cm2. It is checked numerically that for this coupling the contributions to the

polarization having orders higher than three are negligible. The pulse-envelope functions gn

are Gaussians with a temporal width of 5.4 fs. The photon energies of all pulses are equal

and have values of ω = 1.0 eV (electronic problem) and ω = 1.15 eV (vibronic problem),

respectively. This leads to resonant transitions between the involved states. As initial state,

the ground state is used in each case.

The wave packet propagation is carried out via the MCTDH-method using the Heidelberg

package [80]. This expands the nuclear wavepacket in sets of low-dimensional time-dependent
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basis functions, known as single particle functions (SPFs). These in turn are expanded

on a primitive grid defined by a discrete variable representation (DVR). The SPFs and

expansion coefficients then evolve in time according to equations of motion that provide a

variational solution to the time-dependent Schrödinger equation. Each vibrational degree of

freedom is treated with a harmonic oscillator DVR primitive basis with 15 grid points. The

same number of time-dependent single particle functions (SPFs) are used for each degree of

freedom, chosen so as to converge the spectrum obtained. For the dimer case 3, 5, 5, 4 SPFs

are used for the first, second, third and fourth electronic state, respectively. For the trimer

a total number of 3 SPFs for the ground state and 5 SPFs for each of the six excited states

are employed. The time-evolution of the monomer is treated using a full numerical solution

of the time-dependent Schrödinger equation on the 1D primitive grid.

III. RESULTS

We first consider 2D-spectra for the purely electronic trimer system. Figure 1 illustrates

the energy-level scheme where the left part refers to the parallel and the right part to the

anti-parallel geometry. Besides the ground state at E0 = 0, three singly excited states with

energies Ee1 = ∆E −
√

2J , Ee2 = ∆E and Ee3 = ∆E +
√

2J are present [81]. The doubly

excited states exhibit the same splitting and are located at energies Ed1 = 2∆E −
√

2J ,

Ed2 = 2∆E and Ed3 = 2∆E +
√

2J , respectively. In general, peaks in the 2D-spectra

occur at positions which match energy differences (Een − E0) along Eτ and also differences

(Een − E0) and (Edm − Een) along Et′ [55, 82]. For the given geometry, however, not all

transitions are allowed. To anticipate which peaks are visible in the spectrum we regard the

intensities In of the absorption lines for transitions from the ground to the singly excited

states with energies Een. They are given, ignoring unimportant constants, as [79]:

I1 = 1 +
1

2
cos (2γ)−

√
2 cos (γ), (19)

I2 = 1− cos (2γ), (20)

I3 = 1 +
1

2
cos (2γ) +

√
2 cos (γ). (21)

For γ = 0◦, one finds I1 = 3/2−
√

2, I2 = 0 and I3 = 3/2+
√

2. Thus, besides a weak transi-

tion to the lowest excited state (for the positive value of J as employed in our calculations),

a strong transition to the upper level at Ee3 takes place. Similar relative intensities are found
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for the transition from the singly excited states to the doubly excited states, as indicated by

the arrows in Fig. 1. Using the numerical values of ∆E = 1 eV and J = 0.25 eV, it follows

that an intense diagonal peak at Eτ = Et′ = 1.35 eV and a single cross peak at (Eτ , Et′) =

(1.35, 1.0) eV is expected to be seen in the 2D-spectrum. This, indeed is the case as can

be verified by inspection of Fig. 2 (panel (a)) which shows the numerically determined real

part of the spectrum. Changing the angle γ to 180◦ yields intensities of I1 = 3/2 +
√

2,

I2 = 0 and I3 = 3/2 −
√

2 so that transitions to the lower levels of the singly and doubly

excited states are favored, see Fig. 1. The peak positions are then calculated as (Eτ , Et′)

= (0.65,0.65) eV and (0.65,1.0) eV, which is in accord with the numerically determined

spectrum in Fig. 2, panel (b). Note, that the peak structures of the off-diagonal peaks are

different for the two geometries. This can be analyzed in regarding, within perturbation

theory, the time-integrals appearing in the expressions for the polarization where the finite

lengths of pulses enter [54].

We next turn to the vibronic 2D-spectra. Including a coupling between the three degen-

erate singly excited states |egg〉, |geg〉, |gge〉 leads to a large density of vibrational states.

The effect of vibronic coupling can already be seen in linear absorption spectra [73]. Ex-

amples of vibronic 2D-spectra, which correspond to the geometries leading to the electronic

spectra in Fig. 2, are shown in Fig. 3. As a general trend, a rich vibrational substructure

is encountered. In a zeroth-order picture, we find vibronic progressions around the peak

locations of the corresponding electronic spectra (Fig. 2). However, the coupling leads to

a non-regular vibrational energy level spacing which is reflected in the 2D-spectrum of the

H-aggregate (panel (a)). For example, it is seen that the (electronic) diagonal peak around

(Eτ , Et′) = (1.45, 1.45) eV splits into several peaks. In the case of the J-aggregate (panel

(b)) the appearance of the spectrum is more regular. No peaks below Eτ = 0.65 eV are seen

because, starting from the ground state, the lowest lying excited energy level is located at

this energy. Along the energy Et′ , peaks at lower energies are found because (stimulated

emission) transitions from the excited state to higher lying vibrational levels in the ground

state are possible [49]. For our choice of parameters, the separation between electronic lev-

els (0.354 eV) is very close to twice the monomer vibrational level spacing (0.350 eV). As a

consequence, no clear assignment of peaks being associated with vibrational levels in a given

electronically excited state is possible [58].

Until now, we regarded the cases of purely H- (γ = 0◦) and J-aggregates (γ = 180◦). For a
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dipole-angle of γ = 90◦ it is possible to excite all three singly excited states from the ground

state so that a more structured spectrum is anticipated. Additionally, the sub-structure

of the spectra will be influenced by the density of vibrational states. To give an example

for such more complex situations we regard the orthogonal dipole geometry and include a

second monomer vibrational mode in the model so that the number of internal degrees of

freedom is 6. The monomer Hamiltonians now are:

Hg(x, y) = −1

2

∂2

∂x2
− 1

2

∂2

∂y2
+

1

2
ω2
vib,xx

2 +
1

2
ω2
vib,yy

2, (22)

He(x, y) = −1

2

∂2

∂x2
− 1

2

∂2

∂y2
+

1

2
ω2
vib,x(x− xe)2 +

1

2
ω2
vib,y(y − ye)2 + ∆Ee. (23)

The parameters of the first oscillator (in x) are kept the same as before and the additional

oscillator has the same excited state equilibrium distance (ye = xe) but has a frequency of

ωvib,y = 0.120 eV. In Fig. 4, we compare 2D-spectra for the trimer with a single (panel

(a)) and two (panel (b)) vibrational modes. For a better comparison, the spectra are not

normalized. It is seen that the addition of the extra mode gives rise to a spectrum which is

somehow less structured. A second vibronic progression leading to additional cross peaks is

visible. However, somehow unexpectedly, although the density of states increases in adding

the extra oscillator, the appearance of the spectrum becomes simpler. This means that

energetically close and thus overlapping peaks with finite widths are present so that certain

features are averaged out.

We have shown that various effects influence the trimer 2D-spectra. Among them are the

vibrational degrees of freedom and the relative orientation of the monomer transition dipole-

moments. It is interesting to regard the question of how 2D-spectra change upon aggregation.

Therefore we compare monomer, dimer and trimer spectra for the γ = 180◦ geometry and

the single monomer degree of freedom (using the same model parameters as before). The

respective spectra are shown in Fig. 5. The monomer spectrum (panel (a)) shows diagonal

and cross peaks at energy differences between the vibronic ground state and excited state

vibrational levels [49]. At this point it is already clear that, in the presence of vibrations, the

mere existence of cross peaks does not give evidence for excited state electronic coupling. A

dimer with a small coupling element will have a very similar spectrum. For larger couplings,

as employed here, the near-degeneracy between the excited state vibrational levels is lifted

which, depending on the specific characteristics of the system at hand, gives rise to a change

in the level structure. This can be seen in Fig. 5 which contains the dimer spectrum in
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panel (b). As expected, a different vibronic substructure is encountered if compared to the

monomer. Also, the redshift (being characteristic for J-aggregates) is clearly seen.

The trimer spectrum (panel (c)) is further red-shifted. This reflects the fact that the

lowest singly excited electronic level for a dimer occurs at an energy of ∆E − J whereas,

for a trimer, one finds ∆E −
√

2J . Furthermore, the vibronic sub-structure changes signifi-

cantly when compared to the dimer. This means that the 2D-spectrum is very sensitive to

the aggregate size. We note that, even if rich vibronic features are not detected experimen-

tally due to limited resolution, one still may pick regions of interest which will reflect the

spectral changes upon aggregation. The latter process critically depends on temperature.

For example, with decreasing temperature it is more likely to encounter larger aggregates.

In Fig. 6 we provide an example which illustrates what happens if a sample is cooled. Panel

(a) shows a 2D-spectrum which is obtained from a 1:1 mixture of monomers and dimers.

The different spectral features can be identified by comparison with the monomer and dimer

spectra shown in Fig. 5. With decreasing temperature also trimers are built. This is clearly

visible in the spectrum shown in panel (b) of Fig. 6 which results from a 1:1:1 mixture

of monomers, dimers and trimers. Finally, if only dimers and trimers exist (1:1 mixture),

the spectrum changes again (panel (c)). For example, the monomer contribution at higher

energy Et′ is then missing.

IV. SUMMARY

We calculate 2D vibronic spectra of molecular aggregates by solving the time-dependent

Schrödinger equation. For a trimer, this involves 7 coupled electronic states including three

and also six vibrational degrees of freedom. The time-propagation is carried through with

the computationally effective MCTDH method. Within this approach the time-dependent

polarization is calculated numerically exactly, and the contribution emitted into the photon-

echo phase-matching direction is extracted in repeating the calculation with different phases

of the electric fields.

The trimer-spectra for H- and J-aggregate prototypes exhibit a rich vibronic structure

even if only a total number of three (one per monomer) vibrational coordinates are taken

into account. Such features can already be seen in the monomer and also the dimer spec-

trum where the degree of complexity increases with increasing aggregate size. We provide
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examples of how vibronic 2D-spectra change as a function of the aggregate size. For a

J-aggregate, the increasing red shift in going from a monomer to the trimer is reflected

in the spectra. Furthermore, vibrationally resolved spectra become more and more struc-

tured which is due to the increasing density of vibronic states. The situation is even more

dramatic for H-aggregates because there, even more states are coupled by the fields. The

results document how 2D-spectroscopy maps the aggregation in a molecular samples. The

analysis of the spectra, however, is very challenging. This is mainly due to the vibrational

degrees of freedom. Within models consisting of only electronic levels, a monomer exhibits

a single diagonal peak. Including vibrations (if only in the simple way used here) already

leads to several diagonal and also cross peaks. The potential of optical 2D-spectroscopy

lies in its ability to detect electronic couplings which are exemplified by off-diagonal peaks.

For a dimer with vibrations and a very small coupling, the 2D-spectrum will resemble the

monomer spectrum so that the position of these peaks are not a measure of the coupling

but are simply due to vibrations. For stronger couplings, the situation becomes more com-

plicated and our results indicate that only a theory on the vibronic system can help to

identify excited state couplings. Of course, going to larger aggregates makes things worse.

In calculating 2D-spectra for trimers including vibrations without further approximations

on the number of vibrational states we document systematically how the spectra change.

This, to the best of our knowledge, has not been presented before.

To conclude, the spectra show pronounced changes in going from monomers to trimers.

We note that the observed redshift is also seen in linear absorption spectra and may be

estimated analytically using purely electronic level models. However, the significant changes

in the vibrational substructure seen along two energy axis, provides a more sensitive tool

to extract information about the distribution of aggregate sizes in a mixture, and for this

detailed simulations are required to understand the origins of the peaks and assign the

spectrum. We hope that our study provides a first step for the interpretation of future

experiments.
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[81] W. Kutzelnigg, Einführung in die Theoretische Chemie, Band 2 (VCH, Weinheim, 1994).

[82] D. Egorova, J. Chem. Phys. 140, 034314 (2014).

17



Ee3

Ee2

Ee1

Ed3

Ed2

Ed1

y◦ R3y◦y◦

1
M
2`

;
v

y

∆E

2∆E

FIG. 1. Electronic level scheme for non-cyclic trimers with next-neighbor coupling. The ground

state is at an energy of E0 = 0 and the monomer excitation energy is ∆E. Three singly and three

doubly excited states are marked having energies (Ee1, Ee2, Ee3) and (Ed1, Ed2, Ed3), respectively.

In the parallel transition dipole geometry (γ = 0◦, H-aggregate) transitions into the highest level

of each band are favored (solid arrows). Weak transitions to the respective lowest states also

occur (dashed arrows). This situation is reversed for the anti-parallel configuration at γ = 180◦

(J-aggregate).
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FIG. 2. Normalized 2D-spectra of the electronic trimer system. The case of an H-aggregate (γ =

0◦, see Fig. 1) is depicted in panel (a) and the case of a J-aggregate (γ = 180◦, see Fig. 1) in panel

(b). The color code is such that blue corresponds to positive and red to negative values.
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FIG. 3. Same as Fig. 2, but for the vibronic trimer system with one vibrational degree of freedom

for each monomer.
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FIG. 4. Vibronic 2D-spectra for a transition dipole geometry of 90◦. Panel (a) shows the case of a

single vibrational mode per monomer (ωvib,x = 0.175 eV). Including a second monomer vibration

with a frequency of ωvib,y = 0.120 eV leads to the spectrum in panel (b).
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FIG. 5. Comparison of monomer (panel (a)), dimer (panel (b)) and trimer (panel (c)) vibronic 2D-

spectra. One monomer vibration is taken into account. The dimer and trimer are in a J-aggregate

configuration (γ = 180◦).
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FIG. 6. 2D-spectra resulting from mixtures of different aggregates. Panel (a): 1:1 monomers and

dimers; panel (b): 1:1:1 monomers, dimers and trimers; panel (c): 1:1 dimers and trimers.
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