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Abstract Mazur, Rubin, and Stein have recently formulated a series of con-
jectures about statistical properties of modular symbols in order to understand
central values of twists of elliptic curve L-functions. Two of these conjectures
relate to the asymptotic growth of the first and secondmoments of the modular
symbols. We prove these on average by using analytic properties of Eisenstein
series twisted by modular symbols. Another of their conjectures predicts the
Gaussian distribution of normalized modular symbols ordered according to
the size of the denominator of the cusps. We prove this conjecture in a refined
version that also allows restrictions on the location of the cusps.
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1 Introduction

Modular symbols are fundamental tools in number theory. By the work of
Birch, Manin, Cremona and others they can be used to compute modular
forms, the homology of modular curves, and to gain information about elliptic
curves and special values of L-functions. In this paperwe study the arithmetical
properties of the modular symbol map

{∞, a} �→ 2π i
∫ a

i∞
f (z)dz. (1.1)

Here f ∈ S2(�) is a holomorphic cusp form of weight 2 for the group � =
�0(q), and {∞, a} denotes the homology class of curves between the cusps
∞ and a.

For our purposes it is convenient to work with the real-valued, cuspidal
one-form α = �( f (z)dz). The finite cusps a are parametrized by Q, so for
r ∈ Q we write

〈r〉 = 2π i
∫ r

i∞
α. (1.2)

Note that the path can be taken to be the vertical line connecting r ∈ Q to ∞.
If a is equivalent to ∞ under the �-action such that {∞, a} = {∞, γ (∞)}

for some γ ∈ � we write the map (1.1) as

〈γ, α〉 := 〈γ (∞)〉 = 2π i
∫ γ z0

z0
α,

where in the last expression we have replaced ∞ by any z0 ∈ H∗.
Mazur, Rubin, and Stein [31,46] have recently formulated a series of con-

jectures about the value distribution of 〈r〉. We now describe these conjectures.
Let E be an elliptic curve overQ of conductor q with associated holomorphic
weight 2 cusp form f (z). We write the Fourier expansion of f at ∞ as

f (z) =
∑
n≥1

a(n)e(nz).

It is a fundamental question in number theory to understand how often the
central value of L(E, χ, s), vanishes, when χ runs over the characters of
Gal(Q̄/Q).

Mazur, Rubin, and Stein used raw modular symbols. For r ∈ Q these are
defined by

〈r〉± = π i
∫ r

i∞
f (z)dz ± π i

∫ −r

i∞
f (z)dz.
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This corresponds roughly to taking α in (1.2) to be the real or imaginary part
of the 1-form f (z)dz. See Remark 2.1 for the precise statement. Modular
symbols and the central value of twists of the corresponding L-function are
related by the Birch–Stevens formula e.g. [35, Eq. 2.2], [32, Eq 8.6] that is

τ(χ)L(E, χ̄ , 1) =
∑

a∈(Z/mZ)∗
χ(a)〈a/m〉±

for a primitive character of conductor m (here the choice of ± corresponds
to the sign of χ ). To understand the vanishing of L(E, χ̄ , s) at s = 1 Mazur,
Rubin, and Stein were led to investigate the distribution of modular symbols
and theta constants. In this paper we investigate modular symbols but not theta
constants.

Mazur, Rubin, and Stein studied computationally the statistics of (raw)
modular symbols. Since f has period 1, the same is true for the modular
symbols: 〈r + 1〉 = 〈r〉. They observed the behavior of contiguous sums of
modular symbols, defined for each x ∈ [0, 1] by

Gc(x) = 1

c

∑
0≤a≤cx

〈a/c〉.

Based on their computations they defined

g(x) = 1

2π i

∑
n≥1

�(a(n)(e(nx) − 1))

n2
,

and arrived at the following conjecture.

Conjecture 1.1 (Mazur–Rubin–Stein) As c → ∞ we have

Gc(x) → g(x).

They added credence to this conjecture with the following heuristics. If we cut
off the paths in (1.2) for modular symbols at height δ > 0, then

c−1
∑

0≤a≤cx

∫ i∞

a/c+iδ
α →

∫
[0,x]×[δ,∞]

α,

because the left-hand side is a Riemann sum for the integral. The heuristics
involves interchanging this limit with the limit as δ → 0.
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In another direction Mazur and Rubin investigated the distribution of 〈a/c〉
for (a, c) = 1 as c → ∞. Define the usual mean and variance by

E( f, c) = 1

φ(c)

∑
a mod c
(a,c)=1

〈a/c〉, Var( f, c) = 1

φ(c)

∑
a mod c
(a,c)=1

(〈a/c〉 − E( f, c))2 ,

(1.3)
where φ is Euler’s totient function. They conjectured the following asymptotic
behavior of the variance.

Conjecture 1.2 (Mazur–Rubin) There exist a constant C f and constants D f,d
for each divisor d of q, such that

lim
c→∞

(c,q)=d

(Var( f, c) − C f log c) = D f,d .

Moreover,

C f = − 6

π2

∏
p|q

(1 + p−1)−1L(sym2 f, 1). (1.4)

The constant C f is called the variance slope and the constant D f,d the vari-
ance shift. In Conjecture 1.2 the symmetric square L-function L(sym2 f, s) is
normalized such that 1 is at the edge of the critical strip.

Moreover, the numerics suggest that the normalized raw modular symbols
obey a Gaussian distribution law.

Conjecture 1.3 (Mazur–Rubin) Let d|q. The data
〈a/c〉

(C f log c + D f,d)1/2
, c ∈ N with (c, q) = d, a ∈ (Z/cZ)∗

has limit the standard normal distribution.

In this paper we prove average versions of Conjectures 1.1 and 1.2 when we
average over c.We onlyworkwith q squarefree. The restriction to q squarefree
may not be necessary. On the other hand we can only work with averages over
c and not individual c.

Moreover, we prove a refined version of Conjecture 1.3. We can restrict the
rational number a/c to lie in any prescribed interval and we can restrict to
rational numbers a/c with (c, q) a fixed number.

To prove these results we specialize to �0(q) more general results on mod-
ular symbols for cofinite Fuchsian groups with cusps. Here is a statement of
our results for �0(q), when q is squarefree.
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Theorem 1.4 Conjecture 1.1 holds on average. More precisely we have

1

M

∑
1≤c≤M

Gc(x) → g(x), as M → ∞.

Remark 1.5 In fact we can restrict the summation to (c, q) = d for d a fixed
divisor of q. See Corollary 8.1 and the discussion following it.

Theorem 1.6 Conjecture 1.2 holds on average. More precisely let d|q, and
let C f be given by (1.4). Then

1∑
c≤M

(c,q)=d

φ(c)

∑
c≤M

(c,q)=d

φ(c)(Var( f, c) − C f log c) → D f,d , as M → ∞,

where
D f,d = Ad,q L(sym2 f, 1) + Bq L

′(sym2 f, 1).

Here Ad,q , Bq are explicitly computable constants given by (8.12).

Theorem 1.7 Let I ⊆ R/Z be an interval of positive length, and consider for
d|q the set Qd = {a/c ∈ Q, (a, c) = 1, (c, q) = d}. Then the values of the
map

Qd ∩ I → R
a

c
�→ 〈a/c〉

(C f log c)
1/2 ,

ordered according to c, have asymptotically a standard normal distribution.

Remark 1.8 Putting I = R/Z in Theorem 1.7 we prove Conjecture 1.3. The
difference in normalization, i.e. the appearance of D f,d in the denominator, is
irrelevant as explained in Remark 7.9.

Theorems 1.4, 1.6, and 1.7 will follow rather easily from the following
general theorems for finite covolume Fuchsian groups � with cusps. Let a, b
be cusps of �, not necessarily distinct. Let α = �( f (z)dz), where f ∈ S2(�)

is a holomorphic cusp form of weight 2. We do not assume that f has real
coefficients. Fix scaling matrices σa and σb for the two cusps. Define

Tab =
{
r = a

c
mod 1,

(
a b
c d

)
∈ �∞\σ−1

a �σb/�∞ and c > 0

}
⊆ R/Z,

(1.5)
see Proposition 2.2. Note that

r =
(
a b
c d

)
∞ mod 1.
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Wedenote the denominator of r by c(r).Weorder the elements ofTab according
to the size of c(r) and define

Tab(M) = {r ∈ Tab, c(r) ≤ M}.

We define general modular symbols as

〈r〉ab = 2π i
∫ σar

b
α.

Theorem 1.9 Let x ∈ [0, 1]. Let aa(n) be the Fourier coefficients of f at the
cusp a. There exists a δ > 0 such that, as M → ∞,

∑
r∈Tab(M)

〈r〉ab1[0,x](r) =
(
2π i

∫ a

b
α · x + 1

2π i

∞∑
n=1

� (aa(n)(e(nx) − 1))

n2

)

× M2

πvol(�\H)
+ O f (M

2−δ).

Theorem 1.10 Let ‖ f ‖ be the Petersson norm of f . There exists an explicit
constant D f,ab, depending on �, f , a, b, which we call the variance shift, such
that ∑

r∈Tab(M)

〈r〉2ab
∑

r∈Tab(M)

1
= C f logM + D f,ab + o f (1), as M → ∞,

where

C f = −16π2 ‖ f ‖2
vol(�\H)

.

The constant C f is the variance slope.

The formula for D f,ab is explicit but complicated, see (7.4). It depends on ‖ f ‖,
the period

∫ b
a α and data from the Kronecker limit formula for the Eisenstein

series for the cusps a and b.

Theorem 1.11 Let I ⊆ R/Z be an interval of positive length. The values of
the map g : Tab ∩ I → R with

g(r) = 〈r〉ab√
C f log c(r)
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ordered according to c(r) have asymptotically a standard normal distribution,
that is, for every a, b ∈ [−∞, ∞] with a ≤ b we have

#

{
r ∈ Tab(M) ∩ I,

〈r〉ab√
C f log c(r)

∈ [a, b]
}

#(Tab(M) ∩ I )
→ 1√

2π

∫ b

a
exp

(
− t2

2

)
dt,

as M → ∞.

Remark 1.12 Wehave obtained different but related normal distribution results
for modular symbols in [36–38,40]. One difference between these papers and
the current one is in the ordering and normalization of the values of 〈γ, α〉.
The orderings in these papers were more geometric (action of � on H) and
less arithmetic, and the modular symbols used closed paths in �\H. However,
in Theorem 1.7 we need to combine statistics from various cusps, since not all
rational cusps are equivalent to ∞ for �0(q). Moreover, we allow to restrict
γ (∞) = a/c to a general I ⊆ R/Z. This is a new feature, making our current
results significantly more refined.

The expression for the variance shift inTheorems1.6 and1.10, see also (7.4),
is very explicit. This is an unexpected facet. The analogue in [36, Theorem
2.19] involves also the reduced resolvent of the Laplace operator, which is
much harder to understand.

Remark 1.13 To prove Theorem 1.11 we study the asymptotic kth moments
of the modular symbols 〈r〉ab for all k, see Theorem 7.5. We make no effort
to optimize the error bounds for the moments in Theorems 1.9, 1.10, and 7.5,
but they can all be made explicit in terms of spectral gaps.

Remark 1.14 An important tool in this paper and in [36] is non-holomorphic
Eisenstein series twisted with modular symbols Em,n(z, s). These were intro-
duced by Goldfeld [15,16] and studied extensively by many authors, see e.g.
[3,9,25,26,34] and the references therein. For their definition see (2.11). In
[36] we used the Eisenstein series twisted with the kth power of modular sym-
bols as a generating series itself to study the kth moment of modular symbols.
In this paper we need to understand the nth Fourier coefficient of E (k)

a (σbz, s),
which involves twists by the kth power of 〈r〉ab. The reason why the results
here aremore arithmetic is because the Fourier coefficients of Eisenstein series
and of twisted Eisenstein series encode arithmetic data and modular symbols.
To isolate the nth coefficient we use inner products with Poincaré series.

Remark 1.15 The structure of the paper is as follows. In Sect. 2 we introduce
the generating functions (Dirichlet series) L(k)

ab (s,m, n) for the powers ofmod-
ular symbols. We also introduce Poincaré series and Eisenstein series twisted
by powers of modular symbols.
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In Sect. 3 we analyze Lab(s, 0, n) for �(s) > 1/2, and conclude with the
statement that Tab is equidistributed modulo 1.

In Sect. 4 we study Eisenstein series twisted by modular symbols, or rather
a related series D(k)

a (z, s). We prove the analytic continuation for �(s) > 1/2
and study the order of the poles and leading singularity at s = 1. The crucial
identity is Eq. (4.4) that allows us to understand D(k)

a (z, s) inductively using
the resolvent of the Laplace operator R(s).

In Sect. 5 we find explicit expressions for the functional equations of
D(k)
a (z, s) and E (k)

a (z, s), see Theorems 5.2 and 5.4.
In Sect. 6 we study the analytic properties of the derivatives L(k)

ab (s, 0, n)

for k ≥ 1. When k = 1 we find the residue at s = 1, and the whole singular
part when k = 2. Finally, we identify the order of the pole and the leading
singularity for all k.

In Sect. 7 we prove Theorems 1.9, 1.10, and 1.11 for general finite covolume
Fuchsian groups with cusps. We use the method of contour integration.

In Sect. 8 we specialize the general results to �0(q) for squarefree q. This
leads to the proofs of Theorems 1.4, 1.6, and 1.7.

Remark 1.16 In a recent preprint [27] the authors prove that, when c → ∞
through primes, the limiting behavior in Conjecture 1.1 holds. Their method
is different from ours.

2 Generating series for powers of modular symbols

From now on we allow � to be any cofinite Fuchsian group with cusps. All
implied constants in our estimates depend on� and f . In this sectionwe define
a generating series for modular symbols, and explain how it can be understood
in terms of derivatives of Eisenstein series with characters.

2.1 Modular symbols

The modular symbols defined by

〈γ, α〉 := 〈γ (∞)〉 = 2π i
∫ γ z0

z0
α

are independent of z0 ∈ H∗, and independent of the path between z0 and
γ z0. Fix a set of inequivalent cusps for �. For such a cusp a we fix a scaling
matrix σa, i.e. a real matrix of determinant 1 mapping ∞ to a, and satisfying
�a = σa�∞σ−1

a . Here �a is the stabilizer of a in �, and �∞ is the standard
parabolic subgroup. We have 〈γ, α〉 = 0 for γ parabolic since α is cuspidal.
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For any real number ε and every cuspidal real differential 1-form α we have
a family of unitary characters χε : � → S1 defined by

χε(γ ) = exp

(
2π iε

∫ γ z0

z0
α

)
.

Note that this character is the conjugate of the one we considered in [36]. We
also need the antiderivative of α. We define

Aa(z) = 2π i
∫ z

a
α.

We expand α at a cusp b. Let us assume that α = �( f (z)dz), where f (z) ∈
S2(�), and

j (σb, z)
−2 f (σbz) =

∑
n>0

ab(n)e(nz),

where j (γ, z) = cz + d. Then

σ ∗
b α =

∑
n>0

1

2

(
ab(n)e(nz)dz + ab(n)e(nz)dz̄

)

and

σ ∗
b α = d

(∑
n>0

1

2πn
�(ab(n)e(nz)

)
.

We consider the line integral

∫ σbz

b
α =

∫ z

i∞
σ ∗
b α =

∑
n>0

1

2πn
�(ab(n)e(nz)). (2.1)

By [25, Eq. (3.3), (3.5)] we have the uniform bound

Aa(z) �ε,α �(σ−1
a z)ε + �(σ−1

a z)−ε (2.2)

for z ∈ H. Consequently, we have the estimate

〈γ, α〉 = Aa(γ z) − Aa(z) � �(σ−1
a γ z)ε + �(σ−1

a γ z)−ε

+�(σ−1
a z)ε + �(σ−1

a z)−ε. (2.3)

Remark 2.1 If f (z) be a cusp form for �0(q) with real Fourier coefficients

at infinity, then f (z) = f (−z̄). Since π i
∫ r
i∞ f (z)dz = π i

∫ −r
i∞ f (z)dz it

follows that
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〈r〉± =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2π
∫ r

i∞
αi f , in the + case,

2π i
∫ r

i∞
α f , in the − case,

where αg = �(g(z)dz). Consequently, taking α = �( f (z)dz) covers both
cases of raw modular symbols.

2.2 The generating series

Let a, b be cusps and σa, σb fixed scaling matrices. Then we define

Tab =
{
a

c
mod 1,

(
a b
c d

)
∈ �∞\σ−1

a �σb/�∞ and c > 0

}
⊆ R/Z.

It is easy to see that a/c mod 1 is well-defined for the double coset containing
γ . Note also that γ∞ = a/c mod 1.

Proposition 2.2 Let r ∈ Tab. Then there exists a unique

(
a b
c d

)
∈ �∞\σ−1

a �σb/�∞

satisfying

r =
(
a b
c d

)
∞ mod 1.

Proof We imitate [24, p. 50]. Assume

γ =
(
a b
c d

)
and γ ′ =

(
a′ b′
c′ d ′

)

and r = γ∞, r ′ = γ ′∞. We may assume that 0 ≤ a < c and 0 ≤ a′ < c′.
The matrix γ ′′ = γ ′−1γ ∈ σ−1

b �σb has lower left entry −ac′ + a′c. If this is
zero then γ ′′ ∈ �∞ and r = r ′ mod 1. If not, then by [24, Eq. (2.30)] we have∣∣−ac′ + a′c

∣∣ ≥ cb, which implies that

∣∣−r + r ′∣∣ ≥ cb
cc′ > 0.

Therefore r �= r ′ and since 0 ≤ r, r ′ < 1 this implies that r �= r ′ mod 1. ��
From Proposition 2.2 we conclude the following result:
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Corollary 2.3 Any r ∈ Tab determines a unique number c(r) > 0 and unique
cosets a(r) mod c(r), and d(r) mod c(r) satisfying a(r)d(r) = 1 mod c(r)
and a(r)/c(r) = r mod 1.

From Corollary 2.3 it follows that there exists a unique pair (c(r), a(r)) such
that 0 ≤ a(r) < c(r) and a(r)/c(r) = r mod 1. We can therefore put an
ordering on the elements of Tab by putting the lexicographical ordering on the
(c(r), a(r)) i.e.

r ≤ r ′ if and only if c(r) < c(r ′) or c(r) = c(r ′) with a(r) ≤ a(r ′).

For r ∈ Tab we define r̄ mod 1 by r̄ = d(r)/c(r). For r ∈ Tab we define

〈r〉ab = 2π i
∫ σar

b
α.

We suppress α from the notation. We notice that if γ ∈ �∞\σ−1
a �σb/�∞

corresponds to r as in Proposition 2.2 we have

〈r〉ab = 2π i
∫ σaγ σ−1

b b

b
α =

〈
σaγ σ−1

b , α
〉
,

which we will also refer to as a modular symbol. The map r �→ 〈r〉ab does not
grow too fast in terms of c(r):

Proposition 2.4 The following estimate holds

〈r〉ab � c(r)ε + c(r)−ε.

Proof We use (2.3) with σaγ σ−1
b and a fixed z. Writing the lower row of γ as

(c(r), d(r)) we may assume that |d(r)| ≤ |c(r)|. Writing σ−1
b z = w, we use

the elementary inequalities

�(γw)ε ≤ |c(r)|−2ε�(w)−ε, �(γw)−ε ≤ 2ε|c(r)|2ε(�w/(|w|2 + 1))−ε,

from which the result follows. ��
We can now define the main generating series:

Definition 2.5 For �(s) > 1 we define

L(k)
ab (s,m, n) =

∑
r∈Tab

〈r〉kabe(mr + nr̄)

c(r)2s
.

123



Y. N. Petridis, M. S. Risager

By Proposition 2.4 and [24, Prop 2.8] we see that L(k)
ab (s,m, n) is absolutely

convergent for�(s) > 1, and uniformly convergent on compacta of�(s) > 1.
It is the analytic properties of this series that will eventually allow us to prove
our main results.

2.3 Relation to Eisenstein series

To explain how L(k)
ab (s,m, n) relates to Eisenstein series we recall that the

generalized Kloosterman sums are defined by

Sab(m, n, c, ε) =
∑

(
a b
c d

)
∈�∞\σ−1

a �σb/�∞

χε

(
σa

(
a b
c d

)
σ−1
b

)
e

(
ma + nd

c

)
.

For m, n ∈ Z we define

Lab(s,m, n, ε) =
∑
c>0

Sab(m, n, c, ε)

c2s
,

where the sum is over c for

(∗ ∗
c ∗

)
∈ σ−1

a �σb.This is a version of the Selberg–

Linnik zeta function.When ε = 0, that is when the character is trivial, we omit
it from the notation. Using [24, Prop. 2.8] we see that for �(s) > 1 this is an
absolutely converging Dirichlet series. Note that

d

dε
χε

(
σa

(
a b
c d

)
σ−1
b

)
|ε=0 =

〈
σaγ σ−1

b , α
〉
= 〈r〉ab,

where r and

(
a b
c d

)
are related as in Proposition 2.2. It therefore follows that

L(k)
ab (s,m, n) = ∂k

∂εk
Lab(s,m, n, ε)

∣∣∣
ε=0

. (2.4)

Proposition 2.6 For any cusps a, b and any m, n ∈ Z we have

L(k)
ab (s,m, n) = (−1)k L(k)

ab (s, −m, −n),

L(k)
ab (s,m, n) = (−1)k L(k)

ba (s, −n, −m).
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Proof This follows easily from (2.4), and the following basic properties of
Kloosterman sums: By inspection we see that

Sab(m, n, c, ε) = Sab(−m, −n, c, −ε).

Also, we have
Sab(m, n, c, ε) = Sba(−n, −m, c, −ε),

as seen by inverting γ in the definition of the Kloosterman sums. ��
Wenowrecover L(k)

ab (s, 0, n) asFourier coefficients ofEisenstein series twisted
by modular symbols. For m ∈ N ∪ {0} we define Poincaré series

Ea,m(z, s, ε) =
∑

γ∈�a\�
χε(γ )e(mσ−1

a γ z)�(σ−1
a γ z)s, �(s) > 1.

When m = 0, i.e. in the case of the usual Eisenstein series we will often
omit the subscript m. When we omit to specify ε in the notation, we have set
ε = 0. For m > 0 it is known that Ea,m(z, s, ε) ∈ L2(�\H) and that it admits
meromorphic continuation to s ∈ C, see [19, p. 247]. The usual Eisenstein
series has Fourier expansion at a cusp b given by (see e.g [44, p. 640–641])

Ea(σbz, s, ε) = δaby
s + φab(s, ε)y

1−s

+
∑
n �=0

φab(s, n, ε)
√
yKs−1/2(2π |n| y)e(nx), (2.5)

where

φab(s, ε) = π1/2�(s − 1/2)

�(s)

∑
c>0

Sab(0, 0, c, ε)

c2s
, (2.6)

φab(n, s, ε) = 2π s |n|s−1/2

�(s)

∑
c>0

Sab(0, n, c, ε)

c2s
. (2.7)

As usual δab = 1 if a = b and is 0 otherwise.
The derivatives of φab(s, ε) and φab(n, s, ε) in ε are given by

φ
(k)
ab (s) = π1/2�(s − 1/2)

�(s)
L(k)
ab (s, 0, 0), (2.8)

φ
(k)
ab (n, s) = 2π s |n|s−1/2

�(s)
L(k)
ab (s, 0, n). (2.9)

It follows that the series L(k)
ab (s, 0, n) can be understood by understanding

derivatives of Eisenstein series.
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We consider the kth derivative in ε of Ea(z, s, ε) at ε = 0, which we denote
by E (k)

a (z, s). It is easily seen that, when �(s) > 1, we have

E (k)
a (z, s) =

∑
γ∈�a\�

〈γ, α〉k �(σ−1
a γ z)s .

This series is absolutely and uniformly convergent on compact subsets of
�(s) > 1, as can be seen by (2.3) and using the standard region of absolute
convergence of the Eisenstein series Ea(z, s). We note that for k ∈ N

E (k)
a (σbz, s) = φ

(k)
ab (s)y1−s +

∑
n �=0

φ
(k)
ab (s, n)

√
yKs−1/2(2π |n| y)e(nx).

(2.10)
Here the Fourier expansion is computed by termwise differentiation of the
Fourier expansion of Ea(z, s, ε) at the cusp b, which is allowed. Hence, the
generating series L(k)

ab (s, 0, n) for the modular symbols appear as Fourier coef-

ficients of E (k)
a (z, s), see (2.8) and (2.9).

2.4 Automorphic Poincaré series with modular symbols

While the generating series for the modular symbols appear as Fourier coef-
ficients of E (k)

a (z, s), the series E (k)
a (z, s) are not automorphic when k > 0.

They are higher order modular forms. Properties of such forms has been stud-
ied extensively in many papers such as [2,4,6,7,10,11,22,45].

Since 2 〈γ, α〉 = 〈γ, f (z)dz〉 + 〈γ, f (z)dz〉, we see that our E (k)(z, s)
is indeed a linear combination of the Eisenstein series twisted by powers of
〈γ, f (z)dz〉 and 〈γ, f (z)dz〉 with m + n = k:

Em,n
a (z, s) =

∑
γ∈�a\�

〈γ, f (z)dz〉m 〈γ, f (z)dz〉n�(σ−1
a γ z)s . (2.11)

For background on Em,n
a (z, s) see Remark 1.14. For our purpose it is con-

venient to consider a related function, which has the advantage of also being
automorphic: Recall (2.1). Let m, k ∈ N ∪ {0}. For �(s) > 1 we define

D(k)
a,m(z, s) =

∑
γ∈�a\�

Aa(γ z)
ke(mσ−1

a γ z)�(σ−1
a γ z)s . (2.12)

Using (2.2), and by comparisonwith the standard Eisenstein series, we see that
the function D(k)

a,m(z, s) is absolutely and uniformly convergent on compact

subsets of�(s) > 1. It follows immediately that D(k)
a,m(z, s) is �-automorphic,

and holomorphic for s in this half-plane.
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We consider also

Da,m(z, s, ε) =
∑

γ∈�a\�
exp(εAa(γ z))e(mσ−1

a γ z)�(σ−1
a γ z)s, �(s) > 1,

so that D(k)
a,m(z, s) is the kth derivative in ε of Da,m(z, s, ε) at ε = 0. As usual

when m = 0 we omit it from the notation.
We now explain how E (k)

a,m(z, s) and D(k)
a,m(z, s) are related. We arrange

our Eisenstein and Poincaré series in column vectors indexed by the cusps as
follows:

Em(z, s, ε) = (Ea,m(z, s, ε))a, Dm(z, s, ε) = (Da,m(z, s, ε))a

and
E (k)
m (z, s) = (E (k)

a,m(z, s))a, D(k)
m (z, s) = (D(k)

a,m(z, s))a.

We define the diagonal matrix U (z, ε) with diagonal entries

Ua(z, ε) = exp(−εAa(z)),

so that
U (z, ε)Dm(z, s, ε) = Em(z, s, ε). (2.13)

Let A(z) be the diagonal matrix with diagonal entries the antiderivatives
2π i

∫ z
a α = Aa(z). It follows from (2.13) by differentiation at ε = 0 that for

�(s) > 1 we have the vector equations

D(k)
m (z, s) =

k∑
j=0

(
k

j

)
A(z) j E (k− j)

m (z, s), (2.14)

E (k)
m (z, s) =

k∑
j=0

(
k

j

)
(−A(z)) j D(k− j)

m (z, s). (2.15)

Hence, we can freely translate between D(k)
m (z, s) and E (k)

m (z, s).

3 The generating series Lab(s, 0, n)

In this section we discuss the analytic properties of Lab(s, 0, n) for �(s) >

1/2. In order to do so we first need some general bounds on Eisenstein series
and Poincaré series with modular symbols.
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3.1 Bounds on Eisenstein series

Wefirst discuss a construction of Eisenstein series of weight k for σ = �(s) >

1/2, generalizing the construction for weight 0 in [5, Section 2]. This approach
is useful to estimate Eisenstein series in the cusps for �(s) > 1/2.

For γ ∈ SL2(R) we define jγ (z) = (cz + d)/ |cz + d|. Let

�k = y2
(

∂2

∂x2
+ ∂2

∂y2

)
− iky

∂

∂x

be the Laplace operator of weight k and �̃k the closure of�k acting on smooth,
weight k functions such that f, �k f are square integrable.We fix a fundamen-
tal domain F of�, and notice that σ−1

a F is a fundamental domain for σ−1
a �σa.

However, the spectral analysis of the k-Laplacian remains the same, since the
manifold �\H is isometric to σ−1

a �σa\H. Recall the decomposition of F as
F(Y ) ∪a Fa(Y ) for Y sufficiently large, see [24, p. 40].

Lemma 3.1 Let k ∈ Z. Let h(y) be a smooth function that is identically 1
for y ≥ Y + 1 and identically 0 for y < Y + 1/2. Then for �(s) > 1/2 and
s(1− s) /∈ spec(−�̃k) there exists a unique function Ea(z, s, k) satisfying the
eigenvalue equation

(�k + s(1 − s))Ea(z, s, k) = 0,

and such that

jσa(z)
−k Ea(σaz, s, k) − h(y)ys ∈ L2(σ−1

a �σa\H, k). (3.1)

Moreover, the L2-norm in (3.1) is Ok((2σ − 1)−1).

Proof If such a solution exists we denote the left-hand side of (3.1) by
g(z, s, k). We apply �k + s(1 − s) to deduce

(�k + s(1 − s))g(z, s, k) = H(z, s),

where
H(z, s) = −(�k + s(1 − s))(h(y)ys) (3.2)

is a compactly supported function, is independent of k, and is holomorphic in
s.

We now define H(z, s) by (3.2), and apply to it the resolvent R(s, k) =
(�̃k + s(1 − s))−1 of �̃k , which is defined for �(s) > 1/2 with s(1 − s) /∈
spec(−�̃k). This produces a unique function g(z, s, k) ∈ L2(σ−1

a �σa\H, k).
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The standard inequality for the operator norm of the resolvent

‖R(s, k)‖ ≤ 1

dist(s(1 − s), spec(−�̃k))
≤ 1

|�(s(1 − s)| = 1

|t | (2σ − 1)
(3.3)

allows to estimate ‖g(z, s, k)‖L2 � (2σ − 1)−1. ��
Lemma 3.2 Let �(s) ∈ [1 + ε, A]. Then for cusps a, b we have

∑
I �=γ∈�a\�

�(σ−1
a γ σbz)

s = Oε,A(y1−σ ), y → ∞.

In particular

∑
I �=γ∈�a\�

�(σ−1
a γ z)s = Oε,A(1), for z ∈ F.

Proof We use
∣∣∣∣∣∣

∑
I �=γ∈�a\�

�(σ−1
a γ z)s

∣∣∣∣∣∣ ≤
∑

I �=γ∈�a\�
�(σ−1

a γ z)σ = Ea(z, σ ) − �(σ−1
a z)σ .

(3.4)
and the estimate [24, Corollary 3.5], which can be made uniform for �(s) ∈
[1 + ε, A], y ≥ Y0. We estimate the right-hand side of (3.4) on the compact
part F(Y ) of F and on the cuspidal zones

Fb(Y ) = σb{z; �(z) ∈ [0, 1], �(z) > Y },
see [24, p. 40]. For different cusps a and b, the matrix σ−1

a σb has nonzero c
bounded from below by c(a, b), see [24, Section 2.6]. We have�(σ−1

a σbz)σ ≤
yσ /(cy)2σ � y−σ . For a = b the terms yσ cancel. ��
As usual we define the Eisenstein series of weight k by

Ea(z, s, k) =
∑

γ∈�a\�
j
σ−1
a γ

(z)−k�(σ−1
a γ z)s, �(s) > 1.

Using Lemma 3.2 we see that

jσa(z)
−k Ea(σaz, s, k) = ys + O(1).

This equation and Lemma 3.1 show that Ea(z, s, k) agrees with the construc-
tion of Lemma 3.1. Therefore, the conclusions of Lemma 3.1 hold for the
Eisenstein series of weight k in the region�(s) > 1/2, s(1−s) /∈ spec(−�̃k).
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We can also estimate D(k)
a,m(z, s) defined in (2.12) using (2.2) and Lemma

3.2. We write

D(k)
a,m(σbz, s) = Ak

a(σbz)e(mσ−1
a σbz)�(σ−1

a σbz)
s + O(y1−σ+ε). (3.5)

If m > 0, and 1 + ε ≤ �(s) ≤ A we see that the contribution of the identity
term Aa(z)ke(mσ−1

a z)�(σ−1
a z)s decays exponentially at the cusp a i.e. �

exp(−(2π − ε)y) and is O(y−σ+ε) at the other cusps. When m = 0, k >

0 we notice that in the cuspidal zone for a, the expansion (2.1) shows that
Aa(σaz) decays exponentially. We can deduce that for all cusps b we have
D(k)
a (σbz, s) = O(y1−σ+ε). These estimates show that D(k)

a,m(z, s) is square
integrable uniformly in the strip 1 + ε ≤ �(s) ≤ A for m > 0 or k > 0.

Lemma 3.3 Let m ≥ 1, 1/2 + ε < �(s) < 1 + ε, 1 + 2ε < �(w) < A.
Moreover, assume that s(1 − s) /∈ spec(−�̃). Then the �-invariant functions

Ea(z, s)D
(k)
b,m(z, w̄)

belong to L1(�\H). In fact
∥∥∥∥Ea(z, s)D

(k)
b,m(z, w̄)

∥∥∥∥
L1

� 1,

where the implied constant depends only on k, �, ε, and A.

Proof We use the result from Lemma 3.1 and the notation in its proof. We
have ∫

F

∣∣∣(Ea(z, s) − h(�(σ−1
a z))�(σ−1

a z)s)D(k)
b,m(z, w̄)

∣∣∣ dμ(z)

≤ ∥∥g(σ−1
a z, s)

∥∥
L2

∥∥∥D(k)
b,m(z, w̄)

∥∥∥
L2

� 1.

We need to analyze also
∫
F

∣∣∣h(�(σ−1
a z))�(σ−1

a z)s D(k)
b,m(z, w̄)

∣∣∣ dμ(z).

It suffices to concentrate on the cuspidal sector for a, since h(�(σ−1
a z)) van-

ishes elsewhere. We have∫
Fa(Y )

∣∣∣h(�(σ−1
a z))�(σ−1

a z)s D(k)
b,m(z, w̄)

∣∣∣ dμ(z)

=
∫ ∞

Y

∫ 1

0

∣∣∣h(y)ys D(k)
b,m(σaz, w̄)

∣∣∣ dμ.
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We use (3.5). When b = a, we see that

h(y)ys Ak
b(σaz)e(mσ−1

b σaz)�(σ−1
b σaz)

w̄

decays exponentially, otherwise it is bounded by h(y)yσ−�(w)+ε. We easily
see that

∫∞
Y h(y)yσ y1−�(w)+εdμ(z) is bounded. ��

3.2 Meromorphic continuation and bounds on Lab(s, 0, n)

It is well known that the inner product of an automorphic function G and
Eb,n(z, s, ε) is directly related to the nth Fourier coefficient of G at the cusp
b. We first use this to find an integral expression for Lab(s, 0, n) for n > 0.

Lemma 3.4 Let n > 0 and �(s), �(w) > 1. The Dirichlet series
Lab(s, 0, n, ε) has the integral representation

Lab(s, 0, n, ε) = (4πn)w−1/2

2π s+1/2ns−1/2

�(w)�(s)

�(w + s − 1)�(w − s)

×
∫

�\H
Ea(z, s, ε)Eb,n(z, w, ε)dμ(z).

Proof We unfold and, using (2.5), we find

∫
�\H

Ea(z, s, ε)Eb,n(z, w, ε)dμ(z)

=
∫ ∞

0

∫ 1

0
Ea(σbz, s, ε)e(−nz̄)yw−2dxdy

= φab(n, s, ε)
∫ ∞

0

√
yKs−1/2(2πny)e

−2πny yw−2dy

= φab(n, s, ε)

(2πn)w−1/2

√
π

1

2w−1/2

�(w + s − 1)�(w − s)

�(w)
,

where we have used [18, 6.621.3, p. 700]. The result follows from the above
computations and (2.7). ��

We can now use the integral expression in Lemma 3.4 to find the analytic
properties of Lab(s, 0, n).

Lemma 3.5 For any cusps a, b, and n ∈ Z the Dirichlet series

Lab(s, 0, n) =
∑
c>0

Sab(s, 0, n)

c2s

123



Y. N. Petridis, M. S. Risager

admits meromorphic continuation to s ∈ C. For n �= 0 the continuation is
holomorphic at s = 1, while for n = 0 the continuation has a simple pole with
residue

ress=1Lab(s, 0, 0) = 1

πvol(�\H)
.

For 1/2 + ε < �(s) < 1 + ε, and s(1 − s) bounded away from spec(−�̃),
the following estimate holds:

Lab(s, 0, n) �ε (1 + |n|)1−�(s)+ε |s|1/2 .

Proof It is well known that the Fourier coefficients of Ea(z, s) admitmeromor-
phic continuation to s ∈ C and the meromorphic continuation of the functions
Lab(s, 0, n) follows from (2.6) and (2.7).
To analyze furtherwhen�(s) > 1/2,we use Lemma 3.4when n �= 0.Using

Proposition 2.6we see that it suffices to consider n > 0.We letw = 1+2ε+i t ,
where t = �(s).With this choice ofw Stirling’s formula gives that the quotient
ofGamma factors isO(|s|1/2). The claimabout growthonvertical lines follows
from Lemma 3.3. For n > 0 the residue at s = 1 has

〈
1, Eb,n(z, w̄, 0)

〉
as a

factor. But this vanishes by unfolding.
For n = 0 we examine (2.6). Using the well-known fact that φab(s) has a

pole of order 1 at s = 1 with residue 1/vol(�\H), the claim for the residue
of Lab(s, 0, 0) follows. For the growth on vertical lines, we observe that
|φab(s)| = O(1) in the region �(s) ≥ 1/2 + ε, and away from the spec-
trum of �, see [44, Eq. (8.5)–(8.6), p. 655]. The result follows from Stirling’s
formula. ��

Remark 3.6 The analytic properties of Lab(s,m, n, ε) for mn �= 0 have been
studied in [19].

Remark 3.7 If � is the full modular group and a = b = ∞ with trivial scaling
matrices then Tab = Q/Z so that in this case

Lab(s, 0, 0) =
∞∑
c=1

φ(c)

c2s
= ζ(2s − 1)

ζ(2s)
,

Lab(s, 0, n) =
∞∑
c=1

S(0, n, c)

c2s
= σ2s−1(|n|)

|n|2s−1

1

ζ(2s)
.

Here S(0, n, c) is the standard Ramanujan sum. We notice that in this case the
bound in Lemma 3.5 on Lab(s, 0, n) for n ∈ Z is far from optimal.
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3.3 Equidistribution of Tab

We can use Lemma 3.5 to observe that Tab is equidistributed modulo 1. The
generating series of e(nr) for r ∈ Tab is Lab(s, n, 0). Proposition 2.6 allows
us to understand its behavior through Lba(s, 0, − n). We define

Tab(M) = {r ∈ Tab, c(r) ≤ M}.

Using contour integration and the polynomial estimates on vertical lines for
Lba(s, 0, − n) in Lemma 3.5 we deduce that, for some δ > 0 depending on
the spectral gap for �,

∑
r∈Tab(M)

e(nr) = δ0(n)
1

πvol(�\H)
M2 + O((1 + |n|)1/2M2−δ). (3.6)

These are the Weyl sums for the sequence Tab. As usual δm(n) = 1 if n = m
and is 0 otherwise and similarly for a set A, δA(n) = 1 if n ∈ A and is 0
otherwise. Good studied the asymptotics of such Weyl sums in [17].

To state our results we need to introduce norms on L1-functions on R/Z:
For A ≥ 0 let

‖h‖H A =
∑
n

∣∣∣ĥ(n)

∣∣∣ (1 + |n|)A, (3.7)

where ĥ(n) denotes the nth Fourier coefficient of h.We then have the following
result:

Theorem 3.8 The sequence Tab is equidistributed modulo 1, i.e. for any con-
tinuous function h : R/Z → C we have

∑
r∈Tab(M)

h(r)

#Tab(M)
→

∫
R/Z

h(r) dr, M → ∞.

If, moreover, ‖h‖H1/2 < ∞, then

∑
r∈Tab(M)

h(r) =
∫
R/Z

h(r) dr
M2

πvol(�\H)
+ O(‖h‖H1/2 M2−δ).

Proof The first claim follows from Weyl’s equidistribution criterion. For the
second we write the Fourier series of h, which is absolutely convergent, and
interchange the summation over n and over r ∈ Tab(M). We have
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∑
r∈Tab(M)

h(r) =
∑
n∈Z

ĥ(n)
∑

r∈Tab(M)

e(nr)

=
∑
n∈Z

ĥ(n)

(
δ0(n)

1

πvol(�\H)
M2 + O((1 + |n|)1/2M2−δ)

)
.

��
Remark 3.9 In Theorem 3.8 the Sobolev norm ‖h‖H1/2 can be replaced by
‖h‖H ε for any 0 < ε < 1/2, at the expense of a worse exponent δ = δ(ε).
This can be done by making the appropriate changes in the contour integration
argument leading to (3.6). Note that if we do so the exponent depends both on
the spectral gap and on ε.

Remark 3.10 Usually equidistribution modulo 1 of a sequence {xn}∞n=1 is
stated as

1

N

N∑
n=1

h(xn) →
∫
R/Z

h(r)dr, N → ∞.

In Theorem 3.8 we are only looking at a subsequence of the left-hand side,
namely only N equal to #Tab(M) for some M . It is possible to consider the
whole sequence by noticing that it follows from (3.6) that

∑
r∈Tab
c(r)=c

1 = Sab(0, 0, c) � c2−δ.

This improves on the trivial bound in [24, (2.37)].

4 Eisenstein series with modular symbols

In this section we analyze further the series D(k)
a,m(z, s) defined in (2.12), when

m = 0. We will omit m from the notation and simply write D(k)
a (z, s). We

will show that this function admits meromorphic continuation and prove L2-
bounds for it. Let

〈 f1dz + f2dz, g1dz + g2dz〉 = 2y2( f1g1 + f2g2),

δ(pdx + qdy) = −y2(px + qy).

Define

L(1)h = −4π i 〈dh, α〉 , (4.1)

L(2)h = −8π2 〈α, α〉 h. (4.2)
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Remark 4.1 These definitions are motivated by perturbation theory. Even if
we are not using perturbation theory directly, as in our previous work [36,39],
it is useful to have the following in mind.

Let α be a closed smooth 1-form rapidly decaying at the cusps but not
necessarily harmonic. We define unitary operators

Ua(ε) : L2(�\H) → L2(�\H, χ(·, ε))
f �→ exp

(
−2π iε

∫ z

a
α

)
f (z) = Ua(z, ε) f (z).

We also define
L(ε) = U−1

a (ε)L̃(ε)Ua(ε),

where the automorphic Laplacian L̃(ε) is the closure of the operator � acting
on smooth functions f with f, � f ∈ L2(�\H, χ(·, ε)). This ensures that L(ε)

acts on the fixed space L2(�\H). It is then straightforward to verify that

L(ε)h = �h − 4π iε 〈dh, α〉 + 2π iεδ(α)h − 4π2ε2 〈α, α〉 h.

We notice that L(ε) does not depend on the cusp a. We observe that δ(α) = 0,
if α is harmonic. From now on we assume α to be harmonic. We remark that
L(ε) as a function of ε is a polynomial of degree 2, and that L(1) and L(2)

defined in (4.1) and (4.2) are the first and second derivative of L(ε) at ε = 0.
The eigenvalue equation for Ea(z, s, ε) and (2.13) imply that

(L(ε) + s(1 − s))Da(z, s, ε) = 0.

A formal differentiation of this eigenvalue equation leads to the formula in
Lemma 4.2 below. This lemma is the main ingredient in understanding the
meromorphic continuation of D(k)

a (z, s):

Lemma 4.2 The function D(k)
a (z, s) satisfies the relation

(� + s(1 − s))D(k)
a (z, s) = −

(
k

1

)
L(1)D(k−1)

a (z, s) −
(
k

2

)
L(2)D(k−2)

a (z, s),

when k ≥ 1, where the last term should be omitted for k = 1.

Proof Since α = �( f (z)dz) we get

∂z Aa(z) = π i f (z), ∂z̄ Aa(z) = π i f (z) (4.3)
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so that d Aa(z) = 2π iα. Using the product rule we have that

(� + s(1 − s))Aa(z)
k�(σ−1

a z)s

=
(

−(z − z̄)2
∂2

∂z∂ z̄
+ s(1 − s)

)
Aa(z)

k�(σ−1
a z)s

= −(z − z̄)2
(
f (z) f (z)(π i)2k(k − 1)Aa(z)

k−2
)

�(σ−1
a z)s

− (z − z̄)2
(
kπ i f (z)Aa(z)

k−1 ∂

∂ z̄
�(σ−1

a z)s
)

− (z − z̄)2
(
kπ i f (z)Aa(z)

k−1 ∂

∂z
�(σ−1

a z)s
)

,

where we have used that (� + s(1− s))�(σ−1
a z)s = 0. We recognize the first

term as

−4π2k(k − 1) 〈α, α〉 Aa(z)
k−2�(σ−1

a z)s =
(
k

2

)
L(2)Aa(z)

k−2�(σ−1
a z)s .

The other two terms give

4π ik Aa(z)
k−1 〈d�(σ−1

a z)s, α
〉

= 4π ik
(〈
d
(
Aa(z)

k−1�(σ−1
a z)s

)
, α
〉
−
〈
d Aa(z)

k−1, α
〉
�(σ−1

a z)s
)

= 4π ik
(〈
d
(
Aa(z)

k−1�(σ−1
a z)s

)
, α
〉

−(k − 1)Aa(z)
k−22π i 〈α, α〉 �(σ−1

a z)s
)

= 4π ik
〈
d
(
Aa(z)

k−1�(σ−1
a z)s

)
, α
〉
− 2

(
k

2

)
L(2)Aa(z)

k−2�(σ−1
a z)s .

This proves that

(� + s(1 − s))Aa(z)
k�(σ−1

a z)s

=
(
k

1

)
4π i

〈
d
(
Aa(z)

k−1�(σ−1
a z)s

)
, α
〉
−
(
k

2

)
L(2)Aa(z)

k−2�(σ−1
a z)s .

Nowwe automorphize this equation over γ ∈ �a\�, and use that�Tγ = Tγ �.
We notice that for any two differential forms ω1, ω2 we have for the action of
� on functions

Tγ 〈ω1, ω2〉 = 〈
γ ∗ω1, γ

∗ω2
〉
.

Using that α is invariant under �, we arrive at the result. ��
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From Lemma 4.2 we find that, if L(1)D(k−1)
a (z, s) and L(2)D(k−2)

a (z, s) are
square integrable, then

D(k)
a (z, s) = −R(s)

((
k

1

)
L(1)D(k−1)

a (z, s) +
(
k

2

)
L(2)D(k−2)

a (z, s)

)
,

(4.4)
where R(s) is the resolvent of �̃. We recall that

R(s) = (�̃ + s(1 − s))−1 : L2(�\H) → L2(�\H)

is a bounded operator on L2(�\H, dμ(z)) satisfying (3.3) and

R(s) = − P0
(s − 1)

+ R0(s), (4.5)

where P0 is the projection to the eigenspace of �̃ for the eigenvalue 0, and
R0(s) is holomorphic in a neighborhood of s = 1.
Before we can prove the meromorphic continuation of D(k)

a (z, s) we need
a small technical lemma about Eisenstein series:

Lemma 4.3 For 1/2 + ε ≤ �(s) ≤ 2 the function L(1)Ea(z, s) is square
integrable over �\H. More precisely we have

∥∥∥L(1)Ea(z, s)
∥∥∥
L2

� |s| .

Proof We have

dh = 1

2iy
((K0h) dz − (L0h) dz̄) ,

where

K0 = (z − z̄)
∂

∂z
, L0 = K̄0 = (z̄ − z)

∂

∂ z̄
(4.6)

are the raising and lowering operators as in [13, Eq. (3)]. It follows that

L(1)h = −2πy( f (z)K0h − f (z)L0h). (4.7)

Applying thiswithh = Ea(z, s)wesee that it suffices to study y f (z)K0Ea(z, s)
and y f (z)L0Ea(z, s). We analyze the first and notice that the analysis of the
latter is similar. We have K0Ea(z, s) = sEa(z, s, 2), where Ea(z, s, 2) is the
Eisenstein series of weight 2, see [42, Eq. (10.8), (10.9)]. Using that f decays
exponentially at all cusps the claim now follows easily from Lemma 3.1. ��

We are now ready to prove the meromorphic continuation of D(k)
a (z, s).
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Theorem 4.4 Let k > 0. The function D(k)
a (z, s) admits meromorphic contin-

uation to �(s) ≥ 1/2+ ε. For 1/2+ ε ≤ �(s) ≤ 2 and s(1− s) /∈ spec(−�̃)

the functions D(k)
a (z, s) and L(1)D(k)

a (z, s) are smooth and square integrable.
Moreover, we have

∥∥∥D(k)
a (z, s)

∥∥∥
L2

�k, f,ε 1,∥∥∥L(1)D(k)
a (z, s)

∥∥∥
L2

�k, f,ε |s| .

Proof We use induction on k. For k = 1 Lemma 4.3, Eq. (4.4), and the map-
ping properties of the resolvent imply that D(1)

a (z, s) = −R(s)L(1)Ea(z, s)
is meromorphic when �(s) ≥ 1/2 + ε and, using (3.3), we easily prove the

bound
∥∥∥D(1)

a (z, s)
∥∥∥
L2

� 1. Recall that for a twice differentiable function

h ∈ L2(�\H) with �h ∈ L2(�\H) we have K0h, L0h ∈ L2(�\H) and

‖K0h‖2L2 = ‖L0h‖2L2 = 〈h, −�h〉L2 , (4.8)

see [41, Satz 3.1]. Since L(1)Ea(z, s) is in C∞(�\H), we use Lemma 4.2
for k = 1 and elliptic regularity to conclude that D(1)

a (z, s) ∈ C∞(�\H).
By (4.7) the function L(1)D(1)

a (z, s) is smooth as well. Using Lemma 4.2 for
k = 1 again we deduce that �D(1)

a (z, s) ∈ L2(�\H). We find from (4.7) and

the estimate ‖y f (z)‖∞ � 1 that it suffices to estimate
∥∥∥K0D

(1)
a (z, s)

∥∥∥
L2

and∥∥∥L0D
(1)
a (z, s)

∥∥∥
L2
. We use (4.8) and Lemma 4.2 to conclude

∥∥∥L(1)D(1)
a (z, s)

∥∥∥2
L2

� f

∣∣∣
〈
D(1)
a (z, s), s(1 − s)D(1)

a (z, s) + L(1)Ea(z, s)
〉
L2

∣∣∣
� |s|2 ,

where we have used Cauchy–Schwarz and Lemma 4.3. This proves the case
k = 1.

Assume now that the claim has been proved for every l < k. Then for
�(s) ≥ 1/2 + ε the function

(k
1

)
L(1)D(k−1)

a (z, s) + (k
2

)
L(2)D(k−2)

a (z, s) is
meromorphic, smooth, and square integrable. Hence, by (4.4), the mapping
properties of the resolvent, and (3.3),wefind that D(k)

a (z, s) is square integrable
and satisfies the bound

∥∥∥D(k)
a (z, s)

∥∥∥
L2

� 1

|t |(|s| + 1) � 1.
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By elliptic regularity and Lemma 4.2 it follows that D(k)
a (z, s) ∈ C∞(�\H).

Therefore, the function L(1)D(k)
a (z, s) is also smooth. We now use (4.7), (4.8),

and Lemma 4.2 to see that
∥∥∥L(1)D(k)

a (z, s)
∥∥∥2
L2

� f

∥∥∥K0D
(k)
a (z, s)

∥∥∥2
L2

+
∥∥∥L0D

(k)
a (z, s)

∥∥∥2
L2

�
∣∣∣
〈
D(k)
a (z, s), �D(k)

a (z, s)
〉
L2

∣∣∣ �
∥∥∥�D(k)

a (z, s)
∥∥∥
L2

=
∥∥∥∥−s(1 − s)D(k)

a (z, s)−
(
k

1

)
L(1)D(k−1)

a (z, s)−
(
k

2

)
L(2)D(k−2)

a (z, s)

∥∥∥∥
L2

� |s|2 . (4.9)

This completes the inductive step. ��
Lemma 4.3 and Theorem 4.4 validate the conditions for (4.4), so we can now
conclude the following fundamental recurrence relation for D(k)

a (z, s).

Corollary 4.5 For �(s) > 1/2 the following identity holds

D(k)
a (z, s) = −R(s)

((
k

1

)
L(1)D(k−1)

a (z, s) +
(
k

2

)
L(2)D(k−2)

a (z, s)

)
,

when k ≥ 1, where the last term should be omitted for k = 1.

Proposition 4.6 For all k ≥ 0 and �(s) > 1/2 we have

〈
1, L(1)D(k)

a (z, s)
〉
L2

= 0.

Proof Applying Stokes’ theorem, as in e.g. [36, p. 1026], we find that L(1) is
a self-adjoint operator. Alternatively, we notice that L(1) is the infinitesimal
variation of the family of self-adjoint operators L(ε) given in Remark 4.1.
Therefore, for k ≥ 1 we have

〈
1, L(1)D(k)

a (z, s)
〉
L2

=
〈
L(1)1, D(k)

a (z, s)
〉
L2

= 0,

since L(1) is a differentiation operator, see (4.1). The case k = 0 involves
Ea(z, s), which is not square integrable. This is easily compensated by the
fact that α is cuspidal. ��

From Corollary 4.5 it is evident that D(k)
a (z, s) has singularities at the spec-

trum of �. We now describe the nature of the pole at s = 1.

Proposition 4.7 The functions L(1)Ea(z, s) and D(1)
a (z, s) are regular at s =

1.
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Proof We have
D(1)
a (z, s) = −R(s)L(1)D(0)

a (z, s).

We note that L(1)D(0)
a (z, s) is regular since D(0)

a (z, s) = Ea(z, s) has a con-
stant residue and L(1) is a differentiation operator. It then follows from (4.5)
that D(1)

a (z, s) can have atmost a simple pole at s = 1.By (4.5) andProposition
4.6 we see

ress=1D
(1)
a (z, s) =

〈
1, L(1)Ea(z, s)

〉
L2

∣∣∣
s=1

vol(�\H)−1 = 0.

It follows that D(1)
a (z, s) is regular at s = 1. ��

Theorem 4.8 Let ‖ f ‖ denote the Petersson norm of f . If k is even, then
D(k)
a (z, s) has a pole at s = 1 of order 1 + k/2. The leading term in the

corresponding expansion around s = 1, that is, the coefficient of (s−1)−k/2−1

is the constant
(−8π2)k/2 ‖ f ‖k
vol(�\H)k/2+1

k!
2k/2

.

If k is odd, then D(k)
a (z, s) has a pole at s = 1 of order at most (k − 1)/2.

Proof The case k = 0 simply describes the well-known pole and residue of
the standard Eisenstein series. For k = 1 the result is Proposition 4.7.

To run an inductive argumentwe assume that the claimhas been proved up to
some k odd. Then k+1 is even andwe see from (4.5) that−R(s)L(1)D(k)

a (z, s)
can have at most a pole of order (k − 1)/2+ 1. The leading term comes from

〈
1, L(1)D(k)

a (z, s)
〉
L2

,

which is zero by Proposition 4.6. So −R(s)L(1)D(k)
a (z, s) has pole of order at

most (k − 1)/2.
On the other hand by inductive hypothesis −R(s)L(2)D(k−1)

a (z, s) has a
pole or order 1 + (k − 1)/2 + 1 = 1 + (k + 1)/2 with leading coefficient

〈
1, L(2) (−8π2)(k−1)/2 ‖ f ‖(k−1)

vol(�\H)(k−1)/2+1

(k − 1)!
2(k−1)/2

〉
1

vol(�\H)
.

Here we have again used (4.5).
It follows from Corollary 4.5 that D(k+1)

a (z, s) has a pole of order 1+ (k +
1)/2 with leading coefficient

(
k + 1

2

)〈
1, L(2) (−8π2)(k−1)/2 ‖ f ‖(k−1)

vol(�\H)(k−1)/2+1

(k − 1)!
2(k−1)/2

〉
1

vol(�\H)
. (4.10)

123



Arithmetic statistics of modular symbols

We observe that
〈
1, L(2)1

〉
L2 = −8π2 ‖ f ‖2. The order of the pole and leading

singularity of D(k+1)
a (z, s) agrees with the claim of the theorem.

We now prove that D(k+2)
a (z, s) has at most a pole of order (k+1)/2.We use

Corollary 4.5 for k+2. Since L(1) annihilates the leading term in D(k+1)
a (z, s),

as it is a constant, see (4.10), the function

−R(s)L(1)D(k+1)
a (z, s)

can have at most a pole of order (k + 1)/2 + 1. This order of singularity at

s = 1 is attained only if
〈
1, L(1)D(k+1)

a (z, s)
〉
is not identically zero. But it

is indeed identically zero by Proposition 4.6. Hence, −R(s)L(1)D(k+1)
a (z, s)

has at most a pole of order (k + 1)/2. By (4.5) and the inductive hypothesis
on D(k)

a (z, s) it is straightforward that −R(s)L(2)D(k)
a (z, s) has at most a pole

of order (k + 1)/2. This concludes the inductive step. ��

5 Functional equations

Selberg’s theory of Eisenstein series [24, p. 84–94] gives that E(z, s) satisfies
the functional equation

E(z, s) = �(s)E(z, 1 − s),

where the scattering matrix �(s) = (φab(s)) is determined by (2.5). Recall
also that

�(s)�(1 − s) = I.

In this section we show that D(k)(z, s) and E (k)(z, s) have analogous proper-
ties.

Recall the weighted L2-spaces in [33, p. 573].We choose a smooth function
ρ : �\H → R with ρ(z) = 1 for z ∈ F(Y ) and ρ(z) = �(σ−1

a z) for
z ∈ Fa(Y + 1). For δ ∈ R we define

L2
δ(�\H) = { f : �\H → C;

∫
�\H

| f (z)|2 e2δρ(z)dμ(z) < ∞}.

The resolvent of the Laplace operator R(s) = (�̃ + s(1 − s))−1 defined on
L2(�\H) for �(s) > 1/2 and s(1 − s) /∈ spec(−�̃) admits meromorphic
continuation toC if we restrict the domain to a smaller function space. Müller
in [33, Theorem 1] showed that

R(s) : L2
δ(�\H) → L2−δ(�\H) (5.1)
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can be defined as a bounded operator on weighted L2-spaces for s away from
its poles. This is achieved by first continuing meromorphically the resolvent
kernel (automorphic Green’s function) r(z, z′, s) to C. The analytic continu-
ation of the resolvent kernel r(z, z′, s) to C satisfies the limiting absorption
principle:

r(z, z′, s) − r(z, z′, 1 − s) = 1

1 − 2s

∑
a

Ea(z, s)Ea(z
′, 1 − s)

= 1

1 − 2s
E(z, s)t · E(z′, 1 − s)

= 1

1 − 2s
E(z, 1 − s)t · E(z′, s), (5.2)

see [28, p. 352].
We choose 0 < δ < 2π so that eδρ(z)y| f (z)| is decaying exponentially at

the cusps.

Lemma 5.1 Let k ≥ 0. The function D(k)
a (z, s) admits meromorphic continu-

ation to C. Moreover, we have

(i) D(k)
a (z, s) ∈ C∞(�\H),

(ii) D(k)
a (z, s) ∈ L2−δ(�\H),

(iii) K0D
(k)
a (z, s), L0D

(k)
a (z, s) ∈ L2−δ(�\H), and

(iv) L(1)D(k)
a (z, s) ∈ L2

δ(�\H).

Proof The Eisenstein series twisted by modular symbols Em,n
a (σbz, s) in

(2.11) has Fourier expansion

Em,n
a (σbz, s) = δ

m,n
0,0 δaby

s + φ
m,n
ab (s)y1−s +

∑
k �=0

φ
m,n
ab (k, s)Ws(kz),

with
Ws(kz) = 2

√|k| yKs−1/2(2π |k| y)e(kx),
see Jorgenson and O’Sullivan [25, Eq. (2.4)]. Here δ0,0(m, n) = 1 ifm = m =
0 and is 0 otherwise. We quote their work [25, Thm 2.2] for the meromorphic
continuation of the series Em,n

a (z, s) for s ∈ C. Since E (k)
a (z, s) is a linear

combination of Em,n
a (z, s) form+n = k, it admits meromorphic continuation

to C. The function D(k)
a (z, s) is related to the E (k− j)

a (z, s) for j ≤ k through
(2.14). Therefore, D(k)

a (z, s) admits meromorphic continuation to C as well.
Furthermore, we need bounds for the Fourier coefficients of Em,n

a (z, s) for
all cusps. Jorgenson and O’Sullivan [25, Thm 2.3] proved the following: for s
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in a compact set S, there exists a holomorphic function ξm,n(s) such that for
all k �= 0 we have

ξm,n(s)φm,n
ab (k, s) � (logm+n |k| + 1)(|k|σ + |k|1−σ ). (5.3)

It is easy to see that the derivatives ofWs(y) decay exponentially in y: we can
use the integral representation of the K -Bessel function [18, 8.432.1, p. 917]
to see that

∣∣∣∣ d
a

dya
Ks(y)

∣∣∣∣ ≤ e−y/2
∫ ∞

0
e−2 cosh v(cosh v)a cosh(σv)dv, y > 4,

or, alternatively, use repeatedly [18, 8.486.11, p. 929]. Combining with (5.3)
we see that, for every a, b ∈ N ∪ {0}, the function Em,n

a (z, s) is smooth and

∂a+b

∂xa∂yb
Em,n
a (σbz, s) �a,b,S ymax(σ,1−σ).

Since E (k)
a (z, s) is a linear combination of Em,n

a (z, s) for m + n = k, its
derivatives satisfy the same upper bounds. By (2.14) the functions D(k)

a (z, s)
are also smooth. This proves claim (i).

For the claims (ii), (iii) we need also to control the derivatives ∂a+b/∂za∂ z̄b

of Aa(σbz) j . For a + b = 0, we use (2.2). For a + b ≥ 1 we have exponential
decay by (4.3). We conclude that

∂a+b

∂xa∂yb
D(k)
a (σbz, s) �a,b,k,S ymax(σ,1−σ)+ε.

The claim (ii) follows by taking a = b = 0, and the claim (iii) by noticing that
K0 and L0 in (4.6) are expressed in terms of ∂/∂x and ∂/∂y. Finally, claim
(iv) follows from (4.7) using the cuspidality of f (z) at all cusps. ��

5.1 Functional equation for D(k)
a (z, s)

Theorem 5.2 The meromorphic continuation of the vector-valued automor-
phic function D(k)(z, s) satisfies the functional equation

D(k)(z, s) =
k∑
j=0

(
k

j

)
�( j)(s)D(k− j)(z, 1 − s)
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with �( j)(s) meromorphic matrices given by

�
(k)
ab (s) = 1

2s − 1

∫
�\H

Eb(z, s)

×
((

k

1

)
L(1)D(k−1)

a (z, s) +
(
k

2

)
L(2)D(k−2)

a (z, s)

)
dμ(z),

(5.4)

if k > 0 and �(0)(s) = �(s) is the standard scattering matrix.

Proof For notational purposes we define D(−1)(z, s) to be 0. Using Corollary
4.5 we get

D(k)(z, s) = −R(s)

((
k

1

)
L(1)D(k−1)(z, s) +

(
k

2

)
L(2)D(k−2)(z, s)

)
,

(5.5)

for k ≥ 1, and �(s) > 1/2. We can extend the validity of this equation to
C, since the resolvent is applied to a function belonging to L2

δ(�\H), which

follows from Lemma 5.1. Furthermore we see that D(k)
a (z, s) is holomorphic

outside the poles of R(s).
The proof of (5.4) is a relatively obvious generalization of [39, Prop. 3.1].

To justify the arguments belowwe quote Lemma 5.1.We proceed by induction.
For k = 0 the claim of the theorem is the standard functional equation for the
vector of Eisenstein series.

Assume the result for m < k. We define the matrix �(k)(s) indexed by the
cusps by (5.4). Then

D(k)(z, s) = − R(s)

((
k

1

)
L(1)D(k−1)(z, s) +

(
k

2

)
L(2)D(k−2)(z, s)

)

= − R(1 − s)

((
k

1

)
L(1)D(k−1)(z, s) +

(
k

2

)
L(2)D(k−2)(z, s)

)

+ 1

2s − 1

(∫
�\H

Eb(·, s)
((

k

1

)
L(1)D(k−1)

a (·, s)

+
(
k

2

)
L(2)D(k−2)

a (·, s)
)
dμ

)
ab

× E(z, 1 − s)

= − R(1 − s)

((
k

1

)
L(1)D(k−1)(z, s) +

(
k

2

)
L(2)D(k−2)(z, s)

)

+ �(k)(s)E(z, 1 − s),
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where we have used (5.2) and (5.5). For the first term above we now use the
inductive hypothesis and finally (5.5) to see that it equals

− R(1 − s)

((
k

1

)
L(1)

k−1∑
l=0

(
k − 1

l

)
�(l)(s)D(k−1−l)(z, 1 − s)

+
(
k

2

)
L(2)

k−2∑
l=0

(
k − 2

l

)
�(l)(s)D(k−2−l)(z, 1 − s)

)

=
k−1∑
l=0

(
k

l

)
�(l)(s)

(
−R(1 − s)

((
k − l

1

)
L(1)D(k−1−l)(·, 1 − s)

+
(
k − l

2

)
L(2)D(k−2−l)(·, 1 − s)

))

=
k−1∑
l=0

(
k

l

)
�(l)(s)D(k−l)(z, 1 − s).

This completes the inductive step. ��
Selberg proved [44, Eq. (8.5)–(8.6), p. 655] that for �(s) > 1/2 with s(1− s)
bounded away from the spectrum the function �ab(s) is bounded. We now
show how this generalizes to �

(k)
ab (s).

Lemma 5.3 Fix k ∈ N. For 1/2+ ε ≤ �(s) ≤ 2 with s(1− s) bounded away
from spec(−�̃) the function �

(k)
ab (s) is bounded, i.e.

�
(k)
ab (s) �k 1.

Proof Considering (5.4) it suffices to show that for every k we have

∫
�\H

Eb(z, s)L
(1)D(k)

a (z, s)dμ(z) � |s| , (5.6)

∫
�\H

Eb(z, s)L
(2)D(k)

a (z, s)dμ(z) � 1. (5.7)

For (5.6) we use Stokes’ theorem, as in the proof of Proposition 4.6, and bound

∫
�\H

L(1)(Eb(z, s))D
(k)
a (z, s)dμ(z).

By Theorem 4.4, Lemma 4.3, and Cauchy–Schwarz this is bounded by a con-
stant times |s|.
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For (5.7) we note that we can move L(2) in front of Eb(z, s), since L(2)

is a multiplication operator. Since
∥∥L(2)Eb(z, s)

∥∥ � 1 by Lemma 3.1,

and
∥∥∥D(k)

b (z, s)
∥∥∥ � 1, see Theorem 4.4, the result follows using Cauchy–

Schwarz. ��

5.2 Functional equation for E(k)
a (z, s)

Let k be a natural number. Using (2.15) and (2.14) we can find the functional
equation for E (k)(z, s) as follows:

E (k)(z, s) =
k∑
j=0

(
k

j

)
(−A(z)) j D(k− j)(z, s)

=
k∑
j=0

(
k

j

)
(−A(z)) j

k− j∑
h=0

(
k − j

h

)
�(h)(s)D(k− j−h)(z, 1 − s)

=
k∑
j=0

(
k

j

)
(−A(z)) j

k− j∑
h=0

(
k − j

h

)
�(h)(s)

×
k− j−h∑
l=0

(
k − j − h

l

)
A(z)l E (k− j−h−l)(z, 1 − s).

Setting r = j + h + l we see that

E (k)(z, s) =
k∑

r=0

(
k

r

) ∑
j+h+l=r

(
r

h

)(
r − h

l

)
(−A(z)) j�(h)(s)A(z)l E (k−r)(z, 1 − s)

=
k∑

r=0

(
k

r

)[ r∑
h=0

r−h∑
l=0

(
r

h

)(
r − h

l

)
(−A(z))r−h−l�(h)(s)A(z)l

]
E (k−r)(z, 1 − s).

If we set

�(r)(s) :=
r∑

h=0

r−h∑
l=0

(
r

h

)(
r − h

l

)
(−A(z))r−h−l�(h)(s)A(z)l,

then

E (k)(z, s) =
k∑

r=0

(
k

r

)
�(r)(s)E (k−r)(z, 1 − s). (5.8)
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We can rewrite this to see that

�
(r)
ab (s) =

∑
cd

r∑
h=0

r−h∑
l=0

(
r

h

)(
r − h

l

)
(−A(z)ac)

r−h−l�
(h)
cd (s)A(z)ldb

=
r∑

h=0

(
r

h

)
�

(h)
ab (s) (−A(z)aa + A(z)bb)

r−h

=
r∑

h=0

(
r

h

)
�

(h)
ab (s)

(
−2π i

∫ b

a
α

)r−h

.

We emphasize that �(r)
ab (s) does not depend on z. We also note that if there is

only one cusp we have �(r)(s) = �(r)(s).
Looking at the a-entry of (5.8) and its Fourier expansion (2.10) at the cusp

b we get for the zero Fourier coefficients:

φ
(k)
ab (s)y1−s =

k∑
r=0

(
k

r

)∑
c

�(r)
ac (s)(δcbδ0(k − r)y1−s + φ

(k−r)
cb (1 − s)ys).

(5.9)
This gives φ

(k)
ab (s) = �

(k)
ab (s). We summarize the results for E (k)(z, s).

Theorem 5.4 The vector of Eisenstein series twisted by modular symbols
E (k)(z, s) satisfies the functional equation

E (k)(z, s) =
k∑

r=0

(
k

r

)
�(r)(s)E (k−r)(z, 1 − s),

where

�
(r)
ab (s) =

r∑
h=0

(
r

h

)
�

(h)
ab (s)

(
−2π i

∫ b

a
α

)r−h

,

and the �
(k)
ab (s) are given by (5.4). Moreover, �

(k)
ab (s) = φ

(k)
ab (s), where

φ
(k)
ab (s)y1−s is the zero Fourier coefficient of E (k)

a (σbz, s), see (2.10).

Remark 5.5 The functional equations for E (k)(z, s) can be deduced also from
the functional equations for Em,n

a (z, s), see [25, Thm. 7.1]. However, the
explicit expressions for �

(r)
ab (s) in Theorem 5.4 are new. In this work we

need the integral representation of �
(k)
ab (s) in Sect. 6 below.
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The matrices �(k)(s) satisfy the functional equation

k∑
j=0

(
k

j

)
�( j)(s)�(k− j)(1 − s) =

{
I, if k = 0,

0, if k > 0,

cf. [25, Th. 2.2]. For k = 0 this is due to Selberg and for k ≥ 1 it follows by
comparing the coefficient of ys in (5.9). We notice also that for 1/2 + ε ≤
�(s) ≤ A with s bounded away from the spectrum we have

�
(k)
ab (s) �α 1,

as follows from Lemma 5.3.

6 Analytic properties of the generating series L(k)
ab (s, 0, n)

In this section we use the results from Sects. 3, 4, 5 to study the analytic
continuation of L(k)

ab (s, 0, n) for k ≥ 0 and �(s) > 1/2.

6.1 Meromorphic continuation

If k = 0 we obtained the meromorphic continuation of L(k)
ab (s, 0, n) in Lemma

3.5. For k ≥ 1 we consider first the case n = 0. From (2.8), and Theorem 5.4
we find that

L(k)
ab (s, 0, 0) = �(s)

π1/2�(s − 1/2)

k∑
h=0

(
k

h

)
�

(h)
ab (s)

(
−2π i

∫ b

a
α

)k−h

. (6.1)

The right-hand side is meromorphic by Theorem 5.2. If n ≥ 1 we deduce from
Lemma 3.4 and (2.13) that, for �(s) > 1, �(w) > 1,

Lab(s, 0, n, ε) = F(s, w, n)e

(
ε

∫ a

b
α

)∫
�\H

Da(z, s, ε)Db,n(z, w̄, ε) dμ(z),

where

F(s, w, n) = �(s)�(w) |n|w−s 22w−2πw−s−1

�(s + w − 1)�(w − s)
.
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We differentiate to get

L(k)
ab (s, 0, n) = F(s, w, n)

×
∑

k1+k2+k3=k

k!
k1!k2!k3!

(
2π i

∫ a

b
α

)k1∫
�\H

D(k2)
a (z, s)D(k3)

b,n (z, w̄) dμ(z).

(6.2)

The differentiation is allowed and the right-hand side is meromorphic for
�(s) > 1/2 + ε by Theorem 4.4, Lemma 3.3 and the fact that D(k3)

b,n (z, w) is
bounded for �(w) > 1. Using Proposition 2.6 we can deal also with n ≤ − 1.
To summarize we have proved the following result:

Theorem 6.1 For any cusps a, b and any integers k ≥ 0, n ∈ Z the function
L(k)
ab (s, 0, n) admits meromorphic continuation to �(s) > 1/2 + ε.

6.2 The first derivative

We now study in more detail the analytic properties of L(1)
ab (s, 0, n).

Theorem 6.2 The function L(1)
ab (s, 0, n) has a simple pole at s = 1 with

residue

ress=1L
(1)
ab (s, 0, n) = −1

πvol(�\H)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ab(n)

2n
, if n > 0,

2π i
∫ b

a
α, if n = 0,

ab(−n)

2n
, if n < 0.

For s(1− s) bounded away from spec(−�̃), and 1/2+ ε ≤ �(s) ≤ 1+ ε we
have

L(1)
ab (s, 0, n) �ε |s|1/2 (1 + |n|1−�(s)+ε).

Proof Using Proposition 2.6 the claim for n ≤ − 1 follows from the case
n ≥ 1. So we can assume that n ≥ 1. Consider (6.2) when k = 1. For
�(w) ≥ 1 + 2ε fixed, the functions F(s, w, n) is holomorphic as long as
�(s) > 0, so we must analyze the three expressions

123



Y. N. Petridis, M. S. Risager

(
2π i

∫ a

b
α

)∫
�\H

Da(z, s)Db,n(z, w̄) dμ(z), (6.3)

∫
�\H

D(1)
a (z, s)Db,n(z, w̄) dμ(z), (6.4)

∫
�\H

Da(z, s)D
(1)
b,n(z, w̄) dμ(z). (6.5)

To analyze (6.3) we get by Lemma 3.3

∫
�\H

Da(z, s)Db,n(z, w̄) dμ(z) �ε 1.

There is a pole of the Eisenstein series Da(z, s) at s = 1, which gives rise to
a residue for (6.3)

1

vol(�\H)

∫
�\H

Db,n(z, w̄) dμ(z).

To see that this vanishes we unfold the integral as in the Rankin method. The
integrand contains the factor e(nσ−1

b z), with n �= 0, and we notice that, as γ

varies over the cosets �b\�, the sets σ−1
b γ F cover the strip {z ∈ H : �(z) ∈

[0, 1]}.
To analyze (6.4) we note that by Theorem 4.4, Proposition 4.7 and (3.5)

the term is holomorphic at s = 1 and, for s bounded away from the spectrum,
satisfies ∫

�\H
D(1)
a (z, s)Db,n(z, w̄)dμ(z) �ε 1.

Finally, we analyze (6.5). Since the Eisenstein series Da(z, s) has a pole at
s = 1 we find that the integral has a simple pole at s = 1 with residue

1

vol(�\H)

∫
�\H

D(1)
b,n(z, w̄) dμ(z)

= −2π i

vol(�\H)

∫ ∞

0

∫ 1

0

(∫ σbz

b
α

)
e(nz)yw y−2dxdy

= −2π i

vol(�\H)

∫ ∞

0

ab(n)e−4πny

4π in
yw−2 dy = −ab(n)

2nvol(�\H)

�(w − 1)

(4πn)w−1 ,

where we have unfolded using (2.12) and (2.1). We notice also that by Lemma
3.3 we have ∫

�\H
Da(z, s)D

(1)
b,n(z, w̄) dμ(z) �ε 1.
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Using the above analysis of the three integrals we can finish the proof for
n > 0 as follows. Observing that F(1, w, n) = (4πn)w−1/(�(w − 1)π) we
get the residue at s = 1 for n > 0. For the growth on vertical lines we choose
�(w) = �(s) and use Stirling’s asymptotics to get

F(s, w, n) � |s|1/2 n�(w)−�(s). (6.6)

The bound on vertical lines now is obvious when we choose �(w) = 1 + 2ε.
As far as L(1)(s, 0, 0) is concerned we use (6.1) with k = 1, which leads

to analyze �
(0)
ab (s) and �

(1)
ab (s). We start by noticing that by Lemma 5.3 they

are both bounded for 1/2 + ε ≤ �(s) ≤ 1 + ε. With the help of the Stirling
asymptotics on the quotient of Gamma factors we easily prove the bound on
vertical lines for L(1)(s, 0, 0).

Since�(0)(s) = �(s) is the standard scattering matrix it is well known that
�

(0)
ab (s) has a simple pole with residue vol(�\H)−1. Using Theorem 5.2 and

Proposition 4.7 we see that, if �
(1)
ab has a pole, it must be a simple pole with

residue a constant times
∫
L(1)Da(z, 1)dμ(z). This vanishes by Proposition

4.6 so �
(1)
ab is regular at s = 1. The conclusion follows.

6.3 The second derivative

Wewill now describe the full singular part of L(2)
ab (s, 0, 0) at s = 1. We denote

the constant term in the Laurent expansion of Ea(z, s) by Ba(z), i.e.

Ea(z, s) = vol(�\H)−1

(s − 1)
+ Ba(z) + O(s − 1), (6.7)

as s → 1. For � = PSL2(Z), the function B∞(z) can be described in terms
of the Dedekind eta function (Kronecker’s limit formula). For general groups
� the function Ba(z) is given in terms of generalized Dedekind sums, see e.g.
[14].

Theorem 6.3 The function L(2)
ab (s, 0, 0) has a pole of order 2 at s = 1. The

full singular part of the Laurent expansion at s = 1 equals

a−2

(s − 1)2
+ a−1

s − 1
,
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where

a−2 = −8π2 ‖ f ‖2
πvol(�\H)2

,

a−1 = −8π2(2 log(2) − 2) ‖ f ‖2
πvol(�\H)2

+

(
−2π i

∫ b
a α

)2 − 8π2
∫

�\H
(Bb(z) + Ba(z))y

2 | f (z)|2 dμ(z)

πvol(�\H)
.

For s(1− s) bounded away from spec(−�̃), and 1/2+ ε ≤ �(s) ≤ 1+ ε we
have

L(2)
ab (s, 0, 0) � |s|1/2 .

Proof Using (6.1) we see that L(2)
ab (s, 0, 0) equals

1√
π

�(s)

�(s − 1/2)

⎛
⎝�

(0)
ab (s)

(
−2π i

∫ b

a
α

)2

+2�(1)
ab (s)

(
−2π i

∫ b

a
α

)
+ �

(2)
ab (s)

)
. (6.8)

We consider each of the three terms separately:
We start by noting that since �(0)(s) = �(s), the first term has singular

part (
−2π i

∫ b
a α

)2
πvol(�\H)

1

s − 1
.

To analyze the second term we note that by Theorem 5.2 we have

�
(1)
ab (s) = 1

2s − 1

∫
�\H

Eb(z, s)L
(1)Ea(z, s)dμ(z),

which is regular by Proposition 4.7 and Proposition 4.6.
To analyze the third term we note that by Theorem 5.2

�
(2)
ab (s) = 1

2s − 1

∫
�\H

Eb(z, s)
(
2L(1)D(1)

a (z, s) + L(2)D(0)
a (z, s)

)
dμ(z),

and analyze the contribution of the two summands. Since D(1)
a (z, s) is regular

at s = 1 (Proposition 4.7), the first summand has at most a first order pole.
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The corresponding residue is zero by Proposition 4.6, so the first summand is
regular.

It follows that the singular part of �
(2)
ab (s) equals the singular part of

(2s − 1)−1 ∫
�\H Eb(z, s)L(2)Ea(z, s)dμ(z). It follows that the singular part

of the third term of (6.8) equals the singular part of

1√
π

�(s)

�(s − 1/2)

1

2s − 1

∫
�\H

Eb(z, s)L
(2)Ea(z, s)dμ(z).

The result follows using (6.7), (4.2), and standard values of �′(z)/�(z) [18,
8.366].

The bound on vertical lines follow from Theorem 5.3 and Stirling’s asymp-
totics. ��
Remark 6.4 We remark that Theorem6.3 allows us towrite the singular expan-
sion of L(2)

ab (s, 0, 0) exclusively in terms of data of Rankin–Selberg integrals
and periods. Indeed, writing∫

�\H
y2 | f (z)|2 Ea(z, s)dμ(z) = c−1(a)

s − 1
+ c0(a) + O(s − 1)

as s → 1, we have

c−1(a) = ‖ f ‖2
vol(�\H)

, c0(a) =
∫

�\H
y2 | f (z)|2 Ba(z)dμ(z),

so that the singular expansion of L(2)
ab (s, 0, 0) equals

−8π2

πvol(�\H)

⎛
⎜⎝ c−1(a)

(s − 1)2
+

1
2

(∫ b
a α

)2 + (2 log(2) − 2)c−1(a) + c0(a) + c0(b)

(s − 1)

⎞
⎟⎠ .

6.4 Higher derivatives

Theorem 6.5 If k is even the function L(k)
ab (s, 0, 0) has a pole at s = 1 of order

k/2 + 1. The leading term in the singular expansion around s = 1 equals

(−8π2)k/2 ‖ f ‖k
πvol(�\H)k/2+1

k!
2k/2

.

If k is odd the function L(k)
ab (s, 0, 0) has a pole at s = 1 of order less than

or equal to (k − 1)/2 + 1. For s(1 − s) bounded away from spec(−�̃), and
1/2 + ε ≤ �(s) ≤ 1 + ε we have
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L(k)
ab (s, 0, 0) � |s|1/2 .

Proof By (6.1) we must understand the leading expansion of each �
(h)
ab (s)

for h ≤ k. The claim about the order of the pole for all k, and the leading
singularity for k even follows from (5.4), Theorem 4.8, and Proposition 4.6.

The claim on bounds on vertical lines follow from (6.1), Stirling’s formula,
and Lemma 5.3. ��
Theorem 6.6 Let n �= 0. Then we have:

(i) The function L(k)
ab (s, 0, n) has a pole at s = 1 of order strictly less than

[k/2] + 1.
(ii) For s(1− s) bounded away from spec(−�̃), and 1/2+ε ≤ �(s) ≤ 1+ε

we have
L(k)
ab (s, 0, n) � |s|1/2 |n|1−�(s)+ε .

(iii) All coefficients in the singular expansion of L(k)
ab (s, 0, n) are bounded

independently of n.

Proof Using Proposition 2.6 it suffices to treat the case n ≥ 1. Considering
(6.2) we see that claim (i) about the orders of the pole follows from Theorem
4.8 and the fact that

∫
�\H Db,n(z, w̄) dμ(z) = 0 as is seen by unfolding.

Claim (ii) follows from the bound (6.6) (with �(w) = 1 + 2ε) valid when
�(w) = �(s) combined with Lemma 3.3, Theorem 4.4 and the fact that
D(k3)
b,n (z, w) is bounded independently of w and n for 1 + 2ε ≤ �(w) ≤ A,

see the discussion after (3.5).
For claim (iii) we note that the constants in all singular expansions are linear

combinations of ∫
�\H

g(z)D(k3)
b,n (z, w̄, ε) dμ(z), (6.9)

where g(z) is one of the coefficients in the singular expansion of D(k2)
a (z, s).

For k2 = 0 the function g(z) is constant so, in particular, is square integrable.
For k2 > 0 we note that

g(z) = 1

2π i

∮
C(r)

D(k2)
a (z, s)(s − 1) j ds

for some j ≥ 0 and sufficiently small r . Here C(r) is the circle centered at
1 with radius r . The radius r is chosen so that there are no other singularities
of D(k2)(z, s) inside C(r) apart from s = 1. It follows from Theorem 4.4
that g(z) is square integrable. By using Cauchy–Schwarz we see that (6.9) is
bounded independently of n. See again the discussion after (3.5). ��
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7 Distribution results

We are now ready to prove Theorems 1.9, 1.10 and 1.11. Since we have iden-
tified the behavior of the generating functions L(k)

ab (s, 0, n) at s = 1 and on
vertical lines in Sect. 6, we can use the well-known method of contour inte-
gration to deduce the asymptotics of 〈r〉ab.

7.1 First moment with restrictions

In this subsection we study sums of the form

∑
r∈Tab(M)

〈r〉abh(r) (7.1)

for smooth functions h or indicator functions h = 1[0,x]. Hence we are study-
ing a (partial) first moment of the modular symbol but with restrictions on r
imposed by h.

Remark 7.1 We present a variant of the Mazur–Rubin–Stein heuristics: By
Theorem 3.8 Tab is equidistributed on R/Z. If it had been possible to extend
the function h(r) = 〈r〉ab1[0,x](r) to a continuous function of r , this would
give the asymptotics of (7.1) immediately. Using (2.1) it would be tempting
to define the modular symbol for all r ∈ R/Z by

〈r〉ab = 2π i
∫ a

b
α +2π i

∫ σar

a
α = 2π i

∫ a

b
α +2π i

∑
n>0

1

2πn
�(aa(n)e(nr)).

We cannot do so as the series is not convergent, even if Wilton’s classical
estimate, see [47], [23, Thm 5.3], shows that it just barely fails to converge
conditionally.

By termwise integration against 1[0,x] we would get the result

2π i
∫ a

b
α · x + 1

2π i

∑
n>0

� (aa(n)(e(nx) − 1))

n2
. (7.2)

This series converges to a continuous function as is easily seen from Hecke’s
average bound, [23, Thm 5.1].

If instead we consider, for a fixed δ > 0,

〈r〉ab,δ := 2π i
∫ σa(r+iδ)

b
α,
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then this function does indeed define a continuous function on R/Z, and we
can use equidistribution with〈r〉ab,δ1[0,x](r) as a test function. If we do so, and
then let δ → 0 we arrive again at (7.2). However, it is not easy to justify that
one can interchange the limits M → ∞ and δ → 0. On the other hand Mazur,
Rubin and Stein have numerics suggesting that (7.2) is indeed the correct limit.

The above heuristics gives the correct answer. This is the content of Theorem
7.2 below. For a formal series

F(t) =
∑
n∈Z

F̂(n)e(nt), with F̂(n) polynomially bounded,

we have a linear functional (distribution) h �→ 〈h, F〉R/Z from the set of
smooth functions on R/Z given by

〈h, F〉R/Z :=
∑
n∈Z

ĥ(n)F̂(n),

where ĥ(n) denotes the nth Fourier coefficient of h.
Recall the norm (3.7). We are now ready to prove the main result of this

section:

Theorem 7.2 Let h be a smooth function on R/Z with ‖h‖H1/2 < ∞. Then
there exists a δ > 0 such that

∑
r∈Tab(M)

〈r〉abh(r) = 〈h, Fab〉R/Z

M2

πvol(�\H)
+ O(‖h‖H1/2 M2−δ),

where Fab is the formal series given by

Fab(t) = −2π i
∫ a

b
α − i

∞∑
n=1

�(aa(n)e(nt))

n
.

Proof The generating series of 〈r〉abe(nr) is L(1)
ab (s, n, 0). Writing h(t) =∑

n∈Z ĥ(n)e(nt), we have by Proposition 2.6, Theorem 6.2, and a complex
integration argument that

∑
r∈Tab(M)

〈r〉abh(r) =
∑
n∈Z

ĥ(n)
∑

r∈Tab(M)

〈r〉abe(nr)

= ĥ(0)

(
2π i

∫ a

b
α

M2

πvol(�\H)
+ O(M2−δ)

)
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+
∞∑
n=1

ĥ(n)

(−aa(n)

2n

M2

πvol(�\H)
+ O(|n|1/2 M2−δ)

)

+
−∞∑
n=−1

ĥ(n)

(−aa(−n)

2n

M2

πvol(�\H)
+ O(|n|1/2 M2−δ)

)
,

from which the result follows. ��
Let 0 ≤ x ≤ 1. Approximating 1[0,x] by smooth periodic functions we can
conclude the following result, which makes rigorous the heuristic conclusions
in Remark 7.1.

Corollary 7.3 Let x ∈ [0, 1]. There exists a δ > 0 such that

∑
r∈Tab(M)

〈r〉ab1[0,x](r)

=
(
2π i

∫ a

b
α · x + 1

2π i

∞∑
n=1

� (aa(n)(e(nx) − 1))

n2

)
M2

πvol(�\H)

+ O(M2−δ).

7.2 The variance

In this subsection we study the second moment of the modular symbols, i.e.
the variance. Following Mazur and Rubin we denote the variance slope by

C f = 2
−8π2 ‖ f ‖2
vol(�\H)

. (7.3)

Recall (6.7). We also define the variance shift by

D f,ab = −8π2(2 log(2) − 3) ‖ f ‖2
vol(�\H)

+
(

−2π i
∫ b

a
α

)2

−8π2
∫

�\H
(Bb(z) + Ba(z))y

2 | f (z)|2 dμ(z). (7.4)

The following theorem follows directly from Theorem 6.3 and a complex
integration argument.

Theorem 7.4 There exists a δ > 0 such that

∑
r∈Tab(M)

〈r〉2ab = 1

πvol(�\H)
(C f M

2 logM + D f,abM
2) + O(M2−δ).
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We deduce from Theorems 7.4 and 3.8 that

∑
r∈Tab(M)

〈r〉2ab
∑

r∈Tab(M)

1
= C f logM + D f,ab + o(1).

7.3 Normal distribution

In this subsection we show that the value distribution of modular symbols
(appropriately normalized) obeys a standard normal distribution, even if we
restrict r to any interval.

Theorem 7.5 Let h be a function on R/Z satisfying ‖h‖H ε < ∞, and let
k ∈ N. Then there exist δ, B > 0 such that

∑
r∈Tab(M)

〈r〉kabh(r) = δ2N(k)C f
k/2

∫
R/Z

h(t)dt
k!

(k/2)!2k/2
M2 logk/2 M

πvol(�\H)

+ Oε(‖h‖H ε M2 log[(k−1)/2] M).

Proof We use Proposition 2.6, Theorem 6.5, and Theorem 6.6. We apply a
complex integration argument in a strip of width ε around �(s) = 1 to deduce
that

∑
r∈Tab(M)

〈r〉kabe(mr) = δ0(m)δ2N(k)

(
C f

2

)k/2 k!
(k/2)!2k/2

M2 logk/2(M2)

πvol(�\H)

+ Oε((1 + |m|)εM2 log[(k−1)/2](M2)). (7.5)

We insert this in

∑
r∈Tab(M)

〈r〉kabh(r) =
∑
m∈Z

ĥ(m)
∑

r∈Tab(M)

〈r〉kabe(mr)

and use ĥ(0) = ∫
R/Z

h(t)dt to get the result. ��
Remark 7.6 The result (7.5) can be strengthened to the following: There exists
a polynomial Pk,m such that

∑
r∈Tab(M)

〈r〉kabe(mr) = M2Pm,k(logM) + Om,k,ε(M
2−δ). (7.6)
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The degree of Pk,m is strictly less than k/2 if either m �= 0 or k is odd, and
exactly k/2 for k even and m = 0.

In Theorem 7.4 we identify this polynomial when k = 2 and m = 0.

Using a standard approximation argument based in Theorem 7.5 we arrive
at the following corollary:

Corollary 7.7 Let I ⊆ R/Z be an interval and let k ∈ N. Then

∑
r∈Tab(M)∩I

〈r〉kab = δ2N(k)Ck/2
f |I | k!

(k/2)!2k/2
M2 logk/2 M

πvol(�\H)

+ O(M2 log[(k−1)/2] M).

The above corollary allows us to renormalize the modular symbol map
and determine the distribution of the renormalized map using the method of
moments:

Corollary 7.8 Let I ⊆ R/Z be an interval of positive length. Then the values
of the map

Tab ∩ I → R

r �→ 〈r〉ab
(C f log c(r))1/2

ordered according to c(r) have asymptotically a standard normal distribution,
i.e. for every −∞ ≤ a ≤ b ≤ ∞ we have

#{r ∈ Tab(M) ∩ I,
〈r〉ab

(C f log c(r))1/2
∈ [a, b]}

#(Tab(M) ∩ I )
→ 1√

2π

∫ b

a
exp

(
− t2

2

)
dt,

as M → ∞.

Proof Using summation by parts we find from Corollary 7.7 and Theorem 3.8
that ∑

r∈Tab(M)∩I

(
〈r〉ab

(C f log c(r))1/2

)k

#(Tab(M) ∩ I )
→ δ2N(k)

k!
(k/2)!2k/2 ,

which is the kthmoment of the standard normal distribution. The result follows
from a classical result due to Fréchet and Shohat [30, 11.4.C]. ��
Remark 7.9 From the above proof we see that the asymptotic moments do not
change if you replace C f log c(r) with C f log c(r) + D for any constant D.
Therefore Corollary 7.8 also holds if we normalize accordingly.
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8 Results for Hecke congruence groups

In this section we translate the distribution results of Sect. 7 to the case of
Hecke congruence groups � = �0(q), where q is a squarefree integer. In this
case the cusps of � and their scaling matrices can be described as follows, see
[8, Section 2.2]): a complete set of inequivalent cusps of �0(q) are given by
ad = 1/d with d|q. Notice that if d = q then 1/d is equivalent to the cusp at
infinity. Write q = dv. We may take

σ1/d =
( √

v 0
d
√

v 1/
√

v

)
= 1√

q/d

(
q/d 0
q 1

)
(8.1)

for the corresponding scaling matrix. It follows that

σ−1∞ �0(q)σ1/d =
{(

A
√

v B/
√

v

C
√

v D/
√

v

)
; A, B,C, D ∈ Z, AD − BC = 1

C ≡ 0(d), dD ≡ C(v)

}
.

Using this and definition (1.5) we easily see that

T∞ 1
d

= {r = a

c
∈ Q/Z, (a, c) = 1, (c, q) = d} (8.2)

and for r = a/c ∈ T∞ 1
d
we have

c(r) = c
√

v = c

√
q

d
. (8.3)

Therefore,

〈r〉∞ 1
d

= 2π i
∫ i∞

1/d
α + 2π i

∫ r

i∞
α = 2π i

∫ i∞

1/d
α + 〈r〉, (8.4)

where 〈r〉 is as in (1.2).

8.1 First moment with restrictions

From Theorems 7.2 and 3.8 we now deduce the following corollary.

Corollary 8.1 Let d|q, and let h be a smooth function onR/Zwith ‖h‖H1/2 <

∞. Then there exists δ > 0 such that

∑
1≤c≤M
(c,q)=d

∑
0≤a<c
(a,c)=1

〈a/c〉h
(a
c

)
= 〈h, F〉R/Z

(q/d)M2

πvol(�0(q)\H)
+O(‖h‖H1/2 M2−δ),
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where F is the formal series

F(t) = −i
∞∑
n=1

�(a(n)e(nt))

n
,

with a(n) the Fourier coefficients at infinity of f (z).

Summing Corollary 8.1 over all positive divisors d|q and using that

1

vol(�0(q)\H)

∑
d|q

q

d
= 1

vol(�0(1)\H)
= 3

π
,

we may remove the divisibility condition on c and conclude that

∑
1≤c≤M

∑
0≤a<c
(a,c)=1

〈a/c〉h
(a
c

)
= 〈h, F〉R/Z

3M2

π2 + O(‖h‖H1/2 M2−δ).

We can also remove the condition (a, c) = 1, by summing according to
(a, c) = k. Using that ζ(2) = π2/6 we find that

∑
1≤c≤M

∑
0≤a<c

〈a/c〉h
(a
c

)
= 〈h, F〉R/Z

M2

2
+ O(‖h‖H1/2 M2−δ).

Using partial summation we find that

∑
1≤c≤M

1

c

∑
0≤a<c

〈a/c〉h
(a
c

)
= 〈h, F〉R/ZM + O(‖h‖H1/2 M1−δ).

By an approximation argument, where we approximate h(t) = 1[0,x](t) by
appropriate smooth functions, we find

1

M

∑
1≤c≤M

1

c

∑
0≤a≤cx

〈a/c〉 −→ 1

2π i

∞∑
n=1

�(a(n)(e(nx) − 1))

n2
,

as M → ∞. This completes the proof of Theorem 1.4.

8.2 The variance

Similarly to the analysis above we can use Theorem 7.4, Corollary 7.3, and
Theorem 3.8 to conclude the following corollary.
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Corollary 8.2 There exists a δ > 0 such that

∑
1≤c≤M
(c,q)=d

∑
1≤a≤c
(a,c)=1

〈a/c〉2 = −8π2 ‖ f ‖2
πvol(�0(q)\H)2

q

d
M2 log

(q
d
M2

)

+

⎛
⎜⎜⎝−8π2(2 log(2) − 3) ‖ f ‖2

πvol(�0(q)\H)2
+

−8π2
∫

�0(q)\H
(B1/d (z) + B∞(z))y2 | f (z)|2 dμ(z)

πvol(�0(q)\H)

⎞
⎟⎟⎠ q

d
M2

+ O(M2−δ).

Recall now the mean and variance from (1.3).

Lemma 8.3 Assume f is a Hecke eigenform. Then E( f, c) � c−1/2+ε.

Proof Since f is an eigenfunction of all Hecke operator Tn with eigenvalue
a(n) it is easy to see that for any rational r we have

a(n)

∫ r

i∞
f (z)dz =

∑
ad=n

∑
0≤b<d

∫ ar+b
d

i∞
f (z)dz.

If r is a fixed integer, then we deduce that

2π i�
(
a(n)

∫ r

i∞
f (z)dz

)
=

∑
ad=n

∑
0≤b<d

〈b/d〉.

Using Möbius inversion and the Eichler bound for weight 2 holomorphic cusp
forms on congruence groups [12], i.e. an � n1/2+ε, we find that

∑
0≤a<c

〈a/c〉 � c1/2+ε.

Another application of Möbius inversion, and the well-known lower bound
φ(c)−1 � c−1+ε [20, Thm. 329] give E( f, c) � c−1/2+ε. ��

We define the variance shift by

D f,d = −8π2(2 log(2) − 2 + log q
d )) ‖ f ‖2

vol(�0(q)\H)

−8π2
∫

�0(q)\H
(B1/d(z) + B∞(z))y2 | f (z)|2 dμ(z). (8.5)

123



Arithmetic statistics of modular symbols

Using Lemma 8.3 we see that

φ(c)Var( f, c) =
∑

0≤a<c
(a,c)=1

〈a/c〉2 + O(cε).

Using this and Corollary 8.2 we deduce that

∑
c≤M

(c,q)=d

φ(c)
(
Var( f, c) − C f log c

) =
∑
c≤M

(c,q)=d

∑
0≤a<c
(a,c)=1

(〈a/c〉2 − C f log c
)

+ O(M1+ε)

= (D f,d + o(1))
∑
c≤M

(c,q)=d

φ(c),

as M → ∞. Here we have used (3.6) for the asymptotics of the last sum.

8.2.1 Relation with the symmetric square L-function

Weexplain how to relateC f , and D f,d to the symmetric square L-function.We
recall the definitions but refer to [21, Sec. 2–3] for additional details. Assume
that f is a Hecke eigenform normalized with first Fourier coefficient equal to
1, and let λ f (n) be its nth Hecke eigenvalues. Let

L( f ⊗ f, s) =
∞∑
n=1

λ2f (n)

ns

be the Rankin–Selberg L-function. It is known that L( f ⊗ f, s) admits mero-
morphic continuation to s ∈ Cwith a simple pole at s = 1 with corresponding
residue (4π)2 ‖ f ‖2/vol(�0(q)\H). We have

L( f ⊗ f, s) = Z( f, s)ζ(q)(s),

where

Z( f, s) =
∞∑
n=1

λ f (n2)

ns
,

and ζ(q)(s) is the Riemann zeta function with the Euler factors at p|q removed.
The symmetric square L-function of f is defined by

L(sym2 f, s) = ζ(q)(2s)Z( f, s).
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Using these definitions, the formula vol(�0(q)\H) = (π/3)q
∏

p|q(1+ p−1),
and that ζ(s) has a simple pole at s = 1 with residue 1, we find that

C f = −16π2 ‖ f ‖2
vol(�0(q)\H)

= −ress=1L( f ⊗ f, s)

= −Z( f, 1)
∏
p|q

(1 − p−1) = − 6L(sym2 f, 1)

π2
∏

p|q (1 + p−1)
. (8.6)

This verifies the variance slope of Conjecture 1.2.
To express in more arithmetic terms the constant D f,d we notice that

∫
�0(q)\H

B∞(z)y2 | f (z)|2 dμ(z) (8.7)

is the constant term in Laurent expansion at s = 1 of

∫
�0(q)\H

E∞(z, s)y2 | f (z)|2 dμ(z),

by definition of B∞(z). By unfolding we see that the last integral equals

�(s + 1)

(4π)s+1 L( f ⊗ f, s) = �(s + 1)

(4π)s+1

ζ(q)(s)

ζ(q)(2s)
L(sym2 f, s).

Hence we conclude that
∫

�0(q)\H
B∞(z)y2 | f (z)|2 dμ(z) = G(1)L ′(sym2 f, 1) + G ′(1)L(sym2 f, 1),

(8.8)
where

G(s) = �(s + 1)

(4π)s+1

(s − 1)ζ(q)(s)

ζ(q)(2s)
. (8.9)

To understand the part of Dd involving B1/d we recall the Atkin–Lehner
involutions [1]. We also recall that we assume that q is squarefree. For every
d|q there exists an integer matrix of determinant d of the form

Wd =
(
d y
q dw

)

with y, w ∈ Z. It is straightforward to verify that Wd normalizes �0(q), that
is, W−1

d �0(q)Wd = �0(q). Since f is assumed to be a Hecke eigenform it
follows from Atkin–Lehner theory that
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d · j (Wd , z)
−2 f (Wdz) = e f,d f (z)

with e f,d = ±1 the Atkin–Lehner eigenvalues. It follows easily that

y(W−1
d z)2

∣∣∣ f (W−1
d z)

∣∣∣2 = y2 | f (z)|2 . (8.10)

Lemma 8.4 The Atkin–Lehner involutions permute the Eisenstein series.
More precisely, for every d|q we have

E∞(Wq/d , s) = E1/d(z, s).

Proof Let σ ′
1/d = 1√

q/d
Wq/d . Then a direct computation shows that

σ1/d = σ ′
1/d

(
1 −yd/q
0 1

)
,

so σ ′
1/d is an admissible scaling matrix for the cusp 1/d. Since the Eisenstein

series E1/d(z, s) is independent of the choice of scaling matrix we find that

E1/d(z, s) =
∑

γ∈�∞\σ ′−1
1/d �0(q)σ ′

1/d

�(γWq/d z)
s = E∞(Wq/d z, s),

where we have used that Wq/d normalize �0(q). ��
Combining Lemma 8.4 and (8.10) we find that
∫

�0(q)\H
E1/d(z, s)y

2 | f (z)|2 dμ(z) =
∫

�0(q)\H
E∞(z, s)y2 | f (z)|2 dμ(z).

It follows that
∫

�0(q)\H
B1/d(z)y

2 | f (z)|2 dμ(z) =
∫

�0(q)\H
B∞(z)y2 | f (z)|2 dμ(z).

(8.11)
Using the definition of G(s) i.e. (8.9), we see that

G(1) = 6

16π4

∏
p|q

1

1 + p−1 ,
G ′(1)
G(1)

= 1− log(4π)− 12

π2 ζ ′(2)+
∑
p|q

log p

p + 1
.

Combining (8.5), (8.6), (8.8), and (8.11) we find the following expression for
the variance shift. We have

D f,d = Ad,q L(sym2 f, 1) + Bq L
′(sym2 f, 1),
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Table 1 The variance shifts
for 15.a1

d D f,d Experimental shift

1 − 0.440048 − 0.440

3 − 0.244592 − 0.246

5 − 0.153710 − 0.153

15 0.041745 0.040

where

Ad,q =
6
(
−2−1 log(q/d) −∑

p|q
log p
p+1 + 12

π2 ζ
′(2) + log(2π)

)

π2
∏

p|q (1 + p−1)
,

Bq = − 6

π2
∏

p|q(1 + p−1)
.

(8.12)

This completes the proof of Theorem 1.6.

8.3 Numerical investigations

As an examplewe consider the elliptic curve 15.a1.We computed L(sym2 f, 1)
= 0.9364885435 and L ′(sym2 f, 1) = 0.03534541 using lcalc in Sage [43]
and the data from [29].1 These numbers should be accurate to at least 6 decimal
places. This allows to estimate the value of the variance shift D f,d and compare
with the experimental values in Table 1. We would like to thank Karl Rubin
for providing us with the experimental values of the variance shift. Notice that
these are the opposite of what appears in [31], because our modular symbols
are purely imaginary.

8.4 Normal distribution

With the description of the modular symbols and T∞ 1
d
from (8.2), (8.3), and

(8.4), we can apply Corollary 7.7 to compute the moments of 〈r〉. Since r =
a
√
q/d

c
√
q/d

∈ T∞ 1
d
has c(r) = c

√
q/d , wemayuse log c(r) = log c+2−1 log(q/d)

and Remark 7.9 to conclude the following corollary.

Corollary 8.5 Let I ⊆ R/Z be any interval of positive length, and consider
for d|q the set Qd = {a/c ∈ Q, (a, c) = 1, (c, q) = d}. Then the values of

1 See www.lmfdb.org/L/SymmetricPower/2/EllipticCurve/Q/15.a/.
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the map
Qd ∩ I → R

a

c
�→ 〈r〉

(C f log c)1/2

ordered according to c have asymptotically a standard normal distribution.

This completes the proof of Theorem 1.7.
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