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Cosmic voids found in galaxy surveys are defined based on the galaxy distribution in redshift space.
We show that the large scale distribution of voids in redshift space traces the fluctuations in the dark
matter density field &(k) (in Fourier space with u being the line-of-sight projected k vector),
55 (k) = (1 + pou2)b3d(k), with a beta factor that will be, in general, different than the one describing
the distribution of galaxies. Only if voids are assumed to be quasilocal transformations of the linear
(Gaussian) galaxy redshift space field does one get equal beta factors f, = f, = f/b, with f being the
growth rate and by, by being the galaxy and void bias on large scales defined in redshift space. Indeed, in

our mock void catalogs, we measure void beta factors in good agreement with the galaxy one. Further work
needs to be done to confirm the level of accuracy of the beta factor equality between voids and galaxies, but
in general the void beta factor needs to be considered as a free parameter for linear RSD studies.
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I. INTRODUCTION

Cosmic voids have drawn attention in the last few years
due to their potential power to constrain cosmology and
gravity. In particular, they were proposed to study the
Alcock-Paczynski test (see Ref. [1]), the integrated Sachs-
Wolfe effect (see Ref. [2]), weak lensing, the dark energy
equation of state, modified gravity, or even the nature of
dark matter (see Refs. [3-22]). While many of these studies
rely on the shape of voids, other studies treat them as
additional tracers of the density field, analogous to gal-
axies, or clusters of galaxies (see e.g. Ref. [23-25]). In fact,
more recently, baryon acoustic oscillations (BAO) were
detected in the void clustering based on luminous red
galaxies (see Refs. [26,27]). The centers of voids are known
to have a more linear dynamical behavior than galaxies
(see Refs. [28-30]). Redshift space distortions (RSD) are
interesting because they probe the growth of cosmic
structures (see Ref. [31]) and have been successfully
studied with galaxies (see Refs. [32-62]).

Several recent pioneering attempts to extend RSD
studies to voids have been proposed in the literature to
measure RSD from voids (see Refs. [63,64]) and to
constrain the growth factor (see Refs. [65-67]).

Voids are not a direct observable but are constructed
based on the distribution of galaxies in redshift space. This
is a priori equivalent to a nonlinear (and nonlocal)
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transformation of the density field in redshift space and
introduces an additional RSD induced bias (see Ref. [68]).
Although one can define voids in real space from the
theoretical point of view (e.g. using simulations), we
actually identify voids in redshift space when analysing
observations. We will show that these two definitions do
not coincide.

An analogous problem can be found in the Lyman-a
forest (see also Ref. [69-71]), for which the observable
(transmitted flux fraction) is a nonlinear transformation of
the quantity suffering RSD (gas density). We find indica-
tions, however, that in the case of voids, as long as their
arbitrary nonlinear bias involves only the linear galaxy field
in redshift space, they will share the same beta factor as the
galaxies. Besides Lyman-a forest and voids, any field
constructed through a nonlinear transformation applied
after the effect of redshift space distortions, i.e., to a field
already in redshift space (whether by physics like for the
Lyman-a forest or through selection like voids) will have
similar concerns. Generally, the standard Kaiser RSD
formula relies on the field in question being conserved
under the redshift space transformation, i.e., being
defined in real space and simply translated into redshifted
coordinates.

This paper is structured as follows: First, we introduce
the simulations used in this study and compare the
measurements of correlation function with the prediction
from Kaiser approximation. Second, we consider different
bias models for cosmic voids with respect to the galaxy
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field in redshift space and the relation between the multi-
poles. In addition, we then verify our models with cross-
correlation functions. Finally, we present our conclusions.
We show the measurements from observed data in the
Appendix.

II. MEASUREMENT: MULTIPOLES OF
CORRELATION FUNCTIONS FROM VOIDS

We use 100 mock void catalogs [using the DIVE
algorithm, see Ref. [72])] constructed based on mock
galaxy catalogues defined in redshift space (using the
PATCHY code, see Ref. [73]), which resemble the clustering
of BOSS Luminous Red Galaxies with number density
around 3.5 x 10™* 13 Mpc™3, at a mean redshift of z = 0.56
in cubical volumes of 2.5 h~! Gpc side (described in
Ref. [26]).

We compute monopoles and quadrupoles for void
populations with radii ranging from 10 to 25 and bins of
1 h~! Mpc (see Fig. 1).

We define

— fzw(SL)
fzgg(sL) ’

for the different multipoles I € [0, 2] of the void autocor-
relation function (&)¥) and galaxy autocorrelation function
(&%) with s defined on large scales. Figure 2 shows the
scale dependency of ry and r,.

By computing the averages of the ratios within the scale
range of s; € [160,200] h~' Mpc we get a very good
agreement r, = r,, as shown in the ry-r, scatter plot for

r

(1)
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PHYSICAL REVIEW D 95, 063528 (2017)

different R bins on the left panel in Fig. 3. Note that rg = r,
does not agree with the prediction of the Kaiser approxi-
mation as shown in Fig. 3. Thus, a different theory, as we
develop in the next section, beyond the Kaiser approxi-
mation is needed to understand what we observe in this
study. We will explain in detail in the next theory section.

III. THEORY: LINEAR RSD FOR VOIDS

The relation between the galaxy contrast §, and the dark
matter field includes nonlinear, nonlocal, and stochastic
components [see, e.g., [73-86]], and can be written for long
wavelength modes as

8(r) = bgd(r) +ey(r) + -+, (2)

where b, is the linear bias, 6(r) is the dark matter field, and
€g is the galaxy noise term, followed by nonlinear and
nonlocal terms.

The linear bias can be obtained from the measured
clustering of galaxies, for instance the power spectrum (the
autocorrelation function in Fourier space) at large scales
related to the dark matter power spectrum

Pes(k) = bP(K) + P, (3)
with P(k) = (5(k)5(k)), the dark matter density contrast in
Fourier space given by S(k), and P, standing for the noise
power spectrum.

The action of gravity on large scales causes coherent
flows in which galaxies tend to infall into larger density
regions contributing to increment the density. This effect
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FIG. 1. Monopoles and quadrupoles of the autocorrelation functions measured from 100 PATCHY mock void and galaxy catalogs in

boxes with different void radius R bins.
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FIG. 2. Using the results shown in Fig. 1, we compute the ratios of the monopoles (and quadrupoles) of the voids auto-correlation
functions versus the one from galaxy autocorrelation function. We compute ry, and r, by averaging the scale range of
[160,200] h~! Mpc. The color lines showing different void sizes as described in Fig. 1.

produces an enhancement of the power on large scales
given by the Kaiser factor (see Ref. [31]). Therefore, in
redshift space, the galaxy density contrast to linear order is
given by
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FIG. 3. Monopole and quadrupole ratios based on mock

catalogs as shown in Fig. 1. The numbers in red and blue
indicate the void radius for negative and positive bias, respec-
tively. The void bias by, changes sign when R is between 18 and
19 h~! Mpc. We show also the prediction of ry vs r, from the
Kaiser approximation (black dotted line). We assume the linear
bias of galaxies is 2 and the growth rate at the redshift of the
sample is 0.75. One can see that the prediction is very different
from ry = r, as observed from our simulations.

83 (k) = 8y (k) + fu*d(k) + &, (4)

(5)

with f being the logarithmic growth rate, f, = f/b,,
u= % -7, and 7 being the line-of-sight direction. We will

=(1 "’ﬂgﬂZ)ng(k) +é,

refer to the redshift space term fu25(k) as ilo (k) in Fourier
space and 7,(r) in configuration space. Therefore the
effective bias relating the galaxy density contrast in redshift
space to the dark matter field can be considered to be given
by by = (1 4 pu*)by = by + fu* This implies that in this
model the bias contribution from RSD is the same as for the
dark matter (which is the unbiased case b, = 1). However,
in general this is not true, so that a tracer resulting from a
nonlinear transformation of the density field T(5) with
linear bias b4 will introduce a bias in the RSD term b (see
Refs. [68-71])

br(u) = b + by (fu?). (6)
where b3 and b7 are related to the response of the tracer T
to small variations of the density and of the line-of-sight
velocity gradient, respectively. The b’ factor is “one” for
galaxies, as their number density is conserved in the real- to
redshift-space mapping. This is however, not the case for
the Lyman alpha forest or for voids. In fact, some voids
disappear or change their size in this mapping procedure
(see Ref. [72]).

We must be thus careful when constructing the bias
model for voids, as these are equivalent to a nonlinear and
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nonlocal transformation of the galaxy density field in
redshift space.

Voids can be considered to be tracers over an extended
region characterized by their radius R. Following
Mc-Donald and Roy [81], assuming isotropy and a general
short-range nonlocality (SRNL) kernel K, with the only
condition that it must fall to zero outside a typical
scale R, we can make a Taylor expansion around
Ar=r—r, to find a general expression for the void
density contrast in redshift space as a function of the linear
galaxy field in redshift space after considering only the
leading order term

5(r) = /dArK(|Ar|)6§(r—l— Ar) + ¢,(r)

_ / dArK(|Ar]) {5;@) L0,

drl' i
1d25%(r)
2 dridrj

Ar,-Arﬂ—--} +ey(r)

—5(r) / dAFK(|AF]) + d‘jf )

1

/ dArK(|Ar])Ar,

1880)
2 drl‘drj

/ AFK (|AF)ArAr; +ey(r) + .

(7)

where ¢, is the void noise term. Note that we have assumed
the kernel is isotropic in redshift-space coordinates, which
can be made true by construction at a bare (unrenormal-
ized) level. In general SRNL can have some radial-
transverse asymmetry in redshift space.

The simple integral over K in the first term is a linear bias
D35 while the 2nd term, integrating KAr;, must be zero by
the symmetry of the kernel; and the third term, integrating
KAr;Ar; must be zero by symmetry if i # j, butif i = j,
the integral for a generic kernel will give a result of order R?
times the simple integral over the kernel in the first term,
i.e., the integral will give a result of order ~bj,R*5F.
Therefore, one gets

8(r) = bl [5g (r) + Z;—RR2V25g (r)} +ey(r) 4+ (8)

where b r 1s of order unity (e.g., if the kernel was a Gaussian

with root mean square width R, l;R would be exactly 1),
which in Fourier space is written as

o b N
Oy (k) = by [1 - TRRsz] (k) + e (k) +---. (9)

This model permits us to assume a linear void bias within
a quasi-local approximation in the large scale limit.
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Let us therefore consider the case in which voids trace
only the linear part of the galaxy field in redshift space

ov(k) = b0y (k) + &, (k), (10)
= bigbed(k) + by fud(k) + &, (k), (11)
=(1 + Bop?)bigb,d(k) + &, (k). (12)

This simplified model has two interesting implications.
First, that the bias induced by RSD for voids on large scales
is given by by, and not “one” as for galaxies. Second, that
the beta factor f, is the same as for galaxies. The key
finding of this letter is that this formula seems to describe
the results of our simulations, suggesting that the approx-
imations that go into it, i.e., neglecting nonlinear effects
explored later, are valid.

In this approximation, the multipoles of void power
spectra can be expressed by

PYY (k) = (b3)* Py (k) (13)
and the multipoles of void correlation functions by
& (s) = (D)5 (s). (14)

for multipoles [ € [0,2,4]. In addition, the multipoles of
void cross-power spectra can be expressed by

PyE(k) = by Py (k). (15)
and the multipoles of void cross-correlation functions by

£°(s) = &% (s). (16)

where we have neglected additional noise terms.

If we consider that voids trace nonlinear galaxy density
components we can demonstrate that the beta parameter for
voids is not the same as for galaxies. Below is an existence
proof but not intended to be taken literally as a prediction.

Let us consider up to second order bias in the galaxy
density contrast in redshift space and neglect nonlocal
bias terms

83(r) = b 5(r) + b (8 (r) = 0) 4 n(r) +e(r). (17)
with 62 = (6*(r)), including the RSD term 7.
To get an expression for the linear bias b, one can

cross correlate the galaxy field 63 (r) with the linear density
field 6(r)

(8(r + dr)3y(r)) = b (8(r + dr)5(r)) + (5(r + dr)n(r)).
(18)
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Since we assume that & is Gaussian, the term (5(r+dr)&*(r))
vanishes. The two remaining terms can be expressed in

Fourier space as P(k) = (5(k)5(k)) and fu?P(k) =

(5(k)7(k)) yielding hence

(Bk)53 (k) = by P(k) + fuPP(k) = (1 + po®) by P(K),

(19)
with 3, = f/ b(gl) (in our particular formulation b, = b(gl>, for
a more general case we would need to include third order
terms, see Ref. [87]).

The void density contrast in redshift space can be written
to third order bias as by neglecting for the sake of simplicity
the convolution kernel K as

5(r) = b3 85 (r) + by ((8(r))? = 0?)

5(3) /s
01 (34(r)* + (). (20)
with o7 = ((63(r))?), €, being the voids shot noise.
By cross-correlating with the dark matter density con-
trast up to second order we get

(6(r +dr)5y(r))
= B (S(r + dr)Ss(r) + b (8(r + dr) (85(r))2)
= 5 b (6 + dr)(r)) + by (8(r + drin(r))
+ 2632 b3 (5(r + dr)s(r) (5(r)? = 62))

+ 263 by (8(r + dr) (5(r)% = ) (1)), (21)
where we have used that (5(r + dr)e,(r)) = 0 and the fact
that the expected value of terms with an odd number of
Gaussian variables is zero.

Using Wick’s theorem we can write this in Fourier
space as

(k)8 (k) = by (bY + fu?) P (k)

+ab b (00* + o3, )P(K).  (22)
where agn = (5(r)n(r)), i.e., the zero-lag correlation of the
linear density and the gradient of the velocity field.

We can compress the above cross correlation
expression to

(6(k)5, (k) = (1 + pou*)byP k), (23)

by introducing an effective void bias
by = by by + 40 b (b + 3).  (24)

and defining a new void beta factor

PHYSICAL REVIEW D 95, 063528 (2017)
s(1

o

byt b 14y by (b0 + 62

[ (25)

From this equation we can see that we will only have
=P, =f/ bél) in the spacial case that voids are tracing

the linear galaxy redshift space field, i.e., when bféz) =0.
In fact, as long as voids trace only the linear galaxy
redshift space field, the beta parameter equality between
voids and galaxies is also ensured with more complex
higher order relations. If we include higher order terms in
the voids galaxy relation, up to third order, and compute its
cross correlation with the linear density field we get

(8(r + dr)&)(r)) = by (3(r + dr)33(r))

+ B+ dr)(83(r)).  (26)

where we have used that (5(r+dr)e,(r)) =0 and
(8(r +dr)(85(r))?) = 0, since 8 (r) is also a Gaussian field.
Expanding the second term in Eq. (26), we find

which in Fourier space reduces to

= 3(by")? 03P (K) + 30, fu>P(k) + 3(by 3 f1> P(k)
+6(by)26%, P(k) + 3602, P(k) + 604" 3, f1P(k)
+ 3662 P(k) + 362 fuPP (k)

= 3((b8") 035 +2(by" 203, + by o7, + b o2 ) P(K)

+ 3[02, + (bg))zaga + Zbg)a(%q + 6. fuPP(k)

=3[0}, + (bt)2035 + 26503, + o [bE + i P(R),

Combining this result with the first term of Eq. (26), we get

(B(k)8y () = bl + fulP(k),
with b = b)Y + 3655 o7, + (b")262; + 219&”0%,7 + Ol
From this we can conclude that even a nonlinear trans-
formation up to third order of the linear galaxy redshift

(28)

space will retain the same beta factor: g, = 8, = f/ bfgl).
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IV. VALIDATION OF THE RSD VOID MODEL

One can verify whether voids are tracing only the linear
galaxy redshift space field from the multipoles of the
correlation function as we have shown above, since the
ratio between the void-void and the galaxy-galaxy multi-
poles should yield a constant value in case voids share the
same beta factor as galaxies.
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To reassure, we compute also the cross-correlation
functions between voids and galaxies and define the ratio
between the void-galaxy and the galaxy-galaxy multipoles

x }/g<SL)
L)
as shown in Fig. 4 and Fig. 5.

r

(29)

526,5(s)

-100 AN -7 -7

150 200

FIG. 4. Monopoles and quadrupoles the cross-correlation functions measured from 100 PATCHY mock void and galaxy catalogs in

boxes with different void radius R bins.
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FIG. 5.
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Using the results shown in Fig. 4, we compute the ratios of the monopoles (and quadrupoles) of the void-galaxy cross-correlation

functions versus the one from galaxy autocorrelation function. The color lines showing different void sizes as described in Fig. 4.
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FIG. 6. Monopole and quadrupole ratios based on mock
catalogs as shown in Fig. 5. The numbers in red and blue
indicate the void radius for negative and positive bias, respec-
tively. The void bias by, changes sign when R is between 18
and 19 7~! Mpc.

To

FIG. 7. (r¥)? vs ro. The notations are the same as the ones in
Fig. 3 and Fig. 6. The numbers in red and blue indicate the void
radius for negative and positive bias respectively. The results agree
with our prediction, (r;)? = ry = (b},)>. However, we see also
slight deviation for smaller voids, e.g. 10 < R < 11 A~' Mpc. It
should be due to the fact that smaller voids are no longer tracing
only the linear galaxy density field in redshift space.

For the particular case in which voids are tracers of the
linear galaxy redshift space field r; = (bj,)? and r} = bj,.
The void-galaxy cross-correlation function relations lead
to a very good agreement ry == r5 as shown in Fig. 6. We
check also the relation between r, and ry; in Fig. 7 and find

PHYSICAL REVIEW D 95, 063528 (2017)

it agrees with our prediction, (r)? =ry = (bj,)*. We see
slight deviation for smaller voids, e.g. 10<R<11h~!Mpc.
It should be due to the fact that smaller voids are no longer
tracing only the linear galaxy density field in redshift space.

V. DISCUSSION AND SUMMARY

We have found that cosmic voids will in general have a
beta factor different from the galaxy one. Our results based
on mock void catalogs showed void beta factors being in
good agreement with the galaxy one indicating that they
can be approximately assumed to be quasi-local trans-
formations of the linear galaxy redshift space field.

We introduced the SRNL kernel, i.e., Eq. (7), for a
specific purpose: In Fig. 4, we see a population of voids that
appears to have zero bias in the large-separation limit;
however, they nevertheless have a BAO feature, and in fact
we have found that a zero bias population can be very good
for measuring BAO [26]. Since BAO are a feature of the
linear power spectrum, it is surprising that they appear even
for a zero-bias population, so this should be understood
before these voids are trusted for a distance measurement.
One possibility is that the BAO feature comes from
nonlinearity, but another, probably more compelling, pos-
sibility is that we have a special case of SRNL. As we saw
above, picking a population with zero large-scale bias
amounts to tuning the integral over the SRNL kernel to be
zero. However, this does not rule out, e.g., a compensated,
upside-down Mexican hat-type kernel, i.e., one that favors
the presence of a void when the density is low in the center
and high at some typical radius. The linear correlation
function will then appear convolved with this kernel—
wherever it is smooth we will see zero, but where there is a
feature like BAO on the scale of the kernel, the correlation
will be nonzero (e.g., for a delta function feature, the result
will just look like the kernel), similar to what we see in
Fig. 4. Plots of the mean mass as a function of the distance
from void centers, which are closely related to this kernel,
also look very consistent with this understanding [72].
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FIG. 8. Quadrupoles of void correlation functions from

CMASS-NGC DRI11 voids (blue points) and the averaged
correlation function from 1000 PATCHY mock void catalogs
(green area indicates the 1o region). Black dots and error bars:
quadrupole from the CMASS DR11 galaxy clustering.

APPENDIX: PARTICULAR CASE:
ZERO BIAS VOIDS

In this section, we use data from the Data Release DR11
(see Ref. [88]) of the Baryon Oscillation Spectroscopic
Survey (BOSS, see Ref. [89]). The BOSS survey uses the
SDSS 2.5 meter telescope at the Apache Point Observatory
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(see Ref. [90]), and the spectra are obtained using the
double-armed BOSS spectrograph (see Ref. [91]). The data
are then reduced using the algorithms described in [92].
The target selection of the CMASS and LOWZ samples,
together with the algorithms used to create large-scale
structure catalogs (the MKSAMPLE code), are presented
in Ref. [93].

We restrict this analysis to the CMASS sample of
luminous red galaxies (LRGs), which is a complete sample,
nearly constant in mass and volume limited between the
redshifts 0.43 <z <0.7 (see [93,94] for details of the
targeting strategy).

Based on the mock galaxy catalogs for the CMASS
sample (see Ref. [95,96]) and on the void catalog obtained
with the DIVE code (see Ref. [72]), we compute the
quadrupoles for the void population selected with a radius
cut of 16 h=' Mpc (see Fig. 8). This is the population
leading to the largest BAO signal-to-noise ratio without
further considering optimal weights (see Ref. [27]) used to
measure the BAO from CMASS BOSS DR11 data (see
Ref. [26]). We find a closely vanishing quadrupole at large
scales. We see similar behavior from DR11 PATCHY mock
catalogs.

In Fig. 9, we can see that the two-dimensional correlation
functions from the observed void catalog is as compared to
the galaxies. We find that the correlation function vanishes
on large scales, as expected for zero bias tracers. This
particular case gives further support to the void bias model,
a tracer of the linear galaxy redshift space field.
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FIG. 9. Two-dimensional correlation function for CMASS DRI11 left panel: voids; right panel: galaxies.
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