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a b s t r a c t 

Although white matter hyperintensities evolve in the course of ageing, few solutions exist to consider 

the lesion segmentation problem longitudinally. Based on an existing automatic lesion segmentation al- 

gorithm, a longitudinal extension is proposed. For evaluation purposes, a longitudinal lesion simulator is 

created allowing for the comparison between the longitudinal and the cross-sectional version in various 

situations of lesion load progression. Finally, applied to clinical data, the proposed framework demon- 

strates an increased robustness compared to available cross-sectional methods and findings are aligned 

with previously reported clinical patterns. 
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1. Introduction 

White matter hyperintensities (WMH), also known as

leukoaraiosis, as observed in FLuid Attenuated Inversion Recovery

(FLAIR), T2-weighted (T2) and proton density weighted (PD) mag-

netic resonance (MR) images are widely observed in the ageing

population. The abnormal signal, explained by a change in the

fat/water ratio, reflects a damage to the white matter. Hypotheses

related to deleterious changes in the blood supply and in the

blood brain barrier ( Wardlaw et al., 2013 ) have been put forward

to explain the occurrence of such damage, and cardiovascular risk

factors such as hypertension have been shown to be associated

to the WMH burden ( Abraham et al., 2015; Vuorinen et al., 2011 ).

Furthermore, such lesions have been linked with cognitive impair-

ment, in particular with respect to processing speed and executive

function ( Prins and Scheltens, 2015; Wakefield et al., 2010 ). 
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To further assess potential causality effects between lesion

urden and clinical outcome, new emphasis has been given

o longitudinal studies of lesion load and cognitive assessment

 Schmidt et al., 2005 ). In normal ageing, increase in the lesion

olume with time was observed with a higher rate of change cor-

elated with more severe baseline lesion volume ( Pantoni and The

ADIS Study group, 2011 ). For a normal population, progression

n leukoaraiosis has been related to motor decline ( Silbert et al.,

008 ), and cognitive disabilities ( Schmidt et al., 2005 ) as well as

emory impairment ( Gunning-Dixon and Raz, 20 0 0 ). Additionally,

esion burden at baseline has been associated with faster cognitive

ecline in Alzheimer’s disease (AD), mild cognitive impairment

MCI) and normal populations ( Carmichael et al., 2010 ). 

The evaluation of WMH progression, however, remains difficult.

n many cases, visual rating scales are used to assess the increase

n severity of the lesion burden ( Gouw et al., 2008 ). Most of them

ave however been developed for cross-sectional studies and are

ifficult to utilise in longitudinal cases due to the lack of sensitivity

o change ( Schmidt et al., 2005 ). Specific progressive rating scales

ave been proposed to alleviate this drawback ( Prins et al., 2004 ),

ut volumetric measurements appear to allow for more accurate

roup differentiation ( Pantoni and The LADIS Study group, 2011 ).

ven when using semiautomatic segmentation methods for vol-

me assessment ( Schmidt et al., 2005 ) instead of performing the

egmentation manually, the process remains time-consuming and

he strategy of looking at images back-to-back can introduce bias
under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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e  
 Schmidt et al., 2005 ). Therefore, longitudinal, robust automatic

esion segmentation solutions are greatly needed. 

Even though imaging time points can be considered indepen-

ently when automatically measuring the volume of WMH in

ongitudinal studies ( Carmichael et al., 2010 ), it has been shown

hat considering the time points separately within subject intro-

uced an additional source of variability in the results ( Elliott

t al., 2013 ). Accounting for the structural similarities between

ime points, or relating the information from one time point to

thers may increase the robustness of the method. 

The problem of longitudinal lesion assessment is of great inter-

st in other fields of neuroimaging such as multiple sclerosis (MS),

nd various methods have been designed to assess longitudinal

esion change. This issue is especially sensitive in MS, in which

he lesion load progression is non-monotonic. Methods relying on

he analysis of the differences between registered serial images, as

n Rey et al. (2002) , may be hindered by other volumetric changes

ccurring between the time points. In studies with long-term

ollow-up, in which the drop-off rate can be high ( e.g. in age-

elated studies), being able to handle different numbers of time

oints is an additional challenge. 

In the context of age-related WMH, the progressive nature of

he damage can be taken as an argument to consider consecutive

mage pairs as in Bosc et al. (2003) . However, noise and artefacts,

revalent in aging or in the demented population, may affect

ethods based on direct comparison; other solutions based on

mage averaging and model building may be advantageous. For

nstance, the use of average images to guide the processing of

ongitudinal data has been promoted in Reuter et al. (2012) . 

The solution developed in this work first consists in creating

 longitudinal intra-subject average ( Section 2.1 ), followed by the

stimation of an appropriate joint Gaussian mixture model (GMM)

 Section 2.2 ) that will finally be used to constrain the lesion

egmentation at each time point ( Section 2.3 ). The main assump-

ion of this work is that all time points can be diffeomorphically

apped to a subject-specific mean appearance. 

To assess the relevance of the proposed technique for the

tudy of WMH progression, a longitudinal lesion simulator was

eveloped ( Section 3.1 ) so as to test the method with various

ongitudinal patterns and lesion loads. A surrogate clinical val-

dation was performed using data from the Alzheimer’s disease

euroimaging Initiative (ADNI) to test whether documented cross-

ectional as well as longitudinal findings reported in the literature

ould be reproduced. 

. Method 

In the following the subscript τ denotes a specific time point

nd GW the groupwise average appearance model. Prior to the

onstruction of the average, an expectation maximisation (EM)

lgorithm with outlier detection and bias field correction is per-

ormed on each individual time point. The intensities Y τ are the

esulting log-transformed, normalised and bias field corrected

ntensities of the skull-stripped images. With N the number of

oxels and D the number of modalities, image intensities are

ectorised into Y (d) = { y d1 , · · · , y dn , · · · y dN } with y dn the intensity

t voxel n of modality d , so that 

 = 

⎛ 

⎝ 

Y (1) 

. . . 

Y (D ) 

⎞ 

⎠ . 

.1. Longitudinal intra-subject average 

In order to build the average appearance model, two main

omponents linking the individual images to the average space are
eeded: a spatial transformation and an intensity transformation.

n intensity matching between images is needed to account for

hanges in contrast, MR scanning variations and some artefacts.

hese transformations are obtained through an iterative process,

roved to limit bias towards a specific time point. In order to avoid

nrealistic spatial deformations, affine transformations roughly 

ligning the images are first applied before considering non-

igid transformations to obtain the final spatial transformations

 τ → GW 

. At each iteration, the intensities of the images spatially

ransformed to the GW space are mapped to the intensities of

he current average image using a polynomial fit of degree 2 for

ach modality used. More formally, the intensity mapping and

he resulting mapping coefficients h (d) 
τ for one modality d can be

xpressed as 

rgmin 

h (d) 
τ

‖ A 

(
T τ→ GW 

(Y (d) 
τ ) 

)
· h 

(d) 
τ − Y (d) 

GW 

‖ 

2 

here A (T τ→ GW 

(Y (d) 
τ )) is the polynomial matrix transformation of

 τ→ GW 

(Y (d) 
τ ) such that 

 (Y ) = 

⎛ 

⎝ 

1 y 1 y 2 1 
. . . 

. . . 
. . . 

1 y N y 2 N 

⎞ 

⎠ . 

The steps to create an average appearance model are: 

Step 1 Register each of the individual time points to the current

average image. 

Step 2 Map the intensities of each resampled image to the

current average image using a polynomial fit of degree 2. 

Step 3 Average all resampled and intensity transformed images

to create the new current average image. 

Step 4 Go back to step 1. 

With this set up the loop is performed five times: the first iter-

tion consists in the estimation of a rigid transformation followed

y two affine transformations before allowing for a non-rigid

egistration at the last two iterations. 

.2. Model selection 

After creating the average appearance model, patient-specific

issue priors and brain mask are obtained using the GIF (Geodesic

nformation Flow) pipeline developed in Cardoso et al. (2015) . In

his method, label-fusion is used to generate subject specific tissue

riors ( A ) by propagating pre-segmented templates and fusing

hem locally according to Cardoso et al. (2015) . Using the priors

nd brain mask as inputs, BaMoS ( Sudre et al., 2015 ) is used to

odel the data according to a three-level Gaussian mixture. The

rst level segments inliers from outliers observations while the

natomical tissue information is introduced at the second level

o that each of the inlier and outlier tissue classes is modelled

y a Gaussian mixture at the third level of the model. The final

istribution model is then expressed as 

f ( Y | �K ) = 

N ∏ 

n =1 

∑ 

l∈ I,O 

J ∑ 

j=1 

K l j 
+1 ∑ 

k =1 

πnl j k 
M 

(
y n | θl j k 

)
here πnl j k 

are the spatially varying weights in the mixture ob-

ained by multiplying the class mixing proportions, and the inlier

nd tissue at the previous levels, l refers to the segmentation

etween inliers ( I ) and outliers ( O ), j to the anatomical classes and

 to the individual Gaussian components. The notation K is used

o encompass the model complexity (number of components for

ach tissue class K l j 
), while � gathers the model parameters of

ach individual component (mixture weight w l j k 
, mean μl j k 

and
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covariance matrix �l j k 
). Finally � is defined as { K, �, A, B }, B

being the inlier/outlier atlases. In order to improve the sensitivity

of BaMoS to outlier lesions, an additional step is included in the

initialisation phase of the algorithm. Instead of the flat outlier

priors used in the original BaMoS paper, those are replaced after

the first EM convergence with a spatially varying outlierness map,

also known as a typicality map ( Van Leemput et al., 2001 ). This

typicality map is estimated using the formulation presented in

Van Leemput et al. (2001) with κ= 3. The typicality value for a

given voxel n follows the expression: 

 n = 

J ∑ 

j=1 

p n j 

G 
(
y n | θI j 

)
G 
(
y n | θI j 

)
+ 

1 √ 

( 2 π) 
D | �I j | exp 

(
−1 

2 

κ2 

)
where p n j = p nI j 

+ p nO j 

2.3. Constraint over individual time points 

Once a model for the longitudinal intra-subject average image

has been obtained, it can be used to constrain the lesion segmen-

tation of each time point. First, the anatomical subject-specific

statistical atlases are transformed to the space of each time point

using the backward transformations T GW → τ obtained during the

averaging process. The groupwise model parameters �GW are

then used as priors over the model parameters for each time

point whose intensities are mapped to the average appearance

model. The model structure K 

GW estimated for the average image

is also preserved. Using �GW as priors and K 

GW as the model, the

individual time point model parameters are estimated through an

EM algorithm. Priors over the means are introduced as normal dis-

tributions while Inverse-Wishart distributions are chosen as priors

for the covariance. As such, the expectation step is the same as

in BaMoS but the M-step consists of maximizing at iteration t the

following expectation E , considering Z τ the hidden data labels 

E 

f 

(
Z τ | ̂ Y τ , �τ (t−1) 

K GW 
, ̂ h τ

) f 

(
ˆ Y τ , Z τ | �τ

K GW , ̂  h τ

)
· f 

(
�τ

K GW | �GW 

K GW 

)
. 

The distribution f 
(
�K GW 

| �GW 

K GW 

)
in which the script τ has been

dropped for notation convenience is expressed as 

f 
(
�K GW | �GW 

K GW 

)
= 

∏ 

l∈ I,O 

J ∏ 

j=1 

K l j ∏ 

k =1 

[ 
G 
(
μl j k 

| μGW 

l j k 
, �GW 

l j k 

)
IW 

(
�l j k 

| ̃  N �GW 

l j k 
, N 

)] 
, 

where G refers to a normal distribution and IW to an Inverse-

ishart distribution with 

˜ N = N + D + 1 . With �(t) 
l j k 

being the

weighted covariance matrix, incorporating these distributions

into the maximisation process leads to the following update

equations: 

μ(t) 
l j k 

= 

( 

N ∑ 

n =1 

p (t) 
nl j k 

M ˆ h 
( ̂ y n )�

−1(t−1) 
l j k 

+ μGW 

l j k 
�GW 

l j k 

−1 

) 

·
( 

N ∑ 

n =1 

p (t) 
nl j k 

�(t−1) 
l j k 

−1 + �GW 

l j k 

−1 

) −1 

�(t) 
l j k 

= 

˜ N �GW 

l j k 
+ 

N ∑ 

n =1 

p (t) 
nl j k 

�(t) 
l j k 

N ∑ 

n =1 

p (t) 
nl j k 

+ 

˜ N 

. 

Following this optimisation for each time point, the lesion seg-

mentation can be obtained. It consists here of the selection of a

subset of the outliers weighted with respect to the characteris-

tics of the WM inlier distribution : first, outlier voxels with an
nlier or hypo-intense FLAIR Mahalanobis distance with respect

o the healthy white matter are excluded; lesion clusters that fall

utside of the white matter mask are also excluded. This mask is

btained by excluding regions obtained from the label propagation

ramework that cannot plausibly correspond to WM lesions such

s the ventricles and the cortical ribbon. To illustrate the longitu-

inal framework, Fig. 1 presents a graphical representation of the

ongitudinal segmentation process. 

. Validation on simulated data 

In order to assess the validity and sensitivity of the longitudinal

ramework developed in this work, both synthetic and clinical data

ere used. Synthetic data allows for a ground truth comparison

nd was designed to assess the sensitivity to change of the tested

lgorithms. 

.1. Lesion simulator 

.1.1. Image production 

In line with the synthetic image building detailed in Jack Jr

t al. (2001) , two sets of data are used to simulate lesions: a re-

eiving set, comprised of subjects with minimal to no WMH, and a

onating set, comprised of images with non zero WMH lesion load

nd their associated probabilistic lesion segmentation. The process

f simulating lesions involves spatially and intensity transforming

he lesions from the donating set to the receiving set. For the re-

eiving set, T1-weighted and FLAIR MRI scans of the ADNI database

ere used, with the FLAIR image affinely registered to the T1 space

esulting in 1 mm 

3 isotropic images. To ensure that lesions are

ontained within the WM, lesion maps are first propagated un-

er the constraint that they fall within the WM. These lesions

re then shrunk to simulate different longitudinally consistent

esion loads. To simulate shrunken lesions, the initial propagated

MH load is modified by thresholding the probabilistic lesion

egmentation L at a certain value X , followed by a normalisation

tep, i.e. L S = (L − X ) /X ∀ L > X, with L being the original lesion

robability per voxel. The value of X is chosen to produce an

xact reduction in WMH volume of D. As L new 

can contain hard

dges, L S is then smoothed with a Gaussian filter and, due to the

on-volume-preserving nature of the Gaussian smoothing process,

e-mapped to have an exact reduction in WMH volume of D

hrough a piecewise linear transformation. Defining p b such that 

L S | L S > p b = �L | L > 0 . 5 − D, 

he following system to define the two linear mapping is solved: 

b 1 = 0 

a 1 · p b + b 1 = 0 . 5 

}
if L S < p b 

a 2 · p b + b 2 = 0 . 5 

a 2 + b 2 = 1 

}
if L S > p b 

ince p new 

is only a probability and not an actual intensity, p new 

s transformed into an intensity map by drawing samples from

 Gaussian distribution with parameters given by the lesion

istribution of the donating set. 

To account for variation over time of scanner characteristics

nd subject positioning when simulating lesion evolution and atro-

hy random bias field and rigid transformations are applied to the

mages. The bias field, modelled as a linear combination of polyno-

ial basis functions is obtained by randomly choosing the linear

oefficients. Given a probabilistic lesion map L , the lesion intensi-

ies G sampled from a Gaussian distribution, the log-transformed

ias field BF , the rigid transformation R and the initial image I , the
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Fig. 1. Diagram of the longitudinal segmentation process. 

Fig. 2. Results of the lesion simulator after application of the random bias field for four time points with no rigid transformation applied. For realism purposes of increased 

lesion burden the time points are reversed compared to their order of simulation. 
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nal simulated image S can be expressed at voxel n by 

 n = R ( exp (BF n ) · ( L n G n + (1 − L n ) I n ) ) . 

In this work, a standard deviation of 1 mm was used for the

aussian smoothing. An example of the outcome of the lesion

imulator is presented in Fig. 2 on which the same slice of the

LAIR image (before rigid transformation) is presented at four

ime points of the lesion progression. 

.1.2. Simulated evolution patterns 

Different patterns of WMH progression with differing lesion

oads and time points were simulated. The database used for

MH simulation comprised of 5 donating images and 17 re-

eiving images. 4 patterns were simulated using the following

mplementation: 

Linear_500 : Linear reduction of 500 mm 

3 per step, spanning

6 time points. 

Linear_750 : Linear reduction of 750 mm 

3 per step, spanning

4 time points. 

NonLinear_5 : Non-linear reduction of 5% per step, spanning 6

time points. 

NonLinear_15 : Non-linear reduction of 15% per step, spanning

4 time points. 

Although the progression are implemented by load shrinkage,

or clinical realism and illustration purposes, the time points are

hen reordered to simulate a progressive increase in lesion load. 
For each of these progression schemes (denoted Slope if not

odified), two additional plateauing patterns were added to test

or longitudinal bias: 

Flat_High 1 time point with highest load was added to form a

high plateau. 

Flat_Low 2 time points with lowest load were added to form a

low plateau. 

Then, to simulate treatment effect, com posite patterns were

reated using the simulated linear patterns in order to simulate

hanges in the slope: 

Treatment One increase step of 750 mm 

3 followed by two

steps with an increase of 500 mm 

3 . 

No treatment 3 steps with an increase of 750 mm 

3 per step. 

Fig. 3 a plots an example of the four typical simulated evolution

aths with similar maximum loads, different minimum loads

nd their associated plateauing versions while Fig. 3 b presents

n example of the modelled combination of linear patterns to

imulate the treatment effect case. 

Finally, in order to assess situations where brain atrophy

ccurs concomitantly to lesion progression, atrophy was further

imulated with a linear lesion progression of 750 mm 

3 per

tep. To do so, the progressive deformations observed in an

D subject were applied sequentially to the receiving image.

n order to maintain the realism of the lesion maps, the zone
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Fig. 3. Left) Example of the four simulated evolution patterns. The dashed horizontal lines represent the plateauing experiments at either high (Flat_High) or low (Flat_Low) 

load. Right) Example of the combination of two linear patterns to simulate a treatment related change. 

Table 1 

Summary of the ground truth volumes (Lesion probability map – intersec- 

tion of baseline segmentations) across the different evolution patterns. 

NonLinear_5 Linear_750 Linear_500 NonLinear_15 

Mean 2871 2793 2645 2510 

SD 2519 2619 2594 2307 

Median 2881 2542 2379 2206 

IQR [467 4040] [314 4176] [188 3941] [401 3745] 
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of allowed lesion evolved accordingly. The NiftyReg package

( https://sourceforge.net/p/niftyreg/git/ci/dev/tree/ ) was used for all

registration and resampling operations. Since the changes across

time points are the most severe in this specific series, a test of

robustness with respect to the order in which the images are

considered to form the average was performed considering the

forward and backward series of time points. 

3.2. Segmentation assessment 

The longitudinal framework (Long) was compared to the cross-

sectional application of BaMoS performed both in its original

cross-sectional version (Cross) ( Sudre et al., 2015 ) and its sensitiv-

ity enhanced variant (Cross+), i.e. when using the typicality map

to estimate the outlier atlas. As the receiving images used in the

simulation can contain trace amounts of lesions, the region where

all methods agreed in the presence of lesions for the time point

with minimal lesion load was excluded from the analysis, both in

terms of volume and overlap. Ground truth (GT) lesion segmenta-

tions are thus the simulated lesion probability maps corrected for

the baseline lesion segmentation intersection of all given methods.

Statistics of the ground truth volumes are presented in Table 1 .

Those corrected differences were finally compared in terms of

Dice score coefficient (DSC), true positive rate (TPR) and average

distance (AvDist) as defined in Styner et al. (2008) . Due to the

simulation process, images cannot be considered as independent

for the same subject. Therefore, statistics were calculated over the

mean per subject in each pattern. The origin of the errors was

further investigated differentiating false positive (FP) and false

negatives (FN), outline (OE) and detection error (DE) as defined in
ack et al. (2012) . Definition of the assessment measures can be

ound in Appendix A. 

The publicly available toolbox LST included in SPM was used

s a point of external comparison in the experiment relative to

he treatment effect and in the sequence where atrophy was

imulated. This method, proposed in Schmidt et al. (2012) devel-

ps a lesion growing model based on the thresholding of outlier

eliefs maps. This threshold has to be chosen by the user, with

 default of 0.30 and this choice is denoted LST-d. The value of

.25 has been considered as adequate when dealing with ageing

opulations ( Manjón et al., 2010 ) and is therefore the second

alue chosen for comparison and denoted LST-a. Recently a new

ipeline called LPA that does not require any user interaction has

een included in the toolbox. This configuration was also tested

s additional point of comparison. Additionally, the Lesion-TOADS

lgorithm, available as a plugin to the medical image analysis

oftware MIPAV was further used for comparison purposes. This

ethod uses fuzzy C-means in a framework ensuring topologi-

al consistency and correcting for bias field ( Shiee et al., 2010 ).

ligned skull-stripped T1 and FLAIR images were provided as

nput to the algorithm using the same mask and inter-sequence

lignment as for Cross, Cross+ and Long to ensure comparability. 

.3. Results 

.3.1. Evolution patterns 

The assessment across the evolution patterns are presented

n Table 2 . With respect to the differences in DSC better scores

ere observed for patterns with lower ranges of change and

igher median load (NonLinear_5) For the lesion loads allowing

 complete evolution for the four evolution patterns, the slopes

f extracted volumes obtained for the three methods and the

round truth are given in Table 3 . Slopes were obtained using

 mixed effects model with random slope and intercept. Note

hat the rigid transformation may modify the actual volume of

esion and thus explains why the ground truth slopes are slightly

ifferent from expected in the case of linear transformations. As

n approximation, non linear evolutions are also linearly modelled.

https://sourceforge.net/p/niftyreg/git/ci/dev/tree/
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Table 2 

Segmentation assessment table for the longitudinal framework according to 

the different strategies of evolution. Results are given in the form median 

[IQR], where the median are calculated across subjects on the scores average 

over time points. 

Linear_500 Linear_750 NonLinear_5 NonLinear_15 

DSC 0 .65 0 .66 0 .66 0 .64 

[0 .28 0.77] [0 .34 0.76] [0 .41 0.76] [0 .41 0.74] 

TPR 0 .83 0 .80 0 .81 0 .79 

[0 .66 0.91] [0 .57 0.88] [0 .65 0.88] [0 .67 0.85] 

AvDist 2 .07 ] 1 .89 1 .93 2 .05 

[1 .00 9.83] [1 .06 9.69] [0 .96 5.46] [1 .11 6.62] 

OE/TotF 0 .81 0 .77 0 .82 0 .80 

[0 .49 0.90] [0 .53 0.88] [0 .67 0.90] [0 .57 0.88] 

OEFP/FP 0 .72 0 .71 0 .74 0 .69 

[0 .41 0.86] [0 .47 0.85] [0 .55 0.87] [0 .50 0.85] 

OEFN/FN 0 .97 0 .93 0 .97 0 .94 

[0 .88 1.00] [0 .78 0.97] [0 .91 1.00] [0 .90 0.97] 

FP/TotF 0 .83 0 .79 0 .77 0 .76 

[0 .60 0.92] [0 .59 0.86] [0 .56 0.87] [0 .59 0.82] 

Acronyms expansion: DSC - Dice Similarity Coefficient; TPR - True Positive 

Rate; AvDist - Average Distance; FP/TotF - Proportion of false positives in 

the total of error; OE/TotF - Proportion of outline error in the total error; 

OEFP/FP - Proportion of false positive outline error in the false positives; 

OEFN/FN - Proportion of false negative outline error in the false negatives. 
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Fig. 4. Comparison of the DSC distribution between the three methods across the 

different evolution patterns. Borders of the boxes represent the 25th and 75th per- 

centile while the thick line in each box corresponds to the median. Whiskers are 

limited to the 5th and 95th percentiles. 

F  

t  

d  

a  

s  

p  

p  

w  

d  

u  

t  

f  

a  

d  

m  

o

 

a  

u  

t  

m  

C  

m  

o  

o

3

 

w  

e  
.3.2. Plateauing bias evaluation 

Possible bias introduced by a flat WMH load at the lowest

Flat_Low) or at the highest (Flat_High) end of the progression

eriod was evaluated on the common time points between the

ets. The results for this experiment are presented in Table 4 em-

hasising the stability of the method when including plateauing

ime points. Additionally the stability between time points on

he plateauing regions was evaluated using Lin concordance and

he percentage of change observed evaluated for the three pre-

ented methods. Results are presented in Table 5 and show a

tronger concordance for Long compared to Cross and Cross+ in

oth plateauing situations (high and low loads). Furthermore, the

ercentage difference between the detected volumes at plateauing

egion was non-significantly different from 0 for the Long version.

f this finding suggests a stronger stability than the cross-sectional

ersions, it must be underlined that a subtle bias could still go

nnoticed due to the limited sample size. 

.3.3. Comparison between cross-sectional and longitudinal methods 

In order to compare the proposed longitudinal version of

aMoS with the cross-sectional methods, the assessment measures

ere calculated across the 85 subjects for the mean assessment

ver each pattern. The corresponding results are summarised in

able 6 . Due to the non-normality of the differences, a Wilcoxon

est was applied to assess pairwise statistical significance between

he DSC, TPR and AvDist. An increased performance in the order

ross < Cross+ < Long was observed and all tests were significant

ith p-value < 0.001 except for some comparisons between Cross+

nd Long with the average distance that was only significant for

he NonLinear_5 pattern and for the DSC in pattern Linear_750

hat reached a p -value of 0.02. The comparison of the DSC across

ethods for the different progression patterns is presented in
Table 3 

Table summarising the slopes of volume change obtained for 

methods and the expected ground truth. 

Linear_500 Linear_750 

Cross 502 .02 [422.14 581.9] 684 .80 [525.88 843.73] 

Cross + 436 .81 [345.65 527.96] 670 .58 [509.08 832.07] 

Long 277 .21 [234.40 320.01] 550 .02 [448.19 651.85] 

Ref 424 .96 [416.75 433.17] 703 .4 9 [6 83.39 723.59]
ig. 4 illustrating the higher variances in assessment metrics for

he cross-sectional methods compared to the proposed longitu-

inal version. Additionally, the robustness was tested through

 linear regression of the ground truth volumes against the

egmented volumes for all time points and subjects of the non-

lateauing evolution patterns. Table 7 summarises the regression

arameters, forcing the intercept to 0. In order to assess the bias

ith respect to the volume of lesions, Bland–Altman plots were

rawn for all three methods. The difference between reference vol-

me and segmented volume is plotted against the average of the

wo volumes in Fig. 5 . The lines in the upper corners of the graphs

or Cross and Cross+ correspond to cases with a very smooth

ppearance for which the cross-sectional methods had more

ifficulty in detecting lesions than Long. Conversely, the proposed

ethod (Long) benefited from the increased signal-to-noise ratio

f the group-mean to enable the detection of these subtle lesions. 

Lastly, the longitudinal evolution of the DSC, corrected for the

greement volume at baseline, was compared across methods

sing a linear mixed model. Significant difference was observed in

he slopes with a quicker decrease in DSC for the cross-sectional

ethods (p-value < 0.0 0 01 and p -value = 0.0 07 for Cross and

ross+ respectively). The corresponding plots of the predicted

ean DSC are presented in Fig. 6 . This illustrates, above the effect

f the lesion volume, the impact of the smoothness of the lesions

n the quality of the segmentation. 

.3.4. Simulation of treatment effect 

For the 51 concerned cases, the slopes of white matter change

ere assessed using linear mixed models to compare the fast

volution (linear change of 750 mm 

3 per step) and the combined
each simulated experiment for the three segmentation 

NonLinear_5% NonLinear_15 

430 .59 [347.97 513.21] 691 .19 [527.99 854.38] 

297 .01 [207.06 386.95] 832 .45 [660.85 1004.05] 

168 .96 [110.69 227.23] 638 .55 [534.12 742.97] 

 247 .08 [216.26 277.89] 861 .56 [795.38 927.73] 
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Table 4 

Segmentation assessment measures when evaluating the influence of plateauing stages on the longitudinal framework. By contrast to 

Flat_High and Flat_Low, Slope refers to a pattern without plateauing values. Results are given under the format median [IQR] and median 

are obtained across subjects on the average on common time points. 

DSC TPR AvDist OE/TotF OEFP/FP OEFN/FN FP/TotF 

Linear_500 Flat_Low 0 .68 0 .83 1 .89 0 .81 0 .70 0 .96 0 .78 

[0 .27 0.76] [0 .62 0.89] [1 .14 11.91] [0 .46 0.89] [0 .41 0.83] [0 .85 0.98] [0 .62 0.86] 

Flat_High 0 .67 0 .84 1 .88 0 .81 0 .73 0 .96 0 .81 

[0 .28 0.76] [0 .68 0.90] [1 .21 10.63] [0 .51 0.89] [0 .40 0.86] [0 .86 0.98] [0 .67 0.89] 

Slope 0 .65 0 .83 2 .07 0 .81 0 .72 0 .97 0 .83 

[0 .28 0.77] [0 .66 0.91] [1 .00 9.83] [0 .49 0.90] [0 .41 0.87] [0 .88 1.00] [0 .60 0.92] 

Linear_750 Flat_Low 0 .60 0 .77 2 .92 0 .76 0 .68 0 .93 0 .81 

[0 .36 0.73] [0 .59 0.88] [1 .19 9.96] [0 .57 0.87] [0 .49 0.84] [0 .75 0.98] [0 .66 0.88] 

Flat_High 0 .67 0 .78 2 .10 0 .76 0 .71 0 .94 0 .81 

[0 .34 0.78] [0 .61 0.88] [0 .95 9.91] [0 .56 0.90] [0 .50 0.86] [0 .76 0.97] [0 .62 0.87] 

Slope 0 .66 0 .80 1 .89 0 .77 0 .71 0 .93 0 .79 

[0 .34 0.76] [0 .57 0.88] [1 .06 9.69] [0 .53 0.88] [0 .47 0.85] [0 .78 0.97] [0 .59 0.86] 

NonLinear_5 Flat_Low 0 .65 0 .81 1 .98 0 .81 0 .73 0 .96 0 .76 

[0 .41 0.76] [0 .67 0.89] [1 .08 5.38] [0 .68 0.89] [0 .55 0.84] [0 .91 0.98] [0 .60 0.83] 

Flat_High 0 .68 0 .79 1 .99 0 .82 0 .71 0 .96 0 .75 

[0 .41 0.76] [0 .66 0.88] [1 .18 5.65] [0 .66 0.89] [0 .56 0.85] [0 .90 0.98] [0 .56 0.85] 

Slope 0 .66 0 .81 1 .93 0 .82 0 .74 0 .97 0 .77 

[0 .41 0.76] [0 .65 0.88] [0 .96 5.46] [0 .67 0.90] [0 .55 0.87] [0 .92 1.00] [0 .56 0.87] 

NonLinear_15 Flat_Low 0 .64 0 .80 1 .95 0 .82 0 .70 0 .96 0 .79 

[0 .37 0.73] [0 .71 0.88] [1 .17 6.71] [0 .60 0.88] [0 .51 0.85] [0 .92 0.98] [0 .69 0.85] 

Flat_High 0 .65 0 .80 1 .81 0 .8 0 .71 0 .94 0 .73 

[0 .38 0.76] [0 .66 0.86] [1 .06 6.51] [0 .61 0.89] [0 .50 0.85] [0 .90 0.97] [0 .58 0.84] 

Slope 0 .64 0 .79 2 .05 0 .8 0 .69 0 .94 0 .76 

[0 .41 0.74] [0 .67 0.85] [1 .11 6.62] [0 .57 0.88] [0 .50 0.85] [0 .90 0.97] [0 .59 0.82] 

Acronyms expansion: DSC - Dice Similarity Coefficient; TPR - True Positive Rate; AvDist - Average Distance; FP/TotF - Proportion of false 

positives in the total of error; OE/TotF - Proportion of outline error in the total error; OEFP/FP - Proportion of false positive outline error 

in the false positives; OEFN/FN - Proportion of false negative outline error in the false negatives. 

Table 5 

Percentage of change between plateauing time points at either high or low volume and presented with 

median and IQR for each of the methods and the ground truth. The p-value corresponds to the Wilcoxon 

two-side test that the median is different from 0. For each type of plateau, the fourth row gives the Lin 

concordance between plateauing time points. 

Cross Cross + Long Ref 

Flat_High % change median 3 .14 2 .28 0 .21 0 .09 

% change IQR [ −37.80 50.00] [ −17.77 25.11] [ −8.19 9.29] [ −1.99 1.89] 

p -value 0 .02 0 .06 0 .54 0 .83 

Lin concordance 0 .81 0 .95 0 .98 0 .999 

Flat_Low % change median −3.52 6 .53 1 .53 0 

% change IQR [ −52.9 111.3] [ −17.1 7.78] [12 .0 17.6] [ −1.96 1.46] 

p -value 0 .0021 0 .0 0 02 0 .05 0 .42 

Lin concordance 0 .49 0 .87 0 .95 0 .999 
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evolution (initial step of 750 3 change followed by two steps of

500 3 change) after bifurcation of the evolutions. The results of the

estimation and confidence interval are presented in Table 8 illus-

trating notably the lower measurement variance observed for the

longitudinal framework compared to the cross-sectional methods.

Noticeably, the LST method with threshold 0.25 did not appear to

segment properly the lesions. 

3.3.5. Simulation of lesion growing with atrophy – Robustness to 

order 

When assessing the robustness of the longitudinal method to

the order in which images were considered to build the average,

the linear regression between volumes obtained in the forward

or the backward scheme led to a R2 of 0.99 and the median

DSC between the two segmentations was of 0.98. Statistics on

the difference in DSC (wrt the ground truth) per time point are

gathered in Table 9 . With respect to other cross-sectional meth-

ods, Table 10 presents the evolution of DSC with atrophy across

methods while Fig. 7 compares the different segmentations for a

given simulated sequence. 
. Application to clinical data 

.1. Data and experiment 

Although no ground truth is available for the lesion segmenta-

ion in clinical practice, a surrogate validation consists of testing

t against known clinical findings. In the case of the proposed

ongitudinal framework, both cross-sectional and longitudinal

bservations can be tested. Here, the longitudinal framework

as applied on the subjects from the ADNI (Alzheimer’s Disease

ational Initiative) database ( adni.loni.usc.edu ) for which T1 and

LAIR images on at least four time points were available along with

enetic status for APOE , that in its allelic variant ε4 (among ε2 ε3

nd ε4) is a known risk factor for AD and a presumed risk factor

or white matter lesions. The APOE status refers to the two alleles

f the gene present in a given individual. Due to its very low

revalence in the population (about 2%), the APOE - ε2 were dis-

arded from the analysis, thus allowing for the combination ε 3 ε 3,

 4 ε 3 or ε 4 ε 4. Launched in 2003, ADNI’s primary goal is to test

hether the combination of serial MRI and other biological and

europsychological markers is relevant to assess the development

http://adni.loni.usc.edu
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Table 6 

Segmentation assessment comparison for the mean over time points of the three compared methods across all subjects for all non 

plateauing patterns. Results are given under the form median [IQR]. 

DSC TPR AvDist OE/F OEFP/FP OEFN/FN FP/F 

Linear_500 Cross 0 .26 0 .21 14 .54 0 .52 0 .39 0 .62 0 .13 

[0 .09 0.39] [0 .09 0.33] [6 .97 21.42] [0 .28 0.70] [0 .25 0.57] [0 .37 0.75] [0 .04 0.33] 

Cross + 0 .58 0 .64 5 .59 0 .75 0 .68 0 .89 0 .64 

[0 .26 0.74] [0 .43 0.83] [1 .17 13.66] [0 .45 0.89] [0 .41 0.85] [0 .67 0.96] [0 .49 0.74] 

Long 0 .65 0 .83 2 .07 0 .81 0 .72 0 .97 0 .83 

[0 .28 0.77] [0 .66 0.91] [1 .00 9.83] [0 .49 0.90] [0 .41 0.87] [0 .88 1.00] [0 .60 0.92] 

Linear_750 Cross 0 .28 0 .20 11 .45 0 .56 0 .46 0 .62 0 .11 

[0 .12 0.46] [0 .09 0.35] [3 .51 22.29] [0 .37 0.79] [0 .31 0.61] [0 .34 0.82] [0 .03 0.28] 

Cross + 0 .64 0 .69 2 .06 0 .79 0 .70 0 .84 0 .60 

[0 .30 0.75] [0 .39 0.81] [1 .02 11.02] [0 .53 0.88] [0 .42 0.85] [0 .59 0.93] [0 .42 0.70] 

Long 0 .66 0 .80 1 .89 0 .77 0 .71 0 .93 0 .79 

[0 .34 0.76] [0 .57 0.88] [1 .06 9.69] [0 .53 0.88] [0 .47 0.85] [0 .78 0.97] [0 .59 0.86] 

NonLinear_5 Cross 0 .21 0 .16 14 .03 0 .51 0 .35 0 .54 0 .07 

[0 .09 0.34] [0 .07 0.27] [8 .22 22.49] [0 .3 0.68] [0 .24 0.50] [0 .28 0.72] [0 .04 0.16] 

Cross + 0 .56 0 .69 3 .47 0 .78 0 .65 0 .88 0 .58 

[0 .33 0.75] [0 .41 0.81] [1 .12 9.03] [0 .57 0.89] [0 .43 0.85] [0 .66 0.95] [0 .36 0.69] 

Long 0 .66 0 .81 1 .93 0 .82 0 .74 0 .97 0 .77 

[0 .41 0.76] [0 .65 0.88] [0 .96 5.46] [0 .67 0.90] [0 .55 0.87] [0 .92 1.00] [0 .56 0.87] 

NonLinear_15 Cross 0 .25 0 .19 11 .70 0 .53 0 .42 0 .55 0 .10 

[0 .11 0.38] [0 .07 0.28] [6 .02 17.65] [0 .37 0.70] [0 .31 0.60] [0 .36 0.76] [0 .03 0.20] 

Cross + 0 .57 0 .65 2 .64 0 .79 0 .64 0 .89 0 .55 

[0 .31 0.73] [0 .43 0.78] [1 .11 7.21] [0 .56 0.89] [0 .45 0.82] [0 .68 0.94] [0 .37 0.71] 

Long 0 .64 0 .79 2 .05 0 .8 0 .69 0 .94 0 .76 

[0 .41 0.74] [0 .67 0.85] [1 .11 6.62] [0 .57 0.88] [0 .50 0.85] [0 .90 0.97] [0 .59 0.82] 

Acronyms expansion: DSC - Dice Similarity Coefficient; TPR - True Positive Rate; AvDist - Average Distance; FP/TotF - Proportion of 

false positives in the total of error; OE/TotF - Proportion of outline error in the total error; OEFP/FP - Proportion of false positive 

outline error in the false positives; OEFN/FN - Proportion of false negative outline error in the false negatives. 

Fig. 5. Bland–Altman plots of the reference and segmented volumes. 

Table 7 

Coefficients and corresponding 95% confidence intervals of the re- 

gression between segmented and reference volume for the three 

compared segmentation methods. Regression is performed to ac- 

count for the within subject correlations in volumes. 

Cross Cross + Long 

Slope 0 .31 [0.26 0.36] 0 .98 [0.90 1.06] 1 .12 [1.05 1.20] 

R 2 0 .60 0 .90 0 .94 

Table 9 

Statistics of the difference in DSC when considering the forward 

or backward order when building the average image. 

Mean SD Median IQR 

TP1 −0.0036 0.027 −0 .0 0 09 [ −0.0 072 0.0 055] 

TP2 −0.0015 0.018 −0 .0 0 02 [ −0.010 0 0.0 034] 

TP3 −0.0 0 07 0.013 0 .0 0 06 [ −0.0 037 0.0 031] 

Total −0.0019 0.020 −0 .0 0 03 [ −0.0 046 0.0 034] 
Table 8 

Slope estimation after evolution bifurcation for the three methods. M

Cross Cross + Long 

Treatment Mean 439 532 370 

CI [282 596] [383 681] [269 471]

No treatment Mean 786 782 627 

CI [597 975] [629 935] [525 729]

Statistics p -value 0.006 0.022 0.0 0 03 
ean and confidence intervals (CI) for the two slopes are given. 

LPA LST-d LST-a TODAS 

316 −4.4 0.47 474 

 [34 598] [ −13.7 4.9] [ −10.9 11.8] [ −684 1632] 

332 −8.7 −9.93 1559 

 [50 613] [ −18.0 0.6] [ −21.3 1.4] [400 2717] 

0.93 0.48 0.20 0.18 
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Table 10 

DSC for each time point after baseline for the different methods compared. 

Cross Cross + Long LPA LST-d LST-a TOADS 

TP 1 Median 0.21 0.67 0.68 0.65 0 0 0.63 

IQR [0.01 0.47] [0.61 0.75] [0.62 0.75] [0.56 0.74] [0 0.004] [0 0.008] [0.52 0.73] 

TP 2 Median 0.10 0.73 0.72 0.69 0 0 0.67 

IQR [0.01 0.45] [0.66 0.77] [0.66 0.77] [0.61 0.76] [0 0.0 0 08] [0 0.005] [0.49 0.74] 

TP 3 Median 0.46 0.68 0.68 0.71 0.003 0.004 0.73 

IQR [0.16 0.57] [0.64 0.72] [0.64 0.73 ] [0.64 0.77] [0 0.01] [0 0.02] [0.66 0.80] 

Global Median 0.32 0.69 0.69 0.70 0 0.002 0.69 

IQR [0.02 0.51] [0.64 0.75] [0.64 0.75] [0.61 0.76] [0 0.005] [0 0.008] [0.55 0.75] 

Fig. 6. Mean DSC evolution with 95% CI when correcting for baseline volume across 

the three evaluated methods. 
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of Alzheimer’s disease and the progression of mild cognitive im-

pairment. Further information about imaging and genetic protocols

can be found at www.adni-info.org . Focusing here on WMH, the

effect of age as risk factor was assessed on the baseline volumes. 

Since in ADNI, some subjects undergo MRI scanning sessions at

a small time interval ( < 5 months), during which, the volume of

WMH is assumed to change subtly and the variability of change

across subjects is supposed to be reduced, such series of scans

were used as a surrogate for a short term change experiment to

evaluate the ability of various methods to detect subtle change

and the variability in the measured changes. Therefore, both the

monthly volume difference and relative difference between close

time points were compared across methods. 

Additionally, in ageing, the amount of WMH is not expected to

decrease in time. Thus a comparison of spurious decrease between

methods is a further way of evaluating the clinical potential of

the methods evaluated. In order to assess the consistency between

time points, the mean ratio of decrease for each subject per

month was compared across methods. Although some noise in

the measures may be expected, smoother volume trajectories are

thought to reflect more consistency in the segmentation results. 

Then, in order to investigate the relationship between WMH

accumulation and APOE genetic status, generalised linear mixed

models enabling the analysis of repeated measures were applied.

Due to the skewness of their distribution, WMH volumes were

modelled as following a gamma distribution and used as the

dependent variable while time from initial measurement was

considered both as fixed and random effects thus allowing for

individual slopes and intersection values. The other fixed effects
ncluded age, sex, total intracranial volume and APOE status, and

heir interaction with time. After adjustment for covariates, joint

ald tests were used to compare rates of change between APOE

tatus. The presented results are the fitted mean rates of change,

tandardised to the mean levels of covariates in the sample as

 whole. Eleven cases failed to provide segmentation results for

ST while two failed for LPA. To ensure model convergence, priors

ere imposed on the covariance matrices that may otherwise be

aturally singular. 

.2. Results 

The demographics of the subjects are gathered in Table 11 and

he measurements obtained at the first time point are reported

or the different segmentation methods used. TOADS appeared to

trongly oversegment lesions in some cases. When correcting for

ge, sex and TIV, the age factor was found to be strongly positively

ssociated with the white matter volume at the earliest time point

 p < 10 −5 ). The raw relationship between age and WMH volume

s displayed in Fig. 8 . 

With respect to the measures of repeatability for time points

ith a short interval, 274 subjects satisfied the criteria of an

nterval of 4 months or less between the first two measurements.

able 12 summarises both mean and relative differences when

omparing the different segmentation methods. Wilcoxon pair

igned tests highlighted mean difference significantly different

rom 0 for all tested methods ( p -value < 0.005 all tests) except

OADS ( p = 0.68) with a smaller variability for Long com-

ared to other cross-sectional strategies as illustrated in Fig. 9 .

hen, assessments evaluating the mean spurious absolute and

elative decrease in the time series, showed also significantly

ess inadequate WMH volume decrease in Long compared to

he cross-sectional methods. Quantitative results are gathered in

able 13 . Although the difference was borderline significant when

omparing Long and LST-a, the distribution appeared again more

oncentrated for Long, thereby underlining the robustness of the

esult as shown in Fig. 10 . An example of segmentations for the

ifferent methods is illustrated in Fig. 11 . 

The results for the longitudinal analysis performed for both

ongitudinal and cross-sectional methods are summarised in

able 14 presenting the mean rate of change in WMH volume per

ear. Using both methods, the rate of change increased with the

umber of APOE ε4 alleles. 

To better illustrate the differences between the methods,

able 15 summarises the pairwise effect size when comparing the

lopes of WMH progression across genetic status groups. 

. Discussion 

In this work the methodological aspects of a new longitudinal

ramework for WMH segmentation accounting for within-subject

onsistency was detailed and tested with synthetic and clinical

ata. The validation on synthetic data was enabled by the use of

http://www.adni-info.org
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Fig. 7. Example of simulated images with atrophy pattern and an increase of 750 mm 

3 per step. The ground truth (GT, third row) and compared segmentation results 

(row 4 to 6) are overlayed on the corrected (2nd row) FLAIR images. These corrected images display the log-transformed normalised, bias field corrected, skull-stripped and 

intensity matched intensities. 
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Table 11 

Demographics of the studied ADNI population at baseline. 

APOE Global 

33 43 44 

Number Tot [Female] 164 [76] 108 [52] 24 [6] 300 [137] 

Age mean (SD) 72.9 (7.0) 71.3 (7.7) 71.1 (7.32) 72.1 (7.3) 

TIV (mL) mean (SD) 1552 (143) 1549 (171) 1564 (141) 155.2 (15.3) 

Time span (year) mean (SD) 2.01 (0.74) 2.01 (0.86) 1.84 (0.66) 2.00 (0.78) 

WMH (mL) median [IQR] Cross 1.21 [0.58 3.33] 1.37 [0.50 3.52] 1.65 [0.65 3.71] 1.23 [0.56 3.39] 

Cross + 1.82 [0.96 5.48] 2.44 [0.81 5.90] 2.74 [1.17 5.59] 1.96 [0.94 5.54] 

Long 2.06 [0.88 5.42] 2.4 8 [0.6 8 6.08] 2.93 [0.96 5.64] 2.15 [0.96 5.64] 

LPA 2.31 [1.03 7.33] 2.88 [0.86 8.49] 3.70 [1.50 8.75] 2.65 [0.96 7.96] 

LST-d 1.64 [0.48 6.42] 2.22 [0.61 5.74] 2.75 [0.84 5.34] 1.94 [0.58 5.56] 

LST-a 1.91 [0.69 6.86] 2.64 [0.75 6.16] 3.12 [1.05 5.84] 3.05 [0.71 6.22] 

TOADS 24.32 [9.35 44.27] 22.44 [10.45 52.75] 29.63 [14.28 57.86] 24.10 [10.15 48.69] 

Acronyms expansion: TIV - Total Intracranial Volume; WMH - White Matter Hyperintensities; IQR - InterQuartile Range; SD - 

standard deviation. 

Table 12 

Measures of variation of WMH volume segmentation for scan sessions with less than 4 months interval. The relative 

difference is the ratio of the difference divided by the volume at the second time point. 

Method Median IQR Mean SD Range 

Percentage change Cross 1.40 [ −3.24 5.02] −0.01 9.65 [ −46.33 24.57] 

Cross + 0.68 [ −2.94 4.26] 4.26 14.43 [ −115.70 21.64] 

Long 0.67 [ −2.49 2.65] 2.65 8.09 [ −50.19 19.59] 

LPA 1.46 [ −1.73 4.00] 4.00 93.24 [ −1533.62 29.13] 

LST-d 0.76 [ −2.85 4.24] −2.85 18.78 [ −219.89 33.33] 

LST-a 0.48 [ −2.31 3.61] −2.31 19.88 [ −266.67 33.33] 

TOADS 0.45 [ −6.71 4.79] −18.14 92.24 [ −908.20 32.13] 

Difference Cross 22.41 [ −34.58 113.46] 68.35 347.85 [ −1390.91 3441.22] 

Cross + 23.93 [ −50.47 126.13] 58.70 338.26 [ −1632.72 3242.80] 

Long 13.215 [ −33.99 99.91] 38.93 232.43 [ −947.80 2382.90] 

LPA 29.09 [ −29.60 136.79] 22.91 1706.64 [ −26718.34 5286.04] 

LST-d 9.51 [ −34.693 87.83] 42.34 347.97 [ −2396.03 2620.60] 

LST-a 8.51 [ −41.45 86.01] 42.13 368.9537 [ −2660.41 2763.80] 

TOADS 107.14 [ −1171.10 1100.33] −166.49 6203.99 [ −50877.84 27942.62] 

Table 13 

Average relative and absolute spurious decrease per subject across the different compared methods. 

Method Median IQR Mean SD Range 

Percentage change Cross 2.99 [1.06 6.89] 5.72 8.98 [0 93.76] 

Cross + 2.76 [0.92 7.68] 10.31 40.65 [0 612.49] 

Long 1.74 [0.58 4.02] 4.22 12.78 [0 201.59] 

LPA 1.51 [0.22 3.60] 743.59 9583.02 [0 150815.30] 

LST-d 1.96 [0.49 4.99] 6.53 20.73 [0 273.83] 

LST-a 1.96 [0.40 4.96] 6.21 17.24 [0 165.80] 

TOADS 4.82 [1.66 14.91] 29.02 83.35 [0 770.33] 

Mean decrease Cross 37.48 [15.27 87.43] 83.40 145.15 [0 1291.01] 

Cross + 56.42 [19.91 126.58] 103.24 137.01 [0 821.59] 

Long 31.23 [9.01 75.81] 67.64 107.71 [0 858.6] 

LPA 30.24 [2.15 100.53] 174.46 857.86 [0 13391.54] 

LST-d 30.05 [4.57 93.30] 87.12 164.53 [0 1525.26] 

LST-a 31.32 [7.24 93.06] 93.61 180.82 [0 1574.36] 

TOADS 1023.43 [254.74 2779.38] 2245.22 4013.40 [0 50877.84] 

Table 14 

Longitudinal analysis of WMH volumes across genetic APOE status obtained with the proposed longitudinal method and the other cross- 

sectional solutions. Mean rate of volume change per year are presented with their confidence intervals (CI) when adjusting for age, sex and 

total intracranial volume. Slopes are given in mL/year. 

33 43 44 p -values 

Mean CI Mean CI Mean CI 

Cross 0.19 [0.13 0.25] 0.36 [0.26 0.46] 1.24 [0.66 1.82] 33 vs 43 0.008 33 vs 44 0.0 0 05 43 vs 44 0.0 0 05 

Cross + 0.35 [0.23 0.47] 0.41 [0.24 0.58] 1.02 [0.37 1.66] 33 vs 43 0.993 33 vs 44 0.061 43 vs 44 0.066 

Long 0.17 [0.12 0.22] 0.30 [0.21 0.39] 0.91 [0.46 1.35] 33 vs 43 0.026 33 vs 44 0.0 0 05 43 vs 44 0.0 0 05 

LPA 0.50 [0.37 0.62] 1.06 [0.80 1.32] 2.36 [1.23 3.49] 33 vs 430.0 0 05 33 vs 44 0.0 0 05 43 vs 44 0.011 

LST-d 0.38 [0.28 0.47] 0.59 [0.43 0.74] 1.28 [0.62 1.94] 33 vs 430.075 33 vs 44 0.005 43 vs 44 0.065 

LST-a 0.40 [0.30 0.50] 0.66 [0.49 0.82] 1.50 [0.75 2.26] 33 vs 430.025 33 vs 44 0.001 43 vs 44 0.027 

TOADS 1.08 [ −0.51 2.66] 1.09 [ −0.83 3.00] 2.10 [ −2.97 7.18] 33 vs 430.993 33 vs 44 0.738 43 vs 44 0.740 
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Fig. 8. Relationship between age and WMH both taken at baseline. 

Fig. 9. Density plot of the variation observed at low time interval in terms of mean 

change per month across segmentation methods. 

Fig. 10. Density plot of the average decrease observed in terms of percentage of 

change per month across segmentation methods. 

Table 15 

Effect sizes when comparing slopes of WMH pro- 

gression in the different methods across genetic 

APOE status. 

33 vs 43 43 vs 44 33 vs 44 

Cross 0.24 0.36 0.52 

Cross + 0.05 0.21 0.28 

Long 0.21 0.32 0.47 

LPA 0.34 0.26 0.47 

LST-d 0.20 0.24 0.39 

LST-a 0.22 0.26 0.42 

TOADS 0 0.04 0.05 
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 lesion simulator incorporating WMH lesion evolution patterns. A

ajor difficulty in the assessment of segmentation protocols and

lgorithms is indeed the availability of a possible ground truth.

he use of simulated data as an initial step has been promoted

n Lladó et al. (2012) for lesion segmentation. Actually, simulation

f white matter lesions at different loads has been made available

n the Brainweb project http://brainweb.bic.mni.mcgill.ca . However

o simulated longitudinal progression is available. Here, the simu-

ation is applied to existing clinical data so that the realism of the

imulated images is high. It must however be noted that the lesion

imulator, although tested with different lesion loads, is based

n typical age-related lesion distribution patterns as observed in

he ADNI dataset. Increasing the variability of the lesion maps as

ell as the anatomical shape of change used for the simulator

ould be of further interest. Furthermore, extensions towards

S-like patterns of evolution, involving the explicit modelling of

ppearance and disappearance of lesions could be added, using for

nstance secondary lesion maps in the simulation. 

With respect to the longitudinal framework, this simulator

llowed the evaluation of the impact of evolution patterns on

he segmentation performance as well as the impact of periods

ithout change on the progression detection. From the assess-

ent of the longitudinal framework across evolution patterns,

ubjects with smaller variations in WMH load led to slightly better

verall segmentation results although no statistical difference

as observed. Investigating longitudinal bias through plateauing

ituations, the stability in the results highlights the ability of the

ongitudinal framework to detect change even if periods of stability

re included. This stability is crucial in processes for which subtle

nd irregular progressions are observed, such as multiple sclerosis.

n terms of error, most of the erroneous classifications appear at

he border of the lesions and very few lesions were completely un-

etected. The comparison between the longitudinal and the cross-

ectional versions of BaMoS (Cross and Cross+) underlines the

mproved robustness of the proposed framework with higher per-

ormance and lower variance in the results. Although the detected

olumes appeared higher than expected, the strong correlation

bserved between segmented and reference volumes ( R 2 = 0.94)

akes the detection of change trustworthy. This tendency to

verestimation can be partially related to the observation, that the

ongitudinal framework tended to underestimate the true slope.

t can be explained by a bias of the model towards the average

mage with less noise and therefore smaller covariance matrices

hat in turn contribute to a less conservative outlier separation. 

The ability to detect differences in longitudinal rate of change

as however exemplified in the simulations of treatment effect.

n this case, the difference observed between evolutions is similar

o the simulated ground truth difference. A decreased variance

eflecting higher measurement robustness compared to both cross-

ectional methods led to a decrease in required sample size. In this

etting however, the LST algorithm appeared to perform poorly.

sing an experiment with atrophy simulation, thus incorporating

http://brainweb.bic.mni.mcgill.ca
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Fig. 11. Example of resulting segmentations over time for the five evaluated methods. For visualisation purposes, segmentations have been registered to the groupwise space 

and binarised. The first row presents the FLAIR images and the subsequent rows the overlayed segmentation results. For the longitudinal segmentation, the white boxes 

highlight the monotonous increase in volume for a specific lesion. 
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tronger volume change, the susceptibility of bias towards image

rdering was investigated. In the proposed framework, the only

ource of potential bias lies in the order used to build the average

mage on which the model used to constrain the segmentation

f the individual time points is selected. The iterative process

sed to build the average image is assumed to prevent bias to

ny specific time point. Comparing segmentation results obtained

sing the forward (increasing lesion load and atrophy) and back-

ard (decreasing lesion load and atrophy) orders showed that the

esults were stable with respect to the order with a R 

2 between

egmented volumes of 0.96 and a median difference DSC of less

han 0.03% of DSC at each evaluated time point. This agnosticity

o order and therefore independence with respect to lesion evo-

ution would make this algorithm suitable for an extension to the

ongitudinal analysis of multiple sclerosis patients. In this setting,

he longitudinal method appeared to be more robust for dealing

ith global volume changes as shown by a lower variability

n DSC. 

When applying the longitudinal framework on clinical data, in

he case of the ADNI population, findings reported in the literature

oth cross-sectionnally and longitudinally were reproduced using

he proposed method. As such, age, established risk factor for

he existence of WMH ( Grueter and Schulz, 2012; Targosz-Gajniak

t al., 2009; Schmahmann et al., 2008 ), was strongly associated

ith the segmented volumes. In a short term change experiment

sing the first two time points when spaced by less than 5

onths, the mean difference detected was for all methods except

OADS significantly different from 0 but the variability lower for

he longitudinal framework. Therefore, the worries that Long may

iss some changes due to an underestimation bias are alleviated

y the consistency it shows in its detection of change. 

As far as the longitudinal analysis of rate of change was con-

erned, a dose-dependent effect of APOE ε4 was observed for

hich homozygous ε 4 ε 4 were found to progress faster than het-

rozygous and non-carriers with regards to WMH load which has

een reported in the literature ( Godin et al., 2009 ). Noticeably, the

ffect size of this finding was stronger when using a longitudinal

ethod compared to a cross-sectional analysis. The differences

bserved may be related to the increased variability introduced

hen considering data cross-sectionally. Note however that the

ates of change were significantly different between methods; in

articular, LST was found to strongly overestimate volumes. How-

ver, observed discrepancies in absolute values between methods

an be mitigated by studying the relative change between groups

nd estimating statistical group differences as commonly done in

linical trials. 

To conclude, a new longitudinal framework for WMH segmen-

ation was presented and an increased robustness was demon-

trated compared to similar methods applied cross-sectionally,

hereby ensuring the relevance of the longitudinal extension of the

riginal method. For validation purposes, a realistic longitudinal

esion simulator was developed allowing for a wide variety of evo-

ution patterns on a possibly large range of images. Assessments

elative to the images order in the building of the average image

howed a high consistency thus ensuring the absence of bias with

espect to the ordering of images. Clinically, when applied to ADNI,

 large cohort of elderly with minimal cardiovascular risk factors,

reviously reported cross-sectional and longitudinal findings were

gain noticed and the longitudinal method proved more powerful

n highlighting group differences than the cross-sectional methods

t was compared to. Further work could include the evaluation of

he impact of the parameters chosen to build the average appear-

nce model. Future research will also work towards reducing the

etween-time-point group-average transformation regularisation 

o as to maximise not only the precision but also the accuracy of

he measurements. 
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ppendix 

Description of measures of segmentation evaluation. When

omparing a segmentation result (Seg) to a segmentation reference

Ref) used as gold standard or ground truth, different assessments

ade either at the voxel level or at the cardinal/entity level can

e performed. In the case of lesion segmentation, an entity corre-

ponds to a set of connected voxels segmented as lesion. False pos-

tives (FP) are defined as the elements (either voxel and entity) de-

ected in Seg but not present in Ref while false negatives (FN) are

resent in Ref but omitted in Seg. True positives are the elements

etected in Seg and truly present in Ref. At the cardinal level a

esion in Seg that has at least one voxel in Ref is considered as a

rue positive. The cardinal definitions are assigned the subscript c.

sing sets definition with � referring to the number of elements

f a set, F P = �Seg 
⋂ ¯Re f , F N = � ¯Seg 

⋂ 

Re f and T P = �Seg 
⋂ 

Re f . 

DSC Classical measure of overlap evaluation, the Dice score

coefficient (DSC) is expressed as DSC = 

2 T P 

2 T P + F N + F P 
=

2 �Seg 
⋂ 

Re f 

�Seg + �Re f 
AvDist The average distance, mentioned by Datta and Narayana

(2013) and Styner et al. (2008) measures the average

distance between the two lesion outlines 

AvDist ( Ref , Seg ) 

= 

∑ 

s ∈ ∂ Seg min s ∈ ∂ Seg d(s, r) + 

∑ 

r∈ ∂ Ref min s ∈ ∂ Seg d(s, r) 

� v ∂ Seg + � v ∂ Ref 

http://dx.doi.org/10.13039/501100000266
http://dx.doi.org/10.13039/501100000265
http://www.fnih.org
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where ∂Seg (resp. ∂Ref ) denotes the border in the 18-

neighbour connectivity of the Seg (resp. Ref) set. and d ( s,

r ) is the Euclidean distance between element s and r . It

must be however noted the difficult definition of such an

assessment measure when one of the volumes is 0. 

True positive rate (TPR) The true positive rate (TPR) that can

be defined either at the voxel or cardinal level is expressed

as 
� TP 

� Ref 
and takes its values in [0 ; 1] with 1 as best value.

With this measure, a perfect score at the voxel level can

be reached for a suboptimal segmentation if the errors are

exclusively false positives. In the cardinal form, the ratio

becomes dependent of the lesion spatial connectivity since

joined lesion are only counted once. 

Recently, new inter-rater assessment measures with ap-

plication to MS lesion segmentation have been developed.

These have shown to be less dependent than the DSC to the

assessed lesion burden ( Wack et al., 2012 ). 

Detection error (DE) The detection error is the volume of error

measured cardinally (using lesion entities) and is expressed

as 

DE = 

∑ 

F ∈ FP c 

� v Seg F + 

∑ 

F ∈ FN c 

� v Ref F . 

Outline error (OE) The OE is measured as the volume of

voxelwise error found for the true positive lesion entities. 

OE = 

∑ 

T ∈ TP c 

� v ( Seg T ∪ Ref T ) − � v ( Seg T ∩ Ref T ) . 

In order to better assess the origin of the errors, based on

the definition by Wack et al. (2012) , additional evaluation

may be carried out: 

OE/F Measures the proportion of total error (F) that is related

to the outline error OE. 

FP/F Measures the proportion of error that is false positive. 

OEFP/FP Measures among the false positives, the proportion

that relates to the outline error. 

OEFN/FN Measures among the false negatives, the proportion

that relates to the outline error. 
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