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Epigenetic Patterns in Blood Associated With Lipid Traits
Predict Incident Coronary Heart Disease Events and Are
Enriched for Results From Genome-Wide Association Studies

Asa K. Hedman, PhD*; Michael M. Mendelson, MD#*; Riccardo E. Marioni, PhD;

Stefan Gustafsson, PhD; Roby Joehanes, PhD; Marguerite R. Irvin, PhD; Degui Zhi, PhD;
Johanna K. Sandling, PhD; Chen Yao, PhD; Chunyu Liu, PhD; Liming Liang, PhD;
Tianxiao Huan, PhD; Allan F. McRae, PhD; Serkalem Demissie, PhD; Sonia Shah, PhD;
John M. Starr, MD, PhD; L. Adrienne Cupples, PhD; Panos Deloukas, PhD; Timothy D. Spector, MD;
Johan Sundstrom, MD, PhD; Ronald M. Krauss, MD; Donna K. Arnett, PhD; Ian J. Deary, PhD;
Lars Lind, MD, PhD; Daniel Levy, MDf; Erik Ingelsson, MD, PhDf

Background—Genome-wide association studies have identified loci influencing circulating lipid concentrations in humans; further
information on novel contributing genes, pathways, and biology may be gained through studies of epigenetic modifications.

Methods and Results—To identify epigenetic changes associated with lipid concentrations, we assayed genome-wide DNA
methylation at cytosine—guanine dinucleotides (CpGs) in whole blood from 2306 individuals from 2 population-based cohorts,
with replication of findings in 2025 additional individuals. We identified 193 CpGs associated with lipid levels in the discovery
stage (P<1.08E-07) and replicated 33 (at Bonferroni-corrected P<0.05), including 25 novel CpGs not previously associated with
lipids. Genes at lipid-associated CpGs were enriched in lipid and amino acid metabolism processes. A differentially methylated
locus associated with triglycerides and high-density lipoprotein cholesterol (HDL-C; cg27243685; P=8.1E-26 and 9.3E-19)
was associated with cis-expression of a reverse cholesterol transporter (ABCGI; P=7.2E-28) and incident cardiovascular
disease events (hazard ratio per SD increment, 1.38; 95% confidence interval, 1.15-1.66; P=0.0007). We found significant
cis-methylation quantitative trait loci at 64% of the 193 CpGs with an enrichment of signals from genome-wide association

studies of lipid levels (P, =0.004, P, =0.008 and P yeer 1.=0-00003) and coronary heart disease (P=0.0007). For example,
genome-wide significant variants associated with low-density lipoprotein cholesterol and coronary heart disease at APOB were
cis-methylation quantitative trait loci for a low-density lipoprotein cholesterol-related differentially methylated locus.

Conclusions—We report novel associations of DNA methylation with lipid levels, describe epigenetic mechanisms related
to previous genome-wide association studies discoveries, and provide evidence implicating epigenetic regulation of
reverse cholesterol transport in blood in relation to occurrence of cardiovascular disease events. (Circ Cardiovasc Genet.
2017;10:e001487. DOI: 10.1161/CIRCGENETICS.116.001487.)
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ardiovascular disease (CVD) is the leading cause of
death worldwide.! Serum concentrations of total cho-
lesterol (TC) and subcomponents of low-density lipoprotein

See Clinical Perspective

Genome-wide association studies (GWAS) have been suc-

cholesterol (LDL-C), high-density lipoprotein cholesterol
(HDL-C), and triglycerides are established risk factors for
coronary heart disease (CHD).! Recent studies have pro-
vided evidence of causal roles for LDL-C and triglycerides
in CHD.?? Further understanding of the genomic regulatory
mechanisms linking lipids to CHD may enhance our ability
to predict CHD risk, tailor current CHD treatments, or dis-
cover new treatments for CHD.

cessful in identifying numerous single-nucleotide polymor-
phisms (SNPs) associated with lipid levels and CHD.** Because
many of the SNPs are located in noncoding regions, epigenetic
mechanisms can be suspected to mediate many of the genetic dis-
coveries. Integrative analyses of methylation of cytosine nucleo-
tides at cytosine—guanine dinucleotide (CpG) sites with genetic
sequence variants and gene expression may elucidate previously
unknown genes and pathways underlying GWAS discoveries. In

Received February 23, 2016; accepted November 14, 2016.

Guest Editor for this article was Christopher Semsarian, MBBS, PhD, MPH.

*Drs Hedman and Mendelson contributed equally to this work first authors.

FDrs Levy and Ingelsson are joint senior authors.

The Data Supplement is available at http://circgenetics.ahajournals.org/lookup/suppl/doi:10.1161/CIRCGENETICS.116.001487/-/DC1.

Correspondence to Erik Ingelsson, MD, PhD, Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine,
300 Pasteur Dr, Mail code 5773, Stanford, CA 94305. E-mail eriking @stanford.edu

© 2017 The Authors. Circulation: Cardiovascular Genetics is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health,
Inc. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any
medium, provided that the original work is properly cited.

Circ Cardiovasc Genet is available at http://circgenetics.ahajournals.org DOI: 10.1161/CIRCGENETICS.116.001487

1


mailto:﻿eriking@﻿﻿stanford﻿﻿.edu﻿
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/
http://circgenetics.ahajournals.org/

/102 ‘€2 RN uo 189n6 Aq /Bio'seuino feye'soneusbol o/ :dny wodj papeojumoq

2 Hedman et al

addition to variation in DNA methylation that is determined by
the surrounding genetic sequence,® methylation is also affected
by early exposures in utero’® and later life environmental fac-
tors.*!* Environmentally induced alterations in DNA methyla-
tion may mediate environmental contributions to disease'' and
reveal novel genes and pathways involved in disease that cannot
be discovered in GWAS alone. Regulation of gene expression
via DNA methylation may explain an additional component of
interindividual variation in lipid levels beyond genetic sequence
variants. Because much of the population burden of dyslipidemia
and CHD is not explained by GWAS loci, relating differential
DNA methylation to gene expression, intermediate metabolites,
and disease end points may be useful in identifying additional
candidate genes and mechanisms for which directed perturbation
may help prevent morbidity and mortality from CHD.

In this study, we aimed to identify epigenetic variation in
relation to lipid levels through epigenome-wide association
analyses of whole blood—derived DNA in <2306 individuals
with independent external replication of findings in <2025
individuals. Methylation differences in blood-derived DNA
have been shown to reflect transtissue differential methyla-
tion in various tissues,'>'* including liver'> and adipose.'® In
addition to the discovery of lipid-related differential DNA
methylation, we assessed the association of lipid-related epi-
genetic changes to the risk of incident CHD events. Finally,
we combined lipid-associated DNA methylation with genetic
sequence variants, gene expression, and intermediate metabo-
lites in an attempt to unravel the underlying genomic regula-
tory mechanisms linking serum lipid measures to CHD risk.

Methods
Study Participants and Design

We conducted an epigenome-wide association study of serum lipid
concentrations (TC, HDL-C, LDL-C, and triglycerides) in over 4000
adult participants from large community-based cohorts in the United
States and Europe (Figure 1). Ethical approvals for the project were
granted by the local Ethics Committee for each of the participating
cohorts, and all samples were collected after obtaining written and
signed informed consent. Participants from the FHS (Framingham
Heart Study) offspring cohort (n=1494; mean [SD] age=66.4 [8.9]
years)'” and the PIVUS (Prospective Investigation of the Vasculature
in Uppsala Seniors Study; n<812; 70.2 [0.2] years)'® were included
in the discovery analysis. Loci identified as significant in the discov-
ery (P<1.08E-07; Bonferroni-adjusted P value for multiple testing)
were then examined for external replication in participants from the
LBC1921 (Lothian Birth Cohorts of 1921; n<380; 79.1 [0.6] years)
and LBC1936 (LBC of 1936; n<654; 69.5 [0.8] years)'*?! and the
GOLDN (Genetics of Lipid Lowering Drugs and Diet Network;
n=991; 48.8 [16] years).”> Characteristics of the cohorts are avail-
able in Table I in the Data Supplement. Further details about cohort-
specific study design and sample collection are available in Methods
in the Data Supplement. Primary analyses examined the association
of each lipid component with methylation levels in blood at 459433
CpGs and were adjusted for age, sex, white cell counts (if applicable),
and batch effects; secondary models additionally adjusted for body
mass index (BMI). We excluded individuals taking lipid medications
(statins, fibrates, etc.) because the cross-sectional design would not
allow us to determine if DNA methylation changes contributed to
elevated lipids necessitating lipid medications or were secondary to
medication use. The identified differentially methylation loci were
assessed for associations with nearby genetic sequence variants in cis
(defined as =100 kb), intermediate phenotypes (gene expression and
metabolites in blood), and incident CHD events.

Epigenetic Patterns Associated With Lipid Traits

Phenotype Measurements and Disease Qutcomes

Lipids traits were measured in blood samples collected after fasting
with the exception of LBC (LBC1921 and LBC1936) for which non-
fasting blood was drawn. Lipid measurements were performed using
standard methods as described in Methods in the Data Supplement
for each study. In FHS, PIVUS, and LBC1936, LDL-C levels were
calculated by the Friedewald equation, whereas levels were directly
measured in GOLDN. In LBC1921, HDL-C and LDL-C were not
available. Characteristics of the lipid traits for each cohort are avail-
able in Table I in the Data Supplement. Weight and height were
measured in each study using standardized protocols. BMI was cal-
culated as weight in kg divided by height in m2. In FHS and PIVUS,
cardiovascular events during <10 years of follow-up (adjudicated by
physicians) were used to define a composite CHD end point, which
included fatal or nonfatal myocardial infarction and revascularization
procedure (percutaneous transluminal coronary angioplasty or coro-
nary artery bypass graft). In FHS, data on coronary death and coro-
nary insufficiency (unstable angina) were also included.

Genome-Wide DNA Methylation Profiling
Genome-wide DNA methylation profiling was performed on ge-
nomic DNA isolated from whole blood (FHS, PIVUS, LBC1921,
and LBC1936) or CD4* T cells (GOLDN). DNA samples were bi-
sulphite converted and analyzed on Illumina HumanMethylation450
BeadChip (Illumina Inc, San Diego, CA) following the manufactures’
protocol. After quality control procedures, methylation data were
available for analyses in 2377 FHS, 967 PIVUS, 446 LBC1921, 920
LBC1936, and 995 GOLDN participants. Further cohort-specific de-
tails and quality control procedures are available in Methods in the
Data Supplement. In all studies, blood used in extraction of DNA for
methylation analysis was collected at the same time point as pheno-
type and covariate measurements.

Additional Molecular Genomics Data

In FHS, SNP data were obtained from the Affymetrix 550K Array
(Affymetrix, Santa Clara, CA) and imputed to 1000 Genomes SNPs
(phase 1 release), as previously reported.”® The FHS genotype data
are available at Database of Genotypes and Phenotypes under the ac-
cession number phs000342.v13.p9. In PIVUS, individuals were gen-
otyped using the Illumina OmniExpress and Illumina Metabochip
microarrays. Data were imputed to 1000G (version: March 2012) using
Impute v.2.2.2.2* Gene expression profiles in blood, obtained using the
Affymetrix Human Exon 1.0 ST GeneChip platform, were available for
2246 participants in the FHS. Untargeted metabolomic profiles in serum
were available for 785 PIVUS participants also included in the lipid-as-
sociation analyses. Acquity Ultra Performance Liquid Chromatography
coupled to a Xevo G2 Q-TOFMS (Waters Corporation, Milford, MA)
was used in metabolomic profiling. Only annotated metabolites (n=229)
were used in analysis in relation to DNA methylation. Further details are
available in Methods in the Data Supplement.

Annotation of DNA Methylation Probes

Mapping and annotation of the 485764 probes on the
HumanMethylation450K BeadChip have previously been de-
scribed.”® Only autosomal probes were included in analyses. Briefly,
probes mapping to multiple locations (with at least 2 mismatches) in
the human reference genome (GRCh37) were excluded. Furthermore,
probes were filtered based on SNPs as follows: those with a common
SNP (minor allele frequency>5%) within 10 bp of the methylation
site and those overlapping copy number variants were excluded from
analysis. This resulted in a final set of probes which were assigned
to CpG islands and RefSeq transcripts downloaded from the UCSC
Genome Browser. Probes within 2 kb away from borders of a CpG
island were defined as shores and those within 2 kb of shores as fall-
ing within shelves. The rest were assigned to others/open sea. Probes
were mapped in relation to transcripts as follows: TSS1500 (1500-
200 bp upstream of transcription start site), TSS200 (200 bp upstream
of transcription start site), the 5’-UTR (untranslated region), the first
exon, the gene body, or the 3-UTR.?®
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Epigenetic Patterns Associated With Lipid Traits

Genome-wide DNA
methylation data in whole
blood

Lipid traits
(TC, LDL-C, HDL-C, TG)

4

Enrichment of CpGs
by genomic position,
DHS hotspots, and
gene ontology

DISCOVERY
(FHS, n=1494, PIVUS, n<812)

CpGs (P<1.08E-7)

Suppl. Tbl 2-9, 14-16; Suppl. Thl 2-9; Suppl. Fig. 1-9

Suppl. Fig 15-16

Primary and secondary models: 193 unique

REPLICATION
(LBC1921, n<380, LBC1936,
n<654, GOLDN, n=991):
Primary and secondary
models: 33 replicating CpGs

Table 1; Suppl. Fig. 10-14

Association of replicated
CpGs with other
cardiometabolic traits
Suppl. Tbl 10

Association with mRNA
expression of adjacent genes
(FHS):

At least one association at 29
CpGs (FDR<0.05)

Suppl. Thl 18

Association with cis-SNPs
(FHS):
123 cis-meQTLs (P<1.0E-4)

Suppl. Tbl 17

At least one association at 29 CHD

Association with 299 serum

metabolites (PIVUS): Association with incident

(FHS & PIVUS):
cg27243685 (ABCG1)

CpGs (FDR<0.01)
Suppl. Tbl 19; Suppl. Fig 17

v

REPLICATION (PIVUS):
60 replicating meQTLs

META-ANALYSIS of lipid-associations across all five cohorts (FHS, PIVUS, LBC1921, LBC1936, GOLDN).
Suppl. Thl 11-12

Figure 1. Overview of the study. CpG indicates cytosine—guanine dinucleotide; FDR, false discovery rate; FHS, Framingham Heart Study;
GOLDN, Genetics of Lipid Lowering Drugs and Diet Network; HDL-C, high-density lipoprotein cholesterol; LBC, Lothian Birth Cohorts;
LDL-C, low-density lipoprotein cholesterol; meQTL, methylation quantitative trait locus; PIVUS, Prospective Investigation of the Vascula-
ture in Uppsala Seniors Study; TC, total cholesterol; and TG, triglyceride.

Statistical Analysis

Association of Methylation of Blood Cell-Derived DNA
With Lipids

Multivariable linear regression models were conducted (using cohort-
specific approaches described in Methods in the Data Supplement)
with DNA methylation {3 value specified as the dependent variable
and the lipid component as the independent variable of interest.
The primary model was adjusted for age, sex, white cell count (if
applicable), technical covariates, and, if applicable, family structure
(included as random effects using the R packages pedigreemm®
[FHS] or kinship*® [GOLDN], see further details in Methods in the
Data Supplement). Secondary models additionally adjusted for BMI.
Individuals on lipid-lowering medications were excluded from all
analyses. Lipid levels (in mg/dL) were analyzed on the raw scale,
except levels of triglyceride that were natural log-transformed before
analyses. Probes with a common SNP (minor allele frequency>5%)
within 10 bp of the methylation site were excluded from analysis.
Fixed-effect meta-analyses were performed using the inverse vari-
ance-weighted method implemented in METAL® of genome-wide
association results in the discovery cohorts (FHS and PIVUS). CpGs
significant at Bonferroni-corrected o threshold <0.05 (taking the num-
ber of CpGs into account; corresponding to a nominal P<1.08E-7) in
discovery were analyzed in the replication cohorts. Meta-analyses of
the results in the individual replication cohorts (LBC1921, LBC1936,
and GOLDN) were performed using the same method as above.

Cross-Tissue Validation of Lipid Associations

Lipid-associated CpGs in blood were validated in DNA methyla-
tion data from subcutaneous abdominal adipose tissue (SAT) from
the MuTHER (Multiple Tissue Human Expression Resource) study.*
This study and data set is described in detail in Grundberg et al.®
The study contains genome-wide DNA methylation data using the
Ilumina HumanMethylation450 array collected from 648 female
twins and singletons (97 monozygotic pairs, 162 dizygotic pairs, and
130 singletons) of European ancestry. The participants had a mean

age of =60 years and a mean BMI of 26.6 kg/m*. After removing in-
dividuals on lipid-lowering medication and with missing phenotype,
a total of 588, 588, 589, and 639 participants were considered in the
analyses of TC, LDL-C, HDL-C, and triglycerides, respectively. For
association with phenotype, a linear mixed effects model was fitted
which was adjusted for age, bisulphite conversion concentration,
bisulphite conversion efficiency, and BeadChip as fixed effects and
family relationship (twin pairing) and zygosity as random effects.
One-hundred sixty-four out of 193 lipid-associated CpGs could be
tested in SAT.

Gene Set Enrichment Analysis

To place our data in the context of biological processes or pathways,
we subjected genes annotated to CpG sites (from 1500 bp upstream
of transcription start site to 3’-UTR)* associated with phenotypes
to pathway analysis using Database for Annotation, Visualization
and Integrated Discovery (DAVID).*'*> We used annotations from
the Kyoto Encyclopedia of Genes and Genomes, Protein Analysis
Through Evolutionary Relationships, Gene Ontology, REACTOME,
and Clusters of Orthologous Groups of proteins.

Methylation Quantitative Trait Locus Analysis

Methylation quantitative trait locus (meQTL) analysis for lipid-
associated methylation probes was performed in the FHS cohort
(n=2246), and significant lead meQTL SNPs (P<1E-04) were tested
for replication in the PIVUS cohort (n=775). MeQTL analysis was
limited to SNPs located within 100 kb either side of the probe loca-
tion (cis) and SNPs with a minor allele frequency >5% and imputa-
tion quality Rsq >0.8. In FHS, the residual of the DNA methylation
[ value was extracted after the removal of the fixed (age, sex, and
imputed white cell counts using the Houseman method*) and ran-
dom covariates (chip, row, and column), along with the kinship cor-
relation structure. The DNA methylation residual was regressed on
the SNP genotype additionally adjusting for 25 methylation principal
components to account for unmeasured technical variation. Imputed
SNPs were entered into the model as allele dosages. In PIVUS, the
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association between normalized methylation § values and posterior
mean genotypes (MACH format) was modeled by a linear mixed ef-
fect model, using R* and the Imer function (Ime4 package), fitted
by maximum likelihood assuming a normally distributed error term.
Models were adjusted for age, sex, and predicted white cell counts
(estimated from the DNA methylation data using the Houseman algo-
rithm* as implemented in R package minfi*) as fixed effects and chip,
chip row, and chip column as random effects.

Association With Gene Expression Data

In FHS, the association between DNA methylation and gene expres-
sion (available in 2246 participants with DNA methylation) was per-
formed on the gene expression residuals after the removal of the fixed
and random covariates, along with the kinship correlation structure
using a linear model, primarily to avoid potential confounding by
blood count. Only CpGs that were methylome-wide significant were
tested, and individual CpGs were tested against a single gene expres-
sion transcript in the regression model. All gene transcripts within
+500 kb (cis) of the CpG were assessed.

Association With Targeted Metabolites

In PIVUS, the associations between normalized methylation § values
at lipid-associated CpGs and 229 serum metabolites were modeled
by a linear mixed effect model, using R* and the /mer function (Ime4
package), fitted by maximum likelihood assuming a normally dis-
tributed error term. Models were adjusted for age, sex, and predicted
white cell counts (using the Houseman algorithm® in R package min-
fi*) as fixed effects and chip, chip row, and chip column as random ef-
fects. False discovery rate (FDR) were estimated based on Q values.*

Association With Disease Outcome

In FHS, Cox models were fitted in R using the coxme package to
model the association of baseline DNA methylation with incident
CHD events adjusted for age, sex (fixed effects), and family struc-
ture (mixed effect) for the 33 replicated lipid-associated CpGs. As
using measured technical covariates (chip, row, and column) with a
binary outcome resulted in too many overall levels, surrogate variable
analysis (that capture sources of heterogeneity in the methylation data
and can be used to control for the influence of these latent variables
on inference)®” was used to capture the measured and unmeasured
technical variation in the methylation data, and 5 surrogate variables
(associated with incident CHD at P value <0.05) were included as
covariates in the model.

In PIVUS, Cox models were fitted in R using the coxph func-
tion in the survival package, to model the association between case/
control status and standardized methylation levels at the 33 replicated
lipid-associated CpGs. Models were adjusted for age, sex, chip, and
predicted white cell counts (using the Houseman algorithm* in the R
package minfi*).

Results

Associations of DNA Methylation With Lipid Levels
in Blood

We sought to examine whether differences in DNA meth-
ylation were associated with circulating lipid levels (study
design and main results outlined in Figure 1). After meta-
analysis of 459433 CpGs in the FHS (n=1494) and PIVUS
(n=812) studies, we found methylation at 40, 23, 110, and 28
CpG sites associated with TC, LDL-C, HDL-C, and triglyc-
erides, respectively, at methylome-wide significant threshold
(P<1.08E-7; Volcano plots in Figures I through IV in the Data
Supplement; Manhattan plots in Figures V through VIII in
the Data Supplement). In total, there were 184 unique CpG
sites (annotated to 138 unique genes) associated with any lipid
level (some were associated with several); 174 of these have
not previously been reported to be associated with lipid lev-
els. Complete results are available in Tables II through V in

Epigenetic Patterns Associated With Lipid Traits

the Data Supplement, and the level of overlap between CpGs
associated with the 4 lipid fractions is depicted in Figure IXa
in the Data Supplement.

In secondary analyses additionally adjusted for BMI, 80%
(32/40), 87% (20/23), 13% (14/110), and 61% (17/28) of the
CpG sites associated in the primary model with TC, LDL-C,
HDL-C, and triglycerides, respectively, were significantly
associated in the corresponding BMI-adjusted lipid model at
a methylome-wide significant threshold (P<1.08E-7; Volcano
plots in Figures I through IV in the Data Supplement).
Associations of methylation with lipid levels after adjustment
for BMI occurred at 80 unique CpGs (annotated to 60 unique
genes). In these BMI-adjusted analyses, we found 9 CpG sites
associated with lipid levels that were not significantly asso-
ciated in the primary analyses (complete results available in
Tables VI through IX in the Data Supplement; Figure IXb in
the Data Supplement).

We then attempted to replicate the associations at the
193 CpG sites significantly associated with at least 1 lipid
trait (in models without or with BMI adjustment) in 3 inde-
pendent cohorts (<2025 individuals) with DNA methylation
from whole blood (LBC1936 and LBC1921) or CD4* T cells
(GOLDN). At a Bonferroni-corrected o threshold of 0.05 (tak-
ing the number of tests per lipid trait into account) and taking
direction of effect into account, 5 (13%), 1 (4%), 11 (10%),
and 19 (68%) of the CpG sites associated with TC, LDL-C,
HDL-C and triglycerides, respectively, in the primary analysis
replicated in a meta-analysis of these 3 independent cohorts
(Table 1). When only considering the 10 most associated
CpGs in the discovery for each lipid trait, the replication rate
was considerable higher (30%, 10%, 40%, and 90% for TC,
LDL-C, HDL-C, and triglycerides, respectively). Comparison
of effect sizes between discovery and replication for all CpGs
significant in the discovery stage revealed a high degree of
overall concordance between the [ coefficients (Pearson
correlation coefficients 0.78, 0.67, 0.71, and 0.88, for TC,
LDL-C, HDL-C, and triglycerides, respectively), indicating a
high level of agreement even for CpGs that did not replicate
at the P value threshold (Figure X in the Data Supplement).
Comparison of effect sizes between discovery and each of
the individual replication cohorts for all CpGs significant in
the discovery is included in Figures XI through XIV in the
Data Supplement. In secondary analyses adjusted for BMI in
the external cohorts, we replicated 4 (13%), 1 (5%), 2 (14%),
and 12 (71%) of the CpG sites associated with TC, LDL-C,
HDL-C, and triglycerides, respectively (Table 1). In total, 33
CpGs replicated in the primary or secondary model (repre-
senting 55 associations as some CpGs were associated with
several lipid traits). Twenty-five of these have not previously
been reported to be associated with lipids in DNA methylation
studies (Table 1; Table X in the Data Supplement). Ten of the
lipid-associated CpGs (including 5 of the novel CpGs) have
previously been associated with adiposity (BMI and waist cir-
cumference), glycemic traits (fasting insulin and insulin resis-
tance by homeostasis model assessment), or type 2 diabetes
mellitus in blood cell-derived DNA methylation data (Table
X in the Data Supplement). We tested whether associations
in blood could also be detected in another tissue using DNA
methylation data from abdominal SAT from the MuTHER
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Table 1. Lipid-Associated CpG Sites Replicated in Independent Cohorts With Whole Blood or CD4* T Cells DNA Methylation
Lipid Type of Gene Discovery Replication
Trait Loci CpG Chr Position Property Gene | Direction® B (SE) PValue  Directiont { (SE) PValue
Primary model
TC Novel | cg17901584 | 1 55353706 | TSS1500 | DHCR24 ++ 0.000149 | 4.73E-08 +++ 0.000114 | 3.80E-04
(0.000027) (0.000032)
TC Novel | cg23759710 | 2 | 42990957 | Firstexon | OXERT — —-0.000082 | 2.45E-09 ——+ -0.000074 | 8.32E-04
(0.000014) (0.000022)
TC Novel | cg00285394 | 8 | 126011954 Body SQLE ++ 0.000213 | 5.98E-10 +4++ 0.000161 | 3.16E-05
(0.000034) (0.000039)
TC Novel | cg07839457 | 16 | 57023022 | TSS1500 | NLRC5 ++ 0.000273 8.74E-08 +++ 0.000231 | 2.32E-06
(0.000051) (0.000049)
TC Novel | cg09978077 | 22 | 42229983 Body SREBF2 ++ 0.000057 1.79E-09 +++ 0.000047 | 4.82E-04
(0.000010) (0.000014)
LDL-C | Novel | cg00285394 | 8 | 126011954 Body SQLE ++ 0.000230 | 4.12E-09 ++ 0.000200 | 1.04E-05
(0.000039) (0.000045)
HDL-C | Novel | cg17901584 | 1 55353706 | TSS1500 | DHCR24 ++ 0.000717 5.47E-43 ++ 0.000321 | 3.55E-04
(0.000052) (0.000090)
HDL-C | Novel | cg07567724 | 1 | 153777721 3UTR | GATAD2B — -0.000248 | 3.81E-08 — -0.000311 | 3.53E-04
(0.000045) (0.000087)
HDL-C | Novel |cg19351166 | 2 | 209133632 5UTR PIKFYVE - —0.000207 | 4.16E-08 - —0.000279 | 1.96E-05
(0.000038) (0.000065)
HDL-C | Novel | cg06560379 | 6 | 44231305 Body NFKBIE ++ 0.000114 | 6.05E-11 ++ 0.000083 | 2.76E-04
(0.000017) (0.000023)
HDL-C | Novel | cg16407699 | 10 | 74020428 — —0.000280 | 7.30E-09 — -0.000265 | 1.09E-04
(0.000048) (0.000069)
HDL-C | Novel | cg19750657 | 13 | 38935967 3UTR UFM1 — -0.000308 | 2.24E-10 — -0.000329 | 2.20E-07
(0.000049) (0.000063)
HDL-C | Novel | cg07814318 | 15 | 31624584 Body KLF13 — -0.000322 | 6.38E-11 — -0.000455 | 1.69E-04
(0.000049) (0.000121)
HDL-C | Novel | cg06192883 | 15 | 52554171 Body MY05C — -0.000258 | 2.04E-09 - -0.000283 | 8.95E-08
(0.000043) (0.000053)
HDL-C | Novel | cg11024682 | 17 | 17730094 Body SREBF1 — -0.000213 | 4.19E-09 — -0.000229 | 8.72E-05
(0.000036) (0.000058)
HDL-C | Previous | cg06500161 | 21 | 43656587 Body ABCG1 — —0.000459 | 1.20E-34 — -0.000322 | 7.43E-06
(0.000037) (0.000072)
HDL-C | Novel | cg06397161 | 22 | 39760059 | 5'UTR/Body | SPRY4 — -0.000259 | 7.25E-08 — —0.000327 | 1.27E-05
(0.000048) (0.000075)
TG Novel | cg03725309 | 1 | 109757585 Body SARS — -0.009052 | 7.11E-14 — —0.011098 | 2.09E-10
(0.001209) (0.001746)
TG Novel | cg16246545 | 1 | 120255941 Body PHGDH — —-0.012602 | 7.94E-09 — —-0.007394 | 6.11E-04
(0.002184) (0.002158)
TG Novel | cg14476101 | 1 | 120255992 Body PHGDH — -0.021504 | 1.25E-14 — —-0.012696 | 2.82E-07
(0.002789) (0.002473)
TG Previous | 919693031 | 1 145441552 JUTR TXNIP — —0.017424 | 9.40E-15 - —-0.010932 | 1.35E-06
(0.002249) (0.002263)
TG Novel | cg06690548 | 4 | 139162808 Body SLC7A11 — -0.021855 | 6.98E-20 - -0.007707 | 3.70E-06
(0.002394) (0.001666)
TG Novel | cg21429551 | 7 | 30635762 Body GARS - -0.026953 | 4.97E-17 - —0.012744 | 457E-06
(0.003214) (0.002780)
TG Novel | cg03068497 | 7 | 30635838 Body GARS — -0.025125 | 2.27E-13 —_— —0.012680 | 1.55E-05
(0.003427) (0.002935)

(Continued)
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Table 1. Continued
Lipid Type of Gene Discovery Replication
Trait Loci CpG Chr Position Property Gene | Direction® B (SE) PValue  Directiont f (SE) PValue
TG Novel | cg19390658 | 7 | 30636176 Body GARS — -0.020977 | 5.61E-15 —_— —0.012653 | 2.40E-07
(0.002685) (0.002450)
TG Previous | cg07504977 | 10 | 102131012 ++ 0.012564 5.45E-10 +++ 0.011962 | 3.10E-10
(0.002025) (0.001901)
TG Previous | cg00574958 | 11 | 68607622 5UTR CPT1A — —0.008999 | 1.65E-35 —+— —-0.011979 | 2.01E-26
(0.000724) (0.001126)
TG Previous | cg09737197 | 11 | 68607675 5UTR CPT1A — -0.007154 | 9.13E-11 —+— —-0.010376 | 6.18E-09
(0.001104) (0.001785)
TG Previous | cg17058475 | 11 | 68607737 5UTR CPT1A — —-0.009858 | 8.33E-23 — —0.013425 | 7.55E-16
(0.001003) (0.001665)
TG Novel | ¢g08129017 | 17 | 17728660 Body SREBF1 ++ 0.009755 2.02E-09 +++ 0.011616 | 2.84E-07
(0.001627) (0.002263)
TG Previous | cg11024682 | 17 | 17730094 Body SREBF1 ++ 0.010107 2.59E-14 +++ 0.010284 | 2.07E-14
(0.001327) (0.001345)
TG Novel | cg08857797 | 17 | 40927699 Body VPS25 ++ 0.009577 2.06E-08 +++ 0.007994 | 1.53E-05
(0.001708) (0.001849)
TG Novel | cg02711608 | 19 | 47287964 | 5’'UTR/Body | SLC1A5 — -0.008321 | 2.14E-10 —_— —0.004606 | 1.24E-04
(0.001310) (0.001200)
TG Previous | 927243685 | 21 | 43642366 | 5UTR/Body = ABCG1 ++ 0.012223 8.12E-26 +++ 0.004508 | 3.72E-05
(0.001164) (0.001093)
TG Novel | cg01176028 | 21 | 43653234 Body ABCG1 ++ 0.006953 5.00E-09 +++ 0.011307 | 3.82E-08
(0.001189) (0.002056)
TG Previous | cg06500161 | 21 | 43656587 Body ABCG1 ++ 0.019854 2.29E-48 +++ 0.012731 | 7.55E-15
(0.001359) (0.001637)
Secondary BMI-adjusted model
TC Novel | cg23759710 | 2 | 42990957 | Firstexon | OXERT — —0.000081 | 3.60E-09 —_— —0.000075 | 7.75E-04
(0.000014) (0.000022)
TC Novel | cg00285394 | 8 | 126011954 Body SQLE ++ 0.000215 4.83E-10 +++ 0.000155 | 6.08E-05
(0.000035) (0.000039)
TC Novel | cg07839457 | 16 | 57023022 | TSS1500 | NLRC5 ++ 0.000272 9.62E-08 +++ 0.000223 | 5.54E-06
(0.000051) (0.000049)
TC Novel | cg09978077 | 22 | 42229983 Body SREBF2 ++ 0.000057 3.03E-09 +++ 0.000047 | 6.52E-04
(0.000010) (0.000014)
LDL-C | Novel |cg00285394 | 8 | 126011954 Body SQLE ++ 0.000234 2.32E-09 ++ 0.000197 | 1.82E-05
(0.000039) (0.000046)
HDL-C | Novel |cg19273683 | 1 21656047 Body ECE1 — —0.000289 | 1.50E-08 — —0.000244 | 1.71E-03
(0.000051) (0.000078)
HDL-C | Previous | cg06500161 | 21 | 43656587 Body ABCG1 - -0.000363 | 2.48E-20 — —0.000219 | 3.41E-03
(0.000039) (0.000075)
TG Novel | cg03725309 | 1 | 109757585 Body SARS - —-0.007844 | 4.56E-10 — —0.009679 | 1.27E-07
(0.001258) (0.001832)
TG Novel | cg14476101 | 1 | 120255992 Body PHGDH — -0.018779 | 8.96E-11 - —0.009380 | 2.68E-04
(0.002897) (0.002574)
TG Previous | ¢g19693031 | 1 | 145441552 3UTR TXNIP - —-0.016514 | 1.70E-12 - —0.010270 | 1.54E-05
(0.002340) (0.002376)
TG Novel | cg06690548 | 4 | 139162808 Body SLC7AT1 — —0.019833 | 1.54E-15 —_— —0.006180 | 3.95E-04
(0.002487) (0.001744)
TG Novel | cg21429551 | 7 | 30635762 Body GARS — -0.023803 | 1.18E-12 — —-0.009124 | 1.67E-03
(0.003349) (0.002903)

(Continued)
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Table 1. Continued

Epigenetic Patterns Associated With Lipid Traits

Lipid Type of Gene Discovery Replication

Trait Loci CpG Chr Position Property Gene | Direction® B (SE) PValue  Directiont { (SE) PValue

TG Novel | cg19390658 | 7 | 30636176 Body GARS — —-0.020864 | 8.73E-14 —_— —-0.010873 | 2.30E-05
(0.002797) (0.002568)

TG Previous | cg00574958 | 11 | 68607622 5’UTR CPT1A — —-0.007903 | 5.81E-26 —4— -0.010401 | 9.59E-19
(0.000750) (0.001177)

TG Previous | ¢g09737197 | 11 | 68607675 5UTR CPT1A — —-0.007034 | 1.01E-09 —+— —-0.010243 | 4.58E-08
(0.001152) (0.001874)

TG Previous | cg17058475 | 11 | 68607737 5UTR CPT1A — —-0.009144 | 2.24E-18 —_— —0.012478 | 8.93E-13
(0.001046) (0.0017486)

TG Novel | cg08129017 | 17 | 17728660 Body SREBF1 ++ 0.009346 3.36E-08 +++ 0.010037 | 2.85E-05
(0.001693) (0.002373)

TG Previous | cg27243685 | 21 | 43642366 | 5'UTR/Body | ABCG1 ++ 0.010416 5.08E-18 +++ 0.004038 | 4.26E-04
(0.001204) (0.001146)

TG Previous | cg06500161 | 21 | 43656587 Body ABCG1 ++ 0.016873 1.29E-33 +++ 0.010841 | 1.10E-06
(0.001396) (0.001712)

BMI indicates body mass index; Chr, chromosome; CpG, cytosine—guanine dinucleotide; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein

cholesterol; TC, total cholesterol; and TG, triglyceride.

*Direction of effect in Framingham Heart Study and Prospective Investigation of the Vasculature in Uppsala Seniors Study.
1Direction of effect in LBC1936 (Lothian Birth Cohorts of 1936), LBC1921, and GOLDN (Genetics of Lipid Lowering Drugs and Diet Network) for TC and TG, and

direction of effect in LBC1936 and GOLDN for LDL-C and HDL-C.

study® (Tables II through IX in the Data Supplement). Less
than half of HDL-C (40%) and triglyceride-associated (46%)
sites were associated in SAT, and more than half of HDL-C
sites were in opposite directions in blood and adipose tissue,
indicating that there may be independent regulatory effects
across tissue types.

In addition, fixed effects meta-analyses across all 5 cohorts
were performed for each lipid trait, identifying additional dif-
ferentially methylated candidate regions that may play a role
in lipid levels (Tables XI and XII in the Data Supplement), but
that carry lesser weight given the lack of independent replica-
tion. Using the results of these meta-analyses, we investigated
whether methylation at 15 CpGs associated with lipids in 2
recent publications®3* also was associated with the same lipid
traits in our study. We found 12 (80%) CpGs reported in previ-
ous studies to be associated with the same lipid traits in our
study (Table 2), highlighting the high degree of between-study
replicability of lipid—-methylation associations. Interestingly,
the intergenic CpG cg07504977 associated with triglycerides
in both our study and the previous study lies in an active regu-
latory region (DNAse I hypersensitivity site and H3K27Ac
mark) <10 kb distal to stearoyl-CoA desaturase (delta-9-de-
saturase). This gene plays an important role in the metabolism
of dietary saturated fatty acids, a function that is critical for
triglycerides synthesis and that has been shown to be disturbed
in metabolic disease.** However, in our study, methylation at
cg07504977 was not associated with expression of stearoyl-
CoA desaturase in whole blood.

Many lipid-associated CpGs in our study were annotated
to genes in loci highlighted in GWAS of cardiovascular traits,
including lipids (AMPD3, APOB, FADS2, GALNT2, LDLR,
MYLIP, and TRIBI), waist:hip ratio (CBX3, KLFI3, and
LY86), BMI (ADCY3), adiponectin (TRIBI), type 2 diabetes
mellitus (PTPRD), and CHD (APOB and LDLR; Table XIII in
the Data Supplement).

Functional Annotation of Lipid-Associated CpGs
We explored the functional roles of the 193 CpGs associated
with lipid traits by investigating their genomic locations with
respect to genes, CpG islands, and functional regulatory ele-
ments. Lipid-associated CpGs were less commonly located
in CpG islands (P=1.01E-15) and promoters (P=5.82E-04),
when compared with all CpGs on the array (Figure XV
in the Data Supplement). The observation that differential
DNA methylation in relation to chronic human disease traits
(as opposed to cancer) is less likely to be seen at promoters
and CpG islands has been previously reported.” To further
explore the regulatory activity of identified loci, we examined
the overlap of the 193 lipid-associated CpGs with functional
regulatory elements across cell types using RegulomeDB.*!
About 14% of sites showed strong evidence of being located
in a functional regulatory region (RegulomeDB score la-2c;
Tables II through IX in the Data Supplement); this was not
more than expected by chance (P=0.83).

To further the in silico identification of relevant affected
tissues, we used the eFORGE tool (http://eforge.cs.ucl.ac.uk/),
which determines whether the identified CpGs are enriched in
DNAse I hypersensitivity site hotspots in specific tissue types
(Figure XVI in the Data Supplement). Our identified CpGs
were in active DNAse I hypersensitivity site hotspots across a
range of tissue types in ENCODE and Epigenome Roadmap
Consortium tissue sets (FDR Q value <0.01), specifically
blood, liver, muscle, heart, and epithelium (adipose tissue
is not represented in this tool). Notably, the identified CpGs
were not in DNAse I hypersensitivity site hotspots in nervous
tissue (brain, cerebellum, hippocampus, and nervous), gas-
trointestinal tissue (colon, kidney, pancreas, and pancreatic
duct), bone tissue, and eye tissue.

To place our findings in a broader biological context, we
performed gene set enrichment analysis®'*? for genes anno-
tated to the 193 CpGs associated with lipid levels. For TC,
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Table 2. Associations of Lipid Levels With Methylation at CpGs Previously Reported to be Associated with Lipids

Meta-Analysis Across All 5
Cohorts in Our Study

Trait References CpG Gene { (replicating) Direction PValue*
LDL-C Pfeiffer et al*® €922178392 TNIP1 0.040 (yes) + 1.33E-04
HDL-C Pfeiffer et al*® €g06500161 ABCG1 —0.049 (yes) =* 2.09E-38*
TG Pfeiffer et al*® €g06500161 ABCG1 0.070 (yes) +* 4.20E-59*
TG Irvin et al¥%; Pfeiffer et al® €g00574958 CPT1A —0.118 (yes), —0.032 =* 7.22E-09*
TG Irvin et al*® €g17058475 CPT1A —-0.035 =* 2.72E-36*
TG Irvin et al® €g09737197 CPT1A -0.027 —* 1.05E-17*
TG Irvin et al*® cg01082498 CPTIA -0.011 —* 2.07E-13*
TG Pfeiffer et al*® €g27243685 ABCG1 0.064 (yes) +* 2.00E-24*
TG Pfeiffer et al*® ¢919693031 TXNIP —0.030 (yes) —* 5.54E-19*
TG Pfeiffer et al*® cg11024682 SREBF1 0.059 (yes) +* 3.74E-27*
TG Pfeiffer et al*® €g07504977 0.026 (yes) +* 9.91E-19*
TG Pfeiffer et al*® €920544516 MIR33B/SREBF1 0.043 (yes) +* 3.57E-08*
TG Pfeiffer et al*® €g07397296 ABCG1 0.027 (yes) +* 1.08E-10*
TG Pfeiffer et al*® cg07815238 0.048 (no) + 0.037
TG Pfeiffer et al*® €912556569t APOAS 0.005 (no) N/A N/A

CpG indicates cytosine—guanine dinucleotide; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total

cholesterol; and TG, triglyceride.

*CpGs associate with the same lipid trait in combined meta-analysis (P<1.08E-7) in our study.
TCpG excluded in our analysis because of common genetic variant 1 base away from CpG site.

the pathway analyses revealed enrichment in processes relat-
ing to sterol, lipid, and cholesterol metabolism and biosyn-
thesis (FDR=0.0029-0.037), indicating that DNA methylation
sites associated with cholesterol primarily affect processes
directly relating to lipid production and metabolism (Tables
XIV through X VI in the Data Supplement). For triglycerides,
the pattern was different because metabolism of amino acids
was highlighted in the pathway analyses (FDR=0.034). No
significant enrichment in pathways was observed in analysis
of genes annotated to CpG sites associated with LDL-C or
HDL-C. When restricting the enrichment analyses to genes
annotated to replicating CpGs or to those where methylation
levels were associated with gene expression of their respec-
tive genes, we observed similar results (Tables XIV through
XVI in the Data Supplement), with the exception of HDL-C,
which now showed significant enrichment in lipid metabolism
(FDR=0.0056-0.04).

Genetic Regulation of Lipid-Associated DNA
Methylation

To assess the role of genetic variation in controlling lipid-
related DNA methylation changes, we studied the association
of sequence variants in cis with methylation levels at lipid-
associated CpGs (cis-meQTLs). Mapping of cis-meQTLs
(SNPs in a 100 kb window around CpG sites) was performed
in the FHS cohort (n=2246) with subsequent replication of
lead meQTLs in the PIVUS cohort (n=775). In agreement
with previous studies,*> we found a large proportion of CpG
sites to associate with common SNPs in cis. We found 123 out
of 193 (64%) lipid-associated CpG sites to be at least partly

regulated by genetic sequence variation in cis (P<1E-04); 60
of these replicated in PIVUS (at P<4.071E-04; Table XVII in
the Data Supplement).

We investigated whether the 123 significant lead meQTL
SNPs or their proxies (°>0.8) were over-represented among
SNPs with nominally significant associations (P<0.05) in
GWAS meta-analyses from the CARDIoGRAM consortium
for CHD* and the Global Lipids Genetics consortium for lipid
levels.* We found evidence of enrichment (applying a 1-sided
Fisher exact test) of nominally significant associations for
CHD (P=7.04E-4), TC (P=4.36E-3), HDL-C (P=8.3E-3), and
triglycerides (P=2.9E-5) among the cis-meQTL lead SNPs
(or proxies). Furthermore, we found the lead cis-meQTL SNP
(rs563290) of cg05337441 (associated with LDL-C in discov-
ery, P=4.5E-8 but not surviving Bonferroni cutoff threshold
in replication, P=1.7E-2), located in an intron of APOB, to
be associated with LDL-C in GWAS* and to be a highly cor-
related proxy (r’=1) of genome-wide significant GWAS index
SNPs (rs515135 and rs562338; located =20 kb upstream
of the APOB transcription start site) in LDL-C meta-analy-
ses.*# This cis-meQTL proxy for APOB locus methylation
(rs515135) is also associated with CHD at a genome-wide
level of significance (P=1.8E-10) from the CardiogramC4D
consortium data.*

The Impact of Lipid-Associated CpGs on Gene
Expression

Examining gene expression in relation to DNA methyla-
tion in blood from participants in the FHS, we investigated
whether methylation levels at lipid-associated CpGs were
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associated with mRNA expression levels of nearby genes
(£500 kb). We found 29 CpGs (out of 193 tested; 15%) to
be associated with expression in blood of at least 1 adja-
cent gene (FDR<0.05; 36 CpG—-expression pairs in total;
Table XVIII in the Data Supplement). For the major-
ity (86%) of these associations, levels of methylation and
expression were inversely correlated. For 17 of these 29
CpGs (59%), there was also a significant cis-meQTL. The
lead meQTL SNP was significantly associated with both
methylation and gene expression (FDR<0.05) for 12 of 36
CpG—expression pairs (29 unique CpGs), suggesting that the
genotype may affect both methylation and expression. This
was the case for the following genes: CHSY! (cg24002003),
DHCR24 (cgl7901584), ECEI (cgl9273683), ILISRI
(cg05295703), ILIRLI (cg05295703), KANK?2 (cg01751802),
LDLR (cg26313301), PHGDH (cgl4476101, cg16246545),
PRKD?2 (cg22304262), SREBFI (cg08129017), and SREBF2
(cg09978077). For the remaining 6 CpG—expression pairs, the
meQTL SNP was associated with methylation (FDR<0.05)
but not with expression (FDR >0.05) as presented in Table
XVIII in the Data Supplement.

Detailed Characterization of Lipid CpG Sites Using
Metabolomics

To further characterize functional relevance of lipid-asso-
ciated CpG sites, we tested levels of methylation at the 193
CpGs for association with 229 serum metabolites in the
PIVUS cohort.* We found 29 of the lipid-associated CpGs
to be associated with at least 1 metabolite (FDR<0.01; Table
XIX in the Data Supplement). As expected, the majority of the
associations were between a lipid-related CpG site and vari-
ous lipid-derived metabolites (Figure XVII in the Data Sup-
plement). Most associations were observed with cg17901584
in the promoter of DHCR24 (associated with TC, HDL-C, and
triglycerides) and with sites in the promoter of ABCG! (asso-
ciated with HDL-C and triglycerides), highlighting the central
role for these genes in lipid metabolism. Metabolites associ-
ated with methylation of the DHCR24 promoter included a
derivate of cinnamic acid, recently shown to be associated
with a lower risk of incident CHD events.*® Methylation at
the ABCGI locus was associated with specific ceramides and
sphingomyelins, which have been implicated in the develop-
ment of atherosclerosis and CHD.*"#

Association of Lipid-Associated CpGs With Disease

Outcomes

We investigated whether the 33 replicating lipid-associated
CpG sites were also associated with incident CHD events
during an 8-year follow-up in the FHS (number of CHD
events=115) and a 10-year follow-up in PIVUS (number of
CHD events =78) using multivariable Cox proportional haz-
ard models. Methylation levels at ABCGI (cg27243685)
were significantly associated (Bonferroni-corrected a.<0.05,
nominal P<1.52E-03) with CHD in a meta-analysis of FHS
and PIVUS (hazard ratio per SD increment=1.38; 95% con-
fidence interval, 1.15-1.66; P=6.86E-04; Table XX in the
Data Supplement). We found the relationship of methyla-
tion at cg27243685 with triglycerides and risk of CHD to be
directionally consistent with the expected based on previous

Epigenetic Patterns Associated With Lipid Traits

studies of lipid levels and CHD risk.'” Hypermethylation at
cg27243685 in the 5-UTR of ABCGI—that was associated
with decreased expression of ABCGI (Table XVIII in the
Data Supplement)—was associated with higher triglycerides
and lower HDL-C, as well as increased risk for CHD (Figure
2). This ABCGI locus (cg27243685) was also highlighted in
the previous sections as containing a cis-meQTL and being
associated with metabolites. This illustrates an example of a
pathway linking genetic variant to perturbed DNA methyla-
tion, altered expression levels, circulating metabolites, lipid
levels (triglycerides and HDL-C), and risk of CHD (Figure 2).

Discussion

In this study, we aimed to identify epigenetic variation asso-
ciated with serum lipid concentrations, which are among the
most established risk factors for CVD. We report findings of
a genome-wide scan of blood DNA methylation in relation to
circulating lipid levels from <2306 individuals with indepen-
dent external replication in <2025 additional individuals. We
extend the findings of published literature on the association
of differential DNA methylation with circulating lipids®®394°-5
by examining larger discovery and replication samples and
by examining the association of methylation at the associ-
ated CpGs with gene expression, intermediate metabolites,
and incident CHD. We have made several novel observations
about the role of DNA methylation in the regulation of lipids
and risk of CVD and highlight 3 important contributions. First,
we identified novel replicated loci of differential methylation
in blood associated with circulating lipid levels that may rep-
resent potential therapeutic targets. Second, we describe the
overlap of methylation and GWAS SNPs and identify a poten-
tial mechanism of a known LDL-C-related GWAS variant at
the APOB locus acting as a cis-meQTL on LDL-C-related dif-
ferential methylation at cg05337441, intronic to APOB. Third,
we identify HDL-C-related and triglyceride-related differ-
ential methylation at the ABCGI locus (cg27243685) to be
associated with expression of a gene involved in reverse cho-
lesterol transport (ABCG1), metabolites that influence reverse
cholesterol transport (sphingomyelins), and subsequently to
be associated with a 38% higher risk of incident CHD per SD
increase in methylation.

We found methylation at 193 CpG sites to be associated
with lipid levels and replicated 33 of these in 3 indepen-
dent cohorts with data on DNA methylation in blood and T
cells. Many of the differentially methylated loci associated
with LDL-C, triglycerides, and to a lesser degree HDL-C,
were independent of adjustment for BMI. Twenty-five of the
33 replicated CpGs have not been previously reported to be
associated with lipid levels.®* Novel sites included those
near genes with a known function in cholesterol metabolism
(DHCR24, SREBF?2, and SQLE) and with a possible role in
atherosclerosis (endothelin-converting enzyme-1).°'2 The
novel genes identified warrant further research as potential
targets for perturbation to reduce dyslipidemia.

When exploring whether methylation at lipid-associated
CpGs has also been associated with related cardiometabolic
traits, we found overlap with associations for adiposity (near
genes ABCG1, CPTIA, DHCR24, KLF13, MYO5C, PHGDH,
SREBF1, and VPS25),% glycemic traits (near ABCGI,)*
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Figure 2. Associations at the ABCG1 locus. CHD indicates coronary heart disease; HDL-C, high-density lipoprotein cholesterol; meQTL,
methylation quantitative trait locus; SNP, single-nucleotide polymorphism; and TG, triglyceride.

and type 2 diabetes mellitus (near genes SREBFI, ABCGI,
and TXNIP).” In addition, we observed associations of circu-
lating lipids with DNA methylation levels at CpGs near genes
previously reported to be associated with lipids, other cardio-
vascular traits, and CVD events in GWAS.

Further, pathway analyses, including genes annotated
to lipid-associated CpGs, showed enrichment in pathways
involved in lipid, sterol, and cholesterol metabolic and biosyn-
thesis processes for cholesterol-related CpGs, whereas amino
acid metabolism pathways were enriched for triglyceride-
associated CpGs. These observations highlight the different
biological mechanisms underlying changes in genomic regu-
lation observed in association with TC and TGs.

We identified genetic drivers of lipid-associated CpGs in
blood through integration with SNPs in cis-meQTLs analy-
ses. At 64% of the lipid-associated CpGs, the effect is deter-
mined in part by genotype. GWAS SNPs for lipids and CHD
were enriched among the cis-meQTL SNPs of lipid-associated
CpGs. Further, we observed association with expression levels
of adjacent genes for 15% of the CpGs, which indicates pos-
sible mechanisms of effect through changes in transcription.
For 17 of the lipid-related CpGs where there was an associa-
tion with expression levels of an adjacent gene, there was also
a significant cis-meQTL. For the majority of these, the geno-
type affected both methylation and gene expression. In these
instances, our data provide evidence linking multiple steps
from genetic variants affecting DNA methylation, to modula-
tion of gene expression to effects on circulating lipid levels. For
example, at the ABCG1 locus, we observed that the minor allele
at intronic variant rs4148086 was associated with increased
methylation at cg27243685. This methylation marker, which is
located at the south shelf of a CpG island in the 5’-UTR region

of ABCG 1, was associated with decreased expression of ABCG1
in blood, increased triglyceride levels (even after adjustment of
BMI and regulated both by blood and SAT methylation), and
increased risk of new-onset CHD. Methylation in this locus
(at cg06500161) has previously been associated with prevalent
myocardial infarction.*” The ABCGI gene product functions
in the efflux of cholesterol from lipid-loaded macrophages to
HDL-C.”® However, the functional basis for association to lev-
els of triglycerides in blood circulation is unclear. Although cir-
culating HDL-C levels has been largely disproven as a causal
factor for CHD,? the importance of cholesterol efflux function
in CHD risk is an emerging topic of discussion.” In addition to
cholesterol, ABCG1 mediates the efflux of sphingomyelin and
phosphatidylcholine, and the cholesterol efflux by ABCG1 has
been demonstrated to have some dependence on sphingomyelin
concentrations.®*®" Sphingomyelins have been implicated in
the development of atherosclerosis and CHD.*% In our study,
methylation in the ABCGI locus was also associated with spe-
cific sphingomyelins and ceramides (also implicated in CHD").
Methylation at CpG sites in the ABCG1, as well as the DHCR24
loci, was also associated with a large number of other lipid-
related metabolites in blood, further highlighting the central
role for these genes in processes relating to lipid metabolism
and development of CVD.

The main strengths of this study include the large sample
size of the genome-wide DNA methylation and <10 years of
follow-up allowing analyses of incident CHD end points. In
addition, inclusion of several other types of functional genom-
ics data (gene expression and metabolites) helped us to draw
more precise conclusions on the links between methylation and
circulating lipid levels. We replicated a large fraction of pre-
viously reported associations of methylation and lipid levels,
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providing assurance that associations of methylation with lipid
levels are reliable across different studies and indicate that also
the novel findings reported may indeed represent true findings.

The study also has limitations. Blood-derived cells,
although easily accessible and good for biomarker discovery,
may not be the most relevant tissue for drawing biological con-
clusions. Our validation in adipose tissue reveals that at least a
proportion of the observed associations are shared across tis-
sues. The cross-sectional design does not allow us to determine
the causal relationship between lipid and DNA methylation.
Our analysis of lipid-associated CpGs with incident disease
indicates the relevance of methylation in at least one of these
CpGs for disease pathophysiology. Further, a relatively low
proportion of our findings could be robustly validated in the
replication stage. However, it should be noted that we observed
a high level of agreement of 3 coefficients even for CpGs that
did not formally replicate at the P value threshold. This indi-
cates that the low replication rate may be because of smaller
sample size in the replication stage, particularly for LDL-C and
HDL-C, giving reduced power, especially in the light of our
strict criteria for replication (which was chosen to minimize
false-positive findings). In addition, if the differentially meth-
ylated CpGs identified in discovery from whole blood did not
also occur in CD4* T cells, we would not expect to see replica-
tion in the GOLDN replication cohort that assayed DNA from
cell-sorted CD4* T cells. Furthermore, cholesterol panels from
the LBC cohort were obtained in a nonfasting state and may
have reduced our ability to replicate findings. Finally, tran-
scriptomic and metabolomic data were not available in every
cohort, and, therefore, we were not able to demonstrate similar
findings in each participating study.

In conclusion, we report novel associations of DNA methyl-
ation with lipid levels. We identify links between genetic varia-
tion underlying lipids and CHD to differential DNA methylation.
We also highlight HDL-C-related and triglyceride-related dif-
ferential methylation and expression of a reverse cholesterol
transporter, ABCG1, and the association with an increased risk
of incident CHD. Our findings highlight established and novel
targets and mechanisms that can be used as a starting point for
potential new treatments for dyslipidemia and CVD.
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CLINICAL PERSPECTIVE

Serum lipid levels are among the most established risk factors for cardiovascular disease, the leading cause of death globally.
In this study, we report on the relations of circulating serum lipids with epigenetic marks and also provide evidence of a role
for epigenetics in cardiovascular disease development. We present findings from a genome-wide scan of blood DNA meth-
ylation in relation to circulating lipid levels from 2306 individuals with independent external replication in 2025 individuals.
We have made several novel observations about the role of DNA methylation in the regulation of lipids and risk of cardio-
vascular disease and highlight 3 important contributions: (1) we identify novel replicated loci of differential methylation in
blood associated with circulating lipid levels that may represent potential therapeutic targets, (2) we describe the overlap
of methylation and genome-wide association studies single-nucleotide polymorphisms and identify a potential mechanism
of a known low-density lipoprotein cholesterol-related and coronary heart disease—related single-nucleotide polymorphism
from genome-wide association studies at the APOB locus acting as a cis-methylation quantitative trait locus on low-density
lipoprotein cholesterol-related differential methylation at a site intronic to APOB, and (3) we identify triglyceride- and
high-density lipoprotein cholesterol-related differential methylation at the ABCGI locus to be associated with expression of
a gene involved in reverse cholesterol transport (ABCGI), metabolites that influence reverse cholesterol transport (sphingo-
myelins), and subsequently to be associated with a 38% higher risk in incident coronary heart disease events. We think that
our findings provide important insights into the contributions of epigenetics in circulating lipids and cardiovascular disease

and may provide insights to novel therapeutic targets.
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Supplementary Fig. 1. Volcano plots of TC models 1 and 2 in the discovery.
A. Results of meta-analysis of FHS and PIVUS (discovery) TC model 1. B. Results of meta-
analysis of FHS and PIVUS (discovery) BMI-adjusted TC model 2. Significant associations
are coloured in red. Replicating associations are labelled by CpG marker name in the plot.
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A. Results of meta-analysis of FHS and PIVUS (discovery) LDL-C model 1. B. Results of
meta-analysis of FHS and PIVUS (discovery) BMI-adjusted LDL-C model 2. Significant
associations are coloured in red. Replicating associations are labelled by CpG marker name in
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Supplementary Fig. 3. Volcano plots of HDL-C models 1 and 2 in the discovery.

A. Results of meta-analysis of FHS and PIVUS (discovery) HDL-C model 1. B. Results of
meta-analysis of FHS and PIVUS (discovery) BMI-adjusted HDL-C model 2. Significant
associations are coloured in red. Replicating associations are labelled by CpG marker name in
the plot.
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Supplementary Fig. 4. Volcano plots of TG models 1 and 2 in the discovery.

A. Results of meta-analysis of FHS and PIVUS (discovery) TG model 1. B. Results of meta-
analysis of FHS and PIVUS (discovery) BMI-adjusted TG model 2. Significant associations
are coloured in red. Replicating associations are labelled by CpG marker name in the plot.
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Supplementary Fig. 5. Manhattan plot of genome-wide analysis of TC (model 1) in the
discovery. The red line indicates the methylome-wide significance level (P<108E-07).
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Supplementary Fig. 6. Manhattan plot of genome-wide analysis of LDL-C (model 1) in

the discovery. The red line indicates the methylome-wide significance level (P<108E-07).
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Supplementary Fig. 7. Manhattan plot of genome-wide analysis of HDL-C (model 1) in
the discovery. The blue line indicates the methylome-wide significance level (P<108E-07).
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Supplementary Fig. 8. Manhattan plot of genome-wide analysis of TG (model 1) in the
discovery. The red line indicates the methylome-wide significance level (P<108E-07).
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Supplementary Fig. 9. Overlap of DNA methylation sites associated with the blood lipid
levels in genome-wide analyses in the discovery. A: Primary model, B: Secondary BMI-
adjusted model.
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Supplementary Fig. 10. Comparison of effect size estimates between the discovery and
replication. Plot of discovery stage coefficients versus replication stage coefficients for all
CpGs significantly associated (per trait) in models 1 in the discovery. A. TC, Pearson
correlation coefficient (r) = 0.78 (r = 0.81 following removal of replicating sites), B. LDL-C,
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Supplementary Figure 11. Comparison of effect size estimates for TC model 1 between discovery and each of the individual replication cohorts. Beta
coefficients in figure from lipid EWAS results in Discovery vs. LBC1936 (left panel), Discovery vs. LBC1921 (middle) and Discovery vs. GOLDN (right).
CpG sites significant also in the replication are indicated in red. The black line represents the identity line.
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Supplementary Figure 12. Comparison of effect size estimates for LDL-C model 1 between discovery and each of the individual replication cohorts.
Beta coefficients in figure from lipid EWAS results in Discovery vs. LBC1936 (left panel) and Discovery vs. GOLDN (right). CpG sites significant also in
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Supplementary Fig. 15. Location of lipid-associated CpGs in relation to CpG islands and
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Supplementary Fig. 17. Overview of significant associations between lipid-associated
CpGs and serum metabolites. Significant associations (FDR < 0.01) are depicted in orange
for positively associated effects and blue for negatively associated effects. CpGs are depicted
on the X-axis and metabolites on the Y-axis.
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Supplementary Table 1. Cohort characteristics

FHS PIVUS LBC1936 LBC1921 GOLDN
Sample type Blood Blood Blood Blood T-cells
Fasting status Fasted Fasted Non-fasted Non-fasted Fasted
Age, mean (SD) | 66.4(8.9) | 70.2(0.2) 69.5 (0.8) 79.1 (0.6) 48.8 (16)
BMI (kg/m?) 28.3(5.3) | 26.9(4.3) 27.4 (4.2) 26.1 (4.0) 28.3 (6)
Female (%0) 54.3 49.8 52.8 60.3 52.3
TC (mg/dL)
N 1494 812 654 380 991
Mean (SD) 201 (33) | 215.4(36.9) | 224.9(41.6) | 221.7(43.6) | 190.0 (33)
Range 85-328 116-363.5 | 123.7-417.6 | 127.6 - 379.0 98- 332
LDL (mg/dL)
N 1494 810 588 -- 991
Mean (SD) 118 (28) 136 (31.9) 135.5 (36.7) - 121.6 (31)
Range 26-215 42.5-266.8 33.9-317.6 -- 44 -236
HDL (mg/dL)
N 1494 812 592 - 991
Mean (SD) 61(19) | 59.4(16.7) | 60.4(17.4) - 47.0 (13)
Range 22-156 23.2-146.9 26.3 - 147.7 -- 22-110
TG (mg/dL)
N 1494 812 588 376 991
Mean (SD) 112 (65) | 109.0 (48.4) | 140.8 (64.6) | 164.7(76.9) | 137.0 (95)
Range 30-790 11.5-372.0 | 41.6-419.8 | 62.0-611.1 | 23-1085
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Supplementary Table 13. Genes annotated to lipid CpGs in GWAS loci of cardiovascular

traits
Associated lipid | Gene annotated
traitin to lipid- GWAS trait(s) Reference
epigenetic associated
analysis CpG(s)
TC, LDL-C APOB Lipids (TC, LDL-C), Coronary artery 12
disease
HDL.C TRIBL Lipids (TC, LDL-C, HDL-C, TG), ! s
Adiponectin
HDL-C LDLR Lipids (TC, LDL—C), Coronary artery 12
disease
TG MYLIP Lipids (TC, LDL-C) !
LDL-C GALNT2 Lipids (HDL-C, TG) !
HDL-C AMPD3 Lipids (HDL-C) !
TC, LDL-C FADS2 Lipids (TC, LDL-C, HDL-C, TG) !
HDL-C KLF13 Waist-hip-ratio 4
HDL-C CBX3 Waist-hip-ratio 4
TG LY86 Waist-hip-ratio 4
TC ADCY3 BMI >
TC PTPRD Type-2 Diabetes 6
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Supplementary Table 14. Enriched biological categories among genes annotated to TC-

associated CpGs (FDR <0.05)

Category Term Fold FDR
Discovery
GO BP GO:0016125~ sterol metabolic process 30.44  2.90E-03
GO:0008203~ cholesterol metabolic
GO BP process 3342 4.00E-03
KEGG Pathway hsa00100: Steroid biosynthesis 74.78  1.19E-02
GO BP G0:0008202~ steroid metabolic process 1522  2.85E-02
BP00019: Lipid, fatty acid and steroid
Panther BP ILletabofism > 3.66E-02
Replication
KEGG Pathway hsa00100:Steroid biosynthesis 299.12  3.34E-03
UP_SEQ FEATURE nucleotide phosphate-binding region:FAD  313.33  2.21E-02
REACT_602:Metabolism of lipids and
REACTOME Pathway lipoproteins 2265  441E-02
MRNA expression of gene associated with CpG
KEGG Pathway Antigen processing and presentation 30.63  3.76E-02
GO BP Sterol metabolic process 57.40  4.72E-02

BP, Biological Process
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Supplementary Table 15. Enriched biological categories among genes annotated to HDL-C
associated CpGs (FDR <0.05)

Category Term Fold FDR
Discovery

N.S. N.S. N.S. N.S.
Replication

REACTOME Pathway REACT_602:Metabolism of lipids and 2265 A41E-02

lipoproteins
MRNA expression of gene associated with CpG
REACTOME Pathway REACT_602:Metabolism of lipids and

) . 16.99  5.64E-03
lipoproteins
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Supplementary Table 16. Enriched biological categories among genes annotated to TG-
associated CpGs (FDR <0.05)

Category Term Fold FDR
Discovery
Panther BP BP00013: Amino acid metabolism 18.110  3.40E-02
Replication
Panther BP BP00013: Amino acid metabolism 26.16  5.58E-03
MRNA expression of gene associated with CpG
Panther BP BP00013: Amino acid metabolism 26.16  6.09E-03

BP, Biological Process
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Supplementary Table 18. Lipid-associated CpGs significantly associated with levels of expression of neighbouring genes in blood in FHS (FDR <0.05).

meQTL SNP is also

Gene . r’meQTL
CpG CGl info Gene Property annotated to Exprg33|on qf Gene Beta P an eQTL for meQTL peak SNP eQTL peak SNP -eQTL
CpG ssociated with CpG associated expressed SNP peak SNP
gene (P<1E-4)

cgl7901584 S Shore TSS1500 DHCR24 DHCR24 -1.22 4.84E-13 Yes 156687489 1512131972 0.72
cg19273683 Body ECEl ECEl -0.73 6.75E-08 Yes rs3026815 rs1067221 0.264
cg01751802 S_Shore TSS1500 KANK2 KANK2 -0.41 6.50E-05 Yes 19:11317508:TG_T 1s7254270 0.001
€g26313301 S_Shelf Body LDLR LDLR 0.68 8.95E-05 Yes 1s2569550 rs77373181 -
cgl4476101 S_Shore Body PHGDH PHGDH -0.38 2.76E-08 Yes rs11583993 rs11583993 Identical
cg16246545 S_Shore Body PHGDH PHGDH -0.41 3.06E-06 Yes rs11583993 rs11583993 Identical
cg25739016 Body RCSD1 LOC100128751 2.1 2.34E-09 Yes rs1229359 1s7513712 0.007
€g22304262 N_Shelf SUTR/Body SLC1A5 PRKD2 -0.42 6.91E-07 Yes rs8105903 1560652743 0.15
cg08129017 S_Shore Body SREBF1 SREBF1 -0.51 1.07E-11 Yes 1s9899634 1s8078756 1
cg09978077 Island Body SREBF2 SREBF2 -2.05 9.37E-12 Yes 1s9607850 19611674 0.87
cg05295703 - - IL1IRL1 -3.26 1.42E-18 Yes 112469892 rs1420103 0.734
cg05295703 - - 1L18R1 -1.74 2.86E-06 Yes 1rs12469892 1rs10490202 0.148
cg24002003 - - CHSY1 0.88 9.63E-08 Yes 1rs3784526 1rs3784526 Identical
cg01176028 N_Shore Body ABCG1 ABCG1 -0.66 1.36E-06 No 1225448 1$9976024 0.17
cg06500161 S_Shore Body ABCG1 ABCG1 -1.75 8.58E-49 No 1rs225443 1r$9976024 0.03
cg27243685 S_Shelf SUTR/Body ABCG1 ABCG1 -1.94 7.23E-28 No rs4148086 1r$9976024 0.63
cg22488164 N_Shelf Body PLBD1 PLBD1 -0.54 4.84E-05 No rs2098542 rs151001109 -
cgl7501210 Body RPS6KA2 RNASET2 -0.62 9.75E-10 No 157745806 15429083 >500kb
€g22304262 N_Shelf SUTR/Body SLC1A5 SLC1A5 -0.64 3.63E-07 No 1s8105903 1s3027953 0.27
cgl1001536 - - FAM114A2 -0.62 2.36E-05 NA.! - - -
cg00574958 N_Shore 5UTR CPT1A CPT1A -4.02 5.53E-19 NA.! - - -
cgl7058475 N_Shore SUTR CPT1A CPT1A -2.47 2.20E-10 N.A.! - - -
cg09737197 N_Shore 5UTR CPT1A CPT1A -1.58 1.36E-08 NA! - - -
cg08788930 Body DENND3 SLC45A4 -1.12 1.20E-05 NA! - - -
cg21645268 N_Shelf Body FDFT1 CTSB -3.55 1.58E-33 NA! - - -
cg21645268 N_Shelf Body FDFT1 CTSB 1.31 1.57E-06 NA! - - -
cgl8520125 Body FLT1 FLT1 -0.69 8.94E-07 N.A.! - - -
cg16609995 3UTR; TSS1500  GPSM3; PBX2 HLA-DRB6 -3.09 1.92E-06 N.A.! - - -
cg16609995 3UTR; TSS1500  GPSM3; PBX2 AGER; RNF5 -0.93 3.12E-06 N.A.! - - -
cg16609995 3UTR; TSS1500 GPSM3; PBX2 SLC44A4 -0.67 2.04E-05 NA.! - - -
cg09676013 ncRNA HLA-DPB2 HLA-DPB1 -1.08 2.77E-13 N.A.! - - -
cg09676013 ncRNA HLA-DPB2 HLA-DPA1 -0.64 5.38E-08 N.A.! - - -
cg09676013 ncRNA HLA-DPB2 HLA-DPB2 0.78 3.81E-05 N.A.! - - -
cg03717755 Body MYLIP MYLIP -0.46 1.90E-05 N.A.! - - -
cg06690548 Body SLC7A11 SLC7AlkSS,’lLC7A11' -0.74 3.38E-15 NA! - - -
cg00285394 S Shore Body SQLE SQLE -1.42 8.28E-13 N.A.! -- -- -

1. No significant meQTL
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Supplementary Table 20. Association of 33 replicating lipid-associated CpGs with incident CHD' up to ten years after baseline in FHS and PIVUS.

Meta-analysis FHS PIVUS
Gene Direction
CpG Gene Property HR (95% CI)? P Heterogeneity P HR (95% Cl)? P HR (95% CI)? P Trait(s)? CpG -
lipid
cg27243685! ABCG1 5UTR/Body  1.38(1.15-1.66) 6.86E-04 0.56 1.41(1.12-1.77)  3.40E-03  1.33(0.96-1.84) 0.079 (m1T8?m2) +

1. 115 events in FHS and 64 events in PIVUS
2 Hazard ratio per SD increment in methylation at CpG site.
3. ml: primary model, m2: secondary BMI-adjusted model
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Supplementary Methods
Cohort descriptions and sample collections

Discovery cohorts

FHS Offspring Cohort was initially recruited in 1971 and included 5,124 offspring (and
their spouses) from the FHS Original Cohort ’. In the FHS, the eligible sample for this
investigation was from the 3,021 participants in the FHS Offspring Cohort who attended the
eighth examination cycle in 2005-2008. The included sample was determined based on the
number of participants consenting to genomic studies with available DNA and methylation
assays passing quality control measures. The DNA methylation, anthropometric, and
laboratory measures were obtained from the same examination. At each study visit,
participants underwent a routine physical examination and a medical history interview.
Participants were asked to bring in their current medication containers. Weight was measured
to the nearest pound with the participant wearing only a gown without slippers or shoes,
standing in the middle of the scale (Detecto Scale, Worchester Scale) with weight equally
distributed on both feet. Standing height was measured to the nearest %4 inch, with the
participant barefoot or wearing thin socks, using a vertical mounted stadiometer. BMI was
calculated as weight in kg divided by height in meters squared. Peripheral blood samples were
collected in the morning from participants after an eight-hour fast. TC, HDL-C and TG were
measured via an enzymatic colorimetric assay (Roche Hitachi 911, Roche Diagnostics) and
LDL-C was calculated by the Friedewald equation. CHD was defined as a fatal or non-fatal
myocardial infarction (MI), coronary death, revascularization procedure (percutaneous
transluminal coronary angioplasty or coronary artery bypass graft) or coronary insufficiency
(unstable angina). All CHD events were reviewed and adjudicated by a physician endpoint
committee.

PIVUS is a prospective community-based cohort of participants from Uppsala, Sweden. All
men and women at age 70 living in Uppsala in 2001 were invited to participate. The 1,016
participants (50% women) have been extensively phenotyped, as described previously #, and
on the Internet (www.medsci.uu.se/pivus/). The eligible sample for investigation was from the
1,016 enrolled patients at 70 years of age and conducted between the years of 2001-2003.
Lipid traits were measured at Uppsala University Hospital using routine medical chemistry
methods. LDL-C was calculated by the Friedewald equation. The participants have been re-
examined at ages 75 and 80, and their morbidity and mortality has been followed via national
registers and journal review. Clinical diagnoses by journal review of CVD up to 10 years after
baseline were used to define disease events. In the present study, we combined acute fatal or
non-fatal MI and revascularization procedure (percutaneous transluminal coronary
angioplasty or coronary artery bypass graft) into a composite atherosclerotic CHD endpoint.

Replication cohorts

The LBC 1921 and 1936 are two longitudinal studies of ageing °!'. They derive from the
Scottish Mental Surveys of 1932 and 1947, respectively, when nearly all 11-year old children
in Scotland completed a test of general cognitive ability °. Survivors living in the Lothian area
of Scotland were recruited in late-life at mean age 79 for LBC1921 (n=550) and mean age 70
for LBC1936 (n=1,091). Follow-up has taken place at ages 70, 73, and 76 in LBC1936 and
ages 79, 83, 87, and 90 in LBC1921. The eligible sample for investigation was collected
between at age 70 for LBC1936 and age 79 for LBC1921. Collected data include genetic
information, longitudinal epigenetic information, longitudinal brain imaging (LBC1936), and
numerous blood biomarkers, anthropomorphic and lifestyle measures. Serum cholesterol was
measured as part of a blood analysis profile. Non-fasting blood was drawn on the day of
cognitive assessment and analysed within 24 h in serum stored at 4 °C using an enzymatic
Quinoneimine dye method measuring at 500 nm, at the Western General Hospital, Edinburgh.
For LBC1921 HDL-C and LDL-C were not available.
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GOLDN: The National Heart, Lung, and Blood Institute GOLDN study was designed to
identify genetic determinants of lipid response to two interventions (a high-fat meal challenge
and fenofibrate treatment for 3 weeks). The GOLDN study has been previously described in
detail in Irvin et al '?. Briefly, the study ascertained and recruited families from the Family
Heart Study at two centres, Minneapolis, MN and Salt Lake City, UT, who self-reported to be
white. Only families with at least two siblings were recruited for a total of 1,327 individuals.
Volunteers were required to withhold lipid-lowering agents (pharmaceuticals or
nutraceuticals) for at least 4 weeks prior to the initial visit to be eligible. A total of 1,053 met
all eligibility requirements. The study protocol was approved by Institutional Review Boards
at the University of Minnesota, University of Utah, and Tufts University/New England
Medical Center. For the current study, we evaluated fasting blood lipids among 991
participants for whom baseline epigenetic data were available. Lipids were measured before
the diet and drug intervention. Participants were asked to fast for >12 hours and abstain from
alcohol intake for >24 hours. TG was measured by a glycerol-blanked enzymatic method
(Trig/GB, Roche Diagnostics Corporation, Indianapolis, IN). TC was measured using a
cholesterol esterase—cholesterol oxidase reaction (Chol R1, Roche Diagnostics Corporation)
on the Roche/Hitachi 911 Automatic Analyzer (Roche Diagnostics Corporation). The same
reaction was also used to measure HDL-C after precipitation of non-HDL-C with
magnesium/dextran. LDL-C was measured by a homogeneous direct method (LDL Direct
Liquid Select™ Cholesterol Reagent, Equal Diagnostics, Exton, PA). Data on medical
history, physical activity and other lifestyle factors such as alcohol intake, smoking status,
and diet were collected using an interviewer-administered questionnaire. Weight was
measured by a beam balance and height was ascertained by a stadiometer. BMI was
calculated as weight in kilograms divided by height in meters squared.

Genome-wide DNA methylation profiling

FHS: Buffy coat preparations were obtained from the whole blood samples and genomic
DNA was extracted using the Gentra Puregene DNA extraction kit (Qiagen, Venlo,
Netherlands). DNA samples were bisulphite converted using the EZ DNA Methylation kit
(Zymo Research, Irvine, CA) and analysed on Illumina HumanMethylation450 chips
(Illumina Inc., San Diego, CA, USA) following the manufactures' protocol. DNA methylation
arrays were run in two laboratory batches at the John’s Hopkins Center for Inherited Disease
Research (lab batch #1) and University of Minnesota Biomedical Genomics Center (lab batch
#2). The first batch included 576 samples from an earlier CVD case-control study '* and the
second batch included 2,270 samples from the remainder of the Offspring cohort participants.
DNA methylation data were normalised within laboratory batches using the DASEN
methodology implemented in the wateRmelon package '* in R (version 3.0.2), which includes
background adjustment of the methylated and unmethylated intensities and quantile
normalisation of the methylated and unmethylated probes within the two types of probe
technologies separately. Samples with a missing rate >1% at P<0.01 (n=10 for batch #1 and
n=35 for batch #2), poor single nucleotide polymorphism (SNP) matching to the 65 SNP
control probe locations (n=38 for batch #1 and n=41 for batch #2), and outliers by multi-
dimensional scaling techniques (n=25 for batch #1 and n=48 for batch #2) were excluded.
Probes with missing rate >20% at P<0.01 (n=466 from batch #1 and n=366 from batch #2), as
well as probes previously identified to map to multiple locations '* or to have an underlying
SNP (minor allele frequency [MAF] >5% in European ancestry (EUR) 1000 genomes project
data) at the CpG site or within 10 bp of the single base extension (n=42,251) were excluded.
Following quality control, DNA methylation data from 2,377 FHS participants and 443,252
probes remained for analyses. The FHS methylation data are available at dbGaP under the
accession number phs000724.v2.p9.

PIVUS: Blood for DNA methylation assay were collected at baseline (at age 70). Genomic
DNA was extracted from blood samples and bisulphite conversion of 500ng genomic DNA
was performed using the EZ-96 DNA Methylation Gold Kit (Zymo Research Product). The
equivalent of approximately 200ng of bisulphite converted DNA, was removed, evaporated to
a volume of <4y, and used for methylation profiling using the Illumina Infinium assay and
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the [llumina HumanMethylation450 v.1.2 bead chip according to the protocol from the
supplier (Illumina Inc., San Diego, CA, USA). The results were analysed with GenomeStudio
2011.1 (INlumina Inc., San Diego, CA, USA). After exclusion of replicates a total of 1,002
study participants had methylation data available for quality control procedures. Three
samples were excluded based on poor bisulphite conversion efficiency, twelve samples due to
low pass rate of CpG sites (<98.5% with a detection P>0.01) and a further six samples based
on low SNP genotype match (>1 SNP mismatches) between genotypes from the methylation
array and Omni/Metabochip genotyping chips leaving 981 individuals with adequate
methylation data available for analyses. Following removal of participants with abnormal
leukocyte cell counts (>10x10° cells/L; n=14) methylation data from 967 individuals
remained for analyses. The signal intensities for the methylated and unmethylated state were
then quantile normalised for each probe type separately, and beta values were calculated.
LBC 1921 and 1936: Detailed information about the collection and QC steps undertaken on
the LBC methylation data has been reported previously '°. Briefly, the Infinium
HumanMethylation450 BeadChip (Illumina Inc, San Diego, CA) was used to measure DNA
methylation in whole blood of consenting participants. Background correction was performed
using the R minfi package '” and QC was used to remove probes with a low detection rate
(<95% detection rate at P<0.01), probes with low quality (manual inspection), samples with a
low call rate (samples with <450,000 probes detected at P<0.01), and samples with a poor
match between genotypes and SNP control probes (cross-checked using wateRmelon package
1) or incorrect predicted sex. Post QC, DNA methylation data were available for 446
LBC1921 participants at age 79 and for 920 LBC1936 participants at age. The LBC
methylation data are available at European Genome-Phenome Archive under accession
number EGAS00001000910.

GOLDN: DNA was extracted from CD4+ T-cells harvested from stored buffy coats using
antibody-linked Invitrogen Dynabeads '®. Stored buffy coats were collected at the same time
lipid concentrations were measured. We lysed cells captured on the beads and extracted DNA
using DNeasy kits (Qiagen, Venlo, Netherlands) and methylation was assayed across ~470,00
autosomal CpG sites using the [llumina Infintum Human Methylation450 Beadchip (Illumina,
San Diego, CA). For each assay, 500ng of DNA was treated with sodium bisulfite (EZ DNA,
Zymo Research, Irvine, CA) prior to standard Illumina amplification, hybridization, and
imaging steps. The resulting intensity files were analyzed with Illumina’s GenomeStudio
which generated beta scores (i.e. the proportion of total signal from the methylation specific
probe or color channel) and “detection P-values” (the probability that the total intensity for a
given probe falls within the background signal intensity). Beta scores with an associated
detection P-value greater than 0.01 were removed and samples with more than 1.5% missing
data points were eliminated from further analysis. Furthermore, any CpG probes where more
than 10% of samples failed to yield adequate intensity were removed. A total of 58 samples
were removed. The filtered beta scores were then subjected to batch normalization with the
ComBat package for R software in non-parametric mode '°. We performed the normalization
in parallel on random subsets of 20,000 CpGs per run where each array of 12 samples was
used as a “batch.” These methods have been extensively described in Absher et al and the
utility of ComBat to correct for batch effects in comparison to other programs is reported 2% 2!,
To correct for probe chemistry, we separately normalized probes from the Infinium I and II
chemistries and subsequently adjusted the B scores for Infinium II probes using the equation
derived from fitting a second order polynomial to the observed methylation values across all
pairs of probes located <50bp apart (within-chemistry correlations >0.99), where one probe
was Infinium I and one was Infinium II. Finally, we eliminated any CpGs where the probe
sequence mapped either to a location that did not match the annotation file or to more than
one locus. We identified such markers by re-aligning all probes (with unconverted Cs) to the
human reference genome. After these quality control procedures, there were methylation data
from 461,281 CpGs. Principal components (PCs) based on the beta scores of all autosomal
CpGs passing QC were generated using the prcomp function in R (V 2.12.1) and used to
adjust for cell purity in association analysis. Deconvolution estimated CD4+ T-cell
percentages were calculated adapting the method of Abbas et al 2. Predicted CD4+ T-cell
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percent purity was highly correlated with PC1 (1*=0.85, P=4E-293) but not other PCs, thus
supporting the usefulness of methylation PCs in adjusting for cell purity in our analysis. The
GOLDN methylation data are available at dbGaP under the accession number
phs000741.v1.pl.

Association of methylation of blood cell-derived DNA with lipid levels

FHS: Linear mixed effects regression models were conducted to test the association between
site-specific DNA methylation and each lipid phenotype (TC, HDL-C, LDL-C, TG)
individually. Participants currently on lipid lowering medication were excluded. The primary
model was adjusted for age, sex and technical covariates. The secondary model was
additionally adjusted for BMI. Technical covariates included chip, row, column (specified as
random effects) and two methylation principal components (PCs) to adjust for unmeasured
batch effects. Cell count heterogeneity was accounted for by adjusting for imputed cell counts
obtained by the Houseman method 2. The linear mixed effect models were run with the
pedigreemm package in R (version 3.1), which additionally accounts for the family
correlation structure in the FHS. Familial relatedness was obtained by reported relationships
and genetic similarity calculated by identity-by-descent (IBD) probabilities. For any
inconsistencies between reported and IBD relationships, relationships obtained from IBD
probabilities were utilized. After removing individuals on lipid-lowering medication and thus
with missing phenotype, a total of 1,494 participants were considered in the association
analyses.

PIVUS: The associations between normalised DNA methylation beta values and phenotypes
were modelled by a linear mixed effect model, using R 2* and the Imer function (Ime4
package), fitted by maximum-likelihood assuming a normally distributed error term. Models
were adjusted for age, sex and predicted white cell counts (estimated from the DNA
methylation data using the Houseman algorithm ** as implemented in R package minfi for
Illumina HumanMethylation450 '7) as fixed effects and chip, chip row and chip column as
random effects. A likelihood ratio test was used to assess the significance of the phenotype
effect. The p-value of the phenotype effect in each model was calculated from the Chi-square
distribution with 1 degree of freedom using -2log(likelihood ratio) as the test statistic. After
removing individuals on lipid-lowering medication (n=155), a total of 812 individuals were
considered in the association analyses.

LBC 1936 and 1921: Linear regression modelling was used to assess the association between
DNA methylation (outcome variable) and the lipid traits (predictor variable). Covariates
included age, sex, and measured white blood cell counts (eosinophils, basophils, neutrophils,
monocytes, and lymphocytes). Additional adjustments were made for BMI in secondary
models. Participants were excluded from the analyses if they were taking lipid-lowering
medication. All statistical analyses were performed using R software (http://cran.r-
project.org/). After removing individuals on lipid-lowering medication and thus with missing
phenotype, a total of 654, 588, 592 and 588 participants were considered in the association
analyses of TC, LDL-C, HDL-C and TG, respectively for LBC1936. For LBC1921, a total of
380 and 376 were considered in the association analyses of TC and TG, respectively.
GOLDN: Associations between normalised methylation beta values at each CpG site and
lipid traits were analysed using mixed linear regression models adjusted for age, gender, study
site, and 4 methylation PCs (as a proxy for cell purity) as fixed effects and family structure as
a random effect using the R kinship package (Imekin function). A second set of models
additionally adjusted for BMI. After removing four observations due to missing phenotype or
covariate data, a total of 991 participants were considered in the association analysis.

Genotyping and Imputation

FHS: SNP data were obtained from the Affymetrix 550K Array (Affymetrix, Santa Clara,
CA) and imputed to 1000 Genomes SNPs (phase 1 release), as previously reported 2. The
FHS genotype data are available at dbGaP under the accession number phs000342.v13.p9.
PIVUS: Individuals were genotyped using the [llumina OmniExpress and Illumina
Metabochip microarrays. Prior to imputation, quality control was performed. Exclusion of
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samples were performed based on the following criteria: genotype call rate <95%;
heterozygosity >3 SD; gender discordance; duplicated samples; identity-by-descent match;
and ethnic outliers. Monomorphic SNPs; or SNPs with Hardy-Weinberg equilibrium
P<1x10; genotype call rate<0.99 (SNPs with MAF<5%) or <0.95 (SNPs with MAF>5%));
MAF<1% were excluded from analysis. Data were imputed to 1000G (version: March 2012)
using Impute v.2.2.2 %

Gene expression profiling

Gene expression data were available for participants in the FHS. RNA was extracted from
whole blood using the PAXgene Blood RNA System Kit (Qiagen, Venlo, Netherlands) with
mRNA expression profiling assessed using the Affymetrix Human Exon 1.0 ST GeneChip
platform. Gene expression data were normalised using robust multichip average methods ?’
with quality control measures as previously described '*. Cell count proportions were derived
from gene expression markers in this sample set as there was overlap between gene
expression measures and directly measured cell counts (lymphocytes, monocytes, neutrophils,
basophils, and eosinophils) from a sample of 2,280 Third Generation FHS participants
obtained during the second examination cycle (2008-2011). Internal validation using training
and testing datasets achieved an r*> > 0.8 in the majority of cell lines (except basophils). The
FHS gene expression data are available at dbGaP under the accession number
phs000363.v12.p9.

Metabolomic profiling

Metabolomics data were available for participants in the PIVUS. Untargeted metabolomic
profiling of serum samples was measured in duplicates as described previously 2. In brief, 1
ul of sample was analysed on Acquity UPLC coupled to a Xevo G2 Q-TOFMS (Waters
Corporation, Milford, Massachusetts, USA) and raw data was processed using XCMS
software 2 for detection, alignment, grouping, and imputation of features. For normalisation
of data metabolic feature intensities were log-transformed and an ANOV A-type normalisation
applied. Fragmentation spectra were reconstructed from metabolic features with strong
correlation and similar retention time and metabolites were identified from spectra. Only
annotated metabolites (n=229) were used in analysis in relation to DNA methylation. Raw
spectra from mass spectrometry analysis and annotated metabolites intensities are available in
Metabolights (http://www.ebi.ac.uk/metabolights/) with accession number MTBLS90.
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