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Abstract

3MC syndrome is an autosomal recessive heterogeneous disorder with features linked to

developmental abnormalities. The main features include facial dysmorphism, craniosynos-

tosis and cleft lip/palate; skeletal structures derived from cranial neural crest cells (cNCC).

We previously reported that lectin complement pathway genes COLEC11 and MASP1/3 are

mutated in 3MC syndrome patients. Here we define a new gene, COLEC10, also mutated in

3MC families and present novel mutations in COLEC11 and MASP1/3 genes in a further

five families. The protein products of COLEC11 and COLEC10, CL-K1 and CL-L1 respec-

tively, form heteromeric complexes. We show COLEC10 is expressed in the base mem-

brane of the palate during murine embryo development. We demonstrate how mutations in

COLEC10 (c.25C>T; p.Arg9Ter, c.226delA; p.Gly77Glufs*66 and c.528C>G p.Cys176Trp)

impair the expression and/or secretion of CL-L1 highlighting their pathogenicity. Together,

these findings provide further evidence linking the lectin complement pathway and comple-

ment factors COLEC11 and COLEC10 to morphogenesis of craniofacial structures and

3MC etiology.

Author summary

The 3MC syndrome is a unifying term amalgamating four rare recessive genetic disorders

with overlapping features namely; Mingarelli, Malpuech, Michels and Carnevale syn-

dromes. It is characterised by facial malformations including, high-arched eyebrows, cleft

lip/palate, hypertelorism, developmental delay and hearing loss. We previously reported

that lectin complement pathway genes COLEC11 and MASP1/3 were mutated in 3MC

syndrome patients. Here we describe a new gene from the same pathway, COLEC10,

mutated in 3MC patients. Our results show that COLEC10 is expressed in craniofacial

tissues during development. We demonstrate how CL-L1, the protein expressed by

COLEC10, can act as a cellular chemoattractant in vitro, controlling cell movement and
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migration. We overexpressed constructs carrying COLEC10 non-sense mutations found

in our patients, CL-L1 failed to be expressed and secreted. Moreover, when we expressed

a missense COLEC10 construct, CL-L1 was expressed but failed to be secreted. In sum, we

discovered a new gene, COLEC10, mutated in 3MC syndrome and we propose a patho-

genic mechanism for 3MC relating to the failure of CL-L1 function and its craniofacial

developmental consequences.

Introduction

3MC syndrome (MIM 257920;265050;248340) is a unifying term amalgamating four rare auto-

somal recessive disorders with overlapping features namely; Mingarelli, Malpuech, Michels

and Carnevale syndromes. 3MC syndrome is characterized by facial features including hy-

pertelorism, cleft lip/palate, high-arched eyebrows, craniosynostosis, developmental delay

and hearing loss [1–3]. We previously reported that mutations in COLEC11 and MASP1/3
genes were responsible for several cases of 3MC syndrome [4]. Since then, further novel muta-

tions in MASP1/3 and COLEC11 have been reported in 3MC patients [5–7]. COLEC11 and

COLEC10 encode CL-K1 (also known as CL-11) and CL-L1 (also known as CL-10) respec-

tively, members of the collectin family with an N-terminal collagen-like domain linked to

C-terminal carbohydrate-recognition domains (CRDs). CL-K1 and CL-L1 are able to bind to

microorganisms including bacteria, fungi and viruses, through their CRDs. This binding

capacity to antigens, followed by their interaction with MASP proteins, is their main role in

lectin complement pathway activation. [8–12]. However the pathogenic mechanism of lectin

complement related proteins in 3MC syndrome is not yet understood [4].

CL-K1 and CL-L1 can also work in partnership in complement activation [13]. Usually

CL-K1 and CL-L1 form homodimers, as is generally the case with CDR-domain containing

proteins but CL-K1 and CL-L1 can form CL-K1/CL-L1 (also known as CL-LK) heterodimers

in plasma and in vitro. These CL-LK heterodimers can also interact and form complexes with

MASP-1, MASP-2 and MASP3 [10].

MASP1/3 encodes for 3 alternative products MASP-1, MASP-3 and MAp44 [14]. MASP-1

collaborates with MASP-2 to activate C4. MAp44 has the MASP1 H domain truncated and

inhibits MASP1 and MASP2 complement activation. MASP3 shares H chain domain with

MASP1 and have a unique protease domain. The precise role of MASP-3 in complement sig-

nalling is still unclear, but it has been proposed to form a complex with CL-LK and MASP-2

[10]. It remains to be determined whether these interactions play a role in embryological

development, perturbation of which gives rise to the diverse morphological features of 3MC

syndrome.

Recently it has been shown that 3MC mutations in COLEC11 inhibit secretion of CL-K1 in

mammalian cells, reducing the normal serum levels of CL-K1 and probably disrupting interac-

tion with MASPs or CL-L1 [15].Another report describes how three exonic polymorphisms in

COLEC11 and COLEC10 also have an effect in reducing levels of circulating CL-K1 and CL-L1

in serum [16]. Those findings hint how mutations and polymorphisms in both COLEC11 and

COLEC10, can directly affect CL-K1 and CL-L1 secretion.

The skeletal phenotype of 3MC patients is the result of complex embryological processes,

including neural crest cell (NCC) induction, migration, morphogenesis and differentiation

[17]. Correct migration of cNCC is essential for the formation of many tissues in the head

from cartilage and bones to muscle and ganglia [18–21]. The regulation and control of

NCC migration is complex involving multiple genetic pathways including Wnt, Shh and
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transcription factors such as Hox and Dlx genes [18,22,23]. Complement factors, such as C3a,

have been recently established to play a role in NCC cohesion during migration. Mayor and

collaborators have established how complex collective cell migration of NCC requires comple-

ment proteins. For example, C3a and its receptor C3aR work together to co-attract each other

in order to maintain the coordinated migration of NCC [24–26].

In the present study we describe mutations in a novel lectin alternative pathway gene,

COLEC10, in 3MC patients, adding to the body of evidence implicating the complement path-

way in human development. We also present new COLEC11 and MASP1/3 mutations found in

our cohort of 3MC patients. To validate COLEC10 mutations as causative of 3MC syndrome

we determine its expression pattern in the developing mouse embryo and we further demon-

strate the in vitro functional consequences of COLEC10 mutations, and present evidence that

CL-L1 act as a cellular chemoattractant. Finally we propose a pathogenic mechanism for 3MC

relating to the failure of CL-L1 function and its developmental consequences in 3MC.

Results

Exome sequencing reveals mutations in COLEC10 as a cause of 3MC

We collected a bank of patient DNA samples comprising diagnoses of Carnevale, Mingarelli,

Michels and Malpuech syndromes. Our cohort currently consists of 45 3MC families of

Asian, Middle Eastern and European origin. We previously demonstrated that mutations in

COLEC11 and MASP1/3 lectin complement pathway related genes are causative of 3MC syn-

drome in 11 families and 16 patients. Therefore, we screened for COLEC11 and MASP1/3
mutations by Sanger sequencing in the remaining 34 families and 36 patients in this heteroge-

nous group of patients.

We found three novel homozygous mutations in COLEC11 (NM_024027.4) in three patients

and a single homozygous mutation in MASP1/3 (NM_139125.3) in one patient (see Table 1 and

Fig 1A and 1B). Of these, two patients were from consanguineous families; MC35.1 (Pakistani)

and MC37.1 (Somalian). Both harbored non-synonymous homozygous mutations in COLEC11
leading to a predicted premature termination codon, c.309delT (p.Gly104Valfs�29, exon 4) and

a predicted damaging missense, c.G496A (p.Ala166Thr, exon 6) respectively. For patient M35.1

we sequenced the parents, demonstrating that the mutations segregated with the disorder.

Parental samples were not available for patient MC37.1.

We found in patient MC29.1 a deletion of 10 nucleotides in COLEC11 (c.89_98delATGAC

GCCTG, exon 2) which predicts a frameshift change and the introduction of a premature stop

codon (p.Asp30Alafs�68). None of the COLEC11 mutations was present in the Exome Aggrega-

tion Consortium Database (ExAC), (Cambridge, MA URL http://exac.broadinstitute.org).

Overall, two of the new COLEC11 mutations lead to premature terminations (p.Gly104Valfs�29

and p.Asp30Alafs�68), or the missense mutation p.Ala166Thr. This last missense change lies,

within the CRD, as shown in Fig 1A, and probably disrupts its recognition function.

Table 1. New COLEC11 and MASP1/3 mutations in 3MC patient cohort

Family Subject Diagnosis Origin Mutated

gene

Nucleotide change Protein change Control chromosomes allele

frequency

MC29 29.1 Carnevale United Arab

Emirates

COLEC11 HMZ

89_98delATGACGCCTG

p.Asp30Ala*fs68 Not in ExAc

MC35 35.1 Carnevale Pakistan COLEC11 HMZ c.309delT p.Gly104Valfs*29 Not in ExAc

MC37 37.1 Carnevale Somalia COLEC11 HMZ c.G496A p.Ala166Thr (Polyphen

damaging)

Not in ExAc

MC27 27.1 Carnevale Pakistan MASP1/3 HMZ c.9G>A p. Trp3Ter 0.000008389

https://doi.org/10.1371/journal.pgen.1006679.t001
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In our 3MC cohort we also found a new mutation affecting the second previously described

gene mutated in 3MC, MASP1/3 (NM_139125.3). Patient MC27.1, with a consaguinous fam-

ily, presents a homozygous nonsense mutation (c.9G>A) leading to premature truncation of

the protein recently been reported by [6].

These results corroborate our previous finding that genes involved in the lectin com-

plement pathways cause 3MC. However, mutations in COLEC11 and MASP1/3 were ex-

cluded in the remaining 30 families and 32 patients. Therefore, we performed whole exome

sequencing (WES) in six 3MC patients from consanguineous families, without mutations in

COLEC11 or MASP1/3, in order to identify new causative gene associations. We found one

patient diagnosed with Michels syndrome harbouring deletions in COLEC10 (NM_006438.4),

another member of the collectin family. Despite parental consanguinity in this family, we dis-

covered that the proband, MC19.1 harboured compound heterozygous mutations, c.25C>T;

p.Arg9Ter in exon 1 and c.226delA; p.Gly77Glufs�66 in exon 3. We confirmed these mutations

Fig 1. New 3MC mutations in COLEC11, MASP1/3 and COLEC10 A-C. Summary of 3MC mutations position in CL-K1, MASP1, MASP3 and CL-L1

proteins. Boxes indicate position of new mutations described in this work. Asterisks indicate already known mutations. D. Pedigrees of families 19 and 25

with COLEC10 mutations. COLEC10 mutations are indicated under carriers and affected patients. E. Chromatogram of new COLEC10 mutations. F.

Tridimensional structure by SWISS-MODEL Workspace for Wild-type and Cys176Trp mutated CL-L1. On the left, lateral view of the second helix-loop-

helix domain. This domain is part of the C-lectin type domain. On the right, forward view. Arrow indicates the position of the missense change p.

Cys176Trp. The structure of CL-L1 c-lectin domain changes in p.Cys176Trp mutants (arrowheads).

https://doi.org/10.1371/journal.pgen.1006679.g001
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segregated with disease by Sanger sequencing (Table 2 and Fig 1D and 1E). The affected sib-

ling, MC19.2, also harboured the same compound heterozygous mutations in COLEC10.

Next we Sanger sequenced COLEC10 in the remainder of our patient cohort. These patients

were previously screened for COLEC11 and MASP1/3 mutations, with none identified. We

identified another patient (25.1) with the p.Arg9Ter COLEC10 mutation accompanied by a

new missense mutation c.528C>G, p.Cys176Trp (exon6) in the other allele (Table 2 and Fig

1D and 1E). The unaffected sibling or parents were not available for testing, therefore we can-

not conclusively state that both mutations in patient 25.1 could be in -cis.

The p.Gly77Glufs�66 mutation is not present in the ExAC database and p.Cys176Trp (posi-

tion Chr8:120118124 C / G, not found in dbSNP) has a frequency of 1 in 120850 chromosomes

in the same database. The p.Arg9Ter mutation (rs149010496) is present in only 4 alleles out of

121220 (ExAC). Collectively, these data strongly support the notion that pathogenic mutations

in COLEC10 cause a subset of 3MC diagnoses.

COLEC10 mutations c.25C>T; p.Arg9Ter and c.226delA; p.Gly77Glufs�66 both lead to

early termination and are likely to produce either truncated proteins or undergo non-sense

mediated decay. However, the missense mutation p.Cys176Trp lies in the CRD domain of

CL-L1 (Fig 1C), affecting a cysteine residue Cys176 that forms a disulphide bond with C270

[9] and is predicted by PolyPhen-2 to be damaging (http://genetics.bwh.harvard.edu). We next

used the SWISS-MODEL Workspace application (http://swissmodel.expasy.org) to predict

how the p.Cys176Trp mutation might affect the secondary structure of the CL-L1 protein. Res-

idue 176 on the second helix-loop-helix domain of the protein is predicted to change the tridi-

mensional structure of the protein (Fig 1F), probably affecting the C-type lectin domain

function. Table 3 shows detailed clinical features for all of described patients.

Expression of COLEC10 in cells and mouse embryos

To further characterise the function of COLEC10 we assessed intracellular localisation of CL-L1

in ATDC5 cells, a murine chondrocyte cell line. Consistent with previous results for COLEC11
[4], we observed expression of CL-L1 in the Golgi apparatus consistent with a secreted peptide,

colocalising with the TGN marker 58K, and with cytosolic expression (Fig 2A). We also found

CL-L1 colocalised with laminin, a major component of the basal lamina (Fig 2B). This expres-

sion is similar to the cellular colocalisation we found between CL-K1 and laminin (Fig 2C).

Next, we analysed the expression of CL-L1 during murine craniofacial development. We

detected CL-L1 expression in the epithelium and mesenchyme of the palate shelf and jaw in

E18.5 embryos (Fig 2D). Moreover, we found by immunofluorescence that this particular man-

dibular epithelial expression is present as early as E13.5, revealing coexpression between CL-L1

and laminin, where CL-L1 is clearly visible in the basement membrane in the palate area (Fig 2E).

CL-L1 regulates development of craniofacial structures acting as a

migratory chemoattractant

We investigated the ability of CL-L1 to act as a chemoattractant in the context of human cells.

We spotted 1% (w/v) low melting point agarose discs mixed with PBS, BSA or recombinant

Table 2. New COLEC10 mutations found in families MC19 and MC25

Family Subject Diagnosis Origin Mutated gene Nucleotide change Protein change Control chromosomes allele frequency

MC19 19.1 Michels Pakistan COLEC10 c.25C>T; c.226delA p. Arg9Ter; p.Gly77Glufs*66 0.00003300 Not in ExAc

MC19 19.2 Michels Pakistan COLEC10 c.25C>T; c.226delA p. Arg9Ter p.Gly77Glufs*66 0.00003300 Not in ExAc

MC25 25.1 Malpuech Pakistan COLEC10 c.25C>T c.528C>G p. Arg9Ter p.Cys176Trp 0.00003300 0.000008273

https://doi.org/10.1371/journal.pgen.1006679.t002
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human CL-L1. As reported previously, when the same experiment was performed for CL-K1

[4], cells were observed to invade the protein-containing agarose disc. To quantify this effect,

we calculated the cell invasion index as shown in Fig 3A. We found that PBS and BSA contain-

ing discs failed to attract any cells (Fig 3B and 3C and S1 and S2 Movies respectively) which

Table 3. Detailed clinical features for all 3MC described patients.

3MC Clinical Features MC19.1 MC19.2 MC25.1 MC27.1 MC29.1 MC35.1 MC37.1

Demographics

Sex F M M M

Age (yrs at time of study) 21 17

Country of origin Pakistan Pakistan Pakistan Pakistan Lebanon Somalia

Consanguinity Y Y Y Y Y Y

Stature

Small (<3rd centile) Y Y N N N N N

Craniofacial features

Arched eyebrows N N N Y Y Y Y

Blepharoptosis Y Y Y Y Y Y N

Epicanthus inversus Y Y Y Y N Y N

Hypertelorism N N N Y N Y N

Dysplastic ears N N Y N N N Y

Ear pit(s) N N Y N N N N

Cleft lip (unilateral) N Y N N N N N

Cleft lip (bilateral) N N Y Y N N N

Cleft palate (unilateral) N Y N N N N N

Cleft palate (bilateral) N N Y Y N N N

Development

Developmental delay N N N Y N N N

Hypotonia N N N N N N Y

Trunk and limbs

Radio-ulnar synostosis N N N N Y N Y

Pre-axial polydactyly N Y N N N N N

Diastasis recti/Umbilical hernia N N N N Y Y Y

Sacral dimple/crease N N Y Y N Y N

Clinodactyly N N Y N N N N

Cardiovascular system

VSD N N N N N N N

ASD N N N N N N N

PDA N N N Y N N N

Renal anomalies

Horseshoe kidney N N N N N N Y

Other

Micropenis N N N Y N N N

Undescended testes N N N Y N N N

Corneal clouding N N N N N N Y

Deep set nails N N N N N N Y

Feeding difficulties N N N N N N Y

Y = Feature is present. N = Feature is not present.

https://doi.org/10.1371/journal.pgen.1006679.t003
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was in stark contrast to CL-L1 containing discs that exhibited extensive migration/invasion

into the discs with an invasion index score of 140.0±22.9 (Fig 3C and S3 Movie).

COLEC10 mutations inhibit secretion of CL-L1

Having demonstrated a role for CL-L1 in normal craniofacial development we sought to con-

firm that the mutations found in our 3MC patients were pathogenic. We predicted that

COLEC10 mutations c.25C>T; p.Arg9Ter and c.226delA; p.Gly77Glufs�66 would lead to either

truncated or absent protein. However, we expected that the missense mutation c.528C>G, p.

Cys176Trp, affecting a crucial cysteine residue, would likely lead to abnormal protein folding

and possibly affects secretion, as seen with three disease-associated mutations in COLEC11 [15].

To test this hypothesis, we transfected COLEC10WT, COLEC10Arg9Ter and COLEC10Gly77Glufs�66

constructs into HeLa and HEK293 cell lines and detected CL-L1 expression.

Immunoblotting demonstrated that CL-L1 protein was present in both cell extracts and

supernatants when COLEC10WT plasmid was transfected into HEK293 cells. By contrast, no

protein was detected when the mutant plasmids COLEC10Arg9Ter and COLEC10Gly77Glufs�66

were transfected, suggesting that both transcripts underwent nonsense-mediated decay.

Fig 2. Cellular and embryonic localisation of CL-L1. A. Immunostaining of ATDC5 cells with the golgi marker 58K and CL-L1. CL-L1 shows localisation

with golgi apparatus (white arrow). B. Laminin and CL-L1 coimmunolocalisation. Laminin shows partial cellular immunolocalisiton with CL-L1 around the

golgi area (arrows). Scale bar 50 μm C. Laminin and CL-K1 coimmunolocalisation. CL-K1 staining shows a very strong golgi localisation with partial

cytoplasmatic laminin colocalisation. D. CL-L1 immunohistochemistry of a 18.5 days postfertilisation mouse embryo. CL-L1 is expressed in the liver (long

arrow) and submucosal patal region (short arrows). E. Immunofluorescence showing co-localisation of CL-L1 and Laminin in E13.5 mouse embryos

sections. CL-L1 is expressed in the basal membrane of the ephithelium in the palate shelf of the maxilla (arrows). In contrast Laminin expression is present

all around the ephitelium membrane. A faint but clear CL-L1 expression is also observed in the cytoplasm of the epithelium and in the mesenchyme of the

palate. PSM; rostral extremity of right palatal shelf of maxilla. Scale bar 100 μm.

https://doi.org/10.1371/journal.pgen.1006679.g002
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Fig 3. CL-L1 regulates cell migration and act as migratory chemoattractant. A. Experimental design for cell migration assay

and invasion rate. Agarose spots containing CL-L1 and/or CL-K1 were attached to the glass and HeLa cells seeded. After 24 hours

pictures were taking on different spots. The area covered inside the spot by the cells (advance front) was measured and normalised

for the length of the perimeter of the spot. B. Representative pictures of agarose spots containing PBS, BSA and CL-L1 with cells

3MC syndrome and lectin complement pathway genes
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Transfection of COLEC10Cys176Trp plasmid allowed CL-L1 expression but not secretion as dem-

onstrated by detection of CL-L1 in the cell lysates but not in the supernatant (S1 Fig).

Western blot data were further supported by quantitative ELISA (Fig 3D). The results

showed highest levels of CL-L1 protein in pellets of cells transfected with COLEC10Cys176Trp

plasmid than cells transfected with COLEC10WT (HeLa COLEC10Cys176Trp 2518.3±21.3ng/mL

vs HeLa COLEC10WT 1823.3±7.2ng/mL, p<0.001; HEK293 COLEC10Cys176Trp 1302.7±3.7ng/

mL vs HEK293 COLEC10WT 632.0±3.6ng/mL, p<0.001. Fig 3D and S1 Table). However,

secretion of CL-L1 was severely reduced in the COLEC10Cys176Trp transfected cells compared

with COLEC10WT supernatant transfections (HeLa COLEC10Cys176Trp 12.5±0.2ng/mL vs HeLa

COLEC10WT 200.3±1.5ng/mL, p<0.001; HEK293 COLEC10Cys176Trp 5.7±0.1ng/mL vs HEK293

COLEC10WT 390.2±4.1ng/mL, p<0.001. Fig 3D and S1 Table). These results suggest that ac-

cumulation of CL-L1 in cell pellets in COLEC10Cys176Trp is the result of severely reduced levels

of CL-L1 secretion. Besides, no CL-L1 expression was observed for COLEC10Arg9Ter and

COLEC10Gly77Glufs�66 transfected cells, which served as a negative control.

Discussion

We previously showed COLEC11 and MASP1/3 lectin alternative pathway genes were mutated

in 3MC patients. Since our initial discovery, several groups reported mutations in COLEC11
and MASP1/3 in their 3MC cohorts [5–7]. Here we report four new mutations for COLEC11
affecting four further 3MC patients from consanguineous families. None of these mutations

has been found in the ExAc database, supporting pathogenicity and indicating their private

nature in these pedigrees. We also identified another MASP1/3 mutation in the homozygous

state, c.9G>A, in our cohort confirming a prior report of this mutation by Urquhart et al. [6].

These results increase the percentage of patients with known mutations in our 3MC cohort;

23% carry a COLEC11 mutation and 12% now carry a MASP1/3 mutation. In the remaining

patients we identified a second member of the collectin family, COLEC10, found to be mutated

in 3MC. The addition of these 2 families in COLEC10 (5%) increase the coverage to 40% of

known genes of our patients. Therefore, over 60% of our 3MC cohort is still without molecular

confirmation of disease and that at least one further gene remains to be identified.

In contrast with COLEC11 patient mutations, all three COLEC10 patients have compound

heterozygous COLEC10 mutations, which is slightly surprising as they come from consanguin-

eous families. They all share the terminating mutation c.25C>T;Arg9Ter, found in ExAc in

the general population at a low frequency (0.00003300) (Table 2), whereas the mutations

c.226delA and c.528C>G were not present in the ExAc database.

In recent years a very well documented evidence implicating cNCC migration in crani-

ofacial cartilage and bone morphogenesis has accumulated (reviewed in [19]). Our data sug-

gests the failure of NCCs to migrate correctly is the principal factor leading to craniofacial

invading 48 hours after seeding after. Note how HeLa cells are attracted and invade the agarose sport containing CL-L1. C.

Quantification of the invasion ratio. HeLa cells when exposed to CL-L1 cells were more attracted to invade the agarose spots

than PBS controls. D. ELISA results in HeLa and HEK293 cell pellets and supernatants after COLEC10 mutant construct

transfections. COLEC10 Wild-type (COLEC10WT) and three COLEC10 mutations (COLEC10ArgXTer, COLEC10Gly77Glufs*66 and

COLEC10Cys176Trp) cDNAs where cloned and transfected in HEK293 and HeLa cells. Untransfected cells C(-) were used as a

control to prove no endogenous CL-L1 was affecting the readings. Concentration of expressed CL-L1 was tested by ELISA in cells

extracts and cell supernatant. CL-L1 was found in COLEC10WT and COLEC10Cys176Trp cell extracts in both cell types, but no

CL-L1 was expressed after transfecting COLEC10ArgXTer or COLEC10Gly77Glufs*66 constructs or in the untransfected C(-) cells.

COLEC10WT and COLEC10Cys176Trp showed very similar levels of CL-L1 expression in HeLa and HEK293 cell types, with slightly

higher expression in COLEC10Cys176Trp, (2518 ng/ml HeLa and 1302 ng/ml HEK293) versus COLEC10WT (1823 ng/ml HeLa and

632 ng/ml HEK293). However, the levels of CL-L1 were undetectable in the supernatant of COLEC10Cys176Trp transfections, in

contrast with COLEC10WT transfected cells (200 ng/ml HeLa and 390 ng/ml HEK293)

https://doi.org/10.1371/journal.pgen.1006679.g003
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abnormalities in 3MC patients. We confirmed that CL-L1 has chemotactic properties, most

likely through recognition of carbohydrates on the cell surface, providing a potential explana-

tion on how its absence can lead to abnormal NCC migration in 3MC. This is not surprising

as other complement pathway proteins have previously been shown to play important roles in

cell migration. For example in the first steps of the regulation of NCCs, crest cells are co-

attracted by the complement fragment C3a and its receptor C3aR. When the C3aR function is

inhibited enteric neural crest cell adhesion and migration is affected, and there is an increase

in NCC dispersion [24,26]. It is worth noting that the lectin complement pathway can also

induce cleavage of C3 to C3a [25] which in turn can regulate NCC migration.

Furthermore, other complement factors also regulate cell migration and morphology. C3

regulates epithelial-mesenchymal transition via TWIST1 activation [27]. C3a also controls

radial intercalation during early gastrulation and tissue spreading [28]. An important common

functionality of C3a is its capacity to act as a chemoattractant to pull cells together and force

them to migrate collectively.

In the lectin complement pathway CL-L1 can form a complex with CL-K1, called CL-LK,

and bind to MASP1/3 and MASP2 [10] to activate the lectin complement pathway.

We propose here that the role of CL-L1 and CL-K1 lies in regulating cell migration via cell

attraction in 3MC syndrome. We know that CL-L1 and CL-K1 can act by themselves to attract

cells but both can also form the heteromeric complex CL-LK that can also bind to MASP1/3

and MASP2 with higher affinity than CL-K1 homodimers [10]. Therefore, it is possible that

the NCC migration in vivo requires cooperation of heteromeric interactions between CL-L1

and CL-K1. That is supported by the observations that COLEC11 and COLEC10 genetic vari-

ants strongly influence the circulating serum levels of CL-K1 and CL-L1 and that a major pro-

portion of these proteins are circulating in the form of heterocomplexes [16]. As such, whilst

we have demonstrated CL-L1 can in itself induce cell migration and invasion, the exact molec-

ular pathway leading to NCC migration regulation requires further investigation.

We did not observe any COLEC10 expression in cells pellets and supernatant when overex-

pressing the mutations 9G>A; ArgXTer and c.226delA; p.Gly77Glufs�66 (Fig 3D). However,

the missense c.528C>G, p.Cys176Trp mutation did not affect COLEC10 expression, although

it did prevent cellular secretion of the protein into the supernatant. Furthermore, 3MC patient

mutations in COLEC11 also show a similar secretory phenotype disruption [15]. These data

suggest that the mechanism of disease could be linked to abnormal CL-L1 secretion. The fact

that we observe continuous expression of CL-L1 in E13.5 embryos and P0 pups in the mandib-

ular epithelium could indicate there is an additional role for maintaining cellular adhesion

even after NCC migration is complete; further data are required to prove this hypothesis.

In summary, we have described here a new gene, COLEC10, that when mutated causes

3MC syndrome. Further mutations identified in COLEC11 and MASP1/3 further confirm clin-

ical suspicions of disease in several 3MC patients but leaves a sizeable proportion (60%) with-

out molecular confirmation and implicate one or more further genes. We propose that the

lectin complement pathway acts as a chemottractant to guide and possibly to maintain cNCC

adhesion. We believe that in future more genes linked to the lectin complement pathway and

with roles in cellular adhesion and guidance will be found to be mutated in 3MC syndrome

patients and other craniofacial conditions.

Materials and methods

Exome capture

Patients and families samples were screened by whole-exome sequencing, including the pro-

band and both parents when available. In each case, genomic DNA was enriched for exonic
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regions using the SureSelect All Exon 50Mb Targeted Enrichment kit (targeting 202,124 exons

from 20,718 genes) from Agilent Technologies, according to the manufacturer’s protocol. Cap-

tured libraries were sequenced on an Illumina HiSeq 2000 instrument using Illumina sBot

clustering and HiSeq chemistries v1.0, under a paired-end 100-bp read-length protocol, with

four samples per flow cell lane to achieve minimum median coverage of 60×. All exomes for

COLEC11, COLEC10 and MASP1/3 have a coverage of at least x15. For specific exonic coverage

of 3MC family 19 see S1 Methods Table. The variant annotation and interpretation analyses

were generated through the use of Ingenuity Variant Analysis software version 3.1.20140902

from Ingenuity Systems. For the recessive model, homozygous/compound heterozygous vari-

ants in the affected individual were retained. Intronic and exonic synonymous variants were

filtered out; exonic and splice variants (up to 2 base pairs into intron or predicted pathogenic

on MaxEntScan) with a public databases (ExAC, 1000 Genomes and ESP Exomes) frequency

<0.01% (3MC phenotype) were retained. All disease causing variants (COLEC10) were vali-

dated by Sanger sequencing. Filtering pipelines for variants, ingenuity and a final list of all var-

iants identified are presented in S2 Methods Table, S3 Methods Table and S4 Methods Table.

Cell culture

HEK293 and HeLa cells were cultured in DMEM (Invitrogen) supplemented with 10% (v/v)

foetal bovine serum and incubated in humidified 5% CO2 at 37oC.

Cell migration assay

An agarose spot assay was used to assess chemotactic invasion potential of CL-L1. Briefly, a 2%

(w/v) solution of low-melting point agarose (Invitrogen) in phosphate-buffered saline was

boiled and when the solution cooled to around 50oC it was mixed 1:1 with solutions of PBS,

bovine serum albumin (BSA), recombinant CL-K1 (Abnova, H00078989-P01) and/or recom-

binant CL-L1 (Abnova, H00010584-P01). 10μL of the agarose-protein mix was then spotted

onto the wells of plastic tissue culture plates, allowed to polymerise at room temperature for

around 10 minutes and cells added. Cell migration and invasion was monitored at 37˚C with

5% CO2 for around 48 hours using an Axiovert 135 microscope (Zeiss) equipped with a

motorized stage that captured 1 image per 15 minutes (Volocity software v6.3, PerkinElmer).

Migration and invasion was quantified using ImageJ software by measuring the area within

the agarose-protein discs that had been occupied by cells (Fig 3A).

Transfection

Patient mutations c.25C>T,p.Arg9Ter; c.226delA,p.Gly77Glufs�66 and c.528C>G;p.Cys176Trp

were introduced into a plasmid encoding wild-type human CL-L1 (pCMV6-XL5-COLEC10; Ori-

Gene, SC303774) using QuickChange II Site-Directed Mutagenesis kit (Agilent) with hCOLE-

C10Arg9Ter, hCOLEC10Gly77Glufs�66 and hCOLEC10Cys176Trp primers (S5 Methods Table).

hCOLEC10WT, hCOLEC10Arg9Ter, hCOLEC10Gly77Glufs�66 and hCOLEC10Cys176Trp

plasmids were complexed with 25kDa branched polyethylenimine (Sigma) and transfected into

HEK293 and HeLa cells. A negative control with untransfected HEK293 and HeLa cells was used

to show CL-L1 expression was not innate cell endogenous expression.

Western blot

Western blot was performed using standard protocols. Briefly, 48 hours post-transfection cell-

culture supernatant was collected and clarified by centrifugation at 13,000 rpm for 10 minutes

and pellet discarded. To obtain cell extract, cells were lysed by incubating on ice with chilled
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cell extraction buffer (Invitrogen) supplemented with cOmplete, mini protease inhibitor

cocktail (Roche) and 1mM phenylmethylsulfonyl fluoride (PMSF; Sigma) for 30 minutes with

vortexing every 10 minutes. Cell extract was then clarified by centrifugation at 13,000 rpm for

10 minutes and pellet discarded. Proteins in supernatant and cell lysate were separated by

SDS-PAGE (Tris-Acetate 4–15% gels, Invitrogen), blotted onto nitrocellulose membranes

(Bio-Rad) and detected using primary antibodies against CL-L1 (Generon; CSB-PA896556-

LA01HU, 2μg/mL) and GAPDH (Generon; CSB-PA00025A0Rb, 2μg/mL) with HRP-conju-

gated secondary antibodies (Dako). Blots were developed with enhanced chemiluminescence

(Pierce).

ELISA

To obtain cell extract for ELISA, cells were lysed by incubating on ice with chilled ELISA cell

extraction buffer (100mM Tris; pH7.4, 150mM NaCl, 1mM EGTA, 1mM EDTA, 1% Triton

X-100 and 0.5% sodium deoxycholate) supplemented with cOmplete, mini protease inhibitor

cocktail (Roche) and 1mM PMSF (Sigma) for 30 minutes with vortexing every 10 minutes.

Cell extract was then clarified by centrifugation at 13,000 rpm for 10 minutes and pellet

discarded.

Inmunofluorescence and immunohistochemistry

For cell immunofluorescence ATDC5 cells were fixed with cold methanol -20˚C, washed with

PBS and blocked for 1 hour with 1% BSA. Cells were incubated overnight with the following

antibodies and concentrations: CL-L1/100 (Novus Biologicals H00010584-M01), CL-K1

(Novus Biologicals H00010584-M01), Laminin (Abcam, ab11575). Cells were washed with

PBS and incubated for 1 hour with Mouse or Rabbit Alexa Fluor 488 and 568 secondary anti-

bodies (1/1000) (ThermoFisher). E18.5 mouse embryos were harvested and fixed in 4% para-

formaldehyde overnight at 4˚C, dehydrated and embedded in paraffin. 10μm sections were

cut. Slides were rehydrated and blocked with 5% BSA with 10% of sheep serum. The samples

were incubated with a rabbit in house made CL-L1 primary antibody (1/100) overnight at 4˚C,

washed in PBS and developed with a Horseradish peroxidase conjugated secondary antibody

and diaminobenzidine staining.

Web resources

1000 Genomes, http://www.1000genomes.org

Ensembl Genome Browser, http://www.ensembl.org/index.html

ExAC Browser, http://exac.broadinstitute.org/

OMIM, http://www.omim.org/

PolyPhen-2, http://genetics.bwh.harvard.edu/pph2/

SIFT, http://sift.bii.a-star.edu.sg/

Ethics statement

All work involving human subject research was approved by the UCL-ICH/Great Ormond

Street Hospital Research Ethics Committee (08/H0713/82) (REC reference 08/H0713/82, Pro-

tocol number HBD2008v1).All patients and families included in this work have given written

consent for the use of their biological samples for research purposes under the HT act 2004

ethics committee. All animal work has been conducted under the UK Home Office regulation,

Animals (Scientific Procedures) Act 1986 and was approved by the Home Office with Proce-

dure Project License PPL number 70/7892.
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Supporting information

S1 Fig. CL-L1 western blot after transfection of HEK293 cells with COLEC10 cDNA. Differ-

ent constructs of colec10 containing wild-type (WT), c.25C>T; p.Arg9Ter c.25C>T, p.

Gly77Glufs�66, c.528C>G and c.528C>G, p.Cys176Trp cDNAs were transfected. CL-L1 was

found in wild-type and c.528C>G, p.Cys176Trp pellets, however only the supernatant of the

wild-type construct contained CL-L1.

(TIF)

S1 Movie. HeLa cells invading an agarose spot containing PBS for 48 hours.

(AVI)

S2 Movie. HeLa cells invading an agarose spot containing 0.015 μg of BSA for 48 hours.

(AVI)

S3 Movie. HeLa cells invading an agarose spot containing 0.015 μg of CL-L1 for 48 hours.

(AVI)

S1 Table. ELISA results for CL-L1 in cells pellets and supernatants after COLEC10 muta-

tions constructs were transfected.

(PDF)

S1 Methods Table. Table showing MASP1/3, COLEC10 and COLEC11 individual exons

mean coverage and percentage of exons covered above 15x in Family 19. Coverage was suffi-

cient to detect all variants in the coding regions of the genes.

(PDF)

S2 Methods Table. Variant filtering criteria for family 19 exomes.

(PDF)

S3 Methods Table. Ingenuity filter pipeline used for family 19 exomes.

(PDF)

S4 Methods Table. Final list of genes containing variants identified at the end of the pipe-

line for family 19 exomes.

(XLS)

S5 Methods Table. Primers sequences used in the study.

(PDF)
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