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Abstract 

The extent and clinical relevance of grey matter (GM) pathology in multiple sclerosis 

(MS) is increasingly recognised. Previous work has shown that GM pathology is more 

closely associated with some aspects of clinical disability than white matter (WM) injury, 

which has been suggested to arise independently. Magnetic resonance imaging (MRI) 

allows the study of GM lesions, atrophy, and non-lesional injury with techniques 

including double inversion recovery (DIR), volumetric scans, and magnetisation transfer 

ratio (MTR), respectively.  

 

This thesis includes three independent in vivo and post mortem MRI studies specifically 

addressing (1) the clinical impact and spatial distribution of DIR-detected GM lesions 

and atrophy, (2) the longitudinal development of MTR changes in thalamo-cortical 

systems, and (3) the histopathological substrates underlying MTR in the MS brain. 

 

This work shows that (1) DIR-detected GM lesions are mainly found throughout the 

cerebellar and cerebral cortex, whereas particularly subcortical GM structures show 

atrophy. Both GM lesions and atrophy contribute to disability, suggesting that the 

substrates of disability in MS are both pathologically and spatially heterogeneous. (2) 

WM injury to thalamo-cortical systems is most likely to precede (both thalamic and 

cortical) GM damage. In addition, lower regional cortical MTR is found not to be 

consistently associated with lower cortical volume, suggesting that significant cortical 

microstructural damage can occur in the absence of atrophy. Furthermore, observed 

hemispheric asymmetries and WM tract inhomogeneities emphasise the need for more 

refined statistical models to detect disease-specific changes. (3) MTR is associated with 

histologically quantified myelin (and to a lesser extent neuronal content) in normal 

appearing grey matter and normal appearing white matter, but not in cortical lesions and 

chronic inactive WM lesions. Finally, the cytological make-up differs significantly 

between normal appearing and lesional WM and GM, and provides extra evidence for 

microglia-mediated mitochondria damage in normal appearing MS tissue.  



4 
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Chapter 1  

Multiple sclerosis pathology 

In young adults, multiple sclerosis (MS) is the leading cause of non-traumatic 

neurological disability, globally affecting around 2.5 million people (Noseworthy et al. 

2000; Preiningerova et al. 2009). MS has different clinical manifestations and is 

pathologically heterogeneous, complicating our understanding of the underlying 

pathogenic mechanisms driving the disease. The current thesis aims to provide a better 

understanding of the clinical impact, the spatiotemporal distribution, and underlying 

histopathological correlates of magnetic resonance imaging (MRI)-detected pathology in 

MS, specifically focussing on grey matter (GM). To outline the relevance of this work, 

the present chapter introduces MS and its underlying pathology. 

MS can be classified in relapse onset and progressive onset. Around 80% of people with 

MS experience a disease course of relapses associated with accumulating neurological 

damage, known as relapsing remitting MS (RRMS). Relapses are associated with focal 

demyelinated inflammatory white matter (WM) lesions, which may occur in any part of 

the central nervous system (CNS) and therefore have varying clinical manifestations, 

including motor, cognitive, and sensory dysfunction (Compston et al. 2005). The 

detection of these WM lesions on MRI scans is the most common approach to diagnose 

and monitor progression of MS (Polman et al. 2005; Polman et al. 2011). After 10 to 15 

years from disease onset the majority of people with RRMS enter a secondary progressive 

(SP) phase, which is characterised by a continuous decline in clinical function. A second 

form, primary progressive MS (PPMS), affects approximately 10 to 15% of patients and 

is characterised by a gradual decline in function from disease onset. Both people with 

relapse onset MS and PPMS reach disease milestones (e.g. requiring walking aid or being 

wheelchair-bound) around the same age.  
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In addition to WM injury, GM pathology has been found to be substantial in all MS 

subtypes, and in cross-sectional studies it has been shown that clinical disability is more 

closely associated with GM pathology than with WM lesion accrual (Fisniku et al. 2008; 

Roosendaal et al. 2011; Fisher et al. 2008), which has contributed to the hypothesis that 

the main driver of disability in MS is a pathological process occurring independently in 

the GM (Geurts 2008; Stys et al. 2012). For a better understanding of GM pathology, this 

thesis includes three independent in vivo and post mortem MRI studies specifically 

addressing (1) the clinical impact and spatial distribution of MRI detected GM lesions 

and atrophy, (2) the longitudinal development of non-lesional changes in thalamo-cortical 

systems, and (3) the histopathological substrates underlying MRI scans in the MS brain. 

The present chapter provides an overview of manifestations and underlying pathogenic 

mechanisms of CNS injury in MS, with a specific focus on GM damage. 

1.1 White matter pathology 

The traditional view of MS suggests that the disease is primarily caused by myelin-active 

CD4-positive T-cells infiltrating the CNS through the blood-brain barrier (BBB) and 

subsequently orchestrating an attack on myelin-sheaths, resulting in the characteristic 

inflammatory demyelinated WM lesions (McFarland & Martin 2007; Lassmann 2011). 

WM lesions occur throughout the entire CNS, and are predominantly found in the 

periventricular space and around small to medium-sized blood vessels (Fazekas et al. 

1999; Filippi et al. 2012). They are sharply demarcated ranging from one millimetre to 

several centimetres in diameter, and can relatively easily be distinguished 

macroscopically. Histopathological work has shown that these lesions show severe 

myelin loss, axonal thinning, and axonal transection (Trapp et al. 1998), accompanied by 

inflammatory lymphocytes and a large presence of CD68-positive 

microglia/macrophages (Compston et al. 2005).  
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WM lesions are found in different subtypes: chronic active lesions, acute active 

demyelinating lesions, inactive demyelinated lesions, and remyelinated lesions. In early 

MS, a distinction can relatively easily be made between lesions, but in later stages of MS 

axonal degeneration may cause sustained diffuse inflammation (Kutzelnigg et al. 2005), 

making it more difficult to distinguish different confluent lesions on MRI or 

histopathologically. Active demyelinating lesions show ongoing inflammatory myelin 

sheath degradation; myelin debris can be found inside the lesions’ large number of 

microglia/macrophage and lymphocyte infiltrates. Active demyelinating lesions can 

either be chronic or acute. Whereas acute lesions are characterised by a single ‘wave’ of 

demyelination, the chronic type shows continuous degradation of myelin. Inactive 

demyelinated lesions are the most commonly observed type in MS and do not show 

ongoing myelin degradation. In these lesions, inflammation and myelin debris may still 

be present, but the active assault on myelin sheaths has ceased. In older inactive lesions 

a reduced presence of inflammatory cells is seen (Esiri et al. 2006). At this stage, 

astrocytic glial cells form scar tissue, and the lesions are referred to as remyelinated 

lesions. Importantly, axonal density is severely reduced both within and outside 

demyelinated WM lesions (DeLuca et al. 2015; Trapp et al. 1998; Evangelou, Esiri, et al. 

2000). 

In addition to focal demyelinated WM lesions, diffuse non-lesional WM damage is found 

in MS. On conventional (proton density [PD] and T2-weighted) MRI scans, non-lesional 

WM may be referred to as ‘normal appearing white matter' (NAWM) or ‘diffusely 

abnormal white matter’, also known as ‘dirty appearing white matter’ (DAWM). DAWM 

is defined as having ill-defined borders with hypo-intense signal on PD and T2-weighted 

MRI scans, and is characterised histopathologically by a reduction in myelin 

phospholipids and axonal loss (Moore et al. 2008). NAWM, on the other hand, shows 

various differences compared to WM of healthy individuals, which may be due to the 
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presence of pre-active lesions (De Groot et al. 2001). Histopathologically, NAWM shows 

increased CD68-positive microglial inflammation, BBB disruption, and oedema, 

suggestive of widespread inflammation (Kutzelnigg et al. 2005; Allen et al. 2001). 

Various pathophysiological mechanisms have been suggested to play a role in NAWM 

damage in addition to inflammation and axonal loss, including astrocytic activation 

(gliosis), reduced perfusion of the NAWM (Sowa et al. 2015), changes in vascular oxygen 

supply (Haider et al. 2014), cerebrospinal fluid (CSF)-mediated toxicity (Magliozzi et al. 

2010), and Wallerian axonal damage from WM or GM lesions (Ciccarelli et al. 2003; 

Allen et al. 2001).  

1.2 Grey matter pathology 

Particularly in the previous decade GM damage in MS has increasingly received attention 

and is recognised as an important part of the disease process. As recent advances in MRI 

hardware, processing methods, and acquisition techniques have allowed better 

assessment of GM pathology in vivo, the focus of MS research has moved towards 

including the study of GM damage as well, and has shown that GM abnormalities develop 

independently (Geurts 2008) and are more closely associated with some forms of clinical 

dysfunction than WM damage (Fisher et al. 2008; Fisniku et al. 2008; Roosendaal et al. 

2011).  

GM pathology in MS has already been documented in 1887 (Charcot 1887), but has only 

been recognised as an important part of MS when in the 1960s a landmark 

histopathological study showed that significant demyelination occurs in GM as well as in 

WM (Brownell & Hughes 1962), hereby giving new impetus to research on GM injury 

in MS. This study aimed to determine the frequency and the location of lesions in 22 MS 

brains and found that only 74% of demyelinated lesions were located in the WM, while 

26% of lesions were located in or near subcortical and cortical GM. Interestingly, there 
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appeared to be little relation between GM and WM pathology, indicating that different 

pathological processes may lead to these forms of damage.  

Similar to WM injury, lesional and non-lesional GM pathology may arise in different 

ways, including inflammation, mitochondrial damage (Lassmann et al. 2012), iron 

deposition, diffuse neurodegeneration through secondary (Wallerian) degeneration from 

WM tract pathology (Sepulcre et al. 2009; Kolasinski et al. 2012; Bodini et al. 2016), and  

CSF or meninges-mediated neuronal loss (Magliozzi et al. 2010). Chapter 5 will describe 

the spatiotemporal relationship between non-lesional WM and GM pathology. 

1.2.1 Grey matter demyelinated lesions 

Figure 1.1. From Bø et al. 2003b. Four types of grey matter lesions on paraffin-embedded sections from 

MS brains immunostained with anti-myelin basic protein antibodies. Closed arrows indicate the white 

matter/cortical grey matter border and the open arrows indicate lesion borders. The arrowhead indicates 

a small area of likely remyelination. A) Type 1 lesions involve both grey and white matter. B) Intracortical 

type 2 lesions do not reach the pial surface or whiter matter. C) From the pial surface type 3 lesions extend 

inwards into the grey matter. D) Type 4 lesions comprise the entire width of the cortex, respecting the 

grey matter/white matter border.  

After the work of Brownell and Hughes identifying GM lesions in MS (Brownell & 

Hughes 1962), further studies elaborated on these findings and distinguished distinct 

subtypes of GM lesions. Bø and colleagues investigated brains of twenty MS patients and 

classified four types of subpial demyelination in MS (Bø et al. 2003b), as displayed in 
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figure 1.1. Type 1 lesions involve both GM and WM and in this study made up 14.4% of 

cortical lesions. Purely intra-cortical lesions (type 2) accounted for 17% of total cortical 

lesions, covering just 1.2% of demyelinated cortical area. The majority (60%) of cortical 

lesions were classified as type 3 lesions, reaching down from the pia into the cortex 

without involving WM. Finally, lesions covering the entire cortical span without WM 

interference respecting the GM-WM boundary made up 8% of all lesions and 17% of 

demyelinated area and were classified as type 4 lesions.  

Other immunohistochemistry work confirmed that GM damage is widespread and 

extensive, especially in the SP phase (Vercellino et al. 2009). Observed differences 

between MS subtypes in WM and GM lesion distribution are displayed in figure 1.2. This 

study showed that while age and disease duration are related to the extent of GM 

demyelination, an association between the extent of GM and WM demyelination was not 

found. This indicates that retrograde neuronal degeneration from WM lesions is not the 

only pathogenic mechanism involved in local neuronal loss in the GM, and that neuronal 

loss in MS can, at least partly, be attributed to damage originating within the GM (Geurts 

& Barkhof 2008). 

Figure 1.2. Distribution of white matter, cortical grey matter and deep grey matter lesions in different MS 

subtypes. The extent of white matter and grey matter pathology differs between MS subtypes, suggesting 

that these forms of pathology can (at least partly) occur separately. Adapted from Haider et al 2014.  
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WM and GM lesions both show axonal transection, reduction in synapses, as well as glial 

and neuronal loss. However, in contrast to WM lesions, cortical lesions are thought not 

to be accompanied by a similarly enhanced immune response. Immunohistochemistry 

studies using markers for different classes of T-cells and macrophages have shown that 

WM lesions have significantly increased levels of CD4-positive, CD8-positive, and 

CD45RO-positive T-cells as well as CD68-positive microglia/macrophages, but that 

intra-cortical and deep grey matter (DGM) lesions have leukocyte levels comparable to 

normal appearing grey matter (NAGM) in progressive MS patients and healthy controls 

(Bø et al. 2003a; Peterson et al. 2001; Vercellino et al. 2009; DeLuca et al. 2015). 

However, conversely, an immunohistochemistry study on biopsy material (Lucchinetti et 

al. 2011) found inflammatory cells of cortical lesions of patients with early MS, but this 

may be explained by a selection-bias of patients with more active disease. Furthermore, 

compared to the WM parts of type 1 cortical lesions, cortical parts of the same lesions 

showed less positivity for HLA-DR immunoreactivity and other markers of inflammation 

(Vercellino et al. 2009). Histopathological work has suggested that GM lesions respect 

anatomical GM/WM boundaries, whereas WM lesions may involve GM (Vercellino et 

al. 2009; Gilmore, Geurts, et al. 2009a; Bø et al. 2003b), showing that GM lesions do not 

to ‘seep’ into the WM, while WM lesions may cross the GM/WM border. However, a 

recent longitudinal MRI study suggests that intracortical lesions may evolve into 

leucocortical, involving both WM and GM (Sethi et al. 2016).  

With regard to DGM structures, few post mortem studies have focused on pathology to 

these areas specifically. Previous work found only few thalamic lesions, while later work 

found evidence for thalamic lesions particularly in medial and anterior nuclei adjacent to 

CSF, and showed that the majority of DGM lesions are shared between WM and GM 

(Vercellino et al. 2009). A histopathological study assessing tissue from 75 people with 

MS showed that DGM lesions are found in people with early MS, and is associated with 
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infiltration of lymphocytic cells, but that this inflammation is less pronounced than in 

WM lesions (Haider et al. 2014). Furthermore, while the proportion of demyelinated GM 

tissue in the thalamus may be similar to that of the cerebral cortex (Gilmore, Donaldson, 

et al. 2009), the formation of demyelinated DGM lesions has been suggested to occur on 

a background of mild inflammation, which differs from cortical GM lesions in being 

associated with parenchymal and perivascular inflammatory infiltrates, compared to 

meningeal leukocyte infiltration (Haider et al. 2014; Kutzelnigg et al. 2007).  

Combined, these studies show that GM demyelinated lesions are common in MS, are 

closely associated with disease severity, and may be occurring at least partly separately 

from WM damage. As the immune response in GM demyelinated lesions is reduced 

compared to inflammatory WM lesions, this suggests that different underlying 

pathophysiological mechanisms may lead to GM and WM lesion formation.  

1.2.2 Normal appearing grey matter damage and grey matter atrophy 

NAGM in people with MS differs from GM in healthy controls. In normal appearing 

cortical GM in MS, increased mitochondrial and neuronal loss is found, independent of 

the presence of cortical lesions (Dutta et al. 2006; Campbell et al. 2011). Neuronal and 

myelin loss ultimately manifest as atrophy, which is widespread in MS patients, 

particularly in subcortical GM structures, i.e. thalamus, caudate, putamen, and pallidum 

(Audoin et al. 2006; Sepulcre et al. 2006; Ceccarelli et al. 2008; Calabrese, Atzori, et al. 

2007; Chard & Miller 2009b; Dalton et al. 2004; Henry et al. 2008).  

Histopathological studies showed an overall shrinkage in cortical thickness of 10% in 

people with MS, specifically affecting the motor cortex, somatosensory cortex, middle 

frontal cortex, superior frontal gyri, and middle temporal gyri (Wegner et al. 2006; 

Kutzelnigg & Lassmann 2005). In normal appearing deep grey matter (NADGM) outside 
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demyelinated lesions neuronal loss has been found to be substantial (Vercellino et al. 

2009), and has been estimated by a combined in vivo magnetic resonance spectroscopy 

and post mortem histology study to be reduced by around 30-35% (Cifelli et al. 2002). 

Several pathogenic mechanisms have been have been suggested to be involved in diffuse 

DGM neurodegeneration, including oxidative injury, glutamate toxicity, and anterograde 

or retrograde degeneration (Haider et al. 2014; Vercellino et al. 2009). The finding of 

mild diffuse inflammation in thalamic NADGM away from to focal demyelinating lesions 

may be due to the diffusion of the inflammatory autoimmune cells, or due to secondary 

inflammation following Wallerian degeneration causing neuroaxonal and myelin damage 

(Vercellino et al. 2009). Combined, these studies show that NAGM injury in MS is 

substantial and that this form of pathology may have a different pathogenesis from focal 

GM demyelination. Their relationship in vivo will be further investigated in chapter 4.  

The studies described in the current chapter suggest that WM and GM pathology occur at 

least partly independently. Pathogenic mechanisms suggested to be involved in GM 

damage in MS show some similarity to those suggested for WM pathology, including 

inflammatory processes, Wallerian degeneration from lesions, and diffuse 

neurodegeneration through mitochondrial injury. The heterogeneity of pathology 

manifestation in MS complicates the study of the underlying pathophysiological 

processes, and it is therefore important to assess the spatiotemporal dynamics of these 

different forms of injury, to see whether they occur in the same location and how they 

relate to the development of other forms of injury. To this end, studies using MRI have 

proven invaluable due to the ability of MRI to non-invasively visualise in vivo CNS 

abnormalities.  
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Chapter 2  

Magnetic resonance imaging in multiple sclerosis  

Developments in MRI have greatly improved our understanding of MS. MRI has been 

invaluable in the diagnosis of the disease, monitoring patients’ progression, and to 

evaluate safety and efficacy of therapeutic interventions. MRI is the most widely used 

tool to visualise brain pathology in clinical practice and is key in the criteria for MS 

diagnosis (Polman et al. 2011; Polman et al. 2005; McDonald et al. 2001). The main 

reason for the widespread use of MRI is that the technique is non-invasive and versatile 

in its ability to visualise structural, metabolic, and functional changes. This chapter will 

outline the basic physics on which MRI is based and how sequences allow the 

visualisation of different tissue characteristics. This is followed by an overview of key 

findings of MRI studies on MS pathology.  

2.1 Magnetic resonance of hydrogen spins 

MRI is based on magnetic resonance properties of hydrogen nuclei. When introduced into 

a static magnetic field, hydrogen nucleus spins align with and transverse around the static 

magnetic field in the z-direction along the scanner’s bore axis. A larger share of spins will 

have a ‘north-to-south’ orientation than ‘south-to-north’, which is dependent on static 

magnetic field strength and will determine signal intensity. The speed at which these spins 

precess around the magnetic field is determined by the Larmor frequency: 

ω = -γB 

where ω is the angular frequency, γ the gyromagnetic ratio, and B the strength of the static 

magnetic field. Upon stimulation with a radiofrequency (RF) pulse, spins will be brought 

to spin in a transverse circular motion in the xy plane, perpendicular to the z direction. 

This is done by interacting with the spins using a pulse with the same RF as the protons. 
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Once the magnetisation is in the xy plane, the RF pulse is switched off, and the spin 

magnetisation acts as a vector precessing around the main magnetic field at the Larmor 

frequency. The cumulative current of phased spins in a volume is received by the RF coil 

which allows the translation of spin energies into signal intensities.  

The two main metrics used in MRI are T1 and T2. Both T1 and T2 depend on the magnetic 

field strength through complex non-linear relationships. When the RF pulse stops, the 

spins return to equilibrium, which means that the magnetisation is realigned with the static 

magnetic field. This realignment process is referred to as T1 relaxation, and the speed at 

which this process occurs determines T1 signal strength. Specifically, T1 is defined as 

the time it takes to reach 63% of the initial magnetisation.  

While T1 relaxation is the release of energy into the system, the main drivers behind T2 

relaxation are local field inhomogeneities, thermal energy, and spin-spin interactions. 

Spins precessing in the same phase will de-phase due to these effects, reducing the 

cumulative current detected by the RF coil. T2 is defined as the time it takes for 63% of 

signal to have decayed due to de-phasing of spins. While the dephasing due to the 

exchange of energy between spins, i.e. due to T2 process, is not reversible, the dephasing 

due to local inhomogeneities can be undone by the using a 180º pulse. This is played at a 

certain time (1/2 × echo time [TE]) from the first excitation 90º pulse and has the effect 

of creating a spin-echo at time TE. TE is the echo time for the spin echo formation and 

can be set up by the user.  

As T1 and T2 depend on the molecular environment, different tissue types are 

characterised by different relaxation constants, which then reflect in different intensities 

of the MRI signal. Fat has a shorter T1, while fluids (e.g. CSF) have a longer T1. At a 

static magnetic field strength of 3 Tesla (T), GM and WM have T1 times (1445ms and 
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791ms, respectively) that lay in between CSF (4163ms) and fat tissue measurements of 

T1 (Lin et al. 2001). Based on these properties T1-weighted scans allow to distinguish 

CSF, GM, and WM. T2-weighted scans show a high signal for CSF (1400ms), with GM 

and WM having a T2 of 101ms and 92ms, respectively (Lin et al. 2001). 

2.2 Spatial encoding  

To construct images of the MR properties of hydrogen spins, it is necessary to determine 

the spatial location of the spins measured by the RF coil (Duerk 1999). To this end, three 

gradients are used: the frequency encoding gradient, phase encoding gradient, and slice 

selection gradient.  

Firstly, as the Larmor frequency of spins is dependent on the static magnetic field, it is 

possible to change the spin frequency in different locations by introducing a frequency 

encoding gradient (Huettel et al. 2014). This gradient changes the static magnetic field 

strength throughout the body, so it follows a gradient. The static magnetic field is not 

changed in the centre of the body where the precession of spins is determined by the static 

magnetic field only. Along one dimension a small magnetic force is added to the 

homogeneous static magnetic field, which is linearly dependent on the distance from the 

centre. In the opposite direction a magnetic force is introduced reducing the static 

magnetic force proportional to the distance from the centre.  

The frequency encoding gradient hereby changes the Larmor frequency of the spins in 

one dimension in a gradient-like fashion. Fourier transformations of the echoes allow us 

to calculate the contribution of the different voxels along this encoding dimension as we 

intentionally change the frequency of their spins depending on their physical location. 

Secondly, the phase encoding gradient is used to encode a second dimension. The location 

of spins that precess in the same frequency can be distinguished by changing the phase in 
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which they spin. RF pulses are then only delivered to proton spins precessing in a specific 

phase, which allows for a distinction in this dimension.  

The final, third, dimension is encoded by the slice encoding gradient. This gradient often 

encodes the z-direction and is active when the RF pulse is given. This changes the Larmor 

frequency of spins and ensures that the RF pulse only affects the spins of the slide within 

a selected frequency bandwidth. Slice thickness can be changed by changing the 

bandwidth or by changing the slope of the gradient. 

The combination of these three gradients allows us to encode spins in three-dimensional 

space and the development of this technique has been awarded the 2003 Nobel Prize in 

medicine. In addition, several time-saving measures have been developed including 

multi-slice selection and turbo echo trains that significantly speed up the acquisition, but 

this falls outside the scope of the current chapter. Ultimately, using these techniques, 

allows the RF coil to receive information about hydrogen spins in different voxels, to be 

stored in k-space for reconstruction of the scanned object into visually interpretable 

images. 

2.3 Sequences 

Various parameters can be adjusted to obtain different types of information from the 

scanned tissue. The time interval between the centre of excitation and the echo formation 

is the TE, already mentioned above concerning the spin echo formation, and the interval 

between individual RF excitation pulses is the repetition time (TR). Furthermore, certain 

scan types make use of inversion pulses flipping the hydrogen spins by 180°. The time 

between the RF pulse and the 180° inversion pulse is called the inversion time (TI). An 

MRI sequence is a set of pulses and gradients resulting in specific MR images. The 

current section will describe the most commonly used MR sequences used in MS research 
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and will discuss how the composition, angles, and timing of these pulses and gradients 

determines the excitation and relaxation of spins to visualise different forms of pathology 

in the MS brain. The histopathological correlates of different MRI scans will be 

elaborated upon in chapter 6. 

2.3.1 T1-weighted scans 

The most widely used MRI scans are T1-weighted and T2-weighted scans and are 

predominantly sensitive to the T1 and T2 signals of the proton spins, respectively. As the 

T1 and T2 effects within voxels are estimated relative to other voxels and are not 

quantified mathematically, these scans are therefore referred to as T1- and T2-weighted. 

Examples of T1- and T2-weighted scans of an MS patient can be found in image 2.1. As 

the T1 and T2 effects are dependent on magnetic field strength, TE and TR parameters 

need to be optimised for tissue contrasts. T1-weighted scans have a short TR (<1000ms 

at 3T) and a short TE (<45ms). On T1-weighted brain scans CSF has little signal, with 

WM having a slightly higher intensity than GM. Tumours, haemorrhages and 

inflammation have low signal intensity on T1-weighted scans, while being bright on T2-

weighted scans.  

Three types of MS pathology are routinely visualised using T1-weighted sequences. 

Firstly, T1-weighted scans allow the visualisation of WM lesions as these appear hypo-

intense on these images. Histopathologically these so called ‘black holes’ are associated 

with substantial irreversible myelin and axonal loss (van Walderveen et al. 1998; Bitsch 

et al. 2001). Secondly, gadolinium enhanced T1 scans help to distinguish active and 

inactive WM lesions, due to their difference in BBB permeability. The BBB breach in 

active lesions allows gadolinium to diffuse into the lesions, which creates a strong signal 

on T1-weighted MRI scans as gadolinium’s strongly reduces T1 relaxation times. This 

gadolinium signal is not observed in inactive lesions with astrogliosis, as this scar-
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formation prevents gadolinium from entering the CNS. Finally, volumetric T1-weighted 

scans are used to measure regional and whole brain atrophy.  

Limitations of T1 scans include the following. T1-weighted MRI scans are routinely used 

in clinical practice, but as reviewed previously (Ge 2006), the ability of these scans to 

consistently detect pathology is limited due to 1) scanner hardware and particularly the 

field strength (Kilsdonk et al. 2016), 2) differences in concentration and dosage of 

gadolinium to detect active lesions (Sardanelli et al. 2003), and 3) differences in sequence 

set up between centres. 

2.3.2 T2-weighted and proton density scans 

Compared to T1-weighted scans, T2-weighted scans have longer TR (>2000ms at 3T), as 

well as longer TE (>45ms). On T2-weighted scans, CSF has high signal intensity, with 

WM having a slightly lower signal than GM. Because of the high signal intensity of fluids, 

T2-weighted scans are particularly good to visualise demyelination, infarction, and 

oedema. Proton density (PD) scans visualise the total proton pool in voxels and have long 

TR (>2000ms) and short TE (<45ms), resulting in high signal intensity in CSF, with WM 

having a lower PD than GM. PD and T2-weighted scans can be obtained simultaneously 

in PD/T2 scans. Similar to T1 scans, these scans are used to assess WM lesion presence 

in MS. Limitations to the use of T2 scans to consistently visualise MS pathology include 

differences between centres in terms of scanner hardware and sequence set up, as well 

the histopathologically observed heterogeneity of T2 detected WM pathology, 

highlighting the high specificity and low sensitivity of this scan type (van Waesberghe et 

al. 1999; Newcombe et al. 1991). Furthermore, to obtain lesion masks manual delineation 

of hypo intensities is required, which is a labour intensive process and is therefore nor 

routinely done in clinical practice. However, while manual lesion-contouring is still 
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considered the gold standard to obtain T2 lesions masks, this labour intensive process is 

being addressed by algorithms aiming to automise this step (Wang et al. 2016). 

2.3.3 Fluid attenuation recovery 

Fluid attenuation recovery (FLAIR) scans are a variation of T1-weighted scans and make 

use of the difference in TI of tissue types. After a 180° preparatory pulse, net 

magnetisation is inverted. Tissue types have different relaxation times for the net 

magnetisation to recover and signal from different tissue types therefore cross the zero 

longitudinal magnetisation point at different times. When the recovering magnetisation 

from CSF is nulled (i.e. not producing any signal), the longitudinal magnetisation from 

tissue is not zero. At this point a 90° RF pulse is applied that affects only magnetisation 

from tissue, with CSF appearing very dark (zero) on the obtained images. The time 

between the 180° and 90° is referred to as the TI. Annulling CSF signal creates a sharper 

contrast between CSF and tissue in close proximity to CSF and is therefore particularly 

good in detecting periventricular WM lesions, as shown in figure 2.1. The main limitation 

of FLAIR scans are signal inhomogeneities leading to different signal-to-noise ratios 

particularly in the temporal lobes and the frontal and temporal operculum. Furthermore 

these signal inhomogeneities are highly dependent on the field strength and receive coils 

used in the study (Zwanenburg et al. 2010). 

2.3.4 Double inversion recovery 

Double inversion recovery (DIR) scans are used to detect GM lesions. An example can 

be found in figure 2.1. DIR scans are similar to FLAIR scans, and make use of an 

additional 180° pulse to annul both CSF and WM signal, resulting in a scan in which only 

the GM is shown (Redpath & Smith 1994). Histopathologically, DIR scans allow 

prospective detection of 18% of histopathologically detected cortical lesions and 

retrospectively 37% of cortical lesions can be seen (Seewann et al. 2012). Despite this 
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relatively low detection rate, the low SNR and the presence of artefacts, DIR scans allow 

the visualisation of hyper-intense GM lesions that are not detectable with conventional 

MRI sequences and DIR scans have therefore proven valuable in the study of 

development of GM lesions in MS. The use of DIR in the study of GM pathology in MS 

will be described in section 2.4.1 and chapter 4.  

DIR scans are not routinely used in clinical practice, mainly due to the previously 

mentioned low detection lesion-detection rate and the low signal-to-noise ratio of the 

scan, as well as the presence of hyper intense artefacts in the temporal poles, cinguli, and 

prefrontal lobes. The use of DIR is further limited due to the need for manual lesion 

delineation. Finally, GM lesion subtypes have different detection rates, with subpial 

lesions rarely being detected on DIR scans (Seewann et al. 2012). 

2.3.5 Magnetisation transfer imaging 

Magnetisation transfer ratio (MTR) is calculated from MT-weighted imaging. MT scans 

make use of cross-relaxation properties of freely moving protons and protons with 

restricted motion which are thought to be bound to macromolecules (Enzinger et al. 2015; 

Henkelman et al. 2001). The transfer of longitudinal magnetisation between these two 

pools of protons can be utilised by firstly acquiring signal from the freely floating proton 

pool (MTon) and subsequently using an off-resonance excitation pulse (MToff) to saturate 

the restricted proton pool, which do not give any signal when they exchange with the free 

protons; the saturated spins, originally bound to macromolecules, are not contributing to 

the signal and when the freely floating pool is measured again, the signal is reduced by 

an amount proportional to the exchanged protons. MT imaging is also influenced by the 

T1 relaxation time of the tissue. Areas with high macromolecule concentration have lower 

T1 than areas with fewer restricted protons, and a ratio (Mon-Moff)/Mon yields the MTR. 

An example can be found in figure 2.1. In post mortem MS tissue, MTR has been found 
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to correlate with myelin and to a lesser extent with neuronal concentration (Schmierer et 

al. 2004; Schmierer, Tozer, et al. 2007a). The main limitations of the use of MTR is that 

this scan type is not standardised between centres, and secondly, that while it is 

hypothesised to reflect myelin (and to a lesser extent axonal) tissue content, it is unclear 

whether this association between myelin and MTR is the same in different tissue types. 

The histopathological substrates of MTR will be discussed in chapter 6.  

While quantitative MT (qMT) is not used in the work presented here, this scan type offers 

a quantification of the MT signal. MTR makes use of a single off-resonance frequency 

pulse, which can be improved upon by qMT where a mathematical model of the exchange 

is fitted to the data to extract metrics more specific to macromolecular content. In this 

sequence a number of pulses at different frequencies allow a more precise quantification 

of the restricted proton pool and are therefore better at quantifying the macromolecule 

concentration (Sled & Pike 2001). 

2.3.6 Diffusion weighted imaging 

Diffusion weighted imaging (DWI) visualises the diffusion of protons (Enzinger et al. 

2015). After a 90° pulse, a diffusion gradient is applied, which disrupts the transverse de-

phasing of protons. After a subsequent 180° spin echo pulse, an opposite paired diffusion 

gradient is applied annulling the disruptive effect of the first diffusion gradient, allowing 

the protons to rephase. However, a pool of protons will have diffused along the diffusion 

gradient direction which will not rephrase after the application of the gradients. This 

change in signal, if sampled at least along six non collinear directions, together with a 

scan with no diffusion gradients applied, allows us to model the diffusion process in tissue 

with a diffusion tensor, characterised by three diffusivities (eigenvalues) along three 

orthogonal directions (eigenvectors). From the three eigenvalues, which are rotationally 

invariant, i.e. they reflect the intrinsic properties of the tissue in the voxel and do not 
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depend on how the subject is placed in the scanner, we can obtain various metrics about 

diffusivity in the tissue including mean diffusivity (MD), fractional anisotropy (FA), and 

radial diffusivity (RD).  

MD represents the total diffusion in any direction by protons in that voxel, FA is a 

measure of anisotropy, i.e. the property describing that tissue restriction imposes a 

preferential direction for water diffusion in relation to the orthogonal directions, and RD 

is a metric for the amount of diffusion in the directions other than the preferential 

direction. Water molecules that are restricted in their movement will show lower MD. 

High FA values and low RD mean that molecules are free to diffuse in a particular 

direction, while being restricted in the orthogonal plane. These DWI metrics allow the 

mapping of neurons and axonal connections between areas can be visualised. In 

neurological diseases, including MS, a reduction in FA, or an increase in MD or RD is 

indicative of WM tract damage (Schmierer, Wheeler-Kingshott, et al. 2007).  

The main limitations of the use of diffusion MRI are the large voxel sizes used (routinely 

around 2mm3), the need for elaborate post processing steps, particularly when aiming to 

visualise tissue characteristics in areas where WM fibres cross, and finally the inability 

of diffusion MRI to readily detect GM pathology. 
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Figure 2.1. Examples of different MRI scans used to detect pathology in the MS brain. A) T2-weighted B) 

Proton density C) T1-weighted D) FLAIR E) DIR F) MTR. Red arrows indicate different types of pathology, 

visualised with different scans, i.e. white matter lesions on the T2-weighted scan (A), and cortical grey 

matter lesions on the DIR scan (E). 

2.4 In vivo MRI studies of grey matter pathology  

MRI sequences have allowed the in vivo study of macroscopic and microscopic 

abnormalities in the MS brain. In this section an outline is given of key findings of MRI 

studies of GM pathology in MS.  

2.4.1 Grey matter lesions 

As described in section 2.3.5, the development of the DIR MRI acquisition technique, 

suppressing WM and CSF signal, has allowed the study of GM lesions in vivo (Redpath 

& Smith 1994). Compared with conventional MRI acquisition techniques (e.g. T2-

weighted or FLAIR scans) three-dimensional DIR scans allow detection of about five 
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times as many cortical lesions (Geurts, Bø, et al. 2005). However, DIR scans are not 

standardised between centres and are not used routinely in clinical practice as they are 

still suboptimal in detecting GM lesions, largely due to a relatively low signal-to-noise 

ratio (Hutchinson 2012; Filippi & Rocca 2012; Geurts 2012). A comparative study aiming 

to establish the detection rate of GM lesions on DIR scans by combining MRI with 

histopathology showed that only approximately 18% of all GM lesions were 

prospectively detected on DIR scans (Seewann et al. 2011). Even retrospectively, little 

more than one third of histopathologically defined lesions were observed on 3D-DIR 

scans. Especially type 2 and type 3 GM lesions showed poor detection rates. The poor 

detection rates are suggested to be caused by low contrast between surrounding GM and 

these lesions, lack of inflammation in these of these cortical lesions resulting in low levels 

of gliosis, BBB disruption, and infiltrating leukocytes.  

DIR sequences, despite their low lesion detection rate, have provided insight in the 

distribution of GM lesions in MS, as they allow a better distinction between purely intra-

cortical lesions, juxta-cortical and mixed lesions, compared to conventional MRI 

sequences (Hulst & Geurts 2011). These scans have allowed the study GM pathology in 

MS, which was previously impossible to address in vivo, and have shown that GM lesions 

are an important part of the MS disease process, can be found throughout the entire 

cerebellar and cerebral cortex, and accumulate over time (Calabrese, Battaglini, et al. 

2010; Calabrese, Mattisi, et al. 2010; Calabrese et al. 2008). Cortical lesions occur early 

in the MS disease process (Calabrese, Battaglini, et al. 2010; Calabrese, Filippi, et al. 

2009; Calabrese, Rocca, et al. 2010), and are associated with disability progression 

(Calabrese, Rocca, et al. 2010). Furthermore, cortical lesions are part of both PPMS and 

RRMS (Calabrese, Rocca, et al. 2009; Calabrese, Rocca, et al. 2010), but to a lesser extent 

of benign MS (Calabrese, Filippi, et al. 2009). Interestingly, people with benign MS, who 

remain fully functional fifteen years after disease onset, have comparable numbers of 
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WM lesions as people with RRMS, but do not have the same number of DIR-detected 

GM lesions (Calabrese, Filippi, et al. 2009), indicating that cortical pathology may be the 

determining factor in disability, and is further evidence for a difference in underlying 

mechanisms of GM and WM lesions.  

2.4.2 Normal appearing grey matter pathology and grey matter atrophy 

A described above, MTR allows the in vivo study of wide spread non-lesional myelin and 

neuro-axonal pathology in MS. GM MTR studies have shown that a reduction of MTR 

in NAGM is widespread and can be found in PPMS, RRMS and SPMS, and can already 

be seen in people presenting with clinically isolated syndrome (CIS) (Crespy et al. 2011). 

In the DGM of people with progressive MS, the spatial distribution of MTR reduction 

does not correspond to the extent of atrophy, suggesting that cortical myelin and neuro-

axonal loss occurs at least partly independently from demyelination (Mallik et al. 2015). 

This corresponds to the finding of diffuse neuro-axonal pathology outside focal 

demyelinating lesions in a previous histopathological study (Vercellino et al. 2009). 

Ultimately, as neuro-axonal loss develops in the MS disease process, tissue volume is 

likely to decrease, but this appears dissociated in time. 

Global and regional atrophy can be investigated using MRI analysis techniques including 

voxel based morphometry (VBM) and SIENA. Overall reduction of neocortical volume 

has been observed in PPMS (Sastre-Garriga et al. 2005), RRMS (Amato et al. 2004; 

Benedict et al. 2006; Calabrese, Agosta, et al. 2009), and SPMS (Benedict et al. 2006). 

Furthermore, it was found that people with secondary progressive MS had larger GM 

atrophy than people with RRMS, which was substantially larger than the detected rates 

of WM atrophy (Benedict et al. 2004). This further suggests that GM and WM volume 

loss may at least be partially independent (Calabrese, Atzori, et al. 2007). 
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DGM areas are particularly prone to atrophy. DGM atrophy is evident already from the 

first clinical event (Calabrese, Atzori, et al. 2007; Chard & Miller 2009a; Dalton et al. 

2004; Henry et al. 2008) and accumulates over time (Sepulcre et al. 2006). A reduction 

in DGM volume is apparent in RRMS (Audoin et al. 2006), PPMS (Sepulcre et al. 2006), 

and SPMS (Ceccarelli et al. 2008). Because of the extent of atrophy to the thalamus, likely 

due to its connected nature, it has even been suggested that thalamic atrophy may serve 

as a "barometer" of MS pathology, and as such may be useful in neuroprotective trials 

(Kipp et al. 2015). Other studied anatomical areas with extensive GM demyelination are 

the cingulate gyrus (Vercellino et al. 2005), cerebellum (Kutzelnigg et al. 2007), and 

hippocampus (Geurts et al. 2007; Papadopoulos et al. 2009). 

Combined, these neuroimaging studies show that GM pathology manifests as 

demyelinated lesions, diffuse neuro-axonal damage, and atrophy, and that GM pathology 

at least partly occurs independently of WM damage.  

2.4.3 Clinical and cognitive decline associated with grey matter pathology 

Both WM and GM pathology contribute to clinical disability in MS and are thought to 

complement each other in their disruption of pathways involved in cognitive and clinical 

function (DeLuca et al. 2015). While both WM and GM pathology are likely to be 

responsible for clinical disability, cross-sectional neuroimaging studies have shown that 

GM pathology is a better predictor of clinical and cognitive disability than WM pathology 

(Geurts 2008; DeLuca et al. 2015). Accumulation of DIR lesions has been shown to be 

associated with increased disability assessed by the expanded disability status scale 

(EDSS) (Calabrese, De Stefano, et al. 2007), as well as cognitive functioning assessed by 

the Paced Auditory Serial Addition Test (PASAT) and the Symbol-Digit Modality Test 

(SDMT) (Calabrese, Agosta, et al. 2009). Similarly, GM atrophy has been associated with 

physical and cognitive dysfunction in all MS subtypes (Amato et al. 2004; Benedict et al. 
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2006; Calabrese, Agosta, et al. 2009; Chard et al. 2002; Fisher et al. 2008; Fisniku et al. 

2008; Roosendaal et al. 2011; Benedict et al. 2004). Both GM atrophy and GM lesions 

have been correlated to tests assessing disability (Chard & Miller 2009a; Rinaldi et al. 

2010; Benedict et al. 2004). The spatial distribution of GM lesions and GM atrophy, as 

well as their individual contribution to clinical disability will be examined in chapter 4. 

As reviewed by DeLuca (DeLuca et al. 2015), whole brain measures including Brain 

Parenchymal Fraction, reflecting atrophy (Fisher et al. 2000; Kalkers et al. 2001), and 

studies looking at specific brain regions have shown a clear link between GM pathology 

and cognitive function. Smaller hippocampal volumes have been found in people with 

MS compared to controls, associated with reduced memory function and processing speed 

(Koenig et al. 2014). Similarly volumes of DGM matter structures have been found to be 

lower in people with MS compared to controls, and has been associated with impaired 

performance on tests assessing processing speed, working memory, verbal fluency, verbal 

and visuo-spatial learning, and executive function (Batista et al. 2012; Houtchens et al. 

2007). To attempt to disentangle the contributions of WM tracts injury and cortical and 

thalamic GM damage in MS to impaired clinical and cognitive function, a more detailed 

insight into thalamic pathology and its longitudinal relationship to connected WM and 

cortical GM injury will be provided in chapter 5. 
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Chapter 3  

Aims 

As described in chapter 1 and 2, the importance of GM injury in MS is increasingly 

recognised, and MRI has proven invaluable in the study of MS pathology in vivo. A 

number of questions remain unanswered in our understanding of GM injury in MS. 

Firstly, it is unclear if the different manifestations of GM damage (i.e. focal demyelinated 

lesions, diffuse neuro-axonal loss, and atrophy) have a shared spatial distribution and if 

they contribute equally to clinical disability. Secondly, it is unclear how thalamic and 

cortical GM pathology is related spatiotemporally to WM tract injury. WM damage in 

MS is well established, and cortical and particularly thalamic GM structures are affected 

disproportionally and early in the disease process. However, the longitudinal relationship 

between these potentially separate forms of pathology manifestation has not been 

established. Finally, only a limited number of studies have assessed the underlying 

histopathological substrates of MRI-detectable abnormalities in MS. Diffuse myelin and 

neuronal loss are thought to be detected by MTR MRI, but it is unknown if this association 

between is the same in normal appearing and lesional GM and WM.  

3.1 Aim and hypotheses 

The current thesis aims to provide insight into the pathophysiology of CNS pathology in 

MS with a focus on GM. The overarching tested in the current thesis is as follows.  

There are different manifestations of GM pathology in MS, which arise (at least 

partly) independently from WM damage and all forms of pathology contribute to 

clinical disability.   
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This work consists of three independent studies which include in vivo, post mortem, and 

histological investigations, and specifically aims to answer the following questions, 

which are addressed in the next three results chapters.  

1) Do GM lesions and GM atrophy co-localise, and what is their independent 

contribution to clinical disability in vivo? 

2) Can thalamic and cortical GM pathology, as detected by in vivo MTR MRI, be 

explained by prior damage to connecting WM tracts, or vice versa?  

3) What are the independent underlying histopathological substrates of MTR 

abnormalities of CNS pathology in MS? Are they the same in NAGM, NAWM, 

and lesional GM and WM? 

The overarching of the current thesis is tested through specific sub hypotheses tested in 

chapters 4, 5, and 6, which are related to the above questions and are as follows. 

1) GM lesions and GM atrophy do no co-localise to a large extent, and disruption of 

clinically relevant regions by either form of pathology results in clinical 

dysfunction. 

2) WM tract degeneration precedes diffuse non-lesional neuro-axonal and/or myelin 

loss in the connected thalamus and cortex. Injury to any part of thalamo-cortical 

systems affects clinical function associated with the respective system. 

3) Lesional and normal appearing GM and WM differ substantially in terms of 

histopathological make-up and MRI-visualised pathology. 
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3.2 Structure of thesis 

To answer these questions, Chapter 4 investigates if GM lesions and GM atrophy co-

localise and what their individual contributions are to clinical disability. I show that DIR-

detected GM lesions are found throughout the entire cerebellar and cerebral cortex, while 

GM atrophy is mainly affecting DGM structures. Chapter 5 investigates the longitudinal 

relationship between pathology to thalamic nuclei, WM tract injury, and cortical 

pathology, to establish the spatiotemporal distribution of these forms of damage. I show 

that MTR abnormalities in NAWM of thalamic-tracts precede (both thalamic and 

cortical) GM MTR changes. Finally, chapter 6 investigates the underlying histopathology 

of CNS abnormalities in MS, using a combination of post mortem MRI and histology, 

and shows that whereas MTR is associated with myelin in NAGM and NAWM, this 

association appears absent in lesional tissue.  
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Chapter 4  

Co-localisation and clinical impact of grey matter 

lesions and atrophy in different subtypes of multiple 

sclerosis 

4.1 Introduction 

As introduced, GM pathology has emerged as a significant and clinically relevant 

component of MS. This is in part due to advances in MRI technology, which allows the 

systematic assessment of GM pathology in MS in vivo. GM volume loss and focal GM 

lesions both occur, and both have been correlated with neurological and cognitive deficits 

(Amato et al. 2004; Calabrese, Agosta, et al. 2009; Benedict et al. 2006; Chard & Miller 

2009a; Rinaldi et al. 2010; Calabrese, De Stefano, et al. 2007; Chard et al. 2002; Fisher 

et al. 2008; Fisniku et al. 2008; Roosendaal et al. 2011). However, a key unanswered 

question is whether they share a common pathogenesis, in particular whether lesions are 

the cause of atrophy, or represent independent processes that contribute separately to 

clinical outcomes. 

Histopathological studies have identified extensive cortical demyelination in people with 

MS, and in those with progressive disease GM lesion volume may exceed that of WM 

(Bø et al. 2003b). However, in vivo it has proven difficult to detect GM lesions using 

conventional MRI techniques. Only 6.8% of GM lesions are identified on T2-weighted 

scans, and 11.4% on FLAIR scans (Geurts, Bø, et al. 2005). The development of DIR 

MRI has improved on this, prospectively detecting 17.1% to 18% of GM lesions (Geurts, 

Pouwels, et al. 2005; Seewann et al. 2012), and DIR studies have shown that GM lesions 

are spread throughout the cortex, appear early in the course of the disease, and accumulate 

over time (Calabrese, Battaglini, et al. 2010; Calabrese, Filippi, et al. 2009; Calabrese, 

Rocca, et al. 2010). 
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Previous in vivo work provides insight into the mechanisms of GM injury in MS. DGM 

and CGM atrophy is now well-recognised in MS (Audoin et al. 2006; Ceccarelli et al. 

2007; Chard & Miller 2009a; Chard et al. 2002), occurs early in the disease (Labiano-

Fontcuberta et al. 2016; Deppe et al. 2016), and appears to accelerate as people with MS 

enter a progressive phase (Fisher et al. 2008). Three studies have assessed the relation 

between GM atrophy and WM injury showing that while lesions in connecting WM tracts 

are associated with DGM atrophy (Sepulcre et al. 2009; Mühlau et al. 2013), WM lesion 

independent microstructural degeneration is thought to drive atrophy (Deppe et al. 2016). 

GM atrophy is thought to mark irreversible tissue loss, and it is likely that a combination 

of neuronal morphological changes and loss, and glial abnormalities contribute (Geurts 

& Barkhof 2008). Lesions could directly cause localised atrophy, as suggested by 

pathological studies showing axonal transection and loss in cortical lesions (Peterson et 

al. 2001). There has been little histopathological work looking for co-localisation of 

cortical atrophy and demyelination, but in the only study I am aware of, local cortical 

thickness did not correlate with demyelination (Wegner et al. 2006). However, fixation 

can affect cortical thickness (which was correlated with fixation time (Wegner et al. 

2006)), and so it is possible that this may have obscured an association. As such, it is 

preferable to look for associations in unfixed tissue samples or, better still, in vivo. 

The study presented in the current chapter sought to clarify the spatial overlap between 

GM atrophy and GM lesions, and their independent relationship with cognitive and 

physical disability, in a large cohort of patients with MS and in different MS subtypes. I 

hypothesise that GM lesions and GM atrophy do no co-localise to a large extent, and that 

disruption of clinically relevant regions by either form of pathology results in clinical 

dysfunction. 
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4.2 Methods 

4.2.1 Participants and clinical assessment 

Eighty people were recruited with clinically definite MS (Polman et al. 2011), who had 

not had a relapse or received corticosteroids within the preceding four weeks, were less 

than 65 years old and had no other neurological conditions, as well as 30 healthy 

volunteers with no known neurological disease. All participants gave written informed 

consent and this study was approved by our local institutional ethics committee. Patient 

recruitment, clinical assessment and obtaining of MRI data was done prior to my 

involvement with this project. 

Clinical status was assessed using the EDSS (Kurtzke 1983) and the MS functional 

composite (MSFC) score which includes walking speed on the 25-foot timed walk test 

(25TWT), 9-hole peg test (9HPT), and the PASAT. Z-scores of these tests were calculated 

using published means and standard deviations (Burgess & Shallice 1997). 

All subjects underwent cognitive testing to assess executive function and memory. 

Executive function was assessed using the Hayling Sentence completion task (Burgess & 

Shallice 1997) and Stroop task (Trennery 1989), from which averaged z-scores were 

calculated on the basis of healthy control performance, and SDMT, from which the age-

adjusted z-scores were calculated based on published normative values (Smith 1982). 

Memory function was evaluated using a composite score of story recall (immediate and 

30-minute delay) and figure recall (immediate and 30-minute delay) from the Adult 

Memory and Information Processing Battery (Coughlan & Hollows 1985) and word and 

face recognition from the Recognition Memory Test (Warrington 1984); z-scores based 

on the performance of the control sample were also calculated for these tests.  
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4.2.2 MRI protocol 

Brain MRI was performed on a Phillips 3T Achieva TX system (Philips Healthcare, Best, 

The Netherlands) using a 32-channel receive-only coil. T1-weighted (TR=6.9ms, 

TE=3.1ms, TI=824.5ms, SENSE=2, voxel size=1×1×1mm), turbo FLAIR (TR=8000ms, 

TE=125ms, TI=2400ms, SENSE=1.3, voxel size=1×1×3mm), and DIR (TR=16000ms, 

TE=9.9ms, TI=2400/325ms, SENSE=4.16, voxel size=1×1×3mm) sequences were 

acquired.  

4.2.3 Image registration and lesion mapping 

All pre-processing was carried out with SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). All 

subsequent data analysis, statistical analysis and interpretations were performed by SvdP. 

To limit the impact of WM lesions on tissues segmentations, T1-weighted hypo-intense 

lesions were filled (Chard et al. 2010) and the lesion-filled T1-weighted images were then 

segmented. Anatomical normalisation to MNI space was achieved via a custom 

diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL) 

template (Ashburner 2007; Ashburner & Friston 2009), generated from all subjects’ 

(N=110) GM tissue segmentations. Compared to the use of other templates (e.g. MNI) 

the use of this cohort-specific template reduces the amount of deformation required to 

nonlinearly register individual brains to the template, which would be larger for more 

atrophic brains than for healthy brains, and therefore allows improved detection of disease 

effects. The DARTEL GM template was affine-registered to the MNI standard space, and 

each subject’s T1-weighted image was first nonlinearly registered to the DARTEL 

template, and subsequently affine registered to MNI using the DARTEL to MNI 

transformation, moving it into MNI template space. This pipeline reduces the adverse 

effect of disease-associated brain atrophy on the registration accuracy to MNI space. 

When spatially normalising the segmented GM images to MNI space (via the DARTEL 
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and affine transformations), the images were modulated to preserve native tissue 

volumes. All registrations were reviewed to confirm their accuracy. Modulated, 

normalised, segmented GM images were smoothed with an 8-mm full-width at half-

maximum Gaussian kernel. 

GM lesions were marked on the DIR scans using JIM (version 6.0, Xinapse Systems, 

Northants, UK) by one rater (VS) according to consensus guidelines (Geurts et al. 2011). 

These lesion masks were then assessed by rater two (SvdP), and in case of a differing 

opinion on the lesion contouring, the lesion was discussed and a consensus was reached 

on all lesions between VS and SvdP. Subsequently, similarly, one in five lesion masks 

were analysed by DC, after which a final consensus was reached between all three raters. 

Total GM lesion volume was then calculated. 

Each participant's DIR scan was affine registered to their T1-weighted scan, and their 

DIR-to-T1 affine transformation, T1-to-DARTEL deformation field and DARTEL-to-

MNI affine transformation were combined and used to move the binarised GM lesion 

mask into MNI space. An 8mm full-width at half-maximum Gaussian Kernel was then 

used to smooth the normalised lesion masks.  

Two people (one with SPMS, one with PPMS) were excluded from the subsequent 

imaging analysis due to inadequate registration.  

4.2.4 Co-localisation of grey matter atrophy and lesions  

VBM and GM lesion probability mapping (LPM) analyses were carried out in SPM8. 

Two types of analyses were carried out: voxel-wise comparisons and region of interest 

(ROI) analyses. For voxel-wise VBM-map comparison between groups, an alpha value 

of 0.05 (family wise error [FWE] corrected) was used. For voxel-wise LPM, an alpha 



47 

 

value of 0.001 (uncorrected) was used. This threshold was used as no lesion clustering 

was found at 0.05 (FWE corrected). For neither approach a prior power calculation was 

performed. In both VBM-map and LPM comparisons, people with MS were compared to 

healthy controls to assess areas significantly more affected in people with MS. 

To determine co-localisation of volume loss and GM lesions, permutation tests were run 

using Randomise implemented in FSL (FMRIB’s software library, 

http://www.fmrib.ox.ac.uk/fsl). For each of the MS groups the following regression 

model was tested per voxel:  

VBMmap = LPM × B1 + age × B2 + gender × B3 + total intracranial 
volume × B4 + intercept 

Total intracranial volume (ICV; was estimated by summing the thresholded GM, WM 

and cerebrospinal fluid volumes using the ‘get_totals’ function in SPM8). 

FSL Randomise tests per voxel whether random permutations of values for each 

independent variable yield significant associations with the dependent variable, after 

which the ratio of significant associations to non-significant associations is considered 

for each independent variable using t-tests. As the test makes use of random permutations, 

the test does not make assumptions about the normality of the data. The tests were 

performed using an inclusive GM mask (thresholded at 0.5), with 5000 permutations and 

an uncorrected alpha of 0.01 with a cluster-threshold of 5, meaning that if more than 50 

of 5000 permutations reject the null-hypothesis of independence, the variables were 

considered to be significantly correlated. 

The second analysis employed an ROI approach. ROIs involved in tasks assessing clinical 

and cognitive functioning in MS (Audoin, Ibarrola, et al. 2005; Cardinal et al. 2008; 

Genova et al. 2009; Lockwood et al. 2004; Audoin, Au Duong, et al. 2005) were chosen 
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a priori. These regions were the bilateral cerebellum, medial temporal lobe, postcentral 

gyrus, precentral gyrus, insula, prefrontal cortex, and thalamus (Figure 4.1). Masks for 

these regions were created by using Freesurfer to automatically segment the MNI-space 

cohort-specific T1-weighted template (Fischl et al. 2002; Desikan et al. 2006). For each 

GM ROI, and in each patient, the total GM lesion volume and the GM volume were 

extracted from the VBM and LPM images and co-localisation between atrophy and lesion 

load was assessed using linear regression analyses, correcting for age, gender and ICV.  

 

 

 

Figure 4.1. A priori defined regions of interest: Cerebellum, insula, precentral gyrus, postcentral gyrus, 

prefrontal cortex, medial temporal lobe, and thalamus. Regions are overlaid on the cohort-specific MNI-

space template (x=37, y=-24, z=-6). 
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4.2.5 Associations of disability with grey matter lesion load and grey matter 

atrophy 

To explore the associations of GM lesion load and GM atrophy with clinical measures 

(EDSS, PASAT, 9HPT, 25TWT, executive function, and memory function), voxel-wise 

and ROI analyses were carried out. The first analysis, based on a voxel-wise factorial 

design, was conducted in SPM8, including age, gender, and ICV and using VBM-map or 

LPM values. In all voxel-wise comparisons a cluster threshold of five voxels was applied.  

Linear regression models using EDSS, PASAT, 9HPT, 25TWT, executive function, and 

memory function as the dependent variables, and GM lesion load and GM volume 

extracted from the ROIs were used as the independent variables. Age, gender, and ICV 

were also added to the model as additional covariates. SPSS (version 21.0. Armonk, NY: 

IBM Corp) was used to conduct this analysis. Differences between subtypes in scores, 

volume loss and lesion load were analysed using unpaired t-tests (for VBM-map values) 

or nonparametric tests (for lesion-loads since they were non-normally distributed). When 

both GM lesion load and GM atrophy within a given ROI were associated with clinical 

performance, a linear regression model including lesion load, total GM volume, age, and 

gender was run to determine the independent contribution of each to the outcome of 

interest. Shapiro-Wilk tests were used to assess normality of residuals of the linear 

regression analyses and unpaired t-tests. 

4.3 Results 

4.3.1 Demographics and clinical performance 

Thirty of the MS group had relapsing RRMS, 25 had PPMS, and 25 had SPMS (Lublin 

& Reingold 1996). Demographics are shown in table 4.1. SPMS patients had a longer 
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disease duration than PPMS and RRMS patients (both p<0.001). People with MS 

performed worse than healthy controls in all clinical domains, and MS subtypes showed 

differences in cognitive performance. EDSS scores differed significantly between MS 

subgroups (p<0.001), with the SPMS group having a higher EDSS than PPMS group, and 

people with PPMS having higher EDSS scores than those with RRMS (both p<0.05). 

People with MS had worse executive function and memory scores than controls, with 

SPMS being worse than PPMS, and PPMS being worse than RRMS (p<0.05 and p<0.01, 

respectively).  
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 PPMS RRMS SPMS All patients Healthy 

controls 

P value 

Females/Males 14/11 20/10 14/11 48/32 18/12  

Age (yr)a 52.5 (9.8) 42.5 (9.6) 52.8 (7.6) 48.8 (10.2) 37.8 (11.8) <0.001 

Disease duration (yr)b 12.0 (7.4) 11.5 (10.5) 24.0 (8.2) 15.6 (10.5) - <0.001 

Median EDSS (range)c 6.0 (0.0-6.5) 1.75 (1.0-6.5) 6.5 (4.5-8.5) 5.75 (0.0-8.5) - all <0.05 

z PASAT -0.70 (1.38) -0.69 (1.32) -0.94 (1.12) -0.77 (1.27) 0.12 (1.05)  

z 9HPT -1.00 (1.13) -0.66 (0.65) -1.16 (0.90) -0.93 (0.92) 0.63 (0.61)  

z 25TWT 0.32 (0.97) 0.00 (1.03) 0.56 (1.01) 0.24 (1.02) -0.44 (0.08)  

Composite z MSFC -0.62 (0.81) -.041 (0.76) -0.77 (0.66) -0.56 (0.76) -  

Hayling 4.80 (2.02) 5.17 (2.09) 4.64 (2.43) 4.89 (2.16) 6.17 (1.76)  

Stroop 174.4 (76.7) 135.83 (36.9) 174.58 (80.9) 158.59 (66.7) 109.80 (20.0)  

z SDMT -1.02 (1.62) -0.52 (1.13) -1.22 (1.21) -0.88 (1.34) 0.53 (1.11)  

Composite z executived -1.58 (1.69) -0.71 (1.09) -1.51 (1.55) -1.23 (1.48) 0.23 (0.69) 0.006 

Story recall immediate 30.04 (10.96) 33.97 (11.35) 27.76 (11.44) 30.80 (11.42) 37.13 (10.35)  

Story recall delay 27.20 (12.29) 31.57 (10.93) 24.80 (12.22) 28.09 (11.97) 34.90 (10.31)  

Figure recall immediate 51.09 (15.41) 62.20 (11.14) 51.57 (16.17) 55.80 (14.86) 67.67 (11.94)  

Figure recall delay 48.73 (15.84) 60.07 (11.22) 48.67 (14.83) 53.37 (14.72) 66.30 (12.06)  

RMT Words 46.17 (3.63) 47.60 (2.43) 45.61 (3.69) 46.56 (3.31) 49.00 (1.26)  

RMT Faces 40.21 (5.27) 42.33 (4.23) 37.43 (5.53) 40.21 (5.31) 44.27 (3.20)  

Composite z memorye -1.30 (1.15) -0.55 (0.89) -1.63 (1.27) -1.13 (1.18) 0.00 (0.58) both <0.05 

Table 4.1. Demographics and clinical performance. Mean values are presented, unless specified 

otherwise. Values in parentheses are standard deviations. Clinical scores presented in bold are used in 

image analyses. a) RRMS patients were significantly younger than PPMS and SPMS patients (both 

p<0.001). b) SPMS patients had longer disease duration than RRMS and PPMS patients (both p<0.001). c) 

All MS subgroups differed significantly (all p<0.05) with SPMS having a higher EDSS than PPMS patients, 

who had a higher EDSS in turn than RRMS patients. d) Patients had poorer executive functioning than 

healthy controls (p<0.01). e) Memory functioning was better in controls than patients (p<0.01), and best 

in RRMS patients, followed by PPMS patients, who in turn performed better than the SPMS subgroup 

(p<0.05, and p<0.01, respectively). 
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4.3.2 Grey matter atrophy 

All MS patients together showed significant GM atrophy predominantly in DGM 

structures (thalamus, pallidum, putamen and caudate), in addition to a few small regions 

in the frontal (0.09 cm3), insular (0.06 cm3), and temporal lobes (0.12 cm3), compared to 

controls (Figure 3.2). Similarly, in the a priori defined ROIs (i.e. cerebellum, medial 

temporal lobe, postcentral gyrus, precentral gyrus, insula, prefrontal cortex and thalamus, 

Figure 3.1), mean GM volume was significantly smaller in patients than controls in the 

thalamus (p<0.001) and insula (p<0.05).  

Subgroup analyses revealed that DGM volume loss was present in all MS groups 

compared to controls, with additional temporal lobe volume loss in the PPMS group, and 

volume loss of the occipital lobe, amygdala, and hippocampus in the SPMS group (table 

3.2, table 3.3 and figure 3.2a). Voxel-wise comparisons between patient groups yielded 

no significant results, though ROI analyses revealed significant subgroup differences in 

insular and thalamic volumes. SPMS patients had a significantly reduced insular volume 

compared to both healthy controls and PPMS patients (both p<0.01, Bonferroni corrected 

for multiple comparisons). Thalamic volume was also reduced in SPMS compared to both 

healthy controls and PPMS patients (p<0.001 and p<0.05, respectively). 

4.3.3 Grey matter lesions 

In patients, 1476 lesions were found throughout the GM (neocortex: 1276, cerebellum: 

154, deep GM: 46). Mean number of GM lesions was 17.0 (SD=10.2) for PP patients 

(neocortex: 14.5, deep GM: 0.6, cerebellum 1.92). Mean number of lesions for people 

with SPMS was 21.2 (SD=9.4) (neocortex: 18.3, deep GM: 0.8, cerebellum: 2.4), and 

15.0 (SD=10.1) for RR patients (neocortex: 13.5, deep GM: 0.3, and cerebellum: 1.4). 

Mean GM lesion volume was 1.33 cm3 (SD=1.04 cm3) for PP patients (neocortex: 1.15, 

deep GM: 0.03, cerebellum 0.16 cm3). Mean GM lesion volume was 1.39 cm3 (0.85) for 
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SP patients (neocortex: 1.20, deep GM: 0.03, cerebellum 0.16 cm3), and 0.93 cm3 (0.82) 

for RR patients (neocortex: 0.84, deep GM: 0.01, cerebellum 0.08 cm3). Fourteen GM 

lesions were identified in healthy controls (in four participants).  

At a threshold of p=0.001, patients had significantly higher GM lesion probability only 

in the right cerebellar hemisphere when compared with healthy controls (70 voxels, 

tmax=3.37). No DGM structures showed a significantly increased lesion probability at this 

threshold or at a lower threshold (p=0.01, uncorrected). However, at this threshold, 

additional cortical areas showed increased lesion probability, notably the right pre- and 

postcentral gyri, bilateral supplemental motor area, and bilateral temporal lobes (data not 

shown). People with MS had significantly more lesions in every a priori defined ROI than 

healthy volunteers (all p<0.001). 

Group wise whole brain analyses at p<0.001 (Table 4.2 and Figure 4.2b) revealed that 

PPMS patients had a significantly higher lesion probability in the left supplemental motor 

area (354 voxels), right medial frontal lobe (48 voxels), right postcentral (29 voxels), right 

supra-marginal gyrus (92 voxels), and the right cerebellum (375 voxels) than controls. 

The RRMS subgroup did not show any significant lesional clusters than controls. The 

SPMS group showed consistent clustering of lesions in the supplemental motor area (47 

voxels) compared to controls. All MS groups had significantly more lesions in every ROI 

than healthy volunteers (all p<0.001), and was comparable for all ROIs between MS 

groups, with the exception of the cerebellum, in which those with SPMS showed more 

lesions than those with RRMS (p<0.05, Bonferroni corrected).  

4.3.4 Co-localisation of grey matter atrophy and lesions  

In the combined MS group, voxel-wise analyses showed a significant association between 

a higher probability of a voxel being lesional and smaller GM volume in regions 
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throughout the entire brain, particularly in the cerebellum (Table 4.2). ROI analyses found 

that increased GM lesion load was significantly associated with reduced GM volume 

within the cerebellum (B=-17.76, p<0.001) and postcentral gyrus (B=-4.77, p=0.037).  

In analyses examining the co-localisation between volume loss and lesion load across MS 

subtypes (Tables 4.2 and 4.4, and Figure 4.2c) the PPMS group showed spatial overlap 

between the two pathological abnormalities throughout the cerebellar and cerebral cortex. 

While RRMS patients showed co-localisation of these forms of pathology mainly in the 

cerebellum, SPMS patients showed very little co-localisation, mainly in the post-central 

gyrus. The least co-localisation was found in the SPMS patients (0.01cm3), whilst the 

RRMS patients (0.18cm3) were in between the PPMS (0.30cm3) and SPMS groups in 

terms of number of regions showing both forms of MR changes. None of the groups 

showed co-localisation in the DGM (where significant atrophy was found in the absence 

of GM lesions). ROI-wise regression analyses in the RR group showed a significant 

association between cerebellar lesion load and volume loss (B=-33.46, p<0.001). 

4.3.5 Associations of grey matter atrophy and lesion load with clinical status 

Voxel-wise models at p<0.05 (FWE corrected) in people with MS revealed an association 

between lower executive function scores and decreased left putamen volume (104 

voxels), which was the only significant association of volume loss with any clinical 

metric. Furthermore, at p<0.001 (uncorrected), increased lesion probability in the 

cerebellum in particular was associated with lower performance in executive function, 

TWT speed, and PASAT (Appendix I, supplemental table 4.1).  

In the combined MS group cerebellar volume loss and increased GM lesion volume were 

associated with poorer functioning in all cognitive domains tested (Appendix I, 

supplemental table 4.2). In addition, lesions and volume loss within the postcentral gyrus 
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were associated with cognitive performance and physical disability in almost all domains 

tested (i.e. executive function, memory function, TWT speed, PASAT, 9HPT). Overall, 

lower functional scores were only weakly linked to GM lesion or atrophy clusters. 

Figure 4.2. Grey matter pathology in MS subtypes. The PPMS group is presented in green, RRMS in blue, 

and SPMS in orange on the cohort-specific MNI-space template. A) All MS subtypes show large deep 

volume loss compared to controls at p=0.05 (FWE corrected). Particularly patients with relapse onset have 

severe deep atrophy. Coordinates of sections are x=35, y=30, z=3. B) Areas showing clusters of higher grey 

matter lesion probability in patients compared to controls at p=0.001, uncorrected. The RRMS group did 

not show clusters of increased grey matter lesion probability at this threshold, while SPMS showed 

increased cerebellar lesion load and PPMS had clusters of increased lesion probability throughout the 

cerebral, and especially the cerebellar cortex. Coordinates of sections are x=39, y=-20, z=60. C) Areas 

showing a significant correlation of atrophy and higher probability of a grey matter voxel being lesional 

(at p=0.01, uncorrected) in all patient together. Coordinates of sections are x=29, y=-66, z=-28.  
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Table 4.2. Total volume of voxels (in cm3) consistently showing atrophy (at p=0.05, FWE corrected), lesion 

clustering (at p=0.001, uncorrected), and areas where these two forms of pathology was significantly 

associated (at p=0.01, uncorrected). Consistent atrophy was seen in all MS subtypes predominantly in 

deep grey matter structures. Lesion clustering and co-localisation of atrophy and lesions were consistently 

found in cerebral and cerebellar cortical areas, while not detected in deep structures. Co-localisation of 

atrophy and lesions was limited compared to areas in which lesions or atrophy occurred independently.  

 

  

  PP RR SP All patients 

Atrophy     

Cerebral cortical GM 0.13 0 0.14 0.35 

Deep GM  0.73 3.48 10.91 15.5 

Cerebellar GM 0 0 0 0 

Lesion clustering    

Cerebral cortical GM 0.52 0 0.05 0.07 

Deep GM 0 0 0 0 

Cerebellar GM 0.38 0 0 0 

Atrophy and lesion clustering    

Cerebral cortical GM 0.27 0.01 0.01 4.33 

Deep GM 0 0 0 0.4 

Cerebellar GM 0.03 0.17 0 3.47 



57 

 

MS 

subtype 
Region Side cm3 

Peak            

T-value 
MNI coordinates of local maxima 

     x y z 

PP Hippocampus L 0.02 5.82 -13 -34 2 

 Lingual L 0.01 5.77 -13 -33 0 

 Postcentral L 0.01 5.45 -52 -13 31 

 Putamen L 0.05 5.49 -33 -10 -1 

 Thalamus L 0.40 6.37 -15 -29 2 

 Thalamus R 0.28 5.75 15 -27 5 

 
Temporal 

superior 
L 0.09 5.78 -60 -28 14 

        

RR Caudate R 0.15 5.58 13 6 20 

 Thalamus L 0.19 7.37 -10 -26 6 

 Thalamus R 0.15 6.59 10 -22 9 

        

SP Hippocampus R 0.03 6.06 29 -9 -10 

 Amygdala R 0.10 6.30 31 -7 -10 

 
Occipital 

inferior 
R 0.01 5.36 31 -97 -4 

 Caudate R 0.01 5.29 14 8 19 

 Putamen L 4.21 6.55 -26 6 -5 

 Putamen R 3.02 7.04 33 -6 -6 

 Pallidum L 0.47 6.35 -25 2 -3 

 Pallidum R 0.21 6.53 30 -9 -5 

 Thalamus L 1.37 8.99 -14 -25 5 

 Thalamus R 1.62 8.04 14 -25 5 

Table 4.3. Clusters of atrophic voxels in different MS subtypes at p<0.05 FWE corrected. All MS subtypes 

show deep GM volume loss (caudate, pallidum, putamen and thalamus). Particularly patients with relapse 

onset have consistent deep atrophy. 
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MS 

subtype 
Region Side cm3 Peak T-value MNI coordinates of local maxima 

       x y z 

PP 
Precentral 

gyrus 
L 0.05 3.13 -32 -9 68 

 
Frontal 

superior 
R 0.01 2.64 23 63 -5 

  Hippocampus L 0.01 3.98 -35 -19 -16 

 
Occipital 

superior 
L 0.03 4.24 25 -74 24 

 
Occipital  

middle 
L 0.01 2.93 -26 -74 24 

 
Parietal 

inferior 
L 0.07 3.14 -50 -69 30 

 
Temporal 

superior 
R 0.01 2.84 53 -18 -6 

 
Temporal 

middle 
L 0.08 3.91 -50 -6 -15 

 Cerebellum R 0.03 5.11 19 -66 -28 

RR 
Temporal 

superior 
R 0.01 4.16 60 -19 -5 

 Cerebellum R 0.17 3.62 29 -68 -29 

SP 
Postcentral 

gyrus 
R 0.01 2.51 14 -42 62 

Table 4.4. Areas in patients showing a significant association between smaller grey matter volume and 

increased lesion load at p=0.01 uncorrected. Co-localisation of both forms of pathology was largest in 

patients with PPMS, throughout virtually the entire brain with the exception of deep grey matter. 

Particularly the cerebellum in RRMS patients showed a great association between these forms of 

pathology. Overall, lesion-atrophy clusters were small when compared with the volume of the brain. 
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4.4 Discussion 

The present study assessed the distributions of GM lesions and GM atrophy in patients 

with different subtypes of MS, aiming to determine if they co-localise and if they both 

contribute to clinical outcomes. GM lesions were found to regionally correlate with 

atrophy most in people with PPMS and least in SPMS. However, co-localisation was at 

best modest, with the majority of regionally consistent atrophy not corresponding to 

regions most likely to contain GM lesions. Of the GM regions found to be consistently 

atrophied or to contain lesions, only the cerebellum and postcentral gyrus showed 

associations between both types of pathology and physical and cognitive function. 

In line with previous studies (Audoin et al. 2006; Sepulcre et al. 2006; Ceccarelli et al. 

2008; Henry et al. 2008; Mühlau et al. 2013; Deppe et al. 2016), reduced DGM volume 

was found in the whole MS cohort compared to controls. Regional predilections for 

cortical atrophy have previously been demonstrated in the right lateral prefrontal cortex 

(Audoin et al. 2006), in the left temporal and prefrontal cortex (Morgen et al. 2006), and 

bilaterally in the superior and medial frontal gyrus, frontobasal regions near the frontal 

poles, as well as thinning of the medial temporal gyrus (Sailer et al. 2003), and my results 

are broadly in agreement with them. However, in addition consistent atrophy was also 

found in small regions in the frontal, insular, and temporal lobes, as also reported in other 

studies that found cortical thinning throughout the entire cortex (Calabrese, Atzori, et al. 

2007; Calabrese, Battaglini, et al. 2010). GM lesions were found throughout the cerebral 

and cerebellar cortex, but rarely in DGM structures. Lesions consistently occurred only 

in the right cerebellum. Co-localisation between GM atrophy and GM lesions was 

observed only when lower statistical thresholds were used, and then mainly in regions 

within the cerebral and cerebellar cortices, and to a lesser extent in deep structures that 

were particularly affected by atrophy. Previous work (Wegner et al. 2006) has shown 
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changes in cortical lesions and, to a lesser degree, in non-lesional cortex, but did not find 

an association between demyelination and cortical thickness, suggesting that 

demyelination per se is not directly responsible for cortical atrophy. The present findings 

are in agreement with this, and therefore suggest, with caveats (see discussion of 

limitations below) that GM atrophy and GM lesion formation are often not directly linked. 

A longitudinal study specifically addressing the relation between cortical lesions and 

cortical thickness showed that these two forms of pathology share a spatiotemporal 

distribution pattern in CIS and early RRMS, but that they are distinct pathological 

processes and particularly later in the MS disease course diffuse pathology and cortical 

lesions occur separately (Calabrese et al. 2015). This is in line with a VBM study of the 

distribution of cortical MTR abnormalities and atrophy (Mallik et al. 2015), which uses 

the assumption that abnormal MTR reflects demyelination. This study showed that MTR 

abnormalities and atrophy do not co-localise much, particularly in people with SPMS and 

PPMS. 

I found that MS subtypes differed noticeably in patterns of GM atrophy. People with 

PPMS showed relatively little consistently localised DGM and no consistent cortical 

atrophy at stricter thresholds. In contrast, those with RRMS had a rather different pattern 

of GM damage with more substantial and consistent DGM volume loss, and in SPMS this 

appeared to be regionally similar but larger areas, with additional cortical involvement. 

While my main observation is consistent DGM atrophy, it has been suggested that 

progressive MS has a relatively specific CGM neurodegenerative component to its 

pathology (Stys et al. 2012; Geurts 2008), and the present results suggest that this is more 

likely to be the case in people with SP compared with PPMS. Previous work has also 

shown that PPMS patients have relatively little DGM volume loss, at least early in the 

course of the disease (Sepulcre et al. 2006), particularly when compared to SPMS patients 

(Ceccarelli et al. 2008). In contrast, RRMS patients have been shown to have increasing 
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thalamic atrophy over time, which relates to physical and cognitive disability, but have 

less cortical atrophy than SPMS (Ceccarelli et al. 2008). 

GM lesions, on the other hand, were most consistently clustered in PPMS, in both the 

cerebral and cerebellar cortex, and much less so in RR and SPMS. Previous work has 

mainly shown similarities between patients with PPMS and RRMS in terms of cortical 

lesion load (Calabrese, Battaglini, et al. 2010), while other work showed that progressive 

MS patients have a larger degree of cerebellar cortical demyelination when compared 

with RRMS and SPMS patients (Kutzelnigg et al. 2007; Calabrese, Mattisi, et al. 2010). 

My results suggest cerebellar lesion clustering is more the case in PP compared with 

SPMS. Given this, it is perhaps not surprising that co-localisation of GM lesions and 

atrophy (examined at lower thresholds) was most pronounced in the PPMS group, 

although overall to volume of co-localisation was very small (less than 1cm3) when 

compared with total brain GM volumes of >500 cm3 (Miller et al. 1980).  

The ROI analyses and voxel-wise analyses revealed significant associations between both 

cerebellar lesion load and atrophy, and lower physical and cognitive performance scores 

(Appendix I, supplemental table 4.1). This fits with the known involvement of the 

cerebellum in sensorimotor and cognitive function (Stoodley et al. 2012; Koziol et al. 

2014), and is in agreement with recent work showing that loss of cerebellar volume in 

MS patients is associated with a decline in cognitive function (Weier et al. 2014). While 

consistent atrophy was most pronounced in DGM structures, particularly in RR and 

SPMS, it did not appear to correlate significantly with functional outcomes. This 

corresponds with recent studies which indicate that changes in GM microstructure, 

assessed by diffusion MRI, and metabolic function, assessed by MR spectroscopy, can 

explain additional variance in cognitive function over GM volumes (Koziol et al. 2014; 

Weier et al. 2014), but contrasts with a recent study finding a modest correlation between 
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DGM atrophy and poorer cognitive function in people with RRMS (Debernard et al. 

2015), and a study showing that particularly atrophy of the anterior nucleus of the 

thalamus was related to slower cognitive processing (Bergsland et al. 2015). It is possible 

that the heterogeneity of the present cohort did not allow the detection of these subtle 

associations, and that more refined spatial analyses are needed to detect the clinical 

impact of atrophy and microstructural changes in specific nuclei of the thalamus (as will 

be discussed in chapter 5). A key finding from the present study is the role of damage to 

somatosensory networks in clinical dysfunction. Both GM lesion volume and atrophy in 

the postcentral gyrus (the primary somatosensory cortex) were linked to worse 

performance in almost all cognitive domains and clinical scores assessing physical 

disability. In addition, the postcentral gyrus and cerebellum, which is both functionally 

and structurally connected to the postcentral gyrus (Stoodley et al. 2012; Stoodley & 

Schmahmann 2009), were the only regions in which lesion burden and volume loss were 

linked (Stoodley et al. 2012; Koziol et al. 2014), and is in agreement with recent work 

showing that loss of cerebellar volume in MS patients is associated with a decline in 

cognitive function (Weier et al. 2014). Further work focussing on the somatosensory 

network may shed light on the mechanisms underlying the progression of disability in 

MS.  

4.4.1 Study limitations 

A priori a number of brain areas were chosen to assess in statistical analyses. Of the DGM 

structures only the thalamus was included in the analyses presented here. However, the 

ROI analyses could have benefitted from also including other DGM areas (i.e. the 

caudate, putamen, and pallidum) in light of the voxel based results presented here, as well 

as increasing evidence emphasising early injury to and the clinical impact of damage to 

these DGM structures (Schmalbrock et al. 2016; Debernard et al. 2015; Krämer et al. 
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2015). When considering the LPM results, it should be recalled that of the four different 

cortical lesion types that have been described (Bø et al. 2003b), DIR scans only detect 

approximately 18% of cortical lesions and 7.7% of DGM lesions, and while subpial 

lesions are the most abundant type seen in post mortem studies, these are rarely observed 

using DIR (Seewann et al. 2012). This insensitivity for DGM lesions may partly explain 

the limited overlap found between lesions and atrophy in deeper GM structures. Phase 

sensitive inversion recovery (PSIR) MRI detects two to three times more GM lesions, and 

so may increase the overall sensitivity of an LPM analysis (once technical issues related 

to LPM of PSIR scans have been overcome), but this sequence may still be relatively less 

sensitive to subpial compared with other GM lesion subtypes (Sethi et al. 2013; Sethi et 

al. 2012). While DIR scans allow detection of only a minority if GM lesions, recent work 

has similarly shown a dissociation between atrophy and demyelination as measured by 

MTR (Mallik et al. 2015). As mentioned above, for voxel-wise LPM, an alpha value of 

0.001 (uncorrected) was used. This threshold was used as no consistent lesion clustering 

was found at 0.05 (FWE corrected) due to the wide spread nature of binary lesions (albeit 

smoothed), rather than having a continuous distribution. While lowering the threshold 

increases the chance of a type 1 error, only one per 1000 voxels would show a false 

positive. In addition, the applied cluster threshold reduces the number of false-positive 

findings further. The clinical scales used to assess motor and cognitive function have a 

number of limitations that should be kept in mind when interpreting the present findings. 

Firstly, EDSS in non-linear and irreversible. Secondly, scores between 5.0 to 9.5 are 

defined by ambulation, while lower scores on the lower end are for people who are fully 

ambulatory, and is defined by function in other domains, leading to ‘clustering’ of patients 

in the lower end of the scale. The combination of the challenge of differentiating people 

with MS on the lower end of the scale and its non-linearity complicate the use of EDSS 

in statistical analyses, as the scale may violate parametric tests’ assumption of normality 
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of residuals. The PASAT has been found to be good at differentiating people with MS 

from controls, but it has been suggested that performance differences may be difficult to 

detect as the task gets more difficult because of the use of ‘chunking strategies’, and may 

therefore not fully reflect processing speed and working memory (Fisk & Archibald 

2001). In addition, learning effects on the PASAT as well the 9HPT, affect the ability of 

these MSFC subtests to assess long term function (Polman & Rudick 2010). Finally, 

while where possible z scores were calculated on the basis of published scores, not all 

tests had such published scores available, limiting the generalisability of the present 

findings. 

4.4.2 Conclusion 

The present study assessed the distributions of GM lesions and GM atrophy in patients 

with different subtypes of MS, aiming to determine if co-localisation of these forms of 

pathology occurs, and if they both contribute to clinical outcomes. I hypothesised that 

GM lesions and GM atrophy do no co-localise to a large extent, and that disruption of 

clinically relevant regions by either form of pathology results in clinical dysfunction. GM 

lesions (as seen using DIR) and GM atrophy were found to not usually co-localise, 

suggesting that they are not directly spatially linked. In addition, both GM lesions and 

atrophy contributed to disability, suggesting that the substrates of disability in MS are 

both pathologically and spatially heterogeneous. 

As GM pathology is substantial in the MS disease course, it is important to assess how 

this develops longitudinally in relation WM pathology to gain insight into the ongoing 

pathophysiological processes in MS. To this end, the next chapter describes the 

longitudinal development of microstructural damage in the thalamus, and how this relates 

to injury to connected WM tracts and cortical projections. 
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Chapter 5  

Magnetisation transfer ratio changes to thalamo-

cortical tracts precede thalamic and cortical grey 

matter abnormalities 

5.1 Introduction  

As both GM and WM pathology are clinically important in the MS disease process, this 

chapter assesses the spatio-temporal relationship between these forms of damage. As 

shown in the previous chapter, GM injury is extensive, and particularly the thalamus is 

affected in the MS disease process. The present chapter will therefore focus specifically 

on thalamo-cortical systems and the longitudinal development of non-lesional myelin and 

neuro-axonal loss (as assessed by MTR) in these areas.  

The thalamus is an integrated heterogeneous structure composed of a large number of 

independent nuclei involved in relaying neuronal information. Increasingly, this 

subcortical structure is seen as more than a relay hub, and is found to be involved in 

processing and modifying the input it receives from a large number of structures including 

the majority of cortical areas, basal ganglia, spinal cord, and sensory organs (Sherman 

2007; Kipp et al. 2015). With its large number of connections to key subcortical and 

cortical areas, the thalamus is part of the thalamo-cortical loop, producing high and low 

rhythmic activity important in a wide range of functions. including auditory, visual, 

motor, and cognitive function (Kipp et al. 2015; McCormick 1999), and damage to the 

thalamus and its networks has been shown to affect clinical function in people with MS 

(Kern et al. 2015; Bergsland et al. 2015; Schoonheim et al. 2015; Magon et al. 2014).  

As the thalamus is a functionally important structure that is affected early and 

disproportionally in the MS disease process (Henry et al. 2008; van de Pavert et al. 2016; 
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Audoin et al. 2006; Chard et al. 2002; Ceccarelli et al. 2007), it has been suggested that 

due to its integrated anatomy both GM pathological processes and WM injury (through 

Wallerian degeneration) contribute to MRI detected thalamic damage (e.g. neuro-axonal 

and myelin loss, or atrophy), potentially making MRI assessment of this structure an ideal 

biomarker for MS neuroprotective clinical trials (Kipp et al. 2015; Zivadinov et al. 2013). 

To gain a better understanding of thalamo-cortical system damage in MS, it is key to 

understand how injury to thalamic and cortical GM relates to WM thalamo-cortical tract 

injury over time. In addition, it is important to understand the clinical consequences of 

damage to these systems. To this end, I will here give an overview of our current 

understanding of pathology to thalamo-cortical systems in MS, followed by a longitudinal 

study in which the spatiotemporal characteristics of MTR in the components of these 

systems are investigated, and how they relate to clinical function. 

5.1.1 Thalamic pathology and its relation to white matter tract injury 

Thalamic pathology is extensive in MS, and can already be seen in people with CIS 

(Henry et al. 2008),  as reflected by changes in metrics for diffuse tissue damage, 

including increased FA (Cappellani et al. 2014), T2 hypo-intensity (Ceccarelli et al. 

2010), and an increase in Fe2+ concentration (Al-Radaideh et al. 2013). Neuronal loss in 

non-lesional thalamic GM in people with MS is substantial and is estimated to be around 

35% compared to controls (Cifelli et al. 2002), which is similar to a previously reported 

loss of non-lesional WM axons in the corpus callosum (Evangelou, Konz, et al. 2000). 

While the thalamus and corpus callosum are not anatomically connected, the comparable 

estimates of neuronal loss in DGM and WM tracts suggest a possible link between 

pathology in these tissue types. Diffuse thalamic pathology has been linked to FA 

reduction of NAWM, but not with T2 lesion load, suggesting that diffuse non-lesional 

WM damage, but not WM lesions directly, may lead to thalamic pathology (Cappellani 
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et al. 2014). Other previous work has elegantly shown that atrophy of the lateral 

geniculate nucleus of the thalamus could be linked to the presence of WM lesions in the 

connected optic radiation, while occipital lobe atrophy was not associated with this WM 

pathology, suggesting that retrograde, but not anterograde, degeneration from axonal 

damage is important to GM atrophy (Sepulcre et al. 2009). While the above studies point 

to a link between WM lesions and thalamic injury, a recent cross-sectional DTI study 

specifically assessing early thalamic microstructural pathology showed that thalamic 

damage in CIS and RRMS patients could not be fully explained by the presence of 

adjacent WM lesions (Deppe et al. 2016). The differing spatial distribution between 

voxels associated with thalamic pathology and WM lesions in this study suggests that 

thalamic microstructural damage has additional contributing pathogenic processes than 

WM lesions alone. Similarly, another cross-sectional study showed an association 

between WM tract damage and DGM volume, and to a lesser extent with CGM volume 

(Steenwijk et al. 2015). Combined, the above studies show that thalamic injury in MS is 

likely to have a number of contributing processes, including possible neurodegenerative 

processes inside the thalamus and Wallerian degeneration from WM lesions or diffuse 

WM tracts injury, but it remains unclear to what extent each of these processes contribute, 

and how these forms of pathology relate spatiotemporally. 

5.1.2 The relationship between cortical and white matter tract injury 

As described in more detail in chapter 4, in addition to DGM pathology, CGM pathology 

is well-recognised in MS (Audoin et al. 2006; Ceccarelli et al. 2007; Chard & Miller 

2009a; Chard et al. 2002), occurs early in the disease (Labiano-Fontcuberta et al. 2016; 

Deppe et al. 2016), is correlated with neurological and cognitive deficits (Amato et al. 

2004; Calabrese, Agosta, et al. 2009; Benedict et al. 2006; Chard & Miller 2009a; Rinaldi 

et al. 2010; Calabrese, De Stefano, et al. 2007; Chard et al. 2002; Fisher et al. 2008; 
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Fisniku et al. 2008; Roosendaal et al. 2011), and appears to accelerate as people with MS 

enter a progressive phase (Fisher et al. 2008). Histopathological studies have identified 

extensive cortical demyelination in people with MS, and in those with progressive disease 

GM lesion volume may exceed that of WM (Bø et al. 2003b). 

Studies addressing how WM tract pathology relates to cortical pathology have provided 

inconsistent findings. On the one hand, cortical GM and WM pathology have been 

suggested to be linked and to be dependent on anatomical connectivity (Gorgoraptis et al. 

2010; Bodini et al. 2016; Steenwijk et al. 2015; Kolasinski et al. 2012), while on the other 

hand other work found tract-unspecific associations between WM and regional CGM 

pathology (Louapre et al. 2016). As pointed out in the latter study, the discrepancy 

between these findings may be attributed to the fact that these previous studies (except 

one post mortem study (Kolasinski et al. 2012)) did not assess spatial specificity by also 

comparing tracts with anatomically non-connected cortical areas. In addition, to the best 

of my knowledge, all studies except one (Bodini et al. 2016) on WM pathology in relation 

to GM damage in MS are cross-sectional in nature, making it difficult to draw conclusions 

regarding chronology of these potentially distinct forms of pathology. 

5.1.3  Chronology of pathology in thalamo-cortical systems 

The current chapter aims to answer if thalamic and cortical GM pathology, as detected by 

in vivo MTR MRI, can be explained by prior damage to connecting WM tracts, or vice 

versa. Together, the above mentioned studies lead to the following hypothesis of a 

sequence of events leading to damage to thalamo-cortical systems in MS. WM and GM 

lesions originate (at least partly) independently (Bø 2009). GM lesions may not directly 

lead to non-lesional GM pathology, as described in chapter 4. WM lesions, on the other 

hand, may cause degradation to thalamo-cortical tracts, and WM tract degeneration 

through Wallerian degeneration in turn causes diffuse non-lesional neuro-axonal and/or 



69 

 

myelin loss in the connected thalamus and cortex (Bodini et al. 2016). GM pathology may 

mainly be associated (either preceding or following) with proximal WM tract damage. 

While it is conceivable that neuronal damage affects tracts more distal from thalamic 

nuclei, this is expected to be more readily detected closer to the nuclei. Furthermore, while 

this is not assessed in the current chapter, I hypothesise the associations between WM and 

GM MTR to differ between MS subtypes, with relapse-onset MS patients having a larger 

loss of thalamic GM volume than progressive MS patients (Kutzelnigg et al. 2005). As 

RRMS is more inflammatory than progressive MS I therefore expect more tract-mediated 

pathology thalamus. Finally, I hypothesise that injury to any part of the thalamo-cortical 

systems to affect clinical function associated with the respective system. 

5.2 Methods  

Fifty-seven people with clinically definite MS (Polman et al. 2011), who had not had a 

relapse or received corticosteroids within the preceding four weeks, were less than 65 

years old and had no other neurological conditions, as well as 25 healthy volunteers with 

no known neurological disease, were included in the present study. All participants gave 

written informed consent and this study was approved by our local institutional ethics 

committee.  

5.2.1 Data acquisition  

Subjects underwent clinical examination to establish EDSS, and performance on 25TWT, 

PASAT, and 9HPT, as well as brain MRI on a Phillips 3T Achieva TX system (Philips 

Healthcare, Best, the Netherlands) using a 32-channel receive-only coil at baseline and at 

24 month follow up. The following sequences were acquired: 3D sagittal T1-weighted 

fast field echo (FFE) scan (1mm3, TI=824ms, TR=6.9ms, TE=3.1ms), dual-echo PD/T2-

weighted axial-oblique scans aligned with the anterior to posterior commissure line 

(1×1×3mm, TR=3500ms, TE=19/85ms); and high resolution MTR using a 3D slab-
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selective FFE sequence with two echoes (1mm3, TR=6.4ms, TE=2.7/4.3ms, alpha=9° 

with and without sinc Gaussian-shaped magnetisation transfer pulses of nominal 

alpha=360°, offset frequency 1 kHz, duration 16 ms). A turbo field echo (TFE) readout 

was used, with an echo train length of four, TFE shot interval 32.5ms, giving a total time 

between successive magnetisation transfer pulses of 50ms, and scan time of 25min. The 

two echoes were averaged (thereby increasing the signal-to-noise ratio) for both the 

magnetisation transfer on and off data. Finally, a whole-brain, cardiac gated, spin-echo 

diffusion weighted sequence (TR=24,000ms, TE=68ms and 72 axial slices with an 

isotropic 2mm resolution) with 61 volumes with non-collinear diffusion gradients (b-

value of 1200sec/mm2) and seven volumes without diffusion weighting. 

5.2.2 Image data processing 

T1-weighted and T2-weighted scans were n4 bias field corrected (Tustison et al. 2010), 

and on T2-weighted scans hyper-intense WM lesions were delineated by two independent 

raters using Jim (version 6.0, Xinapse Systems Ltd., Northants, UK, 

http://www.xinapse.com) and 3DSlicer (version 4.4.0) (Fedorov et al. 2012) software 

packages, after which all lesions masks were verified by a third rater. T2 lesions were 

filled on the T1-weighted scans to improve subsequent registration steps (Chard et al. 

2010; Prados et al. 2014). Using rigid body transformations, T1-weighted scans were 

registered to pseudo-T1-weighted images which are in alignment with T2-weighted 

images (Hickman et al. 2002). Using a second rigid-body alignment, T2-weighted images 

were subsequently registered to b0 images which were in alignment with DTI data, as 

described previously (Muhlert et al. 2013). An average b0 volume of six separately 

acquired b0 images was used and was merged to the DTI data, after which the DTI data 

were eddy corrected using FSL eddy, and the b vectors and b files updated to reflect the 

extra volumes. A mean b0 volume was created averaging all eddy corrected b0 volumes. 
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FA, MD, RD, and axial diffusivity maps were obtained using MRtrix (Tournier et al. 

2012).  

In 22 controls, whole brain tractography was performed, effectively up sampling the 

voxel size from 2mm3 to 1mm3 (Calamante et al. 2011). Briefly, this was done by creating 

a high value FA map by applying a threshold of 0.7, which then was used to estimate the 

fibre response function. Using the Constrain Spherical Deconvolution method, the fibre 

orientation density function for each voxel was calculated, which was subsequently used 

by streamtrack to compute the 1mm3 track-density imaging (TDI) map sampling from 

any voxel in the mean b0 brain to any other voxel (step size=0.1mm, 2,500,000 iterations). 

The above transformations were combined with a nonlinear transformation of the MNI 

brain to individual lesion filled T1-space to reduce the number of interpolations required. 

The resulting transformation matrix was applied to source, target and exclusion masks for 

tractography. 

5.2.2.1 Generation of ROI masks 

Unilateral thalamic masks were created for three groups of thalamic nuclei, based on 

Morel's histology atlas (Morel et al. 1997) brought to MNI space for MRI use (Krauth et 

al. 2010; Jakab et al. 2012), as described in table 5.1: lateral group (LG), medial group 

(MG), and posterior group (PG).  

In T1 space, unilateral cortical masks were created using parcellations created from 

Geodesic Information Flow algorithms (Cardoso et al. 2015), clustered into areas 

corresponding to the masks used previously (Behrens et al. 2003), of which three were 

selected based on their connections with thalamic nuclei: Prefrontal cortex (PFC), 

sensorimotor cortex (SMC), and occipital cortex (OCC). Inclusion masks were generated 

covering the left and right cerebral hemispheres, and exclusion masks were generated of 



72 

 

the corpus callosum, and to exclude anatomically implausible tracts from the MG a 

coronal exclusion plane was placed directly posterior to the most posterior voxel of the 

MG mask. 

Thalamic group   Morel MRI atlas masks 

Lateral group Lateral posterior nucleus 

Ventral anterior nucleus, magnocellular division 

Ventral anterior nucleus, parvocellular division 

Ventral lateral anterior nucleus 

Ventral lateral posterior nucleus, dorsal division 

Ventral lateral posterior nucleus, ventral division 

Ventral medial nucleus 

Ventral posterior inferior nucleus 

Ventral posterior lateral nucleus, anterior division 

Ventral posterior lateral nucleus, posterior division 

Ventral posterior medial nucleus 
 

Medial group Central lateral nucleus 

Central medial nucleus 

Centre median nucleus 

Mediodorsal nucleus, magnocellular division 

Mediodorsal nucleus, parvocellular division 

Medioventral nucleus 

Parafascicular nucleus 

Paraventricular nuclei 
 

Posterior group Anterior pulvinar 

Inferior pulvinar 

Medial pulvinar 

Lateral geniculate nucleus, magnocellular division 

Lateral geniculate nucleus, parvocellular division 

Lateral pulvinar 

Limitans nucleus 

Medial geniculate nucleus 

Posterior nucleus 

Suprageniculate nucleus 
 

Table 5.1. Thalamic group masks used for tractography by grouping Morel’s atlas (Morel et al. 1997) 

brought to MNI space for MRI use (Krauth et al. 2010; Jakab et al. 2012). 
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5.2.2.2 Cortico-thalamic and thalamo-cortical tractography  

In 22 controls, the thalamic and cortical ROIs were brought to b0 space, where 

tractography was performed using the TDI images from the MG, LG, and PG, to the PFC, 

SMC, and OCC, respectively, as well as the reverse, using the cortical regions as seed 

regions with the thalamic nuclei as target areas. The thalamic and cortical areas were 

dilated by 2.0mm to reach into the surrounding WM, excluding voxels belonging to more 

than one mask. To prevent anatomically improbable tracts a hemisphere inclusion mask 

was used, and for the MG-PFC tract a coronal exclusion plane was placed directly 

posterior to the MG. The resulting WM probability tracts were then thresholded at 99% 

to exclude outliers, after which cortico-thalamic and thalamo-cortical tracts were 

multiplied, leaving only voxels that were part of tracts in both directions. These 

bidirectional tracts were subsequently brought to MNI space, where the tracts of the 22 

controls were combined and thresholded at 50%. As displayed in figure 5.1, the above 

steps resulted in tract masks composed of voxels present in tracts of eleven or more 

controls, in both thalamo-cortical and cortico-thalamic directions. Finally, each of the six 

resulting WM tracts was subdivided into four segments of equal length. 

 

Figure 5.1. An example of an MTR scan overlaid with masks of groups of thalamic nuclei, and their 

connecting white matter tracts and cortical projections. Medial group - prefrontal cortex (green-yellow-

green). Lateral group - sensorimotor cortex (blue-light blue-blue), and the posterior group - occipital 

cortex (red-orange-red). 
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5.2.2.3 Extracting MTR and lesional data and statistical analyses 

At both time points, the whole tract masks as well as masks for the tract segments and 

thalamic groups were nonlinearly brought to native T1-space using nearest neighbour 

interpolations, and along with cortical ROIs and T2 lesion masks for patients (which were 

already in T1 space) using linear interpolations brought to MTR space. As previously 

described (Paling et al. 2013), by comparing to the MTR of CSF, partial volume effects 

were reduced by calculating the proportion of MTR variance in voxels containing several 

tissue types that could be attributed to each tissue. This segmentation allowed to only 

include the pure WM part of the tracts and the GM component of the cortical and thalamic 

ROIs. From the nonzero voxels of the WM tracts, the total WM lesion volume was 

extracted and from the non-lesional NAWM (created by subtracting voxels dilated by 

2.0mm from the WM masks as described previously (Vrenken et al. 2006)) of the tracts 

and the GM of the thalamic and cortical ROIs, mean MTR was extracted. The masks for 

the NAWM tracts were created by overlaying the individual’s T2 lesions as an exclusion 

masks (dilated by 2.0mm). To ensure that no ‘preactive’ lesions were affecting the data 

extracted from the normal appearing tissue, lesions masks were combined of baseline and 

follow up, and only tissue that was normal appearing at both time points was included in 

the subsequent analysis, thereby assuring that new lesion development that occurred 

between longitudinal MRI scans did not affect the results. MTR was analysed of all 

components of the thalamo-cortical systems (thalamic groups, WM tracts, and cortical 

ROIs), while volumes were only analysed of cortical ROIs. This was done because the 

WM tract and thalamic groups were atlas masks in MNI space brought to common space, 

while the cortical ROIs were generated in native space and were subject specific. 

Age, sex, and EDSS were compared between groups using t-tests and chi-square tests. To 

cross-sectionally compare global MTR and volumes between subject groups, multiple 
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regressions of the MTR or volume response variable were performed on group indicators, 

with age, gender and ICV as covariates for adjustment. To cross-sectionally compare 

differences in MTR in WM tracts between patients and controls, linear mixed models 

were used with subject random intercept, group indicator, and side, age, ICV, and gender 

as covariates for adjustment. The advantage of using the mixed models was that two 

observations per subject could be analysed, one for each side, and thus adjusting for side 

rather than averaging sides. To analyse tract data, in addition to analyses using a single 

mean for each WM tract, separate tract segments were analysed using linear mixed 

models which could handle the multiple segment values per subject. This enabled 

examination of the separate WM tract segment means, with an indicator for each segment, 

and also whether there was a consistent pattern of values across the tract segments. 

Furthermore, mixed models adjusting for (rather than averaging over) side were used to 

examine associations between baseline and follow up MTR, both with and without 

adjustment for side, age, ICV, gender and tract lesion volume. An additional covariate 

was the baseline value of the response variable, to ensure that any longitudinal association 

across different regions was independent of, and not induced by, baseline cross-sectional 

associations. 

Comparable to models in previous work (Bodini et al. 2016), the spatiotemporal 

relationship of non-lesional MTR in thalamo-cortical systems was assessed using two 

types of statistical models:  

1) “Primary WM damage models” for the association between baseline MTR in WM 

tracts and follow up MTR in cortical and thalamic GM. 

2) “Primary GM damage models” for the association between baseline MTR in the 

thalamic and cortical GM and follow up MTR in WM tracts. 
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To assess the associations between MTR of different parts of the thalamo-cortical systems 

and clinical function, the following regression analyses were performed, both at baseline 

and at follow up.  

MTRROI = clinical score×B1 + age×B2 + sex×B3 + side×B4 + intercept 

The ROIs tested were the cortical ROIs, NAWM of the whole WM tract, and thalamic 

group from the three thalamo-cortical systems. The clinical scores tested were EDSS, 

PASAT, 9HPT, and average TWT speed. All statistical analyses were performed in Stata 

(version 14.1, StataCorp) and R (version 3.2.3, R Core Team). 
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5.3 Results 

Of 57 people with MS who were scanned at baseline, one person with PPMS was not 

included at follow up because of data analysis issues. Of the 25 controls scanned at 

baseline, eleven were scanned at 24 month follow up. The reason for not being able to 

include 14 controls at follow up varied: Three volunteers declined, one control could not 

leave their partner for whom they cared, one volunteer had a dermal piercing and was 

unable to remove it, one subject had left the NHS trust, two were unable to come as their 

health prevented them to come alone and no carer was available, one volunteer lived too 

far, and no reason was provided for five controls. Demographics are displayed in table 

5.2. Age and female-to-male ratios did not differ significantly between the control and 

MS groups (p=0.628 and p=0.279, respectively). When assessing the MS group 

subdivided into MS subtypes, the SPMS group was found to be significantly older than 

PPMS (p<0.001), and the female-to-male ratio was borderline significantly lower 

different between the groups (p=0.055). EDSS was significantly lower in the RRMS 

group than the PPMS and SPMS group (both p<0.001). 
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Table 5.2. Baseline and follow up characteristics and demographics of cohort, separated into subjects with 

baseline data and follow up data and subjects with baseline data only, divided into healthy controls and 

all patients, and further subdivided per MS subtype.  

5.3.1 Cross-sectional group wise comparisons of whole brain metrics 

At baseline, people with MS had an average of 11.80ml (SE=1.75ml) T2 lesions, while 

no controls had lesions. Models correcting for side (i.e. left or right) and excluding a 

potential interaction for side by subject group (i.e. MS or controls) showed that total 

thalamic volume was significantly lower in MS (5.29±0.13ml) than in controls 

 
Cohort with baseline and                                                                        

follow up data 
 

Cohort with baseline 

data only 

 Controls 
All 

patients 
 PPMS RRMS SPMS  controls PPMS 

N Baseline / 

follow-up 
11 56  12 26 18  14 1 

Sex (F/M) 7/4 39/17  6/6 20/6 13/5  7/7 0/1 

Handedness 

(R/L) 
10/1 50/6 

 
10/2 24/2 16/2 

 
12/2 1/0 

Age in years 

at baseline 

(SD) 

38.42 

(12.01) 

46.75 

(11.14) 
 

48.08 

(11.78) 

41.54 

(10.42) 

54.00 

(7.34) 
 

36.72 

(12.54) 
36 

Age in years 

at follow up 

(SD) 

38.00 

(12.23) 

48.51 

(11.16) 
 

49.15 

(11.62) 

43.31 

(10.67) 

55.56 

(7.29) 
 N/A N/A 

Median 

EDSS  at 

baseline 

(range) 

N/A 
4.75    

(1.0-8.5) 
 

6.0   

(1.0-6.5) 

2.0      

(1.0-6.0) 

6.25    

(4.0-8.5) 
 N/A 8.0 

Median 

EDSS at 

follow up 

(range) 

N/A 
5.0      

(1.0-8.0) 

 

6.5 (1.0-

6.0) 

2.0      

(1.0-6.0) 

6.5      

(4.0-8.5) 

 

N/A N/A 



79 

 

(6.41±0.20ml, p<0.001), and that the left thalamus was significantly larger than the right 

by 0.15±0.03ml (p<0.001). Total CGM volume, adjusted for age, ICV, and sex, was 

significantly smaller in controls (465.96±5.04ml) than in the MS group (478.90±3.24ml, 

p=0.041). MTR was significantly lower in the DGM of people with MS (34.21±0.14) 

than controls (34.94±0.21, p=0.006), and similarly, whole brain NAWM MTR was lower 

in people with MS (39.49±0.13) than controls (40.44±0.20, p<0.001). CGM MTR did not 

significantly differ between MS (32.09±0.11) and controls (32.42±0.17, p=0.113). Cross-

sectional analyses at follow up showed a similar pattern and can be found in Appendix II. 

5.3.2 Thalamo-cortical systems 

Cross-sectional regional baseline differences between the MS group and controls within 

thalamo-cortical systems are displayed in table 5.3. At baseline, the MS group had 

significantly smaller volumes of the OCC and SMC than controls. In addition, a highly 

significant difference between left and right was observed in terms of cortical ROI 

volume, with the right PFC and OCC being larger than the left, and the inverse for the 

SMC. Models correcting for age, gender, ICV, side, and excluding potential side by 

subject group interactions, showed that the MS group had significantly lower MTR than 

controls in all three thalamic groups and WM tracts, but in none of the cortical ROIs. No 

significant correlations were found between MTR and volume in any of the cortical ROIs 

(all p>0.271). Furthermore, in most but not all ROIs a significantly higher MTR was 

found in the left hemisphere than the right. Follow up comparisons showed similar results 

and may be found in Appendix II, supplemental table 5.1. Pearson tests did not find any 

significant correlation between longitudinal change in T2 lesion volume and MTR change 

in any cortical, thalamic, or WM ROI studied (all -0.21<r<0.22, and p>0.11). 
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  MS Controls p-value right –  left  
(only 

presented if 
significant) 

p-value 

Thalamic 
group MTR 

MG 35.02±0.19 36.01±0.29 0.005**   

LG 37.09±0.19 37.90±0.30 0.026* -0.26±0.09 0.003** 

PG 34.97±0.20 35.90±0.30 0.014* -0.39±0.08 <0.001*** 

White 
matter tract 
MTR 

MG-PFC 39.68±0.15 40.67±0.23 <0.001* 0.36±0.09 <0.001*** 

LG-SMC 39.39±0.14 40.37±0.21 <0.001*** -0.35±0.07 <0.001*** 

PG-OCC 38.98±0.17 40.51±0.26 <0.001*** -0.89±0.08 <0.001*** 

Cortical grey 

matter MTR 

PFC 33.28±0.15 33.71±0.22 0.489   

SMC 34.05±0.14 34.55±0.21 0.214 -0.17±0.06 0.005** 

OCC 32.56±0.17 33.11±0.25 0.181 -0.47±0.06 <0.001*** 

Cortical grey 
matter 
volume (ml) 

PFC 64.70±0.40 64.16±0.67 0.513 1.36±0.20 <0.001*** 

SMC 31.66±0.21 32.47±0.33 0.043* -1.92±0.17 <0.001*** 

OCC 42.44±0.33 44.06±0.52 0.011* 0.81±0.26 0.002** 

Table 5.3. Baseline differences between the MS group and controls in MTR of thalamic nuclei, white 

matter tracts, and cortical grey matter, as well as cortical grey matter volume. Highly significant left-right 

differences were observed which did not consistently favour one hemisphere. Except cortical MTR, MTR 

and volume was larger in controls than patients in almost all parts of the three thalamo-cortical systems.  

5.3.3 MTR gradient in tracts  

Analyses of WM tracts subdivided into four segments of equal length showed that people 

with MS had significantly lower baseline MTR in all WM tract segments than controls 

(all p<0.05). Moreover, MTR was heterogeneous within WM tracts. At both baseline and 

follow up, an MTR gradient was observed along the length of the cortico-thalamic tracts 

in both patients and controls, as displayed in figure 5.2 and Appendix III, supplemental 

figure 5.1. The direction of this gradient was different between thalamo-cortical systems: 

In both patients and controls, in the MG-PFC tract the highest MTR was found proximal 

to the cortex, whereas in the LG-SMC and PG-OCC tract the segment nearest the 
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thalamus had the highest MTR. Assuming a linear change between tract segments from 

the thalamus to the cortex, at baseline a change of 0.54 in MTR was observed with every 

subsequent segment in controls and 0.38 in MS (both p<0.001) in the MG-PFC tract. This 

gradient slope differed significantly between groups (p=0.011). In the LG-SMC tract, this 

gradient was -0.60 for controls, and -0.52 for the MS group (both p<0.001). The 

difference between gradients in these groups approached significance (p=0.071). In the 

PG-OCC tract, controls had a gradient of -0.46, differing significantly (p=0.001) from   -

0.26 in the MS group (both p<0.001).   

 

Figure 5.2. 

Baseline mean MTR values in controls (left), MS (middle), and difference between MS and controls (right). 

Within the thalamo-cortical tracts significant MTR gradients could be found with different directions 

depending on the thalamo-cortical system.  

5.3.4 Primary white matter damage  

In the MS group, significant associations were found between baseline WM MTR and 

follow up GM thalamic and cortical MTR. Results are presented in table 5.4 and figures 

5.3 and 5.4, which display the (near) significant associations between baseline and follow 

up MTR in thalamic, cortical, and WM tract ROIs, after correction for covariates and 

baseline MTR of the respective ROI of which follow up MTR is assessed. Follow up MG 
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MTR in the thalamic MG was associated with MTR in the connected MG-PFC WM tract, 

and particularly with tract segment 4 nearest the cortex. In addition, follow up MG MTR 

was associated with baseline MTR in the non-connected PG-OCC tract (β=0.256±0.128, 

p=0.045), but this association did not survive correction for baseline PG-OCC MTR 

(p=0.192). Follow up LG MTR was associated with baseline MTR along the whole non-

connected MG-PFC tract, with a stronger association with MTR in the segment nearest 

the cortex. Furthermore, while correction for baseline MTR removed our ability to detect 

this link (p=0.585), an additional association was found between follow up MTR in the 

LG and baseline MTR of segment 1 (nearest the thalamus) of the connected LG-SMC 

tract (β=0.388±0.127, p=0.002). Finally, follow up PG MTR was associated with baseline 

MTR in segment 1 of the connected PG-OCC tract, and was additionally associated with 

baseline MTR of the non-connected MG-PFC tract (β=0.333±0.120, p=0.006), but the 

latter association disappeared after correcting for baseline PG MTR (p=0.235). Combined 

these results show an association between baseline MTR in the MG-PFC and follow up 

MTR in the thalamus, irrespective of anatomical association.    

When assessing the relationship between baseline WM tract MTR and follow up cortical 

GM MTR, follow up MTR in all cortical ROIs was similarly found to be associated with 

baseline MTR in the PG-OCC tract, which appeared largely irrespective of anatomical 

connection. Follow up PFC MTR was not associated with MTR in the connected MG-

PFC tract, but was associated with baseline MTR in the non-connected PG-OCC MTR, 

particularly with the tract segment most proximal to the thalamus. Similarly, follow up 

MTR in the SMC was not associated with baseline MTR in the connected LG-SMC tract, 

but was significantly associated with MTR in segment 1 of the non-connected PG-OCC 

tract. Finally, follow up OCC MTR was only associated with baseline MTR of the 

segment closest to the thalamus of the connecting PG-OCC tract.  
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5.3.5 Primary grey matter damage  

As displayed in table 5.4, when correcting for baseline MTR, no associations were found 

between follow up MTR of any WM tract and thalamic or cortical GM MTR at baseline. 

This section will therefore describe the results of models without baseline adjustments. 

Follow up MTR of the whole MG-PFC tract was associated with baseline MTR of the 

connected thalamic MG (β=0.282±0.087, p=0.001), while not being associated with 

baseline MTR of the connected PFC (p=0.152). Baseline MTR in the PG was the only 

association found with follow up LG-SMC MTR (β=0.241±0.081, p=0.003). Follow up 

PG-OCC MTR was not associated with baseline MTR in any cortical of thalamic ROI. 

Together, these results show modest associations between thalamic or cortical MTR and 

follow up WM tract MTR, which were absent when adjusting for baseline MTR. 
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Table 5.4. All associations (significant and those below 0.01) between follow up MTR with baseline MTR 

in thalamic, cortical, and WM tract ROIs, after correction for side, age, sex, intracranial volume, and 

baseline MTR of the region of interest of which follow up MTR is assessed. Baseline MTR in the MG-PFC 

tract was significantly associated with thalamic MTR, while baseline PG-OCC MTR was significantly 

associated with cortical MTR. Follow up MTR in none of the tracts was significantly associated with 

baseline MTR in any of the cortical or thalamic GM ROIs. MG: medial group, LG: lateral group, PG: 

posterior group, PFC: prefrontal cortex, SMC: sensorimotor cortex, OCC: occipital lobe. 

 

Follow up MTR Baseline MTR associations β p 

MG MG - PFC whole tract 

MG - PFC tract segment 4   

0.262±0.110 

0.167±0.062 

0.017* 

0.007** 

LG  MG - PFC whole tract 

MG - PFC segment 4 

0.211±0.115 

0.169±0.065 

0.065 

0.009** 

PG PG - OCC tract segment 1 0.262±0.110 0.017* 

PFC PG - OCC whole tract 

PG - OCC tract segment 1 

0.157±0.082 

0.176±0.059 

0.056 

0.003** 

SMC PG - OCC whole tract 

PG - OCC tract segment 1 

0.226±0.096 

0.184±0.068 

0.096 

0.007** 

OCC PG - OCC tract segment 1 0.249±0.066 <0.001*** 

MG - PFC none   

LG - SMC none   

PG - OCC none   
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Figure 5.3. Scatterplots of the association between baseline MTR in the MG-PFC tract segment 4 nearest 

the cortex, and follow up MTR in the different thalamic groups.  
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Figure 5.4. Scatterplots of the association between baseline MTR in the PG-OCC tract segment 1 nearest 

the thalamus, and follow up MTR in the different cortical ROIs. 
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5.3.6  Associations between MTR and clinical function 

Part of thalamo-cortical 
system 

 
 

EDSS PASAT TWT average speed 9HPT 

B p B p B p B p 

MG-PFC tract -0.19 0.023 
 

n.s. 0.96 0.003 0.41 0.009 

LG-SMC tract 
 

n.s. 
 

n.s. 0.65 0.024 
 

n.s. 

PG-OCC tract -0.22 0.017 
 

n.s. 1.10 0.003 0.42 0.016 

PFC cortex 
 

n.s. 
 

n.s. 
 

n.s. 
 

n.s. 

SMC cortex 
 

n.s. 
 

n.s. 
 

n.s. 
 

n.s. 

OCC cortex -0.21 0.003 
 

n.s. 0.88 0.002 
 

n.s. 

MG thalamic group -0.24 0.020 
 

n.s. 1.25 0.001 0.51 0.005 

LG thalamic group -0.22 0.036 
 

n.s. 1.18 0.003 0.54 0.006 
PG thalamic group 

 
n.s. 

 
n.s. 1.28 0.002 0.51 0.014 

 

Table 5.5. Baseline associations between MTR in tract, cortex, and thalamic group ROIs of the three 

thalamo-cortical systems and clinical function assessed by EDSS, PASAT, TWT and 9HPT.  

As displayed in table 5.5, except for an association between occipital MTR with EDSS and 

TWT, MTR of no cortical ROI at baseline had a significant association with any clinical 

metric. Lower EDSS was associated with higher MTR in multiple ROIs, but did not 

consistently favour a specific thalamo-cortical system. PASAT performance was not 

associated with MTR in any ROI. TWT speed was associated with MTR in nearly all ROIs, 

except two cortical areas, and appeared to have a stronger association with MTR in 

thalamic ROIs without favouring ROIs from a specific thalamo-cortical system. Similarly, 

9HPT performance was most strongly associated with thalamic MTR, and did not favour 

a specific thalamo-cortical system. As shown in the Appendix II, supplemental table 5.2, 

associations between MTR and clinical function at follow up showed a similar pattern.  
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5.4 Discussion 

The main findings of the present study are that 1) in both people with MS and healthy 

controls statistically significant hemispheric differences exist in MTR and regional 

cortical volume which do no consistently favour one side, emphasising the need to 

account for this in statistical models to detect disease-specific changes. 2) In both groups 

NAWM MTR within thalamo-cortical tracts is heterogeneous and shows gradients along 

the length of the tract. Furthermore, the directions of these gradients differ between 

thalamo-cortical systems, further emphasising the need to account for these 

inhomogeneities on a tract by tract basis. 3) Thalamic MTR was lower in the MS group 

than in controls and was accompanied by lower thalamic volume, whereas lower regional 

cortical MTR was not consistently associated with lower cortical ROI volume, suggesting 

that significant cortical microstructural damage can occur in MS in the absence of 

atrophy. Finally, 4) “Primary WM damage models” are better than “primary GM damage 

models” at explaining longitudinal MTR changes in thalamo-cortical systems in MS.  

5.4.1 Asymmetry and heterogeneity 

MTR and volumes were asymmetric and heterogeneous, emphasising the need to adjust 

for this in more refined statistical approaches to increase our ability to detect disease-

specific effects. The present study found highly significant left-right MTR differences in 

the thalamus, WM tracts, and cortex in both MS and controls. While most left-

hemispheric ROIs had significantly higher MTR than their right-hemispheric 

counterparts, this was not the case for all ROIs. MTR in the left SMC and OCC was 

higher than in the right, which corresponds to a previously reported higher MTR in these 

left hemispheric cortical regions (Kang et al. 2011). Furthermore, in WM tracts, a 

significantly higher MTR was found in the right compared to left MG-PFC tract, and in 

the left compared to right PG-OCC and the LG-SMC tracts, broadly corresponding to a 
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previously reported larger MTR in left hemispheric WM (Silver et al. 1997; Armstrong 

et al. 2004). 

Volumes of regional cortical and thalamic ROIs were also asymmetric in both MS and 

controls, and these left-right differences similarly did not consistently favour one side. 

Asymmetries in thalamic volume have been reported in lower vertebrate species (Harris 

et al. 1996), and the current finding of a larger left thalamus complements the finding of 

a reported lower MD on this side (Fabiano et al. 2005; Fabiano et al. 2003). This left-

right difference may be attributed to intrinsic anatomical asymmetries and left-

hemispheric dominance in the predominantly right-hand dominant cohort included in this 

chapter. Volume of the left SMC was significantly larger than the right, whereas the right 

PFC and OCC were larger than the left, which broadly corresponds to previously reported 

regional cortical volume asymmetries (Goldberg et al. 2011), and is in line with the 

previously reported right hemispheric dominance for visual processing (Silva et al. 2014; 

Hougaard et al. 2015) and left hemispheric dominance for motor processing in right-hand 

dominant people (Amunts et al. 1996).  

Interestingly, in addition to the observed hemispheric asymmetries, NAWM MTR within 

thalamo-cortical tracts was found to be highly heterogeneous and to follow a gradient 

along the length of the tract. Furthermore, the directions of these gradients differed 

between tracts, which highlights the importance to analyse tracts individually, rather than 

clustering them into single analyses. Combined, these data show that to gain insight into 

WM pathology, more sophisticated statistical methods may aid to distinguish disease-

specific variance from intrinsic tissue heterogeneity. Recent studies addressing GM 

pathology in MS (Deppe et al. 2016; Schoonheim et al. 2015; Magon et al. 2014; Louapre 

et al. 2016) have grouped data from the left and right thalamus without adjustments in 

their statistical models. Considering the present findings, these studies may have 
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benefitted from accounting for asymmetries in their statistical models. Similarly, 

correcting for NAWM tract heterogeneities could increase statistical power to detect 

pathological changes in studies looking at WM tract pathology in MS. This may be done 

in different ways, including an advanced statistical method that was recently proposed 

which allows the analysis of individual tract profiles (Dayan et al. 2016), or as done in 

the present work by subdividing the tract into smaller segments. The present chapter 

presents the first study to assess thalamic and WM tract pathology in MS taking into 

consideration the above mentioned asymmetries as well as intrinsic WM tract 

inhomogeneities.  

5.4.2 Cross-sectional comparisons 

Baseline MTR was lower in MS than controls in the thalamic groups and in all segments 

of the WM tracts, but in none of the cortical ROIs. These differences were not all 

significant at follow up, likely due to the smaller number of controls (11, compared to 25 

at baseline). At both baseline and follow up, compared to controls people with MS had 

significantly lower thalamic, but not cortical, volume. After correction for ICV and age, 

an unexpected significantly larger overall cortical volume was found in patients than in 

controls. This was surprising as patients were expected to have smaller baseline CGM 

volumes. This may be attributed to age and ICV (both of which are nearly significantly 

different between patients and controls), confounding the unadjusted, non-significant 

volume difference between the two groups. However, when looking at regional volumes 

of cortical ROIs, this effect was not reproduced, and volumes were lower in the SMC and 

OCC in people with MS, as may be expected biologically. The cross-sectional finding of 

lower regional cortical MTR in MS in the absence of lower regional cortical volume is in 

line with a voxel based study showing that in MS lower MTR is not consistently co-

localised with a lower cortical volume (Mallik et al. 2015), and may be interpreted to be 
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due to a significant decrease in synaptic density, axonal loss, and reduced neuronal 

connectivity (Wegner et al. 2006; Jehna et al. 2013; Filippi et al. 2012). 

5.4.3 White matter and associated subsequent grey matter injury 

As this study is longitudinal in nature, the current findings may allow conclusions 

regarding chronology of pathology development in MS. As such, the present work 

provides evidence for the development of pathology from WM tracts to GM, while the 

inverse hypothesis does not seem to be supported by the data. Primary WM damage 

models for all three different cortico-thalamic systems yielded significant associations 

between baseline WM MTR and follow up (cortical and thalamic) GM MTR, while 

associations detected by primary GM damage models were weaker and were largely 

insignificant. Importantly, these baseline WM to follow up GM MTR associations 

remained significant after adjusting for baseline MTR of the respective GM ROI, 

suggesting that this effect is independent and not induced by two secondary correlations: 

a significant longitudinal correlation between baseline and follow up MTR in the GM 

ROI, combined with a baseline association between tract and GM MTR.  

Thalamic and cortical pathology were hypothesised to be associated with proximal WM 

tract damage, and to be tract-specific. While the present findings partly support this 

hypothesis, significant associations were found between MTR in WM tracts and non-

connected GM cortical and thalamic ROIs. On the one hand, the current study provides 

evidence for tract-specific development of pathology: PG follow up MTR was mainly 

associated with baseline MTR in the nearest part of the connected PG-OCC tract. This 

corresponds to previous work that found evidence for retrograde degeneration from WM 

lesions in the optic radiation, leading to connected thalamic, but not cortical, atrophy 

(Sepulcre et al. 2009). Further evidence for tract-specific development of MS pathology 

comes from a post mortem study looking at the correlation between cortical thickness and 
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histological markers of neurodegeneration and histology in thalamo-cortical systems 

(Kolasinski et al. 2012). Specifically, this study shows significant correlations between 

cortical thickness of the prefrontal cortex and primary visual cortex with myelination of 

their respective WM tract projections to their anatomically associated thalamic nuclei, as 

well as with cell density in these thalamic nuclei. As significant correlations were 

confined only to anatomically connected areas and no significant inter-tract correlations 

were found, this suggests that functional anatomical connectivity is relevant in the spread 

of multiple sclerosis pathology. Furthermore, a recent longitudinal study in PPMS 

showed that cortical GM MTR at a 24 month follow up is related to baseline MTR in 

connected WM tracts, while the hypothesis of pathology evolving from GM to WM was 

not supported (Bodini et al. 2016). Unfortunately, the latter study did not assess 

associations between cortical areas and non-connected WM tracts, making it difficult to 

assess whether the observed WM to GM directionality of pathology development was 

tract-specific.  

On the other hand, the present work provides evidence for a tract-unspecific development 

of diffuse injury from WM to GM. Follow up thalamic MTR in the MG and LG, and to a 

lesser extent the PG, was found to be associated with baseline MTR in the MG-PFC tract 

segment nearest the cortex irrespective of anatomical connectivity. Similarly, follow up 

MTR in all cortical ROIs was associated with MTR in the PG-OCC tract segment most 

proximal to the thalamus. Interestingly, these are the segments within their respective 

tracts with the highest baseline MTR, and may reflect the strength of anatomical 

connectivity with their cortical and thalamic projections. The findings of a potentially 

tract-unspecific development of MTR are in line with a recent cross-sectional study that 

assessed the interdependence of cortical and WM tract pathology using cortical thickness, 

DTI, and T2* maps (Louapre et al. 2016). This study found that while intracortical and 

WM tract pathology are concomitant manifestations of MS pathology, they are not 
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uniquely restricted to their respective thalamo-cortical systems, as significant associations 

between tract pathology and non-connected cortical areas were also found. The lack of 

spatial specificity between WM and GM pathology corresponds to the findings found in 

the present work, and weakens the hypothesis of a mainly tract-driven degenerative 

process as the main pathogenic mechanism that connects WM and GM injury (Kipp et al. 

2015).  

5.4.4 Associations between MTR in thalamo-cortical systems and clinical 

function. 

Injury to any part of the thalamo-cortical systems was hypothesised to affect clinical 

function associated with the respective system. As such, EDSS was thought to be 

associated mainly with sensorimotor function. However, lower MTR in the cortex, tract, 

and thalamic groups of all three studied thalamo-cortical systems was associated with 

higher EDSS, and was not specifically associated with MTR in the LG-SMC thalamo-

cortical system. PASAT was expected to be mainly associated performance of the 

thalamo-cortical system responsible for executive function (i.e. the MG-PFC system), but 

no associations were found with MTR in any area. TWT function was thought to mainly 

require sensorimotor function, and to a lesser extent visual function, which was partly 

reflected in the results. 9HPT requires all three studied thalamo-cortical systems, and 

function on this test was found to be mainly associated with MTR in the thalamic 

component of these systems.  

Altogether, the present results partially confirm that MTR in thalamo-cortical systems is 

associated with function of the tasks these systems are involved in, and shows that 

thalamic has a modestly larger association than cortical and white matter tract MTR.  

However, the present study also shows associations between MTR in thalamo-cortical 

and clinical function that was not a priori hypothesised to be linked to the role of these 
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systems and may partly be explained due to statistical methods applied. In this light it 

should be noted that the regression analyses performed used the MTR in the respective 

ROIs as dependent variable, while using clinical function as regressors, which is the 

reverse of the functional relationship between these variables. The reason this approach 

was taken is because since the clinical value was the same for both hemispheres no mixed 

effect models could be fitted and would therefore not have corrected for side, which is 

important given the previously described hemispheric asymmetries. Future analysis of 

the present data will apply more refined statistical models that will allow the direct 

comparison of MTR in different segments and their effect on clinical function, and will 

furthermore assess longitudinal changes in MTR and how these relate to changes in 

clinical function. 

5.4.5 Methodological considerations 

It should be noted that while the present study mainly found tract-unspecific associations 

between WM and thalamic and cortical GM MTR, these results do not exclude the 

possibility of a tract-mediated spread of pathology. It is perceivable that different signal-

to-noise ratios in ROIs obscured the measurement of MTR due the small size of the 

masks, and may have led to the inability of the statistical models used to detect possible 

existing associations. Furthermore, the discrepancy between the present findings of a 

largely tract-independent WM to GM association of MTR in MS, and the previously 

suggested tract-specific spread of pathology may be explained by a number of 

methodological considerations of the present and earlier studies.  

With regard to the above mentioned post mortem study which is the only study that 

indicated a tract-specific association between WM and GM (Kolasinski et al. 2012), it 

should be noted that this type of study is per definition cross-sectional in nature, and 

therefore has an intrinsic bias towards including patients with a more advanced or more 
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active disease state, whereas the current study included people with all MS subtypes. 

Analysing MS subtypes in the present cohort separately may find differences in pathology 

development between relapsing and progressive patients (Kutzelnigg et al. 2005). 

Furthermore, the post mortem MRI study found correlations between cortical thickness 

and tract and thalamic histology metrics, and as shown in this study and in previous work 

(Mallik et al. 2015), diffuse pathology as detected by lower MTR does not necessarily 

co-localise with reduced cortical volume.  

The current work has a number of limitations that should be taken into account. Firstly, 

while at baseline 25 healthy controls were scanned, only 11 were scanned at follow up, 

which led to lower statistical power to detect group-wise differences at follow up. One 

male with PPMS was excluded with the relatively high baseline EDSS of 8.0, and the 

exclusion of this subject at follow up may have skewed the results towards people with 

milder disease. The controls that had both baseline and follow up data did not differ 

notably in terms of baseline characteristics. Secondly, in the applied statistical analyses 

people with all MS subtypes were grouped. As mentioned above, future analyses of the 

individual MS subtypes may provide insight into differences between progressive and 

relapsing MS. Thirdly, while sub-thalamic parcellations were applied using a histology 

based atlas (Morel et al. 1997) brought to MNI space for MRI use (Krauth et al. 2010; 

Jakab et al. 2012) rather than analysing the whole thalamus, the thalamic group masks 

consisted of multiple anatomically distinct nuclei with different functions and 

connections that were grouped into single masks. This was done to have sufficiently large 

masks to look at MTR changes, but this reduced the specificity of the obtained data. 

Similarly, while the areas comprising the cortical ROIs were broadly involved in similar 

cognitive and motor functions (i.e. PFC: executive function, SMC: sensorimotor 

functions, and OCC: visual processing), the larger cortical ROIs were heterogeneous in 

anatomical connectivity and function. Further, the WM tracts masks contained a 
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combination of afferent and efferent fibres (Jones 1985), making it difficult to assess 

whether the degeneration observed was anterograde or retrograde in nature. These 

thalamic and WM tract masks were not subject-specific and generated on the basis of an 

atlas and on tractography in controls. As such, the MTR and lesion volume metrics 

obtained from these tracts and thalamic group masks were subject to interpolations during 

registrations, and may not reflect the actual subject-specific anatomical tracts and 

thalamic nuclei. Furthermore, the WM tract masks did not fully extend to their cortical 

ROIs, because conservatively only voxels were included that were part of bilateral tracts 

in more than 50% of controls. As the highest degree of anatomical variation is likely to 

be in the tract area where the fibres ‘fan out’ towards the cortex, this makes voxels in 

those areas less likely to fulfil above criteria, and this resulted in tract masks that appear 

to terminate in the WM. While using this method increases the likelihood of including 

only voxels actually belonging to the tract, it reduced the ability to detect whole tract 

dynamics, and thereby the understanding of the interplay between the cortex and its 

connected WM. Finally, as scans to detect GM lesions (e.g. DIR) were not available for 

the current cohort, MTR estimates of cortical and thalamic ROIs may be affected by the 

presence of unseen GM lesions. 

5.5 Conclusions and future directions 

The present study is the first to longitudinally analyse MTR changes in WM tracts and 

their GM connections, while assessing whether potential associations are confined to 

individual thalamo-cortical systems, by also testing associations between anatomically 

unconnected regions. The present chapter shows highly significant volumetric and MTR 

asymmetries as well as heterogeneities within and between thalamo-cortical tracts in 

healthy controls and MS, emphasising the need to account for this in statistical analyses 

to detect disease-specific effects. Additionally, this work shows that MTR changes in the 
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cortex are not consistently associated with lower regional volume, indicating that 

microstructural damage is not necessarily accompanied by regional volume loss. Finally, 

the current study provides longitudinal evidence for a WM to GM spread of diffuse 

myelin and neuro-axonal loss. However, the current data are limited in their ability to 

conclude on whether this association is tract-specific or not.  

The potential tract-unspecific nature of WM to GM development of thalamo-cortical 

system damage in MS may be interpreted as being part of a wider stage-dependent process 

leading to both WM and GM tissue damage. Possible pathogenic mechanisms may 

include wide spread inflammation (Lassmann et al. 2012), and the presence of microglia 

inducing a more generalised diffuse pathology (Kutzelnigg et al. 2005) (as will be 

discussed in chapter 6). Alternatively, the perceived association may be due to shared 

remyelination mechanisms in WM and GM (Franklin & ffrench-Constant 2008). 

Alternatively, a potential tract-specific spread of pathology may be induced by 

anterograde trans-neuronal degeneration, retrograde trans-neuronal degeneration, or 

Wallerian degeneration (Kipp et al. 2015). Results from chapter 4 suggest that GM 

atrophy is at least partly driven by GM lesion-independent mechanisms, as the spatial 

overlap between these forms of pathology was at best modest. While the present chapter 

did not address GM atrophy directly, but assessed diffuse GM pathology using MTR, the 

results described in this chapter suggest that cortical and subcortical GM injury follow 

WM tract pathology. Together these two studies demonstrate that GM pathology is highly 

heterogeneous, and that GM atrophy, GM lesions, and diffuse GM demyelination have 

limited shared spatio-temporal distribution, and may furthermore only be partly related 

to injury to connected WM. While there is likely to be a pathogenic link between these 

forms of injury through mechanisms including Wallerian degeneration, there may be 

specific pathogenic processes driving these forms of injury. Additional analyses of patient 

subgroups may provide insight into the ongoing pathogenic events in the different MS 
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subtypes, as it has been suggested that progressive MS is mainly a GM disease, while 

WM in these patients is affected to a lesser extent than in relapsing patients (Geurts 2008). 

To further examine what drives GM and WM injury in MS, the heterogeneity of the MS 

population may therefore allow a deeper understanding of how these forms of pathology 

relate to each other. 

Further analyses of the data presented in the present chapter will also assess clinical 

impact of damage to individual cortico-thalamic systems. Previous work has shown that 

lower MD and thalamic atrophy are associated with poorer cognitive function 

(Schoonheim et al. 2015; Kern et al. 2015), and has shown that localised atrophy of the 

anterior nucleus of the thalamus is linked to poorer cognitive function (Bergsland et al. 

2015), and atrophy to the ventral thalamic nucleus (included in the LG in the present 

chapter) is associated with increased EDSS (Magon et al. 2014).  

The presented in vivo study provides insight into the spatiotemporal development of MTR 

abnormalities in MS. As described in chapter 2, MTR is based on magnetic properties of 

macromolecule-bound hydrogen nuclei, and is therefore indirectly visualising myelin and 

to a lesser extent neuronal content, with which MTR is correlated (Schmierer et al. 2004; 

Schmierer, Tozer, et al. 2007a; Schmierer, Parkes, et al. 2010; Tardif et al. 2012). 

However, it is unclear if this association between histology and MTR is the same in 

different tissue types. The next chapter will therefore describe the histopathological 

substrates underlying MRI abnormalities in MS, with a specific focus on MTR. 
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Chapter 6  

Histopathological substrates of magnetisation transfer 

ratio in lesional and normal-appearing grey and white 

matter 

6.1 Introduction 

MRI has proven invaluable in the study of CNS injury in vivo, but as described in chapter 

2, MRI only indirectly measures pathology by reconstructing images based on MR 

properties of hydrogen spins. This chapter describes the underlying histopathological 

substrates of MR detected abnormalities in MS. Out of many correlations between MRI 

indices and histology, I focussed on the histopathological substrates of MTR, because 

MTR has been demonstrated to be affected in MS and to be associated with clinical 

disability (Khaleeli et al., 2007). Combined with chapter 5 in which the spatiotemporal 

distribution of MTR is outlined, I will in this chapter further refine our understanding of 

MTR abnormalities in MS by presenting a study performed on 16 post mortem MS cases 

and four controls, specifically assessing the histopathological correlates of MTR in 

normal appearing and lesional GM and WM. 

To introduce this work, I will present a literature review of all MRI-histology studies on 

MS brain tissue to date. Fifty studies on MS brain tissue combining MRI and histology 

have been performed since the first such study (Estes et al. 1990), which include biopsies, 

post mortem in situ scans, scans of unfixed and fixed tissue, and combinations of in vivo 

MRI and post mortem histology. I will here outline their main findings, broadly clustered 

into four categories which will be described in turn: 1) Methodological considerations in 

post mortem MRI studies, 2) the detection of WM and GM lesions, 3) the visualisation 

of non-lesional MS pathology, and 4) correlations between quantified histology and MR 
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indices, with a focus on MTR. This is followed by a post mortem MRI-histology study 

carried out on the histopathological substrates of MTR in the MS brain. 

6.1.1 Methodological considerations 

A number of differences between in vivo and post mortem tissue poses challenges to the 

translation of post mortem MRI findings to in vivo scans (see table 6.1). While the use of 

MRI improves pathological lesion sampling yield (De Groot et al. 2001), an important 

methodological consideration in MRI–histology studies is that formalin fixation shrinks 

brain tissue by 11-25% (Quester & Schröder 1997), which affects co-registration of MR 

and histology images. To aid MRI-histology registration, tools have been developed 

including stereotactic navigation (Schmierer et al. 2003) and more recently individualised 

3D printed boxes (Absinta et al. 2014). In addition to shrinking tissue, fixation changes 

hydrogen spin properties as covalent bonds cross-link proteins (Thavarajah et al. 2012). 

This results in significant changes to MRI metrics compared to in vivo scans, including 

reduced T1, T2, MD, RD, and MTR, and increased FA and fraction of macromolecular 

protons (fb) (Schmierer, Thavarajah, et al. 2010; Schmierer et al. 2008).  However, at 

1.5T, MR indices in WM and GM are affected similarly (Schmierer, Thavarajah, et al. 

2010), allowing easier translation of findings towards in vivo scans, as WM/GM contrasts 

are preserved. In addition to effects of fixation, the media in which post mortem tissue 

may be scanned (air, formalin, fomblin, or phosphate buffered saline [PBS]) have 

different MR properties and affect the tissue differently in terms of histology (Schmierer, 

Tozer, et al. 2007a; Schmierer et al. 2004; Gilmore, Geurts, et al. 2009b; Geurts, Pouwels, 

et al. 2005). Finally, tissue temperature affects T1 and T2 signal linearly and below 10° 

Celsius image contrast is too severely reduced for sufficient signal-to-noise ratio (Tofts 

et al. 2008; Ruder et al. 2012), but keeping tissue at room temperature affects the integrity 

of unfixed tissue due to decay. In summary, changes occur to tissue and MR indices 
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depending on formalin fixation and the medium in which the tissue is scanned. These 

tissue alterations need to be taken into consideration when comparing histological images 

to their matching MR images, and when comparing post mortem to in vivo findings. 

Factor                 Effect on tissue and image quality 

Fixation Tissue shrinkage (Quester & Schröder 1997) 

Histology-MR registration (Schmierer et al. 2003; Absinta et al. 2014),  

Changes in MR metrics (Schmierer, Thavarajah, et al. 2010; Schmierer et al. 

2008) 

Medium Susceptibility effects (particularly if tissue is scanned in air) 

Fixation (if placed in formalin) 

Binding affinity antibodies and histological stains (particularly if submerged 

in fomblin)  

Temperature T1 changes (Tofts et al. 2008; Ruder et al. 2012) 

T2 changes (Tofts et al. 2008; Ruder et al. 2012) 

Decay of unfixed tissue 

Table 6.1. The effects of fixation, medium and temperature on image quality, tissue integrity, and 

histology. 

6.1.2 Lesional and non-lesional MS pathology 

Studies combining MRI and histology are the only way to evaluate to what extent 

different MRI sequences are able to visualise (both WM and GM) pathology. 

Abnormalities on T2-weighted and MTR scans visualise inflammatory WM 

demyelination (Macchi & Cioffi 1992; Estes et al. 1990; Schmierer, Parkes, et al. 2010; 

Schmierer et al. 2008; Schmierer et al. 2004; Tardif et al. 2012), whereas changes on T1-

weighted scans more closely reflect axonal loss (van Walderveen et al. 1998; van 

Waesberghe et al. 1999), as can be appreciated in figure 6.1. Post and ante mortem T2-

weighted scans have been found to be comparable in their ability to evaluate MS 

pathology (Barkhof et al. 1993), but the heterogeneity of T2 detected WM pathology 

highlights the high specificity and low sensitivity of this scan type (van Waesberghe et 
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al. 1999; Newcombe et al. 1991). Cortical GM lesions are not easily detected on T2-

weighted or FLAIR scans, and particularly intracortical lesions are difficult to distinguish 

(Geurts, Bø, et al. 2005; Geurts et al. 2008). Because on clinical scanners the visibility of 

cortical lesions is dependent on lesion size and we are merely seeing the “tip of the 

pathological iceberg” (Seewann et al. 2011), studies have combined T2-weighted and 

FLAIR with high resolution T1-weighted scans or have used different sequences 

including DIR (and PSIR) to improve cortical lesion detection rates (Bagnato et al. 2009; 

Seewann et al. 2012). Even if prospectively many cortical lesions are still missed, their 

detection rate is significantly higher on 7T scanners than on clinical scanners (Kilsdonk 

et al. 2016), and the use of R2*, T2*gradient recalled echo (GRE), inversion recovery 

GRE, and gradient and spin echo sequences allows detection of most cortical lesions (Yao 

et al. 2014; Pitt et al. 2010; Bagnato et al. 2015). At this field strength, cortical lesion 

subtypes may even be distinguished; type 3 subpial lesions can be distinguished from 

NAGM using MTR and FA (Jonkman et al. 2015; Tardif et al. 2012; Kilsdonk et al. 

2016). Finally, other tissue characteristics have been studied. Iron may be detected in 

microglia of active WM lesions and can be visualised using T2 GRE scans, R2* scans, or 

susceptibility mapping, but the detection of iron may not be selective for pathology 

(Mehta et al. 2013; Bagnato et al. 2011; Sun et al. 2015; Walsh et al. 2013). Altogether, 

these studies show that particularly inflammatory demyelinated WM lesions are readily 

detected on post mortem scans and that the development of novel MR sequences and 

scanners with higher field strengths allow the detection of iron and cortical lesions. 

In addition to WM and GM lesions, several MRI-histology studies identify pathological 

changes in non-lesional tissue. Non lesional WM with high MR texture heterogeneity is 

associated with lower axon and myelin content (Zhang et al. 2013), and has post-

translational phosphorylation of neurofilaments, affecting T1 and MTR signal (Petzold et 

al. 2011). NAWM also contains astrocytes and microglia expressing iNOS 
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immunoreactivity (Broholm et al. 2004; Zeis et al. 2009), suggesting neuronal damage 

and diffuse inflammation outside lesions. Combinations of MR sequences show that 

regions normal on T1, T2 and MTR differ from regions abnormal on T2 only by having 

axonal swelling and axonal loss (Fisher et al. 2007), and that MTR may be combined with 

DTI, as these sequences reveal different tissue characteristics, which are more abnormal 

in normal appearing tissue adjacent to lesions (Lindquist et al. 2007; Moll et al. 2011). 

DAWM, defined as areas with abnormalities on PD and T2-weighted scans between WM 

lesions and NAWM, is associated with a decrease in axonal content, myelin 

phospholipids, and increased gliosis compared to NAWM, accompanied by a decreased 

FA and increased T1, T2, and myelin water fraction (Seewann et al. 2009; Moore et al. 

2008; Laule et al. 2011). Studies assessing non-lesional GM pathology show that cortical 

volume is most strongly associated with neuronal size, neuronal density and axonal 

density (Popescu et al. 2015), as well as with myelination in the connected tract and 

connected thalamic nucleus cell density (Kolasinski et al. 2012). Combined, these studies 

show that subtle diffuse tissue changes occur in non lesional WM, which may be observed 

using a combination of MRI sequences, and that GM atrophy is driven by neuro-axonal 

loss and is linked to WM tract pathology. 
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Figure 6.1. Myelin basic protein stain (a), and co-registered myelin content (b; scale: 0-100%) and 

quantitative MRI maps of post mortem brain tissue of a healthy subject (i.e. T1 time (c; 0.15-0.35s), M0 

(d; 3200-4200 a.u.), T2 time (e; 0.03-0.33s), and MTR (f; 5-16%). Myelin content is closely related to MTR. 

Adapted from Tardif et al 2012. 

6.1.3 Correlations between quantified MR and histology 

For a more refined understanding of the relationship between MRI scans and the biology 

they are reflecting, various studies have quantified and correlated MRI and histology 

metrics. These studies have shown that (short) T2 mainly correlates with myelin content 

(Moore et al. 2000) and that lower T1 signal is more closely correlated to axonal loss (van 

Waesberghe et al. 1999), but that the evolution of T1 hypo-intensities corresponds to both 

myelin and axonal content (Bitsch et al. 2001). FA and MD have been found to be related 

to myelin concentration, and to a lesser extent with axonal count (Schmierer, Tozer, et al. 

2007b).  

The present chapter focuses specifically on the association of MTR with myelin, neurons, 

and astroglia in MS brain tissue, which has been assessed by four MRI-histology studies 

to date. These four studies show that MTR signal mainly reflects myelin content and to a 
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lesser extent neuronal content in both GM and WM (Schmierer et al. 2004; Schmierer, 

Tozer, et al. 2007a; Schmierer, Parkes, et al. 2010; Tardif et al. 2012). The first study at 

1.5T showed, in a sample combining NAWM and WM lesions, that MTR correlates most 

strongly with myelin and to a lesser extent with axon concentration, while not being 

associated with astrogliosis (Schmierer et al. 2004). A second 1.5T study elaborating on 

these findings showed that in a comparable sample containing both NAWM tissue and 

WM lesions fb as measured by quantitative MTR similarly correlates most strongly with 

myelin and axonal concentration (Schmierer, Tozer, et al. 2007a). In this study, 

astrogliosis was also significantly associated with fb. As fb was able to distinguish WM 

lesions from NAWM, and demyelinated and remyelinated lesions, the authors suggested 

that this metric could be useful in clinical trials for remyelinating agents. A 9.4T study 

described the difference between NACGM and type 1 and type 3 cortical lesions in 

different MRI and histological metrics (Schmierer, Parkes, et al. 2010). While this study 

did not specifically address the underlying histopathological correlates of NAGM and 

NAWM, it showed that MTR was associated with myelin basic protein concentration. 

The only study assessing the underlying histopathology of MTR in both GM and WM 

simultaneously, at a field strength of 3T, was a single brain study which showed that PD, 

T2, T1 and MTR were all significantly correlated to myelin content (Tardif et al. 2012). 

Combined, the above studies show that MTR is a valuable tool to detect microstructural 

pathology in WM and GM, and that MTR is particularly associated with myelin and to a 

lesser extent with neuronal content. 

All four studies on the histopathological substrates of MTR in the MS brain use Pearson 

correlation analyses combining samples from both lesional and normal appearing tissue 

in single models, and are based on an implicit assumption that MTR in lesional and 

normal appearing tissue have the same underlying histopathological substrates. However, 

at present it is unclear exactly what histopathological substrates contribute to MTR signal 



106 

 

of NAGM, NAWM and lesional GM and lesional WM, and, importantly, whether this is 

comparable for different tissue types. Furthermore, as these studies use Pearson 

correlation analyses, it is difficult to draw conclusions regarding the individual 

contributions of myelin, neurons, and astrocytes to MTR signal, as these metrics may co-

vary. To evaluate the individual contribution of these cell types to MTR, the aims of the 

present study were to (1) compare NAGM, NAWM, and GM and WM lesions in terms 

of MTR and eleven histological markers, broadly clustering into neuronal integrity, 

myelin content, inflammation and mitochondrial integrity, and (2) to assess the individual 

contribution of myelin, axonal, and astrocyte content to MTR signal in these different 

tissues types. I hypothesise the normal appearing and lesional GM and WM to differ 

substantially in terms of MTR, and histology. Specifically, MTR is expected to be higher 

in WM compared to GM and in normal appearing tissue than lesional tissue. 

Histologically measured myelin content is expected to follow a similar spatial 

distribution, while neuronal content is expected to be greater in GM than in WM, but also 

be lower in lesional than normal appearing tissue. Furthermore, markers for inflammation 

and mitochondria are hypothesised to be higher in lesional tissue than in normal appearing 

tissue, with a potentially larger presence in WM over GM. Finally, individual contribution 

of myelin, axonal, and astrocyte content is not expected to be different between tissue 

types. 

6.2 Methods 

6.2.1 Tissue handling and MRI image acquisition 

Right coronal hemi-slices of sixteen brains of people with MS and four controls with no 

known neurological condition were collected for the current study. Only limited brain 

tissue was available as tissue from the brains from which these hemi-slices were taken 

was also distributed to other research groups. Care was taken that consistently a hemi-
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slice from the right hemisphere was taken, in light of brain asymmetries described in 

chapter 5. For the purpose of this chapter results from five MS cases are presented. Details 

of the cohort can be found in table 6.2. Of each of these cases a 10-15mm thick slice (P2) 

was taken of each brain, corresponding to the same anatomical region (i.e. the second 

slice posterior to the mammillary bodies), as indicated in figure 6.2. This study was 

approved by our local institutional ethics committee and followed Human Tissue Act 

guidelines. 

Figure 6.2. MNI brain with a red coloured section indicating the location of the post mortem slice obtained. 
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Case Diagnostic 

classification 

Brain 

weight 

(g) 

Sex Age 

(y) 

Cause of death Death-

fixation 

interval (hr) 

Histology 

processing 

batch 

4 PPMS 1413 M 75 MS 25 2 

5* PPMS 1324 F 61 Bronchopneumonia, MS 41 2 

9*# SPMS 1037 F 68 Diabetes type 2, 

hypertension, MS 

47 1 

10*# MS 1225 F 66 Aspiration pneumonia, 

MS 

30 1 

11*# SPMS 1096 F 71 Septicaemia, urinary 

tract infection, MS 

24 1 

12*# SPMS 1126 F 53 Bronchopneumonia, MS 33 1 

13 MS  M 50 MS 27 2 

14 SPMS 1186 M 64 Bronchopneumonia, MS 33 2 

15 SPMS 1184 F 69 Pneumonia 22 2 

16 MS 1082 F 75 Food aspiration 48 2 

17 SPMS 1021 F 71 Kidney failure, sepsis 12 2 

18 SPMS 1471 M 66 Carbon monoxide 

poisoning 

37 2 

19# MS  F 75 Pneumonia 48 2 

20# MS 1561 M 65 Metastatic Colon 

Cancer, MS 

40 3 

21 MS  F 63 MS 40 3 

22 Control  F 70 Sepsis, stage IV 

peritoneal cancer, 

ischemic heart disease 

 3 

23 Control 1315 M 84 Cardiac asthenia 

amyloid 

23 3 

24 Control 1324 M 66 Cardiac arrest  3 

25 Control 1229 F 70 Metastatic ovarian 

cancer 

 3 

26# MS 1221 M 66 Aspiration pneumonia, 

MS 

29 3 

Table 6.2. Overview of twenty cases included in the present study. *Fixed tissue MRI and histology data 

included in present chapter, #tissue scanned both unfixed and fixed. 
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A detailed tissue handling protocol can be found in Appendix III. In short, out of 20 cases, 

of which fixed tissue was scanned, tissue of seven cases was scanned both fixed and 

unfixed. For these cases, unfixed tissue was submerged in PBS and put in an MRI-

compatible holder made of Plexiglas and scanned using a 3T Philips Achieva system, 

with a ~5h protocol at high resolution where possible. MRI sequence parameters can be 

found in table 6.3. To account for effects of temperature (Tofts et al. 2008; Ruder et al. 

2012) tissue was submerged in PBS at room temperature, and temperature measurements 

were taken before and after scanning. Post MRI, the tissue was submerged fixed through 

submersion in a 10% buffered formaldehyde solution for a minimum of seven days before 

the next MRI scan. For the second scan, formalin fixed tissue was washed thoroughly 

with PBS, submerged in PBS, placed in the MRI compatible holder described above, and 

scanned using the same protocol as used for unfixed tissue, changing only the PSIR TI to 

150ms for improved WM-GM contrast.  

       Table 6.3. Scanning parameters of MRI sequences used. 

 

 TE (ms) TR (ms) Resolution (mm) Field of view (mm)  

PD/T2 12/80 4000 0.25×0.25×2.00 160×160×16  

3D-T1 6.9 15 0.50×0.50×0.50 160×160×60  

MTR 5.5/12.7 37 0.25×0.25×2.00 160×160×60  

PSIR 13 7000 0.25×0.25×2.00 160×160×16 TI = 400ms (unfixed) 

and 150ms (fixed) 

DTI 69 7000 2.00×2.00×2.00 160×160×16 max B factor = 4000 
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6.2.2 Histological processing and quantification 

For histology, the tissue was subdivided into cassette blocks, ensuring that thalamic grey 

matter and hippocampal structures were not dissected and would be kept intact. The 

layout of cassettes was then chosen to include as much tissue as possible for subsequent 

analyses. The cassette blocks were paraffin-embedded and stained using markers 

neuronal integrity (NF200), myelin (SMI94), astrocytes (glial fibrillary acidic protein 

[GFAP]), immune activity (CD20, CD3, CD68, CD8, and IBA1), and mitochondrial 

function (COX4 and VDAC). To visualise myelin, SMI94 was chosen as this visually 

gave superior contrast to the commonly used LFB stain. Furthermore, DGM lesions are 

more difficult to detect on LFB stains compared to stains against myelin specifically 

(Kipp et al. 2015; Vercellino et al. 2009).  

Immunohistochemistry was performed by IQPath (University College London). To 

minimise within subject variability between cases care was taken to process tissue in three 

separate batches (as indicated in table 6.2), rather than processing cases individually. 

The formalin fixed tissues were processed, paraffin-embedded and sectioned at 5μm. 

Immunohistochemistry staining was performed using the Ventana Discovery XT 

instrument, and the Ventana DAB Map detection Kit (760-124). See table 6.4 for 

antibody and epitope damasking detail. When establishing the antibodies initially, the 

markers are validated with positive and negative controls to ensure the specificity of the 

epitope. Furthermore, positive controls were used in every run to validate the run if the 

epitope is not normally or not abundantly present in the brain (i.e. the CD3, CD8, CD68 

markers). GFAP, VDAC, COX4, IBA1, SMI94, and NF200 are endogenous to the brain 

and absence of staining in brain sections would indicate that the run failed. For pre-

treatment, either Ventana Protease 1 (760-2018), Ventana CC1 (950-124), equivalent to 
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EDTA buffer, or Ventana Ribo CC (760-107), equivalent to citrate buffer, was 

used. Slides were haematoxylin counterstained.  

The histology images were subsequently digitised and quantified histology images were 

generated as follows. Tissue sections were digitised as 8-bit RGB images at ×40 

magnification using a Leica SCN400F slide scanner, and digital image analysis was 

performed using Definiens Developer (version 2.5, Munich) and ×5 resolution for tissue 

identification and ×10 resolution for stain analysis. A detailed description of the histology 

quantification can be found in Appendix III. In short, blue and brown staining were 

separated using different thresholds. The image was segmented into voxels of 

250×250µm2 (0.0625mm2) and the area of tissue, brown stain, dark brown stain, and the 

number of nucleus objects were exported per pixel with their coordinates within the image 

for reconstruction purposes. The proportion of surface area covered with dark brown stain 

was used in the current analyses. From these data, quantified histology images were 

reconstructed with an in house script in MatLab (version 2012b, The MathWorks Inc., 

Massachusetts).  
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Antibody Clonality Dilution Source Pre-treatment Primary 

antibody 

incubation 

Secondary antibody 1:200 

 

  Swine αrabbit 

DakoE0353 

Rabbit 

αmouse 

DakoE0354 

SMI94 Monoclonal 1:500 Covance SMI94-R Extended CC1 32min  32min 

NF200 Monoclonal 

(NE14)  

1:200 Sigma N5389 Protease 1 4’ 32min  32min 

GFAP Polyclonal 1:1000 DakoZ0334 Protease 1 4’ 32min 32min  

CD20 Monoclonal 

(7D1) 

1:200 Dako7D1 Mild Ribo CC 1h  32min 

CD3 Monoclonal (

LN10) 

1:100 Leica PA0122 Standard CC1 1h  32min 

CD68 Monoclonal 

(PG-M1) 

1:100 DakoPG-M1 Standard Ribo CC 1h  32min 

CD8 Monoclonal 

(C8/144B) 

1:100 DakoM7103 Standard CC1 1h  32min 

IBA1 Monoclonal 

(NCNP24) 

1:250 Wako 019-19741 Standard CC1 1h 32min  

COX4 Monoclonal 

(20E8C12) 

1:100 Abcam ab14744 Standard CC1 1h  32min 

VDAC Polyclonal 1:100 Abcam ab15895 Standard CC1 1h 32min  

     Table 6.4. Details of stains and antibodies used. 

6.2.3 Image processing, histology-MR registration, and generation of ROIs 

A histology data set was created grouping eleven digitised stained slides and subsequently 

down sampled to a resolution of 0.016mm2 (from which ten were used for quantification: 

all except H&E). Most MR volumes (all except T1) consisted of eight planes 

(250×250µm2) acquired every 2mm; no up sampling was performed. Sub-images, 

corresponding to the different cassettes within the tissue slice, were obtained by cropping 
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the original MRI volume to restrict the search space when aligning histology and MRI 

data (figure 6.3). 

 

Figure 6.3. Seventh plane from PSIR scan overlaid with GFAP-stained histological slice (a) and 

corresponding sub regions overlaid on PSIR scan (b). 

The process of bringing histology and MR images for each cassette in spatial alignment 

consisted of the following steps. 

1) A group wise space was created by group wise registration of the different stains; 

which was achieved through consecutive rounds of rigid (1), affine (1) and non-

linear (1) registrations (Modat et al. 2010; Modat et al. 2014). The H&E stained 

images were chosen as a reference. 

2) The T2 plane that most resembled the histological slices was chosen and rigid 

registration was performed between both modalities (Modat et al. 2014). Rigid 

registration was preferred over non-rigid to preserve the shape of the tissue and to 

avoid establishing wrong correspondences. 
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3)  The obtained transformations (Modat et al. 2010) were then applied to the 

selected plane for all the sequences (T2, PD, PSIR, MTR) to bring them into group 

wise space. 

4) Using the transformations obtained during the group wise step, the quantified 

histology images were resampled into the same space. 

After bringing the MR images, histology, and quantified histology images into common 

space, a single set of ROIs was drawn on the histology and MR images in 3DSlicer 

(version 4.4.0) (Fedorov et al. 2012). An example can be found in figure 6.4. ROIs for 

the following thirteen tissue types were drawn: NAWM, NACGM, NADGM, WM lesion 

(active, chronic active, and chronic inactive), CGM lesion type 1, 2, 3, and 4, DGM lesion, 

and hippocampal WM and GM. The current chapter includes data from NAWM, NAGM, 

chronic inactive WM lesions, and GM lesions (grouping GM lesion types 1, 2, 3, and 4). 

These four tissue types were selected based on the availability of tissue of these tissue 

classes.  
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Figure 6.4. Example of a cassette with its corresponding MR images, histology images, and ROIs, from case 

12. A) T2-weighted image of whole slice, with a red box indicating the position of a cassette. B) ROIs for 

normal appearing white matter (green), normal appearing grey matter (purple) and chronic inactive white 

matter lesions (pink). C) Sections of T2, PSIR, PD, and MTR co-registered to histology images. D) Histology 

images with high resolution insets at ×40 magnification for cellular presence (H&E), myelin content 

(SMI94), neuronal content (NF200), lymphocytes positive for CD68, CD20, CD3, and CD8, astrocytic 

cytoskeleton (GFAP), macrophages (IBA1), and mitochondrial integrity (COX4 and VDAC). 

A B 

C 

D 
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6.2.4 Statistical analyses 

From the above mentioned ROIs, using FSLstats, mean MTR and mean histology 

intensity (from the quantified histology images) was extracted in common space. This 

was done in two different ways as displayed in figure 6.5: (1) mean signal intensity (for 

MTR and ten histology images) was extracted from each of the ROIs on each cassette, 

resulting in eleven values per tissue type per cassette, and (2) to increase power for 

subsequent statistical analyses, ROIs were subdivided into ‘tiles’ of 6.4x6.4mm 

(excluding tiles smaller than 20.48mm2).  

The percentage of dysfunctional mitochondria was calculated as follows. 

Percentage damaged mitochondria = (VDAC-COX4)/VDAC 

Figure 6.5. Mean MTR and histology intensity was extracted in two different ways. (1) One value is 

extracted per tissue type i.e. one for normal appearing white matter (green), one for normal appearing 

cortical grey matter (purple), and one for chronic inactive white matter lesions (pink). (2) The larger ROI 

is subdivided into smaller ‘tiles’, of which tiles larger than 20.48mm2 (dark coloured squares only) are 

used. From each of these tiles one mean MTR and histology intensity value is taken. 

After extracting the MTR and signal intensities, statistical analyses were performed in R 

(version 3.2.3, R Core Team) on three different data samples: (1) using one mean value 

per ROI per cassette as described above, (2) using multiple means from the ROI ‘tiles’ as 
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described above, and (3) and combining lesional and normal appearing ROIs ‘tiles’ in a 

single model at a 1:1 ratio, as previously done in the four only studies to date correlating 

MTR to histological indices (Tardif et al. 2012; Schmierer, Tozer, et al. 2007b; Schmierer 

et al. 2004; Schmierer, Parkes, et al. 2010).  

To address the first question if tissue types differ in stain intensity and MTR, multilevel 

mixed models were applied with subject and cassette as nested random effects and the 

following fixed effects:  

MTR or stain intensity = intercept + ROI 

For regression analyses to assess the relationship between microglial content and 

mitochondrial integrity, the following fixed effects were used. 

Percentage damaged mitochondria = intercept + CD68 

To answer the second question what the individual contributing cellular substrates are to 

MTR signal intensity within different tissue types, similar mixed effect multiple 

regression models were performed with the following fixed effects:  

MTR = intercept + SMI94 × B1 + NF200 × B2 + GFAP × B3 

Finally, as not all cases had data of all tissue types, in addition to the above analyses on 

data from all five cases, the above models were performed on data from two cases (case 

9 and 12) that had data from tissue types NAWM, NAGM, and chronic inactive WM 

lesions. This analysis was done to ensure that the inter-subject corrections applied in 

multilevel mixed effect models did not artificially skew the data due to missing data. 

 



118 

 

6.3  Results  

6.3.1 Different tissue types are associated with specific cellular make up  

The ‘one mean per ROI per cassette’ models and the ‘ROI tiles’ models gave comparable 

estimates for mean stain and MTR intensities as displayed in table 6.5 and figure 6.6. The 

tile models gave highly significant differences in group wise comparisons (all group wise 

comparisons p<0.01, except for CD3 and CD8), but the current section will 

conservatively focus on results of the ‘one mean per ROI per cassette’ models in five 

subjects. Models with data of two and five cases yielded comparable signal intensity 

estimates, as can be found in Appendix III. 

As displayed in table 6.5 and figure 6.6, MTR was significantly higher in NAWM 

compared to WM lesions (p<0.05). SMI94 intensity was significantly higher in NAWM 

than in NAGM, which in turn had significantly higher SMI94 staining than WM and GM 

lesions (all p<0.004). NF200 staining did not differ significantly between tissue types. 

Concentration of GFAP was higher in NAWM than in NAGM (p<0.001). VDAC was 

significantly higher in NAGM than in NAWM (p<0.001). The proportion of damaged 

mitochondria was significantly larger in the NAWM than in NAGM (p<0.001). CD68 

stain intensity was significantly higher in the NAWM than NAGM (p<0.001), as was 

IBA1 stain intensity (p<0.01). Further, IBA1 was lower in WM lesions compared to 

NAWM. CD3 and CD8 staining did not differ between tissue types, and was not 

significantly different from zero in all tissue types for CD3 and NAGM and GM lesions 

in CD8. Regression analyses to study the relationship between mitochondrial integrity 

and CD68 signal showed a significant association in NAWM and WM lesions (r=0.04 

and 0.135, respectively, and both p<0.0007), while in NAGM and GM lesions no such 

association was found (both p>0.36). 
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Table 6.5. Mean MTR and histology stain intensity for normal appearing grey matter, grey matter lesions, 

normal appearing white matter, and chronic inactive white matter lesions, estimated using a single 

intensity estimate per tissue type and multiple estimates using region of interest ‘tiles’. The two statistical 

approaches yielded comparable estimates.  

  

    One mean per ROI per cassette 

 

Multiple means from ROI ‘tiles’ 

  NAGM 
GM 

lesions 
NAWM 

WM 
lesions 

NAGM 
GM 

lesions 
NAWM 

WM 
lesions 

MTR 
mean 30.89 27.00 33.39 26.68 30.58 26.30 34.68 23.20 

SE 3.41 3.84 3.46 3.75 3.55 3.76 3.55 3.64 

SMI94 
mean 73.31 20.45 93.67 47.5 73.17 7.63 88.28 17.24 

SE 5.56 7.38 5.74 7.24 5.97 6.84 5.96 6.32 

NF200 
mean 38.27 25.90 48.79 34.81 41.32 21.91 47.09 37.04 

SE 9.80 10.93 9.91 10.72 12.61 12.61 11.92 12.20 

GFAP 
mean 14.15 18.21 67.31 80.23 2.26 1.01 59.92 46.16 

SE 4.00 5.47 4.14 5.47 12.32 12.91 12.31 12.56 

VDAC  
mean 71.83 72.10 35.37 36.52 78.43 76.43 39.09 60.16 

SE 6.02 7.69 6.19 7.32 14.57 14.87 14.57 14.69 

% 
mitochondria 
damaged 

mean 0.36 0.27 0.83 0.80 0.42 0.22 0.87 0.60 

SE 0.07 0.09 0.07 0.08 0.10 0.12 0.10 0.10 

CD68 
mean 0.35 0.26 1.10 0.93 0.49 -0.34 0.98 0.68 

SE 0.19 0.25 0.20 0.24 0.26 0.30 0.98 0.68 

IBA1 
mean 10.22 10.57 14.87 8.15 13.03 8.1 14.9 9.52 

SE 2.88 3.16 2.91 3.13 4.39 4.50 4.39 4.43 

CD8 
mean 0.07 0.09 0.09 0.1 0.03 0.01 0.03 0.04 

SE 0.06 0.06 0.06 0.06 0.01 0.03 0.01 0.02 

CD3 
mean 0.08 0.14 0.09 0.09 0.09 0.16 0.05 0.09 

SE 0.05 0.07 0.05 0.06 0.03 0.05 0.03 0.04 
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Figure 6.6. Mean MTR and histology stain intensity for normal appearing grey matter, grey matter lesions, 

normal appearing white matter, and chronic inactive white matter lesions, estimated using a single 

intensity estimate per tissue type ROI and multiple estimates using ROI ‘tiles’. The two statistical 

approaches yielded comparable estimates.  Different tissue types ware associated with specific cellular 

make up. Statistically significant differences have been indicated. * p<0.05, ** p<0.01, ** p<0.001. 

* 
** 

*** 
*** 

****** 

***

*** *** *** 
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6.3.2 MTR is associated with different cellular substrates depending on tissue 

type 

Results of statistical analyses using samples in which WM lesional and NAWM data were 

combined in a single model as done previously (Schmierer et al. 2004; Schmierer, Tozer, 

et al. 2007b; Tardif et al. 2012; Schmierer, Parkes, et al. 2010) showed that SMI94, 

NF200, and GFAP were all highly significantly associated with MTR (β=0.107, β=0.165, 

β=-0.125, respectively, all p<0.001), and can be found in Appendix III. The same model 

for GM lesions and NAGM was not performed, as only a single cassette had both NAGM 

and GM lesions. 

Results from the statistical models on ROI tiles in which data from each tissue type was 

considered separately showed that the individual contributions of SMI94, NF200, and 

GFAP to MTR signal intensity differed between tissue types. The results from these 

analyses are displayed in table 6.6 and figure 6.7. NAWM MTR was predominantly 

associated with SMI94 (myelin), and had a near significant contribution of NF200 

(neurons), but was not associated with GFAP (astrocytes). NAGM MTR was associated 

positively with SMI94 and negatively with GFAP, but was not associated with NF200. 

MTR in GM and WM lesions was not associated with any histological marker.  
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                 SMI94                      NF200               GFAP 

 β 95% CI P  β 95% CI p  β 95% CI p 

NAWM 0.152 0.094     

–     

0.210 

<0.001*

** 

 0.028 -0.003  

–    

0.059 

0.072  -0.013 -0.039     

–        

0.013 

0.316 

NAGM 0.068 0.020    

–    

0.116 

0.006**  -0.007 -0.049  

–    

0.034 

0.737  -0.057 -0.101     

–               

-0.012 

0.013** 

WM 

lesions 

0.019 -0.043   

–     

0.082 

0.543  -0.021 -0.014    

–    

0.102 

0.739  -0.048 -0.013      

–        

0.029  

0.229 

GM 

lesions 

0.121 -0.179   

-–   

0.203 

0.227  -0.103 -0.288  

–    

0.081  

0.286  -0.199 -0.042      

–       

0.025 

0.097 

Table 6.6. Individual associations of SMI94 (myelin), NF200 (neurons), and GFAP (astrocytes) with MTR. 

MTR was significantly associated with SMI94 in normal appearing white and grey matter, but not in 

lesional tissue. 
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Figure 6.7. Scatter plots of the association of SMI94, NF200, and GFAP with MTR for normal appearing 

white matter (a), normal appearing grey matter (b), chronic inactive white matter lesions (c), and grey 

matter lesions (d). Statistically significant association have been indicated ** p<0.01, ** p<0.001 
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6.4 Discussion 

The main findings of the current study are that 1) the cellular make-up of NAWM, 

NAGM, and WM and GM lesions differs significantly. 2) Diffuse microglial presence 

may be linked to mitochondrial damage in WM tissue. 3) MTR was underpinned by 

myelin and to a lesser extent by neuronal content in normal appearing, but not lesional, 

GM and WM tissue. 

6.4.1 Differences in MTR and cellular content between tissue types  

NAWM, NAGM, and WM and GM lesions differed significantly in their cellular make 

up. Methodologically, the ‘one mean per ROI per cassette’ and ‘ROI tiles’ models yielded 

similar estimates of signal intensities, and this section will conservatively discuss the 

results of the ‘one mean per ROI per cassette’ models.  

As hypothesised, myelin content (as measured by SMI94) was found to be significantly 

higher in NAWM than in NAGM, and both GM and WM demyelinated lesions showed 

decreased myelin levels compared to normal appearing tissue. While not significant, 

levels of phosphorylated neurofilament (as measured by NF200) showed a similar pattern. 

NF200 is a marker for phosphorylated neurofilament rather than intact neurofilaments 

and widespread accumulation of hyperphosphorylated neurofilament protein can also be 

found in MS neuronal somata, particularly in the cortex (Gray et al. 2013). These changes 

in phosphorylation of neurofilaments have been suggested to play part in the damage to 

neuro-axonal constructs in MS (Petzold et al. 2011; Petzold et al. 2008), and as such, the 

observed larger NF200 staining in normal appearing WM and GM compared to lesional 

WM and GM may reflect  two separate pathological processes in the MS disease process, 

i.e. changes in phosphorylation of neurofilaments, as well as neurodegeneration. In line 

with previous work (Goursaud et al. 2009), GFAP-expressing astrocytes were more 

abundant in normal appearing and lesional WM than in GM. As expected, there was an 
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absence of CD8 and CD3-positivity in the different tissue types, as T-cells expressing 

these markers are mainly found in active lesions and are not abundant in normal appearing 

tissue or inactive lesions (Tzartos et al. 2008; Haider et al. 2011). In addition, the inherent 

selection bias in post mortem studies led to the inclusion of tissue of cases with secondary 

progressive or long standing MS, who therefore show less ongoing inflammatory 

demyelination.  

Overall mitochondrial concentration (as measured by VDAC) was highest in GM (both 

lesional and normal appearing), compared to WM. However, the proportion of these 

mitochondria that had COX4 loss, which occurs when the mitochondrial transport chain 

ceases, was larger in (both lesional and normal appearing) WM than in GM. Previous 

work observing lesion-independent reduction of mitochondrial function (as measured by 

N-acetyl aspartate) of 25-33% in CGM and a 36-45% reduction in WM echoes the present 

findings (Li et al. 2013). The larger proportion of mitochondrial damage in WM compared 

to GM may be explained by the here observed and previously described (Peterson et al. 

2001) higher concentration of microglia/macrophage activity (as measured by CD68 and 

IBA1), particularly in PPMS and SPMS (Kutzelnigg et al. 2005), and also corresponds to 

the reported presence of iNOS releasing astrocytes and microglia in the NAWM (Zeis et 

al. 2009; Broholm et al. 2004). Regression analyses addressing this association show that, 

while the association is weak, a statistically significant link exist between mitochondrial 

presence and mitochondrial damage. Independent of myelin loss, these activated 

microglia may cause diffuse hypoxic mitochondrial damage in the NAWM through 

mechanisms including the release of reactive oxygen species resulting in oxidative stress 

(Witte et al. 2010; Witte et al. 2014; van Horssen et al. 2011).  

Combined, in line with the hypotheses set out in the beginning of the chapter, the present 

findings show a difference in cytological make up between NAWM, NACGM and 
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(chronic inactive) WM and GM lesions, and provide further evidence for diffuse non-

lesional pathological mechanisms via microglia-mediated mitochondrial damage. 

6.4.2 MTR has different underlying histopathological substrates in normal 

appearing tissue and lesions 

MTR was underpinned by different underlying histopathological correlates in different 

tissue types, as shown by the models using data from ROI ‘tiles’. Methodologically, the 

‘one value per ROI per cassette’ models did not converge as the sample size (20 cassettes 

of five MS cases) proved insufficient and over parametrised the mixed effect multiple 

regression models. Therefore, the use of sampling multiple ROIs (‘tiles’) from the same 

cassette was evaluated by comparing the means to those from extracting a single value 

and these approaches gave comparable MTR and stain intensity estimates. In addition to 

yielding comparable mean estimates, this approach was useful for the purposes of the 

present study as the main aim of this study was to look for associations between 

histopathology and MRI and not necessarily comparing findings between cases.  

The main finding of the current work is that MTR has different underlying 

histopathological substrates in normal appearing and lesional tissue. NAWM and NAGM 

MTR was mainly associated with myelin content, as previously reported (Schmierer et 

al. 2004; Schmierer, Tozer, et al. 2007b; Schmierer, Parkes, et al. 2010), but no 

association between MTR and myelin was found in lesional tissue. 

NAWM MTR was highly independently associated with myelin content and showed a 

near significant association with neuronal content. This finding agrees with findings  

previous work (Schmierer et al. 2004; Schmierer, Tozer, et al. 2007b), which used 

Pearson correlation analyses in which data from normal appearing tissue and lesions were 

combined. The current study used more refined statistical mixed effect regression models, 

in which normal appearing tissue was analysed separately from data from lesional tissue, 
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and these models show that in NAWM MTR was associated with myelin content 

independently of neurons and astrocytes. In addition, these previous studies were done at 

1.5T and 9.4T, at different resolutions than described here.  

Similarly, NAGM MTR was mainly associated with myelin content, as reported before 

(Schmierer, Parkes, et al. 2010), and showed a negative association with astrocytes, which 

contrasts to previous work which reported an absence of a correlation between MTR and 

gliosis (Schmierer, Parkes, et al. 2010). This discrepancy may partly be explained by the 

use of multiple regression models in the present study, as opposed to Pearson correlations 

in the previous work, allowing the study of associations independent of the stronger 

association between MTR and myelin; the previously described correlation between 

axonal content and MTR (Schmierer, Parkes, et al. 2010; Schmierer et al. 2004) may be 

partially explained by the stronger correlation between myelin content and MTR, and 

between myelin content and axonal content.  

Importantly, whereas MTR in NAGM and NAWM was predominantly associated with 

myelin content, lesional GM and WM MTR did not show any association with 

histological markers. Both GM and chronically inactive WM lesions have lower MTR 

and lower SMI94 and NF200 levels, but in these tissue types no link between MTR and 

myelin (and neurons) was found.  

As described above, the discrepancy between the present findings and previous studies 

may be explained by the statistical methods applied in the present and previous studies. 

To illustrate the differences between the statistical analyses performed in the current work 

and in the studies described previously, comparable statistical models that were applied 

in the previous studies were evaluated on the present data, combining non-lesional and 

lesional tissue for WM in single models (Schmierer et al. 2004; Schmierer, Tozer, et al. 
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2007b; Schmierer, Parkes, et al. 2010; Tardif et al. 2012). GM data were not analysed as 

the sample size was not sufficient. This analysis showed highly significant independent 

positive associations between WM MTR and myelin and neurons, as reported in these 

previous studies, (as well as a negative association with gliosis). Grouping lesional and 

non-lesional data therefore illustrates that independent associations between MTR and 

myelin, neurons, and gliosis exist, but when refining this model by looking at single 

tissues only, this association appears absent in lesional tissue, and seems to be mainly 

driven by their correlation in normal appearing tissue.  

6.4.3 Methodological considerations 

To interpret the current study, a number of limitation should be taken into consideration. 

Post mortem studies have an inherent bias towards including tissue of people with late 

stage or more aggressive MS. Of the sixteen people with MS included in the current study, 

seven had clinically defined SPMS, confirming this bias. 

In previous MRI-histology studies, tissue was scanned submerged in formalin, fomblin, 

and PBS (Schmierer, Tozer, et al. 2007a; Schmierer et al. 2004; Gilmore, Geurts, et al. 

2009b; Geurts, Pouwels, et al. 2005). While not presented in the present work, unfixed 

tissue was found to be scanned best submerged in PBS compared to formalin, which 

would fix the tissue, or fomblin, which affects binding affinity of the chosen histological 

markers. The fixed tissue was scanned in PBS rather than in formalin, which is commonly 

used in post mortem MRI, because free flowing formalin severely reduces T2 relaxation 

(Bossart 1999). Our average MTR values from fixed tissue were somewhat lower than 

those reported in vivo: NAGM: 30.7 and 31.9, respectively, and NAWM: 34.0 and 37.9 

(Davies et al. 2004). 
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The current study assesses the relationship between MTR and quantified histological 

measures. To this end it is important to note that while care was taken to run the histology 

on tissue in as few processing batches as possible rather than processing the cases 

individually, the quantification of the histology has a number of limitations reducing the 

interpretability of the subsequent statistical analyses. Firstly, in addition to average stain 

intensity, the number (or density) of positive cells could have yielded a more robust 

metric. Secondly, while to ensure specificity of the makers the histology stains were 

established using both positive and negative controls and the staining was ran using 

positive controls, the threshold used for the histology quantification was based on 

thresholds that were not validated with the use of these controls. The mixed effects models 

used subsequently reduced within-subject variance, but will not have been able to address 

this limitation of thresholds. By using additional quantification methods, future analyses 

of the currently presented data (as well as of the remaining cases) will address this specific 

limitation. This will include an in-house ImageJ script that in addition to stain intensity 

also obtains the number and density of positive lymphocytes. Correlation analyses 

between stain intensity and cell counts will be performed, and both metrics will be used 

in subsequent statistical analyses. 

The MTR scans had a slice thickness of 2mm, whereas the histology image had a slice 

thickness of 20µm. This means that while in-plane registrations were comparatively 

accurate, registrations in the third dimension was less precise. Although this is a common 

limitation in MR-histology studies, this reduces our ability to correlate MR indices to 

histology, as correlations are evaluated between data from different volumes. 

Finally, histology images suffer from deformations/alterations resulting from their 

preparation, which makes the process of visually matching histology and medical images 

complicated and biased. The histology-MRI registrations used in the present work were 
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data-driven, and are likely to introduce less bias than manual registrations using 

anatomical landmarks as is the most common approach in post mortem MRI studies. The 

semi-automated histology-MR registration used allows better reproducibility and 

accuracy through the (automatic) optimisation of a cost function: it takes into account the 

degree of similarity between two images and other criteria—in the case of deformable 

registration—that control the transformation by allowing certain behaviours. Aligning 

histology with an MR plane was performed though a combination of non-linear and linear 

transformations, which respectively created the histology group wise space and a 

mapping between both. Non-linear registration was based on free-form deformations and 

linear registrations were based on a block-matching approach. While the resulting 

registered images required visual inspection, this method is more robust and reproducible 

than manual registrations. 

6.5 Conclusions and future directions 

The current study describes the underlying histopathological substrates of normal 

appearing and lesional GM and WM, and how these cellular markers relate to MTR to 

gain better insight in what this scan type represents. The present chapter includes data 

from five MS cases, and the interpretation of the findings presented here are therefore 

only applicable to other MS studies. The analysis of data of tissue from healthy controls 

would add substantial value to this work, as this will allow tissue characteristics that may 

occur specifically due to the MS disease process. As mentioned below, this is one of the 

main priorities for the continuation of this project.  

A difference in cytological make up was found between NAWM, NAGM and lesional 

WM and GM, and provide further evidence for diffuse non-lesional pathological 

mechanisms via microglia-mediated mitochondria damage. Furthermore, MTR was 

found to have different histopathological substrates depending on whether it is measured 
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in lesional or normal appearing tissue: MTR is associated with myelin content in normal 

appearing tissue, but this relationship appears absent in demyelinated cortical lesions or 

chronic inactive WM lesions, and this finding may have consequences for the 

interpretability of in vivo MTR scans and the use of this scan type in remyelination trials. 

Further analyses of the acquired data, comparisons to controls, and other tissue types 

(active WM lesions, DGM, etc.) will provide further insight into the biological correlates 

of MTR. Particularly, in light of the finding of substantial damage to DGM structures 

including the thalamus, as also presented in chapters 4 and 5, one of the main priorities 

of future work is to analyse data obtained from ROIs with DGM tissue. 

The current work may be elaborated upon in five specific ways. Firstly, in this chapter 

data of twenty cassettes of five cases have been included. Even in this subsample of the 

twenty cases scanned, important significant differences were detected between tissue 

types. These findings are expected to be strengthened after analysing the remaining data, 

which also include control data. Secondly, as mentioned above, only four types of tissue 

have been analysed (i.e. normal appearing CGM, NAWM, GM lesions, grouping cortical 

lesion type 1, 2, 3, and 4, and chronic inactive WM lesions), and to aid interpretability of 

MTR scans in remyelination trials, it is particularly valuable to analyse different 

(demyelinated and remyelinated) lesion subtypes. Furthermore, as DGM pathology 

occurs early and disproportionally in the MS disease process, as also described in chapter 

4 and 5, it of particular importance to expand the current work to establish the 

histopathological correlates of DGM abnormalities. Thirdly, while in the current study 

data was not obtained from tissue from both hemispheres, the brain asymmetries 

described in chapter 5 may be evaluated with future work by taking samples from both 

hemispheres for comparative analyses Fourthly, in this chapter MRI data of fixed post 

mortem tissue is presented which will have been affected by the fixation process. It has 

been reported that GM and WM T1 and MTR signal is affected similarly (Schmierer, 
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Thavarajah, et al. 2010). To reproduce these findings and to describe these changes in 

lesional tissue, future analyses of fixed and unfixed these data will be performed to 

translate the current findings towards clinical scans. Finally, more refined statistical 

analyses may be applied, including partial component analyses to assess if the histological 

markers used cluster into different categories which may have stronger independent 

associations with MTR (and the yet unanalysed DTI data) than the individual histological 

markers alone. 
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Chapter 7  

Conclusions and future directions 

The current thesis aimed to provide insight into the clinical impact, the spatiotemporal 

distribution, and histopathological correlates of MRI-detected MS pathology, with a 

specific focus on GM.  As outlined in chapter 3, this work consists of three independent 

MRI studies which include in vivo, post mortem, and histological investigations, and 

specifically aimed to answer the following questions. 

1) Do GM lesions and GM atrophy co-localise, and what is their independent 

contribution to clinical disability in vivo? 

2) Can thalamic and cortical GM pathology, as detected by in vivo MTR MRI, be 

explained by prior damage to connecting WM tracts, or vice versa? 

3) What are the independent underlying histopathological substrates of MTR 

abnormalities of CNS pathology in MS? Are they the same in NAGM, NAWM, 

and lesional GM and WM? 

7.1 Key findings 

The main findings of the present work are as follows. 

1) DIR-detected GM lesions do not consistently co-localise with GM atrophy, as 

these GM lesions are mainly found throughout the entire cerebellar and cerebral 

cortex, whereas consistent atrophy was found predominantly in subcortical GM 

structures. Both GM lesions and atrophy contributed to disability, suggesting that 

the substrates of disability in MS are both pathologically and spatially 

heterogeneous. 
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2) WM injury to thalamo-cortical systems is found to precede (both thalamic and 

cortical) GM damage. Furthermore, lower regional cortical MTR was not found 

to be associated with lower volume, suggesting that significant cortical 

microstructural damage can occur in MS in the absence of atrophy. Finally, in 

both people with MS and healthy controls highly significant hemispheric 

differences exist in MTR and regional cortical volume, as well as significant MTR 

heterogeneities within and between thalamo-cortical tracts, emphasising the need 

to account for this in statistical models to detect disease-specific changes. 

3) MTR is associated with histologically quantified myelin (and to a lesser extent 

neuronal content) in NAGM and NAWM tissue, whereas this relationship appears 

absent in demyelinated cortical lesions or chronic inactive WM lesions. This 

finding may have consequences for the interpretability of in vivo MTR scans and 

the use of this scan type in remyelination trials. In addition, the cytological make-

up has been found to differ between NAWM, NAGM and lesional WM and GM, 

and provides additional evidence for microglia-mediated mitochondria damage in 

normal appearing MS tissue. 

7.2 Specific conclusions regarding methodology  

As described in chapter 2, MRI has proven invaluable in the study of GM injury in MS. 

The MRI sequences used in the current thesis allow the visualisation and the study of 

different manifestations of GM pathology.  

In chapter 3, 3D T1-weighted volumetric scans allowed an estimate for regional and 

global atrophy via registrations to a cohort-specific DARTEL template, while DIR scans 

visualised GM lesions. As mentioned in the discussion of chapter 3, DIR scans are 

suboptimal in the visualisation of GM lesions, and prospectively only detect an estimated 

18% of histopathologically detected cortical lesions (Seewann et al. 2012). Novel MRI 
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sequences with fewer artefacts, such as the PSIR scan (Sethi et al. 2012), may allow better 

assessment of GM lesions in vivo. 

As significant anatomical asymmetries exist in the brain, as well as MTR heterogeneities 

within and between cortico-thalamic tracts, as described in chapter 5, studies assessing 

CNS pathology may benefit from more refined statistical analyses in which left and right 

ROIs are analysed separately, or where adjustments are made for side. Similarly, 

subdividing WM into smaller ROIs may aid in distinguishing disease-specific changes in 

MTR from intrinsic tissue heterogeneities.  

Finally, in chapter 4 and 5, MTR was used to study GM abnormalities. MT scans make 

use of cross-relaxation properties of freely moving protons and protons with restricted 

motion which are thought to be bound to macromolecules (Enzinger et al. 2015; 

Henkelman et al. 2001), as described in chapter 2. It has previously been shown that MTR 

signal correlates predominantly with histologically quantified myelin content in the brain 

(Schmierer et al. 2004; Schmierer, Tozer, et al. 2007b; Schmierer, Parkes, et al. 2010). 

However, the associations I these previous studies between myelin and MTR may be 

partly attributed to the statistical models used, in which data of normal appearing and 

lesional tissue were combined, whereas the study described in chapter 6 suggests that 

MTR may have different histopathological substrates in lesional and normal appearing 

tissue.  

7.3 Specific conclusions regarding MS pathology 

Chapter 4 describes that DIR-detected GM lesions and atrophy do not consistently co-

localise, as DIR-detected lesions were mainly found throughout the entire cerebellar and 

cerebral cortex, whereas GM atrophy mainly affects DGM structures. This spatial 

dissociation suggests that different pathogenic processes may underlie these forms of 
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injury, and is further supported by the observed differences between MS subtypes differed 

in patterns of GM lesions and atrophy.  

Chapter 5 describes longitudinal associations of MTR thalamo-cortical WM tracts with 

subsequent MTR in thalamic and cortical GM. While the results of this chapter suggest a 

potential WM to GM evolution independent of anatomical connectivity, this study was 

not able to exclude tract-mediated pathology as a link between these forms of tissue 

damage. These findings may be interpreted as being part of a wider stage-dependent 

process leading to both WM and GM tissue damage. Possible pathogenic mechanisms 

may include wide spread inflammation (Lassmann et al. 2012), and the presence of 

microglia inducing a more generalised diffuse pathology (Kutzelnigg et al. 2005). This is 

in line with the finding of diffuse microglial activation, and corresponding mitochondrial 

damage in NAWM and NAGM in chapter 7. Alternatively, or additionally, a tract-specific 

spread of pathology may be induced by anterograde trans-neuronal degeneration, 

retrograde trans-neuronal degeneration, or Wallerian degeneration (Kipp et al. 2015). 

7.4 Future directions 

To gain further insight into pathophysiology of clinically relevant GM injury in MS, 

analyses in chapter 5 may be refined by looking at differences between MS subtypes, as 

the MS subtypes differ in terms of GM and WM damage. Furthermore, it is important to 

assess the correlations between damage to individual cortico-thalamic systems and 

clinical performance.  

In addition, chapter 6 presents data of five cases, while data have been obtained of 20 

cases including four controls. Analyses of the remaining cases is likely to strengthen the 

findings by making the statistical models more robust. Additionally, analyses of different 

tissue types may provide insight into if the histopathological substrates of MTR (and DTI) 
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differ between these other tissue types. Finally, more sophisticated statistical models may 

be applied, including partial component analyses and machine learning approaches to 

assess whether the histopathological metrics cluster into different groups.  
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Appendix I - Supplemental material chapter 4 

Domain Region Side cm3 Peak T-value 
MNI coordinates of local 

maxima 

      x y z 

Executive 

function 

  

Precentral Gyrus R 0.08 3.75 48 8 29 

Inferior Frontal 

Operculum 

R 0.24 3.84 49 9 28 

Anterior cingulum L 0.07 3.48 -2 43 14 

Cerebellum Crus1 R 0.18 3.51 40 -65 -37 

Cerebellum Crus2 R 0.04 3.48 40 -65 -38 

Cerebellum 8 R 0.01 3.32 38 -57 -47 

Memory 

function 

Superior frontal 

lobe 
R 0.01 3.29 17 3 72 

25TWT  Cerebellum Crus2  L 0.02 3.31 -30 -77 -36 

zPASAT Supramarginal 

gyrus 
R 0.01 3.28 58 -39 33 

 Cerebellum Crus1 L 0.01 3.34 -29 -60 -38 

  Cerebellum 6 L 0.03 3.59 -27 -58 -35 

z9HPT Precentral gyrus R 0.04 3.36 11 -24 75 

Supplemental table 4.1. Regions with increased lesion probability associated with poorer performance in 

clinical domains thresholded at p=0.001 uncorrected. Lesion load in the cerebellum in particular is related 

to poorer executive, TWT speed, and PASAT performance. 
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Domain ROI  Total grey matter volume  GM lesion volume 

   B SE p Adj R2  B SE P Adj R2 

EDSS Cerebellum  -0.053 0.022 0.018 0.203  2.562 0.960 0.009 0.216 

 
Postcentral 

gyrus 
 -0.294 0.093 0.002 0.242  5.441 2.326 0.022 0.199 

Executive 

function 
Cerebellum  0.042 0.015 0.006 0.067  -1.567 0.665 0.021 0.038 

Memory 

function 
Cerebellum  0.026 0.011 0.020 0.066  -1.205 0.483 0.015 0.072 

 
Postcentral 

gyrus 
      -2.695 1.164 0.023 0.062 

25TWT Cerebellum  0.014 0.006 0.020 0.156  -0.543 0.244 0.029 0.148 

 
Postcentral 

gyrus 
 0.062 0.024 0.014 0.164  -1.574 0.574 0.008 0.176 

zPASAT Cerebellum  0.047 0.012 <0.001 0.150      

 Insula  0.336 0.099 0.001 0.122      

 

Medial 

temporal 

lobe 

 0.286 0.094 0.003 0.098      

 
Postcentral 

gyrus 
      -2.842 1.399 0.032 0.076 

 
Prefrontal 

lobe 
 0.026 0.011 0.025 0.052      

z9HPT Cerebellum  0.023 0.009 0.016 0.100      

Supplemental table 4.2. MRI abnormality (volume loss and/or lesions) in ROIs significantly associated with 

poorer clinical function. If both volume loss and increased lesion burden is associated, the strongest 

contributor is presented in italics.  
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Appendix II – Supplemental material chapter 5 

Follow up global comparisons 

At follow up, average T2 lesion volume in the MS group was 11.51±1.73ml. No controls 

had lesions. Using the same models as for baseline, thalamic volume was similarly found 

to be significantly lower in MS (5.27±0.12ml) than controls (6.90±0.28ml, p<0.001), with 

the left thalamus being significantly larger than the right (0.15±0.03ml, p<0.001). Total 

CGM volume was not significantly different between the MS group (478.68±3.47ml) and 

controls (485.92±.0.80ml, p<0.419). Global cortical MTR, NAWM MTR, and DGM 

MTR were not significantly different between people with MS (CGM: 31.56±0.15, WM: 

39.35±0.15, DGM: 33.82±0.14) and controls (CGM: 31.97±0.35, WM: 39.78±0.34, 

DGM: 34.42±0.32, all p>0.101). 
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  MS Controls p-value Right – left  
(only 

presented if 
significant) 

p-value 

Thalamic 
group MTR 

MG 34.69±0.19 35.34±0.34 0.178   

 LG 36.79±0.22 37.30±0.51 0.366 -0.23±0.09 0.015* 

 PG 34.68±0.20 35.43±0.46 0.140 -0.42±0.10 <0.001*** 

White 
matter tract 
MTR 

MG-
PFC 

39.34±0.17 39.93±0.38 0.168 0.30±0.11 0.007** 

 LG-
SMC 

39.09±0.17 39.53±0.40 0.333 -0.41±0.09 <0.001*** 

 PG-
OCC 

38.58±0.20 40.10±0.46 0.003** -0.81±0.11 <0.001*** 

Cortical grey 

matter MTR 

PFC 32.60±0.17 33.08±0.37 0.934   

 SMC 33.60±0.18 33.94±0.39 0.973   

 OCC 32.11±0.20 32.84±0.43 0.318 -0.38±0.08 <0.001*** 

Cortical grey 
matter 
volume (ml) 

PFC 64.32±0.45 62.59±1.07 0.143 1.44±0.23 <0.001*** 

 SMC 31.47±0.21 32.43±0.50 0.081 -2.02±0.19 <0.001*** 

 OCC 44.27±0.33 44.36±0.80 0.018*   

 

Supplemental table 5.1. Follow up differences between the MS group and controls in MTR and volume of 

thalamic nuclei, WM tracts, and cortical grey matter. Highly significant left-right differences were 

observed. MTR and volume differences between patients and controls were only seen in the posterior-

group-occipital cortex system. 
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Supplemental figure 5.1. Follow up mean MTR values in controls (left), MS (middle), and difference 

between MS and control (right). 
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Part of thalamo-cortical 
system 

 
 

EDSS PASAT TWT average speed 9HPT 

B p B p B p B p 

MG-PFC tract 
 

n.s. 
 

n.s. 
 

n.s. 0.28 0.050 

LG-SMC tract 
 

n.s. 
 

n.s. 
 

n.s. 
 

n.s. 

PG-OCC tract -0.22 0.024 0.03 0.039 0.94 0.037 0.44 0.010 

PFC cortex 
 

n.s. 
 

n.s. 0.62 0.049 0.26 0.029 

SMC cortex -0.17 0.046 
 

n.s. 0.75 0.046 
 

n.s. 

OCC cortex -0.23 0.004 
 

n.s. 1.00 0.005 0.46 0.001 

MG thalamic group  -0.23 0.023 0.03 0.031 1.18 0.009 0.58 <0.001 

LG thalamic group  -0.28 0.028 
 

n.s. 1.28 0.016 0.61 0.002 
PG thalamic group -0.26 0.012 0.03 0.031 1.28 0.006 0.61 <0.001 

 

Supplemental table 5.2. Follow up associations between MTR in tract, cortex, and thalamic group ROIs 

of the three thalamo-cortical systems and clinical function assessed by EDSS, PASAT, TWT and 9HPT.   
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Appendix III - Supplemental material chapter 6  
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Histology quantification 

Tissue areas were separated from background ‘glass’ using a composite image layer 

comprised of the lowest pixel value from the 3 colour layers (red, green and blue), and a 

smoothed version of this composite layer created using a 25×25 pixel filter, assigning the 

median value to the central pixel.  Initial segmentation of the image was performed by 

applying quadtree method to the filtered image layer; objects were then merged if the 

difference in mean intensity was below 5. The 10th centile (C10), the threshold that 

separates the darkest 10% of pixels, was then taken from objects with a mean pixel value 

below the mean intensity of the whole image in the filtered layer, i.e. background regions.  

This threshold was then adjusted by -5 (C10-5) to ensure exclusion of lightly stained 

areas, and all pixels were then classified as ROI<C10-5<Background on the filtered layer, 

then the background objects were classified as ROI<C10-5<Background on the unfiltered 

layer.  Background objects with area less than 20mm2 were then merged into the ROI, 

and ROI objects with area less than 1% of the total area of ROI were removed into the 

background.  Stain analysis was then performed on the tissue region represented by the 

ROI objects.  

Raster images representing the intensity of blue (Bl) and brown (Br) staining were 

extracted from the RGB image using the hue-saturation-density method (van Der Laak et 

al. 2000). This gives separate images for each colour (Bl and Br), with values ranging 

from 0 (colour not present) ~3 (dark stain). A threshold (ThBl) to separate significantly 

stained blue areas (nuclei) was calculated using a centile based method which compares 

the threshold given for increasing centiles, searching for significant increases in value.  

For identification of brown stain an additional image layer was created where each pixel 

is assigned the value Bl-Br, so that any region with significant brown stain has a negative 

value.  Potential brown areas (Brown) are identified as regions with Bl-Br ≤ -0.01.  
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Regions of Brown were split to exclude pixels with optical density (OD=Bl+Br) ≤0.01 

(unstained areas).  Brown areas with area <5µm were removed, and the 5th centile for Br 

(C5Br) calculated from Brown pixels; any Brown pixels with Br ≤ C5Br were reclassified 

as brown background (BrB).  The standard deviation of Br within BrB was then calculated 

to give sBrB. The ROI was then split by classifying all pixels with Br>C5Br+sBrB & Bl-

Br ≤ -0.01 as Brown.  Two thresholds were then calculated from the ROI not classed as 

Brown using the mean value of Br ([Equation]) and the standard deviation of Br sBr; 

ThBr1=[Equation] + 3(sBr) and ThBr2=[Equation] + 6(sBr).    

IHC stain identification was performed by classifying all pixels initially identified as ROI 

as Tissue ≤ ThBr1<Brown Stain ≤ThBr2<Dark Brown Stain based on image layer Br.  

Nuclear identification was then performed using an image derived from the image layer 

Bl, using a 3x3 pixel filter and a Gaussian distribution (Bl3).  The Tissue region was 

classified as Tissue ≤ ThBl<Nucleus based on image layer Bl3.  The Nucleus regions 

were subsequently grown into bordering pixels with OD>0.05. Any Tissue object with 

area <3µm2 enclosed by Nucleus was removed into the surrounding Nucleus, then any 

Nucleus object with area<20µm2 removed into Tissue.  Separation of connected nuclei 

was performed by applying a rolling ball of 6 pixel diameter to any Nucleus with area 

>50µm2.  This identifies any area of Nucleus into which a 6 pixel ball cannot fit as Blue. 

Blue objects with area >10µm2 were classified as Nucleus, and then all Nucleus objects 

were grown into bordering pixels classified as Blue.  Any remaining Blue objects were 

removed into Tissue.  
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Results of two cases with normal appearing white matter, normal appearing grey 

matter, and white matter lesion data 

Including data of only two patients that had data for NAGM, NAWM and WM lesions, 

yielded comparable means intensity estimates as including five patients. For two patients, 

the ‘one mean per ROI per cassette’ models and the ‘ROI tiles’ models gave comparable 

estimates for mean stain and MTR intensities as displayed in supplemental table 6.1 and 

supplemental figure 6.1. Similar to the analysis for data from five subjects, the tile models 

gave highly significant differences in group wise comparisons between ROIs (GM-WM, 

and WM-WM lesions), all group wise comparisons p<0.01, except for CD3 and CD8. 

The current section will conservatively focus on results of the ‘one mean per ROI per 

cassette’ models.  

MTR was significantly higher in NAWM compared to WM lesions (p<0.05). SMI94 

intensity was nearly significantly higher in NAWM than in NAGM (p=0.09), which in 

turn had significantly higher SMI94 staining than WM lesions (p<0.001). NF200 staining 

was lower in WM lesions than in NAWM (p=0.03). Concentration of GFAP was higher 

in NAWM than in NAGM (p<0.001). VDAC was significantly higher in NAWM than in 

NAWM (p<0.001). The proportion of damaged mitochondria was significantly larger in 

the NAWM than in NAGM (p<0.001). CD68 stain intensity was significantly higher in 

the NAWM than NAGM (p<0.001). IBA1 stain intensity was higher in NAWM than in 

WM lesions (p<0.01). CD3 and CD8 staining did not differ between tissue types, and was 

not significantly different from zero in all tissue types for CD3 and NAGM and GM 

lesions in CD8.  
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Supplemental table 6.1. Mean intensity estimates for MTR and histological markers in normal appearing 

grey matter, normal appearing white matter, and chronic inactive white matter lesions, based on two 

cases only.  

 

  

  
One mean per ROI per 

cassette 
   

ROI tiles 
 

    NAGM NAWM 
WM 

lesions 

 

NAGM NAWM 
WM 

lesions 

MTR 
mean 35.22 38.83 31.40 35.99 41.59 29.61 

SE 1.92 9.84 1.93 1.71 1.70 1.81 

SMI94 
mean 72.75 92.75 47.10 76.64 93.06 21.68 

SE 13.10 12.87 13.10 3.31 3.23 3.82 

NF200 
mean 52.13 56.54 45.20 49.38 56.14 45.48 

SE 5.12 4.95 5.12 2.80 2.66 3.68 

GFAP 
mean 11.95 70.48 80.20 13.79 75.41 60.38 

SE 6.49 6.12 6.49 1.30 1.02 2.49 

VDAC  
mean 80.56 44.02 44.00 80.88 40.71 62.13 

SE 8.74 8.50 8.71 7.87 7.84 8.05 

% 
mitochondria 
damaged 

mean 0.39 0.83 0.80 0.44 0.92 0.64 

SE 0.08 0.07 0.08 0.02 0.02 0.04 

CD68 
mean 0.30 0.97 0.86 0.49 1.14 0.78 

SE 0.22 0.22 0.22 0.50 0.50 0.51 

IBA1 
mean 8.01 10.98 5.14 8.40 10.88 5.30 

SE 6.99 6.98 6.99 8.72 8.72 8.73 

CD8 
mean 0.02 0.04 0.04 0.03 0.03 0.04 

SE 0.01 0.01 0.01 0.01 0.01 0.02 

CD3 
mean 0.13 0.11 0.11 0.14 0.08 0.12 

SE 0.09 0.09 0.09 0.07 0.07 0.08 
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Supplemental figure 6.1. Mean intensity estimates for MTR and histological markers in normal appearing 

grey matter, normal appearing white matter, and chronic inactive white matter lesions, based on two and 

five cases.  
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