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ABSTRACT 
 

Next-generation sequencing (NGS) technologies have a vast number of advantages that have 

caused a growth in their application for uncovering the genetics of complex diseases. 

Amyotrophic lateral sclerosis (ALS) is one such disease that could benefit from this technique. 

As a rapid-onset disease, the time to diagnosis must match this speed if we want to increase 

our chances of finding a treatment drug that works. In a number of ALS cases, the diagnosis 

can be aided by genetics. However, we currently do not understand the full genetic 

background of ALS and so to address this issue, I have designed a screening panel to 

sequence 25 ALS-associated genes in 1,235 patients. This data was compared against 613 

controls to perform a case-control analysis. Alongside mutation burden tests and tests for an 

oligogenic basis, I have additionally created a novel method, a pipeline assisted by machine 

learning, for uncovering high-dimensional genetic patterns that predispose an individual to 

ALS. 

 

The results indicate that there is an increase burden of rare variants in the UTRs of the genes 

SOD1, TARDBP, FUS, VCP, OPTN and UBQLN2 collectively. Additionally, we discovered an 

increased number of patients with two mutations in different ALS genes than would be 

expected by chance alone. Encompassed in these results is the finding of a novel ALS gene, 

MATR3, which we aided the first publication of. We have also screened CHCHD10 in ALS and 

frontotemporal dementia (FTD) finding confirmations of previously published mutations plus 

additional novel variants. A selection of 26 Argentinian ALS samples were included in the 

study which reveal 27 known and novel mutations across 17 patients. Lastly, machine learning 

methods are able to perform better than chance at predicting patients on the basis of their 

genetics.  

 

In conclusion, many cases of ALS, sporadic included, show a complex genetic interplay which, 

combined with the overall mutation burden, determine the risk and course of ALS. 
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CHAPTER 1. INTRODUCTION 
1.1. BACKGROUND 1.1.1. MOTOR NEURON DISEASE 

 

The complexity of the molecular mechanisms implicated in neurodegenerative diseases like 

amyotrophic lateral sclerosis (ALS) is equally paralleled by multifaceted genetics which still, 

in today’s era, are not fully understood. ALS is a severe, debilitating disease with an average 

life expectancy of three years from diagnosis. Patients nominally present with progressive 

voluntary muscle weakness affecting their ability to walk, then to talk, until eventually reducing 

the patient’s ability to breathe. Approximately 10% of cases are familial (fALS) which generally 

present at a younger age compared to sporadic (sALS) cases. Frontotemporal dementia (FTD) 

often accompanies ALS with 15% of patients meeting the FTD diagnostic criteria and as many 

as 50% displaying mild cognitive dysfunction (Ferrari et al., 2011; Abrahams et al., 2014). The 

incidence of ALS in the general European population is estimated at 2 per 100,000 person-

years with an overrepresentation of males (Logroscino et al., 2010). The most common ages 

of onset lie between 40 and 70, averaging at 55 years old. After 80 years of age, new cases 

become extremely rare. 

 

Of course, ALS is just one form of motor neuron disease (MND) and indeed the most common, 

but there are several other diseases within this spectrum which have a great similarity to ALS 

either in clinical features or pathological findings, or even both. The main motor neuron 

diseases include: ALS, primary lateral sclerosis (PLS), progressive muscular atrophy (PMA) 

and progressive bulbar palsy (PBP). ALS commonly begins with a limb site of onset but can 

also present with speech problems, termed bulbar onset, in a quarter of patients. The 

underlying aetiology involves degeneration of the upper and lower motor neurons (UMN and 

LMN). PLS has an isolated UMN phenotype, while PMA displays pure LMN symptoms and 

PBP is strictly bulbar. The motor cortex, brain stem and spinal cord are all affected in ALS and 

as the motor neurons degenerate in these areas, muscle atrophy and spasticity occurs. 

Pathologically brisk reflexes are a clear sign of UMN involvement while fasciculations 

(spontaneous muscle contractions) are due to the LMNs (Kiernan et al., 2011). 

 

There is no single diagnostic test for ALS as a whole, and consequently clinicians use the El 

Escorial criteria to categorise patients and require evidence of UMN and LMN manifestations 
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in the limbs as well as the exclusion of other disorders known to produce similar symptoms 

(Wijesekera and Leigh, 2009). Post-mortem examination reveals the presentation of 

ubiquitinated neuronal inclusion bodies which mostly reside in the motor neurons recognised 

as vulnerable in ALS (Ince et al., 1998). The role of these aggregates in the disease is still 

unsolved, we do not know if they are toxic, protective or a by-product of other disease 

mechanisms. This observation is not specific to ALS and protein misfolding is observed in 

many neurodegenerative disorders like Alzheimer’s and Parkinson’s disease (Soto, 2003). 

 

1.1.2. GENETICS 1.1.2.1. OVERVIEW 
 

Genetics is the study of heredity and deals with the variation observed in organisms as a 

consequence of their DNA. Many human disorders have had genetics implicated in their cause 

ranging from the classic cystic fibrosis to conditions traditionally considered as solely 

environmental e.g. bulimia and obesity (Müller et al., 2012). With the invention of Sanger 

sequencing in 1977, it became feasible to explore the DNA and the traits hidden within it.  

 

Variation of the DNA within genes is a normal process with the average individual containing 

ten million variants compared to our standard reference genome which is three billion base 

pairs long. However, this reference is composed of only 13 individuals which results in some 

mutations having a frequency of 90% in the population. Additionally, the word mutation bears 

with it a connotation that the change is damaging. Polymorphism on the other hand implies 

benign variation, poly describing multiple occurrences of it across the population. 

Nevertheless, common variation is involved in human disease, for example in schizophrenia 

and APOE in Alzheimer’s (Purcell et al., 2009; Guerreiro et al., 2012). In this thesis, I use the 

term mutation to describe all variation, be it causal or not. I will also put all gene abbreviations 

in italics when referring to the gene itself, and not when speaking of the protein.  

 

The classic type of inheritance, the passing of genetic traits from one generation to the next, 

is based on Mendel’s laws which are a set of rules founded on studies in peas during the 

1800s. In humans, Mendelian diseases are caused by dominant or recessive, highly penetrant 

mutations which are present in multiple patients within the same family. 
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1.1.2.2. TECHNIQUES 
 

Mutations which follow a Mendelian pattern of inheritance are the low-hanging fruit in terms of 

finding genetic causes, for the affected family members will all have the causal variant while 

the unaffected will not. In such cases, linkage analysis can be performed on families with 

dominant or recessive inheritance to uncover the causal mutation (Figure 1A). However there 

are a number of methods which can be employed in the search for causal genes and the 

mutations within them (Figure 1B-F). 

 
F i gu r e  1 .  ( A - F )  D i f fe r en t  s t ra te g ies  use d  f o r  f in d i ng  d i se ase - ca us i ng  gen es ;  s ub je c ts  

w i t h i n  t he  da sh ed b lu e  b o x  w ou l d  be  se que n ce d;  re d  sub je ct s  =  a f fe c ted .  
Re drawn f rom G i l i s sen  e t  a l . ,  (2 01 2 ) .  (A )  L in kag e  an a lys i s  can  be  pe r f ormed  on  
a  f am i l y  w i th  b o th  a f fe c t ed  a nd  u na f f ec t e d  i nd i v id ua l s .  (B )  W hen  th e  pa re nts  
a re  consa ngu ine ous ,  the  ca usa l  m u ta n t  i s  o f ten  a  ra re  h omozy gous  va r ia n t  
wh ich  nar rows  down the  searc h  f ie ld  f or  rese a rchers .  (C )  I f  a  rece ss ive  d i sord e r  
i s  sus pe c te d ,  o ne  te c h n iqu e  i s  t o  l o o k  f o r  t wo  d i f fe r en t  m u ta t ion s  w i t h in  th e  
s am e  ge ne  p ro d u c in g  a  c om p ou nd  he ter o z yg o us  e f fe c t .  ( D )  Ex ami n i ng  pa t i en ts  
f rom d i f fe rent  fami l ies  ca n  revea l  the  s ame  g ene  be ing  mutate d  in  both .  (E )  
S eq ue n c in g  t r i o s  ( m o th er ,  fa t he r  an d  ch i l d )  ca n  re ve a l  de  no vo va r ia nts  wh ich  
m a y  b e  the  ca us e  of  the  d is eas e .  (F )  Las t ly ,  i t  i s  p oss ib le  to  on ly  e xa m in e  
c a n d id a te  g en es  w h i ch  a re  su spe c t ed  t o  b e  in v o lved  in  t he  d is ea se .  (G )  F am i l y  
t r ee  w i th  a f fe c te d  ( r ed)  an d  un af fe c t ed  i nd i v id ua l s  e x h ib i t i n g  d o m in an t  
inhe r i tance .  Ar row po ints  to  th e  ha p lotype  in  re d  conta in ing  the  causat ive  
m u ta t i o n.  L in k age  an a ly s i s  c an  be  p erf o r med  t o  ide n t i f y  t h is  a re a .  ( H )  T he  f iv e  
ch rom os omes  one  th e  le f t  a re  e a ch  f rom  a  d i f fe re n t  fa m i ly  an d  sh ow the  l in ked  
re g ion  ( sh ade d re d ) .  The se  ca n  be  comb ine d to  na rrow th e  s ea rch  win d ow (b lu e  
a r row)  to  f ind  th e  cau sa t iv e  mu ta t ion.  Dra wn  in  Pa in t  v 1 51 1 .  



23  

Linkage analysis can be performed by assaying a selection of SNPs from across the whole 

genome to find regions of shared DNA (haplotypes) which segregate with the disease (Figure 

1G-H). This method exploits the fact that genomic regions in close proximity to each other are 

more likely to be inherited together. Therefore, non-pathogenic SNPs located near a disease-

causing variant are able to help in pinpointing the mutation we are looking for. However, linked 

areas can contain hundreds of genes, the sequencing of which would be extremely laborious 

with traditional Sanger sequencing methods.  

 

In a similar vein, homozygosity mapping can be used to look for recessive disorders across 

different families (Figure 1B). This method exploits the fact that inbred populations with an 

arising recessive disease often have genomic regions shared amongst the affected individuals 

which will display homozygous markers located near the disease-causing gene. This enables 

an economical screening of the genome in a small number of patients to reveal a region 

associated with a disease which can then be sequenced fully.  

 

For the strategies in Figure 1C-E, sequencing larger areas of the genome may be required to 

achieve a high confidence in the results. This can be ascertained via exome sequencing 

(described subsequently). Lastly, the least profitable of all the tactics is to only examine 

candidate genes which are suspected to be involved in the disease (Figure 1F). This relises 

heavily on our current knowledge of which genes are related in their function and all the 

functions each gene performs.  

 

Unfortunately, in rapidly fatal diseases like ALS it can be very problematic to find large families 

displaying Mendelian inheritance with DNA available from multiple affected and unaffected 

members. To complicate matters, many cases are not as simple as this and factors such as 

reduced penetrance, gene interaction, epigenetics and environmental effects may augment 

the puzzle. Genetically complex diseases have a range of mutation types defined by effect 

size and frequency in the population (Figure 2A). 
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F igu r e  2 .  (A )  G ra ph  s ho w ing  t he  p re d ic te d  d i f fere n t  t yp es  of  m u ta t ion s  as soc ia te d  w i th  
d i se ase  ba se d  on  th e  v a r ia n t  e f fec t  s i z e  a nd f r eq uen c y  i n  t he  gen er a l  
populat ion ,  def ine d  as  th e  g ene t ic  arch i t e ctu r e  o f  d is eas e  (Ma n o l io  e t  a l . ,  
2 0 0 9 ) .  ( B )  D i f f e re n t  g e n e t i c  te c hn iq ue s  a nd  p re d i c t i on s  o n  t h e  ty pes  o f  
muta t ions  each  captures  (S ing le ton  e t  a l . ,  2010) .  

Different gene discovery strategies have been developed to target these variant types (Figure 

2B). This includes genome-wide association studies (GWAS) where subjects are genotyped 

by microarrays for common variation in the genome. The power of this study is accomplished 

by using thousands of individuals, numbers that are achievable due to the relatively cheap 

cost: a test presently in May 2016 costs £35 per patient. This unbiased technique looks for 

association of common variation with disease or an observable trait, even when variants have 

a relatively minor effect, first proposed by Risch and Merikangas (1996). This falls within the 

overlap-based strategy (Figure 1D). 
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Lastly, exome sequencing, also known as targeted exome capture, is a relatively recent 

method that utilises next-generation sequencing, first described by Hodges et al., in 2007. 

Whole-exome sequencing (WES) is intended to cover all coding regions of the genome which 

accounts for about 1-2% of all DNA and contains 30 million bases (~£200 per patient). Whole-

genome sequencing (WGS) is a similar technique which attempts to read all 3 billion bases 

making it substantially more expensive (~£1000 per patient). Since predictions calculate that 

disease-causing mutations are 85% coding, most studies opt for WES over WGS (Singleton 

et al., 2010). Although the price of sequencing has dropped significantly in the past few years 

(Figure 3), it may occasionally be preferable to design a targeted capture to only include the 

genes of interest for a particular study and in a clinical setting this would be desirable in order 

to save money. This technology is discussed further in Chapter 2. 

 
F igure  3 .  The  cost  o f  sequ enc ing  a  genome s i n ce  2 0 0 1.  W i th  t he  in t r od u ct i o n  o f  e x o me  

sequenc ing  in  2007 ,  th is  cos t  has  de creased rap id ly  (A l terov i t z ,  2014) .  

 
1.2. GENETICS OF ALS 

 

At present, over 100 genes have been associated with ALS to varying degrees of significance. 

The major players are SOD1, TARDBP, C9orf72 and FUS (Figure 4). Here, the involvement 

of these genes in ALS is common, certain and undisputed. However, it is the dubious genes 

which would be of interest to fully explore with the aim of gaining a full understanding of the 

disease.  
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F igure  4 .  L i s t  o f  ge ne s  impl i cated  in  ALS  wi th  c i r c le  s i ze  re present ing  re la t ive  

contr ibu t ion  to  d ise as e .  Th i s  was  based  on  ou r  unde rstand ing  as  of  2011 .  By  
th e  e nd  of  th i s  ye a r ,  howev e r ,  C9or f72  h ad  a l r ead y  s u rp ass ed  S OD 1  a s  th e  top  
A L S  gen e.  I  a im  t o  up da te  t h is  d i ag r am b y  th e  e nd  of  th i s  t hes i s  ( re d ra w n f r om  
J o nes ,  20 1 1 ) .  

Understanding ALS genetics helps inform us about the underlying processes that are 

disrupted in the disease in the hope of designing treatments which alleviate symptoms or 

prolong life. Examining these genes and mechanisms creates a highly complex picture which 

needs to be collectively examined if we are to solve the puzzle of ALS (Figure 5). 
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F igure  5 .  (A )  D iagram to  show the  main  ALS  genes  in  b lue  ( inne r  c i rc le ) ,  o the r  as soc iated  

g ene s  in  b lack  (midd le  c i rc le )  and  th e  mole cu lar  me ch an isms  thes e  ge ne s  
incr iminate  in  ye l low (oute r  c i rc le ) .  (B )  The  s ame  d iag ram wi th  l ine s  conne ct ing  
the  genes  to  the  impl i cated  unde r ly ing  me ch an isms.  Drawn  in  Inks cape  v0 .91 .  

Previous work looking to divide familial patients up by disease classification (definite, probable 

and possible fALS) resulted in significantly different rates of mutation identification in each 

group: 62%, 42% and 11% respectively (Conte et al., 2012). Definite fALS was determined if 

two or more family members had ALS or FTD while probable described a single first- or 

second-degree affected relative and lastly possible was defined as having a distant relative 

with the disease. 

 

The next chapters are ordered by the knowledge as of 2011 (Figure 4). One aim of this thesis 

is to update this order and accurately describe each gene’s relative contribution. 
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1.2.1. SOD1 
 

The first ALS gene to be discovered was superoxide dismutase 1 (SOD1) and for a long time, 

this gene was considered to be the most common genetic cause of familial (12-23%) and 

sporadic (1-7%) cases. At a time when some clinicians still believed there was no genetic 

element to ALS, studies in families with multiple affected individuals displayed strong linkage 

to chromosome 21 (Siddique et al., 1991) which eventually revealed mutations in SOD1 

(Rosen et al., 1993). This gene is implicated in the destruction of free superoxide radicals 

giving rise to an oxidative stress hypothesis in ALS. Nonetheless, SOD1 is suspected to be 

involved in a variety of processes and the mutant SOD1 protein is observed to alter gene 

expression, cause mitochondrial malfunction, produce cytoskeletal abnormalities and induce 

dysfunctional axonal transport (Tu et al., 1996; Vos et al., 2007; Maximino et al., 2014; Tafuri 

et al., 2015).  

 

More than 170 different SOD1 mutations have been uncovered with the majority of these 

almost certainly causing the disease in the patients harbouring them (Figure 6). Mutations 

occur in all five SOD1 exons with most clustering in exon 4 and 5. Nearly all of these are 

dominantly inherited except for a few like D90A and D96N which have been shown to cause 

ALS in a homozygous or compound heterozygous state (Hand et al., 2001). A single amino 

acid substitution represents 96% of the causal SOD1 alterations with the rest being due to a 

small number of insertions and deletions. 

 

D90A most common variant in Europe while A4V is the most frequent in North America 

(Andersen et al., 2003). The former is largely associated with a slow disease course while the 

latter often involves an aggressive phenotype. However, Andersen et al. (2003) suggested 

that the atypical clinical outcomes in the American D90A cases were potentially due to 

modifiers, like other mutations or environmental factors. They also proposed that the mutant 

SOD1 protein is required for its toxicity given that null mutants have not been identified. 

Whether this gene is indeed a gain-of-function as this evidence implies or a loss-of-function is 

still contested and may, in fact, be both (Sau et al., 2007). 

 

The phenotype produced by SOD1 mutations varies greatly, for example, N86S causes a 

juvenile onset (Hayward et al., 1998), then L126S and F20C exhibit a low penetrance which 

is restricted to females (Murakami et al., 2001; Kim et al., 2007), while L117V and D101N have 
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a slow and rapid progression respectively (Synofzik et al., 2012; Ayers et al., 2014) and lastly 

I113T has extreme phenotypic variability amongst those who carry it (Lopate et al., 2010). 

While it is certain that SOD1 causes disease in a number of familial ALS patients, these appear 

to be distinct from most other familial and sporadic cases of ALS that have TARDBP 

aggregation (Farrawell et al., 2015). 

 
F igure  6 .  Mutat ions  in  SOD1  in  pat ients  (a bove  ge ne )  and  contro ls  (be low ge ne ) .  Red  

= l i ke ly  path og en ic .  D I  =  d ime r  in te r f ace .  Drawn  in  Inks ca pe  v0 .91 .  

1.2.2. TARDBP 
 

The finding of transactive response DNA binding protein 43 (TDP-43 or TARDBP) in ALS was 

a seminal step forward in our understanding of this disease, for not only did the TARDBP 

protein present in the aggregates of dying neurons but mutations in its gene was found to 

cause ALS (Sreedharan et al., 2008). This publication unconventionally found the variants first 

and the linkage afterwards. TARDBP-positive aggregates are also found in FTD cases 

(Neumann et al., 2006) but not in ALS cases caused by SOD1 mutations (Mackenzie et al., 

2007). As TARDBP was further studied, it became certain that this gene was important in ALS 

with TARDBP’s genetic contribution presenting in 3-5% of familial and 1-2% for sporadic 

patients with a number of implicated mutations (Figure 7). 
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TARDBP brought forward the idea of altered RNA and DNA processing as an underlying faulty 

mechanism in ALS, for its protein is involved in transcriptional activation, RNA stability and 

mRNA alternative splicing. There are two RNA-recognition motifs in TARDBP and a glycine-

rich C-terminal. Nominally found in the nucleus, mutated TARDBP forms aggregates in the 

cytoplasm leaving very little protein behind to perform its job. Therefore the disease may arise 

from this loss of protein function. Of course, mutations in this gene might actually confer a 

toxic gain-of-function which is suggested by the presence of TARDBP in ALS-related 

aggregates, however, that engages the contentious and unsolved debate over the aggregate’s 

role in the disease. Studies in vitro and in vivo within zebrafish cultures and transgenic models 

suggest both loss and gain mechanisms exist in ALS (Kabashi et al., 2010). 

 

Most causative mutations are single amino acid alterations clustering in exon 6 in the glycine-

rich domain. The importance of this exon is emphasised by the fact that it constitutes 60% of 

the protein and 70% of the mRNA transcript (Pesiridis et al., 2009). Typical ALS, ALS-FTD 

and pure FTD have all been observed with TARDBP mutations which are inherited in a highly 

penetrant, dominant manner (Borroni et al., 2009). 

 
F igure  7 .  Mutat ions  in  T A R DB P  in  pa t ien ts  (a b ove  ge ne )  an d  con tro ls  (b e low g ene ) .  Red  

m u ta t i o n  =  p a th og en i c ;  b l ue  =  l i ke l y  pa t h oge n i c ;  b l a ck  =  u nk n o wn ;  N L S  =  
n u c le a r  loca t ion  s ign a l ;  RRM =  RNA  re cog n i t ion  m ot i f .  Dra wn in  In ks ca pe  v 0 . 91 .  
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1.2.3. C9ORF72 
 

In contrast to most of the genes that will be described, the largest genetic contributor to ALS 

is not with SNPs but instead with a repeat expansion in the intron or promoter of C9orf72 

(Figure 8). Despite the results from linkage studies and hits in GWAS pointing to a locus on 

chromosome 9p21, the causal gene remained unknown for a lengthy period of time due to the 

nature of large repetitive regions being extremely problematic to sequence. Furthermore, the 

repeats were composed of GGGGCC making the area highly GC rich so adding to the difficulty 

in sequencing. Two independent groups discovered this mutation at the same time in ALS-

FTD pedigrees (DeJesus-Hernandez et al., 2011b; Renton et al., 2011). 

 

In the general European population, 90% of people will have between two and ten repeats in 

this gene (Renton et al., 2011). Patients seen with this polyQ expansion have hundreds to 

thousands of repeats but the exact cut off between pathogenic and benign remains unclear. 

Another neurodegenerative repeat expansion disorder is Huntington’s disease where CAG 

repeats of 36+ in the huntingtin gene have the potential to be causal. An observed 

phenomenon in Huntington’s is anticipation where the severity of the disease increases in the 

offspring of patients. This has been attributed to the instability of the expansion which gets 

larger with each generation. However, variable evidence supports the same effect occurring 

in C9orf72, with some reports linking expansion size and severity of onset (Rohrer et al., 2015; 

Gijselinck et al., 2015). 

 

Inclusions are often TARDBP-positive but more commonly, dipeptide repeat (DPR) proteins 

are the core pathological finding in C9orf72 cases. Both gain- and loss-of-function 

mechanisms have been hypothesised with the key three theories focusing on 

haploinsufficiency, RNA toxicity and DPR toxicity (Gitler and Tsuiji, 2016). The expansion is 

unstable in some tissues resulting in differences between the sizes of the expansion in blood 

compared to those in the brain (van Blitterswijk et al., 2012a). 
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F igu re  8 .  Th e  repe a t  ex p ans ion  in  C 9 orf 7 2  i s  located  e i ther  in  the  in t ron  or  w i th in  the  

promoter  re g ion  of  the  gene.  Dra wn in  I nks ca pe  v 0 .9 1 .  

1.2.4. FUS 
 

Another big player in the genetics of ALS is fused in sarcoma (FUS), also known as 

translocated in sarcoma (TLS; Figure 9). This gene was uncovered by two groups 

simultaneously in families with dominantly inherited ALS (Vance et al., 2009) and recessive 

ALS (Kwiatkowski et al., 2009). In a similar vein to TARDBP, FUS regulates mRNA alternative 

splicing and transcription while additionally being concerned with DNA repair to reduce genetic 

damage. ALS mutations in this gene induce a malfunctioning RNA metabolism and, 

accordingly, often disturb the region for RNA binding: the C-terminal domain (Lagier-Tourenne 

and Cleveland, 2009). Herein lies the link to TARDBP again for the same C-terminal region 

exhibits a clustering of disease-causing mutations (Sleegers and Van Broeckhoven, 2009). 

However, exons 3, 5 and 6 also contain mutation sites which, in contrast to the C-terminal, 

appear more frequently in sporadic patients rather than familial (Lattante et al., 2013b). 

 

The FUS protein is located in the nucleus (like TARDBP) yet mutant forms are also observed 

to accumulate in the cytoplasm as misfolded protein (Bosco et al., 2010). However, TARDBP-

positive inclusions which are found in most cases of ALS, are not present in patients with FUS 

mutations suggesting that FUS toxicity is independent of TARDBP (Lagier-Tourenne and 

Cleveland, 2009). In short, FUS is likely to be part of the same pathogenic cascade as 

TARDBP involving abnormal RNA processing and protein aggregation. Predictions 

concerning FUS’s contribution to fALS ranges between 0.6 and 20% whilst for sALS it is 

approximately 0.4-2% of cases. More than 80% of reported variants are substitutions and 

roughly 10% are deletions. De novo variants have been found (DeJesus-Hernandez et al., 

2010) as well as a range of phenotypes, including a few of juvenile onset (Bäumer et al., 2010). 
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F igure  9 .  Mutat ions  in  F US  in  p a t ie n ts  (a bove  g ene )  a nd  con tro ls  (b e low g ene ) .  Re d 

m u ta t i o n  =  p a th og en i c ;  b l ue  =  l i ke l y  p a th oge n i c ;  b l a c k  =  unkn o wn ;  RG G =  
a rg in ine -g ly c in e- g ly c ine - r i ch ;  RRM =  RN A  re cogn i t ion  mot i f ;  ZnF  =  z inc  f inger ;  
NLS  =  nuc lear  loca l i sat ion  s ig na l .  D r a wn  i n  In ks c ap e  v 0 . 9 1.  

1.2.5. ANG 
 

Thus far, the genes mentioned above can produce high-risk, causal variants whereas not all 

genes implicated in ALS are such. One example is angiogenin (ANG) whose mutations have 

been seen to increase the risk of not only ALS, but Parkinson’s disease and ALS-FTD as well 

(van Es et al., 2009; van Es et al., 2011). Greenway and colleagues (2004) selected 

angiogenin as a potential ALS gene after evaluation of a previous paper on the APEX gene 

which contained a synonymous polymorphism associated with ALS (Hayward et al., 1999). 

ANG is in close proximity to APEX and so they are likely to be inherited together. Additionally, 

ANG’s function is similar to that of another gene implicated in ALS: VEGF, as discussed later. 

For these reasons, ANG was examined to find a synonymous polymorphism (rs11701) 

associated with ALS and eventually missense variants in 15 patients (Greenway et al., 2004; 

Greenway et al., 2006). 

 

Incidence of potentially damaging variants accounts for 1-2% of fALS and 1% of sALS cases. 

Most mutations are single amino acid alterations and are suspected to induce a loss-of-

function disease mechanism. Both polymorphisms and rare variants have been selected for 
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analysis against ALS and each have displayed some promising results which are marginally 

more often replicated than not amongst different populations (Greenway et al., 2006; Wu et 

al., 2007; Gellera et al., 2008; Paubel et al., 2008; Fernández-Santiago et al., 2009; 

Millecamps et al., 2010b). Additionally, angiogenin concentrations in the serum of ALS patients 

are documented as abnormally high (Cronin et al., 2006). 

 

ANG is obviously involved in angiogenesis, however, characterisation of known ALS-causing 

mutations implicates a reduced ribonucleolytic activity in the disease i.e. modifies rRNA 

(Crabtree et al., 2007) or also in the supposed ‘neuroprotective’ ability of angiogenin 

(Subramanian et al., 2008). Since variants identified in patients also occur in controls, it is 

likely that ANG confers a very small risk for ALS, if any (Figure 10). 

 
F igure  10.  Mutat ions  in  AN G  foun d in  p at ien ts  an d  con tro l  (a bove  ge ne )  a nd  s o le ly  

c o n t r o ls  (be l o w  ge ne ) .  B lu e  m u ta t i o n  =  l i ke ly  p at ho ge n i c ;  b l a c k  =  u nk n o wn ;  R i A  
=  R ibonu c leas e  A- doma in .  Dra wn  in  In ks cape  v0 .91 .  

1.2.6. ALS2 
 

Alsin (ALS2) is a gene initially found in ALS but is now more commonly associated with other 

MNDs, particularly hereditary spastic paraplegia (HSP). Hentati et al. (1994) first provided the 

linkage location for this gene at 2q33 where a homozygous ALS2 deletion was later found in 

two separate families (Hadano et al., 2001). Both families had multiple affected individuals 

with juvenile-onset ALS. The first was a large Tunisian pedigree where DNA was available 

from 14 affected and 10 unaffected to reveal the ALS2 gene. This loci was then sequenced in 

a smaller Kuwaiti family which also showed segregation in 4 affected and 3 unaffected 

individuals. Both families were inbred. Alsin is abundant in motor neurons and has been 
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implicated in GTPase activation, cell division, differentiation, apoptosis and endocytosis 

(Yamanaka et al., 2003). 

 

There are a number of publications on families with mutated ALS2 causing infantile ascending 

HSP (Eymard-Pierre et al., 2002; Lesca et al., 2003; Devon et al., 2003; Verschuuren-

Bemelmans et al., 2008; Herzfeld et al., 2009; Eker et al., 2014) or juvenile PLS (Yang et al., 

2001; Panzeri et al., 2006; Shirakawa et al., 2009; Mintchev et al., 2009). As documented in 

these two diseases, in ALS this gene’s role is strictly limited to a recessively-inherited, juvenile-

onset disease (Yang et al., 2001; Kress et al., 2005; Luigetti et al., 2013; Siddiqi et al., 2014). 

Simple substitutions occur in homozygous or compound heterozygous form to induce a 

disease of normally slow progression (Figure 11). The association in sporadic cases is still 

currently doubtful (Beleza-Meireles and Al-Chalabi, 2009) with negative results in any study 

examining the adult-onset form of the disease (Hand et al., 2003; Al-Chalabi et al., 2003; 

Brugman et al., 2007). 

 
F igure  11.  Mutat ions  in  A L S2  found  in  pa t ien ts  (a bove  gene)  and  contro l s  (be low gene) .  

R e d  m ut a t i on  =  pa t ho ge ni c ;  b l ue  =  l i ke l y  p a th oge ni c ;  b l a c k  =  un k n own ;  g ree n 
=  I A HS P;  RC C =  Reg u la tor  of  ch romosome  cond ens a t ion ;  DH =  Db l  h omology ;  PH  
=  PH domain- l i ke ;  MORN =  Me mbrane  Oc c u p a t io n  a nd  R e c og n i t ion  Ne xu s ;  V P S9  
=  v a cu o la r  p ro t e in  s o r t ing- as s o c ia ted .  Drawn in  Inks cap e  v0 . 91 .  

1.2.7. NEFH 
 

The neurofilament, heavy polypeptide (NEFH) gene encodes a protein which forms a 

structural network with other neurofilaments to support neurons and give the cell its shape. 

These proteins are especially abundant in motor neurons where they are required for the 
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adequate functioning of the extensive and lengthy projections. A frequent observation in the 

motor neurons of sporadic and familial patients is an accumulation of abnormal 

neurofilaments, some of which form aggregates in the cell body (Hirano et al., 1984; Xu et al., 

1993). Additionally, mice models with mutated or overexpressed neurofilaments develop 

motor neuron abnormalities and axon transport deficiencies (Collard et al., 1995). However, it 

was later found that crossing SOD1 transgenic mice with overexpressed neurofilament mice 

resulted in a survival increase (Couillard-Després et al., 1998; Kong and Xu, 2000). There is 

evidence to suggest that this protective effect is achieved through neurofilament aggregation 

which sequesters harmful proteins (Nguyen et al., 2001) therefore neurofilament mutations 

may be a modifier of SOD1 toxicity. Conversely, removal of the neurofilament, light 

polypeptide (NEFL) also increases survival in SOD1 mice models (Williamson et al., 1998).  

 

The ‘KSP motif’ in NEFH is named such to describe the high occurrence of these three 

consecutive amino acids within this region (Figure 12). This repetitive segment is a largely 

conserved area important for the protein’s role in interacting with other molecules, all of which 

is vital for intracellular transport to axons and dendrites (Millecamps and Julien, 2013). 

Neurofilaments are currently being examined as potential biomarkers for ALS to aid diagnosis 

(Mendonça et al., 2011). 

 

There have been a few negative studies regarding NEFH in ALS (Rooke et al., 1996; Vechio 

et al., 1996; Garcia et al., 2006) whilst positive reports find that most variants occur in sporadic 

cases rather than familial, in the form of deletions and insertions in the KSP domain (Figlewicz 

et al., 1994; Tomkins et al., 1998; Al-Chalabi et al., 1999; Skvortsova et al., 2004). In part, this 

explains the theory that NEFH alterations behave as a risk factor for ALS rather than being 

capable of causing disease alone (Cleveland and Rothstein, 2001). Moreover, excessive 

glutamate stimulation has been shown to affect neurofilaments and cause axon transport 

deficits in cell cultures (Ackerley et al., 2000) leading to the idea that excitotoxicity in ALS may 

precede neurofilament malfunction which then exacerbates or alleviates the problem.  
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F igure  12.  Mutat ions  in  N EF H  f ou nd  i n  p a t ie n ts  (a b ove  ge ne )  a nd  c on t r o ls  ( b e l o w g ene ) .  

B lue  m uta t ion  =  l i ke ly  pa th ogen ic ;  b la ck  =  un kn own;  K S P  =  lys ine -s e r ine - pro l ine  
repeats .  Drawn in  Inks cape  v0 .91 .  

1.2.8. OPTN 
 

Optineurin (OPTN) is unusual in that it is one of the few genes to be discovered by 

homozygosity mapping and can cause both dominant and recessive forms of ALS (Maruyama 

et al., 2010; Figure 13). Using this technique on 6 individuals from 5 different families with 

consanguineous marriages revealed 17 genes linked to the disease and OPTN as the most 

likely candidate within these. A further 683 ALS patients were sequenced which confirmed 

mutations in OPTN, none were present in 2509 Japanese controls. The disease course in 

these patients was generally less severe than typical ALS. All three identified mutations 

appear to affect regions in OPTN important for binding to ubiquitin. Prior to this and more often 

than ALS, this gene causes primary open-angle glaucoma (POAG). Here, mutations exhibit 

an inhibition in the NF-κB activity of OPTN whereas ALS-associated variants do not, 

alternatively, they increase this activity (Maruyama et al., 2010). Following this, investigations 

into these mutations provided a potential link between ALS and the immune system 

(Sakaguchi et al., 2011). The OPTN protein is also implicated in Golgi maintenance, 

membrane trafficking, exocytosis and autophagy. 

 

Mutations in this gene are predominantly found in Japanese and Italian populations, and are 

seemingly rarer outside these areas (Solski et al., 2012). It is hypothesised that dominant 

OPTN cases vary in the mechanism of disease compared to recessive OPTN cases and that 
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of POAG too (Andersen and Al-Chalabi, 2011). Most variations are single amino acid changes 

which occur in <1% of fALS and <1% of sALS. Optineurin-positive inclusions have been 

detected in a small number of ALS patients and more commonly in those with causal mutations 

(Hortobágyi et al., 2011; Ito et al., 2011). 

 
F igure  13.  Mutat ions  in  OPTN  foun d i n  p a t ie nt s  ( a b ov e  g en e )  a nd  c on t r o ls  o r  un re l a ted  

d i se ase s  (be lo w  ge ne ) .  Red  mu t a t io n  =  path og en ic ;  b lue  =  l i ke ly  pathoge n ic ;  
b la ck  =  un known ;  g ree n  =  g la u com a ;  NEMO =  NF - kap pa -B  es se nt ia l  modu la tor ;  
L Z  =  Le u c in e  z ippe r ;  L I R  =  L C 3- in te ract in g  reg ion;  CC  =  co i le d  co i l ;  Zn F  =  z inc  
f ing e r .  Dra wn  in  In ks cap e  v 0 . 9 1.  

1.2.9. VAPB 
 

VAPB (vesicle-associated membrane protein-associated protein B/C) is a minor but replicated 

ALS-causing gene (Figure 14). Linkage of eight families with typical and atypical phenotypes 

from Brazil found the location 20q13 and sequencing in one of these families established the 

VAPB variant P56S. This segregated with ALS in 12 affected and 4 unaffected (Nishimura et 

al., 2004). The authors then demonstrated that this variant was absent from 400 matched 

controls and was present in 22 individuals from the other 6 families, providing strong genetic 

evidence for this gene. The same mutation in VAPB has been seen to cause ALS in some 

while causing spinal muscular atrophy (SMA) in others (Nishimura et al., 2004). The most 

common mutations are heterozygous substitutions with P56S being the most frequent variant, 

especially in Brazilian populations due to a common founder in this population (Nishimura et 

al., 2005; Landers et al., 2008a; Vinay Kumar et al., 2014).  
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Associated with the endoplasmic reticulum (ER), VABP’s functions vary from lipid metabolism 

to activating the unfolded protein response (UPR) and vesicular trafficking. ER-stress and the 

UPR are both renowned as faulty in MND (Kanekura et al., 2009). The UPR is involved in the 

removal of unwanted waste within cells and the dysfunction of which causes aggregates to 

assemble – a hallmark of ALS. Functional studies have joined the P56S mutation with causing 

aberrant localisation of the VAPB protein so that it no longer associates with the ER and 

instead forms aggregates (Nishimura et al., 2004).  

 

Other variants in VAPB include S160del which shows segregation in a family (excluding those 

of younger age) of two affected and five unaffected. However, it is also exists in the general 

population albeit infrequently (0.45%), and doesn’t disrupt VAPB protein in neurons 

suggesting this variant is not pathogenic (Landers et al., 2008a). Additionally, the variant T46I 

was only observed in a single patient but did affect VAPB’s cellular functions by inhibiting the 

UPR making the variant a more likely candidate (Chen et al., 2010).  

 
F igure  14.  Mutat ions  in  V A PB  f ou nd  i n  pa t ie n ts  (a b ove  g ene )  a nd  c on t r o ls  ( b e l o w g en e ) .  

R e d  m u ta t i on  =  pa t h ogen i c ;  b la c k  =  u n kn o wn ;  M S P  =  m aj or  s pe rm  prote i n  
domain ;  CC  =  co i led  co i l ;  TM =  t ransmembrane  domain .  Drawn in  Inks cape  
v 0 .9 1 .  

1.2.10. DCTN1 
 

Dynactin 1 (DCTN1) is attributed to roles in retrograde transport via microtubules and vesicle 

trafficking. In mice, when the function of the dynactin protein and its associate protein dynein 

is harmed, a phenotype reminiscent of motor neuron disease is observed (Teuling et al., 

2008). These two proteins form a complex within cells and are considered crucial to neuronal 

maintenance. 
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Multiple neurodegenerative disorders have been connected to DCTN1 including ALS, Perry 

syndrome, PD and FTD (Münch et al., 2005; Newsway et al., 2010; Uribe, 2010; Araki et al., 

2014). In ALS, point mutations are seen to be dominantly causal (Münch et al., 2004; Figure 

15). Research into published alterations demonstrate abnormal folding of the protein and an 

inability to bind appropriately with other associated compounds (Puls et al., 2003). 

Malfunctioning retrograde transport is implicated in the disease process of ALS with DCTN1 

adding to this theory. 

 
F igure  15.  Mutat ions  in  DCTN1  foun d in  pat ients  (a bove  ge ne )  and  contro ls  (be low ge ne ) .  

R e d  m u ta t i on  =  p a th og eni c ;  b l ue  =  l i ke l y  p a th og eni c ;  b l a c k  =  un k n own ;  C A P =  
C y t os ke le to n- as s o c ia te d  pro t e in ;  CC  =  co i le d  co i l .  Drawn in  In ks ca pe  v 0 . 9 1.  

1.2.11. VCP 
 

In 2010, valosin containing protein (VCP; P97) was identified by WES as a causal gene for 

ALS (Johnson et al., 2010). This gene had previously been connected to inclusion body 

myopathy with Paget disease and frontotemporal dementia (IBMPFD), Charcot-Marie-Tooth 

(CMT) and pure FTD cases which both have an overlap in their genetic aetiology with ALS 

(Bersano et al., 2009). In the initial study, linkage and exome sequencing revealed four 

variants in different genes which segregated with the disease (Figure 16). VCP was picked 

from these four as the most likely candidate given its history with causing IBMPFD (Johnson 

et al., 2010). The authors then went on to sequence an additional 288 patients finding four 

more VCP mutants and so making a case for the pathogenic involvement of this gene in ALS. 
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VCP is implicated in the ubiquitin-proteasome system which, considering the pathological 

hallmark of ALS is ubiquitinated aggregates, links in agreeably with the current literature 

(Blokhuis et al., 2013). This gene is additionally connected to another related mechanism of 

protein degradation, namely, autophagy (Ju and Weihl, 2010; Tresse et al., 2010). As will be 

highlighted in the rest of this report, autophagy continually reappears in the story of ALS. 

Furthermore, VCP regulates mitochondria-associated proteins which is an organelle 

recognised to be faulty in ALS (Xu et al., 2011). 

 

Current estimates for VCP’s involvement in familial and sporadic ALS stand at 1-2% and 1% 

respectively. Not all studies have replicated this finding suggesting it is either rarer than 

predicted or restricted to certain populations (Miller et al., 2012; Tiloca et al., 2012; Williams 

et al., 2012a; Zou et al., 2013a). Most mutations reported in VCP are either substitutions or 

intronic variants and cause dominantly-inherited ALS (DeJesus-Hernandez et al., 2011a; 

Abramzon et al., 2012; Hirano et al., 2015). 

 
F igure  16.  Mutat ions  in  VCP  f ou nd in  p a t ien ts  (ab ove  g ene )  an d  con tro ls  (b e low ge ne ) .  

Red  mu tat ion  =  pa thogenic ;  b lue  =  l i ke ly  pa thogenic ;  b lack  =  un known;  p ink  =  
in  IB MPFD;  g re en  =  in  CMT;  CDC48  =  N- te rm ina l  domain ;  Vps 4  =  o l ig ome r is at ion  
C - te r m in a l .  Dra w n i n  In k s ca pe  v 0 . 9 1.  

1.2.12. ATXN1-2 
 

Other genes united to ALS by repeat expansions include the ATXN1-2 genes. These code for 

the proteins ataxin 1 and ataxin 2 which are both ubiquitously expressed and located in the 

cytoplasm (ATXN1) and nucleus (ATXN2). Spinocerebellar ataxia (SCA) is a degenerative 
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movement disorder which can be caused by 40+ and 32+ CAG repeat expansions in the ataxin 

1 and 2 genes respectively (Banfi et al., 1994; Lorenzetti et al., 1997). Both ATXN genes 

appear to be involved in processing RNA, a common pathway in ALS pathology. 

 

The ATXN2 gene was largely introduced into ALS genetics when an American group used an 

unbiased screen in yeast to look for genes involved in the toxicity of TARDBP (Elden et al., 

2010). They found 27 genes in which overexpression increased TARDBP-induced cell death. 

One of these genes was ATXN2 and given its past in causing SCA, the authors explored this 

gene in fly models and in humans to find that intermediate repeats of 27-33 glutamines 

generated a significant risk for ALS in a cohort of 915 patients compared to 980 controls. 

Previous to this study, there have been reports of SCA and MND within the same patient 

(Infante et al., 2004; Nanetti et al., 2009). Consequently, these two diseases have been 

suggested to overlap in a similar fashion to FTD and ALS, in that they extend along the same 

spectrum of a syndrome (Andersen and Al-Chalabi, 2011). The finding of intermediate repeats 

in ALS is a replicated finding (van Damme et al., 2011; Yu et al., 2011; Liu et al., 2013; Lattante 

et al., 2014; Chiò et al., 2015a; Figure 17) with reports also linking ATXN1 expansion repeats 

to ALS as well (Conforti et al., 2012; Spataro and La Bella, 2014). 

 
F igu re  1 7 .  Re pe at  e xp ans ion  in  A TXN 2 .  Po ly Q =  po lyg lutamin e  reg ion;  LSM =  l i ke -sm  

d oma in ;  LsmA D =  l sm -assoc iated  domain ;  Po lyA  =  po ly (A) -b ind ing .  Drawn in  
I n ks c ape  v 0 .9 1 .  

1.2.13. SETX 
 

Mutations in senataxin (SETX) were discovered to cause ataxia with oculomotor apraxia type 

2 (AOA2) in the homozygous form in a number of families (Moreira et al., 2004). AOA2 is a 

movement disorder where the eyes are also affected. Not long after this publication, linkage 

and sequencing also tied SETX variants to ALS4 in a heterozygous capacity (Chen et al., 

2004). ALS4 describes a dominant, juvenile-onset form of the disease with a slow progression. 

Segregation was observed in three families confirming its likely role in the disease. 
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The function of this gene is unknown but theories generally centre on DNA/RNA processing 

and repair for this gene contains a helicase domain (De Amicis et al., 2011). Like its yeast 

homolog, the SETX protein responds to oxidative stress and SETX-deficient cell models show 

a reduced binding of RNA polymerase II to a number of genes and hence lowering their 

expression (Suraweera et al., 2009). 

 

There have been a number of positive studies in SETX with many patients presenting as an 

early-onset disease with slow progression (Chance et al., 1998; Chen et al., 2004; Zhao et al., 

2009; Avemaria et al., 2011; Saracchi et al., 2014; Figure 18). Although it has been claimed 

that this gene is associated with a high risk of ALS (Leblond et al., 2014) some studies report 

relatives of a SETX patient also harbouring the alteration with a proposition that other modifiers 

affect this mutation (Hirano et al., 2011). It is of course also feasible that the reported variant 

was not actually pathogenic in the initial ALS cases. Rudnik-Schöneborn et al. (2012) reported 

a family with proximal spinal muscular atrophy harbouring SETX mutations where the affected 

father had a previously reported pathogenic mutation while both affected children had this and 

another SETX variant of unknown consequence from their unaffected mother. Both children 

had an earlier age of onset by 20 years suggesting these variants combined to produce a 

more severe phenotype.  

 
F igure  18.  Mutat ions  in  S E TX  f ou nd in  pa t ien ts  (a b ov e  g ene)  a nd  con tro ls  or  a n othe r  

d i se ase  (b e low g ene ) .  Re d  mu tat ion  =  pa thogen ic ;  b lu e  =  l i ke ly  pa thoge nic ;  
b l a c k  =  u n know n ;  g r een  =  A OA 2 ;  A T P =  ATP - b in d in g ;  NLS  =  n u c lea r  l o ca l i sa t i on  
s i g n a l .  D ra wn  i n  In ks c ap e  v 0 . 9 1.  
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1.2.14. CHMP2B 
 

Genetic overlap between FTD and ALS arose again with the discovery of the chromatin 

modifying protein 2B (CHMP2B) gene. Linkage analysis and eventual sequencing identified 

mutations in a six-generation Danish family with FTD (Skibinski et al., 2005). This mutation 

lay in the splice site for exon 6 and segregated in the 11 affected and 14 unaffected individuals 

screened. Expressing this mutant in cell cultures exhibited abnormal CHMP2B protein 

location, which is usually found dispersed in the cytosol, and an atypical endosome 

morphology (Skibinski et al., 2005). Following this strong evidence for CHMP2B as a disease-

causing gene, publications in both FTD (Eskildsen et al., 2009; Lindquist et al., 2008; Holm et 

al., 2009) and ALS (Parkinson et al., 2006; Cox et al., 2010; van Blitterswijk et al., 2012d; 

Figure 19). Indeed there have been some negative results published in this gene indicating it 

is a rare cause of disease (Cannon et al., 2006; Rizzu et al., 2006; Schumacher et al., 2007; 

Blair et al., 2008). 

 

CHMP2B provides another link to dysfunctional autophagy regulation in ALS. As part of the 

endosomal sorting complex required for transport (ESCRT) machinery, CHMP2B aids the 

formation of endosomes and hence the removal of unwanted proteins. Lee et al. (2007) 

assessed that mutations in CHMP2B or loss of ESCRT function caused dendrites to retract 

leading to eventual neuronal cell death. Lastly, part of the ESCRT complex also interacts with 

spastin, a protein which causes hereditary spastic paraplegia displaying a clear link between 

these proteins and neurodegeneration (Reid et al., 2005). However, CHMP2B is ubiquitously 

expressed so it is curious how specific neuronal cells would be vulnerable to its effects.  

 

Missense variants have been reported in FTD however it is hypothesised these are unlikely to 

be damaging and only those which delete the C-terminal are considered pathogenic (Ferrari 

et al., 2010). Finally, inclusions in mutant CHMP2B cases were positive for SQSTM1 which, 

as discussed later, is a common feature in neurodegenerative diseases (Parkinson et al., 

2006). 
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F igure  19 .  Mutat ions  in  CHMP2B  found  in  pa t ien ts  (above  ge ne )  an d  c ontro l s  (b e low 

g ene ) .  Red  mu ta t ion  =  pa th ogen ic ;  b lue  =  l i ke ly  p a th ogen ic ;  b la ck  =  un kn own;  
CC  =  co i le d  co i l ;  s nf7  =  vacuo lar  s or t ing  p rote in  sn f7 .  Dra wn in  In ks ca pe  v0 . 91 .  

1.2.15. UBQLN2 
 

The chief X-chromosome gene of importance is ubiquilin 2 (UBQLN2) which causes 

dominantly inherited ALS. Mutations are observed as both juvenile- and adult-onset and, as 

implied by its name, UBQLN2 is highly involved in the ubiquitin-mediated protein degradation 

pathway. The first report of this gene came from a five-generation family with ALS and ALS-

FTD. It was observed that there was no male-to-male transmission was present and linkage 

analysis pointed towards an area on the X-chromosome (Deng et al., 2011). This pedigree 

displayed a reduced penetrance and lower age of onset in females. The causal mutation was 

identified as P497H which lies in the PXX-repeat domain and was not found in 928 controls. 

To examine this gene further, 188 more fALS or ALS-FTD patients were sequenced to find 

four more mutants all affecting proline residues in the same PXX domain. Functional work 

revealed that inclusions in these patients and in 47 other ALS cases were all positive for 

UBQLN2. Additionally, the ubiquitin proteasome system (UPS) is disrupted by mutations in 

UBQLN2 (Deng et al., 2011). 

 

Predicted to occur in just under 1% of both familial and sporadic ALS, most reported 

publications document proline amino acid substitutions as the causal origin (Figure 20). Three 

group found the P506S mutation in different populations (Gellera et al., 2013; Vengoechea et 

al., 2013; Özoğuz et al., 2015), one of which was located in a large family where X-linked 

inheritance was suspected. This family had a range of diagnoses including ALS, FTD, HSP, 

bulbar palsy and multiple sclerosis. 



46  

Four amino acids upstream of the PXX region lies the T487I variant found to segregate in two 

different families with a likely common ancestor (Williams et al., 2012b). Outside of these 

areas, variants have been identified however the evidence of their pathogenicity is not as 

strong. Daoud et al. (2012a) found two rare mutations in 590 patients but only sequenced 190 

controls while Synofzik et al. (2012) found three variants in 206 patients, none of which were 

in 1450 controls. Despite such a high number of controls, this paper does not report the 

variants uncovered in them which would have been beneficial for the research community. 

There have also been many negative studies in this gene (Millecamps et al., 2012; van 

Doormaal et al., 2012; Hernández et al., 2012; McLaughlin et al., 2014; Kim et al., 2014). 

 
F igure  20.  Mutat ions  in  U B Q LN 2  found  in  pat ien ts  (a bove  ge ne )  and  contro l s  (be low  

g ene ) .  Red  mu ta t ion  =  pa th ogen ic ;  b lue  =  l i ke ly  p a th ogen ic ;  b la ck  =  un kn own;  
UB L  =  ub iqu i t in - l i ke  domain ;  ST I=  s t re ss - induc ib le  ph os ph op rote in ;  PXX  =  
p r o l i ne  X X  r e pe at  reg i on ;  UBA  =  ub i q u i t i n -as s oc i a t ed  d o mai n .  D ra wn  in  
I n ks c ape  v 0 .9 1 .  

1.2.16. SQSTM1 
 

Paget disease of bone (PDB) is a disorder producing bone deformities where the osteoclast 

cells become overactive, a process involving the NF-κB protein complex which, as described 

previously (Chapter 1.2.8. OPTN), has a wide variety of functions. Linkage analysis and 

eventual sequencing of 24 PDB families revealed sequestosome 1 (SQSTM1/p62) as the 

causative agent (Laurin et al., 2002). As seen in VCP, this disease appears to have genetic 

overlap with ALS.  
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The SQSTM1 protein has several functions within cells and is located in both the nucleus and 

cytoplasm. It has been observed to perform as a scaffold protein and associates with ubiquitin, 

linking in the malfunctioning protein degradation pathway in ALS anew. The inclusion bodies 

from several neurodegenerative disorders immunostain for SQSTM1 including Parkinson’s 

and Alzheimer’s disease (Ciani et al., 2003). SQSTM1 responds to cellular stress, for example 

oxidative stress – an implicated molecular pathway in ALS. The aggregates that form in 

transgenic SOD1 mice have a composition that includes the SQSTM1 protein, the 

overexpression of which increases the number of these inclusions (Gal et al., 2007). This is 

dependent on the ubiquitin-associated (UBA) domain in SQSTM1. Conversely, 

overexpression of this gene also results in a reduction of TARDBP aggregates in vitro which 

is dependent on autophagy (Brady et al., 2011) 

 

Variants giving rise to ALS occur in about 1% of familial and <1% of sporadic cases (Rubino 

et al., 2012; Hirano et al., 2013;  Figure 21) although one study reported mutations in 2-3% of 

ALS patients (Fecto et al., 2011). Moreover, FTD cases with SQSTM1 mutations have also 

been published (Le Ber et al., 2013) as well as a recent discovery of this gene causing atypical 

apraxia (Boutoleau-Bretonnière et al., 2015). 

 
F igure  21.  Mutat ions  in  S QS T M1  found  in  pat ien ts  (a bove  ge ne )  an d  contro l s  (be low  

g ene ) .  B l ue  m u ta t i o n  =  l ik e l y  p a th og en i c ;  b l a ck  =  u n kn o wn ;  g re en  =  P B D ;  PB 1  
=  P h ox  an d Be m1  d om a in ;  Z n F  =  z in c  f in ge r ;  L I M  =  L I M -b i nd i ng ;  P E S T  =  p r o l ine -
g lutamic  ac id -s e r in e- th reon ine  r i ch ;  L IR  =  LC3- in te ra ct ing  re g ion;  UB L  =  
ub iqu i t in - l i ke  domain .  Drawn in  Inks ca pe  v0 .91 .  
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1.2.17. SPG11 
 

With 40 exons to its name, spastic paraplegia 11 (SPG11) is a colossal gene which causes 

autosomal recessive spastic paraplegia and more rarely ALS. The protein, spatacsin, is of 

unknown function though it is speculated to be involved in the maintenance of mitochondria 

and in the transport of proteins and vesicles (Murmu et al., 2011). 

 

The main publications of this gene in ALS include an exome sequencing study on a family 

with recessive, juvenile ALS and HSP which revealed compound heterozygous variants in 

SPG11 (Daoud et al., 2012b). Then sequencing in a large cohort of sporadic and familial ALS 

patients from Turkey where a homozygous stopgain mutation was observed in a single familial 

subject (Özoğuz et al., 2015). Beyond this, almost all reports in SPG11 are specific to spastic 

paraplegia. 

 

1.2.18. PRPH 
 

In a similar vein as NEFH, peripherin (PRPH) forms filaments which provide structural support 

to cells and, on occasion, they also bond with neurofilaments. Additionally, the PRPH protein 

is synthesised following nerve injury to promote neuronal repair (Belecky-Adams et al., 1993). 

Accordingly, it was believed that PRPH has neural regenerative abilities but this is contested 

by the observation that transgenic mice overexpressing PRPH develop selective dysfunction 

and eventual death of the motor neurons (Beaulieu et al., 1999). Like NEFH, peripherin is 

recognised as forming inclusions in ALS patient motor neurons (Corbo and Hays, 1992) and 

is also found to be abnormal in SOD1 transgenic mice (Tu et al., 1996). A similar gene, 

PRPH2, is published as causing retinal neuronal degeneration (Jordan et al., 1992). 

 

Mutations in PRPH are seen to cause autosomal recessive ALS however very few studies 

have been published in this gene (Figure 22). Examining 190 ALS and 380 control subjects 

revealed two mutations, one intronic and the other causing a premature protein truncation 

(Gros-Louis et al., 2004). This latter variant was expressed in cell cultures which exhibited 

abnormal neurofilament structures. Leung et al. (2004) detected the homozygous D141Y 

variant which was then later confirmed in an Italian cohort of 122 ALS and 245 controls 

(Corrado et al., 2011). This mutant caused the PRPH protein to be predisposed to aggregation 
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and surviving motor neurons in the affected patient’s spinal cord contained peripherin-positive 

inclusions (Leung et al., 2004). However, these two variants have been called into question 

for causing divergent forms of inheritance (Schymick et al., 2007). 

 
F igure  22.  Mutat ions  in  PRPH  f ou nd  i n  pa t ie n ts  (a b ove  g ene )  a nd  c on t r o ls  ( b e l o w gen e ) .  

A l l  mutat ions  are  o f  unce rta in  path ogen ic i ty .  I FH  =  in te rme d ia te  f i l ament  head .  
Drawn in  Inks cape  v0 .91 .  

1.2.19. FIG4 
 

Known by a few names, FIG4 (factor induced gene; ALS11; SAC3) functions as a 

polyphosphoinositide phosphatase and causes a disease identified as CMT, mentioned in 

section 1.2.11, which affects both the sensory and motor neurons. In rarer circumstances, 

FIG4 is also associated with ALS and PLS where it is hypothesised to be a risk factor for these 

disorders (Figure 23). The function of FIG4 is not entirely known but research suggests it is 

involved in autophagy (Ferguson et al., 2009), as previously mentioned is a commonly 

observed faulty system in neurodegenerative disease (Martinez-Vicente and Cuervo, 2007). 

The FIG4 protein is present on endosome membranes where it aids protein trafficking (Di 

Paolo and De Camilli, 2006).  

 

Mice models with a loss of FIG4 function exhibit neurodegeneration which is thought to 

represent CMT rather than ALS (Chow et al., 2007). The neurons of ALS and FTD patients do 

not stain for FIG4 but interestingly, the inclusions observed in Pick’s disease and Parkinson’s 

both present as positive for FIG4 (Kon et al., 2014). Despite containing seven conserved 

motifs, FIG4’s role in ALS is not always replicated and is likely to be present in only a handful 

of cases worldwide (Verdiani et al., 2013). 
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F igure  23.  Mutat ions  in  F I G4  f ou nd  i n  p a t ie n ts  (a b ove  ge ne )  a nd  c on t r o ls  ( be l o w gen e) .  

R e d  m u ta t i on  =  p a th oge n i c ;  b l a c k  =  un k no w n ;  g r een  =  CMT 4 J ;  S AC  =  
phos phatas e ;  Vac14  =  Vac14-b ind ing ;  PPPS  =  po ly -pro l ine -po ly -s e r ine .  Drawn  
in  Inks cape  v0 .91 .  

1.2.20. TREM2 
 

A recent discovery in the accumulating number of ALS genes is triggering receptor expressed 

on myeloid cells 2 (TREM2; Figure 24). Unusually for proteins affecting motor neurons, this 

gene is expressed in bone marrow and has several roles in the inflammatory response which 

follows injury or disease (Ford and McVicar, 2009). Aside from bone-related disorders, 

homozygous mutations are also seen to cause early-onset dementia and FTD (Chouery et al., 

2008; Guerreiro et al., 2013). Interestingly, heterozygous mutants have been repeatedly 

connected to the risk of developing various neurodegenerative diseases including ALS and 

Alzheimer’s (Jonsson et al., 2013; Rayaprolu et al., 2013; Cady et al., 2014). Additionally, 

TREM2 expression is altered in sporadic ALS (Figueroa-Romero et al., 2012). It is for these 

reasons that variants in TREM2 are hypothesised to contribute to mutation burden in 

neurodegenerative disease (Giraldo et al., 2013). 

 

In the nervous system, TREM2 is mostly expressed in the microglia where they support 

neurons and respond to injury by prompting repair and regeneration (Painter et al., 2015). The 

R47H variant is the most studied in neurodegenerative diseases, with Alzheimer’s often 

displaying an association (Benitez et al., 2013; Jin et al., 2014; Abduljaleel et al., 2014). 

Investigations into the different reported mutations support the idea of a loss-of-function 
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mechanism (Kleinberger et al., 2014). Regarding ALS, R47H has been studied producing both 

positive and negative results (Cady et al., 2014; Lill et al., 2015; Chen et al., 2015). 

 
F igure  24.  Mutat ions  in  TREM2  foun d in  pa t ie n ts  (a b ove  gen e )  a nd  contro ls  (b e low ge ne ) .  

R e d  mu t a t ion  =  p at h ogen i c ;  b l a c k  =  u n kn o wn ;  S P  =  S ign a l  pe pt i d e ;  I gV  =  IgV -
s e t  d om a in ;  T M  =  T r an sme mb r ane  d om a i n;  Cy  =  Cy t o p la sm i c  dom a in .  D ra wn  i n  
I n ks c ape  v 0 .9 1 .  

1.2.21. PFN1 
 

In 2012, cytoskeletal deficits in ALS were once again confirmed by the function of a novel 

disease-causing gene: exome sequencing in two ALS pedigrees revealed mutations in profilin 

1 (PFN1) as a cause of ALS (Wu et al., 2012). Transfected cell cultures of these mutants 

displayed inclusions, many of which were TARDBP-positive and highly ubiquitinated (Tanaka 

et al., 2016). The PFN1 protein is involved in controlling actin a microfilament, within the cell. 

This could place PFN1 alongside NEFH and DCTN1 as affecting the cytoskeleton architecture 

and axonal transport in motor neurons. 

 

Although the initial data on PFN1 is extremely promising, studies since have had mixed results 

with positive (Ingre et al., 2013) and negative publications (Zou et al., 2013b; Daoud et al., 

2013; Lattante et al., 2013a). The most attention has been focused on rare variants that arise 

in an abnormally high number of patients. It has since been shown that these variants increase 

a patient’s probability of developing ALS (Dillen et al., 2013; Tiloca et al., 2013; van Blitterswijk 

et al., 2013a; Smith et al., 2015; Fratta et al., 2014; Figure 25). 

 

A study in 550 Chinese ALS patients and 545 matched controls detected the synonymous 

variant L112L as significantly associated with the disease (Chen et al., 2013). Traditionally, 
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synonymous variants are disregarded when looking for a disease’s cause but recent evidence 

has been challenging this. Studies in schizophrenia and autism show an enrichment of 

synonymous mutations in regions that likely affect splicing regulation (Takata et al., 2016). 

The L112L variant is located at three amino acid residues from the start of an exon however 

it is not an evolutionary conserved position. 

 
F igure  25.  Mutat ions  in  PFN1  f oun d in  pa t ie n ts  (a b ove  g ene )  a nd  con tro ls  (b e low ge ne) .  

R e d  mu t a t i on  =  p a th og eni c ;  b l a c k  =  unkn o wn .  Dra wn  i n  In ks c ap e  v 0 . 9 1.  

1.2.22. MATR3 
 

Another addition to the long list of ALS genes found recently is matrin 3 (MATR3). This gene 

was discovered by Bryan Traynor, and his team at the National Institutes of Health (NIH), to 

dominantly segregate in a family of ALS patients (Johnson et al., 2014b). In light of this (at the 

time) unpublished information, we included this gene in our study. The full history and analysis 

of this gene is explored in Chapter 4.  

 

1.2.23. PON1-3 
 

The three paraoxonase genes (PON1-3) are enzymes involved in the hydrolysis of 

organophosphates, in other words, the breakdown of potentially damaging chemicals like 

pesticides and nerve agents. Several common polymorphisms in these genes display an 

altered protein ability at tackling these compounds. For example, Q192R affects protein 

function with each allele being more efficient at breaking down a different set of chemicals 

while L55M alters levels of PON1 expression as do promoter SNPs. The potential reason for 
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the relationship of this gene with ALS is illuminated by the fact that environmental toxins may 

conceivably increase one’s chances of MND as observed in agricultural workers and 

hypothesised in Gulf War veterans (McGuire et al., 1997; Haley, 2003; Kamel et al., 2012). 

One study found that pesticide exposure was a risk factor for ALS but this was completely 

reliant on self-reported exposure (Morahan and Pamphlett, 2006) 

 

These variants have been examined with respect to ALS producing varied results. C311S and 

Q192R were associated with ALS in a Polish cohort but the authors did not seem to correct 

for multiple testing, in which case the results were not significant (Slowik et al., 2006). Next 

the intronic variants rs10487132 and rs11981433 in North Americans were correlated with 

ALS in trios (parents and an affected offspring) but not in unrelated case-control analyses 

(Saeed et al., 2006). While in Irish populations the L55M variant combined with an intronic 

SNP was significant (Cronin et al., 2007). Morahan et al. (2007) found that promoter SNPs 

which reduce expression were more common in ALS in Australia. In contrast, C311S and 

nearby SNPs were affiliated with ALS in France, Quebec and Sweden (Valdmanis et al., 

2008), and Landers et al. (2008b) found significance with the two intronic SNPs rs2074351 

and rs705382 only. Negative studies have been published (Kasperaviciute et al., 2007; Ricci 

et al., 2011) and large meta-analyses have revealed negative results when including GWAS 

results (Wills et al., 2009) or restricting the SNPs examined to only Q192R and L55M (Lee et 

al., 2015). 

 

Most candidate gene studies report positive results which are all slightly different from each 

other despite including the same regions, whereas meta-analyses are negative. This could 

either reflect the different populations each was tested in or could simply mean the initial 

studies are false positives owing to small samples sizes. The PON genes remain contentious 

on their involvement in ALS. 

 

1.2.24. VEGF 
 

Being the archetype angiogenic factor, vascular endothelial growth factor A (VEGFA; 

commonly abbreviated to VEGF) was one of the first proteins to be examined after perfusion 

deficits were recorded in neurodegenerative diseases. Whether this is a consequence of these 

disorders or whether it contributes to them is not entirely known (Rosenstein et al., 2010). With 
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respect to ALS, interest in this gene first peaked when investigators attempted to study the 

effect of VEGF depletion. Since knockout models cause embryonic lethality, researchers 

created transgenic rodents with an altered VEGF gene (VEGFa/a) to reduce protein expression 

while still allowing survival into adulthood. This lead to a pathological phenotype reminiscent 

of human ALS (Oosthuyse et al., 2001). Furthermore, when VEGF is administered to SOD1 

mice models, their survival rate and motor function improves (Storkebaum et al., 2004; Azzouz 

et al., 2004). Deletion of the hypoxia response element of VEGF in mice is damaging 

(Oosthuyse et al., 2001) but evidence of this effect in humans is lacking (Gros-Louis et al., 

2003; Van Vught et al., 2005). 

 

Positive outcomes in VEGFA are achieved only when common polymorphisms are examined 

but this is rarely replicated (Lambrechts et al., 2003; Fernández-Santiago et al., 2006). 

 

1.2.25. DAO 
 

D-amino-acid oxidase (DAO) was documented as dominantly segregating in a large ALS 

kindred with the pathogenic variant of R199W (Mitchell et al., 2010; Figure 26). DAO is clearly 

involved in regulating D-serine which is the proposed cause of degeneration in mice models 

where the DAO activity has been inhibited (Sasabe et al., 2012). Expression of this mutant by 

use of lentiviruses instigated the aggregation of proteins and cellular dysfunction (Paul and de 

Belleroche, 2012). Since this initial report, very few groups have published in DAO except to 

report negative results (Millecamps et al., 2010a). 

 
F igure  26.  Mutat ions  in  D A O  found  in  pa t ien ts  (above  ge ne )  and  contro ls  (b e low gene) .  

R e d  m ut a t i on  =  pa t ho ge n i c ;  b l a ck  =  u n kn o wn ;  FA D  =  FA D  dep en den t  
o x i d o red u c tas e ;  N A D =  NAD - b i nd i ng  d om a i n .  D ra wn  i n  In ks c ap e  v0 . 9 1.  
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1.3. MOLECULAR MECHANISMS IN ALS 
 

As highlighted by studying the genetics of ALS in patients, cell and animal models, there are 

many molecular pathways implicated in this disease (Table 1). These mechanisms include: 

oxidative stress, protein aggregation, mitochondrial dysfunction, aberrant transcription and 

RNA processing, excitotoxicity, defective axonal transport, abnormal ubiquitin-proteasome 

system and endosomal trafficking, neuroinflammation, endoplasmic reticulum stress, 

defective glial cells and autophagy, some of which are overlapping pathways (Ferraiuolo et 

al., 2011). 

Mechanism Associated  
genes Details 

Faulty protein 
processing 

C9orf72, SOD1, 
TARDBP, FUS, 
FIG4, OPTN, 

SQSTM1, UBQLN1, 
VCP, PRPH, 

CHMP2B, VAPB 

• Proteins misfold, ubiquitinate and aggregate 
within cells 

• Increased ER stress 
• Faulty endosome-lysosome and autophagosome
• Increased apoptosis 

Disturbed RNA 
metabolism and 

RNA-binding 
proteins 

C9orf72, TARDBP, 
FUS, ANG, ATXN2, 

SETX 

• Aberrant splicing and transport of RNA 
• Sequestration of RNA-binding proteins 
• Expression patterns altered 

Cytoskeletal and 
axon/dendrite 
abnormalities 

SOD1, DCTN1, 
NEFH, PRPH, 
SPG11, PFN1, 

TARDBP 

• Impaired actin assembly 
• Build-up of neurofilaments 
• Axon retraction 
• Axon-transport disruption 

Neuroinflammation 
and astrogliosis SOD1, TREM2 • Hyperactivation of microglia 

• Excess inflammation 
Dysfunctional 

vesicles 
C9orf72, ALS2, 
CHMP2B, VAPB 

• Reduced release of neurotransmitters 
• Faulty endosome-lysosome 

Excitotoxicity C9orf72, SOD1, 
FUS, DAO 

• Excess glutamate 
• Reduced glutamate uptake 

Defective 
mitochondria SOD1, TARDBP • Reduced energy supply 

• Increased apoptosis 
Impaired DNA 

repair FUS, SETX • Reduced nuclear or mitochondria DNA repair 
• Increased oxidative stress may damage DNA 

T a b le  1 .  D e s c r ip t i on  of  th e  ma i n  mol e c u la r  m e ch an i sm  kn o wn  t o  be  a be r ra n t  in  A LS  and  
the  ge nes  which  can  be  l inke d  which  each ,  as  cove red  in  Ch ap te rs  1 . 2 . 1 -1 . 2 . 25 .  

With each of these processes, it is challenging to determine if it is a cause of disease, an 

exacerbating downstream effect, a neuroprotective mechanism or the outcome of other 

processes. It is rare to begin studying a patient with ALS until the disease has already 

progressed to the point of presenting with symptoms. This then makes it harder to dissect 

cause from effect. Motor neurons are unique in their size, or more specifically, the length of 

their axons. Maintaining these long projections requires numerous mitochondria and a 
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functioning axonal transport system, which has been suggested to be the explanation of their 

vulnerability seen in ALS. Under the microscope, differences have been observed depending 

on the genetic status of the patient (Taylor et al., 2016; Table 2).  

Subtype of ALS Pathology 

C9orf72-familial Intranuclear RNA foci, SQSTM1-positive inclusions and different 
cells with TARDBP-positive inclusions 

SOD1-famililal SOD1-positive inclusions 
FUS-familial FUS-positive inclusions 

Sporadic and other 
familial cases TARDBP-positive inclusions 

T a b le  2 .  D e s c r ip t i on s  o f  the  c om mo n  p a th o l og ie s  un de rp i nn in g  t he  su b typ es  o f  A LS .  

Impaired proteostasis is the most debated and arguably most important abnormal mechanism 

in ALS and a number of neurodegenerative diseases. Despite this, we still lack conclusive 

evidence to implicate it as an upstream causal mechanism. I believe that it is not a single 

molecular mechanism that is solely responsible for ALS but in fact many at the same time. 

Targeting a single mechanism with treatment will never be effective as a cure due to other 

pathological pathways still proceeding. It is of high importance to understand all of these 

convoluted and overlapping pathways as they advance throughout the course of the disease. 

As with the divergent pathologies, it is also likely that the different genetic subtypes of ALS 

also have an overlapping but distinct group of molecular mechanisms that underpin each.              
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1.4. JUSTIFICATION FOR CURRENT STUDY 
 

As has been illuminated above, the genetics of ALS is highly complex and multifaceted. Most 

studies so far limit themselves on both the number of patients they include and the number of 

genes sequenced. Genetics is important for understanding diseases like ALS because, as of 

yet, treatments are lacking and clinical trials are failing. Understanding the full genetics of a 

disease supports our knowledge on the underlying mechanisms involved. The key here is the 

plurality of ‘mechanism’ which results in multiple pathways a treatment must potentially target 

in order to be efficacious. This complexity is likely to be at least part of the reason for the low 

success rate of clinical trials. Secondly, a genetic diagnosis of ALS could occur in the 

presymptomatic phase of the disease and enable potential treatments to be applied at a much 

earlier stage. This creates a larger window to identify therapies with a positive effect instead 

of only utilising the drugs once a significant amount of cell death has already occurred. Lastly, 

ALS is an incredibly short disease meaning rapid diagnosis could make all the difference to 

getting a patient the right treatment. 

 

Previously, an oligogenic hypothesis of ALS has been proposed and preliminarily confirmed 

by statistics looking at the effect of rare mutation burden on disease (Cady et al., 2015; van 

Blitterswijk et al., 2012b). If a significant number of ALS cases are indeed caused by more 

than one risk variant, then genetic counselling will need to be corrected.  

 

When a heritable element is suspected in any neurodegenerative disease, genetic diagnosis 

lies with sequential Sanger sequencing. However, with an array of multiple genes causing 

each disease and, additionally, numerous alterations within each gene being potentially 

harmful, it can be time consuming and costly to diagnose a patient suspected of harbouring a 

detrimental genetic variation. Furthermore, the range of genetic tests at each institution can 

be limited. It is now plausible that next-generation sequencing (NGS) technologies will 

eliminate many of the issues with traditional Sanger sequencing. To test this possibility, we 

have developed a single comprehensive assay containing a number of genes which have, to 

varying degrees, been implicated in ALS.  
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The aims for my project include: 

1. To investigate more than a thousand cases of ALS (we have sequenced 1,235) 

2. To gather a comprehensive genetic dataset on these cases including all genes of major 

and minor importance 

3. To determine the important pathogenic and risk variants 

4. To determine the benign variation within ALS genes 

5. To investigate a potential oligogenic basis of ALS 

6. To explore novel ALS genes which are published during my project 

7. To develop a list of mutations which require additional functional studies to confirm 

their pathogenicity  

8. To explore the possibility of a genetic pattern which is associated with ALS by use of 

a new method involving machine learning techniques 

9. To make judgements on the contribution of each gene studied to ALS  

10. To contribute to the field of the genetic landscape of ALS 

 

I have been given a huge cohort of more than a thousand ALS cases which was made possible 

by the MND Association. This charity is involved in the funding of many projects like the current 

one with the sole objective of discovering a cure for MND. In order to analyse these samples 

adequately, the bulk of this project will implement next-generation sequencing to extrapolate 

information on the genetic landscape of ALS. This fast, comprehensive technique will allow us 

to incorporate many ALS genes into the study. Using this data I will be able to address many 

of the aims laid out for this project. I will also complete additional projects of rapid sequencing 

in novel ALS genes and C9orf72. 

 

I hypothesise that the genetics of ALS may be more complex than we have previously thought, 

due to the techniques used and the many single-gene studies completed. With the numbers 

of patients we have gathered, we should be able to confirm any potential oligogenic basis of 

ALS. We additionally theorise that we will be able to discredit some genes (and specific 

mutations) as not being involved in ALS outside the initial families they were discovered in.  
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CHAPTER 2 METHODS AND MATERIALS 
 

Methods described here are relevant to more than one chapter while unique methods are 

described in the individual chapters. 

2.1. PATIENTS  
A total of 1,417 DNA samples were kindly provided by the MNDA DNA bank. This comprised 

of 51 controls, 111 fALS and 1,220 sALS. A further 547 samples were obtained from University 

College London and Partners (UCLP) MND clinics which were composed of 452 ALS and 95 

FTD. Additionally, I was given 510 in-house controls which have whole-exome sequencing 

data completed on them as part of the IPDGC consortium (Simon-Sanchez et al., 2009), and 

85 in-house controls to run in my own study, 33 of which overlapped between the two groups. 

Controls were of Caucasian ethnicity, were over 60 years old and free from any neurological 

disorder. Additionally, subjects were excluded from the study if they had a first-degree relative 

with a neurological disorder including Alzheimer’s (AD), ALS, ataxia, autism, bipolar disorder, 

cerebrovascular disease, dementia, dystonia, Parkinson’s (PD) and schizophrenia. Lastly, I 

was also given 26 Argentinian samples with ALS and FTD. All patients provided written 

consent prior to the study. 

 

2.2. DNA QUANTIFICATION  
To ensure all samples were of adequate concentration for sequencing, all 1,502 were run on 

the Qubit 2.0 fluorometer (Life Technologies, UK). This machine detects the amount of 

fluorescent dye bound to DNA (or RNA), therefore providing a direct measurement of DNA 

quantity. The Qubit reagent does not bind to degraded DNA and is considered to be more 

accurate than the competing popular DNA measuring device: the NanoDrop, which can also 

measure contamination, for example, from protein. All samples were diluted to a concentration 

of 50ng/ml. 
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2.3. SANGER SEQUENCING 2.3.1. PRIMER DESIGN 
 

The Primer3 (v0.4.0) online software was used to design all oligonucleotide primers for Sanger 

sequencing ensuring they cover the exons and flanking UTRs of the gene (Untergasser et al., 

2012; http://bioinfo.ut.ee/primer3-0.4.0). Input regions were obtained from the reference 

sequence provided on Ensembl website. The resulting primer sequences were checked using 

the In-Silico PCR tool on the UCSC website to ensure they were specific for the desired 

location (https://genome.ucsc.edu/cgi-bin/hgPcr).  

2.3.2. PCR  
The Nobel Prize winning invention of polymerase chain reaction (PCR) is a core technique in 

every genetics laboratory. This in vitro method amplifies chosen regions of denatured DNA 

using short DNA sequences (primers) that are complementary to the target binding areas. 

Thermal cycling enables the denaturing of double-stranded DNA, annealing of the primers, 

followed by exponential replication using the enzyme DNA polymerase as each new product 

adds to the collection of replicable templates. The four deoxynucleotides (dNTPs; aka DNA 

precursors) are required for this experiment: dGTP, dCTP, dATP and dTTP as well as GoTaq 

DNA Polymerase and GoTaq Reaction Buffer, all obtained from Promega (UK). Some 

reactions required dimethyl sulfoxide (DSMO) or Betaine solution (both Sigma, UK). Samples 

were run on an automatic Eppendorf Mastercycler Pro S. All primers were optimised on control 

DNA to ensure the best experimental conditions, these are described separately in Chapters 

4 and 5. 

 

2.3.3. GEL ELECTROPHORESIS  
To determine if the PCR was successful, samples were run on a 3% agarose gel. This 

technique provides a porous gel in which DNA fragments can move. When an electrical current 

is applied across the gel, the negatively charged DNA will travel at a rate relative to its size. 

Given that the size of the PCR products is known, this test enables a fast detection of their 

presence in the sample. To create a gel, agarose powder (Sigma, UK) is heated and dissolved 

in TBE buffer (see Table 3 for components) with GelRed (Biotium, US). Once the gel has set, 
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it is placed into the electrophoresis tank in TBE buffer. After DNA is loaded into the gel 

alongside a 100bp ladder (Life Technologies, UK) a 120V current was applied for 30 minutes 

using PowerPac HC v1.07 (Bio-Rad, UK). The samples were then visualised using a UV 

transilluminator GelDoc-It Imaging System (Ultra-Violet Products Ltd, UK). 

 

Reagent Quantity Company 
Trizma base 12.11g Sigma, UK 
Boric acid 6.18g Sigma, UK 

Ethylenediaminetetraacetic acid 
(EDTA) 0.74g Sigma, UK 

Nuclease-free water Make up to final volume of 1L Qiagen, UK 

T a b le  3 .  R e c i pe  f o r  1 x  TB E  ( t r i s /b o ra t e/ E D TA )  b uf fe r ,  rea gen ts  a r e  d i ss o lv ed  in  th e  o rder  
prese n te d  in  th i s  tab le .  

 2.3.4. PCR PURIFICATION  
Enzymatic clean-up of PCR products was achieved by use of Fast-AP which deals with any 

abundance of dNTPs and Exonuclease I which targets single-stranded DNA for degradation 

(both Life Technologies, UK; Figure 27).  

 
F igure  27.  PCR  pur i f i cat ion  protoco l .  
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2.3.5. BIGDYE  
The sequencing reaction was achieved by use of BigDye Terminator v1.3 Cycle sequencing 

kit and 5X sequencing buffer (Applied Biosystems, USA) following the method in Figure 28. 

 

F igure  28.  B igDye  protoco l .  

 2.3.6. CLEAN-UP  
The clean-up step for the sequencing reaction is completed with Sephadex G-50 Bioreagent 

(Sigma, UK) and a FiltrEX 96 well filter plate (Corning, US) as per Figure 29. 

 
F igure  29.  PCR  c lean-up  protoco l .  
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2.3.7. SEQUENCING  
The final product is run on an ABI 3730xl DNA analyser (Applied Biosystems, USA). 

Traditionally (pre-1986), this system performed PCR amplification of the DNA molecule, 

dividing the sample into four reactions (Figure 30). Each of these have all four dNTPs while 

additionally containing one extra base in the form of a dideoxynucleotide (ddNTP). This 

modified base prevents any other dNTPs from being added. This results in many fragments 

of the DNA at different lengths with a tagged nucleotide on the end. Capillary electrophoresis 

then separates out all the fragments allowing a one base pair resolution of the product which 

was manually read to obtain the DNA sequence. In 1986, the ddNTPs were fluorescently 

labelled which meant the mixture could stay as a single sequencing reaction rather than four 

(Karger and Guttman, 2009). Sequencing reading could then be automated and generates the 

classic chromatogram which is then examined for mutations by means of the software 

Sequencher (v4.1.4.). 
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F i gu r e  3 0.  C a p i l la r y  e lect r o p hor es is  u se d  o n  f ra gm en ts  o f  p r od u c t  wh i c h  are  l abe l l ed  wi t h  
d dN TPs  an d  ru n  in  f ou r  se pa ra te  co lum n s  ( le f t ;  197 0 s )  o r  in  a  s ing le  co lu mn  
( r ig h t ;  1 98 6+ ) .  T he  la t te r  of  the se  i s  automat ica l l y  de te cte d  form ing  the  
chromatogram on  th e  r ight .  Dra wn  in  Pa in t  v 1 51 1.  
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2.4. NEXT-GENERATION SEQUENCING 2.4.1. OVERVIEW 
 

The creation of NGS has exponentially increased the amount of DNA and number of patients 

we can study. To compare, running a single 96-well plate using the traditional Sanger 

sequencing method determines on average 300-800 base pairs in the 96 patients whereas 

NGS can sequence thousands, millions or billions of base pairs in a single run. This 

unprecedented high-throughput has enabled us to study the genetics of human traits and 

disease in a high-dimensional fashion never before possible. We can now ask and answer 

more complex genetic questions to understand the underlying biology. When we want to 

assess the amount of DNA adequately read by NGS, we measure the coverage or read depth, 

which both describe how well each nucleotide was evaluated i.e. because the technology can 

produce errors, we check each nucleotide multiple times so these terms simply refer to the 

number of times the DNA was read. This is often described as, for example, 10x which means 

the average depth across the desired area was 10 reads. 

 

The mechanics underlying NGS developed by Solexa/Illumina are based on sequencing by 

synthesis (SBS) technology where fluorescently-labelled nucleotides bind to the DNA emitting 

a light which can be detected at each base along the chain. Each nucleotide will discharge a 

different colour which is imaged and then the dye is removed (Figure 31). This process is 

completed in a massively parallel way with thousands of DNA amplicons being read 

simultaneously. The collection of DNA molecules created for sequencing is called a library.  
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F igure  31 .  D iag ra m of  I l lumina ’s  sequenc ing  b y  sy n th es is  me th o d.  ( A )  A  ne w l y  a t ta c hed  

n u c le o t i de  bot h  s t op s  t he  ad d i t io n  of  ne w  b ase s  a nd  f l u o resce s  w h i ch  i s  
de te cte d  by  an  opt i ca l  sens or .  (B )  The  cha in  i s  a b le  to  g row as  the  f lu ores cen ce  
i s  c le ave d and  was he d a wa y .  (C )  Th e  f ou r  f luores ce nt ly  la be l led  ba ses  com pe te  
f or  the  n ex t  s p ot  in  th e  ch a in .  (D)  Im ag ing  f rom above  re vea ls  th e  locat ions  o f  
each  ampl i con  on  th e  f low ce l l  and  each  nuc le ot ide  i s  re ad  se quent ia l ly  to  
r e vea l  t he  n u c le o t ide  se qu en ce .  Each  co loured  dot  actua l l y  repre sents  
thousands  of  the  same amp l i con ,  te rme d a  c lus te r ,  des cr ibed  in  more  de ta i l  in  
the  next  chapter .  Drawn in  Pa in t  v1511 .  

 2.4.2. TRUSEQ CUSTOM AMPLICON PROTOCOL  
 

The NGS method I utilised in this study is the TruSeq Custom Amplicon (TSCA) assay v1.5 

(Illumina, UK). This technique utilises PCR amplicon-based target enrichment and enables 

rapid design and sequencing with huge flexibility in selecting the areas of the genome to be 

covered. The content of the custom design can include up to 652,800 base pairs. Oligo probes 

were designed using DesignStudio v1.6 online which provides metrics on quality of the 

designed oligonucleotides (http://www.illumina.com/applications/designstudio.ilmn). Figure 32 

displays an example of the DNA amplicons produced by custom oligo pairs in the FUS gene. 
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F igure  32 .  Ampl i cons  (green)  a re  des igne d  to  ade qu a te ly  cove r  imp orta n t  a reas  of  the  

g ene  F U S  i .e .  re ported  pa th oge n ic  var ia n ts  ( re d )  a nd  a l l  e x ons  (b la ck  boxe s )  
a nd  U T Rs  ( th in ne r  b l a c k  box es  a t  the  e nd s  of  th e  g ene ) .  C o nserv a t i on  a c r os s  
d i f f e ren t  spec i e s  (b l ue )  sh o w  th a t  e x on s  a r e  o f ten  h i gh l y  c on se rv ed  as  g aug ed  
b y  Ph y l o P.  Mod i f ie d  f ro m t h e  U CS C  w eb s i te  a nd  a da p te d  i n  P a i nt  v 15 1 1.  

To begin the experiment, the designed probes are incubated with each DNA sample to enable 

hybridisation of the custom oligos. These two probes bind to the same strand of the DNA to 

enable greater specificity than other PCR-based amplicon techniques (Figure 33). Unlike 

Sanger sequencing, hundreds of primers can be added to the same well containing one DNA 

sample.  

 
F igu r e  3 3.  C us t o m p r obe s  a re  d es ig ne d  t o  cov er  th e  r eg ion s  o f  in t er es t .  T he  pro bes  b ind  

t o  gen o m i c  DN A.  ( I l lu m in a  2 0 15 ) .  

Next the samples are washed using a filter plate to remove any oligo primers which have not 

bound to the DNA. Next the extension-ligation step bridges the two probes using DNA 

polymerase to create copies of the target region. This is flanked by sequences which aid PCR 

amplification in the next step. Here, each patient is barcoded with a unique section of genetic 

code enabling massively parallel sequencing as multiple patients can be pooled in the same 

mixture (Figure 34). 
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F igu re  34 .  Th e  e x te ns ion  an d  l iga t ion  s tep  cop ies  the  DN A  wh i le  th en  th e  PC R s tep  a l lows  

f or  the  a dd i t ion  of  un iq ue  DN A to  iden t i fy  e a ch  p at ie n t  an d  a l low for  b ind in g  
to  the  f low ce l l .  ( I l lumina  2015) .  

After PCR clean-up, library normalisation is achieved by essentially the same method: using 

magnetic beads at a set concentration which bind to a limited amount of DNA while allowing 

the wash-off of all other products. Lastly, 96 samples are then pooled together and denatured 

for use on the MiSeq platform (Illumina, UK).  

 

On the MiSeq instrument, a flow cell is used – a glass slide with DNA oligos protruding from 

the surface. These oligos bind specifically to the adapters on the amplicons which undergo 

bridge amplification and cluster generation (Figure 35). This describes the process of an 

amplicon bending over and attaching at both ends to the flow cell. A copy of this amplicon is 

then created and both amplicons with make new bridges for further amplification. The resulting 

mass of amplicons is called a cluster. From a single DNA molecule, 100-200 million clusters 

of identical molecules are created. 
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F igure  35 .  (A)  One  DN A mole cu le  (ampl i con)  b ind s  to  the  f low ce l l  a nd  un de rg oes  b r id ge  

ampl i f i cat ion .  (B )  Mi l l ions  o f  cop ie s  are  produced  (c lus te r  g rowth) .  (C )  C lus te rs  
a r e  v i t a l  b eca us e  the y  in crea se  th e  f lu o res cen t  s ign a l  m a k ing  i t  eas ie r  to  
de te ct .  The  actua l  images  in  th e  mach ine  have  mi l l ions  o f  th ese  c lus te rs .  
( Modi f ie d  f rom Me tzker ,  2010) .  

Illumina machines also employ paired-end sequencing (Figure 36) meaning they sequence 

every amplicon from both ends. This improves the data quality and makes it easier to align to 

the reference genome. 

 
F i gu r e  3 6.  S eq ue n c in g  f ro m  bot h  e nd s  of  th e  DN A  c an  he lp  c o m ba t  r epe t i t i ve  re g ion s  

w h i c h  a re  not o r i o us l y  d i f f i c u l t  t o  se que n ce  an d a l ign  to  t he  gen om e.  ( I l l um i na ,  
2 0 1 5 ) .  

Although NGS has rapidly increased the genetic information we can now gather, this doesn’t 

come without drawbacks. We can now produce up to 1.8TB in a single run on the latest 

technology (HiSeq X) which presents as a huge task to store, analyse and interpret efficiently. 

The required infrastructure for this task is expensive due to the sequencing machines and 
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supercomputing as well as the personnel expertise. Also, some might argue we produce more 

data then we know what to do with, as most rare variants end up in the box of unknown 

significance. Additionally, false positive calls are present in the data and although we have 

computational techniques for removing them, confirmation with Sanger sequencing is still 

often performed as the gold standard. Lastly, NGS remains inexpensive only with large 

quantities of patients and is usually run in batches of 95 samples. Our study cost 

approximately £0.0004 per base pair. If NGS gene panels are to be clinically useful, patients 

with rarer diseases might need to wait longer for enough other individuals to also be present. 

 

2.5. BIOINFORMATICS  2.5.1. OVERVIEW 
 

Generating huge quantities of genetic data requires a sophisticated chain of data processing 

elements, also known as a pipeline. That’s not to say each step occurs one after the other, 

instead, sections of a pipeline will often be computed in parallel to speed up an otherwise 

lengthy procedure. Pipelines are constantly updated and adapted to each project they are 

required for but genetic pipelines generally follow the same chain of events: process the reads 

to form a single genome (usually by aligning to a reference), report any variation detected in 

the reads (termed variant calling), remove low quality data (QC) and annotate the remaining 

variants with a range of information. For my data, I designed an array of scripts to manipulate 

the data and analyse it appropriately.  

 

2.5.2. METHOD 
 

The MiSeq has its own reporting software (MiSeq Reporter v2.5) which produces the raw 

genetic data in the form of FASTQ files. It then aligns the reads to the designed input genomic 

areas and calls variants using GATK. However, we additionally realign these FASTQ files to 

the whole reference genome as there may be off-target reads which would more appropriately 

map to other regions of the DNA (Figure 37). We use Novoalign v3 to perform this task using 

the reference human genome (UCSC hg19).  
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Variants were extracted using the Maq model in SAMtools v0.1.18 and filtered by the following 

criteria: 

• Consensus quality > 30  

• SNP quality > 30  

• Root mean square mapping quality > 30  

SAMtools calculated quality scores for each variant. I recalled variants using UnifiedGenotyper 

from GATK v3.5 (genome analysis toolkit) which is able to jointly call variants across multiple 

samples to combine them into a single file. Calls from the different methods were examined 

in parallel to ensure all variation was captured. These variants were curated by use of 

ANNOVAR (Nov2014; Wang et al., 2010), one of the leading programmes in the annotation 

of genetic data. This software provides details about each detected variant in terms of position, 

associated gene, exonic function, amino acid change, frequency in control databases (ExAC, 

1000 genomes, ESP6500 and cg69), presence in ClinVar and predictions from the algorithms: 

PhyloP, SIFT, PolyPhen2, LRT, MutationTaster, GERP and CADD. These are discussed 

further below (Tables 4 and 5). I then filtered variants in each sample, removing: 

• Artefacts common to multiple wells that are either not predicted to be so frequent or 

appear to be a batch effect i.e. only present in one plate and commonly so (likely false 

positives) 

• Artefacts with a low read balance (likely false positive, Figure 40) 

• Artefacts with a low read depth (low quality) 

For the most part, we are not interested in synonymous or common variants (MAF >1% of the 

Caucasian population). Unless stated otherwise, these were removed from the data. I will use 

the term rare to describe any variant(s) below this frequency. The software PLINK (v1.9) is a 

publically available resource for analysing genetic data (Purcell et al., 2007). It can perform 

tests to ensure that variants conform to the Hardy-Weinberg principle, that samples are not 

related or duplicated and lastly it can perform a chi-square test to examine phenotype 

correlations and frequencies of specific SNPs in cases verses controls. 
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F igu re  37 .  A  ge ne ra l  ov e rv ie w of  th e  p ipe l ine  imple me n ted  in  th i s  s tudy .  Drawn in  

Microsof t  PowerPo int  20 13 .  

The coverage of the panel was estimated using CovCheck, an in-house analysis software 

which calculates the number of reads each region of interest is covered by using BedTools 

(v2.10.1). 

 

As an extra quality check, I also build an automated program to visually analyse variants within 

GenomeBrowse (v2.1.0. Golden Helix). I wanted to get a feel for the data and perform visual 

checks on variants with medium-low quality scores. Additionally a number of the controls were 

sequenced on a different platform so it was vital to remove all false positives as they might 

introduce false differences between the two groups. An example of two good quality variants 

are seen in Figure 38 and poor quality variants in Figure 39 and 40. I also took at least one 

picture of every nucleotide with a reported variant. This resulted in 40,000+ pictures being 

examined by eye to guarantee high-quality data.  
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F i gu r e  3 8.  E x a mp le  o f  a  g o od qu a l i ty  he t e roz ygou s  (b l ue  a rr o w )  and  h om o z yg ou s  ( re d  

ar row)  var ian t  in  th e  CEP112  gene .  Th e  f o rm e r  i s  w i t h i n  th e  e x on  w h i le  th e  
la t te r  i s  in tron ic .  B oth  var iants  a re  captured  in  the  forward  and  reve rs e  
s eq uen c i ng  ( g r een an d b l u e  b a rs  i n  the  p i le -u p  s e ct i o n )  a nd  a re  c ov e red  b y  30 0  
re ads  wh ich  g ives  the m  h ig h  qua l i ty  s cores .  G re y  nuc le ot ides  in  th e  re ad  depth  
s e ct ion  repres ent  the  re ad  ca l l  be ing  id ent ica l  to  th e  human re fe rence  (h19) .  

 
F igure  39.  Example  o f  a  poor  qua l i ty  ca l l  wh ich  i s  a lmos t  ce rt a in ly  a  fa l se  pos i t ive  (b lue  

a rrow) .  The  ca l l  i s  on ly  p re sen t  in  the  re ve rs e  s t ra nd  (g re en  ba rs  in  th e  p i le -up  
s e ct ion) .  There  are  a ls o  se ve ra l  o the r  fa ls e  pos i t ive s  in  c lose  prox imi ty  which  
i s  anothe r  c lue  to  a  var iant  be in g  fa l se .  
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F igure  40.  Example  o f  two  poor  q ua l i t y  v ar i a nt s .  T h e  f i rs t  i s  a  de le t ion  which  i s  l i ke ly  due  

t o  t he  m on on u c le o t i de  re pe at  p resen t  in  the  DNA wh ich  i s  kn own to  ca us e  
s eq uen c i ng  p r o b le ms  (b lu e  a r r o w ).  Th e  se c on d  i s  a  va r i an t  w i t h  l o w  rea d  
b a lan ce ,  o n ly  14 % o f  the  re ad s  a re  ca l le d  a s  the  a l te r na t ive  a l le le  w h ich  me an s  
i t  i s  un l i ke ly  to  be  rea l  ( red  arrow) .  

  



76  

2.5.3. RESOURCES 
 

A huge number of resources and tools are required for adequate analysis of genetic data. I 

have listed those that I have been heavily using during my PhD in Table 4 and 5. 

Database Website Description 
Exome Aggregation 
Consortium (ExAC) http://exac.broadinstitute.org/ 

Exome data on 60,706 unrelated individuals 
sequenced as part of research projects. Includes 

disease cohorts. 

Exome Variant 
Server (EVS6500) 

http://evs.gs.washington.edu/EV
S 

Contains exome data on 6,503 unrelated subjects 
which is composed of 2,203 African-Americans and 

4,300 European-Americans.  

1000 Genomes 
Project (1000g) http://browser.1000genomes.org 

Has wider diversity with 2,504 individuals from 26 
populations, however some of the data is WGS with 

only 2-4X coverage and hence contains some 
lower-quality data and some related individuals. 

UK10K http://www.uk10k.org/ 
WGS from control populations, families and 

disease cohorts (neurodevelopmental, obesity and 
rare disease). Holds data on 10,000 subjects. 

Complete Genomics 
(CG69) 

http://www.completegenomics.c
om/public-data/69-genomes/ 

Contains data from 69 individuals who are 
genetically diverse, some are related. 

The Single 
Nucleotide 

Polymorphism 
Database (dbSNP) 

http://www.ncbi.nlm.nih.gov/snp 

Collection from many sources of data on short 
genetic variations (typically ≤50 bp). May contain 
pathogenic variants. Release 129 is pre-NGS and 
so is considered to contain no NGS-specific false 

positives compared to 137. 

Ensembl http://www.ensembl.org/ Genome database with list of transcripts for each 
gene and their sequence. 

Online Mendelian 
Inheritance in Man 

(OMIM) 
http://www.omim.org 

Provides a list of genes that have an association a 
Mendelian disorder. Also covers a small number of 

mutations in these genes known to be causal. 

UCSC http://genome.ucsc.edu/ 

An online tool for visualising the genome and a 
huge number of annotations from many sources. 

Also provides BLAT for searching for sequences in 
the genome and In-Silico PCR for examining primer 

pairs.  

GeneCards http://www.genecards.org/ Database on genes and a number of annotations 
from multiple sources. 

Human Gene 
Mutation Database 

(HGMD) 
http://www.hgmd.org A more comprehensive list of variants associated 

with disease but is not free to access. 

ClinVar http://www.ncbi.nlm.nih.gov/clin
var 

Database linking variants to any clinical 
significance discovered. However the archive is 

considerably smaller than the published literature. 
ALSoD alsod.iop.kcl.ac.uk/ Database of mutations reported in ALS. 

ALSgene http://alsgene.org/ Database of mutations reported in ALS. 
Pubmed www.ncbi.nlm.nih.gov/pubmed Database of scientific publications 

Google Scholar scholar.google.co.uk/ Interface for searching for publications 

Ta b le  4 .   L i s t  o f  we bs i te s  an d  d a ta ba ses  use d  in  th i s  p ro je ct .  C ontro l  d a ta ba ses  can  
c o n t a in  b o th  p a th og en ic  v a r ia n ts  an d  r e la t ed  in d iv i du a ls  an d  s o  a re  not  
con s id ered  to  be  p e r fe ct .  Th is  an d  the  prese n ce  of  low qua l i ty  ca l l s  mig ht  skew 
v a r ia n t  f re que n c ie s .  
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Name Website Description 

SIFT http://sift.jcvi.org 

The effect of amino acid change on 
protein function. Uses closely related 
sequences and measures variation 
within these areas to judge novel 

variants. 

MutationTaster http://www.mutationtaster.org 
Examines the effect on protein structure 

and function adding in evolutionary 
conservation. 

PolyPhen2 http://genetics.bwh.harvard.edu/p
ph2 

Bases predictions on a missense amino 
acid change and how common this 

change has occurred in nature. Also 
determines if the site is hypermutable. 

PhyloP http://compgen.bscb.cornell.edu/p
hast/help-pages/phyloP.txt 

Conservation or acceleration p-values 
stemming from the expected rate of 

evolution. 

CADD http://cadd.gs.washington.edu 
Integrates multiple annotations 

including regulatory effects. Works on 
SNPs, indels and non-coding variants 

GERP 
http://mendel.stanford.edu/sidowla

b/downloads/gerp/ 
index.html 

Uses evolutionally rate profiling i.e. 
looks for substitution deficits which 
imply constraint due to functional 

importance.  

LRT http://annovar.openbioinformatics.
org/ 

Likelihood ratio test based on functional 
disruption at highly conserved, coding 

residues. 

T a b le  5 .  L i s t  o f  in  s i l i co  too ls  used  in  th i s  th es is .  

To aid variant interpretation with respect to disease, an array of in silico tools have been 

designed to make predictions about their pathogenicity (Table 5). The underlying mechanics 

of these algorithms often overlap and so the American College of Medical Genetics and 

Genomics (ACMG) Standards and Guidelines state that they should be used collectively as a 

single piece of evidence (Richards et al., 2015). This group is composed of experts in the field 

of genetics and attended multiple workshops to achieve a common consensus on how the 

scientific community should report and interpret genetic variants. It was decided that in silico 

tools should only be used when they all come to an agreement on the prediction of either 

benign or pathogenic. If there is a split between the predictions, then they should not be used 

to infer any information about the mutation. Assessing the ability of these tools show that 

known pathogenic variants are predicted as such 65-80% of the time (Tavtigian et al., 2008; 

Hicks et al., 2011; Thusberg et al., 2011; Thompson et al., 2013). However the specificity was 

much lower and non-pathogenic mutations are also predicted to be pathogenic. Splice site 

predictions perform better on both sensitivity and specificity: 90-100% and 60-80% 

respectively (Vreeswijk et al., 2009; Houdayer et al., 2012). For these reasons, it was decided 

by the ACMG workshop that these tools should be strictly applied to genes of known relevance 
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to a disease. Deleterious (for the protein) variants will exist in other genes but this may have 

no relevance for the disease in question.  

 

Additionally, Richards et al. (2015) say that the classification terminology of variants should 

be standardised so that we describe alterations as being in one of five categories (Table 6). 

The authors do note that this will greatly increase the number of variants graded as uncertain 

significance however there will be fewer false positives in the literature. The only point I would 

contest in this list is ‘observed in trans/cis with a dominant variant’ because there have been 

incidences of patients harbouring two known pathogenic mutations like the C9orf72 repeat 

expansion and a known TARDBP mutations (van Blitterswijk et al., 2012b). 

Category Certainty of claim Lines of evidence 

Pathogenic 99% 

• Null variant in a gene where LoF is a known cause 
of disease in this gene.  

• Statistically more in patients than controls.  
• Same alteration as previously known to cause 

disease 
• Relevant functional studies confirming a damaging 

effect 
• Segregation in multiple family members, some of 

which are distantly related 
• De novo confirmed  

Likely pathogenic 90-98% sure variant is 
pathogenic 

• Absent in control databases 
• In silico pathogenic predictions 
• Affects same codon as one previously published 

as causal 
• Truncation mutation 
• Missense in gene with low mutation rate 
• Located in a known mutation hotspot or studied 

functional domain which causes disease when 
mutated  

• De novo not confirmed  
• If recessive disease/gene variant found in trans 

with known pathogenic variant 
• Co-segregation in a few family members 

Uncertain significance Everything in-between  • Mixed evidence or missing evidence  

Likely benign 90-98% sure variant is not 
pathogenic 

• Computational evidence suggest benign 
• Missense variant in a gene where only published 

causal variants are truncating  
• Synonymous variant predicted not to affect splicing 
• In-frame indels in repetitive regions that aren’t 

known to have any function 
• Observed in trans/cis with a dominant known 

variant 
• Found in an unrelated disease 

Benign 99% 

• Doesn’t segregate with disease 
• Established functional studies related to disease 

mechanism show no effect of the variant 
• MAF in controls is too high for disease in question 

or observed in controls in a manner not consistent 
with disease penetrance 

T a b le  6 .  L i s t  o f  t h e  f iv e - t i e rs  o f  var iant  c lass i f i cat ion  and  th e  ev iden ce  to  a id  v a r ia nt  
in terp re tat ion .  To  be  p laced  in  each  ca teg ory ,  a  var iant  mus t  fu l f i l  mul t ip le  
c r i te r ia  w i th in  th e  box  (R ichards  e t  a l . ,  2015) .  
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The other decisions of note that this group made include those on transcripts and assays. The 

reference gene transcript used should be the most relevant i.e. most expressed, which is 

normally the longest however others should be kept in mind as they may compensate for a 

deleterious variant that only presents in a single transcript. Functional assays should be 

biologically relevant and not be restricted to one component of a gene’s multifaceted functions, 

unless we know this is specific for the disease. 

 

2.6. REPEAT SIZING 
 

C9orf72 is the primary gene implicated in ALS but unfortunately the causal repeat expansion 

requires a unique method to detect its presence: repeat-primed PCR (Table 7, Figure 41). 

Additionally, a sizing PCR is used to determine the smaller allele. GeneScan Liz 500 size 

standard (Life technologies, UK) is used to calibrate the repeat sizes against each other. I 

used GeneMapper v4 (Life Technologies, UK) to analyse the repeat sizes.  

Reagent Volume 
(µl) Sequence Supplier 

Nuclease-free 
water 395.35 - Qiagen, UK 

Forward 16.5 6-FAMCAAGGAGGGAAACAACCGCAGCC Sigma, UK 
Anchor 16.5 CAGGAAACAGCTATGACC Sigma, UK 

Reverse 1.65 GCAGGCACCGCAACCGCAG Sigma, UK 

Ta b le  7 .  Pr im e r  seq uen ces  a nd  the  v o lu mes  requ i red  to  c reate  the  p r imer  m ix  u sed  in  
the  repeat -pr imed  PCR  for  C9or f72  re pe at  ex pa ns ion  s i ze .  Pr im e r  se qu en ce s  
f rom De Je sus-He rn an de z  et  a l .  (2011b) .  

 
F igure  41 .   P rotoco l  for  repeat -pr imed PCR.  
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2.7. SUPPLIERS  
 

Applied Biosystems Inc – 850 Lincoln Centre Drive, Foster City, CA 94404, USA. 

Bio-Rad Laboratories Ltd – Maxted Road, Hemel Hempstead, Hertfordshire, HP2 7DX, UK. 

Corning – One Riverfront Plaza, Corning, NY, 14831, USA. 

Illumina – Chesterford Research Park, Little Chesterford, Essex, CB10 1XL, UK. 

Life Technologies – 3 Fountain Drive, Inchinnan Business Park, Paisley PA4 9RF, UK. 

Promega – Delta House, Chilworth Research Centre, Southampton, SO16 7NS, UK. 

Qiagen – Skelton House Lloyd Street North Manchester M15 6SH UK 

Sigma-Aldrich Company Ltd – Fancy Road, Poole, Dorset, BH12 4QH, UK. 

Ultra-Violet Products Ltd – Trinity Hall Farm Estate, Nuffield Road, Cambridge CB4 1TG, 

UK. 
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CHAPTER 3 PILOT TEST PLATE 
3.1. INTRODUCTION 

 

NGS is a powerful tool for assessing genetic variation in multigene disorders like ALS. 

However, one of the issues with NGS is the coverage i.e. small regions of the DNA will have 

low or missing reads, with most studies reporting between 85-98% coverage of the desired 

area. Using predesigned kits often results in a higher coverage but currently there is no 

commercially available gene panel for ALS. Therefore, we decided it was prudent to complete 

a proof-of-principle pilot study and optimise the technology to ensure high-quality data.  

 

3.2. MATERIALS AND METHODS 3.2.1. STUDY DESIGN 
 

I performed a literature search on the genetics of ALS to understand which genes were of 

importance in the disease. This information was then combined with the opinions of experts 

in the field to obtain a list of ALS genes we wanted to test. We decided that there were five 

categories of ALS genes we wanted to include in the study. Firstly the most important genes: 

C9orf72, FUS, OPTN, SOD1, TARDBP, UBQLN2 and VCP. Then the genes of minor 

importance included: ALS2, ANG, DCTN1, NEFH, PRPH, SETX, SQSTM1 and VAPB. Genes 

that causes similar diseases were included: CHMP2B, FIG4 and SPG11. Genes where our 

knowledge was contradictory or lacking: PON1, PON2, PON3, VEGFA. And lastly genes 

where no knowledge was currently published in ALS: MATR3, BSCL2 and CEP112. These 

final three genes were requests from our collaborators based on their own preliminary results. 

Experiment procedure and analytics were completed as described previously in Chapter 2.4 

and 2.5. The samples have been described in Chapter 2.1. 

 

3.2.2. PROBE DESIGN 
 

The ALS gene panel was designed for TSCA to cover the 25 genes of interest. These were 

split into two groups depending on the desired coverage. The first group in which full exon 
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sequencing was desired included mostly major genes and unknown genes: BSCL2, CEP112, 

FUS, MATR3, OPTN, SOD1, SPG11, TARDBP, UBQLN2 and VCP. The second group 

contained genes whose involvement in ALS is minor or questionable, and was restricted to 

specific areas where disease-causing mutations cluster: ALS2, ANG, CHMP2B, DAO, DCTN1, 

FIG4, NEFH, PON1, PON2, PON3, PRPH, SETX, SQSTM1, VAPB and VEGFA.  

 

I ran 43 designs through the DesignStudio software, tweaking it every time to get the best 

metrics for coverage and low probe interaction.  

 

3.3. RESULTS  
 

The sequencing panel was tested on 95 samples, one of which was a SOD1-positive control, 

from both familial (n=22) and sporadic (n=73) ALS patients obtained from UCLP. In this cohort, 

NGS technology identified 43 rare variants (30 unique variants) in 33 patients that affect an 

ALS-associated gene either by an amino acid change or an alteration to a predicted splicing 

site (fALS = 6/22 patients; sALS = 27/73 patients). Of these variants, 13 have been previously 

reported with respect to ALS: 5 were determined as causal (ALS2 I94V x3; FUS R521C; SOD1 

I114T), 4 were hypothesised as likely causal (OPTN 1401+4A>G; PRPH R9Q x3) and 4 had 

unknown significance (SPG11 V270I x2; TARDBP L5P x2; Table 8). A small number of the 

remainder presented in more than one patient. The positive control SOD1 mutation was 

detected in this trial. 28 variants remained open for further examination. 

Gene Variant 
Amino 

acid 
change 

N
o.

 o
f p

at
ie

nt
s 

Ph
yl

oP
 

SI
FT

 

Po
ly

Ph
en

 

M
T dbSNP Quality 

Score 
Genomic 
Position 

Disease-
causing? 
(no. of 

patients) 

Patient Status 
(no. of 

patients) 

Reference if 
previously reported 

ALS2 A280G I94V 3 B B B B rs3219154 391-897 202626437 Yes (1) 
No (2) sALS (3) 

Hand et al., (2003) NS; 
Herzfeld et al., (2009) in 
Spastic paraplegia 

FUS C1561T R521C 1 B D D D rs121909670 2690 31202739 Yes (1) fALS (1) 
Vance et al., (2009); 
Suzuki et al., (2010) 
Drepper et al., (2011) 

OPTN 1401+2T
>G N/A 1 - - - - - 3818 13169905 Likely (1) sALS (1) Del Bo et al., (2011) 

similar mutation 

PRPH G26A R9Q 3 C D P D rs57451017 2524-
5762 49689009 Likely (3) fALS (1)  

sALS (2) 
Gros-Louis et al., (2004) 

SOD1 T341C I114T 2 C - D D rs121912441 727-
1100 33039672 Yes (2) fALS (2) Gellera et al., (2001; 

Stewart et al., (2006) 

SPG11 G808A V270I 2 C B P B rs80338868 6261-
6704 44949354 Unknown (2) sALS (2) Stevanin et al., (2008) NS 

TARDBP T14C L5P 2 - - - - rs61730366 193-259 11073982 Likely (2) fALS (1)  
sALS (1) 

Guerreiro et al., (2008); 
Gijselinck et al., (2009); 
Kirby et al., (2010)  

T a b le  8 .  K n o wn  v a r ian t s  i de nt i f ied  i n  th i s  s tu d y  u s in g  the  tes t  A LS  p an e l .  N S  =  n o t  
s i gn i f i ca n t ;  M T  =  m u ta t i on  ta s te r ;  B  =  b en i gn ;  C  =  con se rv ed ( r ed ) ;  D  =  d am ag i ng  
( re d ) ;  P  =  pos s ib ly  damaging  (b lue ) .  
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The coverage of the panel was estimated using CovCheck which calculated that 92% of the 

desired area was covered by at least 10 reads (Figure 42). 

 
F i gu r e  4 2.  C o ve r age  repre sen t ed  o n  a  s c a le  f r om  b l a c k  t o  w h i te  rep r ese n t in g  h igh  a nd  low  

re ad  depth  re spe ct ive ly ,  for  a l l  pat ien t s  a cr os s  t he  des i r ed  a re as  a t  1 0x  an d 
100x .  B lue  arrow denote s  negat ive  contro l .  
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The small regions of the genome that failed to sequence (Table 9) mostly lay in the genes 

BSCL2, FUS, OPTN, SPG11, SETX and VEGF. This was caused by a significantly high GC 

content of approximately 70% or, in the case of FUS, due to a high number of simple repeats 

and segmental duplication.  

Gene 
Length 

(bp) 

Coverage 

2x 10x 20x 50x 

ALS2 1535 100% 100% 99% 96% 

ANG 470 100% 100% 94% 87% 

BSCL2 2139 86% 85% 74% 62% 

CCDC46 3894 99% 99% 97% 92% 

CHMP2B 6 100% 100% 99% 96% 

DAO 3 100% 100% 100% 100% 

DCTN1 16 92% 91% 87% 81% 

FIG4 170 100% 100% 100% 100% 

FUS 5104 83% 75% 70% 66% 

MART3 5747 97% 94% 91% 86% 

NEFH 383 100% 100% 100% 100% 

OPTN 3582 90% 86% 79% 71% 

PON1 492 99% 97% 94% 90% 

PON2 138 99% 99% 98% 96% 

PON3 14 100% 100% 100% 94% 

PRPH 1012 94% 92% 84% 80% 

SETX 15 89% 87% 86% 84% 

SOD1 960 100% 100% 97% 88% 

SPG11 7734 91% 87% 82% 76% 

SQSTM1 50 93% 93% 87% 81% 

TARDBP 4211 98% 94% 90% 87% 

UBQLN2 3417 99% 99% 91% 82% 

VAPB 7930 99% 97% 96% 94% 

VCP 3846 96% 91% 84% 82% 

VEGFA 219 85% 83% 78% 69% 

  2x 10x 20x 50x 

All genes 53087 95% 92% 87% 82% 

Tabl e  9 .  L is t  o f  g en e s  s e qu e nc ed a n d cove ra ge o f  t he de s i r e d ge nom ic  ar ea s.  B SCL2 ,  FU S  
an d VE GFA  ha d t he  low es t  cove rag e an d t he  ove ra l l  cover ag e a t  1 0 x wa s  9 2%.  
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3.4. DISCUSSION 
 

In this pilot study, we demonstrate the feasibility of NGS as a research and potential diagnostic 

tool for patients with ALS. 43 rare variants were identified amongst 33 of 95 patients (35%) 

with varying degrees of significance. 28 of these are completely novel. As predicted by genetic 

modelling, only 9 of 43 variants were in patients classed as familial and some mutations known 

to be disease causing were found in apparently sporadic patients (Al-Chalabi and Lewis, 2011).  

 

A novel variant in MATR3 (P154S) was detected and subsequently published along with data 

from a collaborator as a novel gene connected to causing ALS (Johnson et al., 2014b). This 

is discussed further in Chapter 4. Other interesting findings included five patients who 

presented with different sets of two heterozygous mutations in SPG11 which is known to cause 

spastic paraplegia via compound heterozygosity (Paisan-Ruiz et al., 2008; Samaranch et al., 

2008). The c.T14C polymorphism found in TARDBP was also formerly reported in three 

different ALS studies but was disregarded because the variant is synonymous in the primary 

TARDBP transcript (Guerreiro et al., 2008; Gijselinck et al., 2009; Kirby et al., 2010). On 

examination of another transcript (uc010oap.2), which has been found to be expressed in the 

brain (Ramasamy et al., 2014), we have identified this SNP as non-synonymous and therefore 

hypothesise, with caution, that it may potentially be causal. One of the most common 

mutations in FUS (R521C) was detected in a familial patient from this study. 40 patients had 

both the SNPs rs854560 and rs10487132 in the PON genes which, in combination with each 

other, have previously been labelled as a risk factor (Cronin et al., 2007). The amino acid 

change R9Q in PRPH has been previously reported by Gros-Louis et al., (2004) who predicted 

it to be damaging due to its conserved nature, however, failed to detect it at a significant 

difference from controls. OPTN, which has presented as both a dominant and recessive cause 

of ALS, contained a heterozygous insertion at a splice site in one of our patients 

(c.1401+2T>G). A similar insertion at the same position has been flagged before in an ALS 

case (Del Bo et al., 2011). The remaining 28 variants require further scrutiny for a possible 

causal role in ALS. 

 

Nothing of interest was uncovered in the genes BSCL2 and CEP112 so these genes were 

dropped from further research. 
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The advantages of NGS over Sanger are primarily in the speed and in the expense. For 

example, this study costs approximately £150 per patient and takes 72 hours from start to 

finish to process 96 samples whereas to Sanger an equal quantity of DNA would cost nearly 

33x more (approximately £5,000) per patient and take at least 300,000 hours of hands-on time, 

if not significantly more. Additionally, it is relatively easy to include new genes on the panel 

which may be of interest or even remove genes to increase the coverage of the remaining 

targets. This technology does, however, require 95 patient samples to be run simultaneously, 

in a single lane, in order to achieve the pricing stated above. This and similar NGS 

technologies are already finding successful application in other genetically-complex diseases 

such as hereditary ataxia and dementia (Sailer et al., 2012; Beck et al., 2014). The miss rate 

on this platform is approximately 8% but given the huge advantages of NGS over Sanger and 

the ease with which to identify these missing areas, we believe that these positives outweigh 

the marginally increased miss rate. To conclude, NGS technology shows promise for the 

diagnosis of both familial and sporadic ALS; our rapid high-throughput method is suitable for 

large scale genetic studies. 

 

This work has been published: 

Morgan S, Shoai M, Fratta P, Sidle K, Orrell R, Sweeney MG, et al. Investigation of next-

generation sequencing technologies as a diagnostic tool for amyotrophic lateral sclerosis. 

Neurobiol. Aging 2015; 36: 1600.e5-8. 
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CHAPTER 4. MATR3 
4.1. INTRODUCTION 

 

As discussed briefly in Section 1.2.22 we were alerted to the possibility of a new ALS gene 

from the team at the NIH, namely MATR3. Including this gene in our pilot study revealed the 

P154S variant in a single patient (Figure 43; Chapter 3).  

 
F igure  43.  Fami ly  t ree  o f  P154S  MATR3  pa t ie n t  i n d i c a ted  b y  t he  a r r o w.  S o l i d  d i am ond  

ind icates  pat ie n t  a f fe cted  wi th  ALS  wh i le  mul t ip le  d iag ona l  l ine s  represe n ts  
a u t is m an d a  s in g le  d iag on a l  l in e  s ign i f ies  d e cea sed .  

Our collaborators at the NIH had performed exome sequencing in an ALS-FTD family which 

singled out mutations in two different genes: LMNB1 and MATR3, both of which segregated 

with the disease (Figure 44). The former is implicated in mitosis while the latter is an RNA- 

and DNA-binding protein and appears to be involved in editing RNA and transcription (Zhang 

and Carmichael, 2001; Salton et al., 2011). Additionally, MATR3 had been published with 

respect to a disease called vocal cord pharyngeal distal myopathy (VCPDM; Senderek et al., 

2009). 
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F igu re  44.  Ped igree  wi th  the  F115C va r ian t .  Ar row ind icates  proband.  So l id  d iam ond  

r e p res en ts  a f f e c te d  i nd i v id ua l  w h i le  gre y  i s  poss ib ly  a f f e cted .  A  s in g le  d iag ona l  
l in e  s ign i f ie s  de ce as ed .  m t  =  mu tan t  a l le les ;  wt  =  w i ld - type  a l le le s ;  bracke ts  
ind icates  pres umed ob l ig ate  ca r r ie rs .  

With this new knowledge of MATR3 being a candidate gene in ALS, Bryan Traynor and 

Howard Feit (the neurologist who initially characterised the VCPDM family) re-examined the 

clinical data and decided that a slowly progressive ALS was a more accurate diagnosis (Figure 

45). This was mainly due to the observation of brisk reflexes in four of six patients and all 

patients showing the classic ‘split-hand’ characteristic of ALS. Myopathy patients should not 

have brisk reflexes, these are considered to be a symptom which would rule out this diagnosis. 

The causal variant was published as S85C. 

 
F i gu re  45.  F ami ly  or ig ina l l y  d iag nosed  wi th  VCPDM,  red  as te r i sks  =  ind iv idu a ls  who  we re  

c l in i ca l l y  re -e xamined;  s o l id  d iamond =  a f fe cted;  a r rows  poin ts  to  proband.  

Furthermore, they then examined 108 familial cases to discover another mutation: T622A 

which was in the proband and their affected cousin (Figure 46). 



90  

 
F igure  46.  The  fami ly  t rees  of  the  four  pat ients  wi th  MATR3  mutat ions .  A  s ing le  d iagona l  

l ine  s ign i f ies  de ce ase d ;  mt  =  mutant  a l le les ;  wt  =  wi ld - type  a l le le s ;  bracke ts  =  
p r es ume d o bl ig a te  ca r r ie rs ;  a r r o w sy mb o l i ses  p r o ba nd .  

All of these results have been published (Johnson et al., 2014b). The LMNB1 gene was 

investigated further to find nothing of interest. 

 

The many functions of MATR3 are not entirely known however it is located within the nucleus 

and interacts with the TARDBP protein in an RNA-dependent fashion. It also has been linked 

to neuronal death following glutamate stimulation (Giordano et al., 2005). However, if MATR3 

is pathogenic alone, it would seem more likely that this effect is through its interaction with 

RNA and its regulation of the expression of 77 other genes (Salton et al., 2011). In yeast, 

MATR3 interacts with many proteins involved in RNA metabolism (Zeitz et al., 2009). 

 

Only S85C had an observable effect on the TARDBP protein while mutant F115C increased 

the nuclear staining of MATR3. Although the different effects of the mutations are 

disconcerting, there is evidence of mutations within known causal genes producing different 

pathogenic mechanisms for example, LRRK2 in Parkinson’s disease (Cookson, 2012) and 

FUS in ALS (van Blitterswijk et al., 2013b).  

 

Given this initial work, we decided to further characterise MATR3 in ALS. 
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4.2. MATERIALS AND METHODS 
 

I performed Sanger sequencing (Figure 47) using the primer pairs shown in Table 10.  

Exon Forward primer Reverse primer Amplicon 
size (bp) 

Optimum annealing 
temperature (˚C) 

2 CTGCACGCCTTGCTAGTTTA TTTCTTCCCAATCATCCCTA 396bp  58 

2 CAACAAGGAGCTCATAGTGCA GGGTTGAGACTAGGACCACG 398bp 56 

12 TGGTGTGTCCTTTTGATTTCAG GGTTCCTGCTCTGTCTGGTC 187bp  59 

T a b le  1 0 .  Pr im e rs  us ed  t o  se que n ce  MA TR3  a nd  th e  a nn ea l i n g  te mp e ra tu r es  us ed  f or  
e a ch .  

Variants were examined against the transcript ENST00000394800 as it produces the longest 

protein length however within the exons of interest, all variants are the same between this and 

ENST00000618441, ENST00000361059 and ENST00000509990 which are potentially other 

transcripts of importance. Control data was gathered from whole-exome sequencing. 

 
F i gu r e  4 7.  C o nd i t i o ns  for  P C R ;  n  =  op t i m is ed  temp e ra t u re  seen  i n  Ta b le  10.  
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4.3. RESULTS  
 

Sequencing was performed on 582 patients (88% were sALS) which identified the nucleotide 

alteration c.1867G>A causing E623K in the protein (Figure 48). This variant was not found in 

ExAC or 1000 genomes. The female patient presented with an apparently sporadic disease 

at the age of 45 and classified as definite ALS as gauged by the El Escorial criteria. 

 
F i g u r e  4 8.  S a nge r  t ra ce  o f  the  he te r oz y g ous  E6 2 3K  va r i an t  in  MATR3  (b lue  ar row).  

This alteration is located on chromosome five at position 138658375 (h19) or 139322686 

(hg38). It is predicted to be disease causing by MutationTaster and is conserved across many 

species (Figure 49). It is also predicted to affect splicing. 

 
F igu re  4 9.  Loca t ion  of  th e  E6 23 K ( red  a rrow)  and  i t s  conse rvat ion  across  d i f fe rent  s pe c ies .  

M o d i f ie d  f rom  U CS C w e bs i t e  in  P a in t  v 1 5 1 1.  
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The synonymous variant E633E was also discovered in a single patient and was not predicted 

to affect splicing. This was not found in ExAC or 1000 genomes.  

 

Exome data on 510 controls revealed no variants in exon 12 and four variants in exon 2 (Table 

11). Additionally five variants were found amongst the rest of the gene but these areas were 

not examined in patients. 

Variant Nucleotide Exon Result ExAC ESP6500 Base pair
S98F C293T 2 Non-synonymous . . 138643397 

E168E G504A 2 Synonymous . . 138643608 
N277S A830G 2 Non-synonymous . . 138643934 
C293C C879T 2 Synonymous . . 138643983 

A378T (two 
subjects) G1132A 6 Non-synonymous 0.019 0.0003 138652744 

G463G C1389A 8 Synonymous 0.039 . 138654677 
L731L T2191C 13 Synonymous 0.15 0.0002 138661171 
V815V T2445G 14 Synonymous . . 138661925 

T a b le  1 1 .  L i s t  o f  va r i ant s  u n c ove r ed  i n  MA TR3  in  contro l  sub je cts .  A l l  a re  he te rozyg ous .  

 
4.4. DISCUSSION 

 

Sequencing MATR3 in a follow-up cohort identified the variant E623K in a 45-year-old 

sporadic patient. This alteration sits directly next to the previously published T622A and exists 

at a highly conserved nucleotide. However this latter mutant was present in a familial patient 

with an age of onset of 66.  

 

There have been a number of publications since the original MATR3 finding, the results are 

mixed with negative publications, variants of uncertain significance and the replication of 

mutations segregating in VCPDM. The S85C variant initially found in the family with VCPDM 

who were then clinically reclassified, was published again in this disease in 16 patients from 

6 families in Germany (Müller et al., 2014b). None of the subjects had any evidence of LMN 

involvement and all families shared the same haplotype around this mutation suggesting a 

common ancestor. Three of 150 German controls also had this same haplotype. Two other 

VCPDM pedigrees from Japan and America also confirmed S85C involvement (Yamashita et 

al., 2015; Palmio et al., 2016) yet this Japanese family displayed phenotype variability within 

mutation carriers and had LMN symptoms but no UMN signs. Muscle biopsies in these 



94  

patients revealed aggregates positive for SQSTM1, TARDBP and MATR3. Potentially, the 

S85C variant might be modified by other effects to produce different phenotypes.  

 

Millecamps et al. (2014) examined patients with ALS and FTD which did not find any mutations 

in MATR3. Neither did Fifita et al. (2015) in an Australian cohort of familial ALS however both 

these studies examined only 153 and 106 patients respectively which might be lower than the 

requirement to capture potential MATR3 variants.  

 

Functional work in vitro on the initial reported mutations found no changes in the localisation 

of MATR3 or any presence of inclusions with overexpression of the mutant protein (Gallego-

Iradi et al., 2015). However, taking muscle biopsies from patients with MATR3 mutations rather 

than inducing mutations produced different results: MATR3 was depleted in the nuclei of 

patients with the S85C variant (Palmio et al., 2016). The authors did not perform any functional 

work specific to the disease so the relevance of MATR3 mislocalisation is questionable. 

Coelho et al. (2015) examined the function of MATR3 to find that it affects the alternative 

splicing of many genes, implying the effects of mutations might be multifaceted. Johnson et 

al., (2014b) examined the ability of wild-type and mutant MATR3 protein to bind to TARDBP 

in HEK cells. Of the three mutations found in ALS, only S85C increased the binding of these 

two proteins. Nevertheless, given that no functional work has conclusively associated MATR3 

with an ALS-like cellular phenotype, the link is currently unconvincing. 

 

R147W was published in an Italian cohort examining 200 ALS samples (Origone et al., 2015). 

This was not present in 500 controls and is predicted to be pathogenic. A single Chinese 

patient was found with a S610F alteration but the MATR3 mutation rate was higher in controls 

(Xu et al., 2016). However the authors claim this without completing statistics and examination 

of the reported numbers reveals that this trend is not significant. 207 Taiwanese ALS subjects 

revealed A72T which was not in 500 controls (Lin et al., 2015). Then Leblond et al. (2016) 

reported three variants V394M, c.-399+2T>A (5’UTR) and c.48+1G>T in ALS. The last of 

these affects splicing but only in an isoform that is 559 amino acids long rather than the full 

847. It is unclear if this transcript is expressed as it is not reported in Ensembl. However, the 

variants reported in all the four papers all remain as uncertain significance with none providing 

strong evidence of pathogenicity. 
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It is clear that MATR3 is associated in VCPDM but its involvement in ALS is still contentious. 

It seems likely to be involved in the families first published and it’s possible that the reclassified 

VCPDM pedigree have both diseases since most, but not all, patients had a more likely 

diagnosis of ALS. The variant we have identified in this follow-up adds to the variant collection 

of unknown consequence. 

 

Part of this work has been published: 

Johnson JO, Pioro EP, Boehringer A, Chia R, Feit H, Renton AE, et al. Mutations in the Matrin 

3 gene cause familial amyotrophic lateral sclerosis. Nat. Neurosci. 2014; 17: 664–666.   
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CHAPTER 5 CHCHD10 
5.1. INTRODUCTION  

 

In 2014, whole-exome sequencing on two distantly related patients provided a list of candidate 

disease genes which was narrowed down to CHCHD10 by confirmation with Sanger 

sequencing in a further 6 affected and 2 unaffected (Figure 50; Bannwarth et al., 2014). This 

large family presented with a range of phenotypes, including ALS and FTD, who all harboured 

a missense variant in exon 2 (S59L). Muscle biopsies from the patients revealed a 

mitochondrial dysfunction as did overexpression of mutant CHCHD10 in cell cultures. The 

authors screened a further 21 families and established the same mutation in another pedigree 

providing good preliminary evidence for this gene being causal in ALS. 

 
F i gure  50.  Ped igree  of  th e  fami ly  w i th  the  S59L  mu tant  in  CHCHD10 .  So l i d  sy m bo l s  d en ot e  

t h os e  a f fe c t ed  an d  a n  a s ter i s k  i s  g iv en  to  t h os e  w h o  u nd e r wen t  ge ne t i c  te s t ing .  
Ar row po in ts  to  prob and.  

Named Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing 10 (CHCHD10), this gene is 

located in the mitochondria and is hypothesised to hinder protein-protein interactions 

(Bannwarth et al., 2014). Since this initial study, limited functional work on ALS/FTD mutations 

has been completed, however, they are theorised to act via a gain-of-function mechanism 

(Ronchi et al., 2015). The authors have not disclosed why they came to this conclusion but it 

may be due to the mutation they uncovered (P80L) not being situated in any of the domains 

or binding sites thought to be important. This patient had a complex IV deficiency, an enzyme 

involved in the production of ATP. The CHCHD10 protein is ubiquitously expressed and a 

partial knockdown in HELA cell cultures reveal a mitochondrial dysfunction (Martherus et al., 

2010). This suggests a loss-of-function mechanism and is due to CHCHD10’s role in ATP 
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synthesis. Mitochondrial dysfunction is documented in ALS but more work is needed to confirm 

if this is the cause of disease in these patients or an unrelated comorbidity. 

 

A number of other groups subsequently sequenced ALS and FTD patients for CHCHD10 

mutations with a number of these reporting the P34S alteration. Chiò et al. (2015b) found this 

variant in three of 224 sporadic patients (1.3%) while Chaussenot et al. (2014) established it 

in two of 80 sporadic individuals (2.5%). These groups also reported this variant to be absent 

in 165 and 200 controls respectively. If this variant is pathogenic, it would place it as the 

second biggest known cause of sporadic ALS for a single mutation after the hexanucleotide 

expansion in C9orf72.  
The aim of the present study is to determine the prevalence of CHCHD10 mutations in British 

ALS and FTD patients. 

 

5.2. MATERIALS AND METHODS 
 

We screened a cohort of 547 UK patients (452 ALS and 95 FTD) for mutations in CHCHD10 

by use of Sanger sequencing. Patient samples were obtained from the London UCLP MND 

Network and were all clinically diagnosed. Patients were previously determined to be negative 

for mutations in C9orf72, TARDBP, FUS, SOD1 VCP, PGRN, and MAPT.  

 

CHCHD10 primers are described in Table 12 and the optimised experiment conditions are in 

Figure 51. Chi-square tests were performed in PLINK providing an odds ratio for any variants 

uncovered.  

Exon Forward primer Reverse primer Amplicon 
size (bp) 

Optimum annealing 
temperature (˚C) 

1 CGTAAAGGCCGTTAGTGTCG GGGAGGAAGCAGGGTTAATC 1053 56 

2 CTCCTCACTGGACACTTGGG GGTCGTTTCCAGGAGCTG 355 58 

3 AGCCTGGCCAACATAGTGAA GAGTCTGCACCGACCTCTT 660 59 

4 ACCTCATCAGCCAGGGAG CCAACCCTCCTCTTGCAC 293 58 

T a b le  1 2 .  D e t a i l s  of  t he  p r ime rs  use d  in  t h is  s t ud y  to  ca p tu re  e a ch  e x on  o f  CHCHD10 .  
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F igu re  5 1.  C ond i t ions  for  PC R.  n  =  op t im is ed  temp e ra tu re  seen  in  Ta b le  12 .  

5.3. RESULTS 
 

Sequencing of CHCHD10 revealed four unique variants in eight patients (Table 13 and 14) 

which included the P34S variant in five patients with either ALS or FTD (Figure 52). P96T is 

present in up to 6% of control databases and so is likely a benign polymorphism (Table 14). 

The three other variants all have a frequency of less than 1% which is our threshold for being 

considered too common to cause disease. Predicative algorithms only provided a consensus 

for Y135H which is concluded to be benign.  

 

Examining the UK10K MAFs of the four CHCHD10 variants found that P34S was present in 

29 of 4777 individuals (0.61%) as opposed to 0.91% of our cohort (odds ratio of 1.51, 95% 

confidence interval: 0.58, 3.9; P = 0.4). The Y135H variant (0.18% in our cohort) was present 

in 4 of 5232 individuals (0.076%) while S77G was absent in this database. This latter variant 

was present in a patient with Cuban ancestry.  
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Disease Age of onset Site of onset Sex Amino acid change
ALS 67 Upper limb F P34S 

ALS 68 Limb and bulbar M P34S 

ALS 60 Lower limb M P34S 

ALS 66 Upper and lower M P34S 

FTD 65 Dementia M P34S 

ALS* - - - S77G 

ALS - - - P96T 

ALS-FTD 70 Dementia M Y135H 

Tab le  13 .  Summary  o f  th e  var iants  in  CHCHD10  in  ou r  coh ort .  * Cu ba n or ig in .  
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100C>T P34S 2 24109722 0.0004 0.001 . . rs551521196 B B D D 

229A>G S77G 2 24109593 0.002 0.0003 0.0003 . rs370872556 B P D D 

286C>A P96T 3 24108438 0.06 0.03 0.06 0.04 rs111677724 B P B P 

403T>C Y135H 3 24108321 . 0.0003 0.0005 . rs145649831 B B B B 

T a b le  1 4 .  D e t a i l s  on  th e  f ou r  v a r ia n ts  iden t i f ie d  in  CHCHD1 0 ;  Nuc  =  Nuc le ot ide ;  MT =  
Mu ta t ion Ta ste r ;  B  =  be n ig n ;  D  =  d am ag ing  ( re d ) ;  P  =  p oss ib ly  dam ag ing  (b lu e) .  
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F igure  52.  Sanger  t races  of  contro l  sub ject  ( top  p an e l )  a nd  th e  P3 4 S  va r i a n t  ( re d  a r r ow )  

in  f ive  pat ients .  

 
5.4. DISCUSSION 

 

Sequencing in 547 subjects with ALS and FTD revealed four distinct variants including the 

published P34S variant in five patients. This variant is located in exon 2 where most CHCHD10 

variants are reported and lies in the non-structured N-terminal domain. All patients harbouring 

this alteration presented in their seventh decade of life with mostly a limb-onset disease in 

contrast to previous studies linking this variant to bulbar-onset (Chiò et al., 2015b; Chaussenot 

et al., 2014). Previous work considered this variant to be pathogenic however it is present in 

ExAC at a frequency of 0.2%, which increases to 0.6% when only Europeans are examined. 
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This is just below the threshold for rarity which raises questions of its pathogenicity. Using 

control data from the UK10K cohort, we performed statistical analysis of the P34S alteration 

to find no significant difference. Of note is that exon 2 of CHCHD10 is not adequately covered 

in WES including in ExAC with only 5,179 individuals (9%) having results for the P34 location 

(Figure 53). This low quality may contribute to the absence of common variants in this region 

within control databases. Both Y135H and S77G remain as uncertain significance while P96T 

is likely benign. 

 
F igu r e  5 3.  A ve r age  cove r age  of  CHCHD10  in  ExA C .  Th e  wh ole  ge ne  h as  a  lowe r  tha n  

a ve r age  rea d  de pth  w i t h  th e  w o rs t  cove r age  a t  t he  b eg inn ing  of  e x on 2  w he re  
the  P34  codon i s  located  ( re d  ar row) .  Adapted  f rom  the  ExAC  webs i te .  

Other studies into CHCHD10 are very promising. The R15L transition has been seen to display 

segregation in multiple publications albeit one was with an expected incomplete penetrance 

owing to a single obligate carrier (Johnson et al., 2014a; Müller et al., 2014a; Kurzwelly et al., 

2015). Although none of these groups performed functional work, this variant is not present in 

ExAC which is promising. Zhang et al., (2015) completed a comprehensive study in a number 

of neurodegenerative disorders: ALS, PD, AD and FTD with 497 control subjects. They also 

identified R15L in a sporadic patient as well as three other variants in ALS or FTD including 

P80L which was confirmed by Ronchi et al., (2015) in two patients. In the PD and AD subjects, 

only P34S was present but this did not segregate with the disease providing further evidence 

that this variant is benign. Chinese cohorts of FTD but not ALS are particularly enriched with 

CHCHD10 mutations which were present in 7.7% of sporadic FTD (Jiao et al., 2015; Li et al., 

2016).  

 

Outside of ALS and FTD, variants have also been observed to segregate in a family with 

mitochondrial myopathy (Ajroud-Driss et al., 2015) and in 17 pedigrees with spinal motor 

neuronopathy (Penttilä et al., 2015). The former group performed functional studies which 

suggest that G58R is causal. 
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F igure  54.  Mutat ions  in  CHCHD10  found  in  pa t ien ts  (above  ge ne )  and  contro l s  (be low 

gene ) .  Red  muta t ion  =  path og en ic ;  b lack  =  unknown;  MI TO =  mi tochondr ia  
targe t in g ;  HH =  hydrophobic  he l i x ;  CHCH =  co i led  co i l  1 -he l i x  1 -co i led  co i l  2 -
he l i x  2 .  Drawn in  Inks cape  v0 .91 .  

In conclusion, our results do not support P34S as a pathogenic variant but the literature does 

advocate CHCHD10 as a causal gene in both ALS and FTD, providing another genetic link 

between these two diseases and reinforcing the hypothesis of mitochondrial dysfunction as a 

mechanism for ALS pathogenesis. I belive that there is stong evidence to support both R15L 

and the initial mutation (S59L) in being pathogenic for ALS (Figure 54). 

 

This work has been published: 

Abdelkarim S*, Morgan S*, Plagnol V, Lu C-H, Adamson G, Howard R, et al. CHCHD10 

Pro34Ser is not a highly penetrant pathogenic variant for amyotrophic lateral sclerosis and 

frontotemporal dementia. Brain 2015: awv223. 
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CHAPTER 6 CORE STUDY: USING THE GENE PANEL TO ANALYSE A LARGE COHORT OF ALS AND CONTROL SAMPLES  
6.1. OVERVIEW 

 

We performed a pilot study using NGS as a tool for examining the genetics of ALS in 95 

patients (Chapter 3). This method revealed a number of interesting results and provided a 

basis for the principle investigation where we aimed to implement this technology on more 

than one thousand patients. 

 

In terms of the loci included in the gene panel, there were a few containing regions of DNA 

which failed to sequence. With this in mind, the genes BSCL2, CEP112 and VEGF were 

removed from the project as their connection to ALS still remains poor and we cannot achieve 

high quality data on them. Additionally, the amplicons covering FUS, OPTN and SETX were 

redesigned to obtain optimum coverage. Lastly, although the gene SPG11 has a potential 

involvement in ALS, the sheer size of it presented as a challenge to both sequence and 

analyse especially considering the fact that compound heterozygous cases have been 

observed and the chances of two rare variants occurring in this gene are much higher. It is for 

this reason that we decided not take this gene through to the next part of our experiment. 

However, since I have WES data on the controls, I also examined the removed genes within 

this control cohort to compare to the test plate data. Since the completion of the test plate, two 

other genes were gaining popularity as risk factors for ALS, namely TREM2 and PFN1. 

Therefore these genes were added to the ALS panel. 

 

6.1.1. METHODS 
 

A requirement for the final design of the project was to balance the available funds with both 

the number of patients and amount of DNA targeted. The resulting design extensively covered 

all exons and both untranslated regions (UTRs) of SOD1, TARDBP, FUS, VCP, OPTN, and 

UBQLN2. Then the rest of the genes were covered at mutation hotspots: ALS2, ANG, 

CHMP2B, DAO, DCTN1, FIG4, NEFH, PFN1, PON1, PON2, PON3, PRPH, SETX, SQSTM1, 

TREM2 and VAPB. These hotspots were ascertained by use of an ALS variant database I 

created discussed in Chapter 9. The TSCA protocol was run using this design and analysed 
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as per the descriptions in Chapter 2. I performed identical analysis on whole-exome 

sequencing data from 510 control patients pulling out the same genomic regions which were 

covered by the MiSeq panel. I included four common sex markers to ensure that subjects 

matched their stated gender.  

 

As mentioned NGS is unable to reliably assay long repeats such as those in C9orf72 and 

ATXN2. Therefore, repeat-primed PCR was used to detect the expansion mutation in C9orf72. 

Our collaborators at Kings completed standard fragment length analysis for the microsatellite 

repeat in ATXN2. Although, because our control samples did not have ATXN2 data, it was not 

included in our case-control analysis.  

 

6.1.2. RESULTS 
 

A total of 1,131 subjects were run on the MiSeq which included 100 controls, 124 fALS and 

917 sALS. The majority of these (n = 1,074) were from the MNDA DNA bank while 33 of the 

controls were from IPDGC and the remainder were Argentinian samples (18 sALS and 6 fALS) 

which are discussed separately in Chapter 7 since their ethnicity varied from the rest of the 

cohort. WES data was provided on 510 controls. Chapter 2.1 contains a more detailed 

description of all samples. 1.6% of samples completely failed to sequence which included five 

controls (all from the WES), eleven sporadic and two familial subjects. A further three sporadic 

patients and five controls failed to sequence adequately for some of the desired genomic area 

but this varies slightly depending on loci or gene region under examination. Therefore some 

genes, when examined independently, had slightly higher subject numbers. 

 

Following initial standard quality checks to remove false positive calls, 52,804 variants 

remained. As per the method described in Section 2.5.2 a total of 29,930 images were taken 

of flagged variants which were then examined by eye. Of these, 8,654 were kept which would 

normally be discarded by a computer, while 4,621 which passed quality checks were clearly 

false positives (8.8% of all calls). The final number of mutations averages at 41 alterations per 

person (range 24-72) which is mostly due to common polymorphisms and includes intronic 

and synonymous SNPs. There were some minor regions which were covered adequately by 

only one of the technologies used (either WES or MiSeq) and variation within these regions 

were not included in most analyses except when examining an individual variant against the 
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published literature. 317 patients did not have complete C9orf72 data because of insufficient 

DNA. Of those typed for repeat expansions in this gene, 45 of 654 (6.9%) sporadic patients 

had the mutation as did 11 of 72 (15.2%) familial cases.  

 

Comparing the 33 controls post-filtering which had been examined using whole-exome and 

MiSeq-targeted sequencing revealed identical calls in all subjects except for a few intronic 

variants (which WES does not capture) and for indels of two or more nucleotides. The 

differences in indel calling lay mostly with mononucleotide repeats which are known to cause 

problems in NGS. All indels of two or more nucleotides across patients and controls were 

removed from the analysis to ensure no technological biases were driving the differences 

between the two groups. For SNPs, WES and targeted sequencing both produced the same 

results and therefore the former can be reliably used as controls for my dataset. 

 

One of the major difficulties in NGS data is how to interpret variants, especially those which 

are novel or extremely rare. We found 906 alterations which are defined as such, of which 225 

are exonic and 138 are previously published with respect to ALS or another disease, however, 

some of these also occur in our control cohort. Variants were deemed likely to be causal if 

they were published previously and not found in control cohorts. Under this interpretation of 

pathogenicity, 103 patients in 1,007 can be explained (10.2%; Table 15) by mostly C9orf72 

repeat expansions (4.9%) but also SOD1 (2%), TARDBP and FUS (both 1%). However, as 

mentioned C9orf72 is potentially higher than this frequency due to missing data in a number 

of patients.  

 

SPG11, although not examined in patients, was examined independently in the control 

dataset. Subjects had an average of 1.7 mutations in this recessively causal gene, with 24% 

of individuals harbouring a homozygous variant and 42% with a potential compound 

heterozygous variant. A total of 1% of controls had 5 mutations in SPG11 showing it is a highly 

mutated gene. Additionally, one control had a stopgain mutation in this gene. 
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Gene 
Familial Sporadic Controls 

All Likely 
pathogenic All Likely 

pathogenic All Likely 
pathogenic

ALS2 3.7% 0.9% 6.6% 0% 8% 0% 
ANG 0% 0% 0.4% 0% 1.3% 0.3% 

CHMP2B 2.8% 0% 2.9% 0% 11% 0% 
DAO 0.9% 0.9% 0.2% 0.1% 0% 0% 

DCTN1 0% 0% 0.9% 0% 1.5% 0% 
FIG4 0.9% 0% 0.6% 0.1% 7.2% 0% 
FUS 2.8% 1.9% 2.4% 0.6% 12% 0.2% 

NEFH 27% 0% 18.6% 0% 38% 0% 
PFN1 4.6% 0% 7% 0.2% 6.3% 1.2% 
PRPH 2.8% 0% 1.4% 0% 2% 0% 
SETX 3.7% 0% 4.2% 0% 6% 0% 
SOD1 8.3% 7.3% 1.1% 0.8% 0.3% 0% 

SQSTM1 1.9% 0% 1.6% 0% 1.7% 0% 
TARDBP 6.5% 4.6% 1.8% 0.8% 1% 0% 
TREM2 0.9% 0.9% 0.8% 0.7% 0.7% 0.7% 

UBQLN2 1.9% 0% 2.6% 0.1% 1.7% 0% 
VAPB 0% 0% 1.6% 0% 1.2% 0% 
VCP 1.9% 0% 1.6% 0.1% 7.7% 0% 

Tab le  15 .  Percentage  o f  pat ients  w i th  cod ing  muta t ions  in  each  gene.  Va r iants  were  
cons id ered  to  be  l i ke ly  pathoge n ic  i f  th ey  fu l f i l l ed  se ve ra l  c r i ter ia  f rom Tab le  
6 .  Th ese  re su l t s  d o  n o t  ta k e  i n t o  a c cou n t  m is s ing  d a ta  and  so  a c t ua l  nu mbe r s  
m a y  be  s l ig ht ly  h igh e r .   

 
6.2. BURDEN OF RARE VARIANTS 

6.2.1. OVERVIEW 
 

One of the techniques for identifying the presence of causal mutations is to examine the 

collective mutation burden in selected genomic regions in patients set against a control cohort. 

If there are locations in patient DNA with increased rare variation, then it can be assumed that 

some or most of these mutations are detrimental and are associated with the disease in 

question. The test plate results were included in these assessments to increase power. 

 

6.2.2. METHOD 
 

A region-based test comparing the rare-variant burden in cases versus controls was 

completed by use of the SNP-set (sequence) kernel association test (SKAT v1.1.2; Wu et al., 



108  

2011). This test is a collapsing method which combines results from multiple variants into a 

single score for the selected region. It is computationally efficient and increases the power to 

detect the effect of rare variation in a case-control study while correcting for covariates. 

 

The rational for the loci selected for this test were based on an a priori understanding of areas 

likely to be involved in the disease. I based this on the results discussed in Chapter 9 which 

collected together all published variation within these genes and their determined association 

with ALS. Given that this test examines rare SNPs only, the genes ATXN2 and C9orf72 were 

excluded as the nature of their association lies within repeat expansions. PON1-3 and VEGFA 

were also removed as the interest in these genes remains with common variation. The 

remaining genes were all included but filtered for an MAF of less than 0.01 and for high quality 

ensuring there were no differences in missingness between cases and controls. SNPs could 

be intronic, exonic, synonymous, coding, novel or known to be pathogenic. Sex was used as 

a covariate and a dichotomous test was implemented for case-control analysis regardless of 

patient status (familial or sporadic). Although previous work on mutation burden had only found 

significant results in familial patients, most of our power comes from the number of sporadic 

individuals we have obtained for this study so we decided to include them. 

 

A total of five tests were carried out, firstly on the entire region sequenced and then on specific 

areas we were interested in. Reported P-values are all corrected using the formula: 

ܤ = 1 − (1 − ܲ)௡ 

Where P is the critical P-value obtained in the test, n is the number of tests completed and B 

is the Bonferroni corrected P-value. All stated values in the results section are adjusted for 

this multiple testing and are considered to be significant if less than the 0.05 threshold. 

 

6.2.3. RESULTS 
 

The first imputation saw 26 individuals removed for missingness and 33 WES controls 

removed as they were duplicates of the MiSeq controls. SKAT analysis revealed an increased 

number of rare variants in cases compared to controls when all genomic regions are included 

(P = 0.003). This was based on the 393 variants which passed all quality checks and did not 

have more than 10% missingness. Since this may be solely due to known pathogenic variants, 
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previously published SNPs in ALS were excluded (regardless of whether they were 

hypothesised to be pathogenic or not) and the test was repeated. The result was still significant 

(P = 0.01). This significant difference in the burden of rare variants lay in the UTR and intronic 

areas of the genes rather than the exons. We therefore tested coding and non-coding regions 

independently: UTR and intronic loci P = 0.04 whereas exonic variation did not show significant 

association P = 0.1 (synonymous) and P = 0.1 (non-synonymous). We did not have sufficient 

power to further analyse the UTR and intronic regions independently of each other, however, 

there were more rare variants in the UTRs than within introns of patients (Table 16). 

Source Description Unique 
SNPs 

Total number of 
mutations found 

Corrected P-
value 

Coding and non-
coding All 393 888 0.003 

Coding Known causal 49 112 NA 
Coding and non-

coding 
All minus known 

causal 334 724 0.01 

Coding All 195 469 NA 

Coding Nonsynonymous 
minus known 87 193 0.1 

Coding Synonymous 59 164 0.1 
Non-coding All 198 419 0.04 
Non-coding UTR 102 205 NA 
Non-coding Intronic 96 214 NA 

T a b le  1 6 .  D e s c r ip t i on  of  t he  b u rde n  t e st  re su l t s  an d  c o rre c te d  P - v a lu es .  Th is  i n c lu des  t he  
n um be r  of  in d iv i du a l  u n i q ue  SN P s  an d  the n  t he  t o t a l  n um be r  of  m u ta t io n s  
f o un d a c r oss  a l l  s ub je c t s  f o r  th ese  u n iq ue  SN P s ;  NA  =  r eg i on  not  t es te d  ba se d  
on  a  p r io r i  de c i s ion  of  which  are as  we wa n te d to  exa m ine.   

 6.2.4. DISCUSSION 
 

Using SKAT to examine any increase in rare variation revealed a significant burden as one 

would expect given that known pathogenic mutations were included (n=393). However the test 

remained significant even after these previously reported mutants were removed (n=49), 

almost entirely due to the UTR and intronic SNPs included. We believe that the UTRs contain 

most of this burden over the introns based on their function, the trend of increased rare variants 

in the current study and previous ALS work on these areas as discussed below. As for the 

exonic regions, without the reported pathogenic variants, there was no significant burden. This 

indicates that most (or all) of the causal variants have been discovered already within coding 

regions. This is likely due to these areas being exhaustively examined over the years while 

very few studies have concentrated on non-coding regions.  



110  

The UTRs of genes are often ignored in genetic studies of disease, partly owing to the difficulty 

in the interpretation of any discovered variation. We had decided at the beginning of the project 

to include the UTRs to address this lack of knowledge, especially within SOD1, TARDBP, 

FUS, OPTN, VCP and UBQLN2. Additionally, smaller areas in the remaining genes were also 

covered with high-quality reads in these regions owing to the primer designs prioritising 

efficiency of exome coverage rather than strictly sequencing only the exons and therefore 

included some of the UTRs in select loci. 

 

There have been a handful of publications also suggesting this effect to varying degrees. 

Sabatelli et al. (2013) examined a large cohort of 420 ALS and 480 controls of Italian origin 

specifically for variants in the 3’UTR of FUS. They found an increased number of these non-

coding mutations within patients: four unique rare variants amongst five individuals while no 

rare variants were present in controls. Three of these were studied further in primary fibroblast 

cultures (c.*59G>A, c.*108C>T and c.*110G>A) in comparison to one patient with the known 

R521C FUS alteration, two patients with no causal mutations and four control subjects. The 

UTR modifications and the known pathogenic FUS variant all caused a mislocalisation of the 

FUS protein whereas this effect was not present in the other ALS subjects or controls. This 

provides evidence for the theory that these mutants contribute to ALS. (Dini Modigliani et al., 

2014) reported a c.*48G>A variant in two ALS patients with a severe phenotype. Functional 

work revealed that this alteration increased FUS expression dramatically. Correspondingly, 

overexpression of wild-type FUS causes an ALS-like syndrome in mice (Mitchell et al., 2013). 

The 3’UTR of FUS is known to be involved in a feedback loop for its own expression via the 

alternative splicing of exon 7 (Zhou et al., 2013). Inclusion of exon 7 increased protein 

expression and vice versa. The authors also examined disease-causing mutations to discover 

that they altered this autoregulation method and exon 7 was unable to be repressed, therefore 

increasing FUS protein concentration. FUS-knockout mice exhibit abnormalities but none that 

relate specifically to ALS (Kino et al., 2015) while ExAC reports no LoF FUS variants in all 

58,787 individuals sequenced despite 28.6 being expected to have occurred. These studies 

combined suggest that a tight control of FUS expression is necessary in humans (Dini 

Modigliani et al., 2014). 

 

Within the TARDBP gene, Gitcho et al. (2009) published c.*2076G>A as segregating in a 

family with ALS and FTD. However, they specifically only mention two affected family 

members and do not divulge if they sequenced unaffected family members. The 3’UTR variant 

was not present in 982 control subjects and caused TARDBP RNA expression to increase 
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twofold compared to 40 controls and FTD patients with other mutations. Like FUS, TARDBP 

also regulates its own expression through the 3’UTR (Ayala et al., 2011). However this is 

achieved by inducing RNA instability rather than through splicing. Again, as with FUS, there 

are no LoF variants in TARDBP in ExAC when 11.8 are predicted to occur. 

 

Additionally, there are a number of studies which report UTR variants in ALS with uncertain 

pathogenicity. Rutherford et al. (2008) report six UTR alterations in TARDBP but do not reveal 

how many cases each variant was in or if these were present in controls. In 2009, a French 

cohort of 285 sporadic ALS cases were sequenced to reveal one patient harbouring 

c.*1462T>C in TARDBP which was not in 360 controls (Daoud et al., 2009). Then four UTR 

alterations were reported in this gene in 410 ALS/FTD cases in Belgium (Gijselinck et al., 

2009). Two FUS 3’UTR changes were present in an Italian ALS cohort but the authors did not 

reveal if they were present in their 376 controls which seems likely given that c.*41G>A is a 

common polymorphism (Ticozzi et al., 2009). The FUS c.*24G<C change was detected in a 

fALS proband which was absent from 970 controls and two affected relatives indicating it is 

likely to be a rare polymorphism (Groen et al., 2010). Another study revealed UTR variants in 

FUS and SOD1 in ALS but it is not explicitly stated if they also sequenced their 700 controls 

for these regions (DeJesus-Hernandez et al., 2010). Drepper et al. (2011) and Zou et al. 

(2012a) both report these non-coding FUS changes in ALS that are absent from controls while 

in VCP, c.*12C<T is present in cases and not 1,205 controls (Abramzon et al., 2012). Lastly, 

ANG and FUS were reported to have UTR mutations not present in controls, one of which we 

also found solely in cases, namely c.*132C<A (Brown et al., 2012). While this collection of 

papers seem to indicate a burden of UTR variation in ALS, not a single report mentions if any 

rare variation existed solely in controls. This piece of information is lacking in many 

publications and not just for UTR data. 

 

While the variants of uncertain significance require more investigation, our data and the 

published work on functional studies, segregation and burden of rare variants in ALS all point 

towards the UTRs having a likely involvement in the disease especially within FUS and 

TARDBP. 
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6.3. OLIGOGENIC BASIS 6.3.1. OVERVIEW 
 

As discussed in Chapter 1, the hypothesis of an oligogenic basis in ALS is starting to be 

explored by a few different groups.  

 

6.3.2. METHOD 
 

To examine this further, a selection of variants were run through a binomial test in R v3.2.3 as 

described previously (van Blitterswijk et al., 2012b). However, heterozygous and homozygous 

hits were both treated equally as a single mutation unlike the aforementioned study. Variants 

were selected based on their likelihood of being pathogenic, so they had to fulfil several of the 

criteria mentioned in Table 6 and had to be either nonsynonymous coding variants or directly 

within a known splicing region.  

To calculate the binomial distribution of the data, we used the formula: 

(ݔ)݂ = ቀ ݊ݔ ቁ ௫(1݌ − ݔ ݁ݎℎ݁ݓ    (௡ି௫)(݌ = 0, 1, 2, … ,  ݔ

Where f(x) is the probability of getting the result achieved which is based upon the number of 

independent trials completed (n), the probability of obtaining a single successful trial (p), and 

the number of successful trials (x). Each trial has a binary outcome: either success or failure.  

This is used to compute the probability of multiple mutations occurring in cases given the 

probability distributions of mutations in both cases and controls. We performed this test twice, 

firstly on reported ALS-variants only and then on variation found in C9orf72, SOD1, TARDBP, 

FUS, ANG, ALS2, VCP, OPTN, NEFH and UBQLN2 where we included all rare, coding 

variation in these genes (excluding C9orf72 where only repeat expansions were included). 

Reported P-values are corrected for these two investigations using the formula in Section 

6.2.2. 
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6.3.3. RESULTS 
 

A binomial test performed on variants which were previously published in ALS revealed that 

there is not an increased number of patients with two mutations than expected by chance 

alone (P = 0.4). Since the data collected in the current cohort was much richer than simply 

selecting the list of known mutations found, the published literature on specific variants was 

disregarded and instead genes were tested as a whole for only: C9orf72, SOD1, TARDBP, 

FUS, ANG, ALS2, VCP, OPTN, NEFH and UBQLN2. There were 11 of 1,112 patients with 

more than one mutation in an ALS gene which is significantly higher than expected by chance 

based on the mutation rates in both cases and control (P = 0.001). 

 

6.3.4. DISCUSSION  
 

Implementing a binominal test to look for an increased number of cases with multiple 

mutations exposed such an effect in rare variants deemed likely to cause disease. This test is 

based on the probability distribution of mutations in both cases and controls. Restricting the 

analysis to known variants did not replicate previous findings. A potential explanation for this 

may be due to the published literature containing inaccurate information on the pathogenic 

status of variants (and genes) whereas previous work only included variants in a smaller 

number of genes, that is, those more likely to be associated with the disease: C9orf72, SOD1, 

FUS, TARDBP and ANG (van Blitterswijk et al., 2012b). With this idea in mind, we performed 

a hypothesis-driven binomial test selecting only coding variants in the genes we believed to 

be most associated with ALS. In our cohort, 1% of patients had two or more of these mutations 

which was significantly higher than expected by chance based on known mutation rates. Most 

of these patients had the repeat expansion in C9orf72 with another mutation for example with 

VCP R155H, TARDBP A321V or FUS R521C (all known variants). A single control subject 

also had two mutations, namely P372R in ALS2 and A90V in TARDBP. The former is a 

heterozygous variant in a gene known to be recessively damaging and so is unlikely to be 

pathogenic alone while the latter is hypothesised as a risk variant rather than fully causal as it 

has been found in some control cohorts yet displays abnormal localisation and aggregation of 

TARDBP (Guerreiro et al., 2008; Winton et al., 2008). This control patient with two potential 

risk variants demonstrates we should be careful in our interpretation of such mutations. 
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It is reassuring that dual mutations occur even without ANG and NEFH, as these are genes 

which some may question over their involvement in ALS. A recent paper by Nakamura et al. 

(2016) reported pathogenic mutations alongside “potentially pathogenic” variants in the same 

patients. However, this latter cluster of mutations all lie in the uncertain significance box 

according to guidelines and I would consider many of them not to be pathogenic, for example, 

missense variants in SPG11 which, as discussed later in Section 6.5.18, is a highly mutable 

gene. Likewise, Kenna et al. (2013) published some convincing and some not convincing 

combinations of mutations with 1.6% of patients harbouring two alterations in ALS genes (4% 

of fALS and 1.3% sALS). However, there have been reports of two known pathogenic variants 

converging for example in two families where the proband has both a known TARDBP variant 

and the C9orf72 expansion (Chiò et al., 2012). The authors link this combination to a more 

severe phenotype and an earlier age of onset, as does Cady et al. (2015) who examined 391 

cases for 17 ALS genes to discover that 3.8% of patients had more than one mutation and an 

earlier age of onset by ten years. As discussed, van Blitterswijk et al. (2012b) found five 

families with multiple mutations (5% of their familial cohort) which was statistically more than 

that expected by chance. They found C9orf72 repeat expansions jointly with mutations in FUS 

or TARDBP. Another study by van Blitterswijk et al. (2012c) found a novel VAPB variant 

alongside the C9orf72 mutation. However the pathogenicity of the VAPB mutation was not 

confirmed and so remains as a variant of uncertain significance. Lastly, Bury et al. (2016) 

published a patient with mutations in both OPTN and C9orf72. The aggregates within motor 

and non-motor neurons were studied in this patient to reveal OPTN staining even in cells 

absent for TARDBP-positive inclusions.  

 

In short, the present study recapitulates previous findings of an increased number of patients 

with multiple mutations. 

 

6.4. PON1-3  AND VEGFA 6.4.1. OVERVIEW 
 

For the genes PON1-3 and VEGFA, their association with ALS remains with common 

variation, therefore these areas were selected out of the data and filtered for variants present 

in dbSNP. Chi-squared SNP-based association tests in cases versus controls were performed 

using PLINK for these 20 loci. P-values were corrected for the 20 iterations. 
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6.4.3. RESULTS 
 

The genes PON1-3 and VEGFA have both been reported as potential risk factors for ALS. We 

selected 20 loci of common variation within these genes to analyse but we did not find any 

significant differences in SNP frequencies between controls and cases and, in fact, some 

reported “important” SNPs were present at a higher rate in controls than in cases. It should be 

noted that the frequencies in our cohort were higher than that observed in the ExAC database. 

 

6.4.4. DISCUSSION 
 

Previously there have been several studies looking at common polymorphisms in the genes 

VEGFA and PON1-3 which present mixed results in their association with ALS (Lambrechts 

et al., 2003; Wills et al., 2009). We characterised 20 loci in patients and in controls to find no 

relationship with ALS but concede that this may be due to low call rates in patients for these 

particular genes. The variants rs7493 and rs12026 were associated with controls however 

only 95 patients could be adequately typed for these locations. It was observed that 14 of the 

20 loci were found in higher frequencies in our controls compared to public databases (ExAC 

and 1000 genomes) while 6 of these were considerably higher. This highlights the importance 

of collecting adequate controls for each study rather than solely relying on these available 

databases. 

 

The PON genes, if truly associated with ALS, have an environmental element to their effect. 

This may cloud any analysis as a subject’s exposure to different chemicals is difficult to 

measure accurately. It relies on the patient’s knowledge and is a much more confounded than 

many other environmental factors like smoking or exercise.  
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6.5. DISCUSSION 6.5.1. OVERVIEW 
 

We performed NGS, microsatellite repeat allele sizing, and repeat-primed PCR on 1736 

subjects across 24 genes associated with ALS. 138 variants were detected which have been 

previously published in ALS, other diseases or controls while 845 rare SNPs of uncertain 

significance were also found. In this discussion I will focus on the coding variation uncovered 

since non-coding has been discussed in Section 6.2. 

 

6.5.2. SOD1 
 

Since the publication of many SOD1 mutations, the recognised functional transcript has been 

altered by one amino acid resulting in discrepancies in the numbering of mutations between 

recent publications and those published more than a year ago.  

 

Within SOD1, I found 11 unique exonic variants in 21 individual. All but two were strictly 

observed in patients; these were the synonymous variant A141A (previously A140A) which 

has been published in both patients and one control (Blumen et al., 2010; Weber et al., 2012; 

Di Vito et al., 2013; Gamez et al., 2006) and D91A (D90A) which was heterozygous in 2 

patients and homozygous in 1 control. This D91A finding does not match the published 

literature in that homozygous variants are assigned with causing disease while, in a 

heterozygous state, it is hypothesised to be either benign, a risk factor, have reduced 

penetrance or be influenced by genetic modifiers to alter inheritance patterns (Robberecht et 

al., 1996; Al-Chalabi et al., 1998; Winter et al., 2000; Luigetti et al., 2009; Luisa Conforti et al., 

2009; Andersen et al., 1995). Al-Chalabi et al. (1998) explored the haplotypes of reported 

dominant and recessive pedigrees to discover that all families associated with a causal 

homozygous D91A had a common founder. The authors suggest that this haplotype contains 

a protective variant which inhibits disease in the heterozygous form. However, this theory 

needs to be tested in a sufficiently large control cohort. It has also been hypothesised that this 

mutant co-segregates with another deleterious variant outside of the Scandinavian 

populations where this mutation is most common (van Blitterswijk et al., 2012d). Felbecker et 

al. (2010) reported two large families with the D91A variant however this did not segregate 

with the disease. In both pedigrees only three of five affected individuals were homozygous 
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for this mutation whereas the others were homozygous for the wild-type allele. This collection 

of evidence points towards D91A and A141A not being involved in the disease and, 

correspondingly, both are the only two SOD1 variants identified in this cohort which are also 

found in public databases, albeit rarely. 

 

The only novel variant found within SOD1 is T40A which was present in a sporadic individual. 

This is located between the known L39R and G42S mutations (previously L38R and G41S; 

Brown et al., 2012; Boukaftane et al., 1998; Andersen et al., 2003; Millecamps et al., 2010b). 

D77Y was discovered in three patients while the most common SOD1 variant in our cohort 

was I114T which was ascertained in five patients (six including the test plate results). 

 

The total number of SOD1 mutations in familial patients (7.3%) is significantly lower than 

previously published however this may be due to SOD1 being one of the primary candidate 

genes for initial sequencing when a familial patient arises in the clinic and, if found, might result 

in their exclusion from further studies.  

 

6.5.3. TARDBP  
 

In TARDBP, 16 coding variants were found in a total of 23 patients and 6 controls. One of 

these is located on a splice site and ten are non-synonymous, with A90V being the only one 

in this group found in controls. This variant is also present in ExAC and ESP (0.02%) while we 

located it in 0.2% of patients and 0.3% of controls. Previously, it was published in an ALS-

FTLD case and a single control in 1,385 individuals (Winton et al., 2008). This paper also 

presented in vivo functional work on this variant showing that 22% of A90V-transfected cells 

have abnormal localisation of TARDBP compared to almost no mislocalisation with the wild-

type protein. This led the authors to postulate that A90V is a risk variant for ALS-FTLD. 

However, other groups reporting this mutation all exclusively observe it in controls with 1/185 

in France and Quebec, 1/872 in British and Australian and lastly 2/806 in a Caucasian cohort 

(Kabashi et al., 2008; Sreedharan et al., 2008; Guerreiro et al., 2008). It is possible that some 

mislocalisation of TARDBP is tolerated and does not cause disease. 

 

The only other non-synonymous TARDBP variant found in public databases is G287S. This 

variant is in a single subject in ExAC amongst 60,704 individuals. We ascertained G287S 
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solely in sporadic individuals as did two previous publications (Kabashi et al., 2008; Corrado 

et al., 2009). Therefore it is still possible that this variant is pathogenic.  

 

Stopgain mutations obviously have a severe consequence on the protein which is eventually 

synthesised and are likely causal in genes of high importance like TARDBP. One such variant 

is Y374X which we detected in a familial subject and has been verified before and creates a 

damaging truncated protein (Daoud et al., 2009; Del Bo et al., 2009). Unusually, one patient 

had two novel mutations in this gene: the E14K alteration in exon 2 and N179D which is in 

exon 4.  

 

Finally, four known alterations were uncovered in familial (M337V, G348V and N378D) and 

sporadic (A321V) patients which have all been published in at least two studies and so are 

likely to be pathogenic (M337V: Sreedharan et al., 2008; Tamaoka et al., 2010; Corrado et al., 

2009; G348V: Kirby et al., 2010; Zou et al., 2012b; N378D: Tsai et al., 2011; Ticozzi et al., 

2011; A321V: Kirby et al., 2010; Cooper-Knock et al., 2012). 

 

6.5.4. FUS  
 

The two main mutation hotspots in FUS are within the C-terminal domain and in the glycine-

rich region. The most commonly reported codon in ALS is R521 which in our patient cohort 

has been mutated into R521C, R521H and R521L. These are all known variants and have 

been published in multiple studies (R521C: Vance et al., 2009; Tateishi et al., 2010; Suzuki et 

al., 2010; Morgan et al., 2015; R521H: Vance et al., 2009; Blair et al., 2010 R521L: Deng et 

al., 2010; Zou et al., 2012a).  

 

Within the glycine-rich domain is a S221 deletion found in a single case. Lattante et al. (2012) 

also reported this variant in cases and not 793 controls however it is located in close proximity 

to the G223 deletion reported by Belzil et al. (2011b) in three controls potentially reducing the 

likelihood that S221del is damaging as some deletions in this area are clearly tolerated. 

Accordingly, 15 indels are presented in ExAC among 254 individuals between codons R216 

and G231. Furthermore, at the beginning of this glycine-rich domain is G167-168del which we 

identified in a control subject and so is also likely to be benign. Another deletion found only in 
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controls is Y55-56del which is near the reported S57delTCT which is hypothesised to be 

causal (Belzil et al., 2009). 

 

A single sporadic individual harboured the P431L variant which has been published in 

essential tremor (ET) in a single case (Merner et al., 2012). This group performed exome 

sequencing on a family with ET to uncover Q290X in FUS as segregating with the disorder. 

No LoF mutations have ever been reported in controls and only two stopgain alterations 

(R495X and Q519X) and 11 frameshift indels which cause a premature stop codon (all 

between G466 and Q519) have been detected in ALS (Deng et al., 2014). The Q290X 

modification is located in exon 9 whereas all the ALS associated variants mentioned are in 

exons 14 or 15. Functional work revealed that FUS expression was significantly lower with 

Q290X than with ALS-associated mutations and could be restored by blocking nonsense-

mediated decay which was not the case for the ALS mutants. This indicates different 

mechanisms underlying the two diseases and therefore it seems improbable that mutations 

could cause both. The P431L variant in the single familial case with ET could not be verified 

for segregation amongst other family members but given that we have exposed this alteration 

in ALS, I think it is unlikely to cause disease alone. 

 

We identified S135N in a single control, which has been reported by Rademakers et al. (2010) 

in a sporadic case of ALS but the authors did concede that it was present in dbSNP and so 

unlikely to be pathogenic. Later, Huey et al. (2012) found S135N in one of 659 controls 

confirming this theory. 

 

G507D is a variant which ticks many boxes for being considered pathogenic, it is absent from 

all control databases, it is predicted to be damaging in silico and is found in multiple studies, 

including our own, in cases and not controls (Corrado et al., 2010; Lai et al., 2011). While 

R487H is present one of our controls and in two individuals from ExAC and the 1000 genomes. 

This codon has been reported before in a single sporadic case in 1,192 individuals as R487C 

which was not in 970 controls (van Blitterswijk et al., 2012d). 
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6.5.5. VCP 
 

The full exonic regions of VCP were sequenced in our cohort revealing 17 coding SNPs. All 

of these are rare and 9 of which are non-synonymous. Examining the data in ExAC for this 

gene reveals a significantly low number of polymorphisms amongst the general public for both 

missense and loss-of-function variants (z-score = 6.47 and pLI = 1). This indicates that these 

types of mutations are more likely to be damaging. 

 

Two of the coding variants were both non-synonymous and found only in patients, namely, 

G523V which is novel and the published I114V which I have identified in sporadic individuals 

(Koppers et al., 2012; González-Pérez et al., 2012). G523V is predicted to be disease-causing 

by all algorithms while I114V is not. This latter variant was previously found in a familial patient 

and in the unaffected side of the family suggesting it is benign (González-Pérez et al., 2012). 

 

The I27V alteration was initially reported in two patients, one with FTD and the other with 

isolated progressive dysarthria (Rohrer et al., 2011). This variant was not present in their 451 

healthy controls. Later, Beck et al. (2014) also identified I27V in a single dementia case who 

also had a mutation in PSEN1. Although this variant is rare, predicted as damaging and lies 

close to a cluster of known pathogenic variants, we demonstrate it within a control subject as 

does Majounie et al. (2012) who also found it in a PD patient. Following this, Weihl et al. (2015) 

published I27V as causing inclusion body myositis (IBM). In this study they identify R95C and 

I27V and compare these to the known R155H mutation for in vitro analysis. They report that 

only R115H and R95C increase ATP hydrolysis but that all three mutations increase the 

expression of P62 and LC3II which have been linked to disease causation. However, 

examining the western blots presented, it is clear that I27V produces less of these proteins 

particularly LC3II. Therefore I27V may not be sufficient alone to be pathogenic. Lastly, H404P 

and A698P were both only located in controls and reside within exon 11 and 15 respectively. 

They represent very rare benign polymorphisms.  

 

6.5.6. OPTN  
 

Rare variants detected in optineurin totalled 24, with 19 of these being non-synonymous. Two 

are stopgain variants, two are on splicing sites and two are frameshift deletions. One 
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frameshift and one splicing change was found in a control subject and the rest were 

constrained to patients. The Q441X in a sporadic individual lies next to the reported K440fs in 

a family with an aggressive phenotype (Weishaupt et al., 2013). This frameshift variant 

introduces a stop site 8 amino acids later and potentially disrupts the UBA domain. The other 

stopgain variant we detected was Q146X which was observed in the homozygous state in a 

single sporadic case. Amongst the 19 found mutations, the only variant to be previously 

reported as causing ALS is Q398E which we found in a control patient (Kenna et al., 2013). 

 

M98K, N303K and R545Q were uncovered in both cases and controls and have been 

previously identified as causing glaucoma (Rezaie et al., 2002; Melki et al., 2003; Sripriya et 

al., 2006; Caixeta-Umbelino et al., 2009; Weishaupt et al., 2013; Buentello-Volante et al., 

2013). Since mutations causing this disease do not overlap with ALS, it seems implausible 

that these are disease causing in this instance. The M98K variant was in 5.5% of 605 controls, 

5.5% of 992 patients and 10% of patients sequenced on the test plate (n = 94) clearly 

presenting the ease with which to find differences in variant frequencies when using low 

numbers of subjects. Notably, studies finding a difference between glaucoma patients and 

controls all used 100-200 patients. Rezaie et al. (2002) observed this variant in 13.6% of 

glaucoma patients (n = 169) compared to 2% of controls which was significantly different. 

However the latest update in EVS puts this variant at 11.8% and 1000 genomes marks it as 

7%. Sripriya et al. (2006) compared a frequency in glaucoma of 4-6% in different cohorts to 

their 100 controls who were all absent for this variant. Given these new findings, it seems 

reasonable that these papers were reporting false positives due to being under powered. 

Rezaie et al. (2002) reported R545Q in 2.2% of POAG subjects while Weishaupt et al. (2013) 

found this variant in ALS and hypothesised a link between variants causing glaucoma also 

being risk factors for ALS, however, given there is only a single paper which reports these two 

conditions occurring together, it would seem unlikely that they are affiliated by genetics. 

Additionally, functional work on known pathogenic variants display a different underlying 

mechanism for glaucoma and ALS (Maruyama et al., 2010). 

 

A single control subject harboured the K557R alteration which is located at the same codon 

as the published K557T (Del Bo et al., 2011). K557 is located within the C-terminal zinc-finger 

domain which is highly conserved and is hypothesised to indirectly affect apoptosis. Both 

variants are rare and predicted to be damaging. K557T was in a single familial patient with no 

further evidence to support its pathogenicity. Finding this codon mutated in a control subject 
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lowers the probability of the K557T variant being pathogenic, but only slightly. Functional 

studies are needed to understand this mutation further.  

 

A single sporadic subject harboured R271H which is in the same codon as the published 

R271C (Iida et al., 2012) although both these variants have only been found in patients, they 

are not evolutionarily conserved and are predicted as benign so Iida and colleagues suggest 

their variants is a rare polymorphism.  

 

6.5.7. ANG 
 

Two controls presented with the known K41I variant (previously K17I) which has been found 

across ALS patients from different populations (van Es et al., 2009; Greenway et al., 2006; 

Cady et al., 2015). Assays examining this variant have exhibited a complete loss of ANG 

function (Wu et al., 2007) yet we found no patients with this variant. ANG remains controversial 

as an ALS gene with some groups questioning its role in the disease. K41I is present in all 

control databases and ExAC places it in 0.1% of its individuals (172 of 60,705). This is the 

same as the initial ANG variant first reported as segregating with disease in a family linked to 

the region 14q11.2 (Greenway et al., 2006). The authors did not sequence this entire area and 

instead picked ANG as a candidate gene. It is therefore possible that they missed the real 

causal agent. However the authors do note that this association was only present in Irish and 

Scottish populations while absent from US, English and Swedish ALS cases.  

 

K78E was verified in two subjects and previously reported as a homozygous variant in a 

sporadic individual while not present in 616 controls (Fernández-Santiago et al., 2009). K84E 

is observed in one sporadic and six controls in our cohort while previously only being reported 

in ALS (Brown et al., 2012; Cady et al., 2015). Although, the former study sequenced 55 

controls for this region and the latter did not include a healthy cohort while both sequenced 

more than 1000 patients. 
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6.5.8. ALS2 
 

As a recessive cause of ALS, the list of potentially causal variants are fewer in number for 

ALS2. As a result, only a single patient has a potentially causal mutation: the homozygous 

frameshift variant W1179fs (c.3536delG) in exon 22. The age of onset of this subject was 55. 

Since no reports in this gene have been associated with an adult-onset ALS, either something 

has protected this patient or this variant is not the cause of their disease.  

 

All other rare variants of interest were heterozygous. However, firstly, ALS2 was not covered 

in its entirety since the sequencing was restricted to previously reported mutation hotspots. 

Therefore it is conceivable that coding variants were missed and in fact some of these 

individuals were expressing another mutation. Secondly, heterozygous variants in ALS2 have 

not been examined as potential risk factors for ALS in humans but studies in mice and 

zebrafish indicate that variation in ALS2 may be a risk factor for ALS (Cai et al., 2005; Gros-

Louis et al., 2008). 

 

6.5.9. NEFH 
 

Of the 132 variants documented in NEFH, 84 had a read count of below 20 and only 24 of 

these were awarded a quality score of above 50. Obviously these variants must be examined 

with caution and highlights the drop in ability with NGS to tackle long repetitive sequences as 

recognised in this gene.  

 

A number of missense and synonymous variants were uncovered in our cohort however 

almost all of the published literature focus on indels in the KSP-region of NEFH. The exception 

to this is the study by Daoud et al. (2011) who report missense variants in ALS of unknown 

consequence with no functional work and no comparison to control databases. Examining 

ExAC reveals that some of these variants appear in low frequencies and lots of natural 

variation occurs in this gene. 

 

One of the previously published indels in NEFH which is relatively accepted by some as 

causal, K790del (c.2368-2370del; Figlewicz et al., 1994), was found in a single sporadic 
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individual but also in two controls throwing some doubt onto this variant’s pathogenicity. Two 

other indels were identified, Q465-469del in one familial (c.1394-1405del) and E500delinsETK 

in a sporadic patient (c.1498-1499insAAACAA). Both are absent from EVS and 1000 genomes 

but present in ExAC (0.004% and 0.2% respectively). Although both of these frequencies are 

below our arbitrary cut-off, the latter is close. 

 

6.5.10. VAPB 
 

Only three rare variants were uncovered in VAPB and none of these appear to have any 

involvement in the disease. A deletion of three nucleotides across codons 158-159 (c. 474-

476del) was observed in eight sporadic individuals and four controls. This was located next to 

the known S160del (Landers et al., 2008a). However this change is also in public databases, 

albeit rarely (0.45%), and does not disrupt the localisation of VAPB in functional studies 

(Landers et al., 2008a). The missense transition M170I is found in both ALS (van Blitterswijk 

et al., 2012b; Cady et al., 2015) and a small number of controls (van Blitterswijk et al., 2012b) 

so it was pondered to be a risk factor. We detected it in 5 sporadic (0.56%) and 3 control 

subjects (0.5%) which indicates a more benign nature of this mutation. Finally, the recognised 

R184Q alteration was located in a single sporadic individual, previously found in only PD 

(0.04%; Kun-Rodrigues et al., 2015) rather than controls, however it is present in ESP at a 

similar rate (0.03%) and in our patient cohort (0.1%). 

 

6.5.11. DCTN1 
 

Within the DCTN1 gene, a total of eight non-synonymous, rare alternative alleles were 

detected. The R785W substitution has been declared by Münch et al. (2004) in two familial 

patients and two unaffected relatives. The authors suggest the possibility of a reduced 

penetrance however in the current cohort, one patient and two healthy controls also had this 

change indicating it is benign. 

 

The T1249I variant is an example of a rare modification which was connected to ALS in studies 

that sequenced none or few controls whilst we uncovered it in 4 control subjects and no 

patients (Münch et al., 2004; Cady et al., 2015). Stockmann et al. (2013) expressed this mutant 
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in cells and found no complications of interest compared to causal variants providing further 

evidence towards a benign character. The three novel substitutions T12A, V73I and V1081M 

all occurred in a single patient and were absent from both our controls and all public databases 

making them good candidates to perform functional assays on. The latter of these is close to 

the published V1081M found by Cady et al. (2015) however this study did not sequence 

controls so the variant has very minor evidence to support its role in ALS.  

 

Previously, DCTN1 missense variants have been detected in 3% of fALS patients yet none 

segregated with the disease so alterations should be examined with caution (Vilariño-Güell et 

al., 2009). In contrast, Stockmann et al. (2013) found that mutations which occurred mostly in 

patients plus a small number of controls displayed altered protein function and sometimes no 

function at all. The authors propose that DCTN1 is a modifier of ALS rather than a disease 

causer.  

 

6.5.12. SETX 
 

The results for SETX included a number of published mutations of varying consequence. 

K1425E was previously found in two affected members of a family with inherited peripheral 

neuropathy, however, the authors note that this variant is predicted as benign and 

correspondingly we located it to two control subjects (Drew et al., 2015). I2547T was reported 

in the same paper as not segregating with the disease and in MND patients in other studies 

(our cohort; Hirano et al., 2011; Cady et al., 2015) and in five of 340 controls (our cohort; 

Arning et al., 2012). 

 

Two variants next to each other presented in patients (D1553G) and both patients and controls 

(C1554G). The latter of these is described by Hirano et al (2011) in a single patient and not in 

100 healthy controls in addition to two other studies which did not use controls (Cady et al., 

2015; Ghani et al., 2015). While Arning et al. (2012) did examine controls finding 1/240 

harbouring this variant. This highlights the importance of using an adequate number of controls 

to reduce false positive results. 

 

One sporadic individual possessed V2549A which is located on the same codon as V2549I 

found in two patients and was absent from 305 controls (Kenna et al., 2013). We also found 



126  

the similar A1478V and A1478E in patients only, with the second substitution previously 

segregating in two affected and two unaffected subjects within an ALS pedigree (Arning et al., 

2012). However they also report it in a German control cohort (1/1,090). The D1077N 

modification was established in a number of patients but failed to segregate in a family with 

ALS (Arning et al., 2012) and accordingly we located it in both patients and a control subject. 

Cady et al. (2015) sequenced a huge number of patients finding D994G which was absent 

from public databases however we detected it in two healthy controls. Another two controls 

had the S2G alteration which is adjacent to the known T3I which was presented in the first 

SETX publication segregating in a large family of 17 members (Chen et al., 2004). This 

indicates that S2G has not disturbed the same function as T3I. Another six rare, novel variants 

found only in patients remain open for further investigation, four of which are absent from 

control databases.  

  

It’s hard to say that any of these mutations in our cohort have strong evidence for their 

pathogenicity. 

 

6.5.13. CHMP2B 
 

The most commonly reported pathogenic variants in CHMP2B are deletions of the C-terminal 

and from the six alterations reported in this study, none accomplishes this effect. 

 

The I29V alteration was first published in FTD and 1/100 controls with the authors concluding 

that this was a rare benign polymorphism (Cannon et al., 2006). However, following that, I29V 

was published in ALS and reported to be absent from 640 controls and public databases 

(Parkinson et al., 2006). Cox et al. (2010) reported another two MND subjects with this variant 

and an absence from 500 controls. HEK-293 cells were used in this study to examine the 

mutation. They determined large cytoplasmic vacuoles in cells containing CHMP2BI29V. 

However, this group also examined other CHMP2B variants including T104N which in addition 

to generating vacuoles, produced inclusions which were positive for CHMP2B, which was not 

the case for I29V (Cox et al., 2010). Han and colleagues (2012) could not recapitulate this in 

neuronal cultures with I29V but did observe a detrimental effect with T104N. We have now 

discovered this variant in two cases and two controls possibly indicating that CHMP2B-positive 
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inclusions are required for a pathogenic consequence or that other factors play an involvement 

in I29V patients.  

 

The two variations R69Q and T83I were both reported by van Blitterswijk (2012d) in PMA and 

ALS respectively, and not in 750 controls. We located the former in a sporadic individual while 

the latter was in 7% of our cohort. Although the calls have adequate quality scores, this number 

is suspiciously high for a very rare mutation and needs to be confirmed with Sanger 

sequencing. The UTR of CHMP2B was also partially covered in this study, finding c.-151C>A 

in 25 patients and 21 controls replicating previous studies (Cox et al., 2010).  

 

6.5.14. UBQLN2 
 

The first causal mutations described in UBQLN2 were in a large pedigree with P497H which 

segregated in the affected family members. We have also found this variant in a single 

sporadic patient which potentially may be due to a de novo mutation or from other P497H 

carriers in the family dying before the typical age of onset for ALS. Transgenic mice expressing 

this mutant develop UBQLN2-positive inclusions in the brain and likewise, in HeLa cells, there 

is increased protein aggregation (Xia et al., 2014; Gorrie et al., 2014). Aside from this 

substitution which has clear pathogenicity, five novel, rare variants of uncertain significance 

were uncovered in sporadic individuals: L87F, Q460R, 496-499del, A603D and T334M, the 

last of these was present in both the heterozygous (n = 2) and homozygous state (n = 1). 

 

6.5.15. TREM2 
 

Associated with a number of different neurodegenerative disorders, the TREM2 R47H variant 

was genotyped in our cohort finding near identical frequencies between cases (0.11%) and 

controls (0.1%). Previous work has shown significant differences in the frequency of R47H in 

PD and FTD patients (1.3-2.1%) compared to controls (0.45%), with a non-significant increase 

in ALS (0.7%) patients (Rayaprolu et al., 2013). (Pottier et al., 2013) confirmed this in AD as 

well (2% versus 0.5% in controls). Both these control frequencies are higher than our two 

cohort groups. The largest study in ALS was completed by Cady et al. (2015) who examined 

26,871 control subjects for the R47H mutation and 1,685 ALS patients. There was a 
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significantly higher number of mutations in cases (0.45%) versus controls (0.19%). This group 

examined individuals from 11 different countries with R47H varying in prevalence between 

them (0-0.26% for controls and 0.33-0.54% for ALS). We will require many more subjects in 

our cohort to detect any significant differences in ALS. S16P was also detected in our cohort 

however, in a heterozygous state, the relevance of this variant is unknown.  

 

6.5.16. PFN1 
 

Examining PFN1 in our cohort reveals the E117G variant in both cases (0.11%) and controls 

(0.99%). Formerly, this alteration has been established by different groups as appearing in 

cases more than controls (Table 17), with a large meta-analysis finding a significant 

association with ALS (Fratta et al., 2014). Our cohort results do not replicate these findings 

but we are only a sixth of the total patient number and a twentieth of the controls that Fratta 

and colleagues examined.  

Freq. in cases (no.) Freq. in controls (no.) Reference 
0.4% (1,090) 0.09% (1,089) Wu et al., 2012 
0.29% (342) 0.17% (1,167) van Blitterswijk et al., 2013a 

0.09% (1,168) 0% (1,512) Tiloca et al., 2013 
0.2% (715) N/A Yang et al., 2013 
0.9% (328) 0.3% (864) Dillen et al., 2013 

0.25% (5,118)* 0.11% (13,089)* Fratta et al., 2014 
0.11% (880) 0.99% (599) This study 

N/A 0.066% (33,352) ExAC (European only) 
N/A 0.02% (6,503) ESP 
N/A 0.05% (2,504) 1000 genomes 

Tab le  17 .  F reque nc ies  o f  the  E117G var iant  in  d i f fe re n t  s tud ie s .  *  Th is  pub l i cat ion  a l s o  
conta ins  re su l t s  f rom  the  othe r  reports .  

At the equivalent codon, E117D has been captured by Yang et al. (2013) in 0.2% sporadic 

ALS, however, no controls were sequenced in this study. We identified this change in a single 

sporadic patient and single control. Like with E117G, it is highly probable we need many more 

subjects to detect any differences that might be present.  

 

The synonymous polymorphism L112L is mostly ignored in publications except for Chen et al. 

(2013) who found a significant difference in this variant, with more controls possessing the 

mutation (16% of 550 ALS and 21% in 545 controls). A few groups have reported this variant 

in ALS (2-26%) but did not sequence controls (Daoud et al., 2013; Lattante et al., 2013a; Yang 
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et al., 2013). A larger study also reported a minor trend of 3.8% (n = 1,168) in cases and 4.3% 

(n = 1,512) in controls (Tiloca et al., 2013). However this is not confirmed in our study (6.4% 

versus 5.1%) or by Zou et al (2013b) 31% versus 22% in cases and controls respectively.  

 

Lastly, we identified a heterozygous W4X variant in a single sporadic case. This is a conserved 

location and the variant is absent from all control databases. Since the literature specifically 

focuses on missense variants producing a small risk effect, this stopgain variant would need 

to be examined further to understand if LoF variants contribute to ALS. There are no LoF 

variants in ExAC for this gene, however, because PFN1 is relatively small, only 3.6 are 

expected and so the constraint metric is not significant. There are also a low number of 

missense variants (18 in total compared to 68.1 expected). 

 

6.5.17. SQSTM1 
  

Eleven patients (1% of this cohort) presented with an alteration at the highly conserved K238E 

position in SQSTM1 as did three controls. This has been previously published in ALS (Fecto 

et al., 2011; Le Ber et al., 2013; van der Zee et al., 2014; Cady et al., 2015) and sporadic ALS-

FTD (Rubino et al., 2012) and controls (van der Zee et al., 2014; Le Ber et al., 2013). It is 

situated within a tumour necrosis factor receptor-associated factor 6 (TRAF6) binding site 

which is a vital element for the protein’s ability to interact with NFκB. 

 

P392L, the most frequent SQSTM1 variant in ALS, was revealed in 0.3% of patients and 0.7% 

of controls. Despite appearing in healthy subjects, P392L is still described as being associated 

with disease appearing in up to 2.3% of fALS, up to 46% of familial PDB and 0.3% of 5,999 

controls (Hocking et al., 2002; Laurin et al., 2002; Chung et al., 2008; Fecto et al., 2011; 

Teyssou et al., 2013; Kwok et al., 2014).  

 

Lastly V153I, which has been reported by Fecto et al. (2011) and Cady et al. (2015) as only 

appearing in cases, was found in a single control subject in our study and 0.07% of controls 

by van der Zee et al. (2014). Larger numbers of patients and controls will be required to 

elucidate whether these variants are risk factors for ALS or not.  
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6.5.18. SPG11 
 

Although we removed SPG11 from the gene panel in this study, we had whole-exome 

sequencing data on most of the controls which included coverage of this gene. ExAC reveals 

that this gene has an increased number of missense variants compared to the expected 

mutation rate. In our control cohort, 24% of individuals had a homozygous variant in this 

recessively causal gene, while 1% had five mutations and a single control subject harboured 

the stopgain variant W683X. These results highlight the difficulty in interpreting variation within 

SPG11 and caution should be taken when segregation analysis is unavailable.  

 

6.5.19. PRPH 
 

Despite 12 variants unearthed in PRPH, no homozygous alterations were discovered in 

patients within this recessively-inherited gene. The only PRPH mutation to be consistently 

reported in ALS is D141Y (Leung et al., 2004; Gros-Louis et al., 2004; Corrado et al., 2011). 

However despite conservation of this amino acid down to zebrafish, only one of these studies 

claimed definitive causation with a homozygous alteration (Leung et al., 2004). In publically 

available genetic datasets, this variant is reported to occur in between 0.05-0.1% of the 

general population whereas our study revealed an incidence of 2.9% of fALS and 1.1% of 

sALS and controls. Similarly, in sporadic subjects, it has previously been established in 1.5% 

of cases (Gros-Louis et al., 2004).  

 

A study investigating the effect of PRPH expression on a SOD1 mouse model found that 

neither diminishing nor augmenting PRPH protein levels affected any common outcome 

measure, for example, severity or onset, which implies little if any involvement in ALS 

(Larivière et al., 2003). 

 

6.5.21. FIG4 
 

Five missense variants were detected in FIG4 with only one of these (I41T) previously being 

described in CMD (Lenk et al., 2011; Chow et al., 2007) but in combination with a null allele. 
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FIG4 exhibits recessive inheritance in CMT disease yet heterozygosity had been associated 

with ALS (Chow et al., 2009). In this study, they described two stopgain, two splice site and 

two missense mutations which they deemed as deleterious while four other missense variants 

displayed little or no damaging effect in the functional studies the researchers performed. It 

seems less likely that missense mutants are damaging in this case. However, we uncovered 

the novel homozygous D206G aberration in a sporadic patient which is absent from all control 

databases and predicted to be damaging by in silico tools. The patient is classed as probable 

ALS and his age of onset was 51. It would be interesting to perform a functional assay on this 

variant. 

 

The only other report of significance published five rare variants in a cohort of 698 sALS which 

were all either absent from public databases or present at very low frequencies (Cady et al., 

2015). There are very few other publications exploring this gene with respect to ALS, however, 

it has been associated with causing Yunic-Varón syndrome, a recessive, infantile disorder 

which mainly affects the bones, indicating diverse roles of FIG4 within the body (Campeau et 

al., 2013). 

 

6.5.21. DAO 

 

As far as the authors are aware, the only known pathogenic DAO variant R199W has not been 

replicated until the present study (Mitchell et al., 2010). This may be due to the fact that few 

studies have sequenced such a large cohort of patients for this gene. The familial patient we 

identified harbouring the R199W variant was female with a disease onset at age 44. 

Additionally, another female patient with sporadic ALS had a similar mutation at the same 

codon: R199Q. However the disease onset was much later at 71. Lastly, another alteration 

two amino acids away from these was detected: Q201R, in a sporadic ALS patient with an 

onset at 59. All three of these mutants are predicted as damaging by PhyloP, SIFT, PolyPhen 

and LRT, and did not occur in our control samples.  
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6.5.22 C9ORF72 

 

As the most common cause of ALS, it was necessary to include C9orf72 in the present study. 

As a result, 15.2% of familial cases sequenced had the expansion as well as 6.9% of sporadic 

subjects and none of the controls. This is slightly lower than expected, for inherited ALS, which 

could be due to the small number of fALS individuals included, only 72 were adequately typed 

for the hexanucleotide repeat. This may have introduced a sampling error meaning the 

frequency of mutations is not representative of a larger cohort. The initial studies on C9orf72 

reported expansions in 46% of fALS and 21% of sALS for Finnish patients (Renton et al., 

2011), and 23.5% and 4.1% respectively which were in patients from Canada and USA 

(DeJesus-Hernandez et al., 2011b). The two highest reports of expansions in familial cases 

comes from Greek (50%) and Sardinian patients (57.1%) however the former study only 

included a total of ten subjects (Chiò et al., 2012; Mok et al., 2012). Japanese populations 

have very few expansions with none reported in familial cases and only 2 in 1,021 sporadic 

individuals (Ogaki et al., 2012; Nakamura et al., 2016). German and Italian cohorts have been 

reported with 22-24% of fALS harbouring a pathogenic repeat while the UK is double that at 

43% (Ratti et al., 2012; Chiò et al., 2012; Cooper-Knock et al., 2012). This latter result was 

gauged on only 63 patients so it is likely that we need more familial cases to get an accurate 

estimate of pathogenic expansions in the UK.  

 

6.6. CONCLUSION  
 

In summary, we have completed a large-scale sequencing study in ALS uncovering an 

increased number of rare mutations in the UTRs of selected genes, as well as an increased 

number of patients with multiple mutations potentially causing their disease. This further 

endorses the oligogenic hypothesis of ALS. Lastly, we believe that caution should be taken 

when novel variants are revealed in a disease cohort, especially when an inadequate amount 

of controls have been sequenced. 

 

This work has been accepted in Brain: 

Morgan S, Shatunov A, Sproviero W, Shoai M, Orrell R, Fratta P, Hardy J, Pittman A, Al-

Chalabi A. A comprehensive analysis of rare genetic variation in ALS in the UK. 2016. Brain. 
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CHAPTER 7 ARGENTINIAN COHORT 
7.1. INTRODUCTION 

 

Next-generation sequencing studies have disproportionally examined the genetics Western 

and Asian populations over African and South American individuals. This is especially the 

case for the genetics of rare diseases like ALS which affects people worldwide. I was given 

the opportunity to sequence a small cohort of Argentinian ALS patients to search for potential 

disease-causing variation. Previous work into the genetic makeup of Argentina revealed a 

heterogeneous population with a composition of 65% European, 31% Indigenous American 

and 4% African (Avena et al., 2012). Another paper has analysed C9orf72 in a small 

Argentinian ALS cohort to discover expansions in a single (1/47) sporadic subject and a single 

(1/3) familial case (Itzcovich et al., 2016). The aim of the present study was to explore the 

genetics of 26 ALS patients from Argentina.  

 

7.2. MATERIALS AND METHODS 
 

A total of 26 ALS patients from Buenos Aires, one of which had ALS-FTD, were analysed. 

Firstly for C9orf72 repeat expansions and then for 24 relevant genes using the panel described 

in Chapter 6. Subjects included in the study consisted of 8 familial ALS, 19 sporadic ALS and 

1 sporadic ALS-FTD. The average age of onset was 61 (range 45-83) and the ethnicity was 

self-reported as Latin except for two of Caucasian heritage. However, the clinician who 

examined these patients believes all but one patient to be of European heritage. Additionally 

ATXN2 screening was performed on all subjects to detect repeat expansions. My colleague, 

Lucia Schottlaender, performed the analysis of C9orf72 and ATXN1 using methods previously 

described (Koutsis et al., 2012; Schottlaender et al., 2015). 

 

7.3. RESULTS  
 

Two patients harboured the C9orf72 repeat expansion (8%). In the remaining 24 subjects, 122 

variants were uncovered by NGS, 75 of which were common SNPs (present in >1% of the 

population), 14 were synonymous, 34 were intronic and 9 were rare, coding mutations. Three 
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patients had an ATXN2 intermediate repeat. Of the 24 patients fully sequenced, 8 had 

potentially damaging modifications in SOD1, TARDBP, FUS, UBQLN2, VCP, CHMP2B, SETX 

and ATXN2 which may have caused their disease (Table 18-19).  
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1 SOD1 G86S fALS (probable) Possible Limbs 50 17  Normal 
range F Latin 

2 FUS S135N sALS Possible Limbs 74 24  Normal 
range M Latin 

3 SETX D1077N sALS-FTD Probable Bulbar + FTD 72 30  Normal 
range F Caucasian 

4 VCP R155H fALS (probable) Probable Limbs 45 48 22/27 
repeats M Latin 

5 TARDBP N378D fALS (probable) Definite Limbs 52 96 22/27 
repeats F Latin 

6 
FUS D490N 

fALS (probable) Definite Bulbar 48 7 22/27 
repeats F Latin 

UBQLN2 P497S 

7 SOD1 D84G fALS (probable) Possible Limbs 47 24  Normal 
range M Latin 

8 CHMP2B R32Q fALS (probable) Probable Limbs 83 24  Normal 
range M Caucasian 

9 SOD1 E22G sALS Probable Limbs 48 36 Normal 
range M Latin 

10 SOD1 E22G sALS Possible Limbs 67 15 Normal 
range M Latin 

11 SOD1 E22G sALS Definite Bulbar/ upper 
limbs 56 48 Normal 

range F Latin 

12 C9orf72 Expansion sALS Probable Limbs 65 20 Normal 
range M Latin 

13 C9orf72 Expansion sALS Definite Bulbar 67 24 Normal 
range F Latin 

Ta b le  1 8 .  L i s t  o f  A rge nt in ia n  pa t ie nts  wi th  ra re  m u ta t ions .  
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1 SOD1 G86S G256A 4 21 33039587 het -  D D 

2 SOD1 E22G A65G 1 21 33032147 het  U D 

3 FUS S135N G404A 5 16 31195598 het rs61732970 T T 

4 SETX D1077N G3229A 10 9 135203756 het rs145097270 U T 

5 VCP R155H G464A 5 9 35065360 het rs121909329 U D 

6 TARDBP N378D A1132G 6 1 11082598 het  - U D 

7 
FUS D490N G1468A 14 16 31202358 het  - U D 

UBQLN2 P497S C1489T 1 X 56591795 hom  - U U 

8 SOD1 D84G A251G 4 21 33039582 het  - D D 

9 CHMP2B R32Q G95A 2 3 87289909 het  - U U 

T a b le  1 9 .  D e t a i l s  o n  ra r e  mu ta t i on s  un c ov e red ;  D  =  da ma g in g ;  U  =  u n kn o wn ;  T  =  
to le rated;  Nuc  =  nuc leot id e .  
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7.4. DISCUSSION 
 

A selection of 26 ALS patients from Argentina were scrutinised in 26 genes of interest for any 

disease-causing mutations. 13 of these patients have one or more likely damaging variants 

which may have contributed to their disease. Two of these included the SOD1 mutations D84G 

and G86S which are both in exon 4. The latter of these has been observed previously as an 

aggressive ALS phenotype in a Japanese kindred (Takazawa et al., 2010). This matches the 

clinical progression of our patient who was diagnosed within a month of onset and lived for 

only 17 months.  

 

Another patient presented with the known alteration N378D in TARDBP (Tsai et al., 2011; 

Ticozzi et al., 2011). This patient also had an intermediate CAG repeat expansion in ATXN2 

which is known to increase a patient’s risk of ALS (Elden et al., 2010). However, at 27 repeats, 

this is at the cusp of what is considered a risk with many papers declaring a higher number in 

order to get significant results (van Damme et al., 2011; Conforti et al., 2012). For this reason 

it has been suggested that the lower limit may diverge in different populations (Lee et al., 

2011). A FUS S135N variant in a sporadic sample was established which has both been 

observed in ALS (Rademakers et al., 2010) and in one control subject (Huey et al., 2012) 

indicating it is likely to be benign. Additionally, another patient presented with a novel FUS 

D490N variant which lies in the RGG-rich domain between the disease-causing variants 

R487C and R495X (van Blitterswijk et al., 2012b). This patient additionally has an ATXN2 

intermediate expansion and the homozygous P497S variant in UBQLN2. This variant is 

located on the same codon as P497H which was shown to impair the protein degradation 

pathway in cell cultures (Deng et al., 2011).  

 

VCP revealed only one known mutation which was found in an individual with a family history 

of ALS: R155H which has been reported previously in both ALS and IBMPFD as one of the 

most common VCP variants (Johnson et al., 2010; González-Pérez et al., 2012; Cady et al., 

2015; IBMPFD: Watts et al., 2004; Viassolo et al., 2008; Jacquin et al., 2013). Examination of 

CHMP2B revealed the novel variant R32Q which coincided with an intermediate ATXN2 

repeat expansion. The subject with FTD and Caucasian ethnicity harboured a D1077N variant 

in SETX however this variant did not segregate in a family with ALS (Arning et al., 2012). 

Lastly there were 34 intronic variants of unknown significance. 
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Excluding the two SNPs which were questioned in previous publications, the incidence of 

potentially damaging variants in our ALS cohort for each gene stands at 8% in C9orf72, 19% 

in SOD1, 12% in ATXN2 and 4% in TARDBP, FUS, UBQLN2 and VCP. This amounts to 34% 

of patients able to be genetically explained, which includes 62% of familial cases and 28% of 

sporadic subjects. This is higher than might be expected which could be due to the low subject 

count. 

 

Additionally, the frequency of multiple mutations occurring in the same patient stands at 12%. 

This was entirely from the familial subjects. Most publications examining the prevalence of 

ATXN2 repeat expansions excluded patients where a mutation was already discovered in 

another gene. In the present report, all three of the subjects with an intermediate expansion 

had a mutation in a known ALS gene, therefore, these would have all been excluded in other 

studies.  

 

As the number of patients in this cohort are relatively few, a larger replication study needs to 

be completed. NGS has shown that the genetics of ALS within South American countries are 

potentially similar to that of European decent with SOD1 being the most common cause of 

ALS. Given that there is a chance most of these patients are in fact of European decent, this 

finding is not surprising. We will be performing further analysis on these patients to determine 

their genetic makeup.  

 

This work is currently in preparation for submission: 

Morgan S, Schottlaender L, Hardy J, Holden H, Pittman A. Comprehensive investigation of 

causal genes in an Argentinian cohort with amyotrophic lateral sclerosis. 2016. 
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CHAPTER 8 MACHINE LEARNING 
8.1. INTRODUCTION 

 

With the discovery of C9orf72, the majority of patients with a familial classification can now be 

explained genetically. The latest estimations of the number of patients with known genetic 

causes puts definite fALS at 61-81% (two relatives also affected), probable fALS at 27-66% 

(one affected relative), possible fALS at 11-40% (one distantly affected relative or relative with 

similar disorder) and lastly sALS at 11-28% (Sabatelli et al., 2016). However, there are still 

many unsolved cases and with recent work highlighting the involvement of multiple genes 

within some patients, unsolved cases may be due to the interaction of multiple variants. One 

method to investigate this is to use machine learning which is able to uncover high-

dimensional genetic patterns that could predispose an individual to ALS. I hypothesise that in 

the complex genetic interplay of this condition, genetic interactions combine with the overall 

mutation burden to determine the risk and course of ALS, in a way that high-dimensional 

analyses might reveal.  
Machine learning describes high-dimensional pattern recognition software that is often termed 

as intelligent based on its ability to learn information and patterns, and make informative 

predictions from highly complex data without explicitly being programmed to do so. Big 

companies like Google and Amazon have invested heavily in machine learning techniques 

and now depend greatly upon them. The basic principle of this method is to be presented with 

some data (a training set), build a model (learn about the data) and make decisions or 

predictions that are driven by the data (Figure 55). The computer must come up with its own 

program for solving this problem. There are a vast array of underlying algorithms to achieve 

this, each with various advantages and disadvantages. However the main rule for machine 

learning is that you need big data. This data can be split into training data (for the algorithm to 

learn from) and test data (to implement the learned model on and test its performance). If the 

technique performs well then it can be applied to a new cohort of data for validation of the 

model.  
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F igure  55.  F lowchart  on  the  process  invo lv ed  wi th  mach ine  learn ing  te chn ique s .  Drawn in  

Powerpo int  2013 .  

The types of machine learning I will be focusing on include unsupervised and supervised 

learning methods. Unsupervised describes data exploration, where the machine is given the 

whole dataset and is tasked with finding underlying relationships within the data. For example, 

Amazon take all the information about their customers to cluster people into groups of 

individuals that are similar. Similar people are more likely to buy the same products and so 

this information is used to help recommend new items to each customer. Supervised learning 

is where the computer is given the data, but this time it comes with labels. For example, you 

might present an algorithm with spam emails and non-spam emails (two labels) and have the 

machine learn the patterns in these types of email. This learning can then be applied to novel 

emails where the classification of the label is unknown to predict which emails are spam, 

therefore creating a spam filter which can be constantly learning and improving from new 

emails. The more data these algorithms receive, the easier it is for them to make intelligent 

decisions.  
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8.2. MATERIALS AND METHODS 
 

As the first step in examining my data, I wanted to visualise any underlying relationships that 

might be present. A traditional method which can achieve this is principal component analysis 

(PCA). This is often used in genetics for examining population stratification and accomplishes 

this by dimensionality reduction i.e. the thousands of parameters (mutations in my case) are 

expressed on two dimensions allowing for each subject to be represented by a single point 

and can display a clustering of individuals who are genetically similar (Figure 56). Humans 

find it easier to think and observe in up to three dimensions, however, computers are perfectly 

able to deal with data in millions of dimensions. In order to generalise across these multiple 

dimensions, you need representations from all of the features present. PCA completes this 

task by plotting all of the traits against each other and creating multiple axes to fit this data. 

The first two axes will capture most of the variation in the data and so these form the basis of 

a two-dimensional representation of the initial data. I therefore used PCA to examine my data. 

 
F i gu r e  5 6.  E x a mp le s  of  d im ens i o na l i t y  re du c t i on .  ( A )  S ch em a t i c  r ep re se n t in g  h o w y o u  

m igh t  s ca le  f rom th ree  d ime ns ion s  to  two (Hunt ,  2015) .  (B )  P lot t ing  po ints  
wh ich  re p rese n t  im ag es  of  a  fa ce  on th ree  d im ens ion s ,  n am e ly ,  or ie n ta t ion  o f  
t h e  f a ce  up -do w n ,  l e f t - r igh t  p ose  an d th e  l ig h t ing  d i re ct ion .  Red  c i rc le s  d isp lay  
l o c a t i o n  of  th e  as soc i a ted  p i c tu re  n earb y  (Ten enb au m  e t  a l . ,  2000) .  

An award-winning algorithm for visualising high-dimensional data is t-Distributed Stochastic 

Neighbour Embedding (t-SNE; (Maaten and Hinton, 2008). This dimensionality reduction 

method outperforms the popular PCA by placing importance on local structure and correcting 

for large disparities in the sizes of features. I implemented this algorithm in MATLAB (R2015b). 
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The next step in my work was to perform supervised classification in an attempt to make binary 

predictions about data of unknown outcome, that is, to classify subjects of unknown disease 

status. Here the cases and controls are split into a training (80%) and testing group (20%) and 

if the classifier is able to make correct predictions, it is possible to uncover which of the 

features (mutations) are driving this. Using a holdout of the dataset, in the form of a testing 

group, prevents the overfitting of an algorithm to the training data and allows for the accuracy 

of the method to be determined.  

 

A popular technique to achieve this classification is to use a linear support vector machine 

(SVM). This algorithm maps the data onto a feature space which optimises the separation of 

the two known outcomes. This mapping is known as a transformation and uses known 

mathematical functions called kernels to succeed in this. The support vectors are those which 

are most important for classifying the data and will be the closest points to the separation line, 

also known as a hyperplane or decision surface (Figure 57). Once the hyperplane has been 

created, new samples can be introduced to discern which group they map to.  

 
F igu re  57.  Sche ma t ics  descr ib ing  th e  process  o f  c rea t ing  a  hype rp la ne  us ing  the  SVM 

m e th od .  ( A )  E x a mp le  of  da t a  t ha t  i s  com p le x  i n  l ow  d im ens i o ns .  ( B )  M ap p in g  
t h i s  da ta  to  th e  f ea t u re  spa c e  w h i ch  r ev ea l s  h o w t o  s ep a ra te  t he  r e d  and  g re en  
g rou ps  us ing  a  hy pe rp la ne .  (C )  A  s l i ce  th roug h the  h y pe rp lan e  wh e re  the  s o l id  
po ints  c los est  to  th i s  de c is ion  l ine  (with in  th e  max imum marg in)  a re  use d  as  
the  supp ort  vectors .  Drawn in  Pa in t  v1511.  

I also implemented the Boosted Trees algorithm which employs decision trees in order to 

make outcome predictions (Figure 58). This technique builds up many weak prediction models 

into a single stronger model. This method can be more suitable for sparse data like that seen 

in complex-disease genetics. It is also competent at learning to rank features and so a 

variation of Boosted Trees is employed by the likes of Yahoo for their search engine. 
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F igure  58 .  De c i s ion  t ree  docume nt in g  the  chan ce s  o f  s u rv iv in g  the  f ina l  t i tan ic  voyage .  

O r a nge  =  b ra n c h;  b lu e  an d  g re en  =  l e av es ;  ye l l ow  =  de c is i o ns ,  w i t h  the  f i r s t  
de c is ion  be ing  des cr ibe d  as  the  root ;  le a f  numbe rs  ind icate  th e  probab i l i ty  o f  
s u rv i v in g  ( l e f t )  a nd  the  p er c e n ta ges  o f  pe op le  in  e ach  lea f  ( r ight ) .  

A confusion matrix is one way of displaying the ability of a classifier. It includes the numbers 

of true positives (TP), true negatives (TN), false positives and false negatives. From this we 

can infer an accuracy of the method using the formula: 

ܿܿܣ = (ܶܲ +  ݏݐ݆ܾܿ݁ݑݏ ݂݋ ݎܾ݁݉ݑ݊ ݈ܽݐ݋ܶ(ܰܶ

Other simple measurements include specificity (rate of correctly classifying controls) and 

precision (how often does it correctly assign a patient with ALS). 

 

One of the first problems I encountered with this method was due to the unequal numbers of 

patients (1031) and controls (610). Therefore I was generously given 599 extra “controls” to 

solve this drawback. This data is from a cohort of patients with other diseases not related to 

ALS. The age range of this cohort included subjects lower than the normal onset age for ALS, 

however, given that this disease is quite rare it is unlikely that many, if any, subjects in this 

cohort will later develop ALS. The samples were called using HaplotypeCaller and filtered 

using Variant Quality Score Recalibration (VQSR) with GATK.  

 

We also decided to include C9orf72 in the final test since it has been published alongside 

other mutations as highlighted in Chapter 6 and is part of the oligogenic basis of ALS. 
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8.3. RESULTS  
 

Firstly, I completed a standard PCA on my data (Figure 59). There were no obvious clusters 

to be identified by this test. 

 
F igure  59.  PCA resu l ts  for  the  or ig ina l  dataset .  

Executing the t-SNE algorithm on my data, including common variation but not C9orf72, 

revealed potentially four groups of interest (Figure 60A). One minor group was a clear outlier 

which gave grounds for the removal of these subjects from the study. For the patterns in the 

remaining samples, we speculated if sex or age were contributing factors to these divides 

however, neither influenced the structure of the data (Figure 60B and C). When homozygous 

variants are examined exclusively, it can be observed that these four groups partition clearly 

as an expression of the common variation within several haplotypes present in the subjects. 

Controls and patients are distributed evenly between these groups and so all of these subjects 

are likely to be of similar ethnicity. 
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F i gu re  60.  t -SNE  resu l ts  w i th  roug h ly  four  c lusters  in  eac h  image .  (A )  A l l  data  has  been  

in c lu ded  in  th e  an a ly s i s ,  g ree n a r row ind icate s  out l ie r .  (B )  Same data  wi th  
g en de r  la be l le d .  (C )  Sa me  d a ta  w i t h  age  lab e l le d .  (D)  O n ly  hom o zy g ous  va r ian ts  
inc luded  in  th e  ana lys is .  
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On the original dataset, both the linear SVM and Boosted Trees methods perform badly by 

predicting most subjects as a patient (Figure 61).  

 
F igu re  6 1.  C onf us ion  ma tr ix  o f  the  c la ss i f ie rs  (A )  l in ea r  SVM an d (B )  B oos te d  Tre es  wh ich  

a ch ieved an  accu racy  o f  62  and 63% re spect ive ly  on  the  or ig ina l  datase t  
co l le c ted  for  th is  s tudy .  459  muta t ions  we re  in c lude d in  thes e  te s ts .  

To combat this issue, I added 599 extra individuals to obtain more equal numbers of cases 

and controls. From the 459 variants of high-quality, 198 variants were filtered out due to 

inadequate coverage in the new control cohort along with 26 subjects with more than 30% 

missingness. I performed t-SNE on this new dataset (Figure 62). 

 
F igure  62 .  t -SNE  re su l ts ,  inc lud ing  ne w cont ro ls .  Green  ar row ind icates  C9or f72  pos i t ive  

p a t ie n ts  wh i le  t he  b l ue  a rr o w  i de n t i f i es  a  sm a l l  g r ou p  of  s ub je c ts  w ho  do  n o t  
h a rb ou r  the  com m on  F US - 5 4A> G va r ia n t .  
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Running these tests on the larger cohort increased the ability of the classifiers (Figure 63). 

 
F igu re  6 3.  C onf us ion  ma tr ix  on  the  wh ole  d a ta set  inc lud ing  ne w contro ls  (A)  l ine a r  SVM  

60% accura cy  and  (B )  Boos te d  Tress  w i th  69 % accu racy .  

Exporting the variant classifiers from the learnt model reveals six main and five minor variants 

which push a subject in favour of being classed as a patient, with only one strong variant which 

helps classify controls (Figure 64).  

 
F i gu r e  6 4.  T h e  c l as s i f i ers  u se d  t o  det e r m in e  d isea se  s t a tus  i n  t he  f in a l  c oh o r t  w i th  the i r  

r e spe ct ive  we igh ts .  Pos i t iv e  nu mbe r s  p us h  the  c lass i f i cat ion  towards  a  contro l  
a nd  neg a t iv e  n um be rs  t ow a r ds  a  p a t ie n t .  R ed  a rrow  =  C9or f72  e xp ans i o n ;  
G reen  a r row =  FUS  c . -54A>G.  
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The biggest predictor of ALS is C9orf72 and the second biggest is -54A>G in FUS, however, 

although the A allele of this latter variant is more common in cases, many of these cases are 

from the Argentinian cohort. This variant remains positive even without these patients. The 

MAF of this variant is >0.9 indicating that the rarer allele (A) has been misrepresented as the 

common allele in the reference genome. The G “mutation” may therefore be considered 

protective. 

 

Examining familial cases against sporadic reveals 89% accuracy, however, again this is due 

to the uneven sized groups (Figure 65). I will require many more familial cases in order to 

complete these techniques appropriately.  

 
F igure  65 .  Confus ion  matr ix  o f  sporad ic  ve rsus  fami l ia l  pat ie n ts  for  th e  l ine a r  SVM 

m e th od .  

 
8.4. DISCUSSION 

 

To explore the possibility of explaining more cases of ALS, I implemented several machine 

learning techniques to probe for genetic patterns associated with the disease. Completing the 

t-SNE algorithm on my dataset revealed different sub groups within the data which were 

mostly driven by common variation and the subtly different haplotypes present in my cohort. 

There was one outlier group which had significantly different common variation and so were 

likely to be of an alternate ethnicity than stated on their clinical results. These subjects were 

removed from the analysis. Otherwise, patients and controls were mixed relatively evenly in 
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each cluster presenting that the control cohort is from the correct population for comparison 

against the patients. PCA did not identify these groups and was far less informative on the 

data. 

 

One of the issues with classification learning is its inability to adequately handle the 

comparison of two datasets of different sizes. This was especially highlighted when I executed 

SVM and Boosted Trees on double the number of patients as controls; the algorithms could 

score highly by predicting everyone as a patient. Additionally this was the case for examining 

sporadic patients separate to familial. To address this issue, we collected 599 extra controls 

to match the numbers of patients used in the study. While these controls were not perfect, 

they significantly reduced the bias due to sample size. They were also obtained using a 

different technique, therefore the covered regions was fewer than that just tested. The t-SNE 

results pull out two interesting observations. First, as a proof-of-principle, subjects with 

C9orf72 expansions were easily separated from the rest of the group. Secondly, a minor group 

containing more patients than controls was due to not harbouring a UTR mutation in FUS c.-

54A>G. This variant has a frequency of 94-98% in 1000 genomes and ExAC but it is 

interesting that fewer patients have this common mutation. With such a high MAF, it is clear 

that the reference genome is misleading in this case and the rare allele (A) might be associated 

with ALS. As discussed in Chapter 6.2, the UTRs of FUS play a role in its regulation. A 

mutation in this region could potentially cause RNA instability and affect the downregulation 

of the FUS protein directly. Further work is required to determine the effect of the reference 

allele of this SNP. 

 

When the classification techniques are employed on this new dataset, they display an ability 

to predict more patients correctly, however, the accuracy is not as high as we had hoped for. 

Yet the ability to assign patients correctly still remains even when C9orf72 is removed. There 

is clearly a number of features present in the data that help us classify cases of ALS but this 

is nowhere near the predictive ability required in order to be implemented as a useful tool. 

However, it is interesting that common variation is included in the classification of this cohort 

suggesting we shouldn’t disregard common variation entirely. Considering that only selected 

genes were included in this analysis, it is entirely possible that using WES or WGS data might 

increase this accuracy of these classifiers.  
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CHAPTER 9 ALS VARIANT DATABASE 
 

One of the difficulties with the current genetic literature on ALS is that there is no standard 

procedure for reporting variants associated with disease. A number of authors will report the 

amino acid alteration and codon number whereas others only the nucleotide change, dbSNP 

ID or genomic location. On occasion, merely the genetic sequence shown by Sanger 

sequencing is published without identifying the position. For some genes, the recognised 

transcript has altered over the course of a gene’s publications. Collectively, these cause the 

task of searching for one’s own results in the published literature to be all the more challenging. 

Currently, there are a few public databases documenting the genetics of ALS however they 

are all lacking either in numbers or in information. Most do not even link the reported mutation 

to the original publication. They are often difficult to search and none report which variants 

were found in controls or how many controls were sequenced in the study. Lastly, it is also of 

interest if a variant has previously been discovered within a close proximity of the novel one 

uncovered in one’s own project. For this reason, it was necessary to create my own database 

of genetic reports in ALS-associated genes. This currently contains over 3000 variants from 

500 papers which have focused on any of the genes I have mentioned in this report plus a few 

others of interest. These numbers are constantly increasing with every new genetic report in 

ALS. An example from this database is presented in Table 20. 

 

This database documents: 

• Gene of interest 

• Associated disease 

• Paper’s guess on pathogenicity 

• My prediction on pathogenicity 

• Nucleotide alteration and location 

• Amino acid alteration and position  

• Any previous names of the variant  

• The dbSNP reference  

• Zygosity  

• The exon/intron number  

• Domain affected  

• Disease phenotype  

• The predicted result of the mutation 

• The makeup and n-number of the cohort  

• The number of controls used  

• Nationality of the patients  

• Onset of disease 

• Whether functional work was carried out  

• The original paper reference  

• Any extra notable comment



When all this information is available together, we are able to observe the genomic areas 

which are highly mutated in ALS. This database has aided me hugely in variant interpretation 

and could be a great resource for other scientists. The largest free ALS database currently 

available is ALSoD and while this website is extremely useful, it focuses more on the patients 

harbouring the alterations rather than variant interpretation. Also, there are only a total of 658 

mutations listed. With my database, I have tried to use the literature to make judgements on 

the pathogenicity of each mutation according to Table 6. In order to help others attempting to 

achieve the same goal, I will be transforming this data into an easily searchable website with 

a ranking system for pathogenicity.  
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Control 605G>T no A99S     5  N/A African 2 in 371 Ayala-Lugo 2007 

Glaucoma 1274G>A no E322K rs523747    10 Coil-
Coiled 1 in 314 Caucasian 371 Ayala-Lugo 2007 

ALS 123G>A unlikely L41L rs11591687   Silent 4  42 fALS & 47 
sALS British none Bury 2016 

ALS 293T>A unlikely M98K rs11258194    5 Coil-
coiled 

42 fALS & 47 
sALS British 4.15% of 

375 Bury 2016 

ALS 102G>A unlikely T34T rs2234968   Silent 4  42 fALS & 47 
sALS British none Bury 2016 

POAG 603T>A no M98K rs11258194    5  5.6% of 785 Australian 17 in 218 Craig 2006 

fALS 67G>T likely G23X  D het Nonsense 4  161 fALS & 113 
sALS Italian 7080 del bo 2013 

PLS 844A>C likely T282P   het Missense 9 Coil-
Coiled 

161 fALS & 113 
sALS Italian 7080 del bo 2013 

ALS 1743A>G yes E478G rs267606929  het  14  Case study Japanese none Ito 2011 

ALS 402A>C no A134A rs113955718   Silent 6  75 FALS & 420 
SALS American none Johnson 2012 

ALS 858G>A no P286P rs151065414   Silent 9 Coil-
Coiled 

75 FALS & 420 
SALS American none Johnson 2012 

fALS 1743A>G yes E478G rs267606929    14  Six inbred 
families Japanese 781 Maruyama 2010 

sALS 1502C>T yes Q398X rs267606928 R hom Stopgain 12  Six inbred 
families Japanese 781 Maruyama 2010 

ALS 287G>T unlikely R96L   het  5  126 FALS French 509 Millecamps 2011 

ALS & 
control 964AG no E322K rs523747    10 Coil-

Coiled 
218 SALS & 18 

FALS Japanese found in 
271 Naruse 2012 

ALS & 
control 293T>A no M98K rs11258194    5  218 SALS & 18 

FALS Japanese found in 
271 Naruse 2012 

FTLD 703C>T yes Q235X  R hom Stopgain 8 Coil-
Coiled 

107 patients 
FTLD American 155 Pottier 2015 

POAG 603T>A sig M98K rs11258194    5  6.5% of patients Russian 1% of 
controls Rakhmanov 2005 

POAG 433g>A unsure L41L rs11591687   Silent 4  2.9% of patients Russian 1% of 
controls Rakhmanov 2005 

POAG 458G.A yes E50K     4  7/52 POAG - 270 Rezaie 2002 

ALS 218C>T no S73L   het  5  96 ALS families Australian 480 Solski 2012 

ALS 799A>G no E163E rs113811959   Silent 6  563 sALS & 124 
FALS Caucasian none Sugihara 2011 

ALS 1274G>A no E322K rs523747    10 Coil-
Coiled 

563 sALS & 124 
FALS Caucasian none Sugihara 2011 

ALS 433G>A no L41L rs11591687   Silent 4  563 sALS & 124 
FALS Caucasian none Sugihara 2011 

fALS 493C>T yes Q165X  D het Stopgain 6 Rab8 
binding 

64 SALS & a 
family Danish 2070 Tumer 2011 

fALS 493C>T yes Q165X  D het Stopgain 6 Rab8 
binding 

64 SALS & a 
family Danish 2070 Tumer 2011 

Tab le  20 .   An  ext ract  f rom the  ALS  gene  muta t ion  d a ta bas e  I  c re a te d u s ing  OPTN as  the  
g ene  of  in tere st .  S om e co lu mn s  we re  removed for  ae s the t ics .  The  contro l  
co lu mn  p rese n ts  a  nu mbe r  to  re presen t  n um be rs  se qu en ce d tha t  we re  a bsen t  
f or  the  m u tat ion  in  th a t  pa pe r .  
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For the website, I want to create a ranking system so that variant interpretation can be 

streamlined. Table 21 shows an example of how this might work for OPTN. The score system 

is designed to reward rare variants which have turned up in multiple studies, only in patients 

and match the mechanism of disease while penalising novel genes and mutations which only 

exist in a single person with no functional work attached to it. I picked an arbitrary threshold of 

15 points to be considered likely pathogenic and those in the 10-15 range as variants we need 

to perform functional analysis on. 
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OPTN 10:13109129C>T p.H3Y 2 -1 1 1 -1 1 0 1 0 0 2 0 1 0 0 7 
OPTN 10:13109168C>G p.P16A 1 -1 1 1 -1 1 0 1 0 0 2 0 1 0 0 6 
OPTN 10:13109189G>T p.G23X 2 1 1 1 1 1 1 1 0 0 2 0 1 1 0 13 
OPTN 10:13109224G>A p.T34T -2 0 1 -3 -5 3 -2 1 0 0 2 0 0 0 0 -5 
OPTN 10:13109245G>A p.L41L 0 0 1 -3 -5 3 -2 1 0 0 2 0 0 0 0 -3 
OPTN 10:13109270G>A p.E50K 2 1 -10 -3 1 0 0 1 0 -1 2 0 1 0 0 -6 
OPTN 10:13109354A>G c.166+66A>G -2 0 1 1 -1 1 0 0 0 0 2 0 0 0 0 2 
OPTN 10:13110284G>C p.K59N 2 1 1 -3 -5 1 0 1 0 0 2 0 1 0 0 1 
OPTN 10:13110325C>T p.S73L 1 1 1 1 1 1 0 1 -5 0 2 0 1 0 0 5 
OPTN 10:13110369A>G p.I88V 2 -1 -10 1 -5 0 0 1 0 0 2 0 1 0 0 -9 
OPTN 10:13110384G>C p.A93P 2 1 1 1 1 1 0 1 0 0 2 0 1 0 0 11 
OPTN 10:13110394G>T p.R96L 1 -1 1 1 1 1 0 1 0 1 2 0 1 0 0 9 
OPTN 10:13110400T>A p.M98K -2 -1 1 -3 -5 3 0 1 0 -1 2 0 1 0 0 -1 
OPTN 10:13110402G>T p.A99S 1 -1 -10 1 -5 0 0 1 0 0 2 0 1 0 0 -10 
OPTN 10:13112465->AG c.382_383insAG 2 0 1 -3 1 1 1 0 0 1 2 0 1 1 0 8 
OPTN 10:13112530G>A p.R149R 0 0 1 1 -1 1 -2 1 0 0 2 0 0 0 0 3 
OPTN 10:13112559G>T p.G159V 1 1 1 1 -5 1 0 1 0 0 2 0 1 0 0 4 
OPTN 10:13112564G>A p.V161M 1 0 1 -3 -5 1 0 1 0 0 2 0 1 0 0 -1 
OPTN 10:13112572A>G p.E163E 0 0 1 -3 -5 2 -2 1 0 0 2 0 0 0 0 -4 
OPTN 10:13112576C>T p.Q165X 2 1 1 1 1 3 1 1 2 0 2 0 1 1 0 17 
OPTN 10:13112599C>T p.G172G 2 0 1 1 -1 1 -2 1 0 0 2 0 0 0 0 5 
OPTN 10:13112635G>- c.552+1delG 2 0 1 1 1 1 1 0 0 0 2 0 1 0 0 10 
OPTN 10:13116262C>T c.553-5C>T -2 0 1 1 -1 1 1 0 0 0 2 0 1 0 0 4 
OPTN 10:13116364G>A c.626+24G>A -2 0 1 1 -1 1 0 0 0 0 2 0 0 0 0 2 
OPTN 10:13118964C>T p.Q235X 2 1 1 1 1 2 1 0 0 0 2 0 1 1 0 13 
OPTN 10:13122332T>C c.780-53T>C -2 0 1 1 -1 1 0 0 0 0 2 0 0 0 0 2 
OPTN 10:13122416C>T p.R271C 1 -1 1 1 1 1 0 0 0 0 2 0 1 0 0 7 
OPTN 10:13122449A>C p.T282P 1 -1 1 1 1 1 0 0 0 0 2 0 1 0 0 7 
OPTN 10:13124021C>A p.N303K 0 -1 -10 -3 1 0 0 0 0 0 2 0 1 0 0 -10 
OPTN 10:13124053A>T p.Q314L 0 1 1 1 1 2 0 0 0 0 2 0 1 0 0 9 
OPTN 10:13124058G>A p.A316T 2 0 1 1 -1 1 0 0 0 0 2 0 1 0 0 7 
OPTN 10:13124076G>A p.E322K 2 0 1 -3 -5 4 0 0 0 0 2 0 1 0 0 2 
OPTN 10:13125413C>T c.999-5C>T 2 0 1 1 -1 1 0 0 0 0 2 0 1 0 0 7 
OPTN 10:13125989C>G p.Q398E 1 -1 1 1 1 1 0 0 0 0 2 0 1 0 0 7 
OPTN 10:13125989C>T p.Q398X 2 1 1 1 1 2 1 0 0 2 2 0 1 1 0 15 
OPTN 10:13126017T>C p.I407T 0 0 -10 -3 1 0 0 0 0 0 2 0 1 0 0 -9 
OPTN 10:13127821A>- c.1320delA 2 0 1 1 1 2 1 0 0 0 2 0 1 1 0 12 
OPTN 10:13127862C>G p.Q454E 2 1 1 1 1 1 0 1 0 0 2 0 1 0 0 11 
OPTN 10:13127907A>G c.1401+4A>G 1 0 1 1 1 1 0 0 0 0 2 0 1 0 0 8 
OPTN 10:13132098A>G p.E478G 2 1 1 1 1 4 0 1 0 2 2 0 1 0 0 16 
OPTN 10:13132107C>T p.A481V 0 1 1 1 1 2 0 1 0 0 2 0 1 0 0 10 
OPTN 10:13132146T>G p.L494W 0 1 1 1 1 1 0 1 0 0 2 0 1 0 0 9 
OPTN 10:13132269G>A c.1532+72G>A -2 0 1 1 -1 1 0 0 0 0 2 0 0 0 0 2 
OPTN 10:13136697C>A c.1613-48C>A -2 0 1 1 -1 1 0 0 0 0 2 0 0 0 0 2 
OPTN 10:13136766G>A p.R545Q 1 -1 1 -3 -5 2 0 0 0 0 2 0 1 0 0 -2 
OPTN 10:13136802A>C p.K557T 2 1 1 1 -1 1 0 0 0 0 2 0 1 0 0 8 
OPTN 10:13136835T>C p.L568S 2 1 -10 -3 -5 0 0 0 0 0 2 0 1 0 0 -12 

T a b le  2 1 .  E x a mp le  of  h o w  the  va r ia n t  in te r p retat ion  tab le  might  be  presented  for  a  
we bs i te .  Th e  b lue  co lu mn re p res en ts  th e  agg re ga ted  s core  wi th  d a rke r  co lours  
ind icat ing  a  h ighe r  s core .   
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The scoring system may need to be adjusted as I based the numbers on my own observations 

and judgement on which information was most important for variant interpretation (Table 22).  

Measure Outcome (score) 
Present in public 

databases Absent (2) Rare <1% (1) Between 1 and 
5% (0) 

Common >5% 
(-2)  

Prediction in silico Damaging (1) Predictions 
disagree (0) Benign (-1)   

Present in ALS Present (1) Not present (-
10)    

Present in other 
unrelated disease Not present (1) Present (-3)    

Present in controls Not present (1) None 
sequenced (-1) Present (-5)   

No. affected 
individuals 

More than 
three (3) Two (2) One (1) None (0)  

Mutation type 
Matches 

known cause 
(1) 

Could be 
correct (0) 

Wrong type (-
2)   

Known hotspot/ 
correct domain Yes (1) No (0)    

Segregation Yes (2) Never found 
(0) 

Didn’t 
segregate (-5)   

Functional work 
Confirms 

pathogenic 
effect (4) 

Probably 
confirms (2) 

Loosely 
confirms (1) 

None 
completed (0) 

No pathogenic 
effect (-5) 

Gene ranking 
Known 

common gene 
(5) 

Known rare 
gene (2) 

Known 
dubious gene 

(0) 

Unknown gene 
(-3)  

De novo Found and 
tested (3) N/A (0)    

Nonsynonymous/ 
pred. to affect 

splicing 
Yes (1) No (0)    

Gene mutation rate 

ExAC shows 
significant loss 
of this type of 
mutation (3) 

ExAC shows 
some loss of 
this type of 
mutation (1) 

ExAC shows 
no loss of this 

type of 
mutation (0) 

  

Case-control 
analysis 

Significant in 
meta-analysis 

(3) 

Significant in 
single study (1) N/A (0)   

T a b le  2 2 .  R a n k i ng  sy ste m f or  var iant  in terp re tat ion .  
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CHAPTER 10 CONCLUSIONS AND FUTURE DIRECTIONS 
10.1. OVERVIEW 

 

In this study, we demonstrate the feasibility of NGS as a research and potential diagnostic tool 

for patients with ALS. Examining the data presented in this thesis to infer each gene’s 

contribution to ALS, it is clear that C9orf72, SOD1, TARDBP and FUS are all undisputed in 

their involvement. The additional genes that are the supported by my data include ATXN2, 

OPTN, VCP and UBQLN2. Next the genes that are questionably supported are ALS2, DAO, 

FIG4 and MATR3 (Figure 66). Lastly the genes which have no evidence for their pathogenicity 

in this study are comprised of ANG, CHCHD10, CHMP2B, DCTN1, NEFH, PFN1, PON1-3, 

PRPH, SETX, SPG11, SQSTM1, TREM2, VAPB and VEGFA. However within this latter 

group, I believe that the literature provides adequate evidence for the association of 

CHCHD10, CHMP2B, SPG11, SQSTM1, VAPB and a very minor risk with PFN1 and TREM2. 

 
F i g u r e  6 6.  U p da t e d  ve rs i o n  o f  F ig u r e  4  bas e d  o n  th e  re s u l ts  u nc o v e red  in  t h i s  the s is .  L i s t  

o f  g ene s  impl i cated  in  ALS  wi th  c i rc le  s i ze  re present ing  re la t ive  contr ibut ion  
to  d isease .  

Examining the test plate, core study and Argentinian cohort together, variants which are likely 

pathogenic results in a total of 50 (37%) fALS cases able to be explained genetically as well 

as 104 (11%) sALS subjects. A number of other variants within this cohort may also be 



155  

pathogenic and functional work is the next step to determining this and potentially increasing 

the numbers of explained patients.  

 

10.2. ISSUES WE NEED TO ADDRESS 
 

The biggest problem in disease genetics is the interpretation of rare variants, especially novel 

mutations never recorded before. We need to follow the recommended guidelines and not 

exaggerate claims of causality for publications. It is hoped that my database will address some 

of these issues by providing a source of background knowledge for each variant and ranking 

them. I have recorded a number of publications which claim to have found a novel variant 

when in fact the mutation has been published before in ALS. 

 

One of the other principal problems in disease genetics is acquiring adequate control data. 

Firstly, sequencing patients with a disorder is more profitable in terms of producing an 

interesting result. Therefore there is a tendency to reuse the same controls for different studies 

so as not to waste extra money on them (as performed in the current study) or not to sequence 

any controls and simply rely upon public databases as a control group. Secondly, many 

publications do not report if their controls harboured any rare mutations. Some of these cohorts 

are of high enough numbers that it would be statistically next to impossible for there not to be 

rare mutations given the known background mutation rates within each gene. The drive for 

not reporting these variants is that they might make the reported disease-implicated variants 

appear less convincing or the authors may have believed they were not important enough to 

mention. However these factors only result in the literature producing an incomplete picture of 

a disease gene’s variation. Additionally, a reliance on public databases could produce false 

negative results as they may contain pathogenic mutations for they are not perfect as a control 

group. They contain a mixture of individuals of all ages with minimal health checks and some 

related individuals. Additionally, they may also contribute to false positive outcomes since they 

may not be similar enough in ethnicity to a study’s patient cohort (or have other ethnicities 

mixed in) which could make common variation in the patients look significant higher than 

controls. In our control cohort, 185 unique variants were uncovered which were absent from 

all public databases and 140 of these were also absent from our patients. It is always essential 

to remember that rare variation is actually quite common and just further stresses the 

importance of sequencing control cohorts. Of course, as time advances, we will have access 

to more data than ever which hopefully should reduce these issues.  
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Another issue in the literature is the use of the phrase “segregated with disease”. Many genes 

that have been associated with a disease, have had a major part of their causal evidence lie 

in the fact that the mutation segregates with the disorder in a number of members in a large 

family. However, I have noticed a number of publications using this expression when only two 

individuals in a family were examined or worse, when they do not disclose how many relatives 

were sequenced in the study. Obviously it makes a better story if this information is in the 

supplemental notes of a paper but this knowledge is vital for those trying to understand a 

variant’s (or gene’s) involvement in a disease.  

 

10.3. FUTURE OF GENETICS 
 

Genetics is a numbers game; as we get more samples, patients and controls, we will be able 

to more accurately analyse the data and gain a fuller understanding on all the pathways 

involved in diseases like ALS. Year by year we are acquiring larger datasets but this does not 

come without its challenges. To handle this expansion requires efficient computation and a 

large infrastructure of supercomputers and knowledgeable personnel to interpret the data. 

One of the slowest sections of the analysis pipeline is aligning to the reference genome. The 

most challenging alignments are reads which contain indels with the larger of these causing 

the most issues. One tactic which addresses this problem is the use of a reference genome 

composed using graph theory (Figure 66).  

 
F igu re  67 .  A  s egm en t  of  DN A  wi th  d i f fe ren t  p oss ib l e  mu t a t i on s  as  re p rese n ted  by  g rap h  

t h eor y .  An  i n d i v id ua l  be i ng  m ap ped  t o  t h is  re fe re n ce  c ou l d  h ave  an y  
combin at ion  fo l lowing  th e  l ines  f rom s tar t  to  f in i sh .  I t  i s  a l s o  p oss ib le  to  
inc lude  conne ct ions  e nab l ing  the  sequence  to  g o  back  on  i tse l f  and  ta ke  
a n o the r  p a th .  

In contrast to a linear reference, a whole genome variation graph allows for multiple matches 

along its length. Computers prefer to solve this type of problem and so using this new 
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reference speeds up alignment and reduces reference bias making the results more accurate 

particularly for sizable indels. Richard Durbin, the name behind the 1000 genomes project, is 

one such individual aiming to create these reference maps. These sequences have the ability 

to contain information from thousands of individuals without requiring masses of disk storage 

space. It is also anonymous for all individuals within the reference for no single trajectory 

across the genome can be identified without intersecting others. 

 

A revolutionary project currently underway is Genomics England. The aim of this project is to 

sequence 100,000 entire genomes from individuals with a range of disorders. The results from 

these subjects will hugely aid the discovery of novel genes and pathways related to disease. 

It will also provide a move towards personalised healthcare where a patient’s genetic results 

will determine the diagnosis and treatments prescribed.  

 

Not every causal variant (or gene) will produce a perfect Mendelian inheritance of ALS which 

can be uncovered by analysing enough members of the same family. Therefore we need more 

work on the functional consequences of mutations. Many of these experiments are expensive 

and time consuming, potentially taking a couple of years to complete for some cell cultures 

and so I believe we need to create some high throughput, low cost functional studies to 

analyse variants of uncertain significance, even if it’s only to select those to carry on into more 

robust experiments. 

 

10.4. FINAL CONCLUSION 
 

To conclude this thesis, the impact of this work can be summarised in three major findings. 

Firstly, I have updated the genetic landscape of ALS, altered the order of the genes to reflect 

their relative contribution and established that the genetics are more complex than previously 

assumed. Secondly, I have highlighted the importance of considering non-coding variation 

when examining ALS genetics, given the increase in rare variant burden within these regions. 

Lastly, I have explored a novel machine learning approach in ALS which uncovered a 

potentially protective mutation within FUS. A method that may be beneficial for many complex 

genetic disorders. All three of these outcomes provide new and exciting research questions to 

be answered as the field develops in the aim of one day finding a cure for ALS. 
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