
1 
 

 

 

 

 

REGULATION OF NKX2-5 IN BLOOD VESSELS 

 

 

 

 

Athina Dritsoula 

 

 

 

 

 

April 2017 

 

Thesis submitted to the University College London 

 for the degree of 

Doctor of Philosophy (PhD) 

LONDON’S GLOBAL UNIVERSITY 



2 
 

DECLARATION 

 

I, Athina Dritsoula, confirm that the work presented in this thesis is my own. Where 

information has been derived from other sources, I confirm that this has been 

indicated in the thesis. 

 

 

 

 

Athina Dritsoula       Date:  

 

  



3 
 

ABSTRACT 

NKX2-5 is a transcription factor required for the formation of the heart and vessels 

during development. Postnatal expression is significantly downregulated, and then 

re-activated in diseased conditions characterised by vascular remodelling. However, 

the mechanisms regulating NKX2-5 activation in diseased vessels remain unknown. 

The aim of this thesis is to identify these mechanisms and provide information on 

how the gene contributes to cardiovascular pathologies, such as scleroderma-

associated pulmonary hypertension.  

A case-control genetic association study was performed in two independent cohorts 

of scleroderma patients. Associated SNPs located in the NKX2-5 genomic region 

were cloned into reporter vectors, and transcriptional activity was assessed by 

reporter-gene assays. Associated SNPs were further evaluated through protein-

DNA binding assays, chromatin immunoprecipitation and RNA silencing. Signalling 

mechanisms activating NKX2-5 expression were investigated in vascular endothelial 

and smooth muscle cells using a panel of selective inhibitors. 

Meta-analysis across the two independent cohorts revealed that rs3131917 was 

associated with scleroderma. Rs3132139, downstream of NKX2-5, was significantly 

associated with pulmonary hypertension in both cohorts. The region containing 

rs3132139 and rs3131917 was shown to be a novel functional enhancer, which 

increased NKX2-5 transcriptional activity through the binding of GATA6, c-JUN, and 

MEF-2c. An activator TEAD/YAP1 complex was shown to bind at rs3095870, 

another functional SNP upstream of NKX2-5 transcription start site, which showed 

marginal association with scleroderma. Signalling mechanisms, involving TGF-β, 

ERK5, AKT and hypoxia, stimulated NKX2-5 expression during phenotypic 

modulation of vascular endothelial and smooth muscle cells. 

Overall, the data showed that NKX2-5 is genetically associated with scleroderma 

and pulmonary hypertension. Functional evidence revealed a regulatory 

mechanism, activated by TGF-β, which results in NKX2-5 transcription in human 

vascular smooth muscle cells through the interaction of an upstream promoter and a 

novel downstream enhancer. These regulatory mechanisms can act as a model for 

NKX2-5 activation in cardiovascular disease characterised by vascular remodelling. 
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SLE systemic lupus erythematosus 

SM-22 smooth muscle protein 22 or Transgelin 

SM-MHC smooth muscle myosin heavy chain 

SMC smooth muscle cells 

SNP single nucleotide polymorphism 

SRF serum response factor 

SSc scleroderma 

Tag SNP tagging SNP 

TAK-1 TGF-β-activated kinase 1 
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TGF-β transforming growth factor beta  

TIMP tissue inhibitor of matrix metalloproteinase 

TNF-α tumour necrosis factor alpha 

VSMC vascular smooth muscle cells 
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YAP Yes-associated protein 

α-SMA alpha smooth muscle actin 
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 - INTRODUCTION CHAPTER 1

This thesis focuses on the regulation of the NKX2-5 gene at the genetic, 

transcriptional and post-transcriptional levels in human adult blood vessels. In 

particular, expression and regulation of the NKX2-5 gene has been studied in the 

context of pulmonary pathologies characterised by vascular remodelling, such as 

pulmonary hypertension and scleroderma.  

In this chapter, I will briefly describe the cardiovascular system, the pulmonary 

vasculature and the pulmonary vascular smooth muscle cells. I will then introduce 

cardiovascular diseases and the mechanisms that are involved in the disease 

pathogenesis, including vascular smooth muscle cell de-differentiation, vascular 

remodelling and endothelial-to-mesenchymal transition. Next, I will provide a brief 

background on pulmonary hypertension and scleroderma, the focus of the 

experimental work found in this thesis. Subsequently, I will discuss the genetics of 

cardiovascular diseases particularly, the genetics of pulmonary hypertension and 

scleroderma. Finally, I will close this chapter with a detailed account of NKX2-5, and 

will describe the evidence which leads me to believe that it has a major role in the 

remodelling of diseased blood vessels. 

1.1 Cardiovascular system 

The cardiovascular system is the engine of life, and its ultimate purpose is to allow 

the vital exchange of gases, fluids, electrolytes, and other large molecules between 

the cells and the outside environment. The heart and the vasculature are the main 

components of the cardiovascular system and ensure that adequate blood flow is 

delivered to organs and tissues to facilitate gas exchange. 

1.1.1 The heart and the blood vessels 

The cardiovascular system consists of two major organs: the heart and the blood 

vessels including arteries, arterioles, capillaries, venules and veins (1). The venules 

and the veins are part of the pulmonary circulation that sends deoxygenated blood 

to the lungs to receive oxygen and unload carbon dioxide. The rest of the vessels 

are all part of the systemic circulation that sends oxygenated blood and nutrients to 

the body while removing wastes. The heart can be considered as a pump that 

receives blood from the peripheral veins at low pressure, contracts and provides the 

organs and tissues with blood flow at high pressure.  
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The performance of the heart is usually expressed in terms of the cardiac output (1). 

Any factor that alters the heart rate or volume of the injected blood will alter the 

cardiac output. The heart rate is determined by groups of cells within the heart that 

act as electrical pacemakers, and their activity is increased or decreased by 

autonomic nerves and hormones. In recent years, it has been established that the 

heart also retains a role as a secretory organ, synthesising and releasing several 

hormones (2), such as  the atrial natriuretic peptide (ANP), which is critical for the 

regulation of blood volume and pressure (3).  

Blood vessels contract and dilate to regulate arterial blood pressure, alter blood flow 

within organs, regulate capillary blood pressure, and distribute blood volume within 

the body. Changes in vascular diameters are carried though the vascular smooth 

muscle cells (VSMCs) within the vascular wall upon cell activation by autonomic 

nerves, metabolic and biochemical signals from the outside of the blood vessel, and 

vasoactive substances released by cells lining the vessels. Other functions include 

vascular homeostasis and modulation of the vascular tone.  

A third component of the cardiovascular system is the lymphatic circulation. The 

lymphatic system does not contain blood and is not involved in the vital gas 

exchange function, but contributes to the collection of excess fluids and their 

transport back into the venous circulation.  

1.1.2 The blood vessel wall 

The arterial wall is composed of three layers known as the tunics: the interna, the 

media, and the externa (Figure 1.1). The anatomy and physiology of the blood 

vessel wall is described in detail in (4). 

The tunica interna or intima (Figure 1.1) lines the lumen of the blood vessel and is 

exposed to the blood. It consists of endothelial cells that form a selective permeable 

barrier for materials entering or leaving the blood flow. Endothelial cells secrete 

chemokines to stimulate dilation or constriction of the vessel, and repel blood cells 

and platelets from attaching to the wall (5). When the endothelium is damaged, the 

endothelial cells produce cell-adhesion molecules that induce leukocytes and 

platelets to adhere to the surface of the wall and initiate a defensive action (6). 

The middle layer, tunica media (Figure 1.1) consists of VSMCs, collagen fibres, 

elastins and other components of the extracellular matrix (ECM). VSMCs in the 

tunica media provide structural support, strength and elasticity, and control blood 

pressure and blood flow through highly regulated contractile mechanisms. The 
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tunica media retains the important role of contraction of the vessel and influences its 

structure and function to accommodate changes in the environment during 

pathological processes. The ratio of smooth muscle, collagen, and elastin, each of 

which has different elastic properties, determines the overall mechanical properties 

of the vessel (1). For example, the aorta has a large amount of elastin, which 

enables it to passively expand and contract as blood is pumped into it from the 

heart. This mechanism enables the aorta to dampen the arterial pulse pressure. In 

contrast, smaller arteries and arterioles have a relatively large amount of smooth 

muscle cells, which is required for these vessels to contract and thereby regulate 

arterial blood pressure and organ blood flow. 

 

Figure 1.1  The blood vessel wall. The blood vessel wall consists of three layers, also 
known as tunicas: the intima, the media, and the externa or adventitia. The tunica intima 
consists of a thin layer of endothelial cells that form a selective permeable barrier. The 
endothelial cells face the lumen and communicate with material travelling through the blood 
flow. The tunica media mainly consists of VSMC and provides structural support, strength 
and elasticity, as well as control of blood pressure and blood flow. The adventitia consists of 
fibroblasts, loose connective tissue and perivascular nerves. It functions as a dynamic 
compartment for cell trafficking, and participates in growth and repair of blood vessels. 

 

The external layer, tunica externa or adventitia (Figure 1.1) consists of fibroblasts, 

loose connective tissue and perivascular nerves. The adventitia functions as a 

dynamic compartment for cell trafficking, it participates in growth and repair of blood 

vessels and mediates the communication with VSMCs and endothelial cells (7). 
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Also, it anchors the vessel and provides passage for small nerves, lymphatic 

vessels, and smaller blood vessels that supply the tissues of the larger vessels. 

Moreover, it contains resident populations of macrophages, T-cells, B-cells, mast 

cells, and dendritic cells that carry out important surveillance and innate immune 

functions in response to foreign antigens (8-10). The exact role of the adventitia in 

the formation of tissue lesions and in tissue repair is still under scrutiny.  

1.1.3 Vascular endothelial cells 

The vascular endothelium is a single layer of cells that line all blood vessels. 

Depending on the type of vessel and tissue location, endothelial cells are joined 

together by different types of intercellular junctions. Some of these junctions are 

very tight, whereas others have gaps between the cells that enable and facilitate 

blood cells to move in and out of the capillary. Endothelial cells have several 

important functions with the most important being the regulation of vascular tone. In 

addition, endothelial cells serve as a barrier for the exchange of fluid, electrolytes, 

macromolecules, and cells between the intravascular and extravascular space (11). 

Further, they are able to regulate smooth muscle function and modulate platelet 

aggregation.  

The vascular endothelium exerts its functions through the production and secretion 

of several vasoactive factors [reviewed in (5, 12)]. The importance of normal 

endothelial function has been established through studies that associated 

endothelial damage and dysfunction with cardiovascular disease (CVD) including 

atherosclerosis, pulmonary arterial hypertension (PAH) and organ fibrosis (13-17). 

Damage of the endothelium at the capillary level increases capillary permeability 

which leads to increased capillary fluid filtration and tissue oedema. 

1.1.4 Vascular smooth muscle cells (VSMC)  

The tunica media consists of VSMCs. Depending on the size of the vessel, there 

may be several layers of VSMCs, some arranged circumferentially and others 

arranged helically along the longitudinal axis of the vessel. Contractile proteins such 

as actin and myosin are present and involved in the cell structure and cytoskeleton. 

However, VSMCs exhibit a different structural arrangement compared to cells found 

in the cardiac or skeletal muscle (1). In detail, bands of actin filaments are joined 

together and anchored by dense bodies within the cell or dense bands on the inner 

surface of the sarcolemma. Each myosin filament is surrounded by several actin 

filaments. Similar to cardiac myocytes, VSMC are electrically connected by gap 
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junctions. These low-resistance intercellular connections allow propagated 

responses along the length of the blood vessels. 

VSMCs carry out the vital process of contraction that is responsible for the structural 

strength and sustainability of blood vessels. The contraction of VSMC in a relaxation 

state is usually slow and sustained, and determines the diameter and the resting 

tone of the vessel (1). Contraction is affected by various activating and inhibitory 

stimuli, such as sympathetic adrenergic nerves, circulating hormones, substances 

released by the endothelium, and vasoactive substances released by the tissue 

surrounding the blood vessel.  

In addition, contraction can be initiated by electrical, chemical, and mechanical 

stimuli [reviewed in (18, 19)]. Electrical depolarisation occurs through changes in ion 

concentrations or by the receptor-coupled opening of ion channels. In particular, it 

elicits contraction primarily by opening voltage-dependent calcium channels, 

causing an increase in the intracellular concentration of calcium. Mechanical stimuli 

that can cause contraction (stretch) usually originate from the smooth muscle itself, 

and this is known as the myogenic response (20), which also results from activation 

of ion channels leading to calcium influx. Several signal transduction mechanisms 

modulate intracellular calcium concentration and therefore the state of vascular tone 

[reviewed in (18)]. These mechanisms involve: a) the inositol triphosphate (IP3) 

pathway through the activation of phospholipase C, b) the cAMP mechanism 

through the activation of adenylyl cyclase, and c) the NO-cGMP system. Chemical 

stimuli include norepinephrine, epinephrine, angiotensin II, vasopressin, and 

endothelin that can all bind to specific receptors on the surface of VSMCs.  

1.1.4.1 VSMC contractile phenotype  

Cellular differentiation is the process by which multi-potent cells in a developing 

organism acquire specific functions and properties that distinguish them from other 

cell types. The mature VSMC is a highly differentiated contractile cell that is 

responsible for the vital processes of contraction and relaxation of the blood vessel, 

the maintenance of structural strength and sustainability of homeostasis. The 

contractile VSMCs directly regulate lumen calibre, and thus, arterial and venous 

tone and vascular resistance. These, in turn, control the distribution of blood flow 

throughout the body. Mechanistically, VSMCs contain many thin actin filaments and 

relatively few thick myosin filaments, which are arranged along the long axis of the 

cells (21, 22). Taking advantage of this arrangement, VSMC produce prolonged 

forces with low energy consumption to maintain vascular tone and blood flow. 
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Contractile cells that grow on collagen do not proliferate (23), and are able to retain 

a high proportion of myofilaments (24). However, their morphology and shape 

change, and they acquire “stress fibres” that provide the ability to contract (25). 

Stress fibres are composed of bundles of approximately 10-30 actin filaments, 

which are held together by the actin-crosslinking protein α-actinin (26). Non-muscle 

myosin and tropomyosin are also structural components of the fibres (26). 

Under homeostatic unstimulated conditions, adult medial VSMC are predominantly 

quiescent, proliferate at an extremely low rate (27), and produce very low amounts 

of ECM (28, 29). However, the expression of a repertoire of contractile proteins, 

agonist receptors, ion channels, and signal-transducing molecules is required to 

perform contraction. Gene and protein expression is meticulously regulated, and 

although well studied, some parts still remain unclear. The panel of contractile 

proteins includes alpha smooth muscle actin (α-SMA), smooth muscle myosin 

heavy and light chains (SM-MHC and SM-MLC, respectively), calponin, SM22, 

vinculin, tropomyosin, and other intermediate filaments and integrins. A thorough 

review of the differentiation of VSMC and the contractile proteins was written by G. 

Owens (30). A few of the most abundant and important proteins for VSMC 

contractility are discussed below.  

α-SMA is the most abundant protein found in VSMCs, comprising almost 40% of 

total cell protein. It is the earliest known marker of differentiated VSMCs expressed 

during development of the vasculature and is essential for the VSMC function. The 

protein is expressed in all mesodermal-derived cells in development, tissue repair 

and neoplastic growth. It is also expressed in early stages of differentiation of both 

cardiac and skeletal muscle, as well as in fibroblasts in wound healing and in 

tumours (31). The gene is differentially regulated at the transcriptional level in a 

tissue-specific manner (31).  

SM-MHC is an essential component of the contractile system and is expressed in 

muscle and non-muscle cells. Multiple isoforms of MHC have been found and their 

expression is differentially regulated in tissue-specific and developmental stage-

specific ways. Mature VSMCs express at least three smooth muscle and two non-

muscle isoforms. SM-MHC is a highly specific marker of the SMC lineage. Similarly 

to MHC, two isoforms of SM-MLC are expressed in VSMCs, and are also 

differentially regulated.  

In contrast to α-SMA and myosin, expression of calponin is exclusively restricted to 

VSMCs, whereas expression of SM22 is found in both VSMC and in myofibroblasts. 
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Both calponin and SM22 regulate contraction, but the exact mechanism remains 

unclear [reviewed in (32)]. The expression of VSMC protein markers appears to be 

relatively uniform between VSMCs in mature blood vessels. However, during 

development, contractile protein expression appears to be heterogeneous between 

different VSMCs, indicating that the developmental timing of expression is not 

synchronous and depends on the embryonic origin (32). In addition, contractile 

protein expression may increase in response to increased needs of tissues for 

contractility and other functions, explaining the number of different isoforms that 

have evolved for each protein.  For instance, α-SMA and SM-MHC/MLC must be 

present in almost all cells, since they are required for cytokinesis and cell motility 

apart from contractility. However, the high mechanical forces produced by VSMCs 

require much higher expression levels of the contractile proteins compared to non-

muscle cells (32).  

1.1.4.2 VSMC plasticity 

Unlike cardiac and skeletal muscle that undergo terminal and irreversible 

differentiation, VSMCs retain remarkable plasticity, and can undergo profound and 

reversible changes in phenotype in response to changes in the local environment 

(32). Plasticity provides the cell with the ability to reverse the differentiated 

phenotype to a less differentiated stage that is known as the synthetic phenotype. 

This procedure is called de-differentiation. Plasticity is considered necessary for the 

SMC differentiation and maturation program, and it is believed that it evolved in 

higher organisms because it conferred a survival advantage (33).  

Phenotype switching can occur under physiological conditions. Striking examples of 

plasticity are seen in vascular development, when VSMCs are directly involved in 

the morphogenesis of blood vessels and exhibit high rates of proliferation, 

migration, and production of ECM consisting of collagens, elastins and 

proteoglycans (30). Similarly, in vascular injury VSMCs acquire a synthetic 

phenotype required for the physiological process of repair (30). However, a high 

degree of plasticity may predispose the cell to abnormal environmental signals that 

can lead to adverse phenotypic switching contributing to development of vascular 

disease. Indeed, VSMC de-differentiation is profound in vascular remodelling in 

major diseases.  

It is important to note that the phenotypes of VSMCs are not mutually exclusive. 

Consequently, plasticity has confounded efforts to understand the cellular and 

molecular mechanisms that control VSMC differentiation. The extent of phenotypic 
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modulation and its reversibility appears to be dependent on many factors, and this 

has undoubtedly contributed to many of the controversies that exist in the literature 

regarding VSMC differentiation. 

The VSMC synthetic phenotype will be further discussed in detail in section 1.2.3.2. 

1.1.4.3 Embryonic origin of VSMC 

Numerous studies focused on VSMC lineage have revealed that extensive 

heterogeneity exists among VSMC isolated not only from different arteries, but also 

from different compartments of the same vessel (34, 35). Heterogeneity is found in 

cell morphology, organisation at confluence, growth control, functional properties 

such as production of peptide growth factors, sensitivity to heparin-mediated growth 

inhibition, ability to proliferate in serum-free medium, as well as gene and protein 

expression patterns. These findings suggest that VSMCs from different sources can 

exhibit a wide range of diverse phenotypes, possibly due to the different embryonic 

origins of VSMCs (32).  

A thorough review by Majesky et al (36) showed that VSMC in the cardiovascular 

system arise from eight different origins. However, the majority of them derive from 

the neural crest, the secondary heart field (SHF), the somites and various stem 

cells. In detail, neural crest-derived VSMCs populate a small segment of the aorta 

and other great arteries in close proximity to the heart. A second, clearly distinct 

type of VSMCs is found in the walls of coronary arteries and is derived from the 

proepicardial mesothelium, as are all the progenitors of the coronary vessels (37). 

The SHF also contributes cells to the cardiovascular system. Specifically, cells of 

the SHF migrate to the outflow tract, and then enter the aortic sac and differentiate 

into VSMCs that form the base of the aorta and pulmonary trunk.  

Studies focusing on lineage tracing have showed that other cell types such as 

progenitor cells also contribute to the development of the cardiovascular system. 

Progenitor cells are able to differentiate to VSMCs within the vessels, and this 

procedure is not limited to embryogenesis, but also occurs in the quiescent adult 

arterial wall (38).  

The differentiation of embryonic origin-specific VSMCs from human pluripotent stem 

cells has been well-established and published by Cheung et al (39). Different 

combinations of growth factors and small molecules were added to the culture 

medium to induce three intermediate tissue lineages (neuroectoderm, lateral plate 

mesoderm, and paraxial mesoderm) that give rise to the majority of SMCs in the 

body (39). Based on this study, it was recently shown that the embryological origin 
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of human VSMCs affects their ability to support endothelial growth formation (40). 

Specifically, it is demonstrated that lateral mesoderm-derived VSMC provide 

superior support to endothelial network formation compared to VSMC originating 

from the paraxial mesoderm and neuroectoderm (40).  

1.1.4.4 NKX2-5 in embryogenesis 

Nkx2-5 is one of the earliest markers of the cardiac lineage and its role in embryonic 

development has been studied extensively [reviewed in (41, 42)]. It is expressed in 

the primary heart field (PHF) as well as the SHF, the pharyngeal mesoderm and the 

pharyngeal endodermal cells underlying the SHF (43). Prall et al showed that Nkx2-

5 regulates SHF cell proliferation and outflow tract morphology, and demonstrated 

that Nkx2-5 also orchestrates the transition between periods of heart induction, SHF 

progenitor cell proliferation, and outflow tract morphogenesis via a Smad1-

dependent negative feedback loop (44). Nkx2-5 alone or in co-operation with other 

factors such as Isl1 is also involved in the regulation and specification of cardiac 

progenitors towards the different myocardial lineages, and ensures proper 

acquisition of myocyte subtype identity (45). 

Currently, the specific requirements of Nkx2-5 expression in the different embryonic 

tissues with regards to heart development are incompletely understood. However, it 

has been shown that Nkx2-5 expression is essential in the mesoderm, while 

endodermal expression is dispensable for early heart formation in mammals (46). In 

addition, Nkx2-5 expression is found in the precardiac mesoderm and the 

pharyngeal endoderm at 7.8 dpc (days post-coitum) in the mouse embryo (43).  

Targeted disruption of Nkx2-5 in mouse embryos causes arrest in heart 

development after the initial stage of looping and embryos die by 9.0-11.0 dpc (41) 

due to growth retardation and abnormalities of the heart, including a failure of 

ventricular chamber development (47). Commitment to the cardiac lineage is not 

altered, however, expression of essential heart-specific genes is affected, such as 

eHAND, which is down-regulated in Nkx2-5 deficient mice and is essential for the 

differentiation of embryonic ventricular myocardium (48). 

The role of Nkx2-5 has also been studied at later stages of heart development using 

Nkx2-5 conditional null mice. The animals exhibited chamber dilatation and 

progressive heart failure (49). After birth, Nkx2-5 continues to be expressed in the 

post-natal heart, and its expression is significantly increased in hypertrophied hearts 

(43). In addition, mutations in the human NKX2-5 gene lead to congenital heart 

disease (50). 
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1.1.5 Pulmonary vascular bed 

The term “vascular bed” is used to describe a local vascular system of an organ or a 

part of the general cardiovascular circulation. Well-studied vascular beds include the 

pulmonary, cerebral, and renal beds. In addition, different vessels such as the 

coronary artery, the carotid, and the femoral artery can be also considered as 

different vascular beds. Although the arterial tree and the circulatory system look 

continuous, there is substantial heterogeneity among the different vascular beds 

resulting from significant anatomical and developmental differences, genetic factors 

and the local environment. This heterogeneity and phenotypic variability can explain 

the differential local responses to systemic risk factors and the propensity of certain 

vascular beds to develop CVD, such as atherosclerosis and hypertension.  Indeed, 

clinical studies have demonstrated that abnormalities in both protein and cellular 

haemostatic regulatory elements are associated with specific risks in different 

vascular beds (51). In addition, Vanderlaan et al showed that differential gene 

expression occurs in different vascular beds in response to the local flow patterns 

(52).  

The pulmonary vascular bed is the main focus of this thesis. It is a highly 

specialised vascular system entirely responsible for the delivery of oxygen to organs 

and tissues and the high volume of gas exchange (1). The pulmonary circulation 

receives the entire cardiac output during each cardiac cycle, and maintains a low 

blood pressure and low vessel resistance throughout the lung. These properties are 

critical to allow a delicate gas exchange and optimise the efficiency of the right 

ventricle. There are additional challenges that pulmonary circulation faces 

occasionally, and those include: the maintenance of low pressure in response to a 

dramatic increase in cardiac output, and the conversion of the pulsatile blood flow 

from the right heart into steady-state flow in the capillary bed (1). In order to perform 

these vital and orchestrated procedures, the pulmonary vasculature has developed 

complex structural properties and functions. 

It was assumed that VSMCs residing in the pulmonary vasculature and specifically 

in the pulmonary arteries, are uniform in phenotype throughout the pulmonary 

circulation. It has now become apparent that these cells are phenotypically and 

functionally heterogeneous at a single anatomical site and along the pulmonary 

vascular bed. The heterogeneity is believed to rise from differences in origin, 

environmental factors,  and spatiotemporal variability (53). At least four different and 

distinct populations of pulmonary artery smooth muscle cells (PASMC) were 

isolated from the media of the bovine main pulmonary artery (54). The sub-
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populations were distinct in regards to morphology, expression profile, differentiation 

state, proliferation potential, and responses to growth factors and hypoxia (55). It 

has been suggested that these sub-populations would also exhibit different 

functions in health and disease. Heterogeneity has also been observed in human 

PASMCs isolated from different anatomical locations in the lung (56). 

1.1.5.1 Pulmonary vessels 

The main blood vessels of the pulmonary circulation are the right and the left 

pulmonary arteries, the arterioles, the capillaries, and the pulmonary veins 

[reviewed in (57)]. In embryonic development, pulmonary arteries derive from the 

truncus arteriosus. In the developed heart, the pulmonary artery (or also known as 

the trunk) originates from the right ventricle, and it expands into two branches: the 

left and right pulmonary arteries that deliver deoxygenated blood to the lung. 

Pulmonary veins are large blood vessels that receive oxygenated blood from the 

pulmonary capillaries of the lungs and return it back to the left atrium.  

Pulmonary vessels exhibit a different structure and histology compared to the rest of 

the vascular beds, which is required to maintain the low pressures of the pulmonary 

blood circulation and low stiffness of the pulmonary vessels. The pulmonary arterial 

wall is generally thinner compared to the diameter of the vessel, with large amounts 

of elastin and smaller amounts of smooth muscle tissue. The pulmonary veins and 

the capillaries have very thin walls, and the capillaries are lined with endothelial 

cells. In contrast, the histology of the bronchial arteries is the same as that of other 

systemic arteries. 

1.1.5.2 Vascular work load and disease 

Scientists study the vascular load imposed on the right side of the heart by the 

pulmonary circulation as a cause of heart failure. There are several factors that 

contribute to the vascular load with the vast majority of it resulting from two events: 

the pulmonary vascular resistance (PVR) imposed by the arterioles and capillaries 

of the lung, and the pulmonary vascular stiffness (PVS) or the elasticity of the 

arteries that determines their capacitance. PVR is defined as the ratio of the drop in 

mean pulmonary arterial pressure (mPAP) to cardiac output. Elevated PVR leads to 

increased mPAP due to distal vasoconstriction, vascular remodelling, and 

thrombosis (58), and it is considered a defining cause of pulmonary hypertension 

(PH) (59). The contribution of vascular stiffening to the pulmonary vascular function 

has not been well studied (60). New imaging techniques such as cardiac MRI aim to 

correct this.  

https://www.kenhub.com/en/library/anatomy/heart
http://www.kenhub.com/en/library/anatomy/the-ventricles-of-the-heart
https://www.kenhub.com/en/library/anatomy/the-lung
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1.1.5.3 Control of the pulmonary vascular tone 

There are various mechanisms that control pulmonary vascular tone that can be 

either “passive” or “active”. The passive mechanisms involve the recruitment and 

expansion of blood vessels (arterioles and capillaries) (61). Under normal 

conditions, not all of the pulmonary vessels are active. However, as pressure 

increases above the normal levels, the previously inactive vessels are now recruited 

to conduct blood. This response is immediate and leads to decreased PVR and 

normalisation of pulmonary circulation (61).  

The active mechanisms involve two regulatory cell types, VSMCs and endothelial 

cells, and vasoactive stimuli that directly affect the vessel contraction and relaxation. 

The vasoactive stimuli can exert vasoconstrictor or vasodilator effects.   

1.1.5.4 VSMC in the regulation of pulmonary vascular tone 

The mechanisms that VSMCs regulate contraction and the pulmonary vascular tone 

in normal conditions were discussed in 1.1.4 and are reviewed in (18, 62). However, 

upon injury or in disease, the vasoactive stimuli travel through ion channels or 

membrane receptors on the endothelial barrier and reach VSMCs. Consequently, 

changes in calcium concentration in the intracellular and extracellular space are 

dynamic and highly regulated in a spatio-temporal manner (63). A large chemical 

gradient is required in order for calcium to enter the cytoplasm of VSMCs. Calcium 

is then removed from cells by two basic mechanisms: an ATP-dependent calcium 

pump and a non-ATP sodium-calcium exchanger (1). Other vasoactive substances 

can influence vascular tone by increasing the production of the second messengers, 

cAMP and cGMP, which can cause an increase in intracellular calcium. These 

second messengers are short-lived because they are degraded by 

phosphodiesterase (PDE) (64). Inhibition of PDE in VSMCs is a powerful tool to 

reduce vascular resistance, by prolonging the half-life of cAMP and cGMP.  

1.1.5.5 Endothelial cells in the regulation of pulmonary vascular tone 

Endothelial cells can produce various vasodilators [e.g. nitric oxide (NO), 

prostacyclin, endothelium-derived hyperpolarising factor (EDHF)], and 

vasoconstrictors [e.g. endothelin (ET)] in response to physiological or pathological 

stimuli. A few of the major vasoactive substances are discussed below.  

Nitric oxide. NO is a vasodilator produced and released by the endothelium, and 

acts through cGMP to regulate potassium channels [reviewed in (65)]. NO is 

synthesized from L-arginine by NO synthase (NOS), which exists in 3 isoforms: 
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inducible NOS (iNOS) expressed mainly by macrophages, neuronal NOS (nNOS) 

expressed by neurons, and endothelial (eNOS). Synthesis of eNOS depends on 

calcium and although it is widely expressed in the endothelium, its action is strictly 

localised in the vascular bed where is produced. Thus, eNOS synthase is restricted 

to the pulmonary endothelium. 

Prostaglandins. Prostaglandins are released from lung tissue and they participate in 

the regulation of pulmonary vascular resistance as vasodilators (66). 

Physiologically, prostacyclin, a member of prostaglandin family, is a local not 

circulating hormone, and its release causes relaxation of the underlying VSMCs and 

prevents platelet aggregation within the bloodstream (67). Prostacyclin exerts its 

effects through activation of cAMP-dependent pathways.  

EDHF. Expression of potential EDHFs varies in species and in vascular beds, but all 

members act in a similar way by increasing potassium conductance resulting in the 

subsequent propagation or depolarisation and relaxation  of VSMCs (68). 

Experimental studies suggest that the contribution of EDHF increases as the vessel 

size decreases, with predominant EDHF activity in the resistance vessels and a 

compensatory upregulation of EDHF when NO is not available (69).  Although the 

role of EDHF has been studied and reported in many studies, the identity of these 

factors is not clear. Members of arachidonic acid derivatives, hydrogen peroxide, 

potassium channels, and the C-type natriuretic peptide have been proposed as 

EDHFs (70-72).    

Endothelin. ET is a potent vasoconstrictor peptide that plays an important role in the 

regulation of pulmonary vascular tone. Three isopeptides have been identified: ET-

1, -2, and -3, and all are synthesised by endothelin-converting enzyme (ECE). ET-1 

is the predominant isoform in the cardiovascular system, and is produced by ECE-1. 

ET-1 is synthesised by a variety of different cell types, including endothelial cells, 

vascular and airway SMCs, leukocytes, macrophages, cardiomyocytes and 

mesangial cells. ET-1 is abundantly expressed in the pulmonary vasculature and 

exerts its major vascular effects through activation of two distinct G-protein coupled 

receptors, ETA and ETB (73). ETA receptors are located on VSMCs where they 

cause vasoconstriction, while ETB receptors are found on both endothelial cells and 

VSMCs (74). The activation of ETB receptors on endothelial cells causes 

vasodilation in contrast to the receptors on VSMCs that induce vasoconstriction. 

Overall, the effect of ET-1 depends mainly on its abundance and activity of the 

receptors on the responding cell, and usually there is a balance between production 

and clearance.  
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1.2 Cardiovascular disease (CVD) 

1.2.1 Overview 

CVD is a broad spectrum of conditions that involve complications of the 

cardiovascular system. Based on data published by the World Health Organisation 

(WHO) in 2012 and revised on September 2016, CVD is one of the leading causes 

of death representing 31% of all deaths worldwide (WHO, 2012) (75). In the UK 

specifically, CVD accounts for 26-28% of premature deaths based on BHF 

published data of 2015 (76).  

Both genetic and environmental factors are implicated in CVD. Genetic composition 

is a significant risk factor, but the precise magnitude of the role of inheritance varies 

in different diseases and is not yet completely understood. For instance, in the 

general population, a history of premature atherosclerotic CVD in a parent confers 

~3.0-fold increase in CVD risk to the offspring (77). In recent years, scientists have 

developed genetic testing to determine the risk of CVD using information about 

specific DNA variations that have been associated with the disease (78).  

These tests also use information regarding environmental and lifestyle factors that 

have been proved to be risk factors for CVD. The most important lifestyle risk 

factors are the diet, smoking, alcohol, and inactivity. These risk factors directly affect 

the health output of individuals, and can be easily monitored through quantitative 

measurements of blood pressure, blood glucose and lipids, and obesity. These 

quantitative traits can indicate an increased risk of heart attack, stroke, heart failure 

and other complications. Indeed, smoking cessation, regular exercise and a 

healthier diet can decrease CVD risk. Such an example provides the study by Khan 

et al, where the effect of ApoE genotype in combination with various cardiovascular 

biomarkers was assessed on the risk of ischaemic stroke (79). 

In addition, the male gender, the age as well as the ethnic background of an 

individual are determining factors for CVD. In particular, CVD is more common in 

people from south and middle Asia, African or Caribbean origin due to the 

prevalence of other CVD-associated conditions such as diabetes and high blood 

pressure (80). Other environmental and socioeconomic factors that affect CVD risk 

are stress (81) and poverty (82). More than 75% of CVD deaths occur in low and 

middle income countries (WHO, 2012). In these countries, people at high risk often 

do not have the benefit of primary health care, early detection and treatment 

compared to people in high-income countries. Consequently, people at high risk are 
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detected late and die younger of CVD during their most productive years. In such 

circumstances, education and counselling are absolutely vital, as are the early 

detection, management and treatment of disease. 

Overall, the impact of CVD in health and socioeconomic status needs to be the 

motivation for the research community to tackle the disease by focusing on two 

goals: prevention and improved therapy.  

1.2.2 Cell types that contribute to CVD 

The vascular wall constitutes a major element in the pathogenesis of CVD. Major 

cell types implicated in CVD include endothelial cells, VSMC, and fibroblasts. Other 

cell types with distinct roles in CVD are the macrophages, other inflammatory cells 

such as lymphocytes, platelets, and vascular wall progenitor and multipotent stem 

cells such as pericytes and mesenchymal stem cells [reviewed in (83, 84)]. In this 

thesis, the primary focus is on the role of VSMCs in the development of CVD. The 

role of vascular endothelial cells is also examined at a lesser extent. 

Findings propose that dysfunctional VSMCs is the primary cause behind CVD, and 

new therapies target VSMCs to control and eliminate CVD (85). In disease, VSMC 

are vastly associated with vascular remodelling, a process of structural changes that 

underlies most vascular diseases. Vascular endothelial cell dysfunction is recently 

considered as the trigger for many forms of CVD. Endothelial dysfunction is closely 

related with endothelial-to-mesenchymal transition (EndoMT), a process that gains 

increasing attention, as one of the earliest processes implicated in many vascular 

diseases, and will be further discussed in section 1.2.4.  

1.2.3 Vascular remodelling underlying CVD 

The term “remodelling” refers to the responses of vasculature to potentially noxious 

haemodynamic, metabolic, and inflammatory stimuli. Under physiological 

conditions, remodelling maintains functional, compensatory and adaptive 

characteristics of the vasculature.  Although remodelling can be regarded as a 

mechanism that naturally occurs with aging, early vascular remodelling is 

associated with cardiovascular morbidity and mortality. Processes involved in 

remodelling include fibrosis, hyperplasia of the arterial intima and media, changes in 

vascular collagen and elastin, endothelial dysfunction, and arterial calcification. 

Vascular remodelling is a common underlying mechanism found in many CVD 

including PH, atherosclerosis, and peripheral artery disease. 
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1.2.3.1 The mechanism of vascular remodelling 

Vascular remodelling is a dynamic process that describes structural and functional 

changes of the vascular wall that occur in response to disease, injury, or aging.  The 

process involves interactions among four different processes: cell growth, cell 

death, cell migration and changes in ECM (86). Vascular remodelling is set into 

motion by a variety of complex pathophysiological mechanisms that are closely 

related, and that influence both the cellular and non-cellular components of the 

vascular wall. Structural alterations include changes in the diameter of the lumen in 

resistance vessels, as well as changes in the dimension of the vessel wall itself 

(Figure 1.2). Clearly, these alterations directly affect vascular tone, blood pressure, 

and vessel compliance, the disruption of which leads to disease.  

 

Figure 1.2 Structural changes in vascular remodelling.  Vascular remodelling describes 
structural alterations in the healthy vessel wall (centre) that affect the diameter of the lumen, 
as well as the dimension of the vessel wall itself. Although endothelial cells and adventitial 
fibroblasts, as well as many types of circulating cells are implicated in vascular remodelling, 
phenotypically de-differentiated VSMC are the key players. Different forms of vascular 
remodelling are shown in the figure mainly focused on hypertrophic remodelling. 
Remodelling in arteriosclerosis and in aortic aneurysms is mostly outward (left), described 
by medial expansion but with no change in the lumen of the vessel. In atherosclerosis (lower 
image), both inward and outward remodelling take place. During atherogenesis, the vessel 
adapts and is remodelled in a way that the lumen retains its diameter even after the 
formation of a plaque (expanding or outward remodelling). Constrictive remodelling is also 
seen in obstructive disease during plaque growth or shrinkage of the local vessel segment 
(87). Inward remodelling is often seen in hypertensive vessels, and in CAD. In early stages 
of PAH or in milder disease, inward vascular remodelling is caused by medial thickening 
leading to vasoconstriction and increased blood pressure in the lung. However, at later 
stages of disease, adventitial fibroblast hypertrophy and the development of plexiform 
lesions also occur. Plexiform lesions are caused due to non-structured hypertrophy of the 
endothelial cells causing almost absolute occlusion of the lumen. The development of 
plexiform lesions leads to disrupted blood flow and consequently tissue damage and 
necrosis in the lung.  
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The morphological changes due to disease pathogenesis can change over time. 

Scientists have studied the structural changes in the context of disease, and 

particularly in atherosclerosis and PH. Vascular remodelling can either be inward or 

outward (Figure 1.2) (86). Inward or constrictive remodelling causes a narrowing of 

the lumen that decreases the maximal blood flow rate, whereas outward growth 

describes the abluminal expansion preserving the lumen and maintaining the blood 

flow. Inward remodelling contributes to atherosclerosis, hypertensive vascular 

disease, restenosis after angioplasty, and coronary artery disease (CAD). Outward 

remodelling mainly contributes to the formation of aortic aneurysm; however, it can 

also compensate for the atherosclerotic plaque growth (Figure 1.2). The changes in 

the amount or the characteristics of the material within the vessel wall is another 

feature of remodelling, with hypertrophic remodelling exhibiting an increase in the 

amount of material, and hypotrophic remodelling exhibiting a reduction (86). 

1.2.3.2 VSMC phenotypic modulation  

During vascular remodelling, the contractile VSMC de-differentiate to a disease-

associated synthetic phenotype (Figure 1.3). The phenotypic modulation was 

originally based on morphological criteria, but alterations in functional and structural 

properties in response to environmental cues are profound. Subtle changes in gene 

and protein expression and signalling mechanisms have been extensively studied 

and well documented (32, 88). Synthetic VSMCs in vascular remodelling are 

characterised by loss of contractility, hypertrophy and hyperplasia, increased 

proliferation and migration, and excessive production and deposition of ECM within 

the vessel wall, as well as altered susceptibility to apoptosis (Figure 1.3) (89).  

Hypertrophy describes an increase in cell size and DNA content with or without 

DNA synthesis. The dominant hypertrophic mechanism seems to be cell 

enlargement as a consequence of increased intracellular protein and increased 

intracellular water content, without DNA synthesis (53). Increased intracellular 

protein amount occurs due to activated protein synthesis and inhibition of protein 

degradation (90). Hypertrophy can be reversible, but only if DNA synthesis is not 

activated. Hypertrophy can be induced by G protein-coupled receptors (GPCR) 

agonists, such as angiotensin II (ANGII), ET-1, thromboxane A2 (TXA2), and 

through many autocrine growth factor mechanisms (91). 

Proliferation is an ordered sequence of tightly regulated events during which 

synthetic cells duplicate and divide in response to growth factors. For most of the 
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cells in homeostasis, there is no need for proliferation (92). However, in vascular 

remodelling the need is significantly increased. 

 

 

Figure 1.3 VSMC Phenotypic Differentiation. VSMC are characterised by remarkable 
plasticity that allows the cell to acquire different phenotypes depending on the 
developmental stage, the environmental stimuli, and the needs and requirements of the cell. 
During development and in health, VSMC exhibit their contractile function and contribute to 
homeostasis of the normal blood vessels. However, in disease or following vascular injury, 
VSMC de-differentiate from a mature contractile cell to a less differentiated synthetic 
phenotype. During this phenotypic switch, the morphology, the expression profile and the 
functions of the cell change. The contractile cell displays a spindle-like elongated shape with 
an organised cytoskeleton, which is a non-migratory resident and quiescent cell with high 
expression of contractile proteins, such as α-SMA, SM-MHC, and calponin. Upon de-
differentiation, synthetic cells proliferate, migrate and produce ECM, which is deposited 
within the vessel wall causing medial thickening. Synthetic cells are bigger than the 
contractile cells with reduced cytoskeletal organisation. The phenotypic switch is also 
followed by an altered expression profile, with reduced expression of contractile proteins and 
increased expression of ECM components and MMPs.  Contractile cells stained for α-SMA 
expression (orange) and a synthetic cells stained for COL1A2 expression (green) are shown 
in the figure.   

 

Migration of VSMCs occurs in development, injury and vascular remodelling. In the 

normal vessel wall, VSMCs are non-migratory. But in vascular remodelling, different 

stimuli induce cell migration, and a panel of structural proteins that are required for 

cell migration is expressed. When a cell is stimulated to migrate, actin polymerises 

and creates a structure within the cell that is used as a guide for cell organisation to 

lead migration (93). The presence of heparin and tissue inhibitors of matrix 

metalloproteinases (MMP) in the ECM strongly inhibits cell migration. However, 
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many peptide growth factors, cytokines and components of ECM have been 

identified as pro-migratory molecules, including platelet-derived growth factor 

(PDGF), epidermal growth factor (EGF), FGF2, IL-6, collagens I and IV, and 

fibronectin (91). Other physical factors such as blood flow, shear stress and matrix 

stiffness can also influence cell migration. 

In vascular remodelling, VSMC are also characterised by increased resistance to 

apoptosis. A proper balance between cell proliferation and cell death is required for 

the normal development and function of tissues. In disease state though such as 

PH, this balance is disturbed through unregulated function of ion channels. For 

instance, inhibition of potassium channels blocks apoptosis in PH (94). 

Morphological changes are correlated with a switch in the cytoplasmic apparatus 

that includes a highly organised cytoskeleton with defined F-actin filaments, nuclear 

hypertrophy, and enlarged Golgi (95). Contractile and synthetic VSMCs express 

different marker proteins specific to each phenotypic state, as part of the 

mechanism that regulates the de-differentiation procedure (Figure 1.3). There is 

decreased expression of contractile-associated proteins including α-SMA, SM-MHC, 

calponin, and desmin. The search for synthetic-specific protein markers has been 

really challenging and disappointing, although expression of non-muscle isoforms 

and ECM components are increased (29, 96). A useful “definitive” marker of the 

synthetic state of VSMC expressed in vascular injury, atherosclerosis and during 

development is the non-muscle myosin heavy chain or SMemb (97).  

Sometimes though, the changes observed in protein levels do not correlate well with 

the morphological changes of the phenotype. Indeed, there is evidence suggesting 

that VSMCs balance between the contractile and synthetic states and the cells 

retain characteristics of both phenotypes, and whether one state predominates over 

the other is under strict and complex regulation. However, Owens et al has 

proposed that VSMCs are able to acquire a wide spectrum of possible phenotypes 

under different physiological and pathological circumstances that are difficult to 

define. In vascular development for example, VSMCs retain contractile properties 

but simultaneously participate in vessel growth and remodelling (30). 

Although VSMC phenotypic switching in vascular remodelling is best described in 

atherosclerosis and PH, additional examples of diseases associated with SMC 

function include asthma, gastrointestinal and reproductive disorders. However, it is 

important to remember that phenotypic modulation is applicable to all SMC or SMC-

like cells irrespective of their origins or location in the body, and depends on the 
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environmental cues that influence the behaviour of all SMC under different 

circumstances (30). 

Defective SMC differentiation is also found in many forms of cancer. Although it is 

well known that solid tumours require angiogenesis and development of circulatory 

supply, it is less well discussed that the newly developed blood vessels are 

immature or defective, greatly enlarged and leaky with limited support from VSMCs 

(98). In addition, in many cases the VSMCs present appear to be abnormal and to 

lack the ability to express the appropriate repertoire of specific markers (99). The 

overall mechanisms responsible for defective SMC-pericyte investment in tumours 

are very poorly understood, but it seems that the problem relates to abnormal 

recruitment and differentiation of VSMCs and precursor cells. 

Work in our lab has recently identified the NKX2-5 gene as an important modulator 

of vascular remodelling in mouse and human. Our findings are further discussed in 

detail in section 1.4.   

1.2.3.3 Regulation of VSMC phenotypic modulation 

Despite the volume of evidence that vascular remodelling is a key component in the 

pathogenesis of many diseases, information regarding the molecular and signalling 

mechanisms and the environmental cues that activate the phenotypic modulation 

remain elusive. A literature review reveals that complex interactions between growth 

factors, inflammatory cytokines, vasoactive substances and haemodynamic stimuli 

in the vessel wall control remodelling. 

In vitro studies have revealed a large number of factors controlling the VSMC 

phenotypic switch, including mechanical forces, contractile agonists, ECM 

components such as collagen I and IV, neuronal factors, ROS, endothelial-SMC 

interactions, thrombin, interleukins, and growth factors (PDGF, FGF, EGF, IGF, 

TGF-β) [reviewed in (30, 100)]. In addition, gene knock-out studies in mice have 

implicated a number of factors and pathways mostly focused on components of 

TGF-β signalling pathway (Figure 1.4). Most of the gene deletions were embryonic 

lethal, however, it is not clear whether the lethality was caused due to defective 

vascular maturation or inability of VSMCs to differentiate. Since the main focus of 

this study is the pulmonary vasculature and pathology, growth factors and 

mechanisms that have been implicated in abnormal VSMC proliferation and 

migration contributing to pulmonary vascular remodelling are discussed in more 

detail.  
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Platelet-derived growth factor (PDGF). Peptide growth factors, and in particular 

PDGF, elicit their signals through highly selective tyrosine kinase receptors and 

seem to play a prominent role in vascular remodelling. PDGF levels are elevated in 

PAH (101), and this factor has also been studied in atherosclerosis and restenosis. 

PDGF was initially identified as a highly specific and selective inhibitor of VSMC de-

differentiation, as treatment of rat aortic SMC with PDGF-BB was associated with 

rapid downregulation of contractile markers including α-SMA, and SM-MHC (102). 

PDGF is now regarded as the most potent mitogen for VSMCs. In fact, it was 

recently shown that genetic ablation of PDGF receptor β (PDGFRβ) in mice limited 

PDGF-dependent downstream effects including extracellular signal-regulated 

kinases 1/2 (ERK1/2) and Akt phosphorylation, cyclin D1 induction, proliferation, 

migration, and protection against apoptosis, ultimately blocking vascular remodelling 

and PAH (103). PDGFs bind their tyrosine kinase receptors to activate the 

downstream signalling pathway, which involves the PI3K and ERK1/2 kinases. 

Inhibition of PDGFR signalling may be achieved by tyrosine kinase inhibitors, such 

as Imatinib. Imatinib was developed to target the Bcr/Abl oncogene, c-kit, and the 

PDGFRα and β, and it has been effective in the treatment of chronic myeloid 

leukaemia and PAH (104). 

Epidermal growth factor (EGF). The EGF receptor (EGFR) signalling pathway is one 

of the most important pathways that regulate growth, survival, proliferation, and 

differentiation in mammalian cells. Fifteen members of the endogenous EGF ligand 

family have been identified that bind the 4 ErbB family receptors (EGFR; ErbB1-4) 

and induce their homo- and hetero- dimerisation. EGF is a growth factor that 

mediates pulmonary vascular remodelling through PASMC proliferation, migration 

and resistance to apoptosis (105). Heparin-binding EGF, mainly expressed in the 

airway epithelium, is a potent mitogen and chemotactic factor for SMC, and it is 

significantly upregulated in asthmatic airways (106). 

Fibroblast growth factor 2 (FGF2). FGF2 is a member of a large family of heparin-

binding growth factors involved in proliferation and differentiation of various cells 

and tissues. It is produced by various cells types including fibroblasts, endothelial 

cells and macrophages. FGFs mediate their biological activity by binding to four cell 

surface receptor tyrosine kinases, designated FGF receptors (FGFR1-4). Ligand-

receptor interaction results in assembly of a complex that involves Frs2, a FGFR 

adaptor protein, Grb2 and Sos, and leads to the activation of Ras/mitogen-activated 

protein kinase (MAPK) signalling cascade. FGFs promote SMC conversion to the 

proliferative phenotype and stimulate growth and migration (107). FGF2 has also 
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been implicated in the initiation and progression of PH by promoting PASMC 

proliferation (108). 

Transforming growth factor-β (TGF-β) signalling pathway. The TGF-β superfamily is 

a large group of cytokines that control many cellular processes with respect to 

vascular remodelling (Figure 1.4). The superfamily consists of three different TGF-β 

isoforms and more than twenty BMPs (Figure 1.4). Downstream signalling requires 

the partnership of type I (TGF-βR2 and BMPR2) and type II receptors (ALK1-7), 

followed by the activation of SMAD dependent and independent cascades (Figure 

1.4). The role of the BMPR2 receptor has been extensively studied in vascular 

disease, and especially in PAH. Genetic mutations have been found in the BMPR2 

gene that cause loss-of-function and reduced TGF-β downstream signalling, and 

are associated with familial and idiopathic cases of PAH. Dysregulated BMPR2 and 

TGF-β signalling contribute to the pathogenesis of PAH (109). 

Under defined circumstances, TGF-β signalling regulates SMC proliferation and 

apoptosis, cellular differentiation and activation, inflammation, and synthesis of 

ECM. The role of TGF-β in disease is reviewed in (110). Although TGF-β is a critical 

component of vascular remodelling, its exact roles remain vague with controversial 

published data. In contrast to PDGF and FGF, it has been proposed that TGF-β 

promotes VSMC switch towards the contractile phenotype (111). Although the pro-

fibrotic role of TGF-β has been well established, there is an active debate regarding 

the proliferative/migratory roles in vascular disease. A good example is 

atherosclerosis, where although some studies suggest a pro-atherosclerotic effect, 

other studies propose that TGF-β inhibits atherosclerosis and atherosclerotic 

progression (110, 112-120).  

TGF-β activates the expression of VSMC-specific transcription factors such as 

serum response factor (SRF) and myocardin through phosphorylation of Smad2/3 

(121), to further modulate transcription of contractile specific markers such as SM22 

(122). Overexpression of TGF-β1 stimulates neo-intimal hyperplasia, fibrosis and 

remodelling (123). The TGF-β pathway promotes VSMC differentiation, which is 

critical for the maintenance of the normal adult vasculature (124), the balance 

between inflammation and fibrous plaque growth in atherosclerosis (125), effective 

wound healing and reduced scarring (126). In vascular injury, TGF-β upregulation 

increases intimal thickening and the effect is Smad-mediated with the Smad 

mediators being overexpressed at the sites of injury, and also associated with 

intimal thickening (127). It has also been shown that TGF-β in co-operation with 

BMP2/4/7 inhibits PASMC proliferation and this effect is Smad1-dependent (128), 
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whereas its anti-mitogenic effect is ALK5-mediated through Smad3 and p38 kinase 

(129). In a similar pattern, the TGF-β-Smad2/3 signalling cascade interferes with 

EndoMT in vivo and decreases both the neointimal formation and the relative 

contribution of endothelial lineage-derived cells to the neointima (130). However, 

work from a different group has established the profibrotic functions of TGF-β in the 

microenvironment of a neointimal tissue with enhanced matrix synthesis coupled 

with diminished MMP-mediated matrix degradation (131). Genetic deletion of 

various components of TGF-β signalling cascade has led to disease, such as 

aneurysm formation (124), atherosclerosis (132), restenosis and vascular injury 

(127), and PH (91).  

 

Figure 1.4 TGF-β-mediated signalling pathways.  The TGF-β superfamily consists of 3 
TGF-β isoforms (TGF-β1/2/3) and more than 20 BMPs. Downstream signaling requires the 
partnerships of transmembrane serine/threonine kinase receptors that are divided into two 
classes: type I (TGF-βR2 and BMPR2) and type II (ALK1-7). TGF-β usually exerts its 
functions and regulates gene expression through hetero-tetrameric complexes of receptors 
type I and II. The complexes lead to activation of type I receptors that recruit and 
subsequently phosphorylate and activate Smad signalling molecules. ALK1/2/3/6 interact 
with Smad1/5/8, whereas ALK4/5/7 interact with Smad2/3. Upon phosphorylation and 
activation, Smad molecules interact with Smad4, and complexes migrate to the nucleus to 
regulate the transcription of downstream target genes. Apart from Smad-dependent or 
canonical TGF-β pathways, TGF-β induces SMC differentiation through Smad-independent 
pathways transmitting signalling through the MAPK cascade, involving the kinase PI3K, 
AKT, ERK, TAK1, JNK, and p38 (110, 124).   

 

FGFs have been reported to antagonise the TGF-β-mediated induction of smooth 

muscle markers expression in pericytes and SMCs (133), by repressing TGF-β 
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signalling (132). In vitro inhibition of FGF signalling upregulates TGF-βR1 and 

downstream Smad2/3 activity, whereas in vivo reduces SMC proliferation (132). 

These observations suggest that FGF signalling regulates the TGFβ-dependent 

proliferative SMC phenotype modulation towards the contractile phenotype (119). 

Studies in our lab have shown that TGF-β has a pro-fibrotic role and it promotes 

proliferation and migration of SMCs and fibroblasts in fibrotic conditions such as 

scleroderma, PAH, and fibrotic kidney disease (134-136). In addition, in fibroblasts 

TGF-β activates expression of Col1a2 gene through a non-Smad-dependent 

signalling pathway (137), and expression of Ctgf gene through a TGF-β responsive 

element in the gene promoter (134). A part of this thesis aims to explore the effects 

of TGF-β signalling in PASMC in vascular remodelling in regards to: 1) the 

phenotypic switch of PASMC, and 2) the downstream target and signalling cascade 

leading to vascular remodelling.  

Angiotensin II (AngII). The renin-angiotensin-aldosterone System (RAAS) is a 

central component of the physiological and pathological responses of the 

cardiovascular system, and its role has been studied extensively (138-140). AngII is 

a critical vasoactive factor that stimulates VSMC contraction under physiological 

circumstances, however, persistent elevation of AngII levels drives VSMC growth 

(140). In cultured aortic SMCs, AngII transactivates EGFR signalling through 

ADAM17, a plasma membrane metalloproteinase (141).  

Notch signalling pathway. The Notch signalling pathway retains a prominent role in 

the regulation of vascular development and maintenance, by affecting the 

expression of SMC differentiation markers in a cell context-dependent manner. For 

example, the Notch downstream transcription regulator RBPL binds the α-SMA 

promoter to activate its expression (142). However, in a different setting of the 

activation of the canonical Notch pathway, its target genes HERP/HEY were shown 

to interact with the SRF/Myocardin complex to inhibit expression of the SMC 

differentiation marker (143). These data suggest the involvement of Notch signalling 

pathway in SMC phenotypic switch, but the exact regulatory effects remain obscure.  

Redox regulation. Reduction-oxidation (redox) signalling retains a major regulatory 

role in the maintenance of cellular homeostasis, and in physiological adaptive 

responses of endothelial cells and VSMCs. Disruption in redox homeostasis leads 

to redox stress and ultimately to maladaptive vascular remodelling [reviewed in 

(144)]. Dysregulation of redox signalling impairs endothelial cell proliferation, 

promotes apoptosis and induces vascular hypertrophy leading to vascular 
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remodelling. In VSMCs, redox signalling controls the phenotypic de-differentiation of 

the cells through the transcription of contractile proteins, modulation of adhesion, 

migration and proliferation.  

Transcriptional Regulation. The VSMC phenotypic switch is also regulated at the 

gene expression level. Work in transgenic mice has revealed that the transcription 

of SMC-specific genes depends on CArG DNA binding elements. CArG elements 

have been found in promoters and enhancers in nearly 200 muscle-specific genes 

that are involved in the formation and regulation of the cytoskeleton and contractile 

apparatus (145). At least one CArG element has been found in the genes specific 

for the contractile phenotype including α-SMA, SM22, calponin, and SM-MHC (146). 

SRF, activated by serum stimulation, bind CArG elements as a dimer. Apart from 

smooth muscle genes, SRF also regulates transcription of skeletal and cardiac 

muscle-specific genes.  

Many of the genes identified to date to be under control of CArG/SRF, contain more 

than one CArG element in their promoter/enhancer sites, suggesting functional 

interactions between multiple elements. These interactions may allow for spatio-

temporal regulation of the expression of smooth muscle-specific genes. The ability 

of SRF to exert its function depends on the presence of program-specific co-

activators or co-repressors. Myocardin is an extremely potent SRF co-activator that 

is selectively expressed in cardiac and differentiated SMCs (147). In addition, 

myocardin has been shown to selectively induce expression of all CArG-dependent 

SMC markers including α-SMA, SM22α, calponin, and SM-MHC (30, 122, 147-150). 

Myocardin knock-out mice are embryonic lethal by E10.5, with no evidence of 

vascular differentiation, whereas in vitro knock-down of myocardin expression 

significantly reduced expression of multiple SMC marker genes [reviewed in (151)]. 

Although evidence suggest that endogenous myocardin expression is required for 

regulation of expression of multiple smooth muscle-specific genes, more studies are 

required to elucidate its exact role.  

1.2.4 Endothelial to mesenchymal transition (EndoMT) 

Endothelial cells are the interface between the blood vessels and the tissues and 

their main functions include sensing of the environment and the signal modulations 

of vascular function, maintenance of homeostasis, and defence against injury. Many 

studies provide evidence that the pulmonary endothelium, specifically, is a critical 

local source of several key mediators for vascular remodelling, including growth 

factors (FGF-2, serotonin, AngII), and vasoactive peptides (NO, PGI2, ET-1), 
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cytokines (IL-1, IL-6), chemokines, and adipokines [reviewed in (152)]. Inappropriate 

signalling from vascular endothelial cells contributes to CVD, and endothelial 

dysfunction is thus a hallmark of human diseases. 

Endothelial dysfunction is characterised by reduced vasodilation, increased 

endothelium-dependent contraction, cell proliferation, platelet activation, vascular 

permeability, and a pro-inflammatory and pro-thrombotic phenotype, including 

leucocyte-endothelial interactions that participate in vascular inflammation and 

increased adhesion and aggregation of platelets (153). Endothelial dysfunction 

occurs in association with several cardiovascular risk factors, such as 

hypercholesterolemia, hypertension, and insulin resistance (154). Overall, it 

promotes vascular inflammation by inducing the production of vasoconstrictor 

agents, adhesion molecules, and growth factors, as well as vascular remodelling. 

1.2.4.1 The mechanism of EndoMT  

Like VSMCs, endothelial cells are also capable of changing their phenotype in 

response to various stimuli during a process known as EndoMT. EndoMT is a 

multipotent procedure during which vascular endothelial cells are stimulated by 

various growth factors, inflammatory cytokines, and signalling molecules to undergo 

a phenotypic transition towards a mesenchymal-like cell. Endothelial-derived 

mesenchymal cells take on properties of multipotent stem cells and can differentiate 

into synthetic VSMCs, myofibroblasts, pericytes, skeletal muscle, cardiac muscle, 

bone, cartilages, and fat cells (155). A loss of cell-cell contact seems to be a 

triggering step in the development of EndoMT (156). During EndoMT, the basal 

lamina of the endothelium is replaced by ECM composed of type I and III collagens 

and fibronectin (157). The new matrix promotes motility, and triggers endothelial 

cells to detach and migrate. As cells migrate away from the monolayer, their cortical 

cytoskeleton is rearranged to enable cell motility through the development of actin-

rich projections such as lamellipodia or filopodia. They also contract away from the 

adjacent cells increasing gap junctions causing “leaky” barrier function.  In addition, 

their morphological characteristics change, as they lose their “cobblestone”-like 

phenotype and they become more elongated (158).  

Gene and protein expression profile is also changed. The cells lose expression of 

specific endothelial markers CD31/PECAM-1, von Willebrand (vWF), and VE-

cadherin, and at the same time they initiate expression of mesenchymal specific 

markers including α-SMA, vimentin, type I collagen (158). Loss of VE-cadherin 
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expression, a cell-cell adhesion glycoprotein, consistently precedes the 

downregulation of the endothelial phenotype and SM-like transformation (156).  

1.2.4.2 EndoMT in disease 

Although EndoMT has been demonstrated in normal physiological processes during 

development, various in vitro  and in vivo studies have shown that endothelial cells 

undergo EndoMT and contribute to vascular remodelling (159). EndoMT has been 

studied extensively in PH and pulmonary vascular remodelling, where it contributes 

significantly to smooth muscle-like cells that migrate to the site of vascular injury 

(159). In vitro, smooth muscle-like cells derived from EndoMT are indistinguishable 

from cells of other origins, since they exhibit similar morphological characteristics 

and express abundant mesenchymal markers. Numerous studies have reported 

EndoMT in various animal models of fibrosis, as well as human conditions 

associated with tissue fibrosis [reviewed in (158)], where it was shown that EndoMT 

provides another source of activated myofibroblasts contributing to the progression 

of fibrosis. Human fibrotic conditions with an established role of EndoMT include 

pulmonary and cardiac fibrosis, idiopathic PH and PH associated with scleroderma 

[reviewed in (158)].  

Despite these observations, however, the case of EndoMT participating in the 

development and progression of human fibrotic diseases is considered controversial 

(160). In this regard, it is important to note that not-complete but partial trans-

differentiation of endothelial cells to fibroblasts/SM-like cells could be sufficient for 

the initiation and progression of pathological fibrogenesis (161).  

1.2.5 CVD characterised by vascular remodelling 

Vascular remodelling is a common pathological feature underlying various CVD and 

it has been extensively studied in many occasions including atherosclerosis, CAD, 

peripheral artery disease (PAD), PH, PAH, and connective tissue diseases (CTD) 

such as scleroderma (SSc), systemic lupus erythematosus (SLE), and rheumatoid 

arthritis (RA) [reviewed in (162-167)]. This thesis is primarily focused on PH, which 

will be discussed in detail in section 1.2.5.3. But first, I will briefly introduce 

atherosclerosis and PAD as examples of conditions underlined by vascular 

remodelling and as reference to following chapters. 

1.2.5.1 Atherosclerosis 

Atherosclerosis is a gradual and progressive disease, and possibly the most 

common occlusive disorder of CVD. Major clinical consequences are myocardial 
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infarction and stroke caused by thrombotic events due to rupture of unstable 

plaques. Disease pathogenesis is characterised by acute inflammatory responses, 

dysfunctional metabolism, vascular and arterial remodelling. Inflammation is often 

the first trigger in atherosclerosis, followed by remodelling which leads to the 

formation of plaques and lesions (168), a process known as pathological intimal 

thickening (169). Macrophages, macrophage-like cells, as well as VSMCs and 

VSMC-derived cells are the key players in atherosclerosis, and their preponderance 

determines the fate of the plaque and therefore the progression of the disease 

(170). The role of VSMCs in atherosclerosis is complex and studies report 

contradictory data. For years, it was thought that VSMC phenotypic switch drove 

atherogenesis contributing to remodelled vessels and plaque formation. In contrast, 

VSMCs also retain an athero-protective role as they support plaque stability and 

repair and inhibit rupture. Among transcription factors that regulate VSMC 

phenotypic switching in atherosclerosis are myocardin, which activates the 

expression of contractile marker genes (171), and KLF4, which mediates the 

transition of VSMC to macrophage-like cells (172).  

The degree and the type of arterial remodelling in atherosclerosis (Figure 1.2) 

depends on the size of the forming plaque (173). Arterial remodelling appears to 

represent a co-ordinated stress response with controlled and transient activation of 

proinflammatory signalling pathways. A primary signal for arterial remodelling is 

shear stress, which is a haemodynamic force that under normal conditions 

promotes expression of vasodilator and anti-thrombotic factors, suppresses growth 

and pro-inflammatory factors, and generally maintains a state of vascular health. 

However, a macroscopic increase in blood flow increases local shear stress and 

stimulates arterial expansion and remodelling. The endothelium responds to shear 

stress through mechanisms that include PI3K/Akt cascade, NO synthesis, and the 

MAPK signalling cascade (174).  

Other signalling mechanisms involved in remodelling in atherosclerosis include the 

Notch and TGF-β signalling pathways. TGF-β is critical for maintaining the balance 

between inflammation and fibrous plaque growth in atherosclerosis (125). Simons et 

al have recently published important data regarding the signalling regulation of 

atherosclerosis (13, 114, 119, 132). Briefly, they demonstrated the FGF-dependent 

regulation of TGF-β, and they showed that FGF regulates VSMC phenotypic 

modulation by controlling TGF-β signalling and the contribution of VSMC 

proliferation to the growth of atherosclerotic plaque. This effect is mediated by let-7 

microRNA, which is decreased due to the loss of FGF causing prolongation of TGF-
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β-dependent signalling. Increased TGF-β signalling leads to EndoMT that in turn 

accelerates the progression of atherosclerosis (132).  

1.2.5.2 Peripheral arterial disease (PAD) 

PAD is a progressive atherosclerotic condition that causes stenosis and occlusion of 

non-cerebral and non-coronary arteries (175), including those found in the extra-

cranial carotid circulation, mesenteric circulation, renal circulation and the upper and 

lower extremities (176). The progressive reduction in arterial blood flow can lead to 

claudication, rest pain in the leg or foot, tissue loss, non-healing wounds or ulcers, 

infection and gangrene (176). Complications may result in chronic limb ischemia, 

which is a severe form of PAD predominantly caused by atherosclerosis in the 

peripheral arterial system, amputation and an increased risk of death. Vascular 

remodelling in muscular peripheral vessels in PAD is more often inwardly 

hypertrophic, probably reflecting sustained vasoconstriction of vessels. 

The major risk factors for PAD have been determined from large epidemiological 

studies and are consistent with the risk factors for cerebrovascular disease and 

ischaemic heart disease including, but not limited to, advanced age, smoking, 

diabetes, hypertension and hyperlipidaemia (177). The disease progresses very 

slow, and although some patients follow a gradual progression from 

asymptomatic PAD to intermittent claudication and critical limb ischaemia, others 

can progress to limb amputation without exhibiting any symptoms prior to surgery 

(175). Due to the high prevalence of asymptomatic disease and the small 

percentage of PAD patients presenting classic claudication, PAD is frequently 

underdiagnosed and thus undertreated. Therefore, early clinical diagnosis remains 

a challenge. Evaluation is performed with non-invasive physiological vascular 

studies such as segmental arterial pressures, pulse volume recordings, and Doppler 

echocardiography.  

PAD patients also suffer depression, a reduced quality of life, and a significantly 

higher risk of cardiovascular events. Based on epidemiological projections, 27 

million people in Europe and North America (16% of the population aged ≥55 years) 

have PAD (178). The 5-year rate of non-fatal cardiovascular events, including 

myocardial infarction and stroke, for patients with symptomatic PAD is 

approximately 20%, and the 5-year mortality is 15%–30% (179). 
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1.2.5.3 Pulmonary hypertension (PH) 

1.2.5.3.1 Introduction and classification  

PH contributes significantly to CVD, and is usually associated or caused by a variety 

of underlying conditions. Vascular remodelling and PVR are common features in PH 

(91). Other processes contributing to pulmonary vascular remodelling involve 

endothelial dysfunction and perivascular inflammation (159).  

Clinical classification criteria of PH were re-considered during the 5th World 

Symposium held in 2013 in Nice, France (180, 181) to individualise different 

categories of PH sharing similar pathological findings, similar haemodynamic 

characteristics and similar management (Table 1.1). Five groups of disorders that 

cause PH were defined: Group 1: PAH, Group 2: PH due to left heart disease, 

Group 3: PH due to lung diseases and/or hypoxia, Group 4: Chronic 

thromboembolic PH, Group 5: PH with unclear multifactorial mechanisms.  

1.2.5.3.2 Pulmonary arterial hypertension (PAH) 

PAH is a complex life-threatening progressive disorder with poor prognosis 

associated with high morbidity and mortality due to abnormally elevated pulmonary 

pressure and right heart failure. The disease prevalence in the general Caucasian 

population is 15 cases per million, and the median age of those affected is 37–50 

years (182), although recent reports suggest identification of significant PAH in 

elderly patients which is probably associated with aging (183). Both children and 

adults can be affected, and the disease is observed more commonly in females than 

males, at a ratio of 1.9-4 females: 1 male (184).  

PAH is often slow to be diagnosed with an estimated mean time of ~2years 

between the onset of symptoms and diagnosis, and can be fatal with a mean 

survival of untreated PAH patients of  ~2.8 years (185). 

 

 

 

 

 

 

 



50 
 

1. Pulmonary arterial hypertension 

1.1 Idiopathic 

1.2 Heritable 1.2.1 BMPR2 mutations 

1.2.2 Other mutations 

1.2.3 Unknown 

1.3 Drug- and toxin- induced 

1.4 Associated with  1.4.1 Connective tissue disease (SSc, SLE, RA) 

1.4.2 HIV infection 

1.4.3 Portal hypertension 

1.4.4 Congenital heart disease 

1.4.5 Schistosomiasis 

1’. Pulmonary veno-occlusive disease and/or pulmonary capillary haemangiomatosis 

1’.1 Idiopathic 

1’.2 Heritable 1’.2.1 EIF2AK4 mutation 

1’.2.2 Other mutations 

1’.3 Drug, toxin and radiation induced 

1’.4 Associated with 1’.4.1 Connective tissue disease 

1’.4.2 HIV infection 

1’’. Persistent PH of the newborn 

2. Pulmonary hypertension due to left heart disease 

2.1 Left ventricular systolic dysfunction 

2.2 Left ventricular diastolic dysfunction 

2.3 Valvular disease 

2.4 Congenital/acquired left heart inflow/outflow tract obstruction and congenital 
cardiomyopathies 

2.5 Other 

3. Pulmonary hypertension due to lung disease and/or hypoxia 

3.1 Chronic obstructive pulmonary disease 

3.2 Interstitial lung disease 

3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern 

3.4 Sleep-disordered breathing 

3.5 Alveolar hypoventilation disorders 

3.6 Chronic exposure to high altitude 

3.7 Developmental lung diseases 

4. Chronic thromboembolic pulmonary hypertension and other pulmonary artery 
obstruction 

4.1 Chronic thromboembolic pulmonary hypertension 

4.2 Other pulmonary artery obstructions 

5. Pulmonary hypertension with unclear and/or multifactorial mechanisms 

5.1 Haematological disorders 

5.2 Systemic disorders 

5.3 Metabolic disorders 

5.4 Others 

Table 1.1 Classification of pulmonary hypertension.  Sub-categorisation of Groups 1-5 of 
pulmonary hypertension based on classification criteria defined during the 5

th
 World 

Symposium of PH, Nice, France in 2013 (180). Table adapted from (181).  
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PH is defined as a resting mPAP >25mm Hg, or a mPAP with exercise >30mm Hg. 

PAH is clinically diagnosed when mPAP is maintained at ≥25 mm Hg with 

normal pulmonary arterial wedge pressure (PAWP) ≤15mm Hg and elevated 

PVR (180). Screening and diagnostic protocols involve both non-invasive and 

invasive techniques. Doppler echocardiogram has been used successfully for 

the approximate evaluation of mPAP, and its routine use has significantly 

facilitated the diagnosis of PAH. New modalities in non-invasive diagnostics 

include cardiac magnetic resonance that may offer more reliable data both at rest 

and during exercise, and screening for biomarkers such as the brain natriuretic 

peptide (BNP) and N-terminal-proBNP (59). However, the right heart catheterisation 

(RHC) remains the gold standard for the diagnosis of PAH (186). RHC is used for 

the accurate measurement of haemodynamic parameters such as mPAP, cardiac 

output, right atrial pressure, and PAWP.  

1.2.5.3.3 Vascular remodelling in PAH 

Vascular remodelling in PAH involves structural and functional changes in the 

normal architecture of the wall of the pulmonary arteries. It is associated with 

thickening of the vessel wall, increased muscularisation of the muscular and non-

muscular arteries and formation of intimal and plexiform lesions (Figure 1.2). 

Phenotypic de-differentiated PASMCs underlie these changes through hypertrophy, 

proliferation, migration, and resistance to apoptosis. The changes affect almost all 

the arteries of the pulmonary arterial tree. In the proximal muscular arteries, 

vascular remodelling leads to reduction in the diameter of the lumen of the vessel, 

whereas in the large conducting pulmonary arteries there is often a dilatation and 

loss of elastic properties. Extensive production of ECM and cell proliferation lead to 

formation of neointima within the vessel wall. In addition to PASMCs, activated 

fibroblasts/myofibroblasts, also contribute to neointima formation (187). Plexiform 

lesions are often seen in severe forms of PAH. These structures are formed by 

endothelial channels initiating from the intima in the simultaneous presence of α-

SMA expressing cells that produce matrix (Figure 1.2) (188).  

Extensive vascular remodelling in PAH leads to right heart failure, which is the 

leading cause of death in PAH patients (189). The right side of the heart is 

responsible for pumping venous blood into the pulmonary circulation for 

oxygenation. The remodelled vessels cause increased PVR leading to elevated 

pulmonary pressure. This process interferes with the normal function of the right 

ventricle, which deteriorates as the disease progresses, ultimately leading to right 
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heart failure. Current therapies include vasodilator drugs that reduce PVR, relieve 

symptoms, and enhance exercise capacity (190). Although these therapies 

ameliorate the symptoms, they do not provide a cure and cannot stop disease 

progression, leaving heart or lung transplantation as the only option for end-stage 

patients. Ongoing efforts are focused on designing drugs that would potentially 

block vascular remodelling, revert the pathological mechanisms, and possibly 

regenerate microvessels in the lung (191).  

1.2.5.3.4 Endothelial dysfunction and EndoMT in PAH 

Endothelial dysfunction is thought to play a key role in PAH and to initiate the 

disease due to the loss of barrier integrity. Endothelial cells control vascular function 

and dysfunction through a fine balance of secretion and production of vasoactive 

substances, thrombotic mediators and inflammatory cytokines that affect PASMCs 

(192). When barrier function is compromised, these circulatory factors can reach the 

vascular media and drive PASMCs de-differentiation leading to vascular remodelling 

and disease progression (193). Indeed, when PASMCs were exposed to media 

conditioned by pulmonary artery endothelial cells (PAECs), cell proliferation and 

migration were enhanced, and the effect was greater when the conditioned media 

derived from PAECs of PAH patients (194). 

The Rho family of GTPases are key regulators of the pulmonary endothelial barrier 

function, and their role in pulmonary vascular disorders is reviewed in (195, 196). In 

particular, Rho-GTPase signalling regulates cell motility and cytoskeleton, 

endothelial permeability, angiogenesis, NO production, smooth muscle contractility, 

proliferation, differentiation and apoptosis. Members of Rho family (RhoA RhoB, 

Rac1) are activated in the pulmonary vasculature of PH patients and animal models 

in response to hypoxia and stress, and they consist targets for prospective therapies 

(197).  

The role of EndoMT in PAH has recently gained increasing attention. Studies from 

different groups have provided convincing experimental evidence that EndoMT 

occurs in PAH patients and animal models (rat and mouse) of induced PAH (14, 

198, 199). Good et al demonstrated the presence of transitional EndoMT cells in the 

pulmonary vasculature of patients with SSc-PAH and in the hypoxia/SU5416 model 

of PAH in a small proportion of vessels (14). Similarly, Ranchoux et al also showed 

EndoMT is implicated in vascular remodelling in human PAH, and in rat models of 

severe induced PH (monocrotaline and SuHx) (199).   
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EndoMT is regulated by growth factors, inflammatory signalling, and the mechanical 

in situ environment [reviewed in (200, 201)]. At present, the best-described inducers 

of EndoMT are members of the TGF-β superfamily. Inflammation, oxidative stress, 

and changes in the mechanical factors imposed on the blood vessel, are also seen 

often in PAH. The inflammatory microenvironment observed in PAH contains a 

myriad of signalling proteins such as TNF-α, IL-1β, IL-6, and ROS, each of which 

may have individual effects on the EndoMT (201). 

EndoMT is an important pathological process that may exacerbate vascular leak, 

inflammatory infiltration, and vascular remodelling in PAH. However, it is critical to 

remember that EndoMT can be detected only in a narrow time window, during the 

transitional stage when endothelial cells express both endothelial and mesenchymal 

markers. Once endothelial cell markers are lost, the cells are hardly distinguishable 

from other mesenchymal-like cells.  

1.2.5.3.5 Signalling and regulation in PAH 

PAH is a complex disorder and can occur due to genetic mutations, 

environmental stimuli and/or exposure to toxins. Approximately 10% of PAH 

patients have a family history of disease which in some cases has been 

observed to be transmitted through multiple generations (202). The genetic 

background in PAH is very important and will be reviewed in section 1.3.2. 

Briefly, almost 80% of familial PAH cases and 10-40% of idiopathic PAH (IPAH) 

are diagnosed with mutations in the BMPR2 gene (203).  

PAH predominantly affects women, but the molecular basis of this phenomenon is 

poorly understood. Studies have been focused on estrogen production and 

metabolism, and mostly estradiol 2, which is the most prevalent estrogen in non-

pregnant women. Mutations have been found in the CYP1B1 gene, a regulator of 

estrogen metabolism that lead to overexpression of a metabolite able to trigger cell 

growth and potentially promote the development of vascular lesions in PAH (202). 

However, contradictory data from animal studies do not support this hypothesis and 

provide evidence of a protective effect of estrogen production in PAH. Indeed, 

recently it has been shown that agonist stimulation of surface estrogen receptors 

reduced pulmonary hypertension and improved right ventricular function (204). This 

finding is known as the “estrogen paradox” and requires further research to 

elucidate the link between PAH and estrogen production.    

Most of the molecular and cellular mechanisms that are implicated in PAH have 

been discussed in detail in section 1.2.3.3 of the regulation of vascular remodelling. 
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These include growth factors that affect vascular remodelling such as PDGF and 

TGF-β, AngII and the redox axis, as well as the Notch signalling pathway. In 

addition, hypoxia and inflammation retain a distinct role in PAH. 

Exposure to chronic hypoxia induces changes in the structure of pulmonary arteries, 

as well as in the biochemical and functional phenotypes of all vascular cell, leading 

to vasoconstriction and vascular remodelling. Hypoxia-induced changes are site-

specific, such that the remodelling process in the large vessels differs from that in 

the smallest vessels. The mechanisms involved in hypoxia-induced PAH are 

reviewed in (205, 206). Heterogeneity occurs to a great extent in the cell 

phenotypes and responses under hypoxic conditions, and this is the reason that 

many studies report contradictory data regarding the effect of hypoxia on 

proliferation of cultured PASMCs. It has been shown that PASMCs that respond to 

chronic hypoxia with extensive proliferation, exhibit a less differentiated or an 

undifferentiated phenotype compared to all other PASMCs found in the pulmonary 

vascular bed (205).  

The mechanisms underlying this proliferative response of PASMCs to hypoxia 

remain elusive. However, it has been shown that hypoxia reduces the production of 

prostacyclin and NO and increases levels of ET-1, serotonin, PDGF, and IL-6 and 

other vasoactive factors by PAECs and platelets, and this imbalance might promote 

PASMCs proliferation (91). In addition, hypoxia-induced proliferative PASMCs 

respond to GPCR agonists with stimulation of protein kinase C (PKC), whose 

activation in turn leads to proliferation via the ERK1/2 signalling pathway (207). In 

addition, hypoxia affects voltage-gated channels causing intrinsic changes in 

potassium and calcium levels (208).  

HIF-1α is a heterodimeric transcription factor comprised of an oxygen-regulated α 

subunit that mediates the transcriptional responses to hypoxia (209). During 

hypoxia, HIF-1α accumulates and dimerises with its partner HIF-1β to activate 

hypoxia-specific genes. Cells lacking HIF-1α demonstrate impaired up-regulation of 

cellular proliferation and VEGF expression during hypoxia (210), and knock-down of 

HIF-1α inhibits hypoxia-induced proliferation (211). Recently, it was shown that 

KLF5 contributes to hypoxia-induced pulmonary vascular remodelling in a HIF-1α-

dependent way (212). KLF5 is a zinc finger-containing transcription factor, required 

for AngII-induced VSMC differentiation and proliferation, and cardiac hypertrophy. 

KLF5 levels positively correlated with disease severity in lung tissues of patients 

with PH (213). Normoxic activation of HIF-1α also occurs in PAH PAECs, where it 
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correlates with reduced number of mitochondria and a shift towards the glycolytic 

metabolism (214). 

Inflammation has long been considered a critical regulator of initiation and 

progression of vascular remodelling in PH, influenced by an imbalance of pro- and 

anti-inflammatory activities (86). Patients with IPAH and other types of PH exhibit 

higher circulating levels of inflammatory chemokines and cytokines  such as VCAM-

1, IL-6, IL-1β, IL-10, RANTES, MCP-1, TNF-α, and NF-κB (215-217), and their 

release contributes to PASMC proliferation and migration. Currently, none of the 

PAH drugs targets inflammation, and there is no evidence that immunosuppression 

is effective as a therapy, except perhaps in the cases of CTD- associated PAH, 

such as SLE and scleroderma (218).  

Components of ECM have also been shown to regulate PASMC phenotype and 

proliferation, such  as collagens I and IV and laminin that inhibit proliferation and 

promote the VSMC contractile phenotype, whereas fibronectin has the opposite 

effect [reviewed in (91)]. MMPs are zinc containing proteins responsible for ECM 

production and the maintenance of extracellular structures. MMPs contribute to 

disease progression and PASMC migration in several animal models of PH (91). 

Activity of MMPs is regulated by the tissue inhibitors of MMPs (TIMPs). In vitro 

studies showed increased TIMP-1 and decreased MMP-2 and MMP-3 expression in 

PASMC isolated from IPAH patients compared to healthy individuals (219). 

Although altered levels of MMPs and TIMPs have been shown in PAH, further 

studies are required to elucidate their effect.  

Often, exposure to environmental triggers such as drugs, toxins, bacteria and 

viruses is enough to initiate PAH. For instance, the use of anorexigen, a known 

neuro-stimulant, has been shown to cause PAH (220). The effect of serotonin has 

also been studied, and animal models overexpressing the serotonin transporter 

were prone to the development of PAH (221). Other drugs such as 

methamphetamines and cancer drugs have also been associated with PAH, but the 

exact molecular mechanisms contributing to vascular remodelling is not well 

understood (191). 

 1.2.5.3.6 Treatment of PAH 

The goals of PAH treatment include alleviating patients symptoms, improving their 

functional status and quality of life, halting or reversing disease progression 

including right ventricular dysfunction, and improving overall survival.  
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Pathways of prostacyclin, ET-1, and NO have been targets for therapy. Prostacyclin 

is a powerful vasodilator that inhibits proliferation and platelet aggregation (222). 

Three prostacyclin analogues have been commonly used in PAH treatments: 

epoprostenol, prostinil, and iloprost. The analogues have been reported to alleviate 

haemodynamic abnormalities in patients, and improve the mean arterial pressures, 

exercise capacity and PVR. ET-1 blocking agents have been used in PAH patients 

to block its effects. Of those most prominently used are the bosentan, sitaxsentan, 

and ambrisentan. Bosentan is an ET antagonist that is capable of blocking both 

ETA and ETB receptors. Its use improves symptoms, haemodynamic feature and 

exercise capacity, and also confers significantly improved survival (223). Other 

therapies target downstream components of NO signalling pathway by inhibiting 

phosphodiesterase-type 5 (PDE-5), the enzyme that catalyses cGMP to GMP (224), 

which has not been effective in all PAH patients (225).  

EndoMT could potentially constitute a new strategy for targeted therapy in which 

specific therapeutic agents would be used to abrogate the process and improve the 

status of the PAH patients. Identification of the key modulators of EndoMT could 

significantly enhance this effort. 

1.2.6 Connective tissue disease-associated PH (CTD-PH) 

Based on the most recent classification criteria of PH (180), there is a sub-category 

of PAH associated with CTD. CTD is a heterogeneous group of systemic 

inflammatory disorders characterised by the presence of circulating autoantibodies 

and autoimmune-mediated organ damage (226). The lung is a frequent target, and 

more than one thoracic compartments can be involved, including the airways, lung 

parenchyma, pulmonary vasculature, and pericardium (226). The CTDs that often 

affect the respiratory system are scleroderma, RA, SLE, mixed CTD (MCTD), 

Sjogren’s syndrome (SS), and undifferentiated CTD (UCTD) (226). 

Although PAH is rare in the general population (IPAH has an incidence of 1–

2/million/year) (227), it is more common in CTD. Indeed, several lines of evidence 

support a role for autoimmunity and inflammation in the development of the 

pulmonary vascular changes, including the presence of circulating autoantibodies 

and pro-inflammatory cytokines (IL-1 and IL-6) (228). Despite the similarities in 

disease pathogenesis and haemodynamic perturbations, outcomes in patients with 

CTD-associated PAH differ significantly from other forms of PAH.  
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1.2.6.1 Scleroderma (SSc) 

Scleroderma is a complex rheumatic disease characterised by autoimmunity and 

inflammation, vasculopathy and fibrosis of the skin and internal organs. The 

pathogenesis of the disease remains unknown, although it is known to involve 

genetic and environmental factors, and complex organ-based complications (Figure 

1.5). Scleroderma is a rare condition with the highest case-specific mortality among 

all autoimmune rheumatic diseases with more than half patients dying of the 

disease (229). Scleroderma occurs worldwide and is represented in all ethnic 

groups. The prevalence of scleroderma in the USA is 276/million adults compared 

to 88/million in the UK (230), however, the incidence and prevalence can vary 

among populations. Women are affected more often than men with a reported ratio 

of 4-5:1 (230). The usual age of onset is 30-50 years, and although it can affect any 

age group, it is rare in children.  

Primary classification criteria were issued and reviewed in 2013 by the American 

College of Rheumatology/European League against Rheumatism collaborative 

initiative (ACR/EULAR) (231). Clinical diagnosis of scleroderma is defined by the 

presence of Raynaud’s phenomenon, hardening of the skin and visceral organ 

involvement. Depending on the clinical symptoms, patients can be diagnosed as 

scleroderma or as an overlap with other AIDs such as RA, SLE, polymyositis (232, 

233). Two different disease subsets have been characterised: the limited cutaneous 

(lcSSc) and the diffuse cutaneous (dcSSc). In lcSSc, the hardening of the skin 

occurs at the distal joints (elbows, knees) and the face, compared to dcSSc, where 

proximal and distal extremities, face and trunk are affected. The two subsets have 

different organ involvement and autoantibody-specific overproduction. LcSSc is 

more common than dcSSc and affects almost 70% of scleroderma patients. 

Scleroderma is characterised by an overproduction of autoantibodies (234). 

Identification of autoimmune antibodies specific to the disease facilitates diagnosis 

and disease classification. Whether these antibodies play a direct role in the 

pathogenesis of the disease or they are an epiphenomenon of disturbed 

autoimmunity is not clear yet. However, they have been used as a diagnostic tool 

for the disease, as well as a prognosis for specific organ involvement.  

Organs affected by scleroderma include the heart, lungs, vessels, kidneys, 

gastrointestinal tract, with severity and symptoms varying amongst patients (Figure 

1.5). The complexity and multi-organ involvement means it is extremely important to 

identify and treat the organ-based complications. Renal crisis and pulmonary 

fibrosis can occur at an early disease stage, while PAH occurs later. Pulmonary 
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fibrosis is the most common form of interstitial lung disease in scleroderma. Apart 

from the lungs, the gastrointestinal tract, oesophageal, stomach, small intestine, and 

large bowel can all be affected causing a range of symptoms. Involvement of small 

intestine generally occurs in patients with established scleroderma and is a major 

cause of mortality. Scleroderma-associated renal crisis typically causes accelerated 

hypertension and acute renal failure which may or may not resolve. 

 

Figure 1.5  Organ involvement in scleroderma. Scleroderma is a complex rheumatic 
disease characterised by autoimmunity and inflammation, vasculopathy and fibrosis of the 
skin and internal organs. Affected organs include the heart, lungs, kidneys, gastrointestinal 
tract, skin and vasculature.  

 

1.2.6.2 SSc-associated PH 

Scleroderma is considered a susceptible phenotype for the development of PH. 

Pulmonary vasculopathy is common among scleroderma patients and may lead to 

PH or remain subclinical in ~15% of the patients.  At the Centre for Rheumatology 

and Connective Tissue Disease in the Royal Free NHS Trust Foundation Hospital, 

as well as in other clinical centres in the world, scleroderma patients are on active 

follow-up screening programmes from diagnosis and onwards. The screening 

programmes include lung biopsies and assessment of the physiology of patients 

every year as well as autopsy studies. Worsening of a patient’s condition would 

point towards a RHC. Patients with subclinical pulmonary vasculopathy exhibit 

borderline mPAP, and half of them will develop PH at some point in time (235).  
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Patients that undergo RHC and found to have mPAP≥25mm Hg are diagnosed as 

PH. Based on the clinical criteria reviewed in Nice 2013 (231), 60% of those 

patients have PAH and this is categorised as Class I of PH (236). A sub-group of 

this category is Class I’, which is PH due to pulmonary veno-occlusive disease 

(PVOD).  Of the rest of PH patients, 15% exhibit post-capillary heart failure with 

PAWP>15mm Hg, and this is categorised as Class II. Class III consists of PH 

patients (15%) presenting arterial vascular remodelling and significant lung fibrosis 

>20% diagnosed with high resolution CT (HRCT), and/or forced vital capacity (FVC) 

<70% (237). RHC is essential for SSc-PAH diagnosis, since echocardiography is 

limiting due to the inaccuracy of the Doppler signal in assessing true RV systolic 

pressure (238). 

SSc-PAH exhibits the worst prognosis among CTD-associated PAH (239). Despite 

advances in PAH therapies, the 3-year survival of SSc-PAH is ~50% (240). SSc-

PAH can occur in both lcSSc and dcSSc forms, and can remain asymptomatic until 

a quite advanced stage of disease progression. Initial symptoms include exertional 

breathlessness, chest pain or syncope. SSc-PAH is characterised by vascular 

remodelling intimal hyperplasia, medial hypertrophy and adventitial fibrosis and a 

lower number of plexiform lesions compared to IPAH, leading to vessel obliteration 

(241). Other vascular changes include endothelial activation with expression of cell 

adhesion molecules, endothelial dysfunction, apoptosis, and inflammatory cell 

recruitment (242). The extent of these vascular changes in vital organs such as the 

lungs, kidneys and heart defines the prognosis of patients with scleroderma. 

Increased levels of VCAM-1 and VEGF in lung tissues of SSc-PAH patients reveal 

extensive endothelial injury and increased angiogenesis, respectively (242).  

PAH-specific treatments have been used in SSc-PAH patients including ET-1 

receptor antagonists, prostacyclin analogues and receptor agonists, and molecules 

targeting the NO pathway. Combinatorial therapies with PAH-specific drugs have 

also been used in the management of CTD-PAH, however, patients in this 

population have been observed to have a lower response to PAH-specific therapy 

compared to IPAH (239). Possible reasons include an increased prevalence of 

PVOD lung disease in SSc-PH patients, or more severe vascular lesions affecting 

not only the proximal but also the distal pulmonary vessels, as well as the heart 

(such as inflammatory myocarditis) in CTD. The poor outcome of SSc-PAH 

compared to IPAH, together with a lack of effective combination treatment render 

the treatment and management of the disease a major challenge. Longitudinal 

observational studies embedded in clinical practice have provided important 
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evidence that the systematic screening of SSc-PAH may be associated with 

improved outcomes (243). 

1.3 Genetics of CVD 

1.3.1 Introduction 

CVD are complex conditions that involve both gene-gene and gene-environment 

interactions. Apart from the field of pharmacogenetics, very little progress has been 

made in our understanding of gene-environment interactions. This is partly due to 

the difficulty of accurate measurement of most environmental factors as compared 

to the genetic factors, and the low power to detect and analyse combinatorial effects 

(244). A growing part of basic and clinical research is focused on the identification of 

genetic factors that contribute risk susceptibility to disease. In comparison to 

traditional risk factors, genetic markers associated with disease are expected to 

exhibit better clinical relevance in the prediction and diagnosis of CVD. 

Observations form genetic studies also help to elucidate inter-individual differences 

in cardiovascular protection in order to develop well-defined strategies leading to 

clinical genetic testing, genetic counselling and ultimately personalised therapies.   
Genetic inheritance has also been proved complicated in complex disease, with 

combinations of numerous susceptibility-conferring alleles at several loci to interact 

in a particular individual. Some of them may affect the risk of CVD in a way that 

cannot be predicted from the separate effect of each variant. In addition, rare 

variations might also confer susceptibility with smaller effects, and these effects 

cannot be easily captured. This is the major obstacle for the characterisation of the 

genetics of complex traits proposing the exploration of genomic systems rather than 

single genes.  

1.3.1.1 Genetic studies and design 

Although, most of CVDs are not single-gene disorders, there are cases where a 

faulty gene is enough to cause disease. In single-gene disorders, tremendous 

efforts were made from 1990 to 2010, a period referred to as “golden era” of single-

gene disorders. Of the estimated 7000 single-gene disorders, a gene has been 

discovered for over 3000 genetic conditions (245). The first CVD to be mapped was 

hypertrophic cardiomyopathy and then dilated cardiomyopathy followed by many 

others such as Wolff–Parkinson–White syndrome (WPW), atrial fibrillation, Long QT 

syndrome, and Brugada syndrome (246). These are rare disorders occurring with a 

frequency of <1%.  
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A basic representation of the designs in genetic studies is shown in Figure 1.6. 

Initially, disease-causing genes were identified in families with several affected 

members over different generations using linkage studies, which examined whether 

particular alleles are co-transmitted with the disease at a higher frequency than 

expected by chance. Genomic regions that carry a disease-causing gene can be 

identified by testing of the co-segregation of the disease with genetic markers that 

“tag” or label specific regions of the genome. The success of linkage studies 

depends significantly on the efficient phenotypic characterisation of the family 

members. Originally, microsatellites were used as genetic markers in the linkage 

studies. However, the use of single nucleotide polymorphisms (SNPs) was later 

established. SNPs are the most common variation across the human genome with 

5.9 million already identified of the 11 million expected to exist (247). Each SNP has 

two alleles, and depending on the minor allele frequency (MAF), SNPs are divided 

in common (>5% MAF), low frequency (0.5%-5% MAF), and rare (<0.5% MAF). 

Other forms of genetic variation are copy number variations, including deletions, 

insertions and duplications of parts of DNA. 

 

Figure 1.6 Design of genetic studies.  Description of different designs of genetic studies.  
Although scientific interest has been shifted from linkage studies to GWAS and next-
generation sequencing through the years, designing a genetic study is important and 
depends on the needs and the objectives of the study. 

 

Occasionally, alleles of neighbouring SNPs can be inherited together, a 

phenomenon that is called linkage disequilibrium (LD) and is caused by the epistatic 

natural selection, mutation, random drift, genetic “hitchhiking”, or genetic flow. LD is 

responsible for the non-random association between alleles of different genomic loci 

and even genes. The associated alleles form haplotypes, and segments of the 

genome with increased LD are called haplotype blocks, and they are considered the 
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outcome of homologous recombination occurring over generations (248). The 

International HapMap project was the first portal to collect and publish genotype, 

linkage and frequency data of different human populations, and was launched in 

2005 and ran until June 2016, when it was retired by NCBI. The 100,000 Genomes 

Project is a new powerful database providing current and best data of genotypes, 

sequences and genome mapping. 

Since complex diseases do not follow a clear pattern of Mendelian inheritance, the 

strategy used to identify predisposing genes is usually not based on family studies 

but in case-control association studies. Genetic association studies can either focus 

on a specific gene locus (candidate gene studies) or target the whole genome 

(genome-wide association studies or GWAS) (Figure 1.6). Candidate gene 

association studies are focused on genes that exhibit biological significance for the 

pathogenesis of the disease based on experimental evidence or a working 

hypothesis. When strong experimental evidence is lacking, data mining software 

that have recently advanced substantially, can meet the needs of growing research 

and provide intelligent tools for candidate gene selection and study design (249).  

GWAS represent an unbiased hypothesis-free approach, whereby markers 

distributed throughout the human genome are tested for association with no 

preference in terms of their selection. The GWAS strategy is devoted to the 

discovery of novel genetic biomarkers and their impact on the likelihood of disease 

onset, progression, prediction and management. The first GWAS was published in 

2005 and used a micro-array that contained probes against 5x105 SNPs (250). 

Today, GWAS are conducted using chip assays with genome-wide SNP genotyping 

coverage (Illumina). Moreover, high-throughput innovative advances provide whole-

exome and whole-genome sequencing with competitive costings (Figure1.6). Data 

obtained from genetic association studies are often tested in independent replication 

cohorts of the same or different descent, to further validate significant associations.  

In genetic association studies, DNA is genotyped in two cohorts: a case/patient 

cohort and a control/healthy cohort of unrelated individuals. In this approach, the 

allele or genotype frequencies of the genotyped SNPs in cases are compared to 

those of controls. An allele that is found to be more common in cases compared to 

controls will be considered as disease-associated as it increases predisposition to 

the disease, and is usually called a risk allele. On the contrary, an allele that is 

found in lower frequency in cases compared to controls is protective over the 

disease. Various genetic models (genotypic, recessive, dominant, etc.) are used to 
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address different types of questions regarding the effect that an allele or a genotype 

exerts on disease phenotype. 

 The statistics applied in genetic tests is challenging, as stringent criteria need to be 

considered and applied to avoid false positive data. Also, a multiple comparison 

issue due to accounting for the same SNP in various tests can lead to false 

discovery rates (FDR). This is usually addressed in two ways: by applying 

Bonferroni corrections or performing permutation analysis. Candidate gene studies 

often use less stringent criteria compared to GWAS, where Bonferroni correction is 

a gold standard due to the infinite numbers of tests performed. The reason is that a 

conservative threshold such as Bonferroni would be overly stringent particularly in 

the context of a disorder with no major gene effects (249).  

1.3.1.2 Epigenetic studies  

The term epigenetics refers to chromatin or DNA-based mechanisms important in 

the regulation of gene expression, which do not involve changes in the DNA 

sequence. Epigenetic research unravels the complex relationships between disease 

pathology and genetics, and provides novel insight into the mechanisms of 

cardiovascular health and disease. It aims to explore the role of genetic heritability 

and environmental interactions, as well as to explain discrepancies caused by 

environmental insults. The genetic heritability of CVD can vary significantly, and 

studies report a 40%-80% of genetic contribution to CVD (251). Indeed, studies 

have shown that monozygotic twins that lived significantly different lifestyles or were 

exposed to different environments, exhibited substantially different epigenetic 

patterns (252). Other factors known to affect the prevalence of CVD include gene-

gene and gene-environment interactions potentially mediated by epigenetics, gene 

imprinting, and other factors (252).  

Although the field of epigenetics is relatively new, it has gained a lot of attention in 

the context of CVD, and recent reviews discuss its impact in CVD pathogenesis and 

therapeutics (253-257). Epigenetic patterns can differ among different cell types in 

the body, and among cells of the same tissue. These patterns serve as cellular 

memory of exposure to abnormal environmental stimuli early in life, and they can 

affect health later in life as well as be passed to future generations (257). Epigenetic 

mechanisms can affect gene expression at post-transcriptional and post-

translational levels and can be divided into three distinct but interrelated processes: 

DNA methylation, RNA-based mechanisms, and histone modifications. 
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DNA methylation plays a key role in embryonic development, cell type lineage 

specification, X-chromosome inactivation, and genomic imprinting (254). 

Methylation changes are mediated by DNA methyltransferases (DNMTs), which 

catalyse the addition of methyl groups to the C5 position of cytosine residues (5mC) 

at repetitive CpG dinucleotides, known in mammals as CpG islands. Methylation 

usually occurs in gene regulatory regions such as promoters and enhancers, and it 

is typically a repressive mark associated with inhibition of transcriptional initiation 

and suppression of gene expression. Changes in DNA methylation patterns have 

been observed in CVD, atherosclerosis, congenital heart disease, autoimmune 

diseases (AIDs), infection and cancer. Athero-protective genes, including estrogen 

receptors, have been found constitutively hyper-methylated and thus silenced in 

human atherosclerotic tissue and plaques (258). This excessive methylation could 

interfere with the athero-protective effects of estrogen in women and also reveals 

the influence of methylation in vascular aging and atherosclerosis (258).  

RNA-based epigenetic mechanisms involve two post-transcriptional regulators: the 

microRNAs (miRs) and the long non-coding RNAs (lncRNAs). MicroRNAs are short 

non-coding RNAs 20–22 nucleotides long that have emerged as important 

regulators of gene expression. MicroRNAs modulate gene expression through 

binding at 3’UTRs of target genes and inhibition of mRNA translation or of other 

post-transcriptional events, and transcript degradation. Estimates based on 

computational approaches currently find more than 60% of human genes to be 

targeted by microRNA, with many of these interactions being highly conserved 

throughout evolution (259). In mammals, more than 1000 different microRNAs have 

been identified, with different tissue-specific and process-specific expression. The 

role of microRNA has been studied extensively in CVD [reviewed in detail in (253)]. 

For instance, miR-126 and miR-145 are downregulated in CAD, and miR-1, miR-

133b, and miR-499 are downregulated in myocardial infarction. Also, miR-21 and 

miR-29 are two of the microRNAs mostly studied in cardiac fibrosis.  

MicroRNAs have also been used efficiently as highly specific diagnostic markers in 

the circulation of CVD patients. Moreover, innovative drug therapies have been 

developed using microRNA as therapeutic targets, either by blocking them and 

restoring normal gene expression, or by using microRNA mimic molecules to inhibit 

deleterious disease-causing gene expression. Although significant insights have 

been provided on the role of several microRNA in CVD, a deeper understanding of 

microRNA functions in the cardiovascular system is required for future strategies for 

CVD prevention, diagnosis, and therapy.  
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LncRNAs constitute a large and diverse class of transcribed RNA molecules that do 

not encode proteins and are primarily located in the nucleus (260). LncRNAs 

function either by binding to DNA or RNA in a sequence-specific manner or by 

binding to proteins (260). Their expression is developmentally regulated and can be 

tissue- and/or cell type- specific (260). Epigenetic modifications of the histone code, 

including lysine acetylation and methylation and serine phosphorylation, influence 

significantly the chromatin structure, and modify the accessibility of transcriptional 

regulators to DNA-binding elements.  

1.3.2 Genetics of PH 

PH is a relatively rare disorder that can occur within families in a hereditary manner, 

it can be sporadic, idiopathic, or it can even be associated with other diseases such 

as Scleroderma, or syndromes such as Down’s and DiGeorge (261). The disease 

course is very severe and progressive, although there is currently no cure, the 

disease can be managed and monitored to increase the life expectancy of the 

patients. However, diagnosis is often delayed for years, which severely impacts on 

outcome. In this regard, genetic studies have attempted to decode the genetic 

background of the disease and offer new ways of diagnosis and potential 

treatments.  

The BMPR2 gene was the first to be directly linked to PAH over 20 years ago (262-

264) . To date, more than 300 independent BMPR2 mutations have been identified 

accounting for >75% of familial PAH and 10-25% of sporadic cases of PAH (261). 

Mutations in the BMPR2 gene are haploinsufficient with most patients carrying only 

one mutated allele. Another very interesting finding is that not all the BMPR2 

mutation carriers develop the disease, suggesting an incomplete penetrance. In 

detail, the overall penetrance of the BMPR2 mutations is 27%, which is 

approximately three times higher in women (42%) compared to men (14%) (265). 

Although the mechanism for the incomplete penetrance remains unclear, 

researchers suggest that female hormone metabolism may contribute significantly 

to this mechanism (202, 266). Additional causal mutations have been identified in 

other genes of the TGF-β superfamily (ACVRL1, ENG, SMAD1, SMAD4, and 

SMAD9), however, these are believed to account for only 1%-3% of PAH cases. 

Whole-exome sequencing in PAH patients without mutations in the BMPR2 gene or 

any other TGF-β family member unravelled new rare genetic variants in CAV1, 

KCNK3, and EIF2AK4 genes (267). Six mutations have also been found in the 

KCNK3 gene within highly conserved protein domains, and it was hypothesised that 
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loss-of-function mutations in the gene is a hallmark for idiopathic and heritable PAH 

(268).  Indeed, KCNK3 expression and activity are strongly reduced in PASMCs and 

PAECs, and its inhibition promoted increased proliferation, vasoconstriction, and 

inflammation (268). Mutations found in the EIF2AK4 gene were identified as the 

cause of two previously unlinked rare types of PAH, pulmonary capillary proliferation 

and occlusive lesions of small pulmonary veins (PVOD) (269, 270). Other genes 

with novel PAH-associated mutations that recently evoked from GWAS (271)  are 

Cerebellin 2 (CBLN2) (270) and the potassium channel KCNA5 (272).  

Although these mutations and variants have been linked to PAH by affecting 

pathways relevant to pulmonary vascular homeostasis, they are not sufficient to 

explain the entire genetic background of PAH. In addition, it has been shown that 

BMPR2 mutations are not found in CTD-associated PAH, portal hypertension, and 

HIV infection. Taken together, the above imply that apart from the pathogenesis and 

regulation of disease, differences in the genetic profile of the individual must also 

exist. Thus, other genetic and epigenetic mechanisms must be operating and their 

elucidation might help increase the understanding of PH. 

Indeed, the role of epigenetics in PAH is a fast-growing area of research, and 

modifications have been studied extensively (273, 274). Many miRNAs have been 

linked functionally with PAH including miR-21 (275, 276), miR-124 (277), miR-17-92 

(278), miR-145 (279), and miR-204 (280). DNA methylation and histone 

modifications have also been studied in PAH and recent findings are reviewed in 

(273). Findings highlight a clear epigenetic mechanism for PASMCs proliferation, 

important for the pathophysiology of PAH, through the methylation of SOD2 and the 

interaction with HIF-1α (281). Histone modification studies have been focused on 

HDAC-mediated control of PAH, and HDAC inhibitors have been used successfully 

to reduce cardiac hypertrophy and fibrosis (282). 

1.3.3 Genetics of SSc-PH 

As described previously, scleroderma is a multi-organ disease with very complex 

pathogenesis and manifestation [summarised in (283)], and an important interplay 

between genes and environment. Epidemiological studies have shown a significant 

increase in the risk of scleroderma among first-degree relatives (1.6%) compared to 

the general population (0.026%) (284). The prevalence is increased even more 

between monozygotic twins (4.7%) (285). Although family history of scleroderma 

has been identified as the highest risk factor, the likelihood of developing the 

disease among offspring of patients is <1% (286). There is also strong evidence of 
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familial clustering of patients, and in these clusters relatives tend to have the same 

disease-associated autoantibodies (285). These data imply a genetic susceptibility 

to scleroderma overall and an inherited susceptibility to develop specific sub-

phenotypes of disease. Thus, unravelling the genetic profile of scleroderma would 

enhance the understanding of disease pathogenesis and help in designing novel 

therapies. 

However, the design of a genetic study in complex and heterogeneous diseases 

such as scleroderma is not trivial. A multistep genetic association analysis and 

sophisticated statistical analysis should be carried to ensure that studies are strong 

with sufficient power to identify true and significant associations, and that 

heterogeneity will not obscure the results. In addition, it is important to study and 

correlate genotypes with individual phenotypes as outcomes of the disease to 

further explore pathogenesis. To achieve this in scleroderma, it is essential that all 

clinical sub-phenotypes are studied including disease subsets (limited or diffuse), 

autoantibodies (ATA, ACA, and ARA), SSc-PAH, PH, PF, and renal crisis. This type 

of analysis provides the opportunity to detect genetic influences on specific 

phenotypes within the disease spectrum. The structure of genomic locus under 

question should also be examined through a haplotype association analysis in order 

to evaluate whether a combination of SNPs rather than individual markers confer 

susceptibility to disease. 

To date, candidate-gene approaches as well as GWAS have revealed many 

susceptibility loci along the genome, but each one of them explains only a small 

proportion of the disease. Most of the genetic findings are summarised in recent 

reviews (287, 288). The first GWAS in scleroderma was published in 2009 in the 

Korean population (289), followed by another in 2010, which identified the CD247 

gene as a new susceptibility locus in scleroderma (290). CD247 is a mediator of T-

cell receptor signalling, previously seen to be involved in the pathogenesis of SLE, 

and retains a critical role in the imbalanced immune response. The association of 

CD247 with scleroderma has been replicated in an independent study (291). A 

meta-analysis of two GWAS was published in 2013 and identified KIAA0319L, PXK 

and JAZF1 as novel susceptibility loci for scleroderma and SLE, increasing 

significantly the knowledge of the genetic basis of autoimmunity (292). Another 

GWAS follow-up reported a significant association of rs310746 in the PPARG gene 

(p=5x10-7, OR=1.25) and scleroderma suggesting a role of this gene in disease 

pathogenesis (293). 
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The strong autoimmune component of scleroderma, the dysregulation of the 

immune system, and the over-production of autoantibodies suggest a solid 

pathogenic background shared by AIDs. Indeed, different polymorphisms within the 

human leukocyte antigen (HLA) region of the major histocompatibility complex 

(MHC) have consistently been associated with various AIDs including scleroderma, 

SLE, and RA (290, 294). Modest associations have been found between given 

haplotypes and the disease overall, but stronger evidence for associations have 

been found between specific HLA polymorphisms and autoantibody production in 

scleroderma patients (295). However, due to the extensive LD within the HLA/MHC 

locus, the identification of causal variants remains challenging, requiring studies in 

bigger cohort and the use of novel high-throughput sequencing technologies. In 

order to further explore scleroderma risk loci common with AIDs and to fine map 

these areas, an analysis was conducted using the Immunochip (Illumina), which 

contains 186 known autoimmunity risk loci (296). The HLA/MHC associations with 

scleroderma, ACA, and ATA were confirmed (296). In addition, 4 new non-HLA loci 

were associated with scleroderma at a genome-wide significant level including 

DNASE1L3, an intergenic SNP between SCHIP1 and IL12A, an intronic SNP within 

ATG5 gene, and another SNP between TREH and DDX6 (296).  

Beyond the HLA/MHC region, various genes associated with scleroderma are 

involved in adaptive and innate immunity, and in particular in pathways related with 

cell signalling regulation and T-cell differentiation. More specifically, genes involved 

in the innate immune response include the interferon regulatory factor 5 (IRF5) 

(286, 290, 297), macrophage inhibitory factor (MIF) that acts as a proinflammatory 

and immune-regulatory cytokine (298, 299), and ITGAM gene that is important in 

activation adherence and migration of leukocytes, phagocytosis and neutrophil 

apoptosis (300, 301). Genes involved in the adaptive immune response include the 

STAT4 gene that was a top associated gene at GWAS-level (290, 302), BANK1 

gene that expresses a scaffold protein exclusively expressed in B-cells (302-304), 

BLK gene encodes a BCR-associated transducing molecule with a key-role in B-cell 

development (305, 306),  tumour necrosis factor ligand superfamily 4 TNFSF4 (299, 

305), TNFAIP3 that participates in the NF-kB pathway and the B-cell survival (297), 

and PTPN22 gene that negatively regulates TCR-signalling (307). 

Scleroderma is a highly heterogeneous disease, and this complicates significantly 

the efforts to dissect the genetic component. Other than loci and genes related to 

immunity and inflammation, not many genes in other molecular and cellular 

pathways have been associated with scleroderma disease pathogenesis. CTGF is 



69 
 

probably the most studied example that bridges genetics and function. In particular, 

Fonseca et al revealed that rs6918698 (-945C/G) located within the promoter region 

of CTGF is significantly associated (p<0.001) with scleroderma-associated 

pulmonary fibrosis, as well as with the presence of ATA and ACA antibodies in the 

UK scleroderma population (308). The association failed to replicate in a meta-

analysis among 6 independent case-control studies (309). However, a study in a 

Japanese population showed that rs6918698 CC/CG genotype greatly decreased 

the susceptibility of scleroderma in a dominant model analysis (p=0.005, OR=0.632) 

(310). CTGF is significantly up-regulated in the skin and lung fibroblasts of 

scleroderma patients, with an established role in the pathogenesis of disease (134).  

In 2016, a whole-exome sequencing study was conducted in patients with dcSSc, 

and 70 genes that were enriched with deleterious variants were identified (311). Of 

these, two (BANK1 and TERT) were known susceptibility loci previously implicated 

in scleroderma pathogenesis, five were newly identified genes (COL4A3, COL4A4, 

COL5A2, COL13A1, and COL22A1) that are significant components of ECM 

associated with fibrosis, and one gene (XRCC4) is involved in the DNA repair 

pathway (311). In the same year, another study identified rs58905141 in 

the TNFAIP3 gene to be strongly associated with the silica-induced profibrotic 

response in lung fibroblasts (312). The SNP was consistently associated with time-

course and dose-response expression of MMP3 and MMP1 in fibroblasts stimulated 

with silica particles in Caucasian subjects (312). In silico analysis using ENCODE 

data revealed that rs58905141 might affect the binding of TNFAIP3 

transcription facto. 

Although studies have been successful in identifying susceptibility loci, genetics 

alone is unable to fully account for scleroderma risk. Epigenetic mechanisms have 

also been reported to contribute in scleroderma. Various microRNAs have been 

linked to the disease, including let-7a, let-7g, miR-29a, miR-29b, miR-30, miR-125b, 

miR-129-5p, miR-145, miR-150, miR-196a, miR-206, miR-7, miR-21, miR-92a, miR-

142-3p [reviewed in (287, 313)]. Some of the microRNAs are downregulated while 

others are increased in the skin, serum and fibroblasts of scleroderma patients. 

Verified targets of scleroderma-associated microRNAs include genes important in 

ECM deposition in fibrosis such as COL1A1, COL1A2, and COL3A1, as well as 

genes involved in signalling such as SMAD3/7/5, TGFB1/2/R, and PDGFRβ. 

MicroRNA therapies are considered to be effective against AIDs and novel 

therapies exploiting research finding are expected to be developed in scleroderma 
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soon. However, since microRNAs can have different targets, extra caution should 

be taken to avoid unforeseen adverse effects.  

Many studies have described abnormalities in DNA methylation in scleroderma 

fibroblasts, lymphocytes, and endothelial cells, with the FLI1 gene to be extensively 

studied (313). In particular, Fli1 negatively regulates collagen transcription, and so 

abundant methylation of the Fli1 promoter induces collagen transcription and 

excessive ECM production (314). DNA methylation could also explain the female 

preponderance of scleroderma through the demethylation of the CD40 ligand gene. 

The CD40 ligand gene is located in the X chromosome, and the binding of CD40 on 

CD4+ T cells causes the maturation of B cells into plasma cells and memory B cells. 

Demethylation of CD40 ligand promoter has been found in the inactive X 

chromosome in female scleroderma patients, leading to CD40 ligand 

overexpression (315).   

No lncRNAs are yet recognised as modifiers of scleroderma pathogenesis, however 

there are a few that are reported to regulate immune responses, which could also 

affect scleroderma. Finally, histone modification mechanisms have been explored to 

some degree in scleroderma and are vital for regulation of gene expression. 

However, more studies are required to dissect the exact role of epigenetics in 

pathogenesis and manifestation of scleroderma.  

1.4 The NKX2-5 gene 

1.4.1 Introduction 

NKX2-5 (NK-2 homolog E) is a transcription factor that belongs to the family of 

homeobox DNA binding transcription regulators, which are structurally and 

functionally conserved through evolution (316). NKX2-5 is the human homolog of 

the drosophila tinman gene, and other homologs have been identified in many 

vertebrates including mouse, chicken, xenopus and zebrafish (317). NKX2-5 

appears to be highly conserved among species (Figure 1.7), in terms of both 

primary protein sequence and mRNA expression pattern (317). The conserved 

protein structure consists of four distinct domains: a N-terminal TN-domain, a 

homeodomain, NK-2 domain, and a conserved C-terminal peptide (318). The 

homeodomain recognises and binds to a DNA consensus sequence (TNAAGEGG) 

through a helix-turn-helix motif (Figure 1.8D) and interacts with other transcription 

factors to regulate gene transcription of downstream targets (319).  Less is known 

about the function(s) of the other domains, although it is thought that the NK-2 
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domain has the ability to repress transcriptional activity through protein-protein 

interactions.  

 

Figure 1.7 Multiple sequence alignment of NKX2-5 protein sequence in different 
homologs.  NKX2-5 protein is an evolutionarily conserved protein and a member of the 
NK2-family of transcription factors. NKX2-5 protein sequences of mouse, chicken, xenopus, 
zebrafish and the drosophila homolog tinman are aligned against the human homolog. 
Amino acids shown in red are highly conserved amongst all homologs, whereas those in 
blue are less conserved. Amino acids shown in grey are not present in all homologs. The 
human NKX2-5 protein is 324 amino acids long, and contains a centrally located conserved 
homeodomain that is involved in nuclear translocation, interaction with other transcription 
factors, and DNA binding. The sequence within the grey box encodes the NK family 
homeodomain, and it is highly conserved in evolution from tinman to the human homolog. 
Sequences harbouring the homeodomain are also highly conserved and they encode the N- 
and C-terminal Alanine/Proline rich regulatory domains.  The percentages in parentheses 
indicate the similarity of each protein sequence compared to the human sequence, thus 
mouse and human NKX2-5 protein sequences are 87% similar.  FASTA protein sequences 
were obtained from Uniprot (http://www.uniprot.org/), and the sequence alignment was 
constructed in Protein Blast (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp& 
PAGE_TYPE=BlastSearch&LINK_LOC=blasthome).  

 

http://www.uniprot.org/
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&%20PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&%20PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
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Figure 1.8 Characteristics of NKX2-5 gene and protein.  A. Human NKX2-5 gene is 
located on the q arm of chromosome 5:173,232,109-173,235,357. B-C.  The gene can be 
transcribed in four splice variants 001-004, which are all protein coding.  The transcripts 
differ in size, and each has an individual reference number (NM).  Transcribed proteins also 
differ in size, and three of them are recognised by the name identifier in UniProt (P52952). 
The longest transcript (1.7Kb) identified by NM_004387 reference number encodes a 342aa 
protein and is considered the most common NKX2-5 transcript. D. A high-resolution picture 
of the crystal structure of NKX2-5 in complex with the promoter of ANF gene, one of its 
downstream targets (320).The homeodomain is shown in cyan, and the DNA is shown in 
stick representation with carbon in yellow, oxygen in red, nitrogen in blue, and phosphorus in 
orange. Interactions between the DNA and homeodomain are mediated through residues 
from three regions of the homeodomain: N-terminal extension, the loop connecting α1 and 
α2, and helix α3. 

 

NKX2-5 is one of the earliest markers of the cardiac lineage, and studies have 

established an essential and non-redundant role in the cardiovascular system 

during embryogenesis (41, 42). Tinman was originally identified as a gene essential 

for the heart and vessel formation. Expression was found in mesoderm and 

endoderm that give rise to the heart, the visceral organs, and the pharyngeal 

structures respectively (321). Although NKX2-5 was not previously thought to be 

implicated in blood vessel formation in mammals, more recently studies in mouse 

and zebrafish showed that Nkx2-5-expressing mesoderm gives rise to the heart 

muscle as well as the endothelium of the pharyngeal arch arteries, which 

are transient embryonic blood vessels contributing to the carotid arteries and the 

great vessels of the heart, the aorta and pulmonary arteries (322, 323). After birth, 
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NKX2-5 expression is significantly downregulated in all organs, and its expression is 

only found in cardiomyocytes and hypertrophied hearts (324).  

It has been proposed lately that many biological mechanisms that govern normal 

embryonic and foetal development are central to postnatal repair and injury 

responses, and that the same pathways seem to be recruited in disease states, with 

aberrant expression and activity of key mediators (325, 326). Therefore, it is 

hypothesised that NKX2-5 might play a substantial role in pathological conditions in 

adulthood, where the heart and the blood vessels are involved. Such conditions 

may involve congenital heart defects, wound healing, and vascular remodelling. 

According to the GTEx portal and based on mRNA differential expression (RNAseq 

Illumina) in normal tissues, expression of NKX2-5 in adulthood is only found in the 

heart, in the left ventricle and atrial appendage, in the spleen, and in the coronary 

artery at very low levels (http://www.gtexportal.org/home/gene/NKX2-5). At the 

protein level, NKX2-5 is only expressed in the heart.  

Data generated in the UCL Centre for Rheumatology and Connective Tissue 

Disease have revealed important insights and compelling evidence that NKX2-5 is a 

key and major regulator of vascular remodelling. It is the first time that NKX2-5 gene 

is implicated in different pathologies in adulthood, and these data provided the basis 

for the research conducted during this PhD.  

1.4.2 NKX2-5 in vascular remodelling 

A distinct role of NKX2-5 was identified by Ponticos et al showing that the mouse 

Nkx2-5 activates expression of the Col1a2 gene in VSMC (Figure 1.9). Specifically, 

a far-upstream enhancer of Col1a2 gene was identified approximately 17Kb from 

the transcription start site that contains the necessary regulatory elements to confer 

tissue-specific expression in the majority of collagen-producing cells, including blood 

vessels (327). The far-upstream enhancer is conserved between mouse and human 

(327). Within this enhancer, a sequence element ~100bp long was identified, which 

is specific to VSMC and is able to regulate collagen expression exclusively in VSMC 

(328). The expression is activated through the binding of Nkx2-5 at the VSMC-

specific element and it is further potentiated in the presence of Gata6 (328). 

Specifically, a mechanism has been proposed that involves competition for binding 

between two transcription factors: Nkx2-5 and the repressor, Zeb1 (Figure1.9) 

(328). Nkx2-5 binds the specific sequence element within the upstream enhancer 

and activates Col1a2 transcription competing out Zeb1 (328).   
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Collagen type I is the most abundant component of ECM and the most abundant 

fibril in all three tunicae of the blood vessels [reviewed in (329)]. Collagen is found 

around VSMC of the media, where it provides the necessary mechanical strength 

and contractility, and also in adventitia. Little is known about the regulation of 

collagen type I expression in blood vessels and especially the transcriptional control 

of this process during development and in adult vessels, where a precise 

transcriptional regulation is required to prevent disease caused by ECM deposition. 

 

 

Figure 1.9 Nkx2-5 controls collagen expression in VSMC.  A mechanism has been 
identified and proposed by Ponticos et al (327), whereby collagen expression is controlled 
by Nkx2-5 in VSMC. A. Contractile quiescent VSMC do not produce collagen, and the 
δEF1/Zeb1 homeodomain repressor is bound on two adjacent sites in a VSMC-specific 
element located at approximately 16.6Kb upstream of the transcriptional start site. The 3′ 
δEF1/Zeb1 DNA binding site overlaps a Nkx2-5 homeodomain activator binding site. When 
the δEF1/Zeb1 repressor is occupying both of its sites, Nkx2-5 is unable to access its 
binding motif. Gata6 is also unable to access its binding site when δEF1/Zeb1 is bound to 
the DNA. These conditions result in a repressed/silenced element. B. When VSMC are 
activated and collagen type I is synthesised, δEF1/Zeb1 is displaced from its binding site by 
Nkx2-5, opening the DNA and allowing GATA6 to bind and synergise with Nkx2-5, leading to 
transcriptional activation of pro-col1a2. Figure adapted from (328).  

 

Since the Col1a2 enhancer is not expected to be engaged and active under normal 

conditions in most human adult tissues, it was hypothesised that Nkx2-5-dependent 

transcriptional activation of Col1a2 would only occur under conditions where 
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synthesis of collagen and ECM is required, such as in response to injury or in 

disease. It is therefore expected that NKX2-5 itself is upregulated under similar 

conditions.  

Indeed, we have recently demonstrated that NKX2-5 is expressed in human 

vascular pathologies including atherosclerosis, PAD and SSc-PAH (Figure 1.10), 

and it drives VSMC phenotypic modulation in vascular remodelling in vivo and in 

vitro (Figure 1.11) (330).  

 

Figure 1.10 NKX2-5 is expressed by VSMC in human vascular pathology.  Sections of 
pulmonary tissue from SSc-PAH patients (n=3) were immunostained for NKX2-5 (brown) 
and counterstained with H&E. Expression is observed in large (>100µm, i), medium (40-
70µm, ii) and small (20-40µm, iii) pulmonary arteries. Figure adapted from (330). 

 

We showed that NKX2-5 expression is increased in the synthetic phenotype, where 

it controls the de-differentiation of VSMC (Figure 1.11A). Specifically, when NKX2-5 

was knocked down in vitro in synthetic human pulmonary artery SMC (HPASMC) 

using siRNA, the phenotype was reversed to the contractile state (Figure 1.11B). 

Phenotypic modulation was arrested as shown by the expression of marker proteins 

specific to either the contractile or the synthetic  phenotypes (Figure 1.11B) (330). In 

the same study, Nkx2-5 was conditionally deleted in two mouse models of vascular 

disease: the chronic hypoxia model of pulmonary hypertension and the carotid 

ligation model of vascular injury. In both mouse models, deletion of Nkx2-5 resulted 

in a significant decrease of vascular remodelling and a reduction of associated 

symptoms including decreased pulmonary pressures, decreased vascular 

resistance and muscularisation, and inhibition of injury-induced neointima formation 

(Figure 1.11C) (330).  
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Figure 1.11 NKX2-5 regulates vascular remodelling.  A. HASMC were cultured in vitro 
under conditions favouring the contractile or synthetic phenotype, over a time course of 7 
days. Protein expression levels of NKX2-5, synthetic protein markers COL1A2, CTGF and 
Fibronectin, and contractile protein markers MYH11 (myosin heave chain), α-SMA, and 
Smoothelin were analysed. NKX2-5 was not expressed in contractile HASMC, but 
expression increased in the synthetic state. B. NKX2-5 knockdown in synthetic HASMC (day 
7) was carried out using siNKX2-5 (50nM or 250nM) or scrambled siControl (250nM) 
oligonuclueotides and expression of contractile and synthetic marker proteins was 
measured. Synthetic HASMC revert to a contractile phenotype after NKX2-5 knockdown 
compared to untreated or siControl-treated cells exhibiting decreased expression of 
synthetic markers and an increase in the levels of myosin heavy chain, α-SMA and 
Smoothelin. C. NKX2-5 null (NKX2-5

flox 
Cre

+
 4OH-T) or control male mice were used in the 

chronic hypoxia model of pulmonary hypertension or under normoxia for 21days. Sections of 
the entire left lobe of the mouse lungs were immunostained for α-SMA to visualise vessels. 

Representative images of small (20-50m), medium (40-70m) and large arteries (>70m) 
are shown. Figure adapted ftom (330). 

 

In this study, it was shown that NKX2-5 expression is activated in different adult 

vascular beds in disease, and mediates key repair and pathogenic processes. The 

data reveal a critical role for NKX2-5 in vascular disease. However, very little is 

known about the signalling mechanisms that activate NKX2-5 in disease, and 

understanding these mechanisms is very important. Dissection of these 

mechanisms is a key objective of this PhD, and considerable findings are presented 

in Chapter 4. 

 1.4.3 NKX2-5 is genetically associated with disease 

In addition to a functional role in vascular remodelling, mutations and SNPs have 

been identified along the NKX2-5 gene leading to various congenital heart defects. 

Apart from its involvement in the heart defects, NKX2-5 has not been studied in the 

genetic context of any other disease.  
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Of particular interest is a GWAS in SLE in a Japanese cohort, which reported a 

genetic association with a functional SNP located at the binding site of ITP3 (an 

inositol second messenger receptor) on the NKX2-5 gene (331). Extending the 

analysis to RA and Grave’s disease, they showed that rs3095870 was associated 

with susceptibility to common AIDs through functional interactions between ITRP3 

and NKX2-5 (331). Rs3095870 is located upstream of NKX2-5 transcription start 

site. However, this association has not yet been replicated in any other study cohort.  

AIDs such as SLE and scleroderma exhibit similar disease manifestation and 

common pathological features such as inflammation and fibrosis. Although, the SNP 

association noted above has not been replicated, the study overall provides 

compelling evidence that NKX2-5 gene might be implicated in the pathogenesis of 

AIDs. The functional data regarding the role of NKX2-5 in vascular remodelling 

further corroborates this hypothesis, since PH resulting from vascular remodelling is 

a common feature in both SLE and scleroderma.  

It is, thus, vital to further explore the potential that the NKX2-5 gene locus is 

genetically associated with AIDs in different study cohorts and different origins. This 

aspect is indeed another objective of this thesis.  

1.4.4 The role of NKX2-5 in the cardiovascular system 

1.4.4.1 Congenital heart disease (CHD) 

CHD is a heterogeneous group of diseases characterised by structural and/or 

functional defects of the heart and the great vessels due to abnormal cardiac 

development. CHD is the most prevalent type of birth defect, with an estimated 

incidence of 4–50 in every 1000 live births, and is the leading non-infectious cause 

of infant death worldwide (332). Therefore, in recent years, there has been a 

considerable interest in studying the genetic determinants of CHD.  Even though 

significant progress has been achieved in diagnostic and therapeutic strategies, the 

aetiology of CHD is not well understood. However, advanced sequencing 

techniques have provided increasing evidence that defects in single genes cause 

various kinds of CHD, with NKX2-5 found to be the most commonly mutated gene 

(333). Over 41 missense and nonsense mutations within the NKX2-5 gene have 

been identified in CHD patients, and abnormal expression levels of NKX2-5 were 

also found to be associated with multiple cardiac malformations (50, 334-336). CHD 

caused by mutations in NKX2-5 include atrial septal defect (ASD), atrial ventricular 

block (AVB), tetralogy of Fallot, and ventricular septal defect (VSD). 
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1.4.4.2 Cardiac conduction system (CCS) 

The CCS is a specialised structure responsible for the coordinated contraction of 

the heart by establishing and maintaining electrophysiological activities. The 

development of CCS is a highly complex process and closely associated with 

cardiac development. Purkinje fibres are specialised cardiomyocytes whose role is 

to co-ordinate the rapid spread of action potential in the ventricular myocardium, 

and their differentiation and maturation requires precise regulation by Nkx2-5 (337). 

Thus, Nkx2-5 expression is elevated and correlates with the recruitment of cells to 

the development of the ventricular conduction system, but the exact mechanism 

remains unknown (338). 

Disorders of the CCS occur often and result in arrhythmias, a condition that can be 

life-threatening. Dominant mutations in the mouse Nkx2-5 gene result in 

electrophysiological abnormalities of the conduction system independent of the 

presence of CHD (49). In addition, mutations have also been identified in the human 

NKX2-5 gene that result in AVB (339). 

1.4.4.3 Vasculature 

NKX2-5 is not normally expressed in the adult vasculature. However, studies in 

mice suggest that the gene retains an important role in vessel formation. Nkx2-5 null 

mice have poorly developed blood vessels in addition to heart malformations. More 

specifically, Nkx2-5 is upstream of Tbx1, a gene important for the morphogenesis of 

the outflow tract (OFT), and when Tbx1 was deleted from Nkx2-5-expressing cells, 

mutant mice displayed a defective aortic arch phenotype (340).  

Nkx2-5 has also been shown to be expressed and to regulate the formation of the 

pulmonary myocardium, a myocardial layer which forms a sheath around the 

pulmonary vessels (341). The pulmonary myocardium is an important source of 

electrical activity that initiates atrial fibrillation and expresses the gap-junction 

protein Connexin-40, a downstream target of Nkx2-5 essential for fast atrial 

conduction (341).  

1.4.4.4 Adult tissues 

In adulthood, NKX2-5 is only expressed in the heart and the spleen. The overall role 

in the heart tissue is further confirmed by the activation of NKX2-5 expression in 

heart hypertrophy, induced by agonists and right ventricular pressure overload 

(342). However, NKX2-5 is not directly causal and alone is not sufficient to induce 

hypertrophy (343). Recently, studies in transgenic mice overexpressing a dominant 
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negative mutant of Nkx2-5 driven by the α-SMA promoter showed impaired cardiac 

function and degeneration of cardiomyocytes (344). Overall, this study suggested 

that Nkx2-5 retains a protective role in the adult heart against stress or cytotoxic 

damage.  

1.4.5 The regulation of NKX2-5 

The structure of the human NKX2-5 gene is complex and not well studied, and most 

information comes from in vivo and in vitro studies in mice. Since NKX2-5 is not 

expressed in normal healthy blood vessels, the regulatory mechanism responsible 

for the transcriptional regulation of NKX2-5 in vessels or in VSMC has not been 

defined.  

1.4.5.1 Transcriptional regulation of the mouse Nkx2-5 gene 

Similar to the human NKX2-5, the mouse gene consists of two exons and can be 

spliced to alternative isoforms (Figure 1.8B-C). Studies of the mouse gene have 

revealed a very complex structure, with a regulatory region of 23Kb surrounding the 

gene, which contains at least 7 activating and 3 possible inhibitory regions 

[reviewed in (345)]. The activating regions provide tissue specificity, since they are 

active in certain locations of the embryo with distinctive regulatory elements specific 

to the heart, thyroid, spleen, pharynx, and stomach. A study by Chi and Schwartz 

identified 3 distal enhancers over 20Kb upstream of the transcriptional start site 

arranged in a modular manner and responsible for later cardiac chamber 

specification and expression in tongue (346).  

In the mouse Nkx2-5 gene, a regulatory element located between 3-2.5Kb upstream 

of the transcriptional start site was identified as sufficient for the initial expression of 

the gene during heart development (347, 348). This enhancer region contains 

essential GATA binding sites, as well as a cluster of Smad binding sites, which are 

targets of BMP signalling. Another enhancer specific to the heart tissue contained 

GATA/Smad binding sites and was a direct target of Smad4 (349). In addition, 

Brown et al identified a novel enhancer region that was also rich in GATA and Smad 

binding sites, and they specifically showed that BMP signalling activates Nkx2-5 

directly through Smad1/4 (350), whereas there is no co-dependence on Gata4 in 

vivo. In the same study, it was proposed that the TGF-β signalling pathway may 

regulate Nkx2-5 activity via different members of TGF-β superfamily.   

Apart from GATA and Smads, Mef-2c has also been shown to regulate Nkx2-5 

expression, but this relationship is reciprocal since the two factors regulate each 
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other (351). Furthermore, Hif-1α was also proposed as an upstream activator of 

Nkx2-5 in Xenopus, however, whether the effect is direct through Hif-1α binding 

upstream of Nkx2-5 or indirect is not clear (352).  

1.4.5.2 Signalling pathways involved in Nkx2-5 activation 

The pathways that activate Nkx2-5 expression are complex. Indeed, signalling 

mechanisms that result in the activation of Nkx2-5 are still under investigation, and 

form a substantial part of this thesis.  

The TGF-β signalling pathway has been implicated in many cellular processes with 

a panel of members of the superfamily including BMPs and SMADs controlling heart 

development, cell differentiation, and vascular remodelling. Experiments conducted 

in chicken embryos have shown that Bmp2 is sufficient to induce Nkx2-5 in the 

stomach, and Bmp4 also controls Nkx2-5 expression (353). Conserved binding sites 

for Smads have been identified in the regulatory region upstream of the murine 

Nkx2-5 gene, through which BMPs can control its expression depends on the 

spatio-temporal conditions (354). Indeed, Smad4 binds those elements and is 

required for Nkx2-5 transcription (349). Apart from positive regulation, TGF-β 

signalling has been implicated in a negative feedback loop, during which Nkx2-5 

controls cell proliferation of cardiac progenitor in vivo through the repression of 

Bmp2/Smad1 signalling (44).  

We have previously shown that TGF-β is able to activate NKX2-5 expression in 

human VSMC (330), and similar patterns are also seen in stem cell studies. TGF-β 

upregulates Nkx2-5 expression in skeletal muscle derived primitive cells (113). In 

addition, in mouse embryonic teratocarcinoma stem cells, the use of a TGF-β 

neutralising antibody inhibited the induction of Nkx2-5 and prevented cardiomyocyte 

differentiation (355). 

Another signalling pathway proposed to regulate Nkx2-5 expression is the Wnt 

signalling pathway. The Wnt signal transduction cascade controls a myriad 

biological phenomena throughout development and adult life of all animals, as well 

as a wide range of pathologies in humans [reviewed in (356, 357)]. Wnt1 and 

Wnt3α, members of the Wnt canonical pathway, inhibit Nkx2-5 expression in the 

anterior mesoderm (358). In addition, use of Wnt inhibitors in mouse embryonic 

stem cells prevented Nkx2-5 and Gata4 activity (359). In a recent study, it was also 

shown that Nkx2-5 leads to attenuation of the Wnt/β-catenin pathway and that 

pharmacological activation of Wnt signalling can significantly ameliorate the 

phenotype in the conditional Nkx2-5 mutants (360).  
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A study by Patel and Kos showed that ET-1 and neuregulin-1 upregulate Nkx2-5 

expression in murine embryonic cardiomyocytes (361). Neuregulin-1 (NRG-1) is a 

multifunctional regulator that acts through receptor tyrosine kinases of the 

EGF/ErbB receptor family in diverse tissues. ErbB receptors are expressed in 

development, and the importance of the NRG-1/ErbB signalling axis in heart 

development has been investigated but is still poorly described. In a study by Wang 

et al, NRG-1 up-regulated the expression of Nkx2-5 and Gata-4, which was later 

blocked by inhibitors of PI3K and the ErbB receptor (362). Furthermore, it was 

recently reported that ET-1 is a downstream target of Nkx2-5 in H9c2 

cardiomyoblasts (363). These findings suggest a potential positive feedback loop 

involving Nkx2-5 and the ET-1 cascade.  

1.4.5.3 Post-translational regulation of Nkx2-5 

Very little is known about the post-translational regulation of Nkx2-5. Kazahara and 

Izumo explored the phosphorylation of Nkx2-5 protein and found that Nkx2-5 is 

phosphorylated in vitro and in vivo, and that cytoplasmic and nuclear proteins are 

differentially phosphorylated (364). In addition, they showed that casein kinase 2 

(CK2) is one of the kinases that phosphorylates Nkx2-5 in vivo at a highly 

conserved serine residue (serine 163) of the homeobox leading to its nuclear 

translocation of the protein (364). Based on this findings, inhibitors of CK2 prevent 

Nkx2-5 nuclear translocation and therefore its activation, leading to down-regulation 

of processes controlled by Nkx2-5 such as VSMC de-differentiation, proliferation 

and migration (365).  

Nkx2-5 is also regulated by sumoylation, another post-translational modification. 

Sumoylation has been studied in terms of sub-nuclear localisation and genome 

integrity. Small-ubiquitin like modifiers are small molecules that can be covalently 

and reversibly conjugated to specific lysine residues localised in SUMO-targeted 

sequences. Nkx2-5 is sumoylated on lysine 51, a modification that substantially 

increases its activity (366). Mutation of lysine 51 to arginine (K51R) suppressed 

SUMO binding and the activity of Nkx2-5 (366).  

To add to the already complex regulation, Nkx2-5 is also modified by glycosylation, 

and excessive O-GlcNAcylation results in the down-regulation of Nkx2-5 protein 

(367). Regulatory mechanisms of NKX2-5 are summarised in Table 1.2. 

 

 



82 
 

Table 1.2 Regulatory mechanisms that affect expression of the mouse NKX2-5 gene.  
The table summarises growth factors, signalling pathways and mechanism that are known to 
regulate the mouse Nkx2-5 gene and protein expression. The information reported in this 
table is mostly reviewed in (370). Where information is based elsewhere, the reference is 
given on the table.  

 

1.4.6 Nkx2-5 downstream targets  

Most of the available data regarding Nkx2-5-dependent regulation arise from 

developmental studies and gene arrays conducted in genetically-engineered 

animals. Reporter assays, binding assays, immunoprecipitation and mutational 

analysis have provided significant insights regarding Nkx2-5 downstream targets. 

Available published data has been carefully collated by Ponticos et al (371) (Table 

1.3). However, the list of Nkx2-5 downstream targets increases rapidly. Both the 

human and the mouse NKX2-5 proteins recognise the NKE consensus DNA 

sequences, where it binds with high specificity to regulate expression. These sites 

are generally found in promoters and enhancers of downstream targets that are 

usually genes crucial in development, VSMC differentiation and production of ECM. 

NKX2-5 exerts its function alone or interacts with other proteins to achieve positive 

or negative regulation of downstream targets.  Identification and mutational analysis 

of NKE consensus DNA binding sites in the promoters and enhancers of various 

genes provided evidence that many transcription factors and transcriptional 

regulators are direct targets of Nkx2-5. In detail, Riazi et al showed that Nkx2-5 

binds NKE sites in promoters of β-catenin and Gata4 and it is essential for the 

suppression of the first and upregulation of the second (372). β-catenin is a part of 

Wnt signalling pathway that has emerged as a key regulator of cardiac progenitor 

cell specification. Findings provide compelling evidence that the Wnt/β-catenin 

pathway plays a positive regulatory role in precardiac and cardiac mesoderm, and 

NKX2-5 Regulation 

Cytokines, Growth Factors, 

Transcription Factors 

Signalling pathways Post-transcriptional/         

post-translational 

modifications 

 BMPs 

 GATA 

 Smads 

 Mef-2c 

 HIF-1α 

 ET-1 

 TGF-β pathway 

 WNT pathway 

(Wnt1, Wnt3α) 

 MAPK cascade 

 Phosphorylation (364) 

 Sumoylation (368) 

 Glycosylation (367) 

 Acetylation (369) 
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promotes committed cardiac cell proliferation and differentiation (373). Recently, a 

novel pathway was identified by which Nkx2-5 upregulates Wnt signalling and 

promotes cardiac cell growth by regulating directly the expression of R-spondin3 

(360).  

 

Table 1.3  Selected downstream target genes of the mouse Nkx2-5 protein. Table 
adapted from (371). 

 

In addition, Skerjanc et al have shown that Mef-2c and Nkx2–5 upregulate each 

other’s expression, induce cardiomyogenesis, and activate the promoters of cardiac 

muscle-specific genes, which contain NKE and MEF2 binding sites in their 

promoters (351). Another example is myocardin that was found to be downregulated 

in Nkx2-5 null mouse hearts (374). Indeed, 5 NKE elements within the myocardin 

promoter were identified, one of which was necessary for the full activation of the 

gene. In the same study, it was shown that BMP/TAK1 signalling augmented 

myocardin expression through the SRE sites.  

Another group of proteins that are directly regulated by Nkx2-5 are the Connexins. 

Connexins are gap-junction trans-membrane proteins specialised in cell–cell 

communication that directly link the cytoplasm of neighbouring cells (384). They 

mediate the direct transfer of metabolites and ions from one cell to another. 

Target Gene 

Name 

Function/Process References 

β-catenin, Gata4 Human cardiac myocytes maturation (372) 

Mef-2c Cardiac, skeletal muscle, smooth muscle 

determination 

(351) 

Myocardin Embryonic development and VSMC differentiation (374) 

Tbx1, HOP, Id2, 

eHand, Pitx2 

Embryonic development                                              

(cardiac development, ventricular conduction 

system, cardiac outflow tract, left-right symmetry 

organogenesis, formation of pulmonary 

myocardium, left ventricular development) 

(340, 341, 

375-378) 

Connexins                

(-40,-43,-45) 

Gap junction proteins involved in cardiac 

conduction system 

(379, 380) 

Col1a2, Plod1 Structural component of ECM involved in 

embryogenesis, adult wound repair, and fibrosis 

(327) 

Plod1 Stabilisation of collagens  (376) 

Cardiac α-actin Contractile protein (381) 

Ece-1 Pharyngeal artery patterning (382) 

Stat4 Proliferation of endothelial precursor of mesoderm (383) 
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Therefore, it has long been hypothesised that Connexins retain a crucial role in the 

maintenance of homeostasis, morphogenesis, cell differentiation, and growth control 

in multicellular organisms.  In cardiomyocytes specifically, Connexins are 

responsible for co-ordinated contraction. Connexins 40, 43 and 45 are expressed in 

the heart and CCS and they are all regulated by Nkx2-5 [reviewed in (385)]. Multiple 

NKE binding site have been identified in promoters of Connexins, where Nkx2-5 can 

act either as an activator or repressor of transcription. 

Pitx2 is a transcriptional marker of vertebrate heart development, and ANF promoter 

is one of its downstream targets. Ganga et al showed that Pitx2c isoform can 

synergistically activate the ANF promoter in the presence of Nkx2-5. In addition, 

they showed that Plod1 promoter is also regulated by Nkx2-5 (376). Mechanistically, 

Pitx2c and Nkx2-5 co-operate to regulate ANF and Plod1 transcription through 

binding at their respective DNA elements.  

As mentioned already, the Col1a2 gene, which is a direct target of Nkx2-5 in VSMC, 

is an important component of the ECM that is activated in physiological processes 

such as tissue injury and repair, but also during disease in fibrosis and vascular 

remodelling. Another Nkx2-5 downstream target involved in ECM is the Ece-1, 

which is a zinc metalloprotease that cleaves and activates ET-1 (363).  

Apart from the important role of NKX2-5 in development that is well established, 

some of its downstream targets are genes encoding proteins implicated in the 

deposition and regulation of ECM, such as collagens and Plod1, and smooth 

muscle-specific structural proteins, such as α-SMA and myocardin. Dysregulation of 

these genes by Nkx2-5 could lead to de-differentiation of VSMCs towards the 

synthetic phenotype that is related with CVD, and also extreme deposition of ECM 

within the vascular wall, which could lead to increased medial thickening and 

vascular resistance in the pulmonary vasculature, leading ultimately to PAH.     
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1.5 Aims and objectives 

My hypothesis is that the NKX2-5 gene is genetically associated with vascular 

disease, and regulated at transcriptional, post-transcriptional and epigenetic levels 

through mechanisms that increase its expression during vascular remodelling.  

The overall aim of this thesis is to explore these mechanisms in adult human 

vessels. The individual aims and objectives are the following: 

i. Genetic association of NKX2-5 with vascular disease: I will perform a 

candidate gene genetic association study of the NKX2-5 genomic locus in 

scleroderma patients. Case-control, sub-phenotype and haplotype analysis will 

be used to test the hypothesis. Any associated SNPs will be further studied for 

potential functionality. 

ii. The signalling mechanisms that activate NKX2-5 expression: I will 

investigate the signalling pathways that increase NKX2-5 expression in 

HPASMCs by treating the cells with a panel of selective inhibitors of signalling 

pathways and protein kinases.  

iii. The regulation of the NKX2-5 gene: I will investigate the transcriptional 

activity of the disease-associated SNPs. I will also study the transcriptional 

activation of NKX2-5 through the binding of activators and/or repressors on 

promoter or enhancer regions. In addition, I will explore whether NKX2-5 

expression is regulated via microRNAs or DNA methylation.  

iv. The expression of NKX2-5 in the endothelium in disease:  The final aim is 

to explore if NKX2-5 is expressed in two different types of endothelial cells 

under normal or disease-associated conditions such as EndoMT.  

Ultimately, this study aims to provide a better understanding of the functions and 

regulation of NKX2-5, an established master regulator of vascular remodelling. It 

could eventually contribute in designing strategies to block NKX2-5 expression, 

which would prevent the progression of disease pathogenesis and ameliorate the 

symptoms in patients with vascular diseases.  
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CHAPTER 2 - METHODS AND MATERIALS

2.1 Study cohorts  

Two independent cohorts were used for the genetic analysis in this study. Each 

cohort is described in detail below. All participants (scleroderma patients and 

healthy individuals) gave written informed consent to participate in the study. The 

study was approved by the local ethics committees.   

2.1.1 Description of discovery (UK) cohort 

The discovery cohort consisted of a total of 1334 scleroderma patients; 899 patients 

presenting to the Centre for Rheumatology, Royal Free NHS Foundation Trust 

Hospital, London and 435 patients from the Institute of Inflammation and Repair, 

University of Manchester. A total of 901 control DNA samples were included in the 

discovery cohort; 487 samples were collected from healthy donors of UK/Caucasian 

origin at the Centre for Rheumatology, 192 samples of random human DNA donors 

were purchased from Sigma/ECACC, and 222 samples were kindly provided by 

Professor Steve Humphries, Institute of Cardiovascular Genetics, UCL. The control 

samples were matched for ethnic origin, age and sex. 

2.1.2 Description of replication (Spanish) cohort 

The replication cohort consisted of 1736 scleroderma patients and 1753 healthy 

individuals of Spanish origin. DNA samples were collected from different 

Rheumatology clinics across Spain and were sent to the Institute of Parasitology 

and Biomedicine Lopez-Neyra, Granada, Spain. The replication cohort was 

genotyped in Spain by Dr Lara Bossini-Castillo and Ms Aurora Serrano Lopera 

under the guidance of Professor Javier Martin. 

2.1.3 Clinical diagnosis 

All patients diagnosed with scleroderma fulfilled the 2013 classification criteria for 

scleroderma issued by the collaboration of the American College of Rheumatology 

(ACR) and European League Against Rheumatism (EULAR) (231). The joint 

committee determined that skin thickening of the fingers extending proximal to the 

metacarpophalangeal joints is sufficient for the patient to be classified as having 

scleroderma. Otherwise, diagnosis can be based on the presence of the following 

seven features: skin thickening of the fingers, fingertip lesions, telangiectasia, 
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abnormal nail fold capillaries, interstitial lung disease or PAH, Raynaud’s 

phenomenon, and scleroderma-related auto-antibodies.  

2.1.4 Sub-phenotypes 

Scleroderma patients were categorised into groups based on: 

i) The disease subset: lcSSc (limited) and dcSSc (diffuse); 

ii)  The presence of auto-antibodies verified by immunoassays: ACA (anti-

centromere), ATA (anti-topoisomerase I), and ARA (anti-RNA polymerase 

III); 

iii)  The presence of organ complications: PF that was assessed by high 

resolution computed tomography (HRCT) and a restrictive pattern on the 

lung function test, PAH that was defined as a mPAP of >25mmHg with 

normal pulmonary arterial wedge pressure of <15mmHg on RHC, PH when 

PAP>25mmHg was observed in the presence of PF at the same time, and 

RC when rapidly progressive renal failure and new onset accelerated 

hypertension occurred.  

No ARA and RC data were available for the scleroderma patients from Manchester 

or for the replication cohort from Spain.  

2.2 Selection of tagging SNPs 

A tagging SNP is a representative SNP that captures the genetic variation of a 

genomic region with high LD, which is known as a haplotype block. The use of 

tagging SNPs eliminates the need to study every individual SNP reducing the time 

and expense of mapping genomic areas associated with disease. Tagging SNPs 

are also useful in GWAS in which hundreds of thousands of SNPs across the entire 

genome are genotyped. 

2.2.1 Application of online tools 

For the purpose of this study, I focused on a genomic region of 13.2Kb that centred 

NKX2-5 and overhung the gene upstream and downstream by 5Kb 

(chr5:172,654,107-172,667,315, GRCh37/hg19 assembly, UCSC Genome 

Browser). After selecting the area, genotype data for the CEU cohort (cohort of 180 

Utah residents with Northern and Western European ancestry) were downloaded 

from the International HapMap Project and used in different online tools to select the 

tagging SNPs at the genomic region. I used Tagger (386), a tool for the selection 

and evaluation of tagging SNPs from genotype data. Tagger is a user-friendly tool 

https://en.wikipedia.org/wiki/Linkage_disequilibrium
https://en.wikipedia.org/wiki/Genome-wide_association_study
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that combines the simplicity of pairwise tagging methods with the efficiency benefits 

of multimarker haplotype approaches. As output, Tagger produces a list of tagging 

SNPs and corresponding statistical tests to capture all variants of interest, and a 

summary coverage report of the selected tagging SNPs. Tagger has also been 

implemented in Haploview (387), which gave similar results when used.  

2.2.2 Selection of best candidate tagging SNPs 

After obtaining a list of candidate tagging SNPs, I aimed to prioritise them based on 

functional evidence available from an in silico analysis. The original list consisted of 

12 tagging SNPs. However, due to the extensive LD in the area, any SNP could be 

chosen as a successful tagger. The in silico analysis was conducted in order to 

select 6 tagging SNPs across the NKX2-5 genomic locus. For the analysis, I used 

data from the ENCODE project (Encyclopaedia of DNA elements) available through 

the UCSC Genome Browser and the HaploReg software (3). The ENCODE project 

provides functional annotation of gene elements that is accomplished primarily by 

sequencing a diverse range of RNA sources, comparative genomics, integrative 

bioinformatics methods, and human curation. Regulatory elements are typically 

investigated through DNA hypersensitivity assays, assays of DNA methylation, and 

immunoprecipitation of proteins that interact with DNA and RNA, i.e., modified 

histones, transcription factors, chromatin regulators, and RNA-binding proteins, 

followed by sequencing. HaploReg is a tool for exploring annotations of the non-

coding genome at variants in haplotype blocks, such as candidate regulatory SNPs 

at disease-associated loci. Using LD information from the 1000 Genomes Project, 

linked SNPs and small indels can be visualised along with the chromatin state and 

protein binding annotations from the Roadmap Epigenomics and ENCODE projects, 

sequence conservation across mammals, the effect of SNPs on regulatory motifs, 

and the effect of SNPs on expression from eQTL studies. 

2.3 Extraction of genomic DNA 

2.3.1 Extraction from blood samples 

DNA was extracted from blood samples using a simple salting out method as 

described by Miller et al (4). Briefly, the blood was collected into tubes containing 

anticoagulant (EDTA) and spun down at 1000xg for 10 minutes at 4oC. The white 

blood cells were washed twice in 0.144M NH4Cl, 1mM NaHCO3, pH 7.4 and spun 

down at 1000xg for 10 minutes at 4oC. The white blood cell pellet was resuspended 

in 10mM Tris-HCl, 400mM NaCl, 2mM Na2EDTA, pH 8.2 and incubated for 60 
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minutes at 37oC. Saturated NaCl (1ml) was added to the lysate followed by vigorous 

vortexing for 15 seconds. After centrifugation, the supernatant containing the DNA 

was transferred to a clean tube and the DNA was ethanol precipitated.  

2.3.2 Extraction from cells 

There are a number of different procedures for the preparation of genomic DNA. 

They all start with a basic cell lysis step, followed by deproteinisation and recovery 

of DNA. The main differences between various approaches lie in the extent of 

deproteinisation and in the molecular weight of the recovered DNA. The isolation 

protocol I used combines the powerful proteolytic activity of proteinase K and the 

denaturing ability of the ionic detergent SDS. The cell pellet is first loosened in ice-

cold TE (10mM Tris pH 8.0, 1mM EDTA) buffer before the cells are lysed in lysis 

buffer (TE, 20µg/ml RNase A, 0.5% SDS). EDTA prevents the enzymatic activity of 

DNases in the lysis buffer. The lysate is incubated at 37oC for 1 hour for RNA 

digestion. Next, 100µg/ml Proteinase K is added and the samples are incubated at 

50oC for 3 hours to overnight. Next day, DNA is recovered through phenol-

chloroform extraction and ethanol precipitation. 

2.3.3 Phenol-chloroform extraction and ethanol precipitation 

Phenol extraction is a commonly used method for removing proteins from a DNA 

sample during genomic DNA preparation. The procedure is described in steps in 

Table 2.1. After the addition of phenol: chloroform: isoamyl alcohol two phases are 

formed: an aqueous phase on top that contains the DNA, and the phenol phase at 

the bottom where all the proteins have been trapped. The upper aqueous phase is 

carefully transferred to a new tube. If needed, the procedure is repeated. A last 

chloroform extraction following the same steps should be done to completely 

remove the phenol. Next, the salts are removed from the sample and the DNA is 

concentrated by ethanol precipitation (Table 2.1). The DNA pellet is reconstituted in 

water or TE.  

During the ethanol precipitation, carriers and ammonium or sodium acetate can be 

used. Carriers or co-precipitants are substances used during alcohol precipitations 

to facilitate the recovery of target nucleic acids. They are insoluble in ethanol or 

isopropanol solutions, and they form a precipitate that helps to trap nucleic acids. 

During centrifugation, carriers form a visible pellet, which aids in removing the 

supernatant without perturbing the nucleic acid pellet. Common carriers are the 

yeast tRNA, salmon sperm DNA, and glycogen (used at 50-150 µg/ml final 

concentration). Addition of sodium or ammonium acetate (NH4OAc) can be added to 
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enhance the removal of DNA-binding proteins and free unincorporated dNTPs. In 

the past, sodium acetate was more widely used, but it has now been shown that 

ammonium acetate performs better.  

Procedure Reagents Centrifuge 

Phenol/Chloroform 
precipitation 

1x Phenol: Chloroform: Isoamyl 
alcohol (25:24:1) 

16000xg, 10’, RT 

1x Chloroform  16000xg, 10’, RT 

Ethanol precipitation 2.5x Ice-cold 100% Ethanol,  

0.5x Ammonium acetate,  

50-150µg/ml  Glycogen 

 

16000xg, 30’, 4
o
C 

1x Ice-cold 70% Ethanol 16000xg, 10’, 4
o
C 

Table 2.1 Phenol/chloroform extraction and ethanol precipitation.  A short description of 
the protocol is given including the materials required, the centrifugation timing and 
temperatures per step. 

 

2.3.4 Extraction from cells or vessels using a commercial kit 

Many of the traditional protocols that have been used in the labs for decades have 

been exchanged for simple and straight-forward commercial kits. The DNeasy 

Blood & Tissue Kit (Qiagen, Cat. no: 69506) is designed for rapid purification of total 

DNA from various sources. The protocol is based on a filter spin-column technology, 

it does not need any phenol/chloroform extraction or ethanol precipitation and the 

DNA is free of contaminants and suitable for high-throughput downstream 

applications such as sequencing. In this study, the kit has been used occasionally 

when the source of DNA was limited or when required for a sensitive downstream 

application. 

2.3.5 Measurement of DNA concentration and purity. 

The quantity and the purity of the DNA were measured using the Nanodrop 2000. 

This instrument is a scanning spectrophotometer which uses fibre-optic technology. 

Nucleic acids have a peak absorbance wavelength at 260nm, while a variety of 

contaminants such as phenol and protein absorb at 280nm. Therefore, the ratio 

260/280 defines the purity of the sample. A ratio of ~1.8-~2.0 for DNA and ~2.0 for 

RNA is generally accepted as pure. All the DNA samples that were used for 

downstream applications such as genotyping had a 260/280 ratio between of ~1.8-

2.0.  
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2.4 SNP genotyping 

Two methods of SNP genotyping were used in this study, both described in detail 

below.  

2.4.1 TaqMan SNP genotyping  

The TaqMan SNP genotyping assays exploit the chemical properties of the 5’-

nuclease that provides a fast and simple way to distinguish SNP genotypes. Each 

predesigned assay includes two allele-specific probes containing distinct fluorescent 

dyes and a PCR primer pair to detect specific SNP targets. These probes and 

primer sets uniquely align with the genome to identify the allele of interest with high 

specificity. For the genotyping of SNPs rs703752, rs3131917 and rs3132139 

TaqMan pre-designed assays (Thermo Fisher Scientific, Cat. no: 4351379) were 

used. TaqMan custom assays were specifically designed for SNPs rs12514371 and 

rs2277923.  

 

Figure 2.1 TaqMan-Allele Discrimination plot.  An allele discrimination plot, also known as 
a "cluster plot", for SNP rs3132139 is shown in the figure. Three clusters formed showing 
the three different genotypes (AA, AG, GG). The genotypes in each cluster are grouped 
closely together, and each cluster is well separated from the others. No-template control 
(NTC) samples and samples that failed in the assay appear near the origin of the 
plot.  Reasons for failed genotyping include absence of the sample in the reaction, low DNA 
concentration, low purity etc.   

 

All the DNA samples were plated in 96-well plates at a concentration of 20ng/µl and 

stored at -20oC. For the PCR amplification, 20ng of DNA per sample were added in 

a 5µl final volume of reaction in a 384-well plate and amplified on an ABI GeneAmp 

PCR System 9700 according to the manufacturer’s instructions (Thermo Fisher 

Scientific) (Table 2.2 & 2.3). For the post-read and the allelic discrimination 
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protocols an ABI Prism 7900HT Real-Time Thermocycler was used. The genotypes 

were then analysed using SDS 2.3 software (Applied Biosystems). 

 

Reagents 1x Final Concentration 

DNA 1µl 20ng 

TaqMan Universal PCR Master Mix  2.5µl 1x 

SNP genotyping assay 0.25µl 1x 

Water 1.25µl  

Total volume 5µl  

Table 2.2 TaqMan-PCR reaction set-up. 

 

Step Temperature and Time No of Cycles 

Hold 95
 o
C, 10’ 1 Cycle 

Denature 92
 o
C, 15’’ 40 Cycles 

Anneal/Extend 60
 o
C, 1’ 

Table 2.3 TaqMan-PCR cycling conditions. 

 

2.4.2 High resolution melting (HRM) genotyping 

SNP rs3095870 is surrounded by a highly repetitive sequence and a long string of A 

and T nucleotides that did not allow the design of a successful TaqMan assay. 

Instead, an alternative genotyping method was used for this SNP known as high 

resolution melting (HRM) analysis (Type-it HRM PCR Kit, Qiagen, Cat. no: 206542).  

HRM analysis is a relatively new, post-PCR analysis method used to identify 

variations in nucleic acid sequences. The method is based on detecting small 

differences in dsDNA-binding fluorescent dyes (such as the EvaGreen dye used in 

the Type-it HRM kit) during the dissociation of DNA molecules. The dye is 

incorporated to DNA during a first PCR amplification step with SNP-specific primers. 

For the genotyping, the amplified DNA molecules are heated at high temperature to 

denature and the fluorescent dye fades away as the double stranded DNA 

separates, generating a melting curve. Because different genetic sequences melt at 

slightly different rates, the dye will fade at different times based on the alleles of the 

SNP. The intensity of the dye is monitored with real-time PCR instrumentation and 

software designed specifically for HRM analysis. 
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For the genotyping of rs3095870, an 85bp long genomic region surrounding the 

SNP was amplified using the following primers: forward: 5’- GACTCCTGAA 

TTGTAAGCAA-3’, and reverse: 5’- GGGAGGTCTGATGAAAGC-3’. 10ng of DNA 

was added in a 10µl total reaction with 0.7µM of each primer (Table 2.4). The DNA 

amplification was done in a Corbett Rotor Gene 6000 cycler following the 

manufacturer’s instructions (Table 2.5).  

 

Figure 2.2 High Resolution Melting (HRM) analysis for rs3095870. The plot shows the 
melting curve analysis for the genotyping of 6 samples. Three different curves appear for 
each different genotype (CC, CT, TT) that display a different melting temperature shown in 
the x axis. The melting curve for the heterozygote genotype always appears between the 
other two curves.  

 

Reagents 1x Final Concentration 

DNA 1µl 10ng 

HRM Master Mix  5µl 1x 

Forward Primer 0.7µl 0.7µM 

Reverse Primer 0.7µl 0.7µM 

Water 2.6µl  

Total volume 10µl  

Table 2.4 HRM-PCR reaction set-up. 

 

Step Temperature and Time No of Cycles 

Hold 95
 o
C  5’ 1 Cycle 

Denature 95
 o
C  5’’ 40 Cycles 

Anneal/Extend 55
 o
C  30’’ and acquire on green 

HRM from 65
o
C to 95

o
C, 0.1

o
C per step 

90’’ pre-melt, 2’’ per step 

 

Table 2.5 HRM-PCR amplification. 
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2.5 Genetic association study 

2.5.1 Quality control and association analysis in Plink 

For the genetic association analysis, I used Plink (388), a free open-source whole 

genome association analysis toolset. The tagging SNPs included in this study had a 

minor allele frequency (MAF) >0.01 [plink --maf 0.01]. All the SNPs had a 

successful genotyping call rate ≥90% (more than 90% of the samples were 

genotyped per SNP) [plink --geno 0.1]. Only individuals that were successfully 

genotyped for at least 4 SNPs were included in the study [plink --mind 0.4]. Due to 

the fact that the gender was not known for a portion of the samples and 

hypothesizing that the control samples matched at best the scleroderma cases in 

age and sex, I excluded the sex from the analysis [plink --allow-no-sex].  

An overall genetic association study was conducted between scleroderma patients 

and controls in Plink using a basic association analysis and a model analysis. The 

association analysis [plink --assoc] examines the basic allelic test (A1 vs A2). The 

model analysis [plink --model] examines 3 different models of association: the 

dominant (A2A2 +A1A2 vs A1A1), the recessive (A2A2 vs A1A1 + A1A2), and the 

additive (A1A1 + A2A2 vs A1A2). For the meta-analysis, an association test was 

conducted across the two independent cohorts [plink --meta-analysis].  

2.5.2 Sub-phenotype analysis 

A sub-phenotype association analysis was performed to test the associations 

between the SNPs and the scleroderma-associated phenotypes described in 2.1.4. 

The same method of analysis with both the allele test and the model analysis was 

performed. The sub-phenotype analysis was structured as shown below:  

1) Phenotype-positive vs healthy controls: examines whether there is a 

significant association or not 

2) Phenotype-positive vs phenotype-negative: examines whether the 

association found is scleroderma-dependent or specific to the phenotype 

3) Phenotype-negative vs healthy controls: examines whether the association 

is random when the apparent associated phenotype is removed.  

2.5.3 LD, haplotype blocks and analysis 

The concepts of LD and the haplotype blocks, and their fundamental importance in 

the study of the human genome and genetic diseases are reviewed in detail in (248, 

389). The genome is divided into haplotype blocks, which are regions of high LD 
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separated by recombination hotspots that occur at random times during evolution. 

SNPs that reside within haplotype blocks are in high LD with each other and can be 

inherited together by the next generations. The alleles of these SNPs can co-occur 

in certain combinations more often than expected by chance, which is called a 

haplotype.  

Patterns of LD are of fundamental importance in gene mapping, and also important 

for the understanding of the evolutionary history of humans, identification of 

demographic effects in population growth, and the detection of natural selection. 

Examining haplotypes can lead to the identification of patterns of genetic variation 

that are associated with health or disease. Haplotype‐based association methods 

are generally regarded as being more powerful than methods based on single 

markers since they fully exploit LD information from multiple markers (390). 

HAPLOVIEW software was used for the haplotype association analysis, where 

defined haplotypes (by the software or by the user) were tested for genetic 

association with scleroderma or the sub-phenotypes. Genotype data from the two 

cohorts were used to build the LD plots separately, and an association analysis was 

performed between the SNPs and the phenotypes found in the populations.  

2.5.4 Hardy-Weinberg equilibrium 

The law of Hardy–Weinberg states that a genetic marker with two alleles and allele 

frequencies p and q=1-p, is in equilibrium if and only if the proportion of subjects 

with genotypes AA, Aa, and aa will be π0 = p2, π1 = 2pq, and π2 = q2. Departure 

from Hardy-Weinberg equilibrium (HWE) can be caused by factors such as 

inbreeding caused by consanguinity, assortative mating, non-random mating, 

selection, or migration (391). However, the first standard source for deviation from 

HWE therefore is genotyping error. Secondly, if the entire population is in perfect 

HWE, the presence of a genetic association, i.e., a difference in genotype 

frequencies between cases and controls implies that neither cases nor controls can 

be in HWE (392). Because the proportion of affected subjects in a population is 

small, the degree of deviation from HWE is expected to be stronger in cases than in 

controls. 

Therefore, as an indicator of genotyping quality, compatibility with HWE should be 

investigated in control groups only (393). However, it could be argued that this 

approach can create bias and lead to false discoveries due to genotyping error. 

Thus, careful design and appropriate handing is required depending on the needs of 

each individual study. 
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In this study, the genotyping scale was small with only few SNPs genotyped in each 

cohort, and the data were handled with care, so that potential genotyping errors 

could be identified and excluded from the study. Thus, HWE was assessed in 

control groups only in both discovery and replication cohorts. All 6 tagging SNPs 

complied with the Hardy-Weinberg equilibrium [plink --hardy] (Plink cut-off p-value 

for HWE: 0.001).  

2.5.5 P-value, statistical analysis and correction for multiple 

testing 

Informally, a p-value is the probability under a specified statistical model that a 

statistical summary of the data (e.g., the sample mean difference between two 

compared groups) would be equal to or more extreme than its observed value.  In 

genetic association studies, p-value is used as a parameter of statistical significance 

to determine the certainty of an association. A p-value provides the probability that a 

given result from a test is due to chance. A common cut-off for each statistical test is 

0.05, which claims a 95% certainty that the result is not a coincidence. When a p-

value is lower than 0.05, the null hypothesis of no association is rejected, and the 

result can be interpreted as a significant association. The level of statistical 

significance is subject to the study design. In GWAS, a p-value < 5x10-8 is 

considered as statistically significant to identify common causal variants.  

However, genetic association studies usually test multiple genetic markers; 

therefore false positive data occurring simply due to chance will accumulate. In fact, 

a common problem in genetic studies is the poor replication of genetic associations. 

This is partly due to misuse or misinterpretation of the p-values, and inadequate 

knowledge to perform the correct statistical analysis. Recently, the American 

Statistical Association published a very interesting article addressing the scientific 

community, where it clarified several widely agreed principles underlying the proper 

use and interpretation of the p-value, the importance of correct statistical 

measurements, and principles on how to use them wisely (394). Among others, it is 

mentioned that scientific conclusions and decisions should not be based only on 

whether a p-value passes a specific threshold. 

In order to account for false positive findings, the statistical p-values need to be 

corrected for multiple testing. Various statistical methods can be used, with the most 

popular being the Bonferroni correction, false discovery rate (FDR) correction, and 

permutation analysis (395, 396). Permutation analysis is considered the gold 

standard for multiple correction adjustment (397) and was used throughout this 
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study. The permutation procedure is a robust but computationally intensive. To 

calculate permutation-based p-values the case–control (or phenotype) labels are 

randomly shuffled (which assures that the null hypothesis holds, as there can be no 

relationship between phenotype and genotype), and all tests are recalculated on the 

reshuffled data set, with the smallest p-value of these tests being recorded (398). 

The procedure is repeated many times to construct an empirical frequency 

distribution of the smallest p-values. For the statistical analysis of the genetic 

association studies 1000 permutation tests were performed in Plink [plink --mperm 

1000]. 

2.5.6 Odds ratio (OR) 

The OR is used as a measurement of association between an exposure, which in 

this case is the given genotype or the allele, and an outcome which is often a 

disease status. In case-control studies, the OR represents the odds that the disease 

will occur in the presence of the associated allele or genotype.  The 95% CI is used 

to estimate how precise the OR is, with narrower CI indicating a highly precise OR. 

If OR=1 or 95%CI includes the null value (=1) means that the genotype or allele 

under question does not affect the disease. 

2.6 Cloning 

2.6.1 Cloning of the minimal promoter and the 3’ UTR of 

NKX2-5 

A 578bp fragment (chr5: 172,662,217-172,662,794) upstream of the NKX2-5 

transcription start site encompassing the minimal promoter of the gene was 

amplified from a DNA sample of a healthy donor and cloned into the pGL4.10 

reporter vector (Promega) upstream of the firefly luciferase gene (Figure 2.3A). 

pGL4.10 is a basic vector that does not contain any promoter and is designed for 

high expression. The vector is genetically engineered so it contains fewer 

consensus regulatory sequences and a synthetic gene, which has been codon 

optimised for mammalian expression.  

The 3’ UTR of NKX2-5, encompassing a 473bp long genomic region 

(chr5:173,232,104-173,232,576), was cloned into the pmirGLO vector (Promega, 

Cat. no: E1330) after the firefly luciferase gene (luc2) (Figure 2.3B). The A allele of 

the SNP was introduced by site-directed mutagenesis (SDM). The pmirGLO vector 

is designed to quantitatively evaluate microRNA activity by the insertion of 
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microRNA target sites downstream or 3´ of the firefly luciferase gene. The vector 

contains both the firefly and the renilla luciferase genes. Firefly is the primary 

reporter gene, whereas renilla acts as an internal control reporter for normalization 

and selection. The 3’UTR-microRNA target sequence is cloned downstream of the 

firefly gene, and the constructs are transfected into the cells together with microRNA 

mimic or inhibitor molecules. Reduced firefly luciferase expression indicates the 

binding of endogenous or introduced microRNAs to the cloned microRNA target 

sequence.  

Both constructs were made by former research stuff prior to my arrival in the lab.  

 

 

Figure 2.3 Minimal promoter and 3’UTR constructs.  A schematic representation of the 
cloning of the minimal promoter into the pGL4.10 reporter vector (A) and the 3’UTR (B) in 
the pmirGLO reporter vector. For the 3’UTR two constructs were made based on the 
different rs703752 alleles.  

 

2.6.2 Cloning of the NKX2-5 upstream promoter  

The genomic region containing the rs3095870 was cloned into the pGL4.10 reporter 

vector. The SNP is located 1.3Kb upstream of the NKX2-5 transcription start site, in 

a region that proved to be challenging to clone due to an extensive GC-rich and 

repetitive DNA sequence around the locus. Many attempts at cloning were 

performed, each time changing variables such as increasing and decreasing the 

length of the cloning fragment, trying different reporter vectors, numerous sets of 

cloning primers and restriction enzyme digestions and ligations. Finally, successful 

A 

B 
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cloning of a 1.6Kb (chr5:172,662,792-172,664,444) long genomic region upstream 

of the minimal promoter into the pGL4.10 vector was achieved (Figure 2.4). 

The successful final steps included the insertion of restriction enzyme sites (SacI 

and EcoRV) into the cloning fragment by PCR amplification that created hanging 

cloning sites at the two ends of the cloning fragment. The same enzymes were also 

used to set up restriction enzyme digestions to linearise the pGL4.10-minimal 

promoter vector. Then, the linearised vector and the cloning fragment were ligated 

together. To amplify the cloning fragment DNA from a patient homozygous for the 

rs3095870-C allele was used. For the PCR amplification the Phusion High-Fidelity 

DNA polymerase (NEB, Cat. no: M0530) was used, and SURE2 competent cells 

were used for the transformation reactions (Stratagene, Cat. no: 200152).The T 

allele was introduced by SDM (Quick Change II, Agilent, Cat. no: 200523).  

 

 

Figure 2.4 Upstream promoter constructs.  A schematic representation of the cloning of 
the upstream promoter including the rs3095870 SNP into the pGL4.10 reporter vector. Two 
different constructs were made based on the different alleles of rs3095870. In both cases 
the cloning fragments were inserted prior to the minimal promoter and the luciferase gene.  

 

2.6.3 Cloning of the NKX2-5 downstream enhancer 

For the analysis of the putative enhancer, a genomic locus of 1.6Kb (chr5: 

173,228,601-173,230,244) downstream of NKX2-5 that spanned two associated 

polymorphisms (rs3132139, rs3131917) was amplified in a similar way and cloned 

into the pGL4.10 reporter vector upstream of the minimal promoter (Figure 2.5). In 

detail, a 2.5Kb long piece of DNA that contained the region of interest was amplified 

using the Phusion High-Fidelity DNA polymerase. A second nested PCR was then 

performed to amplify the target region using the In-Fusion HD Cloning Plus CE 

(Clontech, Cat. no: 638916). The pGL4.10 vector was linearised using the Phusion 

High-Fidelity DNA polymerase. The linearised vector and the purified product were 
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cloned together using the In-Fusion HD Cloning Plus CE, and the DNA was used to 

transform Stellar competent cells (Clontech, Cat. no: 636763). Primers and cycling 

conditions are given in the Table 2.7. DNA was isolated from bacteria colonies, and 

sent for sequencing at Source Bioscience to verify its integrity. Then, SDM was 

performed to change the SNP alleles, creating two identical constructs with different 

sets of alleles for the desired SNPs (Table 2.6). The selection of the alleles was 

performed based on the haplotype analysis.  

 

Figure 2.5 Enhancer constructs.  A schematic representation of the cloning of the 
downstream enhancer into the pGL4.10 reporter vector. Two different constructs were made 
with each having a different set of alleles. The cloning fragments were inserted prior to the 
minimal promoter and the luciferase gene. Construct called “risky” contains the disease-
associated alleles, as will be further discussed. The “not risky” construct contains the 
alternative alleles of the SNPs. 

 

2.6.4 Useful programmes and tools 

Sequencher 5.1 software was used to read and verify the integrity of the sequences. 

ApE.exe is a useful plasmid editor that I used during the cloning experiments. 
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‘Risky’ Enhancer Construct ‘Not-Risky’ Enhancer Construct 

rs3132139-G rs3132139-A 

rs12514371-A rs12514371-G 

rs3131917-T rs3131917-G 

Table 2.6 SNP genotypes at the enhancer constructs. 

 

PCR  Primers Cycling conditions 

Region amplification Forward: 5’- CCAACCTGCCAAATGATGAGAAT- 3’ 

Reverse: 5’- ATCCGAAATGACCCGTATTTGCT- 3’ 

 

1x 95
o
C 5'  

30x 96
o
C 5'', 53

o
C 5'', 68

o
C 1' 15'' 

1x 72
o
C 1'  

4
o
C for ever  

Nested PCR Forward: 5’- TAACTGGCCGGTTACCTGGGCAACGTA- 3’ 

Reverse: 5’ –GCTCTGGGTGAGCTCTGGGCCTTTTTC- 3’ 

1x 98
o
C 30'' 

35x 98
o
C 10'', 55

o
C 15'', 72

o
C 9'' 

1x 72
o
C 5' 

4
o
C for ever 

pGL4.10 vector linearisation Forward: 5’- GAGCTCACCCAGAGCC- 3’ 

Reverse: 5’- GGTACCGGCCAGTTAG- 3’ 

 

1x 98
o
C 1' 

35x 98
o
C 5'', 55

o
C 10'', 72

o
C 2' 25'' 

1x 72
o
C 10' 

4
o
C for ever 

Table 2.7 Cloning of the enhancer.  The table describes the three PCR reactions performed to clone the enhancer region into the pGL4.10 reporter vector. 
The primers and the PCR cycling conditions are given. 
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2.7 Cell culture 

A variety of different cell lines and culture conditions were used for the experiments 

described in this thesis.  

2.7.1 Primary human pulmonary artery smooth muscle cells 

(HPASMC) 

HPASMC were purchased from Promocell (Cat. no: C-12521). The company 

provided information regarding the donor’s age, sex and ethnicity, as well as viability 

and growth characteristics such as the population doubling time. In addition, 

phenotypic characterisation of the cells was conducted by immunohistochemistry 

within the 2 passages, and expression of α-SMA was confirmed. The cells were 

negative for CD90 (specific to fibroblasts) and vWF (von Willebrand factor, specific 

to endothelial cells). The primary cells were cultured in Smooth Muscle Cell Growth 

Medium (Promocell, Cat. no: C-22062) at 37oC and 5%CO2 under different serum 

conditions. To mimic the de-differentiation of VSMC in vitro, contractile cells were 

cultured in medium containing 5% foetal calf serum (FCS) (LabTech, cat. no: 

SA/500) at medium to high confluence (70-80%), while synthetic cells were cultured 

in 10% FCS and were passaged after reaching 70-80% confluence. Cells at 

passages 3-9 were used for the experiments unless otherwise stated. 

2.7.2 Immortalised HPASMC (ImHPASMCs) 

It is known that primary cells can only undergo a limited number of cell divisions in 

culture, before they reach a state where they can no longer divide, known as 

replicative senescence (399). In order to have a consistent supply of material 

throughout a research project, primary cells with an extended replicative capacity 

are required. For this reason, the technology of immortalising mammalian cells has 

been well-established for years. Immortalised cells retain a similar or identical 

genotype and phenotype to the primary cells of origin. They also acquire the ability 

of continuous cell-division.  

Several methods exist for immortalising mammalian cells in culture conditions. One 

method is to use viral genes, such as the simian virus 40 (SV40) T antigen (400). 

SV40 T antigen has been shown to be the simplest and most reliable agent for the 

immortalisation of many different cell types and the mechanism of SV40 T antigen in 

cell immortalisation is relatively well understood (401).  
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For the purposes of this study, immortalised human pulmonary artery smooth 

muscle cells (ImHPASMCs) were purchased from ABM Good (Cat. no: T0558). The 

cells were immortalised using the SV40. ImHPASMCs were cultured in DMEM (Life 

Technologies, Cat. no: 31966-047)) supplemented with 5% FCS (unless otherwise 

stated) on collagen-coated vessels. For the coating, rat tail collagen type I was 

diluted in 0.1N acetic acid to a final concentration of 1mg/ml under sterile conditions. 

The collagen was added into the flasks or plates and left to polymerise in the 

incubator for 1-3 hours, followed by a 30’ drying incubation under sterile conditions 

in a Class II hood prior to use. 

2.7.3 Primary endothelial cells 

For the EndoMT experiments, primary human HPAEC were used. The cells were 

purchased from Promocell (Cat. no: C-12241) and cultured in endothelial cell growth 

media (Promocell, Cat. no: C-22010) that contained 2% FCS. HPAECs were 

cultured in vessels coated with gelatin as an attachment factor that enhances the 

growth of vascular endothelial cells (Invitrogen, Cat. no: S-006-100).  

For preliminary experiments, human umbilical vein endothelial cells (HUVECs) were 

cultured in the same way as HPAEC.  

2.7.4 Isolation of VSMC from diseased vessels 

Another source of primary cells was tissue from lung transplants of PAH patients 

and from healthy individuals, as well as parts of vessels from diabetic and PAD 

patients undergoing vascular surgery. Written informed consent was given prior to 

transplantation or surgery by the patients or their next of kin relatives. The following 

protocol was adapted from a protocol developed in Prof Lucie Clapp’s lab, Institute 

of Cardiovascular Sciences, and I was taught by Dr Rijan Gurung. The tissue was 

kept in physiological salt solution (112mM NaCl, 5mM KCl, 1.8mM CaCl2, 1mM 

MgCl2, 25mM NaHCO3, 0.5 KH2PO3, 0.5mM NaHPO3, 10mM Glucose) while the 

arteries were dissected out. The outer surface of the vessel and the connective 

tissue were removed. The arteries were decontaminated in 3% 

penicillin/streptomycin and 1.5µg/ml gentamicin in PBS for 45 minutes at 4oC. Then, 

the arteries were minced using scalpels and enzymatic dissociation at 37oC for 30 

minutes. To prepare the dissociation cocktail 5mg elastase (Sigma, Cat. no: E7885), 

10mg collagenase (Sigma, Cat. no: C9722), 2.5mg trypsin inhibitor (Sigma, Cat. no: 

T6522), 150mg BSA (Sigma, Cat. no: A9647), and 100µl MEM vitamins (sigma, Cat. 

no: M6895) were mixed in 10ml DMEM/F12 media (Thermo Fisher Scientific, Cat. 

no: 11320074).The dissociated fragments were forced into a sieve (cell strainer, 
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40µm, Nylon BD Falcon, Cat. no: 352340) and then enzyme activity was neutralised 

with DMEM/F12 supplemented with pen/strep and FCS. The suspension was spun 

down at 100xg for 5 minutes at room temperature. The pelleted VSMC were 

resuspended in HPASMC specific media supplemented with FCS and plated into 

flasks. 

In addition to VSMC, fibroblasts were also efficiently isolated. The vessels and 

tissues were washed in DMEM supplemented with pen/strep to remove the blood. 

The tissue was then fragmented into small parts using scalpels. The parts were 

plated sparsely into flasks and left to dry before media was added and placed in the 

incubators. 

Cell Type ID Gender Age Vessel Population 
Doubling 

(h/PD) 

Viability 
(%) 

Promocell 

(PASMC) 

HPASMC1 Male 23 Pulmonary artery 35 79 

HPASMC1 Male 27 Pulmonary artery 36.7 84 

HPASMC1 Female 23 Pulmonary artery 21.1 73 

HPASMC1 Male 15 Pulmonary artery 38.6 73 

HPASMC1 Male 30 Pulmonary artery 49.2 81 

HPASMC1 Male 77 Pulmonary artery 38 72 

Donors 

(PASMC 

and 

VSMC) 

N1 NA NA Pulmonary artery ~ ~ 

N2 NA NA Pulmonary artery ~ ~ 

N2 NA NA Pulmonary artery ~ ~ 

PAH1 NA 5 Pulmonary artery ~ ~ 

PAH2 NA 5 Pulmonary artery ~ ~ 

PAH3 NA 14 Pulmonary artery ~ ~ 

PAH4 NA NA Pulmonary artery ~ ~ 

PAH5 NA 4 Pulmonary artery ~ ~ 

PAD1 NA NA Peripheral Artery ~ ~ 

PAD2 NA NA Peripheral Artery ~ ~ 

DIAB1 NA NA Peripheral Artery ~ ~ 

Table 2.8 Characteristics of the cells used in the study. HPASMC: primary human 
pulmonary artery smooth muscle cells commercially bought from Promocell, N: human 
pulmonary artery cells smooth muscle cells isolated from pulmonary artery of lung tissue 
from post-mortem samples, PAH: human pulmonary artery cells smooth muscle cells 
isolated from pulmonary artery of lung tissue from PAH patients undergoing lung transplant, 
PAD: vascular smooth muscle cells isolated from peripheral arteries of patients with 
peripheral arterial disease, DIAB: vascular smooth muscle cells isolated from peripheral 
arteries of patients with diabetes, NA: not available information.  

 



105 
 

2.7.5 Immunofluorescence to characterise isolated VSMC 

To phenotype the isolated primary cells, immunofluorescence was used to confirm 

expression of protein markers specific to VSMC and fibroblasts. α-SMA and 

CD90/Thy1 were considered as VSMC- and fibroblast- specific markers 

respectively, aligned to the commercially used protocols. VSMCs isolated from 

vessels or tissues were plated in 8-well chamber slides (20.000 cells/ well) (Falcon, 

Cat. no: 354118). Next day, the cells were fixed in 2% PFA in PBS for 15’, treated 

with PBS/ 0.2% TritonX-100 for 10 minutes and blocked in normal serum for 10 

minutes. Primary antibody for CD90/Thy1 (Abcam, Cat. no: ab133350) was added 

to the cells overnight at 4oC. Primary antibody for α-SMA-Cy3 conjugated (Sigma, 

Cat. no: C6198) was incubated for one hour in the dark. Secondary antibodies 

conjugated to Alexa Fluor dyes (Life Technologies) were incubated for one hour in 

the dark at room temperature. Mounting medium containing 4,6-diamidino-2-

phenylindole (DAPI) (Vector laboratories, Cat. no: H-1200) was used to mount the 

slides. Cells were viewed and photographed on an Axioscope Z fluorescence 

microscope with an Axiocam digital camera in combination with Axiovision software 

(Carl Zeiss). Three different fields were photographed for each condition, and the 

number of the cells (nuclei and expressing cells) was assessed and counted by eye. 

2.8 Cell treatments, stimulations, agonists, antagonists 

Gene and protein expression are dependent on the state of the cell. Therefore, 

experimental results might vary and be inconsistent if the cells studied are in 

different stages of cell cycle. Various physiological processes within the cell 

including proliferation, survival, and apoptosis are controlled by the presence of 

serum and growth factors. Specifically, the effect of serum has been well studied in 

the survival and the mechanical properties of VSMCs (402). In addition, VSMC 

differentiation is directly affected by serum through the SRF-dependent transcription 

of contractile and synthetic genes (403). To control these limitations, a serum 

starvation/deprivation procedure is used to synchronise the cells. This classic 

method of cell synchronisation causes a cell cycle arrest between G0 and G1 

phases, and it is proposed to initiate quiescence induced by growth restriction (404).  

Serum starvation conditions. Depending on the cell type and the experimental 

procedure, the induction of quiescence requires different periods of time. Thus, 

careful optimisation of both the amount of serum withdrawn and the length of 

starvation is necessary. In the literature, studies indicate that human and animal 

VSMCs are serum-starved for varying periods of time ranging from 24 to 72 hours in 
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the complete absence of serum (405, 406). In my studies, complete absence of 

serum depleted NKX2-5 expression indicating a direct role of serum on NKX2-5 

transcription explained by the SRF-dependent regulation, and also affected the 

viability of the cells when the starvation was extended for longer periods of time. For 

the purposes of this study, cells were always serum-starved in 0.1% FCS in DMEM. 

The period of starvation varied depending on the experiment and is carefully 

reported in the figure legends. For the experiments with the selective inhibitors 

reported in Chapter 4, a serum starvation of ~6-7 hours was conducted before TGF-

β stimulation. For the rest of the experiments that required serum-starvation, a 

longer overnight period of ~16-20 hours of serum-deprivation was followed. The 

main reason based on which these conditions were selected was the overall time of 

treatment, ranging from 24-48 hours. Cells used for binding experiments (pull down 

assays and EMSAs) and chromatin immunoprecipitation assays were not serum 

starved before TGF-β stimulation.  

TGF- β stimulation conditions. A recombinant human TGF-β1 protein (R&D, Cat. no: 

240-B-010) was used to stimulate the cells at a concentration of 2ng/ml, unless 

otherwise stated. TGF-β stimulation was almost exclusively performed for 24 hours, 

unless otherwise stated, and is reported in the figure legend of each individual 

experiment.  

Cells used to perform chromatin immunoprecipitation assays were stimulated with 

TGF-β for 16 hours, without being subjected to serum-starvation. This condition was 

selected in order to ensure that most cells were transcriptionally active with the 

transcription factors bound on the DNA at the time of cross-linking.  

Other stimulation conditions. Apart from TGF-β1, other cytokines, growth factors 

and proteins were also used to stimulate cells and study their effect on NKX2-5 

protein and gene expression: BMP2, BMP4, ET-1, FGF2, TNF-α and IL-1β. The 

final concentration of each individual factor varied between experiments, and is 

therefore given in each individual experiment. The cells were treated with the above 

factors for 24 hours.  

Selective inhibitors. To examine the molecular and signalling pathways upstream of 

NKX2-5 that lead to its activation, a panel of agonists and antagonists were used as 

shown in Table 2.9. For the experiments with inhibitors, ImHPASMCs were grown 

on collagen-coated flasks in DMEM supplemented with 5% FCS. The cells were 

plated in 6-well plates and serum-starved in 0.1%FCS/DMEM for ~6-7 hours after 

reaching 60%-70% confluence. Then, the media was changed to 5%FCS/DMEM 
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and the cells were treated with 2ng/ml TGF-β for 24 hours. After TGF-β treatment, 

the media was changed again to 5%FCS/DMEM and the cells were treated with the 

inhibitors in the concentrations shown below for 24 hours before harvesting for 

protein and RNA.  

 

Molecule 

Name 

Pathway/ 

Kinase 

Company,  

Cat. Number 

Final 

[c] 

Ref 

FR180204 ERK-1,2 Tocris 30µM Optimised* 

ERK5-in-1 ERK5 Selleckhem 10µM Optimised* 

BI78D3 JNK Tocris 1µM (407) 

GSK2126458 PI3K/mTORC1/2 Selleckhem 1µM Selleckhem 

GSK690693 pan-AKT Selleckhem 1µM Optimised* 

SD208 TGF-βR1/ALK5 Sigma Aldrich 5µM Optimised* 

TC-ASK10 ASK1 Tocris- 4825 10µM Optimised* 

SB202190 p38 Sigma Aldrich 10µM (408) 

CX-4945 CK2 Selleckhem 5µM Optimised* 

OXO TAK1 Cayman Chemical 100nM Optimised* 

BAY Hypoxia/HI1α Stratech-87-2243 100nM (409) 

Bosentan ET-1 pathway BQ788 1µM Optimised* 

Imatinib PDGF Cayman Chemical 2µM Optimised* 

Table 2.9 Pathway agonists and antagonists.  Final [c]: Final concentration used in the 
experiment. Ref: the source of information based on which the final concentration of each 
inhibitor was selected.* Optimised doses were empirically determined.  

 

In EndoMT experiments, the endothelial cells were treated with a “cocktail” of 

cytokines that consisted of TGF-β (5ng/ml), TNF-α (5ng/ml), and IL-1β (0.1ng/ml) 

(14).  

2.9 Cell transfections 

2.9.1 General principle 

Transfection is the process of introducing nucleic acids (plasmid DNA, mRNA, 

siRNA, shRNA, and microRNA) into eukaryotic cells. There are various methods 

divided into two categories: viral (also known as infection) and non-viral. Non-viral 

transfections can either be transient, where the foreign genetic material is 

expressed but not integrated into the host genome, or stable, where the foreign 

genetic material is integrated into the host genome. The non-viral methods are 

based on chemical compounds that are used as carriers of DNA, and include 
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liposomes, non-liposome lipids, and other macromolecules. There are also 

mechanical methods such as electroporation, where an electric current is used to 

create pores in the cell membrane to allow genetic material to insert into the cell. 

Transient transfections are used to investigate a short-term impact of the inserted 

material on gene and protein expression.  

Transient transfection methods were exclusively used in this thesis, with a selection 

of different transfection reagents: FuGENE-HD for plasmid DNA, Lipofectamine 

2000 for microRNAs and plasmid DNA, and Oligofectamine for siRNAs. All three 

transfection reagents use especially designed cationic lipids. The basic structure of 

cationic lipids consists of a positively charged head group and one or two 

hydrocarbon chains. The charged head group governs the interaction between the 

lipid and the phosphate backbone of the nucleic acid, and facilitates nucleic acid 

condensation. The positive surface charge of the liposomes mediates the interaction 

of the nucleic acid and the cell membrane, allowing for fusion of the 

liposome/nucleic acid transfection complex with the negatively charged cell 

membrane. The transfection complex is thought to enter the cell through 

endocytosis.  

2.9.2 Optimisation of transfection 

Transfection experiments usually involve a balance between efficient delivery of the 

nucleic acid and cellular toxicity. The extent of cellular toxicity caused by 

transfection is influenced by the reagent and the nature of the cells. In particular, 

cell types including primary cells, toxicity can be directly visualised under the 

microscope a few hours after transfections with large numbers of floating cells. 

However, some cell types and usually transformed cell lines are more resilient. 

Some of the key-points that affect the cell viability after transfection are the 

transfection reagent itself, the concentration of the nucleic acid, the confluency of 

the cells at the time of transfection and the time-course of the experiment. With all 

these in mind and taking into consideration that primary HPASMC are difficult to 

transfect, I performed extensive optimisation experiments to identify the least 

cytotoxic conditions. 

Optimisation involved two transfection reagents and a GFP plasmid so that when 

efficiently expressed after transfection, the transfected cells fluoresced green. 

Transfection efficiency was assessed by microscopy to detect the GFP fluorescence 

emitted from transfected cells, and, the cell viability was assessed by cell viability 

assays. FuGENE-HD gave higher transfection efficiency than Lipofectamine 2000 in 
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the primary cells. The amount of DNA transfected into the cells did not affect cell 

viability, however, a 3:1 transfection reagent: DNA ratio gave the highest 

transfection efficiency.  The best conditions selected for the primary HPASMC were 

also used for ImHPASMCs without further optimisation. In general, ImHPASMCs 

were easier to transfect and more resilient to transfection. However, both cell types 

should be plated at higher confluency compared to other cell lines, especially for 

longer periods of incubation. That is thought to be due to VSMC requirement of cell-

cell contact to maintain normal growth and proliferation.  

2.9.3 Cell viability assays 

Cell viability was measured using the CellTiter 96 AQueous One Solution Cell 

Proliferation Assay (Promega, Cat. no: G3582), a colorimetric method that 

determines the number of viable cells. The reagent contains a novel tetrazolium 

compound, MTS. The MTS is bio-reduced by cells into a coloured formazan product 

that is soluble in tissue culture medium. This conversion is presumably 

accomplished by NADPH or NADH produced by dehydrogenase enzymes in 

metabolically active cells. Assays were performed by adding a small amount of the 

reagent directly to culture wells, and after 1 hour incubation the absorbance at 

490nm was read in a Mithras LB 940 Plate Reader. Higher absorbance indicates 

more in number viable cells.  

2.10 Luciferase reporter assays 

Primary HPASMC were seeded in 24-well plates at 7-8x104 cells/well and 

transfected with constructs as described below. Cells were cultured for 48 hours, 

lysed and analysed for luciferase expression. Luciferase activity was measured 

using the Dual-Glo Luciferase Assay System (Promega, Cat. no: E2920) in a 

Mithras LB 940 Plate Reader. Each experiment was repeated at least 3 times. The 

graphs represent the ratio of firefly/renilla luciferase expression.  

2.10.1 Transfection of reporter vectors 

For the analysis of the luciferase activity of the promoter and the enhancer, the DNA 

vectors were complexed with FuGENE-HD transfection reagent (Promega, Cat. no: 

E2311) in Opti-Mem I reduced media serum (Gibco, Cat. no: 31985-062) at a ratio 

of 3:1 (transfection reagent: DNA). A maximum of 825ng DNA was added per well; 

700ng of the reporter vector (minimal promoter alone, rs3095870-C, rs3095870-T, 

enhancer-risky, enhancer-not risky), 100ng of the TEAD1 or TEAD3 expression 

vectors, and 25ng of the renilla luciferase vector driven by the CMV promoter. As a 
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negative control, the empty pGL4.10 vector was used. All the DNA vectors were 

complexed at the same time. To control for a potential effect of the DNA load on cell 

viability, pGL4.10 vector was co-transfected whenever the required total DNA was 

less than 825ng (eg. in the cells with TEAD1 or TEAD3 were not co-transfected).  

2.10.2 Transfection of microRNA mimic and inhibitor 

molecules 

For the analysis of the 3’UTR, the rs703752-C and rs703752-A constructs were co-

transfected together with microRNA mimic and inhibitor molecules. For this set of 

experiments, Lipofectamine 2000 (Thermo Fisher Scientific. Cat. no: 11668027) 

was used and the complexes were prepared in Optimem I. The microRNA mimics 

were used at a final concentration of 10nM and the inhibitor molecules at 50nM.  

2.11 RNA silencing  

2.11.1 General principle and experimental design 

RNA interference represents a natural mechanism to protect the genome. In recent 

years the field has evolved at a surprisingly high pace. The underlying molecular 

mechanism of gene silencing provides us with short interfering RNA (siRNA) 

molecules that allow the targeting of any gene with high specificity and efficiency. 

siRNAs can now be obtained in various ways allowing for numerous in vitro and in 

vivo applications. Successful knock-downs of disease-related genes indicate that 

siRNA technology is also a promising novel therapeutic mechanism. 

Using siRNA specific to TEAD1, TEAD3, and YAP1, I aimed to investigate the effect 

of these factors on NKX2-5 transcription. ON-TARGETplus SMARTpool siRNA 

molecules were purchased from Dharmacon (TEAD1: Cat. no: L-012603, TEAD3: 

Cat. no: L-012604, YAP1: Cat. no: L-012200). As a negative control, a non-targeting 

siRNA pool (Cat. no: D-001210-10) that consisted of 4 different oligonucleotides 

was used. However, the negative control was subsequently found to have an effect 

on NKX2-5 gene and protein levels, and further investigation revealed that 1 oligo 

was off-targeting the NKX2-5 gene. To avoid this side-effect, a new individual non-

targeting siRNA was ordered (Cat. no: D-001210-01) with the following sequence 

‘UGGUUUACAUGUCGACUAA’ that did not affect NKX2-5 levels under the 

conditions used in the ImHPASMCs. SiRNAs were transfected into the cells using 

Oligofectamine transfection reagent (Thermo Fisher Scientific. Cat. no: 12252011) 

in Opti-Mem I. 



111 
 

ImHPASMCs were plated in 12-well plates at 60% confluence and serum-starved 

overnight (~16-20 hours). The following day, the cells were transfected with the 

siRNA in serum free medium. Four hours after transfection, serum-supplemented 

medium was added to the cells to give a final serum concentration of 10%. A series 

of optimisation steps identified the best conditions for the experiments for each 

individual siRNA. The optimisation tested a range of concentrations (50-200nM 

final) and 2 different time-points (48, and 72 hours). The optimal conditions are 

described below.  

2.11.2 siRNA for TEAD1 and TEAD3 

siRNAs for TEAD1 and TEAD3 were used at 100nM final concentration, and the 

cells were lysed after 72 hours of transfection.  

2.11.3 siRNA for YAP1 

siRNA for YAP1 was used at 130nM final concentration, and the cells were lysed 

after 48 hours of transfection. 

2.12 Protein-DNA binding assays 

Proteins interact with nucleic acids (DNA and RNA) in several processes essential 

to normal cell function. As with protein-protein interactions, disruption of protein-

nucleic acid interactions can have profound consequences for the cells. In this 

study, I have only focused on protein-DNA interactions.  

Protein-DNA interactions are integrated into several key cellular processes, 

including transcription, translation, regulation of gene expression, replication and 

repair, etc. The common property of DNA-binding proteins is their ability to 

recognise and manipulate DNA structures. Chromatin remodelling, transcription 

complex formation, initiation of transcription and translation of mRNA to protein all 

involve formation of protein-DNA complexes. These complexes play a role in the 

regulation of protein expression. Depending on the nature of the complex, proteins 

bind to nucleic acids in either a sequence-specific or secondary structure-dependent 

manner, often inducing drastic structural changes in the nucleic acid. Defining 

sequence-specific interactions can aid the study of gene regulation. 
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2.12.1 Experimental design 

Several methods for detecting and identifying protein-DNA interactions have been 

established and used in research. These methods provide specific information 

regarding the identity of the DNA-binding protein, the exact genomic locus of the 

binding, and whether the protein acts alone or in a complex with other factors. Three 

different assays were designed and performed for this work, and described in detail 

below.  

 

Figure 2.6 Basic design of the binding assays. Nuclear protein extracts were prepared 
from ImHPASMCs and mixed with biotinylated double-stranded DNA probes specific to 
rs3095870-C or T alleles. The protein: DNA complexes were isolated and analysed either by 
pull-down assay or EMSA. In the pull-down assay, the protein: DNA complexes are isolated 
using streptavidin magnetic beads. Then, the protein is eluted from the beads and analysed 
by Western Blotting with the antibody of interest. In the EMSA, the protein: DNA complexes 
are run in a native acrylamide gel, where the biotinylated DNA is detected with HRP-
conjugated streptavidin through a chemiluminescent reaction. 

 

For the protein-DNA binding assays, two 54bp-biotinylated double-stranded DNA 

probes were designed spanning the rs3095870 site (Table 2.10). Each probe was 

specific to either the C or the T allele of the rs3095870. The probes were tagged 

with biotin at the 5’ end, and mixed with nuclear protein extracts prepared from 

ImHPASMCs after 16 hours of TGF-β stimulation. Complexes of DNA and protein 

were formed, and analysed by pull-down assays and EMSAs (Figure 2.6).  The two 

different approaches address different aspects of the same question: the pull-down 
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assay identifies the proteins that bind the DNA and the EMSA the DNA bound by 

the proteins.  

 

2.12.2 Electrophoretic mobility shift assays (EMSA) 

EMSAs have been used extensively for studying protein-DNA interactions. The 

assay is based on the slower migration of protein-DNA complexes than unbound 

DNA, through a native polyacrylamide gel. The individual protein-DNA complexes 

form discreet bands within a native acrylamide gel that are detected based on a 

chemiluminescent reaction. In super-shift assays, antibodies are used to identify 

proteins involved in the protein-DNA complex. The formation of an antibody-protein-

DNA complex further reduces the mobility of the complex within the gel resulting in 

a “super-shift”.  

ImHPASMCs were used to prepare nuclear extracts (NE-PER extraction kit, Thermo 

Scientific, Cat. no: 78833). Nuclear extract (4µg) and 20fmol of each biotinylated 

DNA probe specific to the C or T allele of rs3095870 were added in a total volume 

of 20μl binding reaction (10mM Tris, 150mM KCl, 1mM DTT, 10% glycerol, 15mM 

MgCl2, 200ng dI-dC, 0.05% NP-40). For the super-shifts, 1-2μg of the antibodies 

were used per reaction (TEAD1, Abcam, Cat. no: ab133533; YAP1, Cell Signalling 

4912). The reactions were incubated for 20 minutes at room temperature and then 

loaded into a 6% native acrylamide gel. The gel was run in 0.5x TBE at 120V for 3 

hours at 4oC. The protein: DNA complexes were transferred to a positive nylon 

membrane for 30 minutes at 15V using a Trans-blot semi-dry apparatus (Biorad). 

The membrane was UV-light cross-linked for 1 minute (UV Stratalinker 2400, 

Stratagene). Then, the membrane was probed with streptavidin-HRP conjugate, 

incubated with the substrate and developed following the LightShift™ 

Chemiluminescent EMSA protocol (Thermo Fisher Scientific, Cat. no: 20148).  

2.12.3 Pull-down assays 

Similar to the EMSAs, protein-DNA pull down assays were performed. In addition to 

the 2 probes described earlier, 2 more probes were designed for the pull-down 

assays and used as negative controls: a 54bp-biotinylated double stranded DNA 

probe with scrambled DNA sequence and a non-biotinylated probe specific to the C 

allele of rs3095870 (Table 2.10). 

ImHPASMCs were treated with 2ng/ml TGF-β for 16 hours. The cells were washed 

twice in ice-cold PBS and scraped with cell scrapers in ice-cold Hank’s balanced 
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salt solution (Invitrogen, Cat. no: 14170-088). The cell suspension was spun down 

at 16000xg at 4oC and the cell pellet was used to prepare nuclear extracts 

according to the manufacturer’s instructions (NE-PER extraction kit, Thermo 

Scientific, Cat. no: 78833). 0.5nmol of each DNA probe was added in 1ml of binding 

buffer (10mM HEPES, 0.5mM EDTA, 0.5mM DTT, 10% glycerol, 200ug salmon 

sperm DNA) together with 100µl Streptavidin MagneSpher Paramagnetic Particles 

(Promega, Cat. no: Z5481). The beads had previously been washed 3 times in PBS 

and blocked in 200μg BSA in PBS for 1 hour at room temperature. The DNA and 

the beads were mixed by rotation at 4oC for 1 hour. Then, ~60-70μg of nuclear 

extract supplemented with protease and phosphatase inhibitors were added to each 

binding reaction and rotated at 4oC for 1 hour. The protein: DNA: beads complexes 

were washed 5 times for 5 minutes each in 150mM NaCl, 10mM HEPES, 0.1% NP-

40. The proteins were eluted from the complexes in NuPAGE LDS sample buffer 

and reducing agent (Thermo Fisher Scientific, Cat. no: NP0008 and NP0009, 

respectively), and loaded onto precast polyacrylamide gels (Thermo Fisher 

Scientific, Cat. no: NP0335) for Western blotting.  

Name of the 
probe 

Sequence of the double-stranded DNA probes 

Biotin- 
rs3095870-C 

BIOT-GGTCTGATGAAAGCTTGGGGTCTTCTCCATTCCCCAGAACACTG 
CAGAGAGGAG 

CCTCTCTGCAGTGTTCTGGGGAATGGAGAAGACCCCAAGCTTTCATCAGA
CCTC 

Biotin- 
rs3095870-T 

BIOT-GGTCTGATGAAAGCTTGGGGTCTTCTCTATTCCCCAGAAC 
ACTGCAGAGAGGAG 

CTCCTCTCTGCAGTGTTCTGGGGAATAGAGAAGACCCCAAGCTTTCATCA
GACC 

Biotin-scramble BIOT-ATTTCACAGTTGTACAGTTGCATGGGTAACAGCTACGAAATCCCG 
GATAGCTGG 

TAAAGTGTCAACATGTCAACGTCCCATTGTCCGATGCTTTAGGGCCTATCG
ACC 

Non-Biotin- 
rs3095870-C 

GGTCTGATGAAAGCTTGGGGTCTTCTCCATTCCCCAGAACACTGCAGAGA
GGAG 

CCTCTCTGCAGTGTTCTGGGGAATGGAGAAGACCCCAAGCTTTCATCAGA
CCTC 

Table 2.10 Probes for the pull-down assays. 
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2.13 Chromatin immunoprecipitation assays (ChIP) 

2.13.1 General principle 

ChIP assays are a sensitive method that can be used in cultured cells or animal 

models to identify links between the genome and the proteome by monitoring 

transcriptional regulation through transcription factor binding on native chromatin of 

regulatory regions. Whereas EMSAs and pull-down assays look at binding of 

transcription factors to small linear oligonucleotide probes, ChIP assays capture 

protein binding on the native chromatin in the cell. The strength of ChIP assays is 

the ability to capture a snapshot of specific protein: DNA interactions in a system 

and assess these interactions by PCR. The ChIP assay procedure involves a 

variety of proteomics and molecular biology methods including crosslinking, cell 

lysis, DNA shearing, and immunoprecipitation (Figure 2.7). 

 

Figure 2.7 Chromatin Immunoprecipitation assay. Schematic representation of each step 
of the ChIP protocol. 
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2.13.2 Experimental protocol 

ImHPASMCs were stimulated with 2ng/ml TGF-β for 16 hours. 6x105-1x106 cells 

were used per ChIP assay. Treated cells were cross-linked for 10 minutes with 1% 

formaldehyde at 37oC. The cells were washed twice with ice-cold PBS 

supplemented with protease inhibitors and then lysed directly into SDS lysis buffer 

(1% SDS, 10mM EDTA, 50mM Tris pH 8.1, protease inhibitors). The cell 

suspension was transferred into 2ml tubes and kept on ice for 15 minutes. The 

chromatin was sheared to a mean size of 500bp-1Kb by sonication. Sonication 

settings were empirically determined for each cell line to ensure a range of 

fragments around 500bp. Cross-linked chromatin was sheared for 15’’ at power to 

generate amplitude of 8 microns. The sonication was repeated 3 times at 30 

seconds intervals. The samples were kept on ice during sonication to avoid over-

heating and protein degradation. To ensure effective shearing, DNA was recovered 

by phenol-chlorophorm extraction and run on an agarose gel (Figure 2.8).  

Lysed cells were cleared by centrifugation at maximum speed for 10 minutes at 4oC 

and then immunoprecipitation assays were performed based on a standard protocol 

(Upstate, Millipore). 2–4μg of antibody (Rabbit IgG, Santa Cruz, sc-2027; TEAD1, 

Abcam, ab133533; RNA pol II, Santa Cruz, sc-899; phospho-SMAD3, Cell 

Signalling, 9520; GATA-6, Santa Cruz, sc-9055; C-Jun, Santa Cruz, sc-1694; Mef-

2c, Santa Cruz, sc-13268) was added in each reaction and incubated overnight, 

rotating at 4°C. To reverse the cross-linking, the eluates were incubated overnight at 

65°C after the addition of 80mM NaCl. Next day, 4mM EDTA, 16mM Tris-HCl and 

proteinase K were added to the eluates and incubated at 45oC for one hour. The 

DNA was phenol: chloroform extracted and ethanol precipitated in the presence of 

glycogen. The pelleted DNA was resuspended in 30µl water. Standard PCR 

performed using the Fast-Cycling PCR kit (Qiagen, Cat. no: 203741). DNA of each 

ChIP (5µl) and 1µl of input were added in a 25µl final volume PCR reaction.  The 

primers that were used for the amplification of the genomic regions around NKX2-5 

transcription start site, the rs3095870 genomic locus and the downstream enhancer 

are shown in Table 2.11. 
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Figure 2.8 Chromatin Shearing. 

 

Region Name Forward Primer  Reverse Primer Annealing 
Temperature 

Promoter Transcription site (180bp) GACAGGAGCGATGAGCAGTT CAGGCTCACATTAGGGAGCA 60
o
C 

 rs3095870 site (180bp) CCGGGTGGCCTCATTTCTC ATCCTGTCATCCCCAGCTCT 

Enhancer Primer Pair 1 (313bp) GGATGGGACCACGCTACATAC CTTGTGGCCTCTAAGCCTTG 

 Primer Pair 2 (383bp) TGACCCAAGGAAACGAAGGG AACCGGCTCAGAGAAAAGCA 

 Primer Pair 3 (321bp) GGAGTCGGCAAGGCTTAGAG GTCCCTTCGTTTCCTTGGGT 

 Primer Pair 4 (265bp) TTCTCTGAGCCGGTTGAGTT TGATGGGGCAAGCTGTAGAC 

 Primer Pair 5 (262bp) CTCCTTGAGTTCTGCCGTCT ACTGAGGAGGTTACGTGGGT 

 Primer Pair 6 (347bp) CCGTTCCCGCTTAGAGACTG CTCCTGTGGGCCTTTTTCAC 

Table 2.11  PCR primers used in the ChIP assays. 
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2.14 Protein polyacrylamide gel staining 

Coomassie Brilliant Blue stain: The polyacrylamide gel was washed 3 times in water 

for 5 minutes each time, and then stained in Coomassie Brilliant Blue G250 

(AMSBio, Cat. no: 17524) for 1 hour with gentle shaking at room temperature. After 

staining, the gel was washed 3 times in water and de-stained in de-staining solution 

(30% Methanol, 7% Acetic Acid, ddH2O), until the background had been cleared.  

QC Colloidal Coomassie (Biorad, Cat. no: 1610803) was also used. This staining 

solution is also a ready-to-use stain, but it does not require alcohols for staining and 

des-staining steps. In addition, it offers low background and higher sensitivity. 

Silver Nitrate Stain: The acrylamide gel was incubated in the fixer solution (40% 

ethanol, 10% acetic acid, 50% water) for 35 minutes at room temperature. The gel 

was then washed in water for at least 30 minutes to overnight with frequent changes 

of water. Overnight washing removes acetic acid, reduces background staining and 

increases sensitivity. The gel was sensitised in 0.02% sodium thiosulfate for 1 

minute only, and washed twice in ddH2O. A 20 minute incubation of the gel in cold 

0.1% silver nitrate solution followed, and 2washes in water. The gel was then 

transferred in a new 10cm plastic dish and washed in water for 1 minute. The gel 

was developed in 3% sodium carbonate solution with 0.0175% formaldehyde added 

just before use. When sufficient stain intensity was achieved (bands start to appear 

after 2-3 minutes), the gel was washed quickly for 20 seconds in water and the 

staining is terminated with 5% acetic acid. Stained gels can be stored in the fridge in 

1% acetic acid. 

2.15 Protein expression analysis  

2.15.1 General principle 

In molecular and cellular biology, the protein expression studies provide important 

insight into the state of a cell or its behaviour in response to external stimuli and the 

biological functions at a given point in time. Therefore, the study of proteins is 

fundamental to the understanding of the molecular mechanisms that define cell 

function. There are numerous experimental methods used traditionally by scientists 

to study proteins including protein detection, isolation and purification, quantification, 

and characterisation of their structure and function.  

Protein electrophoresis and Western blot analysis are widely used to detect the 

presence or the absence of a protein in a cell or tissue lysate, as well as to identify 
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differences in the protein expression levels due to a physiological or experimental 

procedure. There are various methods of protein electrophoresis that differ in the 

separation matrixes used and the corresponding buffer systems, including 

polyacrylamide gel electrophoresis (PAGE), isoelectric focusing and 2D 

electrophoresis. PAGE was used exclusively for the protein analysis in this study. In 

this technique (410), denatured proteins are separated in an acrylamide gel and 

migrate through the pores of the gel based on their molecular weight so that smaller 

proteins travel faster. The proteins move through the gel in response to an electric 

field that is applied across the buffer chambers and forces the migration. However, 

in contrast to nucleic acids, proteins are not negatively charged and that interferes 

with their migration and separation based on the molecular weight. To overcome 

these limitations, sodium dodecyl sulphate (SDS) detergent was incorporated into 

the electrophoretic system, which is now widely used and known as SDS-PAGE 

system. Before electrophoresis, protein samples are mixed with sample buffer 

(widely known as Laemmli buffer (411)) containing SDS and reducing agents and 

incubated at high temperatures (95oC for 5 minutes or 70oC for 10 minutes) for 

complete disruption of molecular interactions. In the presence of sample buffer, the 

proteins become fully denatured and dissociate from each other. In addition, SDS 

binds to protein non-covalently, resulting in an overall negative charged protein that 

migrates in a gel depending purely on its size, enabling molecular weight estimation. 

Following SDS-PAGE, proteins are transferred from the acrylamide gel onto a 

synthetic membrane for further Western blot analysis and immunoblotting (412). 

The membranes can be made of nitrocellulose, which is the most commonly used, 

polyvinylidene difluoride (PVDF), activated paper or activated nylon. Electroblotting 

is the most popular procedure for transferring proteins from a gel to a membrane. 

The main advantages are the speed and effectiveness of transfer. This process 

uses an electric current to pull proteins from the gel onto the membrane. It can be 

achieved by immersion of a gel-membrane sandwich (wet transfer) or by putting the 

gel-membrane sandwich between absorbent paper that has been soaked in transfer 

buffer (semidry transfer). The effectiveness of protein transfer depends on the type 

of gel used, the molecular mass of the protein, and the type of membrane. Some 

limitations associated with protein transfer include a lower molecular weight limit of 

~10kDa, the use of specialised transfer buffers to facilitate transfer of proteins with a 

high isoelectric point, and problems associated with using a transfer buffer with a 

lower pH than the isoelectric point.  
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For protein detection, the protein-bound membranes are immune-decorated with 

primary antibodies specific to the protein of interest. It is important to prevent non-

specific interactions between the primary antibody and the bound proteins. To block 

nonspecific binding, the membrane is incubated into solutions of blocking reagents 

such as BSA, non-fat dry milk, or casein. Blocking helps mask any potential 

nonspecific binding sites on the membrane, thus reducing background ‘‘noise’’, 

eliminating false positives and providing a clear result.  

For the detection of the bound antibodies to the specific protein of interest, various 

methods are available colorimetric, radioactive, and fluorescent methods. However, 

chemiluminescent detection is used most often and therefore, will be briefly 

described here. Enhanced chemiluminescence (ECL) is a sensitive method and can 

be used for relative quantitation of the protein of interest (413). The primary 

antibody binds to the protein of interest and the secondary antibody, usually linked 

to horseradish peroxidase, is used to cleave a chemiluminescent substrate. The 

reaction product produces luminescence, which is related to the amount of protein. 

Only a single light detector is required, and the light is detected by photographic film 

or by a charged couple device camera (more sensitive, greater resolution, and a 

larger range of exposures than film). It is helpful that many manufacturers produce a 

variety of ECL-based Western blot detection kits to meet specific needs. Once 

exposures have been captured, blots can be washed in a buffer and then 

‘‘stripped,’’ to remove bound antisera and allow reuse of the blot. Blots can then be 

stored for future re-probing several more times. However, subsequent re-probing 

can lead to loss of protein antigens, resulting in a decreased signal (414).  

2.15.2 Protein extraction 

Two methods of protein extraction were used in these studies. Cytoplasmic and 

nuclear protein extracts were prepared from cells lysed on ice according to the NE-

PER extraction protocol (Thermo Scientific, Cat. no: 78833). This protocol allows a 

simple, stepwise lysis of cellular and nuclear membranes leading to an efficient 

isolation of subsequent cytoplasmic and nuclear protein fractions with minimal 

cross-contamination or interference. Total cell lysates were prepared using ice-cold 

RIPA extraction buffer (Sigma, Cat. no: R0278). Extraction buffers were 

supplemented with protease (Complete mini, Roche, Cat. no: 11836170001) and 

phosphatase inhibitors (Phosphatase Inhibitor Cocktails 2 and 3, Sigma, Cat. no: 

P5726, R0044). The protein extracts were snap-frozen in liquid nitrogen and stored 
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at -80oC prior to use. For short-term storage, proteins were denatured and stored at 

-20oC.  

2.15.3 Determination of protein concentration  

To determine the total protein concentration in the protein samples, the BCA protein 

assay (Thermo Fisher Scientific, Cat. no: 23225) was used. The assay utilises the 

property of the proteins to reduce the charge of Cu2+ to Cu1+ in an alkaline buffer, 

and the highly sensitive and selective colorimetric detection of the cuprous cation 

(Cu1+) by bicinchoninic acid (BCA). When the BCA reagent is added to the protein 

sample, the cuprous cations are released and react with the bicinchoninic acid 

creating a dark purple colour. This complex exhibits a strong linear absorbance at 

562nm with increasing concentration of protein.  

BSA protein standards (Thermo Fisher Scientific, Cat. No: 2320) (125µg/ml – 

1mg/ml) were used to create a standard curve for each assay. A blank sample was 

also included in the assay. After the addition of BCA reagent to the protein samples 

and the standards, the plate was incubated in the dark for 30 minutes at 37oC. Then 

the absorbance was measured at 562nm in a Mithras LB 940 Plate Reader. The 

assay set-up and the creation of a standard curve are described in Figure 2.9. 

 

Figure 2.9 Standard curve for protein concentration analysis.  The table shows the 
absorbance of the blank sample, the BSA standards and the unknown protein sample in 
duplicates. The average is calculated for all the samples and the raw average value of the 
blank is subtracted from the rest. Then, a standard curve is plottedbased on the known 
protein concentrations of the BSA standards, plotting concentration on the X axis, and the 
absorbance on the Y axis. The unknown protein concentration of the sample is given when 
the equation is solved for Y. 

Blank 0.125 0.25 0.5 0.75 1 Sample

Duplicate 1 0.134 0.179 0.26 0.378 0.462 0.571 0.831
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2.15.4 SDS-PAGE and Western blotting 

After extraction, the proteins were denatured in NuPage LDS Sample buffer and 

NuPage Reducing agent for 10 minutes at 70oC or 5 minutes at 95oC. The 

denatured proteins were separated by molecular weight in NuPage Bis-Tris precast 

gradient (4-12%) polyacrylamide gels (Thermo Fisher Scientific, Cat. no: NP0315) 

(1.5mm thickness) and run in 1x MOPS SDS Running buffer (Thermo Fisher 

Scientific, Cat. no: NP0001) for 50 minutes at 185V. Pre-chilled NuPage transfer 

buffer (Thermo Fisher Scientific, Cat. no: NP0006) was used to transfer the 

separated proteins to a nitrocellulose membrane (GE Healthcare Life Sciences, Cat. 

no: 10600048). For transfer of one gel 10% methanol was added to the transfer 

buffer, if 2 gels were transferred in the same tank the methanol concentration was 

increased to 20%. Proteins were transferred for 3 hours at 25V or overnight at 12V. 

Efficient transfer was confirmed using the Ponceau S solution (Sigma, Cat. no: 

P7170), a reversible stain used to detect proteins on a nitrocellulose or PVDF 

membrane.   Casein blocking buffer (Sigma, Cat. no: C7594) was used to block the 

protein epitopes. Incubation with the primary antibodies was done overnight on a 

roller at 4oC, and the HRP-conjugated secondary antibodies diluted in the blocking 

buffer were added for one hour at room temperature. For the detection of the 

proteins, the ECL chemiluminescent detection reagent (Amersham, Cat. no: 

RPN2106) was used.  

The primary antibodies used in this study are shown in Table 2.12.  
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ANTIBODIES COMPANY CAT.NUMBER SPECIES 

Concentration 
(Dilution) 

GAPDH Abcam ab8245 Mouse 1:50.000 

TBP Abcam ab51841 Mouse 1:25.000 

NKX2-5 Abcam ab54567 Mouse 1:1000 
 CTGF Santa Cruz sc-14939 Goat 1:2000 

Collagen Type 1 Millipore AB758 Goat 1:2000 

AKT Cell Signalling 9272 Rabbit 1:1000 

P-AKT Cell Signalling 9271 Rabbit 1:1000 

p38 Cell Signalling 9212 Rabbit 1:1000 

p-p38 Cell Signalling 4511 Rabbit 1:1000 

ERK-1,2 Cell Signalling 9102 Rabbit 1:1000 

p-ERK-1,2 Cell Signalling 9101 Rabbit 1:1000 

ERK-5 Cell Signalling 3372 Rabbit 1:1000 

p-ERK-5 Santa Cruz sc-16564 Goat 1:500 

ASK1 Cell Signalling 8662 Rabbit 1:500 

p-ASK1 Cell Signalling 3764 Rabbit 1:500 

SMAD2/3 Cell Signalling 3102 Rabbit 1:2000 
1:1000 p-SMAD2 Cell Signalling 3101 Rabbit 1:2000 

 p-SMAD3 Cell Signalling 9520 Rabbit 1:2000 
 p-SMAD2/3 Cell Signalling 8828 Rabbit 1:2000 
 VIMENTIN Cell Signalling 3932 Rabbit 1:1000 

N-CADHERIN Cell Signalling 4061 Rabbit 1:500 

YAP1 Cell Signalling 4912 Rabbit 1:2000 

p-YAP1 Cell Signalling 4911 Rabbit 1:2000 

α-SMA DAKO M0851 Mouse 1:2500 

TEAD1 Abcam ab133533 Rabbit 1:2000 

TEAD3 Cell Signalling 13224 Rabbit 1:500 

p-MKK3/6 Cell Signalling 9231 Rabbit 1:1000 

Table 2.12 Antibodies used for Western blotting. The concentrations that the antibodies 
were used at are given as the dilution of the primary antibody into the blocking buffer. 

 

2.15.5 Analysis of relative expression/ densitometry 

The relative protein expression was analysed by densitometry, a semi-quantitative 

measurement of optical density (OD) in light-sensitive materials due to exposure to 

light. The developed films were scanned and processed in Image J software. It is 

important to note that overexposed films can provide false data, and therefore 

exposure must be kept in a linear range in order to be quantitative. A relative value 

was calculated based on the OD of a given sample compared to the OD of a 

‘housekeeping’ gene, which in most cases was GAPDH. The ratios of the gene-of-

interest to GAPDH from the replicate experiments were used to calculate the 

averages and the standard errors. The results in this thesis represent the relative 
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protein expression in the given conditions. Statistical analysis was performed in 

GraphPad Prism 6.  

2.16 Gene expression analysis 

2.16.1 RNA extraction 

Total RNA was extracted from the cells following the instructions of the RNeasy Mini 

kit extraction protocol (QIAGEN, Cat. no: 74106). This is a column-based system 

whereby the cells are exposed to a number of reagents, proprietary buffers and 

centrifugation wash steps, ultimately resulting in RNA binding to a silica membrane 

from which it can be eluted in RNase-free water. 

2.16.2 Measurement of RNA concentration and purity 

The quantity and the purity of all RNA samples were measured using the Nanodrop 

2000 spectrophotometer. All the RNA samples that were used for downstream 

applications had a 260/280 ratio of ~2.0 that is considered as “pure”. Samples that 

did not reach that ratio were not used for RT-qPCR analysis.  

2.16.3 Primer design 

Primers were designed using the Primer-Blast software available from NCBI. 

Multiple sets of primers were designed for each gene and tested, and the set that 

performed best was selected for further analysis. Preferably, primers spanning 

exon-intron boundaries were selected. The secondary structures including hairpins 

and homo- and hetero-dimers were assessed with the OligoAnalyzer 3.1 software 

available from the Integrated DNA Technologies (IDT) who supplied all the 

oligonucleotides. The GC content and the melting temperature for each primer given 

the salt conditions of a qPCR reaction were also evaluated. The annealing 

temperatures were optimised for each primer set separately. For the primer 

optimisation, a range of primer concentrations were tested with serial dilutions of the 

RNA. An example of an optimisation is shown in the Figure 2.10. At the end of the 

RT-qPCR run, the PCR products were electrophoresed in a 1.5% agarose gel to 

ensure the correct amplicon size and to exclude the possibility of multiple products 

and excessive primer dimer formation. 
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Figure 2.10 Primer optimisation for RT-qPCR.  The figure shows an optimisation for 3 
different pairs of primers for the human TEAD1 gene. In the top panel, the melting curves 
show that a single product is amplified with each primer pair. The lower panel shows the 
quantitation analysis. Both the green and the red primer pairs were able to identify efficiently 
the two-fold change in the RNA concentration. The green primer pair was rejected due to 
non-specific amplification of the NTC sample. The red pair was selected for further analysis. 

 

2.16.4 Real time-quantitative polymerase chain reaction (RT-

qPCR) 

RT-qPCR is an adaptation of the standard PCR protocol following the same 

principle of DNA amplification. RT-qPCR is designed to quantify and determine the 

initial number of copies of template DNA (the amplification target sequence) with 

accuracy and high sensitivity over a wide dynamic range. Real-time PCR results 

can either be qualitative (the presence or absence of a sequence) or quantitative 

(copy number). Quantitative real-time PCR is thus also known as qPCR analysis. 

All qPCR assays rely on the detection of a fluorescent signal which increases as the 

product amplifies. Fluorescent SYBR green was exclusively used for all qPCR 

assays in this thesis. SYBR green binds strongly to double-stranded DNA and in the 

bound state the level of fluorescence increases 100-fold. Initially, fluorescence 

remains at background levels, and small differences are not detectable even though 

the amplified product accumulates exponentially after the first few PCR cycles. 

Eventually, enough amplified product accumulates to yield a detectable 

fluorescence signal. The cycle number at which this occurs is called the 

quantification cycle or Cq, and it depends on the amount of the starting material. To 

analyse the data, the user sets the threshold and the fluorescence intensity is 
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compared between the samples. To account for differences in the amount of the 

starting material, fluorescence of the target gene is normalised to that of a 

‘housekeeping’ gene. Housekeeping genes are typically ubiquitously expressed 

genes that are required for the maintenance of basic cellular functions, and are 

expressed at relatively constant levels under normal conditions. However, the 

expression of some housekeeping genes can alter in disease or under certain 

experimental conditions. In this thesis, I used the human TATA-box binding protein 

(TBP) that shows the lowest variation in expression among different cell types and 

tissues (415).  

For the qPCR assays, a 1-step method was followed based on the Quantifast SYBR 

Green RT-PCR protocol (Qiagen, Cat. no: 204154). In this protocol, total RNA, 

which was the starting material, was transcribed to cDNA before the PCR reaction 

in the same tube. Total RNA (100ng) was added in 12µl total reaction volume. The 

qPCR assays were performed in a Corbett Rotor Gene 6000 cycler (Qiagen). The 

primers used are given in Table 2.13. 

 

Human 
Gene 

Forward Primer Reverse Primer Anneal 
o
C 

NKX2-5 GAGCCGAAAAGAAAGAGCTGTG GGAACCAGATCTTGACCTGCG
T 

60
O
C 

TBP AGTGACCCAGCATCACTGTTT GGCAAACCAGAAACCCTTGC 60
O
C 

TEAD1 CAATGGAGCGACCTTGCCA GGCCGGGAATGATTCAAACAG 60
O
C 

TEAD3 CTGACACGTACAGCAAACAC AGCTCCTTCAATCCTCCCTT 60
O
C 

COL1A2 TGCTTGCAGTAACCTTATGCCTA CAGCAAAGTTCCCACCGAGA 60
O
C 

CTGF GACCTGGAAGAGAACATTAAGAAGG TCGGTATGTCTTCATGCTGGTG 60
O
C 

α-SMA CCGACCGAATGCAGAAGGAG ACAGAGTATTTGCGCTCCGAA 58
O
C 

SM22 GATTCTGAGCAAGCTGGTGA TCTGCTTGAAGACCATGGAG 62
O
C 

CD31 ATTGCAGTGGTTATCATCGGAGTG CTCGTTGTTGGAGTTCAGAAGT
GG 

62
O
C 

VE-
Cadherin 

CAG CCC AAA GTG TGT GAG AA CGG TCA AAC TGC CCA TAC 
TT 

62
O
C 

v-WF CGGCTTGCACCATTCAGCTA TGCAGAAGTGAGTATCACAGC
CATC 

62
O
C 

Table 2.13 qPCR primers for human genes and annealing temperatures. 
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For the analysis of NKX2-5 gene expression, numerous sets of primers were tested 

before one that performed well was identified. In samples where NKX2-5 expression 

was low (eg in untreated samples or in normal cells), a non-specific product 

appeared very early in the amplification. To solve this problem, a specific run file 

was created that allowed the fluorescence to be read at a time point after the non-

specific product was amplified. Thus, only the fluorescence arising from the specific 

products was analysed. 

2.17 Statistical analysis 

For the genetics data, statistical analysis was performed in Plink. For the rest of the 

experimental work, statistical analysis was mainly performed in GraphPad Prism 6 

(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001) and occasionally in Microsoft Office 

Excel. The unpaired student’s t-test was exclusively used unless otherwise stated. 

Student’s t-test is most commonly used for testing a hypothesis of a difference of 

the means between two small sample groups normally distributed (416). Unpaired 

tests were performed since all the sample groups were independent, and the 2-

tailed version was used indicating that the means are not expected to be equal 

under the null hypothesis. Results represent data from at least 3 independent 

experiments, unless otherwise stated, and shown as mean + SEM.   
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CHAPTER 3 - RESULTS: GENETIC ASSOCIATION OF 

NKX2-5 WITH PULMONARY HYPERTENSION AND 

SCLERODERMA 

3.1 Introduction and study design 

A literature review on NKX2-5 reveals dozens of scientific papers highlighting the 

importance of the gene during mouse embryonic development and its non-

redundant role in the heart and vessel formation. However, the majority of published 

data are focused on the genetic mutations identified along the NKX2-5 gene and 

their deleterious effects for the carriers leading to CHD, atrioventricular septal 

defects, atrial fibrillation, and tetralogy of Fallot. Apart from the mutations leading to 

malformations of the cardiac system, very little information on genetics of NKX2-5 is 

available.  

The first aim for this PhD was to explore the hypothesis that NKX2-5 is genetically 

associated with vascular pathologies, and in particular with conditions underlined by 

vascular remodelling such as PH, PAH, atherosclerosis and PAD, etc. Scleroderma 

is a good model for studying vascular disease due to the extensive fibrosis and 

vasculopathy. Initial evidence for the hypothesis of association of NKX2-5 with 

vascular pathology in scleroderma arose from a case-control association study in 

SLE patients, where a SNP upstream of NKX2-5 showed significant association with 

the disease. SLE and scleroderma are both complex AIDs with vascular 

complications and shared common pathogenesis.  

To investigate the potential association, a candidate gene case-control association 

study was designed, as described below (Figure 3.1):  

1. DNA samples from scleroderma patients and healthy individuals were collected 

as explained in section 2.1 to form a discovery and a replication cohort.  

2. A set of tagging SNPs across the NKX2-5 genomic locus was selected using 

different software (section 2.2).  

3. The tagging SNPs were genotyped in the discovery cohort and different sets of 

analyses were performed.  
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4. The tagging SNPs were genotyped in the replication cohort, and the same sets 

of analyses were performed.  

5. A meta-analysis was performed among the two independent cohorts. 

 

 

Figure 3.1 Genetic association study design and work-flow.  The NKX2-5 gene is 3.2Kb 
long and is located in the q arm of chromosome 5. A genomic region 13.2Kb long that 
centred NKX2-5 leaving 5Kb upstream and downstream of the gene was selected for the 
study. Six tagging SNPs were selected in the area using different software. The tagging 
SNPs were genotyped in the discovery and the replication cohorts. The cohorts were 
independent but shared similar Caucasian origin. DNA samples from 1334 scleroderma 
patients and 901 healthy individuals were collected in the UK (Centre for Rheumatology, 
Royal Free NHS Foundation Trust Hospital, London and Institute of Inflammation and 
Repair, University of Manchester) to form the discovery cohort. DNA samples from 1736 
scleroderma patients and 1753 healthy individuals were collected in Spain (Institute de 
Parasitology and Biomedicine Lopez-Neyra, Granada) to form the replication cohort. 
Genotype data were used for the overall case-control genetic association analysis and the 
sub-phenotype analysis in the discovery cohort. The same sets of analyses were repeated in 
the replication cohort to confirm positive findings. A meta-analysis was performed of both 
cohorts.  
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3.2 Results  

3.2.1 Selection and description of tagging SNPs 

Genotype data for the HapMap-CEU were used to generate the LD profile of NKX2-

5 region in Haploview (387). As shown in Figure 3.2, a big LD block formed across 

the region, with 14 SNPs. Tagger software was used to select the tagging SNPs in 

the region.  Two versions of the software were compared: the independent platform 

through the Broad Institute of Harvard and MIT (386), and the version incorporated 

in Haploview. The results were similar. A list of 6 tagging SNPs was generated 

based on their position and annotations regarding their functionality, available 

through the HaploReg (417) and the ENCODE data at UCSC Genome browser. The 

selected tagging SNPs are described in detail in Table 3.1. 

 

Figure 3.2 LD Block in HapMap-CEU population.  The white horizontal bar illustrates the 
location of the tagging SNPs in the region on a physical scale. The names of the tagging 
SNPs are shown above the triangle. The values in the squares represent the pairwise 
correlation (r

2
) between tagging SNPs defined by the upper left and the upper right sides of 

the square. Shading represents the magnitude and significance of pairwise LD, with a red-
to-white gradient reflecting higher to lower LD values. Extended LD covers the region and 
one haplotype clock is formed, shown in the black triangle. Almost all of the SNPs are in 
high LD, apart from rs3132142 that is not related to any other SNP. Lilac boxes show pairs 
of SNPs that are not in LD. 
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SNP 
Major 
Allele 

Minor 
Allele 

H3K4me3 marks 
for Promoters 

H3K4me1 marks 
for Enhancers 

DNAse 

Hypersensitivity 

Bound 
Proteins 

Changed protein 
binding motif 

Relative posit216ion 

rs3095870 C T Heart 8 tissues Heart SUZ12 
NF-kappaB, 

TEAD1 
1.1kb 5' of NKX2-5 

rs2277923 T C 8 tissues 15 tissues 14 tissues SUZ12 TCF12, Myf1 
NKX2-5, 

Synonymous 

rs703752 C A Heart 9 tissues ESC 
 

Myb NKX2-5 3’UTR 

rs31311917 G T Heart 7 tissues Heart 
 

EBF, NRSF, 
Sin3Ak-20, TCF12 

2.1kb 3' of NKX2-5 

rs12514371 A G 9 tissues 14 tissues Heart 
 

AP-1, Myc 3Kb 3’ of NKX2-5 

rs3132139 G A 4 tissues 12 tissues 
Epithelial, Heart,  

HSC & B-cell 
SUZ12 

AhR:Arnt, Arnt, 
Myc 

3.4kb 3' of NKX2-5 

Table 3.1 List of the selected tagging SNPs.  In silico analysis in Haploreg for the selected tagging SNPs along the NKX2-5 genomic locus. The major and 
minor alleles are shown, and data from the in silico analysis describing histone methylation marks related to promoters and enhancers, as well as DNase 
hypersensitivity marks and potential binding sites of transcription factors. In the last column, the position of each SNP relative to NKX2-5 gene is given.  
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Tagging SNP rs2277923 is located within the first exon, and rs703752 is located at 

the 3’UTR of NKX2-5 gene. The remaining 4 SNPs are found in intergenic regions: 

1 upstream and 3 downstream of the gene. The minor allele of rs2277923 leads to a 

synonymous change, and therefore, no change in the protein structure and function 

is expected. However, the SNP has been reported in few articles as a NKX2-5 

mutation in patients with CHD (418, 419). SNP rs703752 is located in the 3’UTR of 

NKX2-5. The SNP was also reported as a NKX2-5 mutation in patients with cardiac 

malformations (419), but no other information is published in literature.   

In HaploReg, DNase I hypersensitivity and histone marks specific to promoter or 

enhancer regions suggest that all the tagging SNPs could be functional. DNase 

hypersensitive sites are regions of chromatin that are sensitive to DNase I enzyme 

digestion, leaving the DNA exposed and accessible to transcription factors. In a 

similar way, enhancer and promoter regions that are devoid of nucleosomes, and 

histones in the vicinity are tagged with specific marks. It has been shown that 

H3K4me1 marks are found near enhancer regions, while H3K4me3 marks found 

near active promoters (420). These marks reveal an open chromatin state, where 

transcription factors are more able to bind in order to regulate gene expression. The 

activity of enhancers and sometimes of promoters, is cell type- or tissue-specific 

depending on the cell requirements. Interestingly, the majority of the functional 

evidence for the SNPs is derived from heart tissue as expected.  

In addition, some of the SNPs are located within consensus protein binding sites 

that are altered in the presence of the alternative allele. This evidence comes from 

position weight matrix (PWM)-based probabilities. In brief, the sequence of interest 

is aligned against other sequences that contain known consensus binding sites for 

various DNA-binding transcription factors and are thought to be functional. A score 

is given for each nucleotide based on the similarity with the reference position, and 

it is independent of other nucleotides. A final score is then calculated by adding the 

relevant values at each position, which provides an indication of how different or 

similar is the sequence in question to the reference. 

More evidence is based on annotations available through ChIP-seq experiments, 

where chromatin is immunoprecipitated with different antibodies on a genome-wide 

scale. The genomic regions are then identified and reported as the genomic 

signature of the protein used for the immunoprecipitation. SUZ12 (suppressor of 

zeste-12) is a core component of the polycomb repressive complex 2 (PRC2) that is 

implicated in transcriptional silencing by generating di- and tri-methylation of lysine 
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27 on histone H3 (H3K27Me3). In HaploReg, there is evidence that 3 of the NKX2-5 

SNPs are located within or near to a SUZ12 binding site.  

Overall, the data suggest that all 6 tagging SNPs may display functional potentials, 

and that are all located in strategic areas in terms of regulation.  

3.2.2 Description of the discovery/UK cohort 

The Centre for Rheumatology at the Royal Free NHS Foundation Trust Hospital is 

privileged to retain the biggest cohort of scleroderma patients in the UK, with over 

1000 DNA samples deposited to the Biobank from consented patients. Control DNA 

samples from healthy individuals were collected from various sources (section 2.1). 

Scleroderma and control samples were genotyped in the laboratory of the Centre for 

Rheumatology and CTD. An additional cohort of DNA samples of scleroderma 

patients was included in the study in collaboration with Professors Ariane Herrick 

and Javier Martin. The samples were originally collected in Manchester under the 

supervision of Professor Ariane Herrick, and were sent to Granada, Spain as a part 

of a European scleroderma consortium under the supervision of Professor Javier 

Martin. The samples were genotyped in the Institute of Parasitology and 

Biomedicine Lopez-Neyra, Granada, Spain. Genotype data together with matched 

clinical information were sent to our lab for analysis. 

After genotyping and quality control, a total of 1334 cases and 901 control samples 

were included in the study as the discovery cohort of UK/Caucasian origin (Table 

3.2). Assessment of the Hardy-Weinberg equilibrium (HWE) in case-control cohorts 

has been widely used as a measurement of quality control in order to identify 

potential genotyping errors (421). All the SNPs were in HWE (Table 3.3). 

 

 

 

 

 

 

 

 

 



134 
 

Sub-Phenotypes 
DISCOVERY 

REPLICATION 
London Manchester 

Gender 

   Female 771 (85.7%) 354 (81.3%) 1489 (88.8%) 

Male 128 (14.3%) 81 (18.6%) 187 (11.1%) 

N/A − − 60 (3.4%) 

Auto-Antibodies    

ATA 203 (22.5%) 50 (11.5%) 351 (22.3%) 

ACA 312 (34.7%) 161 (37%) 735 (46.3%) 

ARA 172 (19.1%) N/A N/A 

Other 104 (11.5%) N/A N/A 

Organ Involvement    

PF 264 (29.3%) 148 (34%) 383 (24.3%) 

SSc-PAH 77 (8.5%) 61 (14%) 133 (12.7%) 

PH 57 (6.3%) 29 (6%) 230 (22.4%) 

RC 78 (8.6%) N/A N/A 

Disease Subset    

LcSSc 615 (68.4%) 329 (75.6%) 1034 (63.8%) 

DcSSc 282 (31.3%) 106 (24.3%) 428 (26.4%) 

Overlap 2 (0.2%) − 23 (1.4%) 

Total Cases 899 435 1736 

Total Controls 
901 1753 

(UK origin) (Spanish origin) 

Table 3.2 Discovery and replication cohorts.  The patients were categorised in groups 
based on the presence of auto-antibodies, other pathological complications and the 
scleroderma subsets. ATA: anti-topoisomerase1; ACA: anti-centromere; ARA: anti-RNA 
polymerase; PF: Pulmonary fibrosis; PAH: Pulmonary arterial hypertension; PH: Pulmonary 
Hypertension; RC: Renal crisis; LcSSc: limited scleroderma; DcSSc: diffuse scleroderma. 
N/A: not available. 
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SNP m M Cohort Genotypes Observed Expected p-value 

rs3132139 A G 
UK 95/417/364 0.476 0.4529 0.1364 

Spain 201/816/702 0.4747 0.4575 0.1265 

rs12514371 G A 
UK 23/255/598 0.2911 0.2846 0.554 

Spain 46/469/1204 0.2728 0.2731 0.9298 

rs3131917 T G 
UK 190/448/248 0.5056 0.4979 0.6856 

Spain 392/847/358 0.5304 0.4998 0.01622 

rs703752 A C 
UK 102/416/346 0.4815 0.4601 0.1838 

Spain 154/819/761 0.4723 0.4387 0.00149 

rs2277923 C T 
UK 60/388/428 0.4429 0.4118 0.0268 

Spain 157/736/799 0.435 0.428 0.5322 

rs3095870 T C 
UK 102/427/338 0.4925 0.463 0.06671 

Spain 142/732/687 0.4689 0.4391 0.00796 

Table 3.3 Hardy-Weinberg equilibrium.  The m: minor and M: major alleles, genotype 
count in the control cohorts, the observed and expected heterozygosity, and the p-value are 
shown in the table as assessed by Plink. P-value cut-off: 0.001. All the SNPs were in HWE. 

 

3.2.2.1 LD in the discovery cohort 

The genotype data of the discovery cohort were used to examine the LD in 

Haploview (Figure 3.3). All the SNPs were in strong LD except for SNPs rs3131917 

and rs2277923 (r2=0.11). Two LD blocks were formed: block 1: rs3132139 and 

rs12514371, and block 2: rs703752 and rs2277923. It is interesting to see that the 

same LD pattern seen in the HapMap-CEU population (Figure 3.2) is similar here; 

rs3095870 remains outside the LD block, and also SNPs rs3131917and rs2277923 

are not in LD.  
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Figure 3.3 LD plot of the discovery cohort.  R
2
 values between the pairs of SNPs are 

indicated in the red squares. Two blocks are formed, each containing two tagging SNPs. 
The SNPs are: 1: rs3132139, 2: rs12514371, 3: rs3131917, 4: rs703752, 5: rs2277923, 6: 
rs3095870.  

 

3.2.2.2 Case-control association study 

An overall case-control association study was performed in the discovery cohort. A 

basic allelic test questioned whether the frequency of the alleles of the SNPs is the 

same in scleroderma cases and controls. None of the SNPs found to be associated 

with scleroderma (p<0.05) in the allelic test (Table 3.4).  

3.2.2.3 Sub-phenotype analysis 

Although no significant SNP association was found in the overall case-control 

association analysis, I further examined whether any of the SNPs was associated 

with the disease sub-phenotypes: ARA, ACA, ATA, PH, PAH, PF (Table 3.2). The 

sub-phenotypes based on the organ complications, PH, PAH, and PF, were of 

particular interest to me. The results of the sub-phenotype association analysis are 

shown in Tables 3.5 and 3.6. 

SNP rs3132139 was found to be associated with PH (p-value= 0.036), and after 

correcting for multiple testing using permutation analysis, the association was still 

significant (permutation p-value= 0.039). The odds ratio (OR) was 0.71 and the 95% 

confidence interval (CI) was 0.57-0.97. To further explore the association, I 

performed a genetic analysis using a different genetic model. Rs3132139 was 

significantly associated with PH under the dominant model (p-value= 0.004, 

permutation p-value= 0.001) (Table 3.5).  
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SNP Position 
Minor 
Allele 

Major 
Allele 

MAF in 
Cases 

MAF in 
controls x2 P-value OR (95% CI) 

Permutation 
P-value 

rs3132139 173228730 A G 0.3451 0.3465 0.008434 0.9268 0.994 (0.875-1.129) 0.9351 

rs12514371 173229104 G A 0.1692 0.1718 0.05167 0.8202 0.9814 (0.83-1.15) 0.8342 

rs3131917 173230018 T G 0.4839 0.4673 1.166 0.2801 1.069 (0.94-1.2) 0.2737 

rs703752 173232508 A C 0.3545 0.3588 0.08215 0.7744 0.9816 (0.86-1.11) 0.7782 

rs2277923 173235021 C T 0.2875 0.29 0.0299 0.8627 0.9882 (0.86-1.13) 0.8761 

rs3095870 173236451 T C 0.3514 0.3639 0.6989 0.4031 0.947 (0.83-1.07) 0.3886 

Table 3.4 Case-Control association study in the discovery cohort.  The minor and major alleles for each SNP, and their frequencies in the cases of the 
discovery cohort are shown. The p-values for the x

2
 statistics under the basic allelic test and the permuted p-values are given. OR: odds ratio, CI: confidence 

interval.  
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Group SNP m/M Test/Model 
MAF 

in Cases 
MAF in 

Controls x
2
 P-value OR (95%CI) 

Permutation 
P-value 

PH 

rs3132139 A/G allelic 0.2752 0.3465 4.393 0.03609 0.7163 (0.52-0.97) 0.03996 

  
dominant 48/61 512/364 8.207 0.004174 NA 0.0119 

rs12514371 C/T allelic 0.1875 0.1718 0.3195 0.5719 1.112 0.5994 

rs3131917 T/G allelic 0.4575 0.4673 0.07191 0.7886 0.9616 0.7902 

rs703752 A/C allelic 0.4095 0.3588 2.081 0.1492 1.239 0.1638 

rs2277923 G/A allelic 0.2837 0.29 0.0359 0.8497 0.9697 0.8462 

rs3095870 A/G allelic 0.3645 0.3639 0.000284 0.9866 1.003 0.999 

PAH 

rs3132139 A/G allelic 0.35 0.3465 0.01251 0.9109 1.016 0.9191 

rs12514371 C/T allelic 0.152 0.1718 0.61 0.4348 0.8641 0.4266 

rs3131917 T/G allelic 0.4921 0.4673 0.5445 0.4606 1.104 0.4216 

rs703752 A/C allelic 0.3555 0.3588 0.01074 0.9175 0.9856 0.9101 

rs2277923 G/A allelic 0.2823 0.29 0.06263 0.8024 0.963 0.7812 

rs3095870 A/G allelic 0.3333 0.3639 0.8921 0.3449 0.874 0.3057 

PF 

rs3132139 A/G allelic 0.3367 0.3465 0.2321 0.63 0.9575 0.6244 

rs12514371 C/T allelic 0.1713 0.1718 0.001035 0.9743 0.9964 0.979 

rs3131917 T/G allelic 0.4759 0.4673 0.1653 0.6843 1.035 0.6773 

rs703752 A/C allelic 0.3601 0.3588 0.003694 0.9515 1.005 0.9381 

rs2277923 G/A allelic 0.2875 0.29 0.01549 0.901 0.9883 0.8951 

rs3095870 A/G allelic 0.3462 0.3639 0.7367 0.3907 0.9254 0.3586 

Table 3.5 Sub-phenotype analysis of PH, PAH, PF, RC in the discovery cohort.  The association analysis in each sub-phenotype is presented. The 
frequencies of the minor (m) and major (M) alleles are shown in cases and controls. For the dominant model, the genotype count is shown. Statistically 
significant p-values (<0.05) are highlighted. 
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Group SNP m/M Test 
Freq/Count 
in Affected 

Freq/Count in 
Unaffected x

2
 P-value OR (95%CI) 

Permutation 
p-value 

ATA 

rs3132139 A/G allelic 0.3252 0.3465 0.7716 0.3797 0.9091 0.3826 

rs12514371 C/T allelic 0.1833 0.1718 0.3562 0.5506 1.082 0.5554 

rs3131917 T/G allelic 0.4456 0.4673 0.7343 0.3915 0.9162 0.3816 

rs703752 A/C allelic 0.3765 0.3588 0.522 0.47 1.079 0.4376 

rs2277923 G/A allelic 0.2947 0.29 0.0422 0.8372 1.023 0.8482 

rs3095870 A/G allelic 0.374 0.3639 0.1653 0.6843 1.044 0.6663 

ACA 

rs3132139 A/G allelic 0.3557 0.3465 0.2258 0.6347 1.042 0.6284 

rs12514371 C/T allelic 0.164 0.1718 0.2528 0.6151 0.946 0.6454 

rs3131917 T/G allelic 0.4922 0.4673 1.494 0.2215 1.105 0.2098 

rs703752 A/C allelic 0.3473 0.3588 0.3399 0.5599 0.9511 0.5714 

rs2277923 G/A allelic 0.2777 0.29 0.4363 0.5089 0.9413 0.5335 

rs3095870 A/G allelic 0.3466 0.3639 0.7608 0.3831 0.9272 0.3806 

ARA 

rs3132139 A/G allelic 0.3787 0.3465 1.291 0.2558 1.15 0.2448 

rs12514371 C/T allelic 0.1391 0.1718 2.19 0.1389 0.7786 0.1309 

rs3131917 T/G allelic 0.5444 0.4673 6.762 0.00931 1.362 (1.079-1.72) 0.01099 

rs703752 A/C allelic 0.3363 0.3588 0.6211 0.4306 0.9056 0.4216 

rs2277923 G/A allelic 0.2725 0.29 0.4197 0.5171 0.917 0.5175 

rs3095870 A/G allelic 0.3482 0.3639 0.3 0.5839 0.9339 0.5914 

Table 3.6 Sub-phenotype analysis of ATA, ACA, ARA in the discovery group.  The association analysis in each sub-phenotype is presented. The 
frequencies of the minor (m) and major (M) alleles are shown in cases and controls. For the dominant model, the genotype count is shown. Statistically 
significant p-values (<0.05) are highlighted. 
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In the auto-antibody based sub-phenotypes, rs3131917 was significantly associated 

with the ARA group (p-value= 0.009, permutation p-value= 0.01, OR= 1.36, 95%CI= 

1.079-1.72) in the basic allelic test (Table 3.6). 

No other SNP showed association with any of the sub-phenotypes.   

A subsequent analysis examined whether the association between rs3132139 and 

PH depends on the presence of scleroderma. To do this, I repeated the association 

analysis between the PH+ versus the PH- scleroderma cases. I hypothesised that if 

the association found is caused by scleroderma as a common genetic background, 

the sub-subsequent analysis would be negative. However, as shown in Table 3.7, 

rs3132139 was still associated with PH in the basic allelic test (p-value= 0.02, 

permutation p-value= 0.01) and in the model analysis under the dominant model (p-

value= 0.005, permutation p-value= 0.01). Next, to further confirm that the 

association is specific to PH and does not occur due to chance, PH+ cases were 

removed from the cohort and the association test was repeated.  Indeed, when the 

PH+ cases were removed from the analysis, no association was found between the 

PH- scleroderma cases compared to controls.  

This result verifies that rs3132139 is associated with PH and the association is 

specific and independent of the presence of scleroderma.  

 

Sub-
Phenotype 

SNP Association Test 
Allele/Genotype 

Test 
P-value 

Permutation 
P-value 

PH rs3132139 PH+ vs Control A vs G 0.036 0.039 

 
 

GG + AG Vs AA 0.004 0.01 

 

PH+ vs PH- A vs G 0.02 0.01 

 
 

GG + AG Vs AA 0.005 0.01 

 

PH- vs Controls A vs G 0.7341 − 

 
 

GG + AG Vs AA 0.726 − 

Table 3.7 Subsequent association analysis of rs3132139 in the PH sub-phenotype. 
Subsequent sub-phenotype association analysis was performed to further dissect the type of 
the association or rs3132139 and PH. Statistically significant p-values (<0.05) are 
highlighted. 
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3.2.2.4 Haplotype analysis 

I performed a haplotype association analysis in Haploview between the haplotypes 

occurring in the discovery cohorts (Figure 3.3) and scleroderma, as well as the sub-

phenotypes. No haplotype was significantly associated with scleroderma or any 

other sub-phenotype (Table 3.8). The analysis was repeated in Plink with the same 

results.  

Next, I created an artificial haplotype forcing all 6 tagging SNPs to form a LD block. 

Surprisingly, this haplotype was significantly associated with scleroderma (p= 

4.05x10-6), PH (p-value= 3.32x10-12), and ARA (p-value= 0.0003) (Table 3.8). 

However, since this haplotype cannot occur physically in the population, the 

association is just an indication that specific allele combinations might have a 

synergistic effect on the disease pathogenesis. 

Table 3.8 Haplotype association analysis in the discovery cohort.  Two haplotype 
blocks were formed in Haploview and were tested for association with scleroderma, PH and 
ARA. The 6 tagging SNPs were forced together to form a haplotype block (bottom row). 
Statistically significant p-values (<0.05) are highlighted. 

 

3.2.3 Description of replication/Spanish cohort 

A replication study was designed in collaboration with Professor Javier Martin, 

Institute of Parasitology and Biomedicine Lopez-Neyra, Granada, Spain. The 

replication cohort was used to confirm important findings arising from the discovery 

cohort. DNA samples of scleroderma patients and healthy individuals were collected 

from hospitals and clinics across Spain and sent for genotyping to the lab at the 

Institute of Parasitology and Biomedicine Lopez-Neyra. Genotype and clinical data 

were then sent in our lab for the analysis. After the quality control, 1736 

scleroderma cases and 1753 control samples formed the replication cohort and 

Blocks 

SNPs in 
the 

blocks 

Alleles in 
the 

Haplotype 

Freq. 
in 

Cases 
Freq. in 
Controls x2 

P-
value PH ARA 

Block 1 rs3132139/ 

rs12514371 

GC 0.1668 0.1725 0.1997 0.655 − − 

AT 0.3484 0.3495 0.0047 0.9451 − − 

GT 0.4848 0.478 0.161 0.6882 − − 

Block 2 rs703752/ 

rs2277923 

CG 0.2777 0.2845 0.1988 0.6557 − − 

AA 0.3589 0.3552 0.04961 0.8237 − − 

CA 0.3634 0.3602 0.03801 0.8454 − − 

 

All SNPs GTTAAA 0.02258 0.004235 21.24 
4.05E-
06 

3.32E-
12 0.0003 
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were included in the study (Table 3.2). No clinical data about RC and ARA were 

available. All 6 SNPs were in Hardy-Weinberg equilibrium (Table 3.3).  

3.2.3.1 LD in the replication cohort 

The genotype data were used to construct the LD plot in Haploview (Figure 3.4). 

The pattern of LD in the replication cohort is similar to that of the discovery cohort, 

with similar levels of LD (r2 values) between the pairs of the individual SNPs. SNPs 

rs3131917 and rs2277923 were unrelated (r2= 0.19). Two LD blocks were formed 

again, but different SNPs were included in each block. 

 

Figure 3.4 LD plot of the replication cohort.  R
2
 values between the pairs of SNPs are 

indicated in the red squares. The SNPs are: 1: rs3132139, 2: rs12514371, 3: rs3131917, 4: 
rs703752, 5: rs2277923, 6: rs3095870. 

 

3.2.3.2 Case-control association study 

The main aim of a replication study is to confirm positive associations and give 

strength and robustness to genetic findings. The overall case-control association 

study in the discovery cohort did not show any significant association. However, 

since the genotype data of the replication cohort is a valuable source of information, 

I performed a case-control association study in a similar way.  

The results of the study were really intriguing (Table 3.9). Three SNPs showed 

evidence of association with scleroderma overall. In particular, rs3132139 was 

associated with scleroderma in the basic allelic test (p-value= 0.038, OR= 1.11, 

95%CI= 1.006-1.226), but the association was no longer significant after the 

permutation analysis (permutation p-value= 0.054). However, in the model analysis, 

rs3132139 was significantly associated with scleroderma under the recessive model 

(p-value= 0.005, permutation p-value= 0.01).  
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Rs3131917 was also found to be significantly associated with scleroderma in a 

model analysis under the dominant model (p-value=0.004, permutation p-value= 

0.008) (Table 3.9). 

In the model analysis, rs3095870 also showed evidence of association, with the C 

allele of the SNP being associated with scleroderma (p-value= 0.03), but the 

association failed after the permutation analysis (permutation p-value= 0.06) (Table 

3.9).  

3.2.3.3 Sub-phenotype analysis 

A sub-phenotype association analysis was performed in the replication cohort 

(Table 3.10). SNP rs3132139 was significantly associated with PH (p-value= 

0.02203, OR= 1.263, 95% CI= 1.034-1.543, permutation p-value= 0.0205) in the 

basic allelic test, confirming successfully the association found in the discovery 

cohort. This result further verifies that rs3132139 is directly associated with PH and 

the association is replicated in an independent cohort of Caucasian origin.  

The sub-phenotype analysis in the replication cohort also revealed that SNPs 

rs3131917 and rs12514371 are associated with PH (permutation p-value=0.0032 

and 0.033, respectively) (Table 3.10). These data suggest a strong overall 

association between the NKX2-5 genomic locus and PH.  

Furthermore, rs3131917 was also found to be associated with the ATA sub-

phenotype (permutation p-value=0.01) (Table 3.10).  
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SNP Position 
Minor 
Allele 

Major 
Allele Test 

MAF in 
Cases 

MAF in 
Controls x2 P-value OR (95%CI) 

Permutation 
P-value 

rs3132139 173228730 A G 
allelic 0.3783 0.354 4.285 0.03846 

1.11(1.006-
1.226) 

0.05405 

recessive 254/1453 201/1518 7.554 0.005988 NA 0.01698 

rs12514371 173229104 G A allelic 0.1562 0.1629 0.5642 0.4526 0.9512 0.6154 

rs3131917 173230018 T G 
allelic 0.4863 0.5107 3.758 0.05255 0.9071 0.06383 

dominant 1186/433 1239/358 8.119 0.004379 NA 0.008385 

rs703752 173232508 A C allelic 0.3115 0.3252 1.47 0.2254 0.9387 0.2 

rs2277923 173235021 C T allelic 0.3032 0.3102 0.3877 0.5335 0.9675 0.5 

rs3095870 173236451 T C 
allelic 0.3101 0.3257 1.813 0.1781 0.9303 0.1667 

dominant 895/813 874/687 4.232 0.03968 NA 0.06429 

Table 3.9  Case-control association study in the replication cohort.  The minor and major alleles, and their frequencies in the cases of the replication 
cohort are shown. The basic allelic test was used for the overall association analysis. Where a marginal or significant association was found, a model analysis 
was also conducted, and the genetic model with lowest p-value is shown. The x

2
 test value, the p-value, the 95% CI of the OR (odds ratio) are provided. 

Statistically significant p-values (<0.05) are highlighted. 
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SNP m/M Test 
MAF in 
Cases 

MAF in 
Controls x2 P-value OR (95%CI) 

Permutation 
P-value 

PH 

rs3132139 A/G allelic 0.4093 0.3543 5.244 0.02203 1.263 (1.034-1.543) 0.0205 

rs12514371 C/T allelic 0.1244 0.1632 4.471 0.03447 0.7289 (0.54-0.978) 0.033 

rs3131917 T/G allelic 0.4372 0.5106 8.175 0.004247 0.7445 (0.607-0.911) 0.0032 

rs703752 A/C allelic 0.2917 0.325 2.051 0.1521 0.8553 0.1383 

rs2277923 G/A allelic 0.2987 0.3103 0.2518 0.6158 0.9466 0.6094 

rs3095870 A/G allelic 0.292 0.3254 2.02 0.1553 0.855 0.1394 

ACA 

rs3132139 A/G allelic 0.387 0.3543 4.689 0.03036 1.151 (1.013-1.3) 0.0399 

rs12514371 C/T allelic 0.1635 0.1632 0.000609 0.9803 1.002 0.9831 

rs3131917 T/G 
allelic 0.4884 0.5106 1.907 0.1674 0.9149 0.1683 

dominant 499/191 1239/358 7.319 0.006823 NA 0.0166 

rs703752 A/C allelic 0.3051 0.325 1.861 0.1725 0.912 0.1641 

rs2277923 G/A allelic 0.3011 0.3103 0.4012 0.5265 0.9577 0.5243 

rs3095870 A/G allelic 0.305 0.3254 1.903 0.1677 0.9096 0.1601 

Table 3.10 Sub-phenotype analysis in the replication cohort.  The association analysis in each sub-phenotype is presented. The frequencies of the minor 
(m) and major (M) alleles are shown in cases and controls. For the dominant model, the genotype count is shown. The x

2
 test value, the p-value, the 95% CI 

of the OR (odds ratio) are provided. Statistically significant p-values (<0.05) are highlighted. 



146 
 

3.2.3.4 Haplotype analysis 

Following the same steps as before, I performed a haplotype association analysis in 

Haploview between the haplotypes of the replication cohort (Figure 3.4) and the 

disease overall. No haplotype showed any evidence of association with scleroderma 

or PH (Table 3.11). 

In a similar way, I created an artificial haplotype forcing the 6 tagging SNPs to form 

a haplotype, which showed evidence of association with scleroderma overall (p-

value= 0.01), and also with PH (p-value= 0.007) (Table 3.11).  

Table 3.11 Haplotype analysis in the replication cohort.  Two haplotype blocks were 
formed in Haploview, and tested for association with scleroderma and PH. The 6 tagging 
SNPs were forced together to form a haplotype (bottom row). Statistically significant p-
values (<0.05) are highlighted. 

 

3.2.4 Meta-analysis 

In an attempt to obtain higher statistical power and more robust results, I performed 

a meta-analysis of the two cohorts. SNP rs3131917 showed evidence of association 

with scleroderma (p-value= 0.029, OR= 1.089) in the two independent cohorts of 

Caucasian origin (Table 3.12). 

Heterogeneity in a meta-analysis can cause poor results and is often the reason 

why most associations fail to replicate in independent cohorts. The heterogeneity 

can be assessed by the Cochran’s Q statistic test and the I2 statistics. I2 statistics is 

used to identify the effect of heterogeneity measuring the proportion of total 

heterogeneity [I2 = 100% x (Q-df)/Q]. In this study, the p-value for the Cochrane’s Q 

Blocks 
SNPs in the 

blocks 

Alleles in 
the 

Haplotype 

Freq. 
in 

Cases 
Freq. in 
Controls x2 P-value PH 

Block 1 

rs12514371/ 
rs3131917 CG 0.1551 0.1617 0.5022 0.4785 − 

rs12514371/ 
rs3131917 TG 0.3297 0.3478 2.299 0.1294 − 

rs12514371/ 
rs3131917 TT 0.5152 0.4905 3.814 0.05082 − 

Block 2 

rs703752/ 
rs2277923/ 
rs3095870 AAA 0.3093 0.325 1.921 0.1657 − 

rs703752/ 
rs2277923/ 
rs3095870 CGG 0.3053 0.3127 0.4361 0.509 − 

rs703752/ 
rs2277923/ 
rs3095870 CAG 0.3854 0.3623 3.859 0.04949 − 

  All SNPs GTTCAG 0.0136 0.007674 5.651 0.0174 0.0072 
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statistic test >0.1 and I2 <50%, confirming the absence of heterogeneity in the meta-

analysis.  

SNP 
Minor 
allele 

Major 
allele 

No of 
studies P-value OR Q I 

rs3132139 A G 2 0.1164 1.0648 0.1808 44.17 

rs12514371 G A 2 0.4669 0.963 0.7681 0 

rs3131917 T G 2 0.02902 1.089 0.6997 0 

rs703752 A C 2 0.2609 0.9553 0.5917 0 

rs2277923 C T 2 0.5498 0.9752 0.8071 0 

rs3095870 T C 2 0.1162 0.937 0.833 0 

Table 3.12 Meta-analysis.  The minor and major alleles are given for each SNP, and the 
number of individual cohorts, where the meta-analysis is performed (n=2). The p-values and 
the ORs were calculated based on the allelic test. The p-value (Q) for the Cochran’s Q 
statistic test shows the heterogeneity among the populations. Statistically significant p-
values (<0.05) are highlighted. 

3.3 Summary of results 

Six tagging SNPs across the NKX2-5 genomic locus were genotyped in a discovery 

cohort of scleroderma patients and healthy individuals of UK/Caucasian origin. The 

tagging SNPs were in strong LD with each other. SNP rs3132139 showed a 

significant association with PH that was specific to the phenotype and independent 

of the presence of scleroderma. The association was efficiently replicated in the 

replication cohort of Spanish/Caucasian origin. The associated SNP is located at 

the 5’ end, downstream of NKX2-5. Based on the in silico analysis, the region and 

specifically the SNP might retain functional properties that will be further explored.  

While no SNP was associated with scleroderma in the discovery cohort, some 

positive findings emerged from the replication cohort. In particular, SNPs rs3131917 

and rs12514371 were found to be associated with PH in the sub-phenotype 

analysis. The two SNPs are located near rs3132139 and the positive associations 

add evidence for the functionality of this genomic region.   

A meta-analysis was performed across the discovery and replication cohorts, and 

SNP rs3131917 showed an overall associated with scleroderma.  

In the sub-groups of different auto-antibodies, some positive associations were 

found in the ACA and ARA sub-groups. In particular, rs3131917 was associated 

with ACA in the discovery cohort. Unfortunately, no clinical data regarding the 

presence of ARA antibodies were available for the replication cohort, and the 

association could not be replicated. In the replication cohort, SNPs rs3131917 and 

rs3132139 were associated with the ACA sub-group.  
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The LD followed a similar pattern in both cohorts with similar r2 values. However, 

different LD blocks were formed in each cohort. The haplotypes were tested for 

association with scleroderma and the sub-phenotypes, but no association was 

found.  

3.4 Discussion 

The results presented here suggest that the NKX2-5 gene is a strong candidate 

gene for the pathogenesis of PH and scleroderma. As previously mentioned, 

mutations in NKX2-5 gene cause CHD, and have been extensively studied. Apart 

from CHD-causing mutations, NKX2-5 has not previously been genetically 

associated with any other disease. Following up previous work conducted in the lab, 

which showed that NKX2-5 is a critical regulator of vascular remodelling in PAH and 

atherosclerosis (330), I aimed to investigate whether NKX2-5 is genetically linked 

with vascular disease.  

I designed a candidate gene case-control association study in two independent 

cohorts of scleroderma patients. Scleroderma is a complex disease with extensive 

vasculopathy and pulmonary complications. For the purposes of this study, 

scleroderma patients were categorised in groups based on their clinical findings 

arising from the RHC, the high resolution computed tomography, and the presence 

of scleroderma-related auto-antibodies.  Patients with a mPAP >25mmHg on RHC 

in the presence of PF with normal pulmonary arterial wedge pressure <15 mmHg 

were categorised as PH. Based on the updated clinical classification of pulmonary 

hypertension, the first group includes connective-tissue associated PAH (180). The 

pathological features of this category include medial hypertrophy, intimal 

proliferative and fibrotic changes, adventitial thickening with mild to moderate 

perivascular inflammatory infiltrates and lymphoid neogenesis, complex lesions 

(plexiform, dilated lesions) and thrombotic lesions, all of which are inextricably 

linked to vascular remodelling.  

SNP rs3132139 downstream of NKX2-5 was significantly associated with PH, and 

the association was efficiently replicated. Further analysis revealed that the 

association was independent of the presence of scleroderma. This finding 

supported my initial hypothesis and confirmed that NKX2-5 genomic locus is 

associated with PH. Interestingly, the association was not detected with the PAH or 

PF sub-groups, suggesting that NKX2-5 is associated with a complex pathological 

background that involves vascular remodelling and fibrosis. The same SNP, 

rs3132139, showed a significant association (p=0.006) in a meta-analysis of 46 
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genome-wide association studies (GWAS) in coronary artery disease (CAD) 

patients [Data on coronary artery disease/myocardial infarction have been 

contributed by CARDIoGRAMplusC4D investigators and have been downloaded 

from www.CARDIOGRAMPLUSC4D.org (422)]. CAD is an arterial disease, 

described by plaque formation and constrictive vascular remodelling in the carotid 

artery, as well as endothelial dysfunction and inflammation (423). This finding 

further supports our hypothesis for the functional involvement of NKX2-5 in vascular 

remodelling. 

To date most of our knowledge of the genetics of PH comes from studies on PAH 

largely focusing on BMPR2 mutations. More than 300 independent BMPR2 

mutations have been described accounting for >75% of familial PAH and 10-25% of 

sporadic cases of the disease (261). Additional mutations in other genes of the 

TGF-β pathway have been identified including SMAD9, ACVRL1, and ENG in 

patients with PAH associated with hereditary haemorrhagic telangiectasia (HHT) 

(424). Whole-exome sequencing in PAH patients without mutations in BMPR2 and 

other TGF-β pathway members, led to the discovery of novel genetic causes 

including CAV1 and KCNK3 (425). NKX2-5 is a new gene shown to be associated 

with PH that has already an established role in PAH and vascular remodelling.  

In future, it would be interesting to perform a similar genetic study focusing on 

NKX2-5 in a cohort of IPAH patients without BMPR2 mutations or other AID. 

However, getting enough samples to obtain statistical power in a case-control study 

is challenging. At the moment, a big cohort of DNA samples of PAH patients is 

being collected in Cambridge under the supervision of Professor Nick Morrell and in 

collaboration with many scientists and doctors across the country, including the 

Centre for Rheumatology at Royal Free NHS Foundation Trust Hospital. These 

DNA samples will be subjected to whole-genome sequencing, and if the data 

become widely available to scientific community many questions regarding the 

genetic background of IPAH would be answered.     

Due to the strong autoimmune component of scleroderma and the high imbalance 

of the immune system, the HLA/MHC genes have been prominently associated with 

scleroderma in the majority of GWAS (290, 292, 296). Outside HLA region, positive 

associations have been found in genes involved in the pathogenesis of the innate 

and adaptive immune systems such as type I interferon, TNFα and IL12 pathways, 

loci associated with T-cell and B-cell immunity, autophagy and inflammation (288, 

426). Published data regarding the roles of non-conventional genes in scleroderma 

are limited. DNASE1L3, ATG5, PPARγ, and CTGF are few non-HLA and non-

http://www.cardiogramplusc4d.org/
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immunity-related genes that have been associated with scleroderma (296, 308, 

427), with CTGF and PPARγ shown to be directly involved in fibrosis and the 

pathogenesis of scleroderma. 

In this study, no positive association was found between any of the SNPs and 

scleroderma in the discovery cohort. In the replication cohort, however, rs3131917 

and rs3132139 were found to be associated with the disease. Case-control 

association studies can occasionally lack statistical power to detect genetic 

associations due to small sample size, and sometimes a meta-analysis is performed 

to identify true associations among different studies, as this often has higher 

statistical power to reveal true associations. The meta-analysis performed in this 

study showed that rs3131917 is associated with scleroderma across two 

independent cohorts of the same ethnic origin.  

Several auto-antibodies are present in scleroderma that can be used for diagnosis, 

sub-grouping of patients and predicting the likelihood of organ complications. For 

example, the majority of patients with ACA antibodies have LcSSc, and almost 20% 

of them will develop PAH (428). Also, the frequency of the antibodies can vary 

among different ethnic populations. For example, although 30% of white 

scleroderma patients are positive for ACA, the frequency is lower in African-

American and Thai scleroderma patients (295). In this study, the percentages of 

scleroderma patients positive for the ATA antibody were similar (~22%) in the two 

cohorts. However, the percentage of the ACA-positive scleroderma patients in the 

replication cohort (46.3%) was much higher compared to the discovery cohort 

(~36%). Interestingly, a similar increase was also seen in the percentage of SSc-

PH; 22.4% in the replication cohort compared to ~6% in the discovery cohort. 

Another interesting finding was the marginal association found between rs3095870 

and scleroderma in the replication cohort. The same SNP, which is located 

upstream of NKX2-5 transcription start site, was associated with SLE in a previous 

genetic study (331). In particular, a case-control study was performed in two 

independent Japanese cohorts and showed a functional interaction between 

rs3095870, upstream of NKX2-5, and rs3748079 at ITPR3 promoter, a locus where 

NKX2-5 binds. These data provide evidence that rs3095870 might be a functional 

SNP in SLE and scleroderma, which needs to be explored further. Scleroderma and 

SLE are both complex AIDs that share some common characteristics such as the 

increased production of auto-antibodies and the vascular and pulmonary 

complications. Few years ago, a study reported that the two diseases also share 

common genetic background including KIAA0319L, PXK, and JAZF1 genes (292). 
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Taking the above into consideration, as well as the in silico analysis, rs3095870 can 

be considered as a potential regulatory locus for NKX2-5 expression, and more 

studies will be performed to explore this. 

Allele and genotype frequencies and counts were examined in detail and compared 

between the 2 cohorts, as well as against the reference frequencies obtained from 

the 100000 Genomes Project. The frequencies were similar between the 2 cohorts 

and complied with the reference frequencies. The statistical data of the sub-groups 

were also similar with few changes observed in the ACA group. In addition, LD 

followed the same pattern with similar r2 values, however, a different pattern of the 

LD blocks was observed.  

Although the 2 independent cohorts were highly related, differences were seen in 

the association studies, with more positive findings seen in the replication cohort 

compared to the discovery cohort. A possible explanation can be that the replication 

cohort is larger, and therefore it has more statistical power to detect small effects. 

Another possibility is that the clinical data and classification criteria varied among 

the different Rheumatology clinics, and consequently the cohorts are more 

heterogeneous compared to the discovery cohort. In the case of the replication 

cohort, scleroderma patients were recruited in this study at different hospitals and 

health centres across Spain, a process that might lack consistency and also affect 

accuracy.  

Scleroderma is a very heterogeneous disease and that can also affect the efficiency 

of the replication studies. Especially, in the case of the disease-related sub-

phenotypes, due to the fact that clinical characteristics of scleroderma patients can 

change over time during the disease progression. In fact, in many Rheumatology 

centres, scleroderma patients undergo clinical evaluation every year. In this study 

as in many other studies, the clinical characteristics of the patients refer to a single 

time-point that coincides with the study set-up. Given this fact, the results of the 

genetic study might differ at a later time-point.  

To conclude, this is the first time that NKX2-5, a gene outside HLA and immunity-

related loci, was shown to be associated with scleroderma in a meta-analysis 

across two independent cohorts of the same ethnic origin. In addition, an 

association was found between rs3132139, downstream of NKX2-5 gene, and PH, 

which was replicated in an independent cohort. The association was independent of 

the presence of scleroderma. The data propose that NKX2-5 locus is genetically 

associated with PH, and further support previous findings showing a critical role of 
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NKX2-5 in vascular remodelling. The potential functional effect of the associated 

SNPs on the regulation of NKX2-5 were further explored and the data are presented 

in the following chapters. 
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CHAPTER 4 - RESULTS: EXPRESSION OF NKX2-5 IN 

VASCULAR SMOOTH MUSCLE CELLS 

4.1 Introduction 

PH is characterised by an increase in peripheral pulmonary vascular resistance and 

vascular remodelling. Vascular remodelling describes a range of structural and 

functional changes in the vessel wall that involve cell-cell and cell-matrix 

interactions. Therefore, different cell types are expected to be implicated in this 

procedure.  Although endothelial dysfunction is lately considered to initiate the 

disease through the loss of barrier integrity, PASMCs are the important effectors in 

vascular remodelling. Despite the fact that their precise role is not yet fully 

understood, published data suggest that cell growth, proliferation, migration and 

resistance to apoptosis are key characteristics of PASMCs in vascular remodelling 

[reviewed in (30, 91, 170)]. 

PASMCs are phenotypically and functionally heterogeneous cells and this has been 

highlighted in the pulmonary vascular wall. This heterogeneity may be due to 

developmental factors, such as the embryonic origin of the cells, as well as 

environmental factors such as increased serum levels, stress etc. The de-

differentiation of PASMCs is an example of their plasticity and has been 

demonstrated in many studies (91, 170, 171). It describes the phenotypic transition 

of a differentiated contractile cell to a less differentiated embryonic-like synthetic 

state following injury and stimulation. The two phenotypes are not mutually 

exclusive, and there is evidence that a synthetic cell can re-acquire the contractile 

phenotype once injury resolves and the local environment is normalised (30, 33). 

Phenotypic differentiation can be monitored by gene and protein markers 

associated with each phenotype. Although, SMC markers can be selective for SMC 

in adult vessels, they are also expressed by other cell types such as fibroblasts and 

myofibroblasts. As a matter of fact, the levels of expression rather than the 

presence or absence of a protein can better distinguish the different SMC 

phenotypes.  Contractile markers such as SM22, SM-MHC, desmin, calponin, α-

SMA, and others are expressed at lower levels in synthetic SMCs, which also 

produce increased levels of ECM. Therefore, increased expression of collagens, 

CTGF, MMPs, as well as transcription factors that are abundant in matrix such as 

KLF4, can confirm the synthetic state.  
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Heterogeneity has also been observed in the cellular and molecular pathways that 

regulate vascular remodelling. Many studies have focused on investigating the 

response of PASMCs to different stimuli such as the secretion of pro-inflammatory 

molecules and cytokines, other physiological factors and mechanisms, and 

signalling cascades. The studies show that numerous different pathways can induce 

similar downstream cellular changes 

We have previously shown that NKX2-5 is a major regulator of vascular 

remodelling, with high levels of expression in synthetic VSMCs (330). When NKX2-5 

is knocked down in synthetic VSMCs, the cells revert to a contractile phenotype. 

Since NKX2-5 is the main focus of this thesis, the aim of this chapter is to address 

two main areas: a) the gene and protein expression analysis of NKX2-5 in 

HPASMCs and other VSMC that were used in the experimental work and, b) the 

cellular and molecular mechanisms that activate NKX2-5 expression in HPASMCs.  

Vascular injury, stress and hypoxia result in both immediate and long-term 

responses mediated by signalling pathways including TGF-β, FGF2, PDGF, Wnt, 

and the MAPK cascade. Although these pathways are well studied in disease, the 

trigger that activates NKX2-5 in diseased vessels remains unknown. To explore this, 

primary and immortalised HPASMCs were stimulated or treated with proteins, 

cytokines, agonists and antagonists involved in different signalling pathways. The 

TGF-β superfamily is a key regulator of vascular remodelling (1.2.3.3, Figure 1.4). 

TGF-β1 signals through a hetero-tetrameric receptor complex composed of two type 

I and two type II transmembrane receptor subunits, and initiates the downstream 

signalling through the SMADs, leading to increased ECM production. BMP2 and 

BMP4 are members of the same superfamily that bind the BMPR2 receptor to 

initiate downstream signalling. SD208 is a potent inhibitor of TGF-βR1/ALK5 

receptor, which recruits and phosphorylates SMAD2/3 and blocks downstream 

TGF-β signalling. 

Apart from the TGF-β superfamily, another focus of this study is also ET-1 (1.1.5.5). 

ET-1 is a potent mitogen for PASMCs through the activation of phosphorylated-

ERK1/2, c-jun and c-fos (429, 430), and it is able to modulate ECM remodelling by 

stimulating fibroblast-induced collagen synthesis (431). Bosentan is a competitive 

antagonist of both ETA and ETB receptors and it has been used as a treatment for 

PAH. More recently, tyrosine kinase receptors PDGFR and FGFR2 have been 

proposed to be responsible for the increased PASMC growth in PAH (1.2.3.3). 

FGF2 is mainly produced by endothelial cells and has recently been proposed to 

contribute to PH through the regulation of EndoMT and TGF-β (114, 132). Imatinib 
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is another selective inhibitor used to suppress PDGF signalling by inhibiting its 

receptor PDGFRβ. Furthermore, cells exposed to hypoxia and treated with HIF-1α 

inhibitor demonstrated a well-established role of hypoxia in driving VSMC 

proliferation (1.2.5.3.3). The effect of CX4945, a CK2 inhibitor that blocks NKX2-5 

phosphorylation and therefore its nuclear translocation and activation, was also 

evaluated (1.4.5.3). Last but not least, selective inhibitors for members of the MAPK 

signalling cascade were used to identify whether NKX2-5 is a direct downstream 

target for any of the kinases. 

4.2 Results 

4.2.1 NKX2-5 gene and protein analysis 

Analysis of NKX2-5 protein and gene expression is complicated by the numerous 

post-transcriptional and post-translational modifications. The gene spans a 3.2Kb 

genomic region, and it contains 2 exons that can be transcribed in 4 protein-coding 

transcripts (Figure 1.8). The longest transcript (1709bp, ENST00000329198.4) is 

translated to a 324 amino acid protein (CCDS4387, P52952) of 34.9KDa weight.  

There are at least 8 commercial polyclonal and monoclonal antibodies available 

against the human NKX2-5 protein. The specificity of the commercial antibodies is 

tested in various cells lines (CCRF-CEM, 293T) and those antibodies usually 

identify an over-expressed protein in transfected cells.  Most of the antibodies 

recognise multiple bands or a triplet between sizes of 30-50KDa.  

Since NKX2-5 is a transcription factor, it can only exert its function in the nucleus, 

where it is able to bind NKE consensus binding elements found in promoters, 

enhancers or other regulatory regions of downstream target genes and regulate 

their transcription. Therefore, I have focused on the analysis of the nuclear protein, 

and the data presented in this thesis refer to the nuclear protein, unless otherwise 

stated.  

To facilitate my work, I isolated cytoplasmic and nuclear protein extracts from 

primary HPASMCs and used 2 different antibodies to detect the human NKX2-5 

protein; a monoclonal Abcam (ab54567) and a polyclonal Santa-Cruz antibody (sc-

14033). The distinct cytoplasmic and nuclear fractions were confirmed by the use of 

antibodies specific to the housekeeping proteins: GAPDH and β-tubulin for the 

cytoplasmic fraction, and TBP for the nuclear fraction. In the cytoplasmic fraction, 

the Santa-Cruz polyclonal NKX2-5 antibody detected a triple band around 35KDa 

(Figure 4.1). In the nuclear fraction, only a single band was detected by the Abcam 
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monoclonal antibody. The band was higher than the cytoplasmic protein, seen at 

~55KDa (Figure 4.1).  

 

Figure 4.1 Analysis of NKX2-5 human protein.  Cytoplasmic (cyto) and nuclear (nuc) 
extracts were prepared from contractile and synthetic primary HPASMC and analysed by 
SDS-PAGE and Western blot to determine the specificity of a mouse monoclonal (left) and a 
rabbit polyclonal (right) antibodies specific to NKX2-5 protein. Two housekeeping proteins of 
different sizes were used to determine the effective separation of nuclear and cytoplasmic 
proteins, and also determine the approximate size of the human NKX2-5 protein: the 
cytoplasmic β-tubulin at 51KDa and the nuclear TATA-binding protein (TBP) at 38KDa. The 
Abcam antibody (ab54567) recognises a single nuclear band at approximately 52KDa. The 
Santa-Cruz antibody (sc-14033) identifies a triplet at around 36KDa in the cytoplasmic 
fraction. Blot i immunodecorated with NKX2-5 was washed, stripped and re-blotted with β-
tubulin and TBP (ii).The same lysates were used to test both antibodies.    

   

There are at least 5 known sites at which the NKX2-5 protein is modified post-

translationally including phosphorylation (Ser164, Thr180, Ser78), di-methylation 

(Arg225) and sumoylation (K51) (Source: http://www.phosphosite.org). It has been 

shown that NKX2-5 protein gets phosphorylated at 2 different sites by CK2, 

promoting its nuclear localisation (364). However, the phosphorylation alone is not 

enough to explain the differences in the molecular weight of the nuclear protein 

compared to the cytoplasmic, since each phosphate group is approximately 80Da. 

In addition, Costa et al has shown that transcriptionally-activated NKX2-5 is 

sumoylated in the nucleus at 2 different sites including K51 (368). SUMO is an 

11KDa polypeptide structurally related to ubiquitin that can be covalently conjugated 

to lysine residues within target proteins at a consensus site.  

Taking these into consideration, I concluded that the nuclear protein is 

phosphorylated and sumoylated and the total extra weight should be roughly 22-

23KDa. However, it is possible that additional modifications specific to HPASMCs 

could occur. Therefore, the 51KDa nuclear protein band detected by the Abcam 

monoclonal antibody was analysed for all the sub-sequent protein analysis.  
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The specificity of the results was confirmed by work done by other members of the 

lab using a NKX2-5 expression vector (unpublished data). 

The analysis of gene expression was complicated for similar reasons. Due to the 

highly repetitive and GC-rich genomic locus, primer design was challenging. In 

addition, the low levels of NKX2-5 expression and the absence of expression in 

normal vessels, made amplification difficult. 

 

4.2.2 Expression of NKX2-5 in HPASMC and other VSMC 

4.2.2.1 Primary HPASMC 

Primary HPASMC lines (Promocell, Cat. no: C-12521) originating from 6 different 

human subjects were used in these studies. The company provided information 

regarding the age and gender, as well as the basic medical history of the subjects. 

The cells were cultured in vitro under conditions that favoured either the contractile 

or the synthetic state as explained in detail in the section 2.7.  

Morphology 

The cells were cultured in 5% FCS and photographed at an early passage (passage 

number 2 or 3). As shown in the pictures below, the elongated spindle-shaped 

morphology is retained among the different primary cells with some differences in 

cell size. The size of SMCs can range between 20-500μm, with the largest cells 

found in the uterus of pregnant women (432). The population doubling time also 

differed among the primary lines from 30-50 hours, as calculated during culture. In 

addition, the cells responded differently to increased amount of serum in the 

synthetic state. The effect ranged from some cells increasing their doubling time 

immediately, while others took longer to adjust to the new environmental conditions.  
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Figure 4.2 Morphology of primary HPASMC.  Primary HPASMC from 6 different human 
subjects (Promocell, Cat. no: c-12521) were cultured in smooth muscle media containing 5% 
FCS. The cells were photographed at an early passage to compare their morphology. All the 
cells present a spindle like shape, but they differ in size, as well as in the doubling time. A 
bar scale of 400µm is shown for comparison among the cells.  

 

Expression profile 

The expression levels of contractile and synthetic markers during SMC de-

differentiation has been extensively studied (1.2.3.2). Increased NKX2-5 expression 

has been associated with the synthetic state (330). Indeed, protein and gene 

expression levels were higher in the synthetic compared to contractile HPASMC 

(Figure 4.3 A, B), but the difference was significant only at the gene level.  

The cells were treated with TGF-β and the levels of NKX2-5 were analysed. Since 

TGF-β has been shown to increase synthesis of fibronectin, collagen, and PAI-1 

that are all markers of the synthetic state, NKX2-5 is also expected to increase upon 

stimulation. Indeed, NKX2-5 expression was induced in response to TGF-β and the 

effect was greater in contractile compared to synthetic HPASMCs (Figure 4.3 A, B). 

In the synthetic state, NKX2-5 appears to be activated at maximal levels and 

therefore the response to TGF-β is not as significant. 

To further characterise the primary HPASMCs in both contractile and synthetic 

phenotypes, I analysed the expression profile in response to a variety of growth 

factors and cytokines. Contractile and synthetic HPASMCs were cultured 

accordingly, and after an overnight serum starvation in 0.1% FCS the cells were 

stimulated with 2ng/ml TGF-β, 50ng/ml FGF2, 100nM ET-1 and 10ng/ml BMP2 for 

24 hours. I analysed the protein and gene expression of NKX2-5 along with the 
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gene expression of COL1A2 and CTGF as markers of the synthetic phenotype and 

fibrosis. At the protein level, NKX2-5 was expressed more in synthetic compared to 

contractile cells (Figure 4.4) and TGF-β stimulated expression similarly as before 

(Figure 4.3).  

 

Figure 4.3 NKX2-5 expression in primary HPASMC.  Primary HPASMC were cultured 
under conditions favouring the contractile or the synthetic state. The cells were serum-
starved overnight in 0.1% FCS and then treated with 2ng/ml TGF-β for 24 hours. The cells 
were lysed and nuclear protein and total RNA were extracted and subjected to SDS-
PAGE/Western blot and qPCR analysis respectively. A. NKX2-5 nuclear protein from 
contractile and synthetic cells stimulated with TGF-β. Protein expression was analysed with 
densitometry relative to expression of GAPDH (housekeeping protein) in ImageJ, and the 
results are shown in the bar plot exactly below the western blot, with the bars corresponding 
to the bands of the blot. B. NKX2-5 gene expression was analysed with qPCR. N=3 
(replicate experiments). *p≤0.05.   

 

 

Figure 4.4 NKX2-5 protein expression is response to different stimuli.  Primary 
HPASMC were cultured under conditions favouring the contractile or the synthetic state. The 
cells were serum-starved overnight in 0.1% FCS and then treated with the following growth 
factors for 24 hours: 2ng/ml TGF-β, 50ng/ml FGF2, 100nM ET-1, and 10ng/ml BMP2. After 
stimulation, nuclear protein was extracted and subjected to SDS-PAGE/Western blot 
analysis. NKX2-5 protein expression was analysed with densitometry relative to expression 
of GAPDH (housekeeping protein) in ImageJ. N=3 (replicate experiments). 
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As shown before, TGF-β stimulation increased NKX2-5 gene expression only in the 

contractile cells, but none of the other mediators affected NKX2-5 in either state 

(Figure 4.5). Endogenous gene expression of COL1A2 and CTGF was higher in 

synthetic than in contractile cells, but upon TGF-β stimulation only CTGF was 

affected in a positive manner. None of the other mediators affected significantly 

gene expression of COL1A2 and CTGF (Figure 4.5).  

 

 

Figure 4.5 Gene expression profile of primary HPASMC.  Primary HPASMC were 
cultured under conditions favouring the contractile or the synthetic state. The cells were 
serum-starved overnight in 0.1% FCS and then treated with the following growth factors: 
2ng/ml TGF-β, 50ng/ml FGF2, 100nM ET-1, and 10ng/ml BMP2. After 24 hours, total RNA 
was extracted and subjected to qPCR analysis. Gene expression of NKX2-5, Collagen 1 
alpha 2 (COL1A2), and CTGF was analysed against expression of TBP (housekeeping 
gene) in contractile (A) and in synthetic (B) HPASMC. N=2 (replicate experiments). 
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4.2.2.2 Isolated primary HPASMC and VSMC from PAH/PAD/Diabetic 

patients 

VSMCs and lung fibroblasts were isolated from different subjects: a) diseased lung 

tissue of PAH patients (HPASMCs and fibroblasts) after lung transplantation, b) 

diseased vessels of diabetic and PAD patients after limb amputation (VSMCs), and 

c) healthy controls. 

Morphology 

Isolated HPASMCs exhibited the usual spindle-like morphology. Interestingly, 

HPASMCs that were isolated from the lung tissue of a young PAH patient (4 year 

old) were significantly smaller with a very rapid population doubling time (Figure 

4.6). 

 

Figure 4.6 Morphology of primary PASMC isolated from a PAH patient.  Primary 
HPASMC were isolated from a lung transplant of a young PAH patient, and cells were 
photographed at different time points after isolation. Approximately 2 weeks after the 
isolation, the cells form small colonies and start to sprout out and proliferate. The isolated 
cells retain their spindle-like shape, but are relatively small in size compared to cells isolated 
from an adult. Also, the cells exhibited a very high proliferation rate and short population 
doubling time.  

 

Phenotypic characterisation 

In order to confirm the efficiency and specificity of my protocol for the isolation of 

HPASMCs from tissues and vessels, I used immunofluorescence to characterise 

the phenotype of the isolated cells. VSMCs and adventitial fibroblasts isolated from 

the pulmonary arteries of PAH and PAD patients and healthy individuals were 

stained for cell-specific markers such as α-SMA and CD90 (Thy1). α-SMA is a 

contractile marker of VSMCs, but not specific to VSMC only, since expression has 

been found in other cell types, such as myofibroblasts. However, the expression of 

α-SMA is commercially used to identify VSMCs and to determine the cell phenotypic 

state. CD90 is a surface antigen expressed on fibroblasts and together with 

vimentin, they both are exclusively used as specific markers for the staining of 

fibroblasts. Although the specificity of both α-SMA and CD90 is arguable, the two 
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markers are widely used commercially for the phenotypic characterisation and 

discrimination among primary cells.  

Commercially bought primary HPASMCs that were cultured in vitro under the 

synthetic conditions were used as a control. α-SMA was ubiquitously expressed in 

all 3 cell types, exhibiting higher levels of expression in PAH PASMCs (Figure 4.7). 

PAH fibroblasts also expressed very high levels of α-SMA. However, expression of 

CD90 was specific to fibroblasts, with very little levels of expression in VSMC 

(≤10%). The findings confirmed the successful isolation of VSMCs from human 

vessels and tissues.  

 

Figure 4.7 Phenotypic characterisation of VSMC and fibroblasts.  Immunofluorescence 
staining for α-SMA (orange) and CD90 (green) was performed to characterise PASMC and 
fibroblasts isolated from a single human PAH lung tissue. α-SMA is ubiquitously expressed 
in PAH and synthetic PASMC as well as in fibroblasts. However, expression of CD90 is 
limited to fibroblasts. DAPI counterstaining was used to visualise the nuclei (blue). Levels of 
expression in each cell type are shown as percentages in the bar graphs .The isolated 
SMCs and fibroblasts were isolated from the same tissue and stained soon after the 
isolation (P=3). The tissue was obtained during lung transplantation from a 4-year old child 
with IPAH. Synthetic SMCs commercially bought and cultured under conditions favouring the 
synthetic phenotype were also stained as a control.   
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Expression profile 

Protein and gene expression of NKX2-5 in PAH and PAD VSMC was analysed 

(Figure 4.8). NKX2-5 expression was higher in PAH PASMCs compared to normal 

PASMCs at both the protein and RNA levels, but the difference was not significant. 

Inconsistent results were found for NKX2-5 in VSMC from PAD and diabetic 

patients. The protein expression was increased compared to normal cells, but the 

qPCR data showed decreased mRNA levels. Increasing the number of patients 

could provide more information and conclusive data.  

 

 

Figure 4.8 NKX2-5 expression in PAH and PAD.  Primary VSMC were isolated from 
pulmonary arteries of PAH patients (number of patients=4) and healthy donors (number of 
healthy donors=3), as well as arteries of patients with PAD and diabetes (number of 
patients=3). Cells were cultured in vitro in 5% FCS. Nuclear protein and total RNA were 
isolated and were subjected to SDS-PAGE/Western blot and qPCR analysis. A. NKX2-5 
protein expression was analysed with densitometry relative to expression of GAPDH 
(housekeeping gene) in ImageJ (1 experiment performed). B. NKX2-5 gene expression was 
assessed with qPCR (1 experiment performed). 

 

4.2.2.3 Immortalised HPASMC (ImHPASMC) 

ImHPASMCs were obtained from ABM Good (Cat. no: T0558). The use of these 

cells facilitated the large-scale experiments conducted in this thesis.  

Morphology 

ImHPASMCs exhibited similar morphology with the primary cells retaining their 

spindle-like shape (Figure 4.9). These cells grew faster than primary cells and their 

growth rate was consistent.  
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Figure 4.9 Morphology of immortalised HPASMC.  ImHPASMCs were cultured in DMEM 
supplemented with 5% FCS. The cells were photographed at an early passage to compare 
their morphology with the primary HPASMC. 

  

Expression profile 

This is the first time that ImHPASMCs have been used in our studies in place of 

primary cells. Consequently, I aimed to explore the expression profile of the cells 

and the expression levels of SMC-specific markers in response to different stimuli. 

ImHPASMCs were serum-starved overnight in 0.1%FCS before stimulation with 

different mediators for 24 hours. Then, total protein and RNA were isolated in the 

same way as for primary cells. 

Protein levels for NKX2-5, COL1A2, CTGF and the contractile markers SM22, α-

SMA and calponin were analysed by Western blotting (Figure 4.10).  Increasing 

amounts of serum (5%-15%) resulted in significant activation of NKX2-5 in a dose-

response manner.  TGF-β also increased NKX2-5 but did not exhibit as marked an 

effect as in primary cells. Collagen and CTGF were expressed at low levels, but 

protein was significantly increased in response to TGF-β. Expression of α-SMA and 

SM22 was increased upon serum and TGF-β stimulation in a very distinctive way. 

Expression of calponin was only affected by the serum levels. ET-1, FGF2, BMP2, 

and BMP4 did not cause any significant differences in protein expression levels. 

However, a combined stimulation of ImHPASMCs with TGF-β and 10% FCS, 

significantly increased the protein. 

Gene expression for NKX2-5, COL1A2, and CTGF was analysed by qPCR (Figure 

4.11). The pattern of gene expression of COL1A2 and CTGF coincides with protein 

expression levels. But the gene profile for NKX2-5 slightly differs from the protein. 

Gene expression was significantly affected by TGF-β but not serum, suggesting a 

complex transcriptional regulation. 
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Figure 4.10 Protein expression profile analysis of ImHPASMCs.  ImHPASMCs were 
serum starved overnight in 0.1% FCS and were then stimulated as follows: 5-15% FCS, 2-
4ng/ml TGF-β, 100nM ET-1, 50ng/ml FGF2, 10ng/ml BMP2, and 10ng/ml BMP4. After 24 
hours, total protein was extracted and subjected to SDS-PAGE/Western blot analysis. 
Expression of NKX2-5, collagen 1 alpha 2 (COL1A2), CTGF, α-SMA, Calponin, and 
transgelin (SM22) was analysed and densitometry relative to GAPDH (housekeeping 
protein) was assessed in ImageJ. The y axes on the graphs show relative densitometry in 
arbitrary units. N=3 (replicate experiments). *p≤0.05.  
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In addition, the response of gene and protein expression to the higher concentration 

of TGF-β was an interesting finding. TGF-β (4ng/ml) negatively affected expression 

of all markers at both protein and gene expression levels (Figures 4.10 and 4.11). 

High levels of TGF-β are known to cause inhibitory effects on maximally activated 

cells, probably by activating negative feedback loops that act through the inhibitory 

partners SMAD6/7 (433). 

 

 

Figure 4.11 Gene expression analysis of ImHPASMCs.  ImHPASMCs were serum 
starved overnight in 0.1% FCS and then stimulated as follows: 5-15% FCS, 2 or 4ng/ml 
TGF-β, 100nM ET-1, 50ng/ml FGF2, 10ng/ml BMP2, and 10ng/ml BMP4. After 24 hours, 
total RNA was extracted and subjected to qPCR analysis. Gene expression of NKX2-5, 
collagen 1 alpha 2 (COL1A2), and CTGF was analysed. mRNA levels were normalised to 
TBP expression. N=3 (replicate experiments).  *p≤0.05, **p≤0.01. 

 

Overall, primary and immortalised HPASMCs behave very similarly, although some 

differences in basal expression of proteins like CTGF and collagen have been 

observed. Immortalised HPASMC retained a phenotype between the contractile and 

synthetic state. However, stimulation with TGF-β increased expression of NKX2-5, 

CTGF and Collagen type I, and increasing amounts of FCS caused dose-dependent 

increase in expression of NKX2-5 and α-SMA in same way as in primary HPASMC. 

For the purposes of this study, immortalised and primary HPASMC were treated in 

similar ways in regards of the presence of FCS in culture media, serum-starvation 

conditions and TGF-β stimulation.  
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4.2.3 Cellular and molecular mechanisms that activate NKX2-

5 expression in HPASMC 

4.2.3.1 Regulation of NKX2-5 through different signalling pathways 

In this section, my aim was to dissect the cellular and molecular mechanisms that 

activate NKX2-5 in HPASMCs. I conducted a thorough literature review to 

investigate all the mechanisms that are known to be implicated in vascular 

remodelling and PH. Based on the results, I used a selection of stimuli and inhibitors 

to treat ImHPASMCs and examine their effect on NKX2-5 expression. 

4.2.3.1.1 NKX2-5 is induced by hypoxia 

Hypoxia describes a state of lack of oxygen endangering cell function, and it has 

multiple impacts on the vascular system. Upon exposure to hypoxia, both 

endothelial cells and VSMC rapidly respond in a manner which involves acute and 

genomic changes that can lead to either vasodilation or vasoconstriction. To 

examine whether hypoxia induces NKX2-5 expression, ImHPASMCs were serum-

starved overnight in 0.1% FCS, and next day they were treated with 2ng/ml TGF-β 

for 24 hours. During this incubation period, cells were cultured under normal 

conditions (normoxia: 21% O2, 5% CO2,, 37oC), or exposed to hypoxia. To obtain 

hypoxic conditions (1% O2, 5% CO2, 37oC), the cells were placed in a custom-made 

hypoxic chamber (Modular Incubator Chamber, MIC-101; Billups-Rothenberg, Del 

Mar, CA, USA). The chamber was flushed with gas at 10 l/min for 15 min, then 

sealed and placed in the incubator for 24 hours.  

Hypoxia induced NKX2-5 expression compared to normoxic conditions. TGF-β 

stimulation caused increased NKX2-5 expression, and the effect was greater in 

hypoxia (Figure 4.12). 

In addition, hypoxia also induced phosphorylated AKT levels in a similar way, while 

total protein was not significantly altered. Phosphorylated SMAD2 only responded to 

TGF-β stimulation and remained unaffected by hypoxia (Figure 4.12) The effect of 

hypoxia on PI3K/AKT on VSMC has been demonstrated previously in many studies 

and is involved in cell proliferation, migration and apoptosis in vascular remodelling 

(434, 435). It has also been suggested that activation of P13K and AKT signalling 

pathways in hypoxia is a mechanism by which cells adapt and survive under 

conditions of restricted oxygen (436).  
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Figure 4.12 Hypoxia activates NKX2-5 expression.  ImHPASMCs were serum starved 
overnight in 0.1% FCS, and then treated with 2ng/ml TGF-β for 24 hours. During the 
incubation period, cells were cultured under normal conditions (normoxia: 21% O2, 5% CO2, 

37
o
C) or exposed to hypoxia (1% O2, 5% CO2, 37

o
C). After the incubation period, cells were 

lysed and total protein was extracted. A. SDS-PAGE/Western blot for protein levels of 
NKX2-5, phosphorylated AKT (P-AKT), total AKT, phosphorylated SMAD2 (P-SMAD2) and 
total SMAD2/3. B. Densitometry analysis of NKX2-5 protein expression relative to GAPDH 
(housekeeping protein) in ImageJ. N=3 (replicate experiments).  

 

4.2.3.1.2 Inhibition of TGF-β signalling downregulates NKX2-5 expression 

I have already established that TGF-β stimulation activates NKX2-5 expression 

significantly (Figure 4.3) and it is a critical regulator that promotes HPASMC de-

differentiation. Next, I aimed to reverse the effect of stimulation by using the SD208 

inhibitor. SD208 is a selective inhibitor of TGF-R1/ALK5receptor developed by 

Scios, Inc. (Fremont, CA) (Figure 4.13). The compound has been successfully used 

in vivo and in vitro to prevent TGF-β–induced ALK5 phosphorylation and 

subsequent SMAD2 phosphorylation, TGF-β–dependent myofibroblast 

differentiation, and pulmonary fibrosis (437). 
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Figure 4.13 Inhibition of TGF-β signalling downregulates NKX2-5.  ImHPASMCs were 
serum-starved for ~6-7 hours in 0.1% FCS, and then treated with 2ng/ml TGF-β for 24 
hours. After 24 hours, the medium was changed to 5% FCS and the cells were treated with 
5µM of SD208, an inhibitor of TGF-β signalling pathway, for 24 hours. Cells were lysed, and 
total protein was extracted and subjected to SDS-PAGE/Western blot analysis. Protein 
levels of NKX2-5, phosphorylated ERK (P-ERK5), phosphorylated SMAD2/3 (P-SMAD2/3), 
and phosphorylated AKT (P-AKT) were analysed. Densitometry analysis was conducted in 
ImageJ relative to GAPDH expression (housekeeping protein). N=3 (replicate experiments).  

 

ImHPASMCs were serum-starved for ~6-7 hours in 0.1% FCS, and next day they 

were stimulated with 2ng/ml TGF-β for 24 hours. Following that, the media was 

changed and the cells were treated with SD208 inhibitor at 5µM final concentration 

for 24 hours. The concentration was selected based on published data, and levels 

of phosphorylated-SMAD2/3 proteins were assessed to confirm effective inhibition 

of the pathway. Indeed, expression of phosphorylated-SMAD2/3 was decreased 

(Figure 4.13). NKX2-5 protein was also decreased but not significantly, suggesting 

that other TGF-βRI–independent or TGF-β indirect signalling pathways such as 

ERK5 might be critical for NKX2-5 activation.  
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In addition, SD208 treatment decreased phosphorylated ERK5 protein, confirming 

published data that ERK5 is a mediator of TGF-β1 downstream signalling. 

Phosphorylated AKT remained unaffected, as expected, since the activation of 

PI3K/AKT pathway is independent of SMAD2/3 activation (438). 

4.2.3.1.3 Signalling pathways that do not affect NKX2-5 expression 

The preceding studies showed that TGF-β and hypoxia are potent activators of 

NKX2-5. Next, a panel of selective inhibitors was used to block a number of 

pathways that have previously been implicated in PAH and SMC de-differentiation 

to determine their effect on TGF-β-induced NKX2-5 expression. 

 5Z-7-Oxoxeaenol (OXO) selectively inhibits TGF-β-activated kinase 1 (TAK1), as 

well as IL-1-induced activation of NF-κB and JNK/p38 signalling, and the production 

of inflammatory mediators such as TNFα. BAY 87-2243 is a highly potent and 

selective inhibitor of hypoxia-induced gene activation that significantly decreases 

nuclear HIF-1α expression. CX-4945, is a highly specific, ATP-competitive inhibitor 

of CK2. CX-4945 exerts anti-proliferative effects in haematological tumours by 

downregulating CK2 expression and suppressing activation of CK2-mediated 

PI3K/Akt/mTOR signalling pathways. As mentioned earlier, Bosentan is a 

competitive antagonist of ET-1 receptors and Imatinib (also known as Glivec) blocks 

the PDGF-Rβ receptor. When the cells were treated with the above inhibitors, the 

protein expression of NKX2-5 was not affected (Figure 4.14). However, this can only 

be an indication that NKX2-5 is not regulated through these pathways directly, since 

only one experiment was performed.  

 

Figure 4.14 Signalling pathways that do not affect NKX2-5 expression.  ImHPASMCs 
were serum-starved for ~6-7 hours in 0.1% FCS, and then treated with 2ng/ml TGF-β for 24 
hours. After 24 hours, the media was changed to 5% FCS and the cells were treated with 
the following inhibitors for 24 hours: 100nM 5Z-7-Oxozeaenol (inhibitor of TAK1 kinase), 
5µM CX4945 (inhibitor of CK2 kinase), 100nM BAY 87-2243 (inhibitor of HIF-1a), 1µM 
Bosentan (inhibitor of ET-1) and 2µM Imatinib (inhibitor of PDGFR). After treatment, the cells 
were lysed, and total protein was extracted and subjected to SDS-PAGE/Western blot for 
the analysis of NKX2-5 protein. N=1 (1 experiment performed).  
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4.2.3.1.4 Signalling pathways that affect NKX2-5 expression 

Next, I focused on the MAPK cascade in question of the potential effects of 

PI3K/AKT, JNK, p38, and ERKs on NKX2-5 activation. 

Two inhibitors were used for PI3K/AKT signalling: GSK690693 that is a potent and 

selective pan-AKT kinase inhibitor, and GSK2126453 that is a dual inhibitor 

selective for both PI3K and mTORC1/2. TC ASK10 was used as a potent ASK1 

inhibitor that also blocks downstream JNK1/p38 phosphorylation. For ERK5, ERK5-

IN-1 a very specific inhibitor was used that inhibits ERK5 activity and EGFR-induced 

ERK5 auto-phosphorylation. FR180204 is an inhibitor specific to ERK1 and ERK2 

only. SB202190 is a highly selective, potent and cell permeable inhibitor of p38 

MAP kinase. BI78D3 was used as a competitive c-Jun N-terminal kinase (JNK) 

inhibitor, which Inhibits JNK interacting protein 1 (JIP1)-JNK binding and prevents 

JNK substrate phosphorylation. 

ImHPASMCs were serum-starved for ~6-7 hours in 0.1% FCS, before 24 hours of  

TGF-β stimulation (2ng/ml). After 24 hours, the medium was changed to 5% FCS 

and the above selective inhibitors were added (Figure 4.15).  

Most of the inhibitors down-regulated NKX2-5 protein expression, except for BI78D3 

-the JNK inhibitor- which did not affect expression. SD208 showed a similar pattern 

as before. Unfortunately, GSK690693 and SB202190 inhibitors did not work as 

expected leaving the phosphorylated AKT and p38 proteins unaffected. This might 

be explained by the fact that the reagents were old or the concentration used at was 

not high enough to effectively block the signalling. Similarly, inhibitors for ASK1 and 

ERK1/2 kinases did not affect NKX2-5 expression (Figure 4.15). However, inhibiting 

ERK1/2 affected phosphorylated AKT levels negatively, suggesting that AKT 

activation is also mediated by ERK1/2 (Figure 4.15). On the contrary, use of the 

ERK5 inhibitor decreased significantly NKX2-5 protein and gene expression, 

whereas the dual inhibitor of AKT only affected significantly the protein levels of 

NKX2-5 but not the gene expression. 
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Figure 4.15 Signalling pathways that affect NKX2-5 expression.  ImHPASMCs were 
serum-starved for ~6-7 hours in 0.1% FCS, and then treated with 2ng/ml TGF-β for 24 
hours. After 24 hours, the media was changed to 5% FCS and the cells were treated with 
the following inhibitors for 24 hours: 1µM GSK2126458 (inhibitor of PI3K kinase and 
mTORC1/2 receptors), 1µM GSK690693 (pan-AKT kinase inhibitor), 10µM TC ASK10 
(inhibitor of ASK1 kinase), 10µM ERK-5-IN-1 (inhibitor of ERK5), 30µM FR180204 (inhibitor 
of ERK1 and ERK2), 10µM SB202190 (Inhibitor of p38 kinase), 5µM SD208 (Inhibitor of 
TGF-βRI/ALK5 receptor), 1µM BI78D3 (Inhibitor of JNK). After treatment, the cells were 
lysed and total protein and RNA were extracted and subjected to SDS-PAGE/Western blot 
and qPCR analysis. A. Protein expression of NKX2-5, total AKT and phosphorylated-AKT 
(Phospho-AKT), total ERK1/2 and phosphorylated ERK1/2 (Phospho-ERK1/2), total p38 and 
phosphorylated p38 (Phospho-p38), total ERK5 and total ASK1 were analysed. 
Densitometry analysis was performed in ImageJ normalised to GAPDH. B. NKX2-5 gene 
expression was analysed by qPCR normalised to TBP expression. N=3 (replicate 
experiments). p*≤0.05 

 

Then, I focused on the effect of AKT and ERK5 on NKX2-5 activation, since they 

were the only inhibitors of the panel that decreased NKX2-5 significantly (Figure 

4.16). First, I analysed the efficiency of the inhibitors to block their specific signalling 

cascade. Both AKT and ERK5 inhibitors significantly downregulated phosphorylated 

AKT and phosphorylated ERK5 protein levels, respectively, and the ratios of 

phosphorylated to total protein are shown in Figure 4.16 B. NKX2-5 protein was 

significantly downregulated when both inhibitors were used. However, only the 

ERK5 inhibitor exhibited a significant effect at the mRNA level (Figure 4.16 C).  



173 
 

 

Figure 4.16 NKX2-5 expression is activated through the AKT and ERK5 signalling 
pathways.  ImHPASMCs were serum-starved for ~6-7 hours in 0.1% FCS, and then treated 
with 2ng/ml TGF-β for 24 hours. After 24 hours, the media was changed to 5% FCS and the 
cells were treated with the following inhibitors for 24 hours: 1µM GSK2126458 (inhibitor of 
PI3K kinase and mTORC1/2 receptors) and 10µM ERK-5-IN-1 (inhibitor of ERK5). After 
treatment, the cells were lysed and total protein and RNA were extracted and subjected to 
SDS-PAGE/Western blot and qPCR analysis. A. Protein expression of NKX2-5, total AKT 
and phosphorylated-AKT (Phospho-AKT), total ERK5 and phosphorylated ERK (Phospho-
ERK5) were analysed. B. Densitometry analysis was performed in ImageJ normalised to 
GAPDH. C. NKX2-5 gene expression was analysed by qPCR normalised to TBP 
expression. Untreated: Cells treated with 2ng/ml TGF-β after serum starvation, but not 
treated further with inhibitors. N=3 (replicate experiments). *p≤0.05 
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4.2.3.2 Signalling mechanism that regulates NKX2-5 expression 

Taking into consideration all the previous findings, I propose a new model of 

signalling regulation of NKX2-5 activation (Figure 4.17). In brief, hypoxic conditions 

and TGF-β stimulation activated NKX2-5 expression significantly. When PI3K/AKT 

and ERK5 pathways were blocked, NKX2-5 was negatively regulated revealing that 

NKX2-5 activation is mediated directly through PI3K/AKT and ERK5 cascades. 

Although hypoxia activated directly AKT, TGF-β inhibition by SD208 did not affect 

the phosphorylated protein. However, it has been shown by others that AKT 

activation is mediated by BMP-dependent TGF-β signalling. In addition, use of 

SD208 inhibitor confirmed that ERK5 activation is also mediated by TGF-β. 

 

 

Figure 4.17 Proposed model of signalling mechanism that regulates NKX2-5.  The work 
conducted in ImHPASMCs using a panel of selective inhibitors for different signalling 
pathways generated important data regarding the signalling mechanism that upregulates 
NKX2-5 expression. In detail, hypoxia is able to upregulate a series of events within the cell, 
and directly leads to NKX2-5 activation. It has been previously shown that TGF-β positively 
regulates NKX2-5 expression and data presented here provided clear evidence of this 
mechanism. In addition, the use of selective inhibitors revealed that NKX2-5 is also a 
downstream target of both the ERK5 and AKT cascades. Broken lines show data published 
in literature and continuous lines show data produced in this thesis. 
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4.3 Summary of results 

Commercial primary HPASMC from 6 different human subjects, ImHPASMCs and 

HPASMCs and VSMC isolated from diseased tissues and vessels were used for the 

studies described in this chapter. The morphology was similar across the different 

cells, with small differences occurring in the size and the population doubling rates. 

Expression levels of NKX2-5 and other gene markers were heterogeneous, a 

defined characteristic of all SMC that complicates the experimental work resulting in 

variation and lack of statistical significance (439). 

NKX2-5 expression was increased in synthetic compared to contractile HPASMC, 

and the expression was serum-dependent. Higher levels of NKX2-5 expression 

were also seen in PAH HPASMCs. However, inconsistency occurred between the 

NKX2-5 protein and gene expression in different VSMC, which could be due to the 

low sample number and the different background in disease pathogenesis between 

PAD and diabetes.  

TGF-β is a major stimulator for NKX2-5 expression, with a greater effect in 

contractile cells compared to synthetic. However, a higher concentration of TGF-β 

(4ng/ml compared to 2ng/ml that are used) negatively affected not only NKX2-5 

expression levels, but also the expression of fibrotic markers such as collagen and 

CTGF. 

Hypoxia (1% O2) activated NKX2-5 expression; however the use of a HIF-1α 

inhibitor did not affect NKX2-5 expression. To unravel the molecular and cellular 

mechanisms of activation of NKX2-5 in HPASMC, I investigated signalling pathways 

downstream of TGF- and hypoxia using a panel of selective inhibitors. Inhibitors 

specific for ET-1, PDGF, and the kinases TAK1, CK2, p38, JNK, ASK1 and ERK1/2 

did not affect NKX2-5 expression. 

When selective inhibitors were used to block the PI3K/AKT and ERK5 pathways, 

TGF-β-induced NKX2-5 was significantly decreased indicating that NKX2-5 

activation is directly dependent on PI3K/AKT and ERK5. Taking into consideration 

the findings of this chapter, I proposed for the first time a signalling mechanism of 

NKX2-5 activation in HPASMC. 
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4.4 Discussion 

Due to the important role of NKX2-5 during embryogenesis, the gene is considered 

developmental and not many people have studied its post-natal expression. NKX2-5 

expression has only been reported in few normal adult human tissues such as the 

heart, spleen, stomach, and cerebellum (Source: RNAseq, Gene Cards). We have 

previously shown that NKX2-5 is expressed in diseased vessels, where it controls 

vascular remodelling, but the regulation of the human gene remains largely 

unknown. In this chapter, I have provided data showing for the first time a signalling 

mechanism that activates NKX2-5 expression in adult VSMCs. 

NKX2-5 gene and protein expression is under strict control at multiple levels to co-

ordinate its important functions, and thus studying its expression has been proved 

very challenging. To start with, the low levels of expression in human adult tissues 

and unstimulated cells hinders the quantification of expression and affects the 

specificity of the chosen experimental method. In particular, to study gene 

expression, numerous primers had to be designed due to the fact that gene 

sequence is very repetitive and with high GC content. Low expression led to the 

amplification of non-specific products, and optimisation of qPCR protocol was 

required, so that the fluorescence emitted and measured corresponded only to the 

specific amplified products. 

Identification and quantification of protein expression was also difficult. NKX2-5 

mRNA and protein are subjected to numerous post-transcriptional and post-

translational modifications, most of which affect the localisation of the protein, and 

therefore the function. NKX2-5 is a transcription factor that binds to specific DNA 

elements found in downstream target genes to regulate their expression. 

Consequently, NKX2-5 can only exert its function in the nucleus. Once NKX2-5 

transcriptional activity is required, cytoplasmic protein gets modified and enters the 

nucleus. Excess cytoplasmic protein is ubiquitinated and degraded. Published data 

also provide evidence that NKX2-5 can regulate itself through an evolutionary 

conserved auto-regulation mechanism (440).  

Most findings regarding the post-translational modifications have been derived from 

mouse Nkx2-5 gene, though a few have also been described in the human protein. 

Nkx2-5 is negatively regulated through glycosylation (367) and ubiquitination (439). 

However, another study indicated that small ubiquitin-like modifier (SUMO)-

conjugation at a lysine residue (K51R) stabilised and enhanced the transcriptional 

activity of Nkx2-5 (366). Nkx2-5 is also modified through phosphorylation, 



177 
 

acetylation and methylation, with phosphorylation been studied extensively. In 

particular, phosphorylation of the serine 164 (S164) of the homeodomain by CK2 

promotes NKX2-5 nuclear translocation, increases DNA binding affinity and 

transcriptional activity. Taking into consideration the above, as well as that post-

translational modifications can also be cell-type specific, NKX2-5 protein can exist in 

various states of modification that are difficult to discriminate. Since the aim of this 

thesis was to explore the mechanisms that activate NKX2-5, I focused on studying 

the nuclear protein expressed in human PASMCs. 

The experimental work was mainly conducted in primary HPASMCs. The use of 

primary cells is challenging. On the one hand, primary cells are most representative 

of the cells inside human tissues and carry the same genetic background and 

similar disease phenotypes. However, primary cells cultured in vitro loose key 

functions and characteristics, such as interactions with other cells and with the 

native matrix. 

On the other hand, primary cells originate from different individuals and thus they 

exhibit high levels of heterogeneity in their morphology, survival, behaviour in 

culture, responses to stimuli, and gene and protein expression. This is particularly 

true in the case of VSMCs, which is a highly heterogeneous and plastic cell type not 

only among individuals but also among different vascular beds within the same 

organism. This heterogeneity leads to difficulties in the interpretation of data and 

statistical analysis. High heterogeneity of primary cells causes large variation, and 

thus low power to detect statistical significant data. This is a challenge that many 

scientists are called to confront daily and it raises questions such as “do statistical 

significant data denote significant events in nature?”. Careful experimental design 

and critical interpretation of experimental results are required to avoid over-

interpretation. 

Among other disadvantages, primary cells have a finite life-span of less than 10-20 

passages in vitro depending on the cell type. HPASMCs and other VSMCs are 

sensitive to different culturing conditions, stimuli and treatments, and often exhibit 

very inconsistent population doubling-time. For the reasons above, the use of an 

immortalised cell line that would provide a consistent cellular material, be capable of 

extended proliferation and possess similar or identical genotype and phenotype as 

the parental tissue throughout the duration of the project was beneficial. This is the 

first time that a human immortalised PASMC cell line was used in the field, and 

consequently assessing the expression profile and phenotypic characteristics was 

essential. ImHPASMCs are commercially available upon request from ABM Good 
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and the cells were immortalised from a primary cell line using SV40. Gene and 

protein expression was assessed in untreated ImHPASMCs as well as under 

different stimulations and treatments. The expression profile closely resembled the 

profile of the primary cells. 

After establishing the expression profiles of primary and ImHPASMCs, I confirmed 

that expression of NKX2-5 is strongly associated with the synthetic phenotype. 

Primary cells were cultured in vitro under conditions favouring the contractile or the 

synthetic state (Section 2.7). NKX2-5 was significantly increased in the synthetic 

cells (Figure 4.3). TGF-β has previously been described as a potent stimulator of 

cell proliferation, migration and production of ECM, key characteristics of the 

synthetic state of VSMCs. When primary and immortalised HPASMCs were 

stimulated with TGF-β to promote the de-differentiation process, expression of 

NKX2-5 was increased. However, when the concentration of TGF-β was doubled 

from 2ng/ml to 4ng/ml, the stimulatory effects were inhibited suggesting a negative 

feedback loop (Figures 4.10, 4.11). One possible mechanism could involve the 

inhibitory SMADs, SMAD6 and SMAD7 that are both transcriptionally induced by 

TGF-β and BMPs (433). Collagen type I and CTGF were also used as markers of 

the synthetic state, and their expression was enhanced by TGF-β stimulation at both 

gene and protein levels in ImHPASMCs.  

Given that NKX2-5 expression is associated with vascular remodelling in various 

pathological conditions, I next tested whether NKX2-5 is activated in PAH and in 

other vascular diseases such as diabetes and PAD. Primary HPASMC were 

isolated from lung tissue of PAH patients undergoing lung transplantation. The 

patients suffered from IPAH and were usually very young in age. Control cells were 

either isolated from normal lung tissues that were rejected as transplants, or bought 

commercially and cultured under contractile conditions. In addition, VSMCs were 

isolated from diseased vessels of PAD and diabetic patients who undergone limb 

amputation due to tissue necrosis in advanced disease stage. Only 3 primary cell 

lines were generated for the PAD group. NKX2-5 protein expression was increased 

in both IPAH and PAD, but the difference was not statistically significant (Figure 

4.8). Gene expression followed a similar pattern for the IPAH group, although levels 

in the PAD group were lower compared to IPAH.  

Inconsistency between levels of protein and gene expression of NKX2-5 was often 

observed in experiments undertaken in this project. In this case, the inconsistency 

could be explained by the different disease pathogenesis and the low sample 

numbers. In particular, IPAH is a condition with more homogeneous disease 
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manifestation compared to PAD, which included both diabetes and PAD. Diabetic 

patients can develop complex vascular complications mainly due to atherosclerosis 

(441) with a strong inflammatory background and dysregulated lipid metabolism and 

deposition in the blood vessel wall. Atherosclerosis is also the hallmark of PAD in 

combination with arteriosclerosis caused by increased fatty deposits on arterial 

walls leading to limb ischaemia.  

Despite the variation in the degree of NKX2-5 activation, my data consistently 

showed an increase in NKX2-5 in diseased vessels compared to normal. Since a 

variety of stimuli can initiate vascular remodelling in diseased vessels, the next 

question was what led to the activation of NKX2-5 in HPASMC. To this end, I 

examined whether hypoxia affects expression of NKX2-5. Hypoxia is an important 

regulator of physiological processes, including erythropoiesis, angiogenesis and 

glycolysis (442). However, hypoxia has also been associated with pathological 

conditions including, would healing and tissue repair, cancer, inflammation, fibrosis, 

and PH, where its role has been extensively studied [reviewed in (443-445)]. In 

particular, hypoxia has been described as a potent mitogen that promotes 

proliferation of PASMCs leading to vasoconstriction and pulmonary vascular 

remodelling (443). In vitro culture of HPASMCs under hypoxic conditions increased 

NKX2-5 expression (Figure 4.12), a finding consistent with its role as a regulator of 

vascular remodelling. Nonetheless, the use of BAY 87-2243, a highly selective and 

potent inhibitor of HIF-1α, did not affect NKX2-5 expression (Figure 4.14). HIF-1 is a 

hypoxia-induced transcription factor that mediates hypoxia-dependent transcription, 

and is thought to regulate PASMC proliferation under hypoxic conditions (446).  

The mechanisms by which hypoxia affects PASMC growth are not fully elucidated. 

Accordingly, this might justify the inconsistent result in the case of BAY inhibitor. In 

addition, hypoxia-induced pulmonary vascular remodelling is a highly complex 

process, which may have numerous interactions between the vascular cells 

including endothelial cells, PASMCs and lung fibroblasts. Therefore, studying the 

effects of hypoxia in a single cell type excluding cell-cell interactions might hide 

important piece of information. In this case, the effect of hypoxia on NKX2-5 

expression may be mediated via endothelial-derived mechanisms indirectly, and 

more studies are required to decipher this finding. 

Apart from HIF-1α, hypoxia-dependent transcription is also mediated by other 

growth factors and signalling cascades such as the MAPK cascade. In particular, 

studies have assessed the effect of hypoxia either directly or through the use of 

inhibitors in different types of cells such as endothelial cells, macrophages, cancer 



180 
 

cells, and the findings vary significantly [examples of studies with controversial data 

(447, 448)]. The discrepancies may be caused by the different extents of hypoxia 

used by investigators. In this study, I evaluated the effect of hypoxia on 

phosphorylated and active forms of AKT and SMAD2, since the involvement of 

ERK1/2, PI3/AKT, and TGF-β signalling pathways in hypoxia-mediated cellular 

responses in PASMCs and endothelial cells is well characterised (449, 450). 

Indeed, hypoxia induced phosphorylation of AKT and SMAD2 proteins, whereas the 

total proteins (inactivate forms) remained unaffected (Figure 4.12).  

Studies in mice have revealed a vital role for TGF-β signalling through multiple BMP 

binding sites and GATA transcription factors in Nkx2-5 expression (350). It has also 

been previously shown that TGF-β stimulates the phenotypic modulation of VSMC 

in disease (30). In this chapter, I showed that TGF-β efficiently promoted the 

synthetic state of VSMCs with increased expression of synthetic markers including 

collagen type I and CTGF (Figure 4.10). Also, TGF-β stimulation activated 

expression of NKX2-5 at both the protein and gene level, confirming previous 

findings that NKX2-5 is a regulator of the VSMC phenotypic switch (Figure 4.3). 

Interestingly, the effect of TGF-β was more prominent in contractile HPASMCs 

compared to synthetic. In synthetic cells particularly, TGF-β increased protein 

expression of NKX2-5, but it did not affect the gene expression levels in 

experimental conditions used in this study. The findings suggest probably that the 

stimulation is more important for the initiation rather than the continuation of NKX2-5 

expression. Similarly, higher concentration of TGF-β does not activate expression, 

as discussed previously. However, the use of SD208, a selective ALK5 receptor 

inhibitor, only had a small effect on NKX2-5 protein with a trend to decrease, but did 

not achieve statistical significance (Figure 4.15). This suggests that more than one 

TGF-β dependent downstream pathways is implicated in NKX2-5 regulation, and 

ALK5-dependent pathway is not one of them.   

TGF-β is a cytokine with diverse and often contradictory functions. It has been 

implicated in physiological conditions, such as cell growth, differentiation, and 

apoptosis, and also in pathological conditions. In the early stages of repair, TGF-β is 

released from platelets and activated from matrix reservoirs; it then stimulates the 

chemotaxis of repair cells, modulates immunity and inflammation and induces 

matrix production. At later stages, it negatively regulates fibrosis through its strong 

anti-proliferative and apoptotic effects on fibrotic cells. TGF-β has been extensively 

studied in fibrosis and scleroderma [reviewed in (120, 451)], where it exerts an 

important profibrotic function inducing mesenchymal fibroblasts to proliferate, 
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migrate, and synthesise elevated levels of matrix proteins. TGF-β signalling has 

also been studied in the context of CVD such as hypertension, heart failure, and 

atherosclerosis. Although initially it was suggested that TGF-β exhibited adverse 

effects in the cardiovascular system, more recently its role as anti-inflammatory and 

anti-atherogenic molecule has gained more ground.  

The role of TGF-β in VSMC emphasises its distinctive pleiotropic activities. VSMC 

respond to TGF-β in both Smad-dependent and Smad-independent manners. We 

and others propose a profibrotic role of TGF-β that promotes the disease associated 

de-differentiation of VSMCs, characterised by proliferation and migration, and 

correlates significantly with elevated expression of synthetic markers and ECM in 

the vasculature (30, 32, 170, 172, 452-456). However, others consider TGF-β as an 

inhibitory molecule for the proliferation and activation of VSMCs, and that it 

promotes contractility, the principle function of VSMCs (115, 457, 458). In fact, TGF-

β binding and SRF responsive elements are found in the promoters of many 

contractile genes including SM22, calponin, α-SMA, procollagen I and III (115, 459). 

The role of TGF-β has also been studied in other diseases characterised by 

vascular remodelling. A recent paper by Ha et al demonstrated that VSMCa in 

microvessels of PAD patients express TGF-β, and the expression coincides with 

expression of collagen and extended fibrosis in the diseased vessels (460). TGF-β 

expression not only caused the phenotypic de-differentiation of VSMC to the 

synthetic phenotype, but also stimulated the transition of adjacent fibroblasts to 

myofibroblasts (460). Another example of vascular disease is atherosclerosis, 

where the role of TGF-β is described as either atheroprotective or as atherogenic 

[reviewed in (112, 117)]. A study published few years ago reported that 

macrophage-specific TGF-β overexpression reduced atherosclerosis in an ApoE 

deficient mice, and this correlated significantly with fewer macrophages, more 

VSMCs and more collagen expression pointing to plaque stabilisation (116). 

However, TGF-β also promotes the synthetic phenotype of VSMCs that contributes 

significantly to atherosclerosis progression. The role of EndoMT, where TGF-β and 

other growth factors such as FGF2 are implicated, is gaining increasing attention 

and provides significant insight in the pathogenesis of atherosclerosis. EndoMT will 

be discussed in detail in Chapter 6. 

The variation in the described functions and roles of TGF-β in disease may have a 

number of explanations. Firstly, the data depend on the experimental design and 

conditions followed. Secondly, it is obvious that the growth factor could exert 

different functions in different cell types, and consequently, the cell-cell and cell-
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matrix interactions retain a prominent role that is difficult to mimic in an in vitro 

environment. In vascular diseases in particular, interplay occurs not only between 

the cells of the vessel wall but also between different processes such as vascular 

remodelling and inflammation. Thirdly, the tendency to not publish negative data 

that “do not fit with the hypothesis” or data that are not easily explained by current 

knowledge is often detrimental in science, since it obscures the real events. Taking 

into consideration the above, it is obvious that TGF-β orchestrates many processes 

in the human body with potentially different functions depending on the organism, 

cell type and environmental stimuli. Further studies are required to unravel the 

important functions and interactions of TGF-β. 

Further in this chapter, I explored whether other signalling pathways could directly 

affect NKX2-5 expression. The cells were stimulated with TGF-β to maximise NKX2-

5 expression, and then treated with a panel of selective inhibitors to evaluate the 

effect of different signalling pathways. Most of the selected inhibitors targeted 

pathways that are known to be implicated in vascular diseases such as members of 

the MAPK cascade or downstream mediators of TGF-β signalling. These pathways 

involved PI3K/AKT, ERK1/2 and ERK5, ASK1, p38, and JNK kinases. MAP kinases 

are protein serine/threonine kinases that play an important role in cell differentiation, 

growth, apoptosis, and the regulation of a variety of transcription factors and gene 

expression. MAP kinases are activated by phosphorylation on threonine (T) and 

tyrosine (Y) residues within a T-X-Y phosphorylation motif, where “X” can be 

glutamine (E), proline (P), or glycine (G) (461).  

Most of the inhibitors tended to decrease NKX2-5 protein expression although there 

was not always a corresponding effect of gene expression (Figure 4.15). However, 

two selected inhibitors significantly decreased NKX2-5 levels: the PI3K/AKT and 

ERK5 inhibitors (Figure 4.16). The use of GSK2126458 blocks the activity of PI3K 

kinase to phosphorylate and activate AKT protein, and the ERK5-IN-1 inhibitor 

blocks the phosphorylation and activation of ERK5 protein.  

The PI3K/AKT cascade has been well studied in endothelial cells and VSMCs in 

cancer, in angiogenesis, and in cell proliferation and migration is response to apelin, 

insulin, hypoxia and other stimuli (462-466). Many studies have reported the effect 

of apelin-a G-coupled receptor important in vascular development, on proliferation 

of human and rat VSMCs through the PI3K/AKT signalling transduction pathway, 

with this effect been mediated by phosphorylated ERK1 and ERK2 proteins (463, 

467). This pathway that has also been reported to be induced by hypoxia, can serve 

as a critical therapeutic target in atherosclerosis and other vascular disease (468). 
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The role of the PI3K/AKT pathway on proliferation of VSMCs has also been 

examined in PH, where the use of lipocalin-2, a selective up-regulated protein in 

CHD-PH, significantly promoted HPASMC proliferation by 

activating PI3K/AKT pathway (469). Another study reported that TGF-β 

phosphorylates and activates PI3K/AKT with overexpression of Smad3 to 

significantly augment this effect in rat aortic SMCs  leading to cell proliferation and 

migration (462). Interestingly, the same study implicated phosphorylated p38 as an 

intermediate factor between AKT and Smad3. The PI3K/AKT pathway has also 

been shown to be important and a fast acting modulator of contraction of VSMCs, 

with the use of an AKT-specific inhibitor decreasing vasoconstriction of isolated 

vessels (470). 

ERK5 is a newly identified member of the family of MAP kinase that is activated by 

ERK kinase 5 (MEK5). Less information is available regarding the role of ERK5 

kinase in vascular diseases compared to the rest of the members of the family. A 

study in rat VSMCs showed that ERK5 activation is implicated in VSMC migration in 

vivo in the context of atherosclerosis (471). In the same study, a role for ERK5 as a 

survival factor and protector against oxidative stress-induced cell death in VSMCs 

was also proposed. Another study in human aortic SMCs, reported that ERK5 

phosphorylation contributes to MEF-2c activation and subsequent cell hypertrophy 

induced by angiotensin II, proposing a novel molecular mechanism in vascular 

remodelling (472). The effect of angiotensin II on activation of ERK5 mediated by 

MEF-2c was also examined and confirmed in rat aortic SMCs by a different group of 

investigators, who also established the different phosphorylation profiles and 

functions between ERK1/2 and ERK5 kinases (473). 

Taking into consideration the above, both PI3K/AKT and ERK5 downstream 

signalling are important regulators of proliferation, migration, hypertrophy and 

resistance to apoptosis in VSMCs, all of which are characteristics of the synthetic 

phenotype associated with disease. Blocking both signalling pathways led to 

decreased NKX2-5 levels, proposing that NKX2-5 is a direct downstream target of 

AKT and ERK5. As discussed earlier, both kinases can be regulated by TGF-β and 

TGF-β-dependent mediators, such as Smad3. Based on the evidence accumulated 

in this chapter along with findings in the literature, I propose a signalling mechanism 

that regulates the activation of NKX2-5 in vitro in HPASMCs (Figure 4.17). The 

mechanism is driven by hypoxia and TGF-β and mediated by phosphorylation of 

AKT, ERK5 and SMAD3. Activation of the mechanism may lead to VSMC 

phenotypic modulation and vascular remodelling.  
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CHAPTER 5 - RESULTS: TRANSCRIPTIONAL 

REGULATION OF    NKX2-5 EXPRESSION IN 

VASCULAR SMOOTH MUSCLE CELLS 

5.1 Introduction 

In Chapter 4, I explored the signalling mechanisms that activate NKX2-5 expression 

in HPASMCs. The stimuli that activate the gene can vary from growth factors and 

mitogens, as the products of injury or vascular remodelling, to hypoxia and stress. 

These stimuli usually initiate downstream signalling mechanisms through GPCR 

receptors at the nuclear membrane and engage various molecular pathways 

including TGF-β, PI3K/AKT and ERK5. Although the end product of this cascade is 

the activation of NKX2-5, how exactly this is accomplished remains unknown. In this 

chapter, I will address how the NKX2-5 gene gets activated, and I will focus on the 

regulation at the transcriptional and post-transcriptional levels.  

Because NKX2-5 is not expressed in healthy blood vessels, the regulatory regions 

responsible for the transcriptional activation in vessels have not been identified. 

Data from animal studies have shown that the transcriptional regulation of the 

murine Nkx2-5 gene is complicated with a number of cis- and trans- acting elements 

spread over a 23Kb region which regulate expression in tempo-spatial specific ways 

(474). Despite our knowledge of the mouse Nkx2-5 gene structure and the high 

homology between the mouse and the human genes (Figure 1.7), very little is 

known about the regulation of the human gene.   

In this chapter, I will exploit the findings of the genetic study as a guide to potential 

functional sites. In silico analysis has provided evidence that support the potential 

functionality of the tagging SNPs. The 3 associated SNPs (rs3095870, rs3132139, 

rs3131917) are located upstream and downstream of the gene in areas that would 

be key for gene regulation (Figure 5.1). I will address these genomic loci separately 

and assess their role in the transcriptional regulation of NKX2-5. The 3’UTR will also 

be explored in order to identify other possible post-transcriptional mechanisms.  
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Figure 5.1 Location of tagging SNPs across NKX2-5 genomic locus.  The SNPs shown 
in red showed association with scleroderma and PH. SNP rs3095870 showed a marginal 
association with scleroderma in the replication cohort. It is located upstream of the NKX2-5 
transcription start site. SNP rs3132139 is associated with PH in the discovery cohort and the 
association was efficiently replicated. In addition, further analysis showed that the 
association of rs3132139 with PH is independent of the presence of scleroderma. A meta-
analysis among the two independent cohorts showed that rs3131917 is associated with 
scleroderma. SNPs rs3132139 and rs3131917 are both located downstream of NKX2-5, in a 
region that was previously identified as a putative enhancer. The rest of the tagging SNPs 
(rs703752, rs2277923, rs12514371) are shown in black and are located in the first exon of 
NKX2-5, in the 3’UTR and downstream of the gene respectively.  

 

At this point, I would like to give some information about the TEAD family of 

transcription activators, as an important transcriptional regulator of NKX2-5. The 

TEA/ATTS domain (TEAD) family consists of 4 members TEAD1-4 with distinct and 

important roles in VSMC differentiation (147, 149, 475). All 4 members recognise 

and bind specifically at the MCAT consensus element: 5’-TCATTCCT-3’. TEADs 

have crucial and important roles during embryogenesis. Disruption of TEAD1 during 

mouse embryonic development prevents heart biogenesis (476), and its expression 

is required in cardiac muscle (476) (477) (478).  

Apart from their essential role in development, TEADs are implicated in various 

conditions in adulthood related to the cardiovascular system, SMC development and 

differentiation, skeletal muscle hypertrophy and regeneration. The expression of the 

TEAD family members is ubiquitous in most adult tissues (479). However, they 

confer muscle-specific gene transcription in a way that is not yet fully understood. 

Moreover, each protein exhibits different expression patterns depending on the 

tissue and developmental stage suggesting that each protein retains a unique 

function (479). TEAD2 is the first transcription factor expressed immediately after 

fertilisation, and controls expression of other genes during preimplantation 

development (479, 480) . TEAD3 is expressed primarily in placenta (481, 482)  and 

in cardiac muscle (483). Also, TEAD3 augments the α1-adrenergic activation of the 

skeletal muscle α-actin (484). TEAD4 specifically activates skeletal muscle genes 

(481) and is involved in skeletal muscle differentiation. 
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Initial induction of many smooth muscle-specific genes such as myocardin, α-SMA, 

troponin, and smooth muscle heavy chain is MCAT-dependent (475). Myocardin is 

expressed in VSMCs and activates muscle-specific genes associated with SMC 

differentiation (147). Animal studies have revealed a 10Kb distal enhancer that 

directs the cardiovascular expression in vivo and is regulated through the binding of 

Foxo, E-box, NKX2-5 and TEADs (485). In recent studies, it has been shown that 

TEAD1 is significantly induced during SMC phenotypic modulation. In particular, 

TEAD1 represses myocardin-induced activation of smooth muscle-specific genes 

through disruption of myocardin binding to SRF in vitro and in vivo (149). Such data 

highlight the complexity of the function and specificity of the TEAD family members, 

which can either activate or repress smooth muscle specific genes dependent on 

the phenotypic state of the cell and the associated co-factors.  

The ability of all 4 TEAD family members to bind the canonical consensus MCAT 

sequence is conserved through evolution. However, they lack a definite transcription 

activation or repressor domain, and published data suggest that TEAD proteins 

require co-factors to exert their function (486, 487). Various proteins have been 

proposed as candidate co-activators, with Yes-associated protein 1 (YAP1) being 

the best candidate. YAP1 contains an acidic transcriptional activation domain at the 

carboxyl terminus, but lacks a DNA binding domain (488). All TEAD proteins bind 

YAP1 specifically and with the same efficiency at their carboxyl-terminal end (489). 

YAP1 is the human homolog of Yki and is phosphorylated by the Lats tumour 

suppressor which is the homolog of Wts in Drosophila. They are all components of 

the Hippo pathway that was first identified in Drosophila and is highly conserved 

through evolution. The role of the Hippo pathway in mammalian cell growth and 

proliferation, apoptosis, and human cancer is well established (490, 491). 

Phosphorylated YAP is bound to the phospho-serine/threonine- binding protein 14-

3-3 in the cytoplasm. The dephosphorylated protein is the active form found in the 

nucleus, where it acts as a transcriptional co-activator (489). Zhao et al have shown 

that YAP1 and TEAD1 co-occupy >80% of the promoters that are pulled down by 

either of them in a ChIP-on-ChIP assay (492). Recently, the Hippo pathway has 

attracted increasing attention for its role in VSMC phenotypic modulation, with data 

showing that YAP1 regulates the VSMC phenotype towards the synthetic state 

(148). It has also been shown that VSMC proliferation is YAP1-dependent, and 

YAP1 represses expression of CArG-dependent contractile-specific genes such as 

myocardin, α-SMA, SMMHC and SM22 (148). Taking into consideration these 

findings, TEAD and YAP proteins form complexes and together they bind MCAT 
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DNA elements to activate or repress expression of target genes through 

myocardin/SRF binding, promoting the synthetic state in VSMCs.  

5.2 Results 

5.2.1 Transcriptional regulation through the NKX2-5 promoter 

Eukaryotic promoters can range between 100bp to 1Kb in length. There are usually 

3 distinct parts of the promoters: the core promoter, which contains the transcription 

start site (TSS), the RNA polymerase binding site, and binding sites for other 

transcription factors; the proximal promoter with the proximal sequence upstream of 

the gene that tends to contain primary regulatory elements and it is usually 250bp 

long; and, the distal promoter which compromises the distal sequence upstream of 

the gene which contains additional regulatory elements with weaker influence. 

5.2.1.1 Transcriptional activity of rs3095870 locus 

For the study of NKX2-5 gene, a 578bp long fragment was considered as the 

minimal promoter of the gene containing the TSS and the RNA polymerase II 

binding site. As described in section 2.6 the minimal promoter was cloned into the 

pGL4.10 reporter vector. SNP rs3095870 showed evidence of association with 

scleroderma but the association was not significant after the permutation analysis 

(Table 3.9). However, since the in silico analysis suggested that this SNP might be 

functional, I hypothesised that rs3095870 is located within or near a distal promoter 

element. The genomic locus that contained the SNP was considered as an 

upstream promoter and was also cloned into the pGL4.10 reporter vector. The 

altered allele was introduced with site-directed mutagenesis (SDM).  

The minimal promoter vector and the upstream/distal promoter vector specific to the 

C or the T allele of rs3095870 were transfected into primary contractile or synthetic 

HPASMCs to test the potential of the genomic loci to increase transcriptional activity 

(Figure 5.2). The rs3095870-C construct significantly increased transcriptional 

activity compared to the minimal promoter alone in both contractile and synthetic 

cells. The rs3095870-T construct did not increase transcriptional activity compared 

to the minimal promoter. Also, the rs3095870-T construct exhibited significantly less 

transcriptional activity compared to the rs3095870-C. 

These data suggest that the genomic locus of rs3095870 retains the ability to 

increase transcription, and that this property is specific to the major C allele, which 

provided evidence of association with scleroderma. It is therefore proposed that a 
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transcriptional mechanism that activates transcription takes place only in the 

presence of the C allele.  

 

 

Figure 5.2 Luciferase activity of the minimal and upstream promoter in HPASMC.  
Contractile (A) and synthetic (B) primary HPASMCs were transfected with reporter vectors 
containing the firefly luciferase gene driven by the minimal promoter of NKX2-5 (minimal 
promoter), the upstream promoter including the rs3095870-C allele (rs3095870-C), and the 
upstream promoter including the rs3095870-T allele (rs3095870-T), and luciferase assays 
were performed. Luciferase activity was measured and is presented as the ratio of 
firefly/renilla expression. The pGL4.10 reporter vector was used as negative control. N=3 
(replicate experiments). *p≤0.05, **p≤0.01. 

 

5.2.1.2 TEAD1 binds at rs3095870 site 

An in silico analysis focused on the rs3095870 was conducted using TRANSFAC 

and JASPAR. A panel of different transcription factors were predicted to bind at the 

region of upstream promoter, but only one protein, TEF-1, could bind at the 

rs3095870 site (Figure 5.3). In fact, TEF-1 binds only in the presence of the major C 

allele, whereas when the T allele is present the binding site is abolished. 

Taking this into account, the data propose a regulatory mechanism where TEAD1 

binds at the upstream promoter only in the presence of the risk/disease-associated 

rs3095870-C allele and activates or enhances transcription of NKX2-5, leading to 

increased gene expression, which has previously been associated with disease.   

In order to confirm the TEAD1 binding at the SNP site, I designed and performed 

different in vitro and in vivo binding assays. The design and the details of the 

experiments are given in sections 2.11 and 2.12. 
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Figure 5.3 TEAD1 binds the rs3095870 site.  An in silico analysis using TRASNFAC and 
JASPAR revealed that a MCAT consensus sequence coincides with rs3095870. MCAT sites 
are consensus binding elements for the TEAD family of transcription activators. In the 
presence of the C allele of rs3095870, TEAD1 or TEF-1 transcription factor binds the 
consensus element, but when the minor T allele is present the consensus site is abolished.  

 

 

5.2.1.2.1 Electrophoretic mobility shift assay (EMSA) 

I performed an EMSA to explore whether the C and T alleles of rs3095870 retain 

different binding affinities for other proteins, indicating that each allele is associated 

with the binding of different transcription factors.  

As it is shown in Figure 5.4A, there are different bands for each allele (red arrows). 

The two bands are of different sizes which means that different proteins bind each 

allele confirming different binding properties.  

Next, a supershift experiment was performed with an antibody specific to TEAD1. 

As shown in Figure 5.4B, the original band of rs3095870-C probe was shifted with 

the TEAD1 antibody, revealing that TEAD1 is indeed a part of this binding complex. 

In addition, I used an antibody specific to YAP1, which is a partner of TEAD1 that 

together as a complex regulate expression of downstream targets. The addition of 

YAP1 antibody resulted in a supershift of the original band, revealing that YAP1 is 

also member of complex.   
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Figure 5.4 Electrophoretic mobility shift assays for rs3095870.  Two biotinylated double-
stranded DNA oligonucleotides specific to the rs3095870 SNP were designed containing 
either the C or the T allele of the SNP. The probes were mixed with the nuclear protein 
isolated from TGF-β stimulated ImHPASMCs (16 hours of TGF-β stimulation) and the 
protein/DNA complexes were analysed by EMSA assays. A. The C and T alleles of 
rs3095870 show different binding affinities, two bands of different sizes are formed (red 
arrows). B. TEAD1 and YAP1 specific antibodies were used to determine whether either of 
the proteins are part of the complex. Both antibodies super-shifted the protein/DNA complex 
created in the presence of the C allele of rs3095870 (red arrows), confirming the presence of 
TEAD1 and YAP1 proteins in the complex. Free unbound probe is shown by the black arrow 
at the bottom of the gel.  

 

5.2.1.2.2 Pull-down assay 

To verify the results of the EMSAs, pull-down assays were performed using 2 

different biotinylated DNA probes specific to both alleles of rs3095870 and two 

different control probes. The results confirmed that TEAD1 protein binds specifically 

the C allele of rs3095870, whereas there is no binding to the T allele probe (Figure 

5.5).  

Although the biotinylated scrambled probe showed a weak signal, probably due to 

the strong affinity of biotin and streptavidin, the use of 2 different control probes 

confirmed that the binding to the C allele is strong and specific. 

The binding of TEAD1 to the rs3095870 is very sensitive and numerous 

experiments were performed to optimise the best binding conditions. The 

optimisation involved adjusting the amount of detergent in the binding reaction and 

the salt concentration during washes. After obtaining the best binding conditions, 

the experiment was performed 3 times to ensure that binding is specific and not an 

artefact. 
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This assay is another way to verify the results of the EMSA. Both experiments 

addressed the same question: whether TEAD1 binds the rs3095870 site and the 

binding is specific to the C allele or also binds the T allele.   

 

 

Figure 5.5 Pull-down assay.  Biotinylated probes specific to the C (Lane 2) or the T (Lane 
3) allele of rs3095870 were mixed with nuclear protein isolated from TGF-β stimulated 
ImHPASMCs in order to pull-down proteins that bind specifically the sequence around the 
SNP. A biotinylated probe with scrambled sequence (scr) (Lane 4) and a non-biotinylated 
probe specific to the C allele (Lane 5) were used as negative controls. Input: 5% of the total 
protein used per assay (Lane 1). N=3 replicate experiments were performed, the blot is a 
representative experiment.  

 

5.2.1.2.3 Chromatin immunoprecipitation assay (ChIP) 

Thirdly, a ChIP assay was performed to monitor in vivo the TEAD1 association with 

the upstream promoter in live ImHPASMCs. The experimental procedure is 

described in section 2.12. Chromatin immunoprecipitation with the TEAD1 antibody 

showed that the transcription factor binds the NKX2-5 upstream promoter (Figure 

5.6). TEAD1 binding was also found in the minimal promoter and paired with binding 

of RNA polymerase II suggesting that TEAD1 participates directly in the 

transcriptional machinery of NKX2-5 (Figure 5.6). 

In addition, data showed that Smad3 also participates in the transcriptional 

regulation of NKX2-5. Chromatin immunoprecipitation with an antibody specific to 

phosphorylated-SMAD3 showed binding of the activated form of the protein at the 

transcriptional start site as well as in the upstream promoter. This finding provides a 

confirmation that NKX2-5 activation can be mediated by TGF-β as shown in Chapter 

4.  
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Figure 5.6 Chromatin Immunoprecipitation assay.  ImHPASMCs were treated with TGF-
β for 16 hours before the transcription factors were cross-linked to the chromatin. The 
chromatin was then sheared by sonication into DNA fragments of 500bp-1Kb in length. 
Chromatin was immunoprecipitated with antibodies specific to TEAD1, phospho-Smad3 and 
RNA polymerase II. Immunoprecipitation with a non-specific IgG was used as a negative 
control. Two DNA fragments surrounding the rs3095870 site and the transcription start site 
of NKX2-5 were amplified by PCR. The PCR products were analysed in an agarose gel and 
the results showed in the figure above. Input: 10% of initial amount of chromatin used per 
immunoprecipitation. NTC: no template control PCR reaction.  

 

5.2.1.3 Transcriptional regulation of NKX2-5 through the TEAD family 

Since, TEAD family members can all bind the MCAT consensus element with the 

same affinity and efficiency, apart from TEAD1, TEAD3 will also be studied in the 

study.  

TEAD3 is generally expressed in cardiac muscle (483, 484), as is NKX2-5. In 

addition, a recent study showed that TEAD3 is expressed in human aortic SMC and 

is required for TGF-β signalling (493). Therefore, TEAD3 would be a good candidate 

effector of NKX2-5 regulation in HPASMC. 

5.2.1.3.1 TEAD1 enhances the transcriptional activity of NKX2-5 

After confirming the binding of TEAD1 to the rs3095870-C allele and its possible 

involvement in NKX2-5 transcriptional regulation, a TEAD1 expression vector was 

co-transfected into primary HPASMCs together with the minimal and upstream 

promoter constructs and luciferase assays were performed. TEAD1 co-transfection 

significantly induced luciferase expression independent of the construct (Figure 5.7), 

and the same effect was observed in both contractile and synthetic HPASMC. 
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Figure 5.7 TEAD1 enhances transcriptional activity of NKX2-5 upstream promoter.  
Contractile (A) and synthetic (B) primary HPASMC were transfected with reporter vectors 
containing the firefly luciferase gene driven by the minimal promoter of NKX2-5 (minimal 
promoter), the upstream promoter including the rs3095870-C allele (rs3095870-C), the 
upstream promoter including the rs3095870-T allele (rs3095870-T). The TEAD1 expression 
vector was co-transfected with the reporter vectors. Luciferase assays were performed, and 
luciferase activity was measured and is presented as the ratio of firefly/renilla expression. 
The pGL4.10 reporter vector was used as negative control. N=3 (replicate experiments). 
**p≤0.01, ****p≤0.0001. 

 

5.2.1.3.2 Overexpression of TEAD1 and TEAD3 

ImHPASMCs were transfected with TEAD1 and TEAD3 expression vectors to 

evaluate any potential direct effect of the proteins on NKX2-5 expression. Increasing 

amounts of DNA ranging from 50ng, 100ng, to 250ng per transfection were used. 

The cells were transfected efficiently and effectively as shown from the dose-

dependent increase in TEAD1 and TEAD3 RNA and protein (Figure 5.8).  

Overexpression of TEAD1 or TEAD3 did not significantly affect NKX2-5 gene 

(Figure 5.8A) or protein (Figure 5.8B) expression. However, there is an increasing 

trend in NKX2-5 protein expression upon TEAD3 overexpression. On the contrary, 

TEAD1 overexpression causes an insignificant decrease in NKX2-5 protein levels.  

This experiment, which only performed once, overall led to inconclusive data 

regarding a potential direct regulatory effect of TEAD1 and TEAD3 on NKX2-5 

expression. The data so far indicate that NKX2-5 transcription is under multiple 

regulatory mechanisms, and more experiments are required to elucidate the 

transcriptional machinery. 

Apart from NKX2-5 expression, the SDS-PAGE/Western blot analysis provided 

some valuable information about the specificity of the antibodies against TEAD1 

and TEAD3. The TEAD3 antibody is not strong enough to detect the endogenous 
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TEAD3 protein, and also detects a non-specific band exactly above the transfected 

protein. The TEAD1 antibody detects 3 bands around 49KDa. The middle band 

corresponds to TEAD1 protein and both the endogenous and transfected proteins 

are identified very efficiently.  The top band of the triplet corresponds to TEAD3 

protein, whereas the band at the bottom might be TEAD4 based on the protein 

homology. All 4 members of the family share great homology, and in particular 

TEAD1 and TEAD3 are more than 70% similar. 

 

Figure 5.8 Overexpression of TEAD1 and TEAD3.  TEAD1 and TEAD3 expression 
vectors were transfected into ImHPASMCs and the effect on NKX2-5 expression was 
assessed. Different amounts of DNA were used for each transfection (+:50ng, ++:100ng, 
+++:250 ng). The cells were harvested 24 hours after transfection, and total protein and 
RNA were extracted and subjected to SDS-PAGE/Western blot and qPCR analysis. A. Gene 
expression of NKX2-5, TEAD1 and TEAD3 was analysed by qPCR. B. Protein expression of 
NKX2-5, TEAD1 and TEAD3 were analysed and densitometry was performed in K=ImageJ 
relative to GAPDH expression (housekeeping protein). N=1 (1 experiment performed; the 
qPCR was performed in triplicate samples).  
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5.2.1.3.3 Knock-down of TEAD1 and TEAD3 using siRNA 

Since overexpression of TEAD1 and TEAD3 only provided ambiguous data, I next 

used RNA silencing technology to knock down the proteins with siRNA molecules. 

The silencing of TEAD1 and TEAD3 proteins was successful (Figure 5.9). At the 

RNA level, NKX2-5 was significantly decreased only when TEAD3 protein was 

knocked down (Figure 5.9A). However, NKX2-5 protein was downregulated when 

both TEAD1 and TEAD3 were knocked down (Figure 5.9B). Although the decrease 

in NKX2-5 protein was consistent in all replicate experiments, the difference did not 

achieve statistical significance.  

 

Figure 5.9 Knock-down of TEAD1 and TEAD3.  TEAD1 and TEAD3 were knocked down 
in ImHPASMCs using specific siRNA oligonucleotides at 100nM final concentration for 72 
hours. After treatment total protein and RNA were extracted and subjected to Western blot 
and qPCR analysis, respectively. A. NKX2-5 gene expression was analysed by qPCR after 
knock down of TEAD1 and TEAD3. B. NKX2-5 protein expression was analysed after 
TEAD1/3 knock down. Protein levels of TEAD1 and TEAD3 were also analysed to evaluate 
the efficiency of the knock down. N=3 (replicate experiments). *p≤0.05. 
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5.2.1.3.4 TEAD3 alone is not sufficient to enhance transcriptional activation of 

NKX2-5 

In an attempt to elucidate further the role of TEAD3 on transcriptional regulation of 

NKX2-5, a TEAD3 expression vector was co-transfected together with the 

constructs of minimal and upstream promoter into ImHPASMCs. Although, there 

was a trend of increased transcriptional activation in the presence of TEAD3, the 

effect was not significant for any of the constructs (Figure 5.10). When, the results 

are compared to the effect of TEAD1 co-transfection on luciferase expression 

(Figure 5.8), TEAD3 seemed to have no effect overall.  

 

Figure 5.10 TEAD3 is not able to enhance transcriptional activity.  ImHPASMCs were 
transfected with reporter vectors containing the firefly luciferase gene driven by the minimal 
promoter of NKX2-5 (minimal promoter), the upstream promoter including the rs3095870-C 
allele (rs3095870-C), or the upstream promoter including the rs3095870-T allele 
(rs3095870-T). TEAD3 expression vector was co-transfected with the reporter vectors. 
Luciferase assays were performed, and luciferase activity was measured and presented as 
the ratio of firefly/renilla expression. The pGL4.10 reporter vector was used as negative 
control. N=2 (replicate experiments). 

 

Taken together, these data suggest that TEAD3 is required for the direct 

transcriptional activation of NKX2-5, but the presence of TEAD1 is needed to 

mediate and enhance the transcription of the gene. On the other hand, TEAD1 is 

able to enhance NKX2-5 transcription at a later time, probably after the initial gene 

activation. Overall, the data imply a complex transcriptional regulation where TEAD1 

and TEAD3 affect NKX2-5 gene and protein levels, but the exact mechanism in not 

completely clear and requires further investigation.  
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5.2.1.4 YAP1 is part of the regulatory mechanism of TEAD1/3 

Although TEADs have been extensively studied as transcriptional regulators of their 

downstream targets, the proteins themselves lack a defined transcription activation 

domain. Ectopic expression of TEAD1 did not enhance TEAD-dependent 

transcription (486), and overexpression of TEAD1 in cells that do not express TEAD 

proteins results in repression of transcription (487). These findings suggest that 

TEAD proteins require co-activators to exert their function. YAP1 (Yes-associated 

protein 1) has been identified as the best candidate required for TEAD-dependent 

transcription.  

5.2.1.4.1 YAP1 siRNA 

To investigate whether YAP1 is the protein through which TEAD1 and TEAD3 

regulate NKX2-5, I used RNA silencing to knock down YAP1 protein (Figure 5.11). 

The experiment showed that NKX2-5 transcriptional activation depends clearly on 

YAP1 expression (Figure 5.11). Both NKX2-5 RNA and protein expression levels 

were significantly decreased when YAP1 was silenced. These data prove 

unambiguously that TEAD/YAP1 complex is required for NKX2-5 transcriptional 

activation. 

 

Figure 5.11 Knock-down of YAP1.  YAP1 was knocked down in ImHPASMCs using 
specific siRNA oligonucleotides at 130nM final concentration for 48 hours. After treatment 
total protein and RNA were extracted and subjected to SDS-PAGE/Western blot and qPCR 
analysis. A. NKX2-5 gene expression was analysis by qPCR after knocking down of YAP1 
protein. B. Protein expression of NKX2-5, was analysed after YAP1 knock down. Protein 
levels of phosphorylated YAP1 (Phospho-YAP1) and total YAP1 were also analysed to 
evaluate the efficiency of the knock down. N=3 (replicate experiments). *p≤0.05, **p≤0.01. 
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5.2.1.4.2 Verteporfin blocks the TEAD/YAP complex 

After establishing the importance of YAP1 in the transcriptional regulation of NKX2-

5, I used verteporfin, a small molecule that inhibits the downstream signalling of 

TEAD/YAP complexes (494). Verteporfin interferes with the physical interaction of 

TEAD and YAP proteins and blocks their association. It was developed and has 

been used as a cancer drug in different malignancies.  

Verteporfin is a light-sensitive benzoporphyrin derivative and can be toxic for cells, 

especially for sensitive primary cells such as HPASMCs. A cell viability assay (MTS) 

was performed with different concentrations of verteporfin to evaluate its cytotoxic 

effect in primary HPASMC (Figure 5.12A).  

 

 

Figure 5.12 Cytotoxicity and effectiveness of Verteporfin.  A. A cell viability (MTS) assay 
was performed to evaluate the cytotoxic effect of verteporfin on primary HPASMC. Cells 
were treated with verteporfin: 0.5µM, 1µM, 3µM, 5µM, 7µM for 4 hours, and the absorbance 
measured at 490nm. B. The less cytotoxic doses were then used to check their potency on 
the gene expression of CTGF, a known downstream target. Gene expression was assessed 
by qPCR normalised to TBP expression. N=2. 

 

Subsequently, to establish how effective the lower doses of 0.5µM, 1µM, and 3µM 

are, primary HPASMCs were treated with verteporfin in a dose-dependent manner 

and gene expression levels of CTGF were assessed by qPCR (Figure 5.12B). 

CTGF is a known downstream target of TEAD1/YAP1 complex, and verteporfin has 

been used to inhibit its expression (492). qPCR data showed that increasing 

concentrations of verteporfin suppressed CTGF expression in a dose-dependent 

manner (Figure 5.12B). Based on these results, the concentration of 1µM 

verteporfin was selected and used for the experiments. 
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Primary HPASMC were stimulated with TGF-β, transfected with the TEAD1 

expression vector and treated with verteporfin as indicated in Figure 5.13. At the 

protein level, TGF-β induced NKX2-5 expression in both contractile and synthetic 

cells, and the effect was maximised by the transfection of TEAD1 (Figure 5.13A). 

When verteporfin was used, NKX2-5 expression was decreased and reversed the 

effect of TEAD1, confirming once more the essential role of TEAD1/YAP1 complex 

on NKX2-5 expression. 

 

Figure 5.13 Verteporfin interferes with TEAD1/YAP1-mediated NKX2-5 regulation.  
Primary HPASMC were cultured under conditions favouring the contractile or the synthetic 
state. After overnight serum starvation in 0.1% FCS, the cells were either stimulated with 
2ng/ml TGF-β, transfected with TEAD1 expression vector or treated with 1µM of verteporfin 
as indicated. After 24 hours of treatment, total protein and RNA were extracted and 
subjected to Western blot and qPCR analysis, respectively. A. NKX2-5 protein expression 
was analysed for the different treatments, and densitometry analysis was performed in 
ImageJ normalised to GAPDH expression. B. NKX2-5 gene expression was analysed by 
qPCR normalised to TBP expression. N=3 (replicate experiments). *p≤0.05.  

 



200 
 

However, the NKX2-5 mRNA levels did not correlate with the protein expression. In 

particular, transfection of TEAD1 did not increase NKX2-5 expression and 

verteporfin had no effect on expression (Figure 5.13B).   

Overall, the data support a role for the TEAD1/YAP1 complex in the regulation of 

NKX2-5, but the inconsistency between the gene and protein expression needs to 

be further explored.  

5.2.2 Transcriptional regulation through the enhancer 

SNPs rs3132139 and rs3131917 were associated with PAH in the discovery cohort 

and with scleroderma in the meta-analysis, respectively (Chapter 3). The in silico 

analysis using Haploreg, suggested that both SNPs could be functional and they 

might be near promoter or enhancer regions. The SNPs are located between 2.1-

3.4Kb downstream of NKX2-5. Tagging SNP rs12514371 is found between them. 

A literature review revealed a study by May et al (495) where a genome-wide map 

of predicted cardiac enhancers in the human genome was generated. Briefly, the 

occupancy profiles of two enhancer-associated co-activator proteins were 

determined in human foetal and adult heart by ChIP using antibodies specific to 

p300 and CBP co-activator proteins. The results were categorised by chromosomal 

region and the “rs” names of the SNPs that reside in each region were also given. 

On chromosome 5, a genomic region 2.7Kb long downstream of NKX2-5 is 

characterised as a putative NKX2-5 enhancer in the heart.  The region contains all 

the 3 SNPs (rs3132139, rs12514371, rs3131917) identified in Chapter 3 as disease-

associated polymorphisms.  

This enhancer must be activated during heart development when NKX2-5 exerts its 

unique and non-redundant role. However, I hypothesised that the same mechanism 

that activates NKX2-5 in embryogenesis, may also activate the gene in diseased 

vessels in adulthood. Consequently, I considered this region downstream of NKX2-5 

as a putative enhancer and further explored this hypothesis.  

5.2.2.1 Transcriptional activity of the enhancer 

The genomic locus containing the SNPs was cloned into the pGL4.10 reporter 

vector upstream of the minimal promoter as described in section 2.6. The constructs 

were transfected into primary HPASMC and luciferase assays were performed. 

The construct containing the putative enhancer region increased luciferase activity 

significantly compared to the minimal and the upstream promoter constructs, 

confirming that the region is a functional enhancer (Figure 5.14). 
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As explained in Chapter 2, two constructs were generated based on the associated 

risk alleles and the haplotypes physically occurring in the populations. The “not-

risky” enhancer construct was also able to increase luciferase expression, but not 

as efficiently as the “risky” construct.  

 

Figure 5.14 The associated SNPs downstream of NKX2-5 are located in a functional 
enhancer.  Primary HPASMC were transfected with reporter vectors containing the firefly 
luciferase gene driven by the minimal promoter of NKX2-5 (minimal promoter), the upstream 
promoter including the rs3095870-C allele (rs3095870-C), the upstream promoter including 
the rs3095870-T allele (rs3095870-T), the downstream putative enhancer containing the 
“risky” allele combination associated with disease, and the downstream putative enhancer 
containing the “not-risky” allele combination. Forty-eight hours after transfection the cells 
were lysed and luciferase assays were performed. Luciferase activity was measured and 
presented as the ratio of firefly/renilla expression. The pGL4.10 reporter vector was used as 
negative control. N=3 (replicate experiments). **p≤0.01, ***p≤0.001, ****p≤0.0001 

 

5.2.2.2 Transcription factors binding at the enhancer 

An in silico analysis (TRANSFAC, JASPAR) revealed numerous binding sites for 

multiple proteins known to regulate transcription through enhancer regions during 

heart development and SMC differentiation such as GATA6, Mef-2c, c-Jun. Since 

enhancer effects are usually cell type-specific, I performed ChIP assays in 

ImHPASMCs stimulated with TGF-β using antibodies specific to GATA6, MEF-2c, c-

JUN, Phospho-SMAD3 and RNA polymerase II. The results are presented as fold-

enrichment for the binding of each transcription factor in Figure 5.15. 

Surprisingly, a significant enrichment was found for MEF-2c, GATA6 and c-JUN at 

the 5’ end of the enhancer region. Phospho-SMAD3 showed significant binding 

across the entire region suggesting that TGF-β could also activate the enhancer to 
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positively regulate NKX2-5 expression. In addition, an interesting finding was the 

strong enrichment of RNA polymerase II binding towards the first half of the region, 

where most of the proteins were also bound, suggesting that the enhancer is 

engaged with the transcriptional machinery. These data signify the downstream 

genomic locus as a functional enhancer that activates NKX2-5 transcription in 

HPASMC through the binding of GATA-6, MEF-2c and c-JUN.   

 

Figure 5.15 Binding of transcription factors in the functional enhancer.  ImHPASMCs 
were treated with TGF-β for 16 hours before the transcription factors were cross-linked to 
the chromatin. The chromatin was then sheared by sonication into DNA fragments of 500bp-
1Kb in length. Chromatin was immunoprecipitated with antibodies specific to GATA-6, c-
JUN, MEF-2c, phospho-SMAD3 and RNA polymerase II. Immunoprecipitation with an IgG 
antibody was used as a negative control. The enhancer region was divided in 5 DNA 
fragments (1-5) that were amplified by PCR. The PCR products were run in an agarose gel 
and the results for the binding of each factor are presented as a ratio of fold-enrichment to 
the input. 

 

5.2.2.3 TGF-β is not sufficient to activate the enhancer or the promoter 

independently 

Careful evaluation of the ChIP experiments conducted in the promoter and the 

enhancer regions of NKX2-5 revealed that enrichment of phospho-SMAD3 binding 

was prominent in both cases. These data are in agreement with the findings in 

Chapter 4 showing that TGF-β activates NKX2-5 expression through 

phosphorylation of SMAD3.  

To examine whether TGF-β induces the transcriptional activity of the constructs, I 

repeated the luciferase assays in TGF-β-treated and untreated ImHPASMCs 

(Figure 5.16). The results were inconclusive as TGF-β did not affect the luciferase 

expression for any of the constructs. Although the experiment was only performed 

once, the data did not suggest an overall effect of TGF-β. 
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A possible explanation might be that there is more than one TGF-β-responsive 

elements at both the upstream promoter and the enhancer that act synergistically to 

promote the effect of the stimulation. Another explanation is that TGF-β might 

function through an element found in another region that is not included in the 

constructs. 

 

Figure 5.16 TGF-β stimulation did not induce transcriptional activity of the promoter 
or the enhancer constructs.  Luciferase assays were repeated as for Figure 5.14.24 hours 
after transfection, the cells were stimulated with 2ng/ml TGF-β for an extra period of 24 
hours. The cells were then lysed and luciferase assays were performed. N=1 (one 
experiment performed in duplicate) 

 

5.2.3 Post-transcriptional regulation of NX2-5 through the 

3’UTR 

The tagging SNP rs703752 is located within the 3’ untranslated region (3’UTR) of 

NKX2-5 gene, 63bp after the last coding exon. The SNP did not show any evidence 

of association, but the 3’UTR region itself could conceal a powerful mechanism of 

post-transcriptional regulation.   The untranslated regions at the 3’ end of the genes 

are regulatory regions that may influence polyadenylation, translation efficiency, 

localisation, and stability of the mRNA. They usually contain binding sites for 

regulatory proteins as well as microRNAs [reviewed in (496)]. In addition, the 

physical characteristics of the 3’UTR such as the length and secondary structures 

can contribute to post-transcriptional regulation. These diverse mechanisms of gene 

regulation confer spatio-temporal specificity to gene transcription.  

MicroRNAs are small non-coding single-stranded RNA molecules (~23bp long) 

encoded by specific genes or introns, they are produced in the nucleus and undergo 

a maturation process until they are released to the cytoplasm as functional 

molecules. MicroRNAs bind specific sites within the 3'UTRs and decrease gene 

http://en.wikipedia.org/wiki/Polyadenylation
http://en.wikipedia.org/wiki/MicroRNAs
http://en.wikipedia.org/wiki/Secondary_structure
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expression of various mRNAs by either inhibiting translation or directly causing 

degradation of the transcript. Apart from microRNAs, repressor proteins can bind 

specific silencer regions within the 3'UTRs and inhibit the expression of the mRNAs. 

In addition, many 3'UTRs contain AU-rich elements (AREs) that are bound by 

proteins to affect the stability or decay rate of transcripts. Furthermore, some 

3'UTRs may contain the sequence “AAUAAA” that causes the synthesis of 

the poly(A) tail, responsible for mRNA translation, stability, and export [reviewed in 

(496)].  

5.2.3.1 Evaluation of NKX2-5 3’UTR region 

To study and explore any functional effect of the 3’UTR on the post-transcriptional 

regulation of NKX2-5 gene, the region was cloned into the pmirGLO reporter vector 

downstream of the firefly luciferase gene as described in section 2.6. The constructs 

were transfected into primary HPASMC and luciferase assays were performed 

(Figure 5.17). The 3’UTR construct caused a significant reduction in the luciferase 

expression in both the contractile and the synthetic cells. This would be explained 

by the binding of a microRNA on the 3’UTR that prevented the translation of the 

luciferase gene transcript and decreased expression. The effect was greater in the 

synthetic cells, and it also was independent of the allele of the SNP. 

 

Figure 5.17 Functional properties of NKX2-5 3’UTR.  The 3’UTR of NKX2-5 gene was 
cloned into the pmirGlO reporter vector downstream of the firefly luciferase gene. The 3’UTR 
contained rs703752, a tagging SNP. Two versions of the reporter vectors were created: the 
3’UTR-rs703752-C, and the 3’UTR-rs703752-A. Primary HPASMC cultured in vitro under 
the contractile (A) or the synthetic (B) conditions were transfected with the reported vectors. 
48 hours after transfection, the cells were lysed and luciferase assays performed. N=3 
(replicate experiments). *p≤0.05, **p≤0.01, ****p≤0.0001. 

http://en.wikipedia.org/wiki/Repressor
http://en.wikipedia.org/wiki/Silencer_(DNA)
http://en.wikipedia.org/wiki/AU-rich_element
http://en.wikipedia.org/wiki/Poly(A)_tail
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5.2.3.2 Prediction of microRNA binding at the 3’UTR 

To examine the possibility that a microRNA can bind the 3’UTR, an in silico analysis 

was performed using the miRanda-mirSVR software (497) (www.microRNA.org). 

Firstly, a 25bp long region surrounding rs703752 specific to either the A or the C 

allele was used as the seed. The software uses an algorithm to run the query 

sequence against all known microRNA sequences available in the database. Based 

on the results (maximum score and minimum energy) the best candidate 

microRNAs that bind specifically the A or the C allele of rs703752 were selected 

and listed in Table 5.1.  

 

 rs703752-A rs703752-C 

miR name Score Energy Score Energy 

miR-629-3p 158 -21.67 150 -22.29 

miR-1260a 140 -12.62 Below threshold 

miR-532-3p 140 -16.34 Below threshold 

miR-4523 145 -22.5 Below threshold 

miR-4713-5p 152 -20.84 Below threshold 

miR-4740-3p Below threshold 145 -21.08 

miR-4279 Below threshold 140 -21.61 

miR-4469 Below threshold 143 -27.67 

miR-1225-3p Below threshold 142 -28.57 

Table 5.1 microRNAs that bind on the rs703752 site.  A 25bp long region surrounding 
rs703752 was used as the seed to run a search using the miRanda software. The software 
uses the seed sequence to identify microRNAs that would bind the sequence based on 
similarity. The results are described by 2 numbers: a score that shows similarity between the 
microRNA and the target sequences, and the energy that shows how stable the binding 
would be, with higher energy scores denoting stronger bindings. The best candidate 
microRNAs are shown in the table, with those that bind specifically to the rs703752-A allele 
in red, and those that bind specifically to the rs703752-C allele in blue. miRanda only uses a 
sequence-based search, without giving any information regarding the expression profile of 
the candidate microRNAs. 

 

5.2.3.3 Effect of microRNA binding at the 3’UTR  

The first microRNA tested was the hsa-miR-629-3p, which was at the top of the list 

(Table 5.1), without exhibiting specificity for either allele (A or C). When hsa-miR-

http://www.microrna.org/
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629-3p-mimic was co-transfected together with the 3’UTR constructs, the luciferase 

expression was significantly increased in both contractile and synthetic cells (Figure 

5.18). Transfection of the hsa-miR-629-3p-antagomir brought the expression back 

down, neutralising the effect. These results suggested that miR-629-3p might act as 

an antagomir competing with another microRNA that binds the region. 

 

 

Figure 5.18 Effect of miR-629-3p in primary HPASMC.  The 3’UTR reporter vectors 
containing either the C or the A allele of rs707352 were transfected into primary HPASMC 
cultured under contractile (A) or synthetic (B) conditions. The miR-629-3p mimic molecule 
and inhibitor were co-transfected together with the reporter vectors. The mimic molecule was 
used at 10nM and the inhibitor at 50nM. Forty-eight hours after transfection the cells were 
lysed and luciferase assays were performed. N=3 (replicate experiments). **p≤0.01, 
***p≤0.001. 

 

Next, hsa-miR-532-3p, which based on the predictions binds specifically the 

rs703752-C allele, was co-transfected into primary HPASMC (Figure 5.19). No 

significant effect was seen in the contractile cells. However, in synthetic cells, 

transfection of the 3’UTR construct significantly decreased luciferase expression 

overall, and co-transfection of the inhibitor released luciferase expression in the 

presence of the A allele.  However, as with miR-629-2p, transfection of the mimic 

molecule did not cause a decrease in luciferase expression suggesting that there is 

no specific effect. 

After failing to identify any functional microRNA that could potentially control NKX2-

5 post-transcriptionally using miRanda software, I performed a literature search for 

candidate microRNAs that a) target NKX2-5 3’UTR, b) are expressed in VSMC, and 

c) exhibit higher levels of expression in PAH (GSE55427). Based on these criteria, a 

good candidate microRNA was the hsa-let-7i-3p. Let-7i-3p was co-transfected into 
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primary HPASMC as before (Figure 5.20). Although there were differences between 

contractile and synthetic cells, none of the effects was significant.  

 

 

Figure 5.19 Effect of miR-532-3p in primary HPASMC.  The 3’UTR reporter vectors 
containing either the C or the A allele of rs707352 were transfected into primary HPASMC 
cultured under contractile (A) or synthetic (B) conditions. The miR-532-3p mimic molecule 
and inhibitor were co-transfected together with the reporter vectors. Mimic molecule was 
used at 10nM and the inhibitor at 50nM. Forty-eight hours after transfection the cells were 
lysed and luciferase assays were performed. N=3 (replicate experiments). **p≤0.01. 

 

 

Figure 5.20 Effect of let-7i-3p in primary HPASMC.  The 3’UTR reporter vectors 
containing either the C or the A allele of rs707352 were transfected into primary HPASMC 
cultured under contractile (A) or synthetic (B) conditions. The miR-532-3p mimic molecule 
and inhibitor were co-transfected together with the reporter vectors. The mimic molecule was 
used at 10nM and the inhibitor at 50nM. Forty-eight hours after transfection the cells were 
lysed and luciferase assays were performed. N=3 (replicate experiments). 
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5.2.4 Methylation studies 

Epigenetic mechanisms have been associated with CVD such as atherosclerosis 

and vascular inflammation. Cytosine methylation and hydroxymethylation, and 

histone modification are involved in gene regulation in VSMC during adulthood and 

embryogenesis and some examples are summarised in Webster et al (257). DNA 

methylation has also been associated with cancer. In particular, epigenetic 

inactivation of genes in cancer cells is based on transcriptional silencing by aberrant 

CpG methylation of CpG-rich promoter regions (498). Age-related methylation has 

been studied extensively in prostate cancer and differentially methylated genes can 

be used as markers for early diagnosis and disease risk assessment (499, 500). In 

these studies, NKX2-5 methylation levels were 3-fold higher in prostate than normal 

tissues, and NKX2-5 had been proposed as a good marker for distinguishing 

prostate cancer tissues (500).  

The NKX2-5 genomic locus is rich in CpG islands, with 6 of them spread around the 

gene (Figure 5.21). Many of the CpG dinucleotides of these islands have been 

included in methylation arrays, and there is evidence that the locus is unmethylated 

in aortic SMCs. Methylation is strongly related with disease by preventing 

transcriptional activation of methylated loci. For example, in a methylation study of 

patients with Tetralogy of Fallot, NKX2-5 was found to be methylated, and 

decreased levels of expression were verified by qPCR (501). 

 

Figure 5.21 CpG islands around NKX2-5 gene.  Six CpG islands are located around the 
NKX2-5 gene and shown in green (numbers:38, 112, 31, 62, 65, 64). Figure is adapted from 
the UCSC Genome Browser, GRCh38/hg38 Assembly.  

 

CpG island 38 is located in the middle of the downstream enhancer. Taking into 

account the provided data associating NKX2-5 expression with methylation, one of 

the initial aims of this project was to explore methylation as another epigenetic 

mechanism of NKX2-5 transcription. This part of the project was not completed due 

to lack of time, however, it is very important for future studies. 
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5.3 Summary of results 

The focus of the work presented in this chapter was to unravel the mechanism(s) 

that regulate NKX2-5 gene expression at the transcriptional, post-transcriptional and 

epigenetic levels. The findings emerged from the genetic association study were 

used as tags for potential sites of functional importance, and the associated SNPs 

were studied thoroughly. SNPs rs3132139 and rs3131917 that were associated with 

PH and scleroderma, respectively, are located downstream of NKX2-5 in a region 

that was described as putative enhancer of NKX2-5 in the heart tissue. SNP 

rs3095870 was located upstream of the minimal promoter of NKX2-5 and could 

serve as an upstream promoter. Supporting evidence were added through an in 

silico study, which showed that all the SNPs can possibly possess some functional 

properties.  

The genomic region surrounding rs3095870 was considered as a putative upstream 

promoter and was cloned into a reporter vector to perform luciferase assays. 

Indeed, the region significantly induced transcriptional activity. A MCAT consensus 

binding element that is recognised by the TEAD family of transcription factors 

coincides with rs3095870. Binding assays showed that TEAD1 protein was able to 

bind specifically only the rs3095870-C allele, and co-transfection of TEAD1 further 

increased the transcriptional activity of the upstream promoter, suggesting that 

TEAD1 is a transcriptional enhancer of NKX2-5 through binding at the rs3095870 

site.  

Since all the TEAD family members recognise and bind the MCAT consensus site 

with the same efficiency, TEAD1 might not be the only player in the regulation of 

NKX2-5, and TEAD3 protein was also studied.  RNA silencing of TEAD1 and 

TEAD3 proteins using siRNA showed that both proteins are important for the 

transcriptional regulation of NKX2-5. The data also suggested that TEAD3 is 

required for the initial transcriptional initiation of NKX2-5 but alone is not able to 

further enhance transcription, implying that TEAD1 and TEAD3 co-operate to 

regulate transcription. Silencing of YAP1 expression using siRNA confirmed the 

EMSA results and showed that YAP1 is a co-factor for TEAD1 and TEAD3, and 

together they regulate NKX2-5 expression.  

Luciferase assays showed that the downstream putative enhancer is a functional 

enhancer where multiple transcription factors including GATA-6, c-JUN, and MEF-

2c bind to further regulate NKX2-5 transcription. ChIP assays showed a strong 

enrichment of phospho-SMAD3 protein validating the results of the previous chapter 
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that TGF-β activates NKX2-5 expression. However, the exact mechanism requires 

further investigation. Data from the ChIP experiments also suggested that the 

enhancer region as well as the upstream promoter are participating directly in the 

transcriptional machinery of NKX2-5, since the binding of the transcription factors 

coincides with the binding of RNA polymerase II.  

Regulation of NKX2-5 at post-transcriptional and post-translational levels also 

needs further investigation. In this chapter, the 3’UTR of NKX2-5 gene was tested 

for potential binding of microRNAs that could possibly regulate translation. Three 

candidate microRNAs were tested including miR-629-3p, miR-532-3p and let-7i. 

None of the candidate microRNAs seemed to regulate transcriptional activity, but 

the 3’UTR alone showed evidence of functionality, which requires further 

investigation. Methylation has also been found to regulate NKX2-5 in prostate 

cancer and in disease related to heart malformations. Taken together, these 

findings suggest that epigenetic modification could also affect NKX2-5 expression 

and this could be explored in future.  

5.4 Discussion 

In the past 10-15 years, scientists have been focused on resolving the genetic code 

and dissecting the genetic background of simple Mendelian or complex diseases; a 

period usually referred to as the “genomic era”. Tremendous progress has been 

achieved not only in unravelling genetic information but also giving meaning to it by 

relating genetics with function. However, the second part has been proved more 

challenging, as it requires more time, appropriate experimental design and critical 

thinking. To aid this aim, many powerful databases and browsers have been 

developed that are used as information depositories, where information inferred by 

experimental work or based on the literature is stored, and is easily and usually 

freely available. Examples of such browsers and databases are: NCBI, Ensembl, 

UniProt, UCSC Genome browser, ENCODE, 1000 Genome Project, Gene Cards, 

TRANSFAC, Haploreg, JASPAR, GTEx Portal, etc. All of the above engines were 

used in this study. 

SNP rs3095870 is located upstream of the minimal promoter of NKX2-5 within a 

region that acts as an upstream promoter and increases transcriptional activity more 

in the presence of the disease-associated C allele compared to the alternative allele 

(Figure 5.2). Interestingly, the effect was different between contractile and synthetic 

HPASMCs, revealing that the two phenotypically different cell types behave 

differently in regards to gene expression. In general, contractile HPASMCs appear 
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to be more responsive to stimuli than synthetic cells. An explanation could be that 

contractile cells retain a stabilised function until a stimulus triggers them to undergo 

phenotypic modulation, whereas synthetic cells have already changed their 

expression profile in response to different stimuli. In addition, synthetic cells might 

exert different responses depending on the stage during the phenotypic modulation. 

Expression and responsiveness might also depend on the basal levels of 

expression found in each individual cell, which is also different in between primary 

cells. 

The binding assays performed in TGF-β-treated ImHPASMCs confirmed the binding 

of TEAD1 transcription factor specifically at the major risk-associated C allele of 

rs3095870 (Figures 5.4, 5.5, 5.6), which was predicted through the in silico analysis 

(Figure 5.3). The evidence for the binding was strong as it was reproducible. The 

use of appropriate controls further endorsed the specificity of the assays. Although, 

ChIP assays are considered technically laborious, in this case performing the pull-

down assays proved more challenging for two main reasons: optimisation of a) salt 

concentration in the solution and b) detergent concentration in the washes to 

enhance binding, stabilise the complex, and increase specificity without disrupting 

the protein-DNA association.  

Co-transfection of TEAD1 showed that the protein acts as an activator for NKX2-5 

significantly increasing transcriptional activity. The effect was the same in both 

contractile and synthetic cells, and TEAD1 increased activity in a similar way in the 

presence of both minimal and upstream promoter independent of the rs3095870 

allele. Further studies revealed that TEAD3 is also implicated in the transcriptional 

regulation of NKX2-5, and that YAP1 is required as a co-factor for both TEAD1 and 

TEAD3. Different methods were used to dissect this information such as gene 

reporter assays, overexpression of TEAD1 and TEAD3, knock-down of proteins 

using siRNA oligonucleotides, and inhibitors to block the binding of TEAD/YAP 

complex to DNA. Although the protein levels were not always consistent with the 

gene levels, the data collectively point towards a transcriptional regulatory 

mechanism of the NKX2-5 gene that involves possibly more than one TEAD/YAP 

complexes bound at the rs3095870 SNP and elsewhere in the promoter.  

The role of TEAD transcription factors have been well studied in VSMC 

differentiation with findings reporting TEAD-dependent expression of α-SMA. Few 

recent studies related both TEAD1 and TEAD3 with the disease-associated 

synthetic phenotype of VSMCs (149, 493). Interestingly, expression of TEAD1 was 

increased in arterial injury and correlated significantly with VSMC phenotypic switch 



212 
 

(149). Specifically, Liu et al showed that TEAD1 competes with myocardin for 

binding to the SRF elements to block expression of SMC-specific genes and 

promote the phenotypic switch towards the synthetic state (149). Interaction 

between other TEAD members and SRF has not been reported as required for 

promoter activity of other genes in VSMC. However, it has been reported that TEAD 

factors are able to mediate TGF-β-dependent gene activation (502). Interestingly, a 

recent study showed that 2 functional SNPs at the 9p21.3 locus, which has 

constantly been associated with risk of CVD and CAD, disrupt binding of TEAD3 

and TEAD4 in vitro and in vivo in primary HPASMC (493). In addition, it was shown 

that ablation of TEAD3 binding due to the presence of the risk alleles disrupted 

SMAD3 binding and downstream TGF-β signalling (493).  

Although TEAD proteins recognise and bind specifically to the MCAT DNA 

elements, they lack a significant activator or repressor function, and therefore 

require co-factors to regulate transcription of target genes. YAP1, a member of the 

Hippo pathway, is the most prominent co-factor of TEADs. Under the ‘canonical’ 

regulation of Hippo pathway, YAP1 protein is phosphorylated by the Hippo kinases 

and is retained in the cytoplasm to co-ordinate cytoskeletal functions. However, 

once the Hippo pathway is dysregulated, YAP1 is dephosphorylated and enters to 

the nucleus, where it associates with TEADs to regulate transcription. The role of 

the Hippo pathway and YAP has been extensively studied in various diseases and 

mainly focused on cancer as a regulator of cell cycle and cell proliferation [reviewed 

in (503-506)].  

The critical role of the YAP1 in cardiac/SMC proliferation during cardiovascular 

development has been well studied and elucidated. A study in 2012 proposed the 

implication of YAP1 in VSMC phenotypic modulation by showing that down-

regulation of Yap1 promotes VSMC contractile phenotype by up-regulating 

myocardin and SRF/myocardin-dependent expression of contractile genes (148). 

This finding was confirmed by other studies (150, 507). It has also been shown that 

expression of YAP1 is dramatically reduced in the aortic walls of patients with 

ascending aortic aneurysms, and that YAP1 downregulation in VSMC is associated 

with ECM disorders in the same context of disease (507). Interestingly, Wang et al 

also showed that YAP1 interacts with NKX2-5 and inhibits binding of NKX2-5 to the 

5’-proximal promoter region of myocardin in cardiovascular progenitor cell linage-

derived SMCs (150).  

Taken together published data and the findings presented in this chapter, there is 

compelling evidence that TEAD/YAP1 complexes are master regulators of VSMC 



213 
 

phenotypic modulation mediated by NKX2-5. In particular, the finding that YAP1 can 

physically interact with NKX2-5 to potentially regulate common downstream target 

genes suggests another possible way of function for NKX2-5. It is very interesting 

that most of the studies focus in different CVD, highlighting the importance of this 

mechanism in vascular remodelling as a general mechanism that underlies CVD. 

Another intriguing piece of evidence arises from the study by Speight et al, in which 

YAP1 and its counterpart TAZ, are presented as major mechanosensing regulators 

of organ size, contact inhibition of proliferation, contraction etc (508). This could 

potentially mean that YAP1 is the link between environmental mechanical inputs 

and initiation of NKX2-5-dependent transcription to accommodate changes. For 

instance, in cases of increased stiffness or stretch in the cell-cell environment, 

YAP1 gets dephosphorylated and activated, enters the nucleus where it associates 

with TEAD1 and TEAD3 to activate NKX2-5 transcription, expression of which is 

further required to promote the synthetic phenotype, proliferation, migration and 

production of ECM.  

The discrepancies seen between the protein and gene expression levels of NKX2-5 

upon overexpression or knock-down of TEAD1 and TEAD3 can possibly be 

explained by the fact that more than one MCAT element is critical for NKX2-5 

transcription. Besides the MCAT found on rs3095870, other sites can be located 

further upstream of NKX2-5 outside of the genomic region that was cloned into the 

reporter vectors. This might explain why overexpression of TEAD3 did not affect 

luciferase expression (Figure 5.10), but protein knock-down decreased significantly 

gene expression levels of NKX2-5 (Figure 5.9). Further experiments are required in 

order to elucidate the exact role of TEAD1 and TEAD3 in transcriptional regulation 

of NKX2-5.  

The rest of the associated SNPs are located downstream of NKX2-5, in a locus that 

was previously identified as a putative enhancer of the gene in the heart tissue. This 

enhancer should be activated when NKX2-5 exerts its unique and non-redundant 

role during heart development. I hypothesised that the same mechanism that 

activates the gene in embryogenesis could also activate expression in diseased 

vessels in adulthood. When the region was cloned into a reporter vector, luciferase 

activity was significantly increased in the presence of this enhancer compared to the 

proximal minimal and the upstream promoter (Figure 5.14), confirming that it is a 

functional enhancer. ChIP assays were conducted to dissect the role of the 

enhancer, and surprisingly the results showed significant enrichment of transcription 

factors that are traditionally associated with enhancers such as MEF-2c, GATA6 
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and c-JUN (Figure 5.15). This result supports early studies showing that MEF-

2c/NKX2-5/GATA form a positive regulatory network (347, 350, 351).  

Taken together, I propose a new mechanism for the regulation of the NKX2-5 gene 

in human HPASMC, as described in detail in Figure 5.22. The mechanism involves 

an upstream promoter activated through the binding of the TEAD/YAP1 complex, 

and a downstream enhancer which binds GATA6, MEF-2c and c-JUN. Enrichment 

of phosphorylated SMAD3 binding further confirms that TGF-β exerts its effect on 

NKX2-5 regulation through SMAD3 binding on multiple CAGA sites on both the 

upstream promoter and downstream enhancer. Evidence provided by the ChIP 

assays shows clearly that both regions interact with RNA polymerase II and are 

engaged at the transcriptional initiation machinery.  

 

Figure 5.22 Proposed mechanism for the transcriptional regulation of NKX2-5.  
Proposed model of transcriptional regulation of NKX2-5. Functional studies revealed an 
upstream promoter region and a novel downstream functional enhancer that are engaged 
with the transcriptional initiation machinery of NKX2-5 through the binding of TEAD1/3/YAP1 
complex and other transcription activators such as MEF-2c, c-JUN, phospho-SMAD3, 
GATA6. 

 

This transcriptional regulatory mechanism may also apply to other conditions 

characterised by vascular remodelling, including but not limited to PAH, 

atherosclerosis, CAD, PAD and stroke.   

Although the  effect of TGF-β on the regulation of NKX2-5 is prominent and possibly 

signals through the binding of SMAD2/3, the functional CAGA sites along the NKX2-

5 genomic regions were not identified in the course of this study. However, it is 

absolutely essential to reveal these loci, as this would further elucidate the exact 

regulatory mechanism. Site-directed mutagenesis to delete individual CAGA sites, 
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with consequent TGF-β stimulation and performance of gene reporter assays could 

be one way to evaluate the effect of each individual site. Alternatively, cloning 

constructs could be made each consisting of a different individual CAGA site to 

compare the transcriptional activity of each site.  

Post-transcriptional and post-translational regulation is very common for most of the 

genes, although it is less well studied due to each complexity. These mechanisms 

are usually referred to as epigenetic modifications, and they involve 3 distinct types 

of regulation: microRNAs, DNA methylation and histone methylation and 

acetylation. In the past few years, studying epigenetic modifications have become of 

increasing interest and have shed light on new and important pathogenic 

mechanisms.  

Consequently, my aim was to address whether epigenetic modifications would 

affect the regulation of NKX2-5. Since one of the tagging SNPs, rs703752, although 

not associated with disease is located within the 3’ UTR, I questioned whether any 

microRNAs could regulate expression of NKX2-5. The 3’UTR was cloned into the 

pmirGLO vector, which has been designed specifically for the study of microRNAs. 

In detail, the 3’UTR is cloned downstream of the firefly luciferase gene and 

upstream of the renilla luciferase gene, which serves as the internal control. A 

microRNA targeting the 3’UTR would bind the mRNA of the luciferase gene and 

block its translation, which would result in decreased firefly luciferase expression, 

while renilla expression would be unaffected. Cloning of NKX2-5 3’UTR decreased 

luciferase expression in both contractile and synthetic cells, suggesting putative 

downregulation of expression through a microRNA natively expressed in HPASMC 

(Figure 5.17). The effect was not dependent on the presence of rs703752, further 

suggesting that the functional microRNA does not bind the SNP, but binds 

elsewhere in the 3’UTR. In addition, the effect was more pronounced in the 

synthetic cells, where NKX2-5 is expressed at higher levels and therefore expected 

that a microRNA targeting NKX2-5 mRNA would exert a more dramatic effect when 

more copies of NKX2-5 mRNA would be present.  

Three different microRNAs were tested in HPASMC for their potential effect on 

NKX2-5 regulation. MicroRNA mimic molecules and inhibitors were co-transfected 

with the 3’UTR constructs into HPASMCs. None of the three molecules exhibited a 

significant functional effect, which would be translated as a decrease in luciferase 

expression upon transfection of the mimic molecule and release of expression in the 

presence of the antagomir. The most plausible explanation is that the selection of 

the putative regulatory microRNAs was not optimal. Most of the available tools for 
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microRNA selection such as MiRanda (497), microRNA.org (509), miRDB (510) 

assess target 3’UTRs based on the sequence similarity between microRNA 

molecules and target sequences, known as the seed. However, microRNAs exhibit 

a tissue-specific expression and function (511), which is not often taken into 

account. GEO datasets can be useful as they provide published data on microRNA 

expression studies conducted in specific human tissues as well as under different 

treatments.  

Although, microRNAs are implicated in the regulation of many genes in the 

cardiovascular system in adulthood or during development, there is no evidence yet 

reported that this is another way of regulating NKX2-5 gene. However, data 

presented in this chapter strongly suggest that NKX2-5 can be regulated through 

microRNA binding at the 3’UTR, and this requires further investigation.  

Another type of epigenetic modification that is known to regulate NKX2-5 expression 

is DNA methylation. The in silico study using the UCSC Genome browser revealed 

6 CpG islands neighbouring the gene (Figure 5.21). Studies in prostate cancer 

report that NKX2-5 methylation levels were 3-fold higher in cancer tissues 

compared to normal (500). Other studies reporting regulation of NKX2-5 through 

methylation have been conducted in the context of heart development and disease 

(501, 512). However, there is still no reported evidence of gene regulation by DNA 

methylation in vessels. It is possible that differential methylation of NKX2-5 could 

occur in contractile and synthetic phenotypes of VSMCs. In addition, methylation 

could also be implicated in the normal silencing of the gene in most tissues after 

birth. Assessment of the methylation status could reveal important information on 

whether the NKX2-5 downstream enhancer is active/less methylated in diseased 

compared to normal vessels. Overall, such a project would determine the role of the 

epigenetic regulation of NKX2-5 in vascular diseases.  
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CHAPTER 6 - RESULTS: NKX2-5 EXPRESSION IN 

ENDOTHELIAL CELLS 

6.1 Introduction 

Although the role of PASMC in PH is well-established, the importance of endothelial 

cells (EC) in the pathogenesis of PH has recently gained attention. Many studies 

currently focus on the endothelial dysfunction as the primary factor of disease 

initiation. Due to the loss of barrier integrity vasoactive substances, thrombotic 

mediators and inflammatory cytokines are released from the EC and affect PASMC 

causing de-differentiation to synthetic phenotype that leads ultimately to vascular 

remodelling and disease progression. PASMC, EC, myofibroblasts, and 

undifferentiated cells share equal responsibility in vascular pathologies.  

Upon stimulation during vascular remodelling EC can undergo a phenotypic 

modulation to a mesenchymal phenotype, known as EndoMT. EndoMT is a poorly 

understood phenomenon that results in normal EC exhibiting phenotype plasticity 

and acquiring properties of myofibroblasts or mesenchymal cells. The process starts 

with the loss of cell-to-cell contacts, and loss of endothelial cell-specific markers 

such as CD31, VE-cadherin, and CD34. The cells progressively express 

mesenchymal markers such as α-SMA and vimentin and become more migratory. 

EndoMT was initially discovered as an essential step in heart and pulmonary artery 

development. Since, it has been identified as a key modulator in a number of 

pathological conditions, including cancer, fibrosis, and CVD. More recently, the 

involvement of EndoMT has been studied and evaluated in PAH and SSc-PAH, 

neointima formation and atherosclerosis.  

Many pathways have been associated with the induction of EndoMT, including 

autocrine and paracrine mechanisms. Inducing signalling molecules can be 

produced by tissue injury or immune cells recruited to the sight of injury is response 

to inflammation (513). The most common cytokines that induce EndoMT are 

members of TGF-β superfamily (TGF-β1/2, BMP2/4/6/9/10), and other signalling 

pathways such as Wnt/β-catenin, Notch, and various receptor tyrosine kinases 

[reviewed in (200)]. All of these pathways induce expression of the transcription 

factors Snail, Slug, Twist, LEF-1, ZEB1, and ZEB2 that are commonly used as 

markers of EndoMT (200). These transcription factors play an essential role in 

downregulating the expression of endothelial markers and proteins maintaining cell–
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cell adhesion, such as integrins and focal adhesion kinase, and at the same time 

they upregulate proteins involved in cell migration and ECM production.  

Several microRNAs have been identified as regulators of EndoMT that act through 

various pathways. miR-9 and miR-21 induce EndoMT through the regulation of 

TNFα and TGF-β respectively (200). Similarly, miR-31 controls actin remodelling 

and promotes the secretion of various inflammatory cytokines that induce EndoMT 

(514). Other positive regulators of EndoMT include bleomycin, parathyroid hormone, 

cell apoptosis, fluid shear stress, high glucose levels, and hypoxia associated with 

tissue damage, ischemia and/or inflammation [reviewed in (200)]. On the contrary, 

molecules that downregulate EndoMT include VEGF-A, miR-15a, miR-23b, miR-

126, miR-199a, and miR-155 (200).  Interestingly, BMP7 is the only member of the 

TGF-β superfamily that negatively regulates EndoMT (515).  

FGF and TGF-β have been studied extensively as potent regulators of EndoMT. In 

detail, FGFR1 signalling can inhibit TGF-β induced EndoMT (516). In addition, 

although FGF2 has been shown to induce EndoMT in some types of endothelial 

cells (517), it inhibits the transition in others via a miR-20a-mediated inhibition of 

TGF-β signalling (518). MicroRNA let-7 has also been implicated in regulation of 

EndoMT. In particular, Chen et al has shown that disruption of FGF signalling in the 

endothelium leads to a dramatic reduction in let-7 levels that, in turn, increases 

expression of TGF-β ligands and receptors and activation of TGF-β signalling, 

leading to EndoMT (114). However, in another study, it was shown that AcSDKP, a 

peptide substrate of angiotensin-converting enzyme ACE, inhibits EndoMT through 

the upregulation of let-7 and restoration of FGF receptor (519). These conflicting 

data suggest that more studies are required to elucidate the exact roles of let-7, 

FGF, and TGF-β signalling pathways.  

In this chapter, I will focus on: a) NKX2-5 expression in EC, b) the expression of 

NKX2-5 during EndoMT, and c) investigating whether the activation signal for 

NKX2-5 expression in SMCs originates from the EC. Results presented in this 

chapter are partly generated through collaborations and the people that contributed 

will be named below. Primary human pulmonary artery EC (HPAEC) and human 

umbilical vein EC (HUVEC) were used for the experiments, and 2 different protocols 

were used to induce EndoMT.  
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6.2 Results 

6.2.1 NKX2-5 expression in endothelial cells 

Primary HPAEC were cultured in medium containing 2% FCS, treated as indicated 

in Figure 6.1, and protein extracts were prepared to evaluate the expression profile 

of the cells by Western blot. FGF2, IL-1β and TNFα are all growth factors and 

cytokines that are present at elevated levels in vascular and fibrotic conditions, and 

here are used as stimulators of EndoMT. NKX2-5 is expressed at very low levels in 

untreated EC. TGF-β and FGF2 slightly induced NKX2-5 expression but this was 

not statistically significant. On the contrary, increasing serum concentration from 2% 

to 7% significantly increased NKX2-5 protein expression. Of the rest of the markers 

tested, CD31 and fibronectin were affected by IL-1β and TNFα, as well as FGF2, 

respectively, whereas α-SMA and calponin levels did not change. Expression of α-

SMA was maintained at a low level.  

These data can only be translated as an indication of the effect that these factors 

had on protein expression, since only one experiment was performed. 

 

Figure 6.1 Effect of cytokines and growth factors on the expression of endothelial 
cells.  Primary HPAEC were serum starved overnight in 0.1%FCS and treated with 2ng/ml 
TGF-β, 50ng/ml FGF2, 10ng/ml TNFα, 10ng/ml IL-1β. After 24 hours, the cells were lysed 
and total protein was extracted and subjected to Western blot analysis. Protein expression of 
NKX2-5, α-SMA, calponin, CD31, vimentin and fibronectin was analysed.  N=1 (1 replicate 
experiment performed).  
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6.2.2 NKX2-5 expression in EndoMT  

Although various studies have reported the involvement of different growth and pro-

inflammatory factors in the induction of EndoMT, a special role has been assigned 

to members of the TGF-β and FGF2 signalling pathways. EndoMT may also occur 

after exposure to inflammatory molecules such as IL-1β and TNFα, or following 

AngII receptor type-1 activation. Other studies implicate the MAPK cascade with 

upregulation of transcription factors such as KLF4 as the initiation step of EndoMT. 

Progress in the field has been limited by the lack of a successful approach to 

stimulate EndoMT, the use of endothelial cells obtained from different species and 

tissues, and indiscriminate use of different isoforms of TGF-β as potent inducers of 

EndoMT with variable doses and time courses.  In this chapter, two different 

methods of inducing EndoMT were assessed. 

6.2.2.1 EndoMT through FRS2α knock-down 

A collaboration was established with Professor Michael Simons, Yale School of 

Medicine, USA. The group has established a model of EndoMT that is based on the 

silencing of FGF signalling in the EC leading to induced TGF-β signalling and 

EndoMT (114). FGF signalling, which has recently emerged as a key regulator of 

the normal vascular state, exerts its function through tyrosine kinase receptors that 

require the intracellular adaptor FRS2 for the initiation of MAPK signalling. Recent 

findings also reported that FGF antagonises TGF-β activity in SMC in vitro, but the 

mechanism of this effect and its functional consequences have not been fully 

investigated (520). In the established model of EndoMT, RNA interference is used 

(short-hairpin RNA) to knock-down the intracellular adaptor FRS2, silencing the 

FGF downstream signalling in normal EC. FRS2 knock-down causes EC to change 

their cell shape and express smooth muscle markers such as calponin, α-SMA, 

SM22, vimentin, and fibronectin etc. The knock-down also increased TGF-β 

downstream signalling, with all three receptors being significantly upregulated. The 

procedure is paired with downregulation of let-7 that is required to maintain low 

TGF-β levels. The model of EndoMT is described in Figure 6.2.  
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Figure 6.2 Knock-down of FGF signalling in EC leads to EndoMT.  RNA interference is 
used to knock-down the intracellular adaptor FRS2 and silence FGF downstream signalling. 
This induces TGF-β signalling and causes EC to undergo EndoMT.  

 

Both our group and Prof Simons group are working on CVD pathogenesis, with an 

interest in atherosclerosis, CAD and PAH. Dr Pei-Yu Chen in Prof Simons lab 

evaluated NKX2-5 expression in the endothelium of CAD patients with different 

disease severity (Figure 6.3). As disease severity increases from no or mild disease 

to severe, expression of the endothelial marker CD31 gradually decreased in the 

endothelium. In parallel, NKX2-5 expression increased significantly (p<0.001) 

following the same trend, with higher levels of expression seen in severe disease.  

 

Figure 6.3 NKX2-5 is expressed in the endothelium of CAD patients.  A. Expression of 
NKX2-5 (red) was analysed by Immunofluorescence in coronary vessels from patients with 
various extents of CAD. CD31 (green) was used to identify EC, and nuclei were stained with 
DAPI (blue). B. Percentages of NKX2-5

+ 
stained cells in mild, moderate, and severe extent 

of disease. Number of patient in disease states: No/mild: N=10, Moderate: N=9, Severe: 
N=10. ***p<0.001. 
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Immunofluorescence staining of the coronary specimens provided evidence that 

NKX2-5 is upregulated in EC and especially in disease when EC undergo EndoMT. 

These data triggered questions regarding the involvement and role of NKX2-5 in the 

endothelium. During my PhD I had the opportunity to visit Yale University and work 

along with Dr Chen for two weeks. In the course of my visit, I managed to validate 

NKX2-5 expression in RNA and protein extracts prepared by Dr Chen prior to my 

arrival. The extracts were prepared from 3 independent experiments of EndoMT. In 

brief, HUVECs, between passages 5-10, were infected with either a control virus or 

a virus carrying shRNA (adenovirus) specific to FRS2α, and were grown for 4 days 

before being harvested for RNA and protein. Control and FRS2α knock-down cells 

were stained for endothelial and mesenchymal markers to determine whether cells 

undergone EndoMT (Figure 6.4). 

 

Figure 6.4 Phenotypic changes during FRS2α KD-induced EndoMT.  Primary HUVEC 
were infected with either a control virus (control) or a virus containing shRNA specific to 
FRS2α (FRS2α KD). After 4 days, the cells were photographed and stained with 
immunofluorescence to monitor the changes in morphology and expression of endothelial 
(VE-Cadherin/green) and mesenchymal markers (calponin/red). DAPI (blue) was used to 
stain the cell nuclei.  
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Four days after treatment with the empty virus, control cells displayed a typical 

rounded cobblestone morphology with high expression of VE-cadherin and no 

expression of calponin. FRS2α knock-down resulted in a distinct change in 

morphology accompanied by induced expression of calponin, a protein not normally 

expressed in EC, while VE-cadherin expression was maintained. 

Next, I used qPCR to evaluate the levels of gene expression of NKX2-5, as well as 

FGF2 and TGF-βR1 as genes that are affected directly by the knock-down, together 

with other mesenchymal and endothelial markers: VE-CADHERIN, COL1A1, α-

SMA, and PAI-1. NKX2-5 showed a significant increase at gene expression level, 

and interestingly, the same pattern (of increased expression) was seen in the rest of 

the genes (Figure 6.5).  

 

Figure 6.5 Gene expression in HUVEC in FRS2α KD-induced EndoMT.  Primary HUVEC 
were infected with either a control virus (control) or a virus containing shRNA specific to 
FRS2α (FRS2α KD). Gene expression of NKX2-5, FGF2, TGF-β R1, VE-cadherin, COL1A1, 
α-SMA and PAI-1 was assessed by qPCR and normalised to GAPDH expression. N=3 
(replicate experiments). *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001. 
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Expression of TGF-βR1, COL1A1, α-SMA and PAI-1 was increased as 

mesenchymal markers and components of the induced TGF-β signalling pathway. 

Expression of VE-cadherin and FGF2 were also increased, unexpectedly. Such 

findings could indicate the ultimate need of the endothelial cell to preserve its 

phenotype against EndoMT by over-expressing factors critical for the endothelial 

state. 

Protein expression was consistent with gene expression for most of the markers 

(Figure 6.6). The efficiency of the knock down was confirmed with the complete 

knock-down of FRS2α expression. Protein levels of the mesenchymal markers 

collagen, α-SMA, vimentin and PAI-1 were all significantly increased. VE-cadherin 

protein levels were decreased verifying the loss of the endothelial phenotype. 

NKX2-5 exhibited higher levels of expression in FRS2α knock-down cells, but the 

overall difference was not statistically significant.  

 

Figure 6.6 Protein expression in HUVEC in FRS2α KD-induced EndoMT.  Primary 
HUVEC were infected with either a control virus (control) or a virus containing shRNA 
specific to FRS2α (FRS2α KD). Protein expression of NKX2-5, FRS2α, VE-cadherin, 
COL1A1, α-SMA, vimentin, and PAI-1 was assessed by Western blot analysis normalised to 
GAPDH. N=3 (replicate experiments). *p≤0.05, **p≤0.01. 

 

At this point, it is important to point out that HUVECs are primary cells obtained from 

the umbilical veins of new-borns. Therefore, the cells preserve an embryonic 

phenotype where NKX2-5 expression is generally high, and that might explain why 
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the difference in EndoMT-related genes is not significant. Taken together, the data 

establish increased NKX2-5 expression in the endothelium of CAD patients, and 

induced expression during EndoMT 

6.2.2.2 Inflammation-induced EndoMT 

EndoMT has been linked to fibrosis, where phenotypic differentiation of EC into 

mesenchymal cells was originally described in experimental wound repair driven by 

inflammatory stimuli (521). In addition, EC have been found to contribute to the pool 

of fibroblasts in murine models of cardiac, kidney, and lung fibrosis (16, 17, 522). It 

has also been proposed that inflammatory cytokines such as TGF-β1, TNFα and IL-

1β can induce EndoMT in a similar way to epithelial-to-mesenchymal transition 

(EMT) based on the mechanistic similarities between the two processes (16). In 

fact, the inflammation-induced EndoMT mechanism was verified by Rieder et al in 

2011 (15). 

Based on this approach and in collaboration with Dr Robert Good, I assessed 

NKX2-5 expression in another model of EndoMT. Using the method previously 

validated and optimised by Dr Good (14), primary human PAEC were treated with a 

cytokine cocktail of 5ng/ml TGF-β, 5ng/ml TNFα and 0.1ng/ml IL-1β for 5 days to 

induce EndoMT. The treated and untreated cells were photographed at multiple 

time-points to monitor the phenotyping changes (Figure 6.7).  

 

Figure 6.7 Phenotypic differentiation of primary HPAEC treated with a cytokine 
cocktail to induce EndoMT.  Primary HPAEC were treated with a cytokine cocktail of 
5ng/ml TGF-β, 5ng/ml TNFα and 0.1ng/ml IL-1β for 5 days. Untreated and treated cells were 
photographed on the 1

st
, 3

rd
, and 5

th
 day to monitor the phenotypic changes.  
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As shown in Figure 6.7, HPAEC treated with the cytokine cocktail presented a 

change in their morphology by day 3, and their shape was completely changed by 

the end of the treatment (day 5). In particular, HPAEC lost their typical cobblestone 

morphology and acquired a more elongated fibroblast-like phenotype. In contrast, 

untreated cells retained their original morphology. 

The change in the morphology was accompanied by corresponding changes in 

gene expression (Figure 6.8).  

 

Figure 6.8 Gene Expression of primary HPAEC treated with a cytokine cocktail to 
induce EndoMT.  Primary HPAEC were treated with a cytokine cocktail of 5ng/ml TGF-β, 
5ng/ml TNFα and 0.1ng/ml IL-1β for 5 days. After treatment, the cells were lysed and total 
RNA was extracted. Gene expression of NKX2-5, CTGF, α-SMA, COL1A2, vWF, VE-
Cadherin and CD31 was analysed by qPCR normalised to TBP expression. N=3 (replicate 
experiments). **p≤0.01, ***p≤0.001. 

 

Cell lysates of 3 independent replicate experiments of cytokine-induced EndoMT in 

HPAEC were kindly provided by Dr Good. Total RNA was isolated and subjected to 

qPCR analysis to validate gene expression of NKX2-5 and other markers. The 

endothelial markers CD31 and von Willebrand (vWF) were significantly 

downregulated, whereas VE-cadherin was only slightly decreased. COL1A2 gene 
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expression was significantly induced, but CTGF and α-SMA showed little change. 

NKX2-5 gene expression showed an increasing trend, however this was not 

statistically significant. 

6.3 Summary of results 

In this chapter, I focused on NKX2-5 expression in endothelial cells and in cells 

undergoing EndoMT. Two different methods to induce EndoMT in vitro were used in 

two different cell types. First, the FGF intracellular adaptor FRS2α was knocked 

down in HUVEC leading to induction of TGF-β signalling and EndoMT. In this model 

of EndoMT, NKX2-5 expression was upregulated at both the protein and gene 

levels. NKX2-5 was also found to be expressed in the endothelium of CAD patients 

and its expression is associated with the severity of the disease. 

The second model of EndoMT was inflammation-induced, where HPAEC were 

stimulated with a cytokine cocktail of TGF-β, TNFα and IL-1β. The cells changed 

their morphology completely during the course of the treatment, and EndoMT was 

validated through gene expression profiling. NKX2-5 gene expression was induced 

in EndoMT compared to untreated cells, although the difference was not significant.   

Overall, these data provide compelling evidence that NKX2-5 is expressed in the 

endothelium and expression is induced under conditions that result in EndoMT. This 

new mechanism of EndoMT is poorly understood and requires further investigation. 

6.4 Discussion 

Combined findings generated during the course of this thesis and previously in the 

lab have established the expression of NKX2-5 in blood vessels, the role of the 

gene in vascular remodelling, a signalling mechanism that activates expression in 

HPASMC, and a transcriptional mechanism that regulates its expression. However, 

the stimuli that activate NKX2-5 expression in VSMC may originate from different 

cells or systems, and remain largely unknown. In this chapter, my aim was to 

explore whether the endothelial cells produce the stimuli that induce NKX2-5 

expression in VSMC.  

Increasing number of recent findings directly implicate endothelial dysfunction as 

the trigger of vascular diseases (13-16, 161, 198, 199). Endothelial cells are 

important regulators of the vascular tone, and they produce vasodilatory or 

vasoconstrictive factors in response to stimuli circulating in the blood. In disease 

conditions, the endothelium undergoes functional and structural alterations, thus 
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losing its protective role and becoming a pro-atherosclerotic structure, a process 

known as endothelial dysfunction (192, 523). Endothelial dysfunction, detected as a 

reduced vasodilator response to endothelial stimuli, has been observed to be 

associated with major cardiovascular risk factors, such as aging, 

hyperhomocysteinemia, postmenopausal state, smoking, diabetes, 

hypercholesterolemia, and hypertension (523).  

The expression of NKX2-5 as well as other endothelial and mesenchymal markers 

was examined in HPAEC upon stimulation with growth factors and cytokines known 

to be implicated and stimulate vascular diseases, including TGF-β, FGF2, IL-1β, 

and TNFα. FGF2 is a potent mitogen that binds to the FGF receptor family of 

receptor tyrosine kinases. It is a known angiogenesis-related factor with increased 

expression in endothelial and epithelial cells, and it has been shown to promote the 

synthetic phenotype of VSMCs. A recent study showed that FGF2 antagonised and 

attenuated TGF-β-stimulated differentiation of airway SMC towards a contractile 

phenotype (118). Migratory effects induced by FGF2 have also been reported in 

various types of endothelial cells (524). 

Expression levels of the endothelial marker CD31 were increased compared to the 

rest of the markers, and interestingly, upon stimulation with IL-1β and TNF-α, CD31 

expression was decreased greatly (Figure 6.1). Expression levels of vimentin, a 

protein expressed by endothelial and mesenchymal cells, and the mesenchymal 

markers α-SMA and calponin, which were generally low, did not change in response 

to stimulation. In contrast, levels of fibronectin were increased when the cells were 

treated with FGF2 and TNFα. NKX2-5 protein expression in the untreated cells was 

low compared to all other proteins, but increased upon stimulation with TGF-β and 

FGF2. However, increasing the serum concentration from 2% to 7% had a dramatic 

effect on NKX2-5 expression, which increased significantly.  

The pattern of NKX2-5 protein expression in EC is similar to that seen in VSMC, 

suggesting that mechanisms stimulating NKX2-5 activation are common between 

EC and VSMC. Vascular EC and SMC share a common embryonic origin, as both 

cell types predominantly derive from the mesoderm lineage, and the primitive streak 

is the key structural component that discriminates the mesodermal precursors 

(525). Nkx2-5-expressing mesoderm gives rise to the heart muscle and the 

endothelium of the pharyngeal arch arteries, which contributes to the formation of 

the great vessels of the heart and the pulmonary arteries (322, 323). Nkx2-5 was 

also shown to bind directly the Er71 gene promoter and activate its expression, 

which promotes the differentiation of EC and vessel development (526). Early in 
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vivo studies in Xenopus and zebrafish embryos showed that FGFs, Wnt, and 

members of the TGF-β superfamily play important roles in the induction and 

patterning of mesoderm (525). Therefore, it is possible that specific stimuli that 

induce post-natal expression of NKX2-5 can occur in adult vascular EC in a similar 

way to VSMC. Yet, activating stimuli should resemble those occurring in embryonic-

like processes such as angiogenesis and differentiation.    

Upon these activating stimuli, EC as with many other cell types, can undergo 

phenotypic modulation to a more mesenchymal phenotype. EndoMT was initially 

described in embryonic development, where it retains a significant role. In heart 

development, endocardial cells with a clear endothelial phenotype are able to give 

rise to mesenchymal heart cushion cells through EndoMT (527, 528). It was also 

shown that EndoMT is important in aortic and pulmonary artery development and in 

the development of the normal arterial intima (529).  Furthermore, morphological 

studies in human embryos suggest that EndoMT also occurs during the maturation 

of vessels, including arteries and veins (530). 

Similar to vascular remodelling, EndoMT has also been associated with disease, 

and it has been studied in the context of various CVD including atherosclerosis, 

PAH, SSc-PAH etc (13, 14, 17, 158, 198). Environmental stimuli triggering EndoMT 

might also trigger the phenotypic modulation of VSMC, and thus favour expression 

of NKX2-5 in the endothelial-derived mesenchymal cells. Immunofluorescent 

staining of NKX2-5 in human vessels provided evidence supporting this hypothesis 

(Figure 6.3). NKX2-5 expression was found in the endothelium of CAD patients, and 

expression showed a significant correlation with the severity of the disease. In 

contrast, expression of endothelial marker CD31 inversely correlated with the extent 

of disease, with expression having been ablated in severe CAD (Figure 6.3). 

EndoMT has been associated with the progression of atherosclerosis and plaque 

stability (531). Chen et al used an established model of EndoMT by introducing 

endothelial-specific deletion of Frs2α in ApoE null mice. When double-knockout 

mice (Frs2α-/-/ApoE-/-) were fed a high-fat diet, they developed atherosclerosis at a 

much earlier time point compared with their ApoE-/- counterparts, demonstrating an 

84% increase in total plaque burden (13). In addition, these double knock-out mice 

exhibited extensive EndoMT, increased deposition of fibronectin, and increased 

neointima formation. More evidence were provided by Evrard et al, who showed that 

EndoMT-derived fibroblast-like cells are present in intimal plaques throughout 

atherosclerotic development using an endothelial tracking linage system in ApoE 

null mice (531). They also showed that this process is driven by TGF-β signalling, 
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oxidative stress and hypoxia. Both studies provided significant data establishing the 

contribution of EndoMT in atherosclerosis, and shed light on new mechanisms that 

drive the progression of CVD. 

Another important finding that both studies highlight is the significance of signalling 

mechanisms that regulate EndoMT and those mainly involve TGF-β and FGF2. In 

fact, many studies point out that the two growth factors regulate each other (114, 

119, 132, 516, 518). In general, the data indicate that FGF signalling is essential to 

maintain the endothelial phenotype, and once this is blocked TGF-β signalling is 

upregulated initiating the initiation of the transition towards the mesenchymal 

phenotype. One way of FGF2 signalling may be suppressed in EC, which has 

already been described (Figure 6.2), is the knock down of FRS2α that leads to 

increased TGF-β signalling and TGF-β-dependent transcription of mesenchymal 

markers through the downregulation of let-7 microRNA (114). In normal conditions, 

let-7 specifically targets TGF-βR1 mRNA and destroys it preventing TGF-β 

downstream signalling. miR-20 has also been implicated in EndoMT, since its 

expression is significantly downregulated upon FGF2 suppression, leading to 

increased transcription of its downstream targets ALK5 and TGF-βR2 that both 

promote canonical TGF-β signalling (518). 

Interestingly, data presented by the Simons group collectively demonstrate that 

TGF-β exerts a binary role in endothelial and VSMC cells. On one hand, 

suppression of FGF signalling and consequent upregulation of TGF-β promotes 

EndoMT and expression of mesenchymal markers in endothelial-derived cells. On 

the other hand, FGF suppression in VSMC leads to TGF-β-regulated contractile 

phenotype with increased contractility and expression of SMC markers (119). This is 

not consistent with our findings, where TGF-β promotes the phenotypic modulation 

toward the synthetic phenotype. Furthermore, in a similar study from the same 

group, it was reported that TGF-β signalling prevents SMC proliferation causing 

G1/S arrest in FRS2α-knock down aortic SMC (132). However, such a finding might 

be caused directly due to downregulation of FGF signalling, since it is an important 

form of paracrine cell-cell communication, rather than TGF-β driven. In addition, 

expression of proliferative markers was not assessed in any of these studies.  

The inflammatory-induced model of EndoMT further supports a role of TGF-β in 

phenotypic modulation of EC. The cytokine-cocktail induction has previously been 

described in EMT, a similar process of phenotypic modulation in epithelial cells. In 

addition, this model also mimics for the inflammatory component of various 
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conditions such as atherosclerosis and SSc-PAH, without ablating mechanisms that 

are involved in signal transduction between cells and environment.  

Another interesting observation came from a study exploring the effect of EndoMT 

in hyperplasia and proliferative vascular disease (532), where it was shown that 

EndoMT is modulated by shear stress in an ERK5-dependent manner. In brief, 

ERK5 silencing caused spontaneous morphological changes suggestive for 

EndoMT, which became more apparent with TGF-β stimulation. This study revealed 

for the first time a crucial role of ERK5 signalling to promote EndoMT, and this effect 

is enhanced in the presence of TGF-β. This mechanism is consistent with the role of 

ERK5 as an activator of the signalling cascade for NKX2-5 expression that was 

discussed earlier (Chapter 4). Interestingly, unpublished work from our lab suggests 

that the use of ERK5 inhibitor, ERK5-IN-1, blocked EndoMT transition with PAEC 

retaining their endothelial phenotype after treatment with the cytokine cocktail (TGF-

β, TNFα, IL-1β), as confirmed by their morphology and expression profile.  

In contrast to VSMC de-differentiation, where cells can acquire either the contractile 

or the synthetic phenotype dependent on the environmental conditions, there is yet 

no evidence that EndoMT-derived mesenchymal cells can reverse to their 

endothelial phenotype. Thus, scientists concentrate on creating drugs that inhibit 

EndoMT as a prospective therapy. However, this ability of endothelial cells to 

undergo phenotypic modulation and generate various different types of connective 

tissue provides a hidden advantage and hope that EndoMT could be used as a 

potential method for tissue regeneration. Step-wise modulation of endothelial cells 

through stimulation by key factors could generate osteocyte and chondrocytes that 

could be used as treatment to osteoporosis, osteonecrosis, and osteoarthritis, 

respectively. Similarly, generation of myocytes and cardiomyocytes could be 

beneficial for muscular dystrophy and myocardial infarction. The process may also 

aid in vascular tissue regeneration, particularly in vasculogenesis through the 

generation of VSMC and pericytes. Moreover, tissue engineering ex vivo could also 

be used to achieve successfully and efficient replacement or transplantation of 

degenerated tissues and organs. 

Overall, expression of NKX2-5 showed an increasing trend in EndoMT at both the 

gene and protein levels, however, the difference was statistically significant only at 

gene expression levels in HUVECs. Nonetheless, HUVECs might not be an ideal 

and representative cell type to study NKX2-5, since the gene might be expressed 

due to the embryonic phenotype of the cell. Data presented in this chapter provide 

evidence of EndoMT being a direct or indirect regulator of NKX2-5. However, this 



232 

relationship might be reciprocal since unpublished data generated in our lab showed 

that NKX2-5 knock down using siRNA blocked the transition of PAEC towards the 

mesenchymal phenotype. More studies are required to elucidate further the exact 

role of NKX2-5 in EndoMT.  
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CHAPTER 7 -  CONCLUSION AND FUTURE STUDIES 

The main objective of this thesis was to investigate the regulation of NKX2-5 gene in 

human adult blood vessels. I have approached the regulation of the gene from 

different angles and provided compelling evidence at multiple levels. In particular, I 

have successfully shown that the NKX2-5 genomic locus is genetically associated 

with vascular disease (Chapter 3). I have provided strong evidence that a signalling 

cascade involving hypoxia, TGF-β, AKT and ERK5 is crucial for the activation of 

NKX2-5 in VSMCs (Chapter 4). In addition, I have identified a transcriptional 

mechanism by which NKX2-5 expression is regulated through the interaction of an 

upstream promoter and a functional downstream enhancer. This mechanism 

involves the binding of an activator/co-activator complex made of TEAD/YAP1 and 

the binding of the transcription factors GATA-6, c-JUN, MEF-2c and phosphorylated 

SMAD3 (Chapter 5). Finally, I have provided evidence that NKX2-5 can be activated 

in endothelial cells during EndoMT possibly through similar activating mechanisms 

to those that stimulate expression in VSMCs and involve TGF-β (Chapter 6). 

Most studies of NKX2-5 in human report gene mutations that cause or have been 

associated with different forms of CHD. Until recently, postnatal NKX2-5 expression 

had only been reported in the heart and few other tissues, excluding blood vessels. 

This is the first time that expression and regulation of NKX2-5 is studied in human 

blood vessels, and the findings increase significantly the existing knowledge, most 

of which comes from earlier animal studies. In addition, this is also the first time that 

NKX2-5 has been genetically associated with vascular disease. This finding 

confirms an earlier study conducted in our lab that showed that conditional knock-

out of NKX2-5 in an animal model of PAH normalised mean pulmonary pressures, 

and eliminated muscularisation of the vessels and vascular remodelling. 

The genetic study was conducted in scleroderma patients and healthy individuals 

using tagging SNPs across the genomic locus of NKX2-5. Scleroderma is an AID 

with prominent pulmonary complications and vasculopathy, with PAH being the 

leading cause of death amongst scleroderma patients. The meta-analysis (Chapter 

3) showed that NKX2-5 is genetically associated with scleroderma across two 

independent cohorts of similar ethnicity (British and Spanish). Scleroderma is a 

complex disease, and due to the immune system dysfunction, causal genes 

identified so far by genetic studies are mostly related to immunity, with the exception 

of CTGF gene. The findings of the genetic study contribute new insights in the 

pathogenesis of scleroderma, and in particular highlight the mechanisms of 
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extended fibrosis affecting the skin and internal organs. It directly implicates the 

phenotypic modulation of VSMCs regulated by NKX2-5 in fibrosis, and recognises 

synthetic VSMCs as an important effector cell type, apart from fibroblasts and 

myofibroblasts.  

NKX2-5 was also found to be associated with PH independent of the presence of 

scleroderma, and the association was successfully replicated in an independent 

cohort. This finding further confirms the hypothesis that NKX2-5 is an important 

regulator of vascular diseases characterised by vascular remodelling. However, to 

further explore and understand in depth this association, more studies will need to 

be performed in future. One study could be conducted in other patients with other 

AIDs such as SLE and RA, that both share common characteristics with 

scleroderma, and exhibit vascular complications. A study could also be conducted in 

PH patients that do not have AID and are not diagnosed with BMPR2 mutations. 

Although this would be the most appropriate group to test the hypothesis, it would 

be extremely difficult to collect. This issue highlights the importance of 

collaborations between interdisciplinary scientific groups, and illustrates the need for 

sharing of knowledge and expertise.  

In Chapter 4, I have generated important data that recognise TGF-β as a critical 

stimulator for NKX2-5 expression. Although this regulatory pathway had been 

identified before in animal studies, the present study provides the first confirmation 

of a similar regulation in adult human vessels. I have shown that TGF-β is able to 

upregulate NKX2-5 and promote the phenotypic modulation towards the synthetic 

state of VSMCs. The upregulation of NKX2-5 occurs through the phosphorylation of 

SMAD3, ERK5 and AKT by the respective kinases. This cascade can be activated 

in response to vascular injury or to other disease-associated stimuli such as 

hypoxia. However, other stimuli can also trigger the signalling cascade and lead to 

activation of NKX2-5, including mechanical stretch, stress, metabolic dysfunction 

and others. These stimuli should be tested in future as alternative mechanisms of 

NKX2-5 activation. 

A panel of selective inhibitors was used with few of them causing a marked 

decrease at protein and gene expression levels of NKX2-5. We have shown before 

that conditional knock-out of NKX2-5 ameliorated vascular remodelling and restored 

its downstream implications. The selective inhibitors that decreased NKX2-5 could 

be tested in animal models of atherosclerosis or PAH as drugs targeting the 

activating mechanisms. However, since the targeted cytokines and kinases are 
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implicated in numerous processes of the human body, a sophisticated and carefully-

designed approach would be required. 

Findings generated and presented in Chapter 5 may significantly facilitate the 

designing of strategies to block NKX2-5 activation and expression. In particular, I 

have identified a transcriptional mechanism that regulates NKX2-5 and involves two 

different genomic regions. This transcriptional mechanism can be blocked by 

disrupting the binding of the TEAD/YAP1 complex on rs3095870 or the binding of 

other transcription factors (GATA-6, c-JUN, MEF-2c, SMAD3) at the enhancer. 

Disruption of binding will prevent NKX2-5 expression and therefore suppress 

pathological vascular remodelling. Although the ChIP assays demonstrated the 

enrichment of these factors binding to the upstream promoter and the enhancer, 

more experiments are required in order to identify the exact DNA binding elements. 

In addition, both TEAD1 and TEAD3 proteins seem to be implicated in the 

transcriptional regulation, exhibiting different potentials regarding NKX2-5 

expression. However, their exact role needs to be further investigated, and 

additional work is required in order to identify any other functional MCAT consensus 

elements within the NKX2-5 promoter that would potentially regulate expression.  

Another area that requires investigation is the regulation of NKX2-5 through 

epigenetic modifications including microRNAs and DNA methylation. There is a 

body of evidence presented in this thesis and elsewhere suggesting that there is a 

strong possibility that epigenetic mechanisms are implicated in the regulation of 

NKX2-5 expression. A careful study design is critical in order to explore post-

transcriptional regulation through microRNAs. The study should combine published 

information regarding the expression profile of microRNAs that were previously 

implicated in vascular disease and those that would potentially target the NKX2-5 

3’UTR. Another way to address this question would be to perform a microRNA array 

in samples that NKX2-5 is overexpressed compared to samples with normal 

expression. MicroRNAs showing differential expression would be potential 

candidates. Whole exome sequencing could also be advantageous in this occasion. 

Exome sequencing detects variants in coding exons, with the capability to expand 

targeted content to include UTRs and microRNAs for a more comprehensive view of 

gene regulation. 

Existing evidence reports that NKX2-5 is differentially methylated in cancer. There 

are six CpG islands adjacent to the NKX2-5 gene which could either be hypo- or 

hyper- methylated depending on the cell requirements for NKX2-5 expression 

(Figure 5.21). Hyper-methylation has been traditionally associated with decreased 
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expression. Therefore, silencing of postnatal NKX2-5 expression through DNA 

methylation could be possible and requires further investigation. Methylation levels 

may be changed in disease allowing expression of NKX2-5 as has been previously 

reported. Bisulphite conversion and a methylation array could be potentially used to 

investigate this hypothesis. However, methylation patterns are not ubiquitous and 

differ between cell types and tissues. Therefore, performing such experiments 

would require DNA isolated from diseased vessels of patients suffering from 

vascular diseases such as PAH, atherosclerosis, PAD. Obtaining these kinds of 

samples is challenging and involves co-operation of patients and clinicians, but may 

be feasible where there are close collaborations between clinical and basic 

scientists.  

In the final Chapter 6, expression of NKX2-5 was assessed in endothelial cells, 

where it was shown to be increased during EndoMT, a process of phenotypic 

modulation whereby endothelial cells acquire a mesenchymal phenotype. EndoMT 

and VSMC de-differentiation are similar processes that describe the phenotypic 

switch of two distinct types of vascular cells, which change their morphology and 

expression profile, and produce and deposit extracellular matrix within the vessel 

wall. Both processes have been associated with thickening of the blood vessel wall, 

and formation of plexiform and atherosclerotic lesions. In addition, both vascular 

endothelial and smooth muscle cells originate from the same embryonic progenitor 

cell type, where NKX2-5 is expressed during development. It is also apparent that 

both processes are directly and/or indirectly stimulated by TGF-β, with ERK5 and 

AKT involved. Taken together, the findings presented in this study propose that 

similar signalling mechanisms stimulate expression of NKX2-5 during EndoMT and 

VSMC de-differentiation. However, it is not yet clear if NKX2-5 drives EndoMT upon 

stimulation by the adjacent activated VSMCs, or it is expressed only by the 

EndoMT-derived cells, and this question could be better answered using an animal 

model rather than in vitro experiments, due to the high levels of cell-cell and cell-

environment interactions present during EndoMT.  
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Figure 7.1 The role of NKX2-5 in disease. Schematic diagram illustrating the role of NKX2-
5 and its regulation under disease conditions in vascular smooth muscle and endothelial 
cells. Continuous lines indicate data generated in this thesis, whereas broken lines indicate 
evidence found in literature.  

 

Study Limitations 

In general, the main limitations concern the patients cohorts used here and those of 

future and perspective studies. Scleroderma is a rare condition, the manifestation of 

which changes overtime. Although clinical criteria for disease diagnosis are well-

established and reviewed often, patient phenotyping is critical and often varies 

between clinical doctors and medical centres. Therefore, important information can 

be missed or incorrectly annotated. Another issue most people confront in these 

types of studies concerns the size of the cohorts. For relatively rare diseases such 

as scleroderma or PAH, generating large cohorts of patients with available clinical 

information and biological samples such as DNA, serum, tissue biopsies, etc is 

extremely challenging. It requires collaboration and partnership between clinical 

doctors from many clinical practices and scientists. Due to these reasons, a 

replication study in a non-SSc related PAH cohort would be very difficult to co-

ordinate.  
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Another limitation of this study as well as of most of the studies focusing on vascular 

disease, is the accessibility and availability of clinical samples. In particular, there 

are limited sources of primary human pulmonary vascular smooth muscle cells, 

which are usually commercially provided at extreme costs. Other sources could 

include post-mortem tissues and lung tissues of patients undergoing transplantation, 

which are both limited sources due to extended protocols and consent processes 

required. Similarly, lung biopsies or tissue-isolated nucleic acids are also very 

limited making tissue specific epigenetic studies difficult to conduct. 

With reference to the functional work conducted during this thesis, limitations are 

subject to the lack of general knowledge regarding the biology of the human NKX2-

5 gene and protein. As such, TGF-β was used exclusively in this thesis to activate 

expression of NKX2-5. This effect is easy to control experimentally (ie dose-

response and time-course of stimulation). However, TGF-β stimulation is not the 

only way that NKX2-5 gets activated, and therefore the data presented in this study 

might be biased towards the TGF-β-dependent mechanisms. Future studies should 

be conducted to study alternative activation mechanisms, such as hypoxia.  

Another drawback of the study is with regards to the microRNA studies presented in 

this thesis. Currently, there are no known microRNAs to target NKX2-5 mRNA, 

which could be used as positive controls. Use of a positive control as such could 

improve the interpretation of the data.  

The lack of effective ways to quantify NKX2-5 gene and protein expression is 

another limitation. Although a panel of monoclonal and polyclonal antibodies are 

commercially available and tested in these studies, there is no currently available 

antibody to detect the nuclear NKX2-5 protein with high-specificity and that 

adversely affects the interpretation of the findings. 

In addition, the use of immortalised HPASMC, and the various conditions of serum 

starvation and TGF-β stimulation are also limitations. This is the first time that an 

immortalised type of HPASMC is used in vascular studies, and although initial 

experiments were performed to confirm their suitability in the study, it can be argued 

that immortalisation may have altered somehow the signalling pathways that 

activate gene expression. Overall and despite the limitations described above, I 

have strived to ensure that the experiments were consistently well designed and 

performed. Successful replication in science is challenging and was accomplished 

by extensive optimisation ensuring consistency in the materials used and in the 

experimental protocols.  
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Future Work 

The work conducted during this thesis has been interesting and challenging, and the 

data presented here contribute significantly to the understanding of the role and 

regulation of NKX2-5 in human adult vessels. Although there were many significant 

findings, a number of questions remains unanswered and require further 

investigation, each of which could generate a new project.  

Future work plans can be outlined below in few main points:  

 A genetic association study of NKX2-5 tagging SNPs in: 

 other AIDS, such as SLE and RA 

 PAH patients without AIDs or BMPR2 mutations 

 Investigation of other stimuli and environmental insults for potential 

activation of NKX2-5 expression 

 Test of the selective inhibitors that downregulated NKX2-5 expression in 

animal models of atherosclerosis and/or PAH 

  Blocking of NKX2-5 transcriptional activation by inhibiting: 

 The binding of TEAD/YAP activator complex on NKX2-5 promoter 

 The binding of MEF-2c, GATA6, c-JUN on the NKX2-5 downstream 

enhancer by deleting the consensus DNA elements 

 TGF-β stimulation mediated by the binding of phosphorylated 

SMAD3 on NKX2-5 regulatory regions 

 Further investigation of other potential TGF-β responsive elements 

 Investigation of the presence of other MCAT elements within the NKX2-5 

proximal or upstream promoter 

 The effect of microRNAs on the post-transcriptional regulation of NKX2-5 

 The effect of methylation on the epigenetic regulation of NKX2-5 in diseased 

vessels compared to controls  

 Investigation of the role of NKX2-5 during EndoMT in animal models 

Overall, this project provides important insights for the regulatory and activating 

mechanisms of NKX2-5 expression in diseased blood vessels. These mechanisms 

may be similar in other diseases characterised by vascular remodelling. Data 

presented here could ultimately be used to develop strategies to prevent 

pathological NKX2-5 expression, and therefore lead to the design of targeted 

therapies for CVD.  
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APPENDIX 

Websites, Genome Browsers, Tools 

https://www.ncbi.nlm.nih.gov/pubmed 

http://www.uniprot.org/ 

http://www.ensembl.org/index.html 

The International HapMap Project  (NCBI retired HapMap Resource, June 16, 2016) 

http://www.internationalgenome.org/home 

https://genome.ucsc.edu/ 

http://www.genecards.org/ 

http://pngu.mgh.harvard.edu/~purcell/plink/ 

https://www.broadinstitute.org/haploview/haploview 

http://archive.broadinstitute.org/mpg/tagger/ 

http://imagej.net/Welcome 

http://www.graphpad.com/scientific-software/prism/ 

http://bioinfo.ut.ee/primer3-0.4.0/primer3/ 

http://archive.broadinstitute.org/mammals/haploreg/haploreg.php 

http://www.microrna.org/microrna/home.do 

http://www.gtexportal.org/home/  

http://www.genecodes.com/sequencher 

http://biologylabs.utah.edu/jorgensen/wayned/ape/ 
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