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 Abstract 1 

Background: Recently, using nano-analytical electron microscopy, we showed that human 2 

valve cusps, coronary arteries and aortae, with and without calcific disease, harbour 3 

spherical calcium phosphate micro-particles of the identical composition and crystallinity. 4 

Importantly these calcified particles were present prior to any clinical sign of calcification and 5 

as yet, their role remains unknown. Objective: To examine the direct effects of isolated 6 

calcified particles on human valvular cells. 7 

Methods: Calcified particles were isolated from healthy and diseased aortae using 8 

collagenase and hydrazine and characterized by scanning electron microscopy and energy 9 

dispersive x-ray spectroscopy. The calcified particles were quantitated by turbidity and 10 

applied to a monoculture of valvular endothelial cells (VECs)  and interstitial cells (VICs) by 11 

adding them directly into the media. Cell differentiation, viability and proliferation was 12 

analysed. Results: Particles were heterogeneous differing in size and shape and were 13 

crystallized as calcium phosphate. There was a significant difference in the amount of 14 

calcified particles isolated from diseased donors compared to healthy donors (p<0.05), but 15 

there were no differences between the composition of the particles from healthy and 16 

diseased donors. VECs treated with calcified particles showed a significant decrease in 17 

CD31, VE-cadherin and an increase in von Willebrand Factor (vWF) expression, p<0.05, 18 

when treated with calcified particles for three weeks. There was a significant increase in α-19 

SMA and osteopontin (p<0.05), with increased expression of alizarin red and von Kossa in 20 

VICs when treated with the particles for three weeks. VEC and VIC viability was significantly 21 

decreased by the calcified particles (p<0.05) with a significantly increased number of TUNEL 22 

positive VECs (p<0.05) indicating apoptosis. Proliferative capacity of VECs and VICs after 23 

14 days incubation with calcified particles was unchanged. 24 

Conclusion: Isolated calcified particles from human aortae are not innocent bystanders but 25 

induce a phenotypical and pathological change of VECs and VICs characteristic of activated 26 
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and osteoblast-like cells. Therapy tailored to reduce these calcified particles should be 1 

investigated.  2 

Key words: calcified particles, valve endothelial cells, valve interstitial cells, osteogenesis, 3 

endothelial-to-mesenchymal transformation. 4 

Abbreviations:  5 

VEC: valve endothelial cell 6 

VIC: valve interstitial cell 7 

CAVD: calcific aortic valve disease 8 

SEM: scanning electron microscopy 9 

vWF: vonWillebrand Factor 10 

TGFβ1: transforming growth factor 1 11 

  12 
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Introduction 1 

   Calcification is a widespread phenomenon involved in several cardiovascular diseases 2 

such as calcific aortic valve disease (CAVD) and atherosclerosis 1. CAVD is a slowly 3 

progressive disorder of dysregulated calcium deposition, very common in the elderly. It is 4 

found in 26% of the population over the age of 65 2, 3, 35% between 75 and 84 years of age, 5 

and up to 50% of those over 85 4, 5. CAVD ranges from mild valve thickening without 6 

obstruction of blood flow, known as aortic sclerosis, to severe calcification with impaired 7 

leaflet motion, termed aortic stenosis.     8 

   The pathological pathways involved in the initiation, progression and end-stage of CAVD 9 

remain largely unknown. The mechanisms of valve calcification in heart valves appear to be 10 

similar but not identical to those responsible for atherosclerosis 6. This might be at least, in 11 

part, due to the specific nature and responses of valve interstitial and endothelial cells to 12 

different stimuli. Recent studies suggest that underlying mechanisms of CAVD are initiated 13 

at the endothelium leading to inflammation 7, 8.  Activation of inflammatory pathways is 14 

believed to promote cardiovascular calcification by the trans-differentiation of quiescent VICs 15 

into osteoblast-like VICs, forming calcific lesions which accumulate calcium phosphate 16 

mineral 7, 9, 10. Mineral deposits have been shown in human valves 10, 11 and we recently 17 

demonstrated that calcium phosphate particles, composed of highly crystalline 18 

hydroxyapatite associated with 100% of calcific lesions and between 83%-100% in non-19 

calcified regions are present in patients with CAVD 10, 12.  These particles were also detected 20 

in 80% of non-calcified aortic valve tissue from patients that had calcific lesions in another 21 

part of their cardiovascular system.  An analysis of particle size showed a trend for 22 

increasing particle diameter with increasing disease severity 10. Most surprisingly, these 23 

particles were found on 46% of aortic valves in which the cardiovascular system was 24 

apparently entirely free from calcific lesions. Spherical and semispherical deposits together 25 

with lamellar crystals have also been shown in calcified valves 13. Immunolabelling of aortic 26 

valve tissues showed strong positive labelling for early osteoblastic transcription factors 27 
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RUNX2 and Sp7 expression in cells near the spherical particles but no osteocalcin. 1 

Additionally RUNX2 and Sp7 expression was observed in apparently healthy tissue with the 2 

presence of calcified particles. However, detection of these calcified particles does not by 3 

itself prove the hypothesis that these particles contribute to the pathogenesis of CAVD. 4 

Since these particles were present during all stages of CAVD, regardless of the presence of 5 

calcific lesions, it is suggested that these particles are the first mineralized structure formed 6 

and may play a fundamental role in calcific lesion formation and ultimately calcification. 7 

Despite this knowledge, the exact role of these particles in CAVD is still unknown. 8 

   The goal of the present study is to investigate the effects of these calcium phosphate 9 

particles on valvular cells. The calcium phosphate particles were isolated from human donor 10 

aortae and several concentrations of particles were studied in direct contact with a 11 

monoculture of VECs and VICs. Quantification of the particles was assessed by turbidity 14, 12 

scanning electron microscopy was used for characterization of the particles and cellular 13 

behaviour was studied with cell viability, proliferation and differentiation. It is hypothesized 14 

that these particles will stimulate a shift in phenotype of the cells into an activated and 15 

osteogenic phenotype that may progress the calcification process.  16 

 17 

Material and methods 18 

Human healthy aortae and calcified aortae were used for isolation of the particles. We have 19 

ascertained that these particles, whether isolated from valves or aortae, are identical in 20 

nature and healthy and diseased aortae were more readily available. 9 healthy aortae (mean 21 

age 42.1 years; range 4 days-65 years; SD=21.5; 6 females and 3 males) were obtained 22 

from heart valve donors, whose valves were judged unsuitable for clinical use or from 23 

explanted hearts of cardiac transplant recipients. The normal aortae were obtained from 24 

patients free from cardiovascular and valvular complications based on history, macroscopic 25 

and microscopic evaluation. These were unused aortae from healthy, heart donors, most of 26 

whom died from a cerebral haemorrhage due to head trauma with no underlying diseases. 27 

The aortic tissue was taken from adjacent to the aortic valves. Calcified aortic tissues, n=5, 28 
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were from heart donors or explanted hearts at the time of cardiac transplantation whose 1 

aortae showed visible evidence of calcification (mean age 66.3 years; range 54-78 years; 2 

SD=9.3; 2 female and 3 males). For cell isolation, healthy, aortic heart valves, n=7, were 3 

used (mean age 48 years; range 18-59 years; SD=15.0; 2 female and 5 males). These were 4 

also obtained from patients free from cardiovascular and valvular complications based on 5 

history, macroscopic and microscopic evaluation. These were unused valves mostly due to 6 

fenestrations from healthy, heart donors, most of whom died from a cerebral haemorrhage 7 

due to head trauma with no underlying diseases. The valves and aortae were not matched 8 

from donors. All human studies have been approved by the Brompton and Harefield trust 9 

ethics committee and Oxford Hospital. These studies have been performed in accordance 10 

with the ethical standards laid down in the 1964 Declaration of Helsinki and its later 11 

amendments. All donors gave their written informed consent prior to their inclusion in the 12 

study. 13 

 14 

Cell isolation and culture 15 

Healthy human valve leaflets were excised and washed in PBS once. The valve leaflets 16 

were incubated in a collagenase solution (Type A, 0.15% w/v; Roche, Life Sciences, United 17 

States) for 10 minutes at 37 °C under a forceful agitation to remove the VECs. The 18 

undigested tissue was removed, washed with PBS, minced, and incubated further for 3 19 

hours in a fresh collagenase solution at 37 °C under forceful agitation to isolate the VICs. 20 

After centrifuging of the solution with the VECs, the resulting VEC pellets were plated out in 21 

gelatin coated tissue culture flasks. VECs were grown until confluent in endothelial media, 22 

defined as Endothelial Cell Growth Medium 2 (ECGM; PromoCell, Germany) containing 150 23 

U/ml penicillin/streptomycin (P/S; Sigma Aldrich), 2 mM endothelial cell growth supplement, 24 

and 20% heat-inactivated fetal calf serum (FCS; Helena Biosciences, Sunderland, United 25 

Kingdom). The resulting VICs after centrifuging the other solution were grown until confluent 26 

in basic VIC media, defined as basal Dulbecco’s Modified Eagle Medium (DMEM; Sigma 27 

Aldrich) containing 150 U/ml P/S, 2 mM L-Glutamine (L-Glut; Sigma Aldrich), and 10% FCS. 28 
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Once confluent, media is switched for fibroblast media, defined as basal DMEM containing 1 

150 U/ml P/S, 2 mM L-Glut, 2% FCS, 5 µg/ml insulin (Sigma Aldrich), and 10 ng/ml fibroblast 2 

growth factor-2 (FGF2; Peprotech, United Kingdom) and cultured until further analysis. 3 

 4 

Isolation of calcium phosphate particles 5 

Healthy and diseased aortic tissues (1 cm by 1 cm), were excised and incubated overnight in 6 

a collagenase solution (2% w/v; Sigma Aldrich, Saint Louis, MO, United States) at 37 °C. 7 

After which, tissues were homogenized with a tissue grinder and again incubated overnight 8 

in the collagenase solution at 37 °C. After incubation, samples were centrifuged and washed 9 

three times with phosphate buffered saline (PBS; Sigma Aldrich). The resulting pellet was 10 

resuspended in 67% hydrazine solution (Sigma Aldrich) at 55 °C for 2 hours. Samples were 11 

centrifuged, washed once with deionized water and ethanol and stored dried in the freezer. 12 

Isolated particles from donors were not pooled. 13 

 14 

Turbidity 15 

For turbidity of the particles, isolated particles from all donors were suspended in 500 µl 16 

deionized water first. The particles were homogenized and mixed extensively by vortexing 17 

and the use of a pestle. The absorbance of the samples and dilutions were measured by 18 

using the Bio spectrophotometer plus (Eppendorf, New York, United States) at 600 nm, 19 

room temperature. For reproducibility, samples were measured immediately and after 5 days 20 

since the particles tend to sink. 21 

 22 

Scanning electron microscopy/EDS/EDX 23 

 After quantification, samples of different particle donors were viewed for their histology with 24 

scanning electron microscopy. For chemical characterization, energy-dispersive X-ray 25 

spectroscopy (EDS/EDX) spectra were obtained from all samples and specific regions of 26 

interest.  27 

 28 
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Cell Viability, differentiation and proliferation 1 

For cell experiments, these calcified particles were applied to a monoculture of VECs and 2 

VICs by adding them directly into the media and cell viability, proliferation and differentiation 3 

was analyzed. Cell viability was determined by fluorescent labelling with a LIVE/DEAD 4 

Viability kit for mammalian cells (Invitrogen, Life Technologies, United States) whereby 5 

particles from different donors (healthy and diseased; absorbance reading of 1.0 and 0.25, 6 

10, 20, and 50 µl per 500 µl of media) were added to the cells and further cultured for a 7 

week. For apoptosis, cells were fixed after 7 days and stained with the In Situ Cell Death 8 

Detection Kit, Fluorescein 15.  9 

Furthermore, the proliferation assay was carried out with a CellTiter 96 AQueous Non-10 

Radioactive Cell Proliferation Assay kit (Promega, Madison, Wisconsin, United States).  11 

To look at the potential of osteogenesis, differentiation was analysed by immunostainings 12 

and Western blotting. In short, both cell types were seeded, mono-cultured for three weeks 13 

with the particles added to the media (absorbance reading of 1.0, 20 µl per 500 µl of media) 14 

and analyzed for α-SMA, CD31, vWF, Vimentin (Dako), Collagen type I (Biologo), Collagen 15 

type III (Novotec), Osteocalcin (Abgent), SM-22 (Abcam), Osteopontin and CBFA-1 (R&D) 16 

by immunofluorescence and western blotting. Calcium deposits and mineralization was 17 

visualized by immunochemistry. More detailed methods can be found in the Supplemental 18 

Data.  19 

 20 

Statistical analysis 21 

Statistical analysis was performed using GraphPad Prism 5 (GraphPad Software, United 22 

States). Prior to analysis of significant differences, data was subjected to a Shapiro-Wilk 23 

normality test. Normal distributed data was subjected to a t-test or one-way ANOVA, 24 

followed by a Tukey post-hoc test. Other data was analyzed by a Kruskall Wallis 25 

nonparametric test. Differences were considered significant for p < 0.05. Data is presented 26 

as mean ± standard deviation. For the Westerns, data is presented as median ± standard 27 

deviation. 28 
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Results 1 

Quantification of calcified particles 2 

   Absorbance values for the two time points from all samples showed good 3 

consistency/reproducibility (Figure 1A, 1B). Particles from the healthy donors (n=9) had a 4 

median absorbance of 1.47 (IQR= 0.33 – 2.14) compared to the significantly higher median 5 

absorbance of the diseased donors (n=5) of 2.96 (IQR= 1.88 – 5.64), p=0.04 (Figure 1C). 6 

The calcified particles from healthy donors showed a maximum absorbance of 2.7 and the 7 

diseased particles showed a minimum absorbance of 1.39. To determine effects of calcified 8 

particles from both the healthy and diseased donors an upper absorbance of 1.0 and a lower 9 

absorbance of 0.25 (by diluting the particles) were subsequently used as a high and low 10 

dose. Higher doses were deemed unsuitable considering the ratio of cells to particles and 11 

resulted in cell toxicity and death. 12 

Scanning electron microscopy showed major diversity within the particles 13 

   A lot of variability in shape was seen in each sample (Figure 2A-B) with spherical and 14 

cubic formed particles. Furthermore, in each sample these different shapes and structures 15 

differed in size. The majority of the calcified particles were spherical in form with equal 16 

variation between the healthy and diseased donors. 17 

Chemical composition of calcified particles  18 

   The majority of the particles, both spherical and cubic, revealed calcium (Ca), phosphorus 19 

(P) and smaller amounts of magnesium (Mg) (Figure 2C,D). However, in a small amount of 20 

particles, a small amount of carbon (C) and sodium (Na) was present (not shown).The 21 

percentage of phosphorus, oxygen, calcium, sodium and magnesium in the particles is 22 

depicted in Figure 2E. There were no differences in the composition of the particles for 23 

healthy and diseased donors. 24 

 25 

 26 
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Calcified particles increase vWF secretion in VECs 1 

   Control, healthy and untreated VECs expressed CD31 (red) and most VECs expressed 2 

weak expression of vWF (green) (Figure 3A). Treatment with calcified particles for 7 days, 3 

whereby particles were added in the media of healthy cells, showed no difference in staining 4 

of vWF and CD31 (not shown). For each treated group no expression of αSMA (red) and 5 

SM22 (green) was found (Figure 3A). No osteoblast markers were observed in VECs before 6 

and after 7 day treatment with the calcified particles (not shown). Only a very small 7 

percentage of the cells from one isolate in the positive control expressed α-SMA (red) and 8 

did not express α-SMA in the control samples. There was no difference between the groups 9 

treated with healthy and diseased aortae donors. 10 

   After 21 days, a higher percentage of cells were positive for CD31 (red) and co-expressed 11 

vWF (green) compared with the samples after one week after treatment with the positive 12 

control (Figure 3B). A higher number of cells demonstrated increased intensity of vWF and 13 

decreased intensity of CD31 staining in both calcified particle treated groups compared to 14 

the control. Expression of α-SMA (red) was seen in the positive control for one isolate while 15 

no cells were positive in the control. In this isolate, no α-SMA expressing endothelial cells 16 

were seen in calcified particle treated groups. No expression of SM22 was seen for each 17 

group or isolate. Weakly positive cells for osteopontin and no osteocalcin were found in 18 

treated groups, including the positive control. 19 

   Immunohistochemical staining showed no nodule formation after 3 weeks but some 20 

increase in alizarin red and ALP staining however osteogenic media (positive control) failed 21 

to induced any significant increase in these markers in VECs. No von Kossa positive staining 22 

was detected in any treated group after 21 days (Figure 4A). There was no difference 23 

between the groups treated with calcified particles from healthy and diseased aortae donors. 24 

 25 

Calcified particles induce a change in phenotype of VICs 26 

   A 7 day treatment was not performed as this time was deemed insufficient for osteogenic 27 

changes. Vimentin was strongly expressed in all VICs in the control group and this 28 
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expression decreased in the positive control and treated groups after 21 days. No α-SMA 1 

was detected in the control group and positive control. In contrast, α-SMA positive cells can 2 

be seen in the healthy and diseased aortae donor groups (Figure 5). Furthermore, intensities 3 

of α-SMA expression varied in these groups indicating different degrees of differentiation of 4 

the VIC phenotype. Control cells expressed no osteopontin, osteocalcin or collagen I with 5 

baseline expression of collagen III. The positive control showed no increase in osteopontin 6 

or osteocalcin but there was a very slight increase in expression of collagen I and III. The 7 

calcified particle treated groups showed very weak expression of osteopontin and 8 

osteocalcin and moderate expression of collagen I and III (Figure 5). 9 

   Alizarin Red and ALP staining of VICs (Figure 4) showed positive staining in over 30% of 10 

VICs and von Kossa staining showed positive staining in over 10% of VICs when treated 11 

with the calcified particles but these stains were negative for the control and positive control. 12 

There was no difference between the groups treated with calcified particles from healthy and 13 

diseased aortae donors. 14 

 15 

Calcified particles induce myofibroblastic and osteoblastic changes 16 

   For the calcified particle treated VECs, there was a significant 1.78-fold decrease in the 17 

expression of VE-CAD p=0.04; a significant 3.05-fold decrease in CD31, p=0.009; a 18 

significant 1.56-fold increase in vWF, p=0.02; no change in α-SMA, p=0.82 and no change in 19 

osteopontin, p=0.35, (Figure 6). The collagen antibodies did not work on Westerns, CBFA-1 20 

and osteocalcin were not detected in VECs before or after treatment. There was no 21 

difference between the healthy and diseased calcified particle treated groups. 22 

   For the VICs treated with calcified particles, there was a significant 2.70-fold increase in 23 

the expression of α-SMA, p=0.03; a significant 3.48-fold increase in the expression of 24 

osteopontin, p=0.01 and there was no change in the expression of CBFA-1, p=0.93, (Figure 25 

6). There was no difference between the groups treated with calcified particles from healthy 26 

and diseased aortae donors. 27 

 28 
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Cell viability is reduced for high concentrations of particles 1 

   Overall, VEC viability remained high after treatment for 7 days (> 80%) using the lower 2 

volumes of 10 and 20 µl of [0.25] and 10 µl of [1.0]. However, for the highest dose of 3 

particles (absorbance reading of 1.0, 20 and 50 µl per 500 µl of media) VECS were 4 

significantly less viable compared to the control (93.83 ± 4.7 % vs 65.38 ± 24.68 %, p < 5 

0.05) (Figure 7A, 7C). There was no difference between the groups treated with calcified 6 

particles from healthy and diseased aortae donors. 7 

   VICs were significantly less viable compared to the control (93.43 ± 9.0 %) when treated 8 

with the lower dose of calcified particles (absorbance reading of 0.25, 10µl per 500µl of 9 

media (84.57 ± 11.5 %) and 20 µl per 500 µl (79.4 ± 16.4 %), p < 0.05). For the highest 10 

doses of calcified particles (absorbance reading of 1.0, 20 µl per 500 µl and 50 µl per 500 µl 11 

of media) VICS were significantly less viable compared to the control (93.43 ± 9.0 % vs 79.9 12 

± 18.3 % and 93.43 ± 9.0 % vs 54.6 ± 22.3 %, p < 0.05) (Figure 7A, 7C). Furthermore, no 13 

differences between healthy and diseased aortae particle treated groups were seen. 14 

   The calcified particle treated groups showed a significantly increased number of TUNEL 15 

positive VECs 15.8% ± 16.0% compared to control = 2.0±3.7%, p=0.005 and VICs, 4.0% ± 16 

4.4% showed no difference in TUNEL positivity compared to control = 3.1% ± 4.3%  (Figure 17 

8A and B). However, it was noted that there were fewer cells present for the treated groups 18 

compared with both controls.  19 

 20 

Proliferative capacity is unchanged by addition of calcified particles 21 

   Proliferative capacity for VECs was not changed for the groups with particles compared 22 

with the control after 7 and 14 days (Figure 8C and 8D respectively). Proliferative capacity 23 

for VICs was unchanged after 7 and 14 days (Figure 8E and 8F respectively) however the 24 

diseased [0.25] group had a higher proliferative capacity compared with the control after 14 25 

days (supplement Figure 1) (p=0.0132). For VECs, there was no difference between the 26 

healthy and diseased donor groups. The positive control was significantly higher compared 27 

to all groups due to the increased concentration of growth factors. 28 
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Discussion 1 

  This study has demonstrated that calcified particles isolated from healthy and diseased 2 

aortic donors have the capacity of inducing phenotypic and pathological remodelling of 3 

human VECs and VICs as well as affecting viability and inducing apoptosis in VECs. 4 

  Turbidity was able to gauge a measure of the particles and this was reproducible and 5 

consistent over different days and has been used with other calcified particles 14, 16. 6 

Therefore, these optical density readings were used as indicator of the concentration and 7 

enabled consistent dosing between samples. A lower range of particle concentration was 8 

used that encompassed the range from the healthy donors at a lower concentration of 9 

particles (absorbance reading of 0.25; [0.25]) and a higher concentration (absorbance 10 

reading of 1.0; [1.0]) representing diseased donors. The particles had a high variability, 11 

differing in shape (spherical and cubic) and size (100 nm to 3.5 µm). No differences in 12 

composition of the particles were found between the healthy and diseased donors however 13 

the amount of calcified particles in the diseased donors was significantly increased and this 14 

has been shown to be greatly increased in diseased valves and aortae 10. The heterogeneity 15 

in the calcified particles has been linked to the physicochemical parameters of their native 16 

growth niche and to the local condition of the extracellular matrix 13. 17 

   Using SEM and energy dispersive x-ray spectroscopy, the isolated calcified particles 18 

demonstrated identical size, shape distribution and spectra to the in vivo detected calcified 19 

particles. Elemental analysis of isolated calcified particles demonstrated peaks for calcium, 20 

phosphorus, oxygen and magnesium as detected for the in vivo particles 10. Though this 21 

elemental composition is similar to that of bone 17, it was shown that surface area electron 22 

diffraction patterns of the in vivo calcified particles were typical of highly crystalline 23 

hydroxyapatite whereas bone consists of a poorly crystalline apatite 10, 17, 18. The origin of 24 

these calcified particles is the subject of ongoing research and they could arise due to a 25 

number of different cellular mechanisms and from a number of different cells. A variety of 26 

bodies are released from cells such as apoptotic bodies, exosomes, matrix vesicles, 27 

extracellular vesicles and microparticles and there is significant overlap in their size and 28 
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structure19, 20. The size range of these calcified particles is considerably larger, ranging from 1 

100 nm up to 2.5 μm in diameter (data from these current samples and from 10), compared to 2 

that of extracellular vesicles released from smooth muscle cells in normal and calcifying 3 

media which was shown to be between 30 and 300nm 21. This lower range also holds true 4 

for exosomes, matrix vesicles and microparticles 22. The larger size of these calcified 5 

particles may arise due to extracellular nucleation of hydroxyapatite through the deposition 6 

of Ca2+ and Pi in the hole zone regions of collagen fibrils within the matrix 23.   As these 7 

calcified particles represent a novel subparticle population in valves and aortae, further 8 

research is aimed at identifying key cell surface markers and to enable the identification of 9 

the cellular origin. Elevated levels of extracellular calcium has been shown to induce 10 

mineralization of vascular smooth muscle cell-derived matrix vesicles 24 and both smooth 11 

muscle cells 25 and matrix vesicles 26 have been demonstrated in calcified valves. 12 

  Particles from both healthy and diseased donors significantly increased the expression of 13 

vWF in VECs and significantly decreased CD31 and VE-cadherin after 21 days incubation. 14 

In general, vWF plays a key role in haemostasis by recruiting platelets to sites of vascular 15 

damage 27. A higher expression of vWF might be an early sign of endothelial activation 28 16 

and is related to endothelial damage 27, 29.  Calcium phosphate particles were shown to 17 

stimulate IL-8 expression and NF-κB activity in human gingival epithelial cells, which are 18 

both involved in the process of inflammation 30. Endothelial damage and dysfunction is 19 

thought to be the initiating factor modulated by circulating inflammatory cells, proteins and 20 

cyclic strain in the process of calcification and further studies will aim to identify early 21 

indicators of inflammation such as NFκB, adhesion molecules and cytokines after treatment 22 

with calcified particles. VECs treated with calcified particles showed no evidence of 23 

endothelial to mesenchymal (EMT) or osteogenic transformation over 21 days as evidenced 24 

from the data in this study. This suggests that these human VEC isolates, compared to VICs, 25 

are more resistant to a change in their phenotype when exposed to these calcified particles. 26 

One VEC isolate was able to undergo EMT when treated with TGFβ1 and TGFβ1 is a key 27 

initiator for EMT 31. There was no detectable osteocalcin or CBFA-1, no increase in 28 
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osteopontin and no nodules, ALP positive cells or calcium deposits were found when VECs 1 

were treated with calcified particles. Additionally human VEC isolates did not undergo 2 

osteogenic differentiation when treated with osteogenic medium which contrasts to clonal 3 

populations of ovine VECs 32 which were shown to undergo osteogenic differentiation using 4 

standard osteogenic protocols. This difference may be related to species, age, gender 33 and 5 

definitely to isolate type.  6 

   The treatment of VICs for 21 days with the particles showed an increase in myofibroblastic 7 

and osteoblastic differentiation by immuno- and histochemical staining. β-tricalcium 8 

phosphate crystallized micron particles, which resemble the calcified particles used in this 9 

study, have been shown to enhance calcification of human mesenchymal stem cells in vitro 10 

and decrease cell viability 34.  Porcine VICs have been compared with osteoblastic cell types 11 

at different stages of differentiation and it has been suggested that VICs may not need to 12 

progress through an activated myofibroblastic stage before reaching an osteoblast-like 13 

phenotype 35. However, it has been shown that there is a relationship between 14 

myofibroblastic porcine VIC activity and initial calcific nodule formation 36 and that 15 

differentiation of VICs to myofibroblasts was a key mechanistic step in the process of early 16 

mineralization 37. Nodules were not detected at any stage of our experiments, with or without 17 

calcified particles or osteogenic media. Crucially, it must be noted that in the present study 18 

VICs from humans that are fibroblastic in nature 38 and of an older age were used and this 19 

may have slowed their rate of differentiation while other studies used animal VICs of a 20 

younger age which normally are activated in vitro and may have a higher differentiation 21 

potential. Further research of the calcified particles with VICs will include short term analysis 22 

for phenotypic changes to see whether VICs progress through an activated phenotype 23 

before differentiation into an osteoblast-like VIC and to assess early markers of activation 24 

and cell signalling. 25 

   Differentiation of VECs and VICs was assessed separately in this study however there is 26 

cross-talk between these two cell types and they are able to modulate each other’s 27 
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behaviour. VICs were shown to inhibit osteogenic differentiation and endothelial to 1 

mesenchymal transformation of VECs 39, 40. Additionally VECs were able to reverse VIC 2 

activation 40. A co-culture model would elucidate this cross-talk and enable a better 3 

understanding of the time course, the differentiation capacity of the calcified particles and the 4 

differentiation potential of the cells. The calcified particles were in direct contact with most of 5 

the cells and whether they are able to modulate valvular cells without being in direct contact, 6 

using transwells, warrants investigation. Also there may be synergistic effects with 7 

mechanical loading which could affect valvular behaviour hence co-culture under 8 

physiological haemodynamic loading should be performed. SEM was used to assess contact 9 

between the cells and the calcified particles and showed some embedding of the particles 10 

within the cell membranes, possibly due to their size and sedimentation (Supplemental 11 

Figure 2). However, this was complicated by other cellular membrane-bound structures and 12 

debris and engulfment of the calcified particles by the valvular cells cannot be confirmed as 13 

yet. Further studies using TEM are ongoing and labelling of these particles would give more 14 

insight into their mechanisms and roles in the pathogenesis of calcification. 15 

   VEC viability was significantly decreased by 65% for the highest dose of healthy particles. 16 

Those from diseased donors also showed a decrease but this did not reach significance, 17 

probably due to the limited time period of the experiment. In the treated groups only a few 18 

apoptotic cells can be seen while 50% of dead cells were seen in the cell viability staining. 19 

This may suggest that both donors mainly cause necrosis instead of apoptosis at high 20 

doses. However, a lower percentage of cells were present in the treated groups compared 21 

with the control implying that dead cells were washed away or already had undergone 22 

apoptosis. Therefore, a time course with different concentrations of each donor needs to be 23 

performed in order to distinguish better between apoptosis and necrosis. No differences in 24 

proliferative capacity were seen for VECs with these concentrations for both donor groups.  25 

   VICs treated with a high concentration of healthy donor particles demonstrated significant 26 

cell death. The highest concentration for the diseased donor group, although lower than 27 
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control, showed no significant difference compared with the control and this may be due to 1 

the short time period. The TUNEL staining showed a similar pattern for VECs. Apoptosis has 2 

been documented in human calcified valves 41, 42 and was shown to be mediated through the 3 

pro-apoptotic cytokines TRAIL 41 and TGFβ1 42. Apoptosis has been thought to lead to 4 

growth of calcium phosphate crystal structures exacerbating the calcification process 43.  5 

Although the proliferative capacity for VICs was not affected by the particles after 7 days, a 6 

significant increase for the low dose of particles from the diseased donor (absorbance 7 

reading of 0.25, 10 µl per 500 µl) was seen after 14 days. This could mean that these VICs 8 

become more activated and thus proliferate more. However, proliferation was not seen for 9 

the high concentration (absorbance reading of 1.0), suggesting this might be causing cell 10 

death.  11 

   Differences between the effect of the calcified particles on cell viability and proliferation for 12 

VECs and VICs may be due to the differences in size or native of the two cell types. VECs 13 

are much smaller than VICs, meaning that a smaller surface area is available to interact with 14 

the particles compared with the larger VICs. This could have led to a higher VEC viability 15 

and could explain the lack of changes in proliferation and osteogenic differentiation. 16 

Differences in physicochemical characteristics of the particles may have a different effect on 17 

valvular cells leading to a different contribution to calcification. Furthermore, apatite is not 18 

toxic to human cells in bones and teeth and used in several in vivo applications 44. However, 19 

it may cause opposite effects in other tissues. Labelling of the different particle structures 20 

and investigating their effects would be very important and could give insights into the 21 

location and mechanisms of interaction with the cells since it was not possible to visualize 22 

them with SEM and check for ingestion (data not shown).  23 

   In conclusion, this study demonstrates that calcified particles isolated from human aortae, 24 

used at these doses, have pathological significance in that they are able to activate a high 25 

percentage of human VECs within 21 days. Calcified particles were able to activate a subset 26 

of VICs to the myofibroblastic and osteoblastic phenotype. The particles also have a 27 
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significant effect on the viability of both VECs and VICs signifying their clinical importance. 1 

Further work is warranted investigating the signalling mechanisms involved. 2 
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Figures 1 

 2 

 3 

 4 

 5 

Figure 1. Turbidity measurements of a healthy donor (A), a diseased donor (B) at t1, directly 6 

after preparation and t2, after 5 days for several dilutions of each donor sample and graph 7 

showing median O.D.s and IQR for both groups (C). *p<0.05 8 
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Figure 2. Representative SEM micrographs of the spherical particles isolated from a healthy 16 

(A) and a diseased donor (B). Higher magnification SEM micrograph of the spherical 17 

particles (C) with elemental analysis of different spherical particles in size and structure can 18 

be seen (1=big spherical particle, 2=small spherical particle, 3=big cubic particle and 19 

4=small cubic particle). The representative corresponding EDS spectra were collected at the 20 

numbered sites indicated with a cross on micrographs. Mean percentage of phosphorus (P), 21 

  
A B 

 

 

 

D 

 
 C 



23 
 

oxygen (O), calcium 37, sodium (Na) and magnesium (Mg) of the different particles for 1 

healthy (red) and diseased donors (blue) (D). Scale bars indicate 5 µm in A and B; 1µm in C. 2 

  3 
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 1 

Figure 3. Immunostaining of VECs after 7 days of culturing (A). Data labelled as control are 2 

untreated VECs and the positive control is from VECs cultured with TGF-β1. VECs are 3 



25 
 

double stained for CD31 (red) and vWF (green) and double stained for α-SMA (red) and 1 

SM22 (green). Immunostaining of cultured VECs with calcified particles, labelled as calc 2 

part, after 21 days (B). Data labelled as positive control is from VECs cultured with 3 

osteogenic media. VECs are double stained for CD31 (red) and vWF (green), α-SMA (red) 4 

and SM22 (green), and for osteopontin (red) and osteocalcin (red). Scalebars represent 50 5 

µm. 6 
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 1 

Figure 4. Immunochemical staining of VECs (A) and VICs (B) after 21 days of culturing with 2 

two different donors of particles (calc part) stained for Alizarin Red, ALP and with von Kossa. 3 
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Light green and van Gieson were used as counterstaining (green and pink, respectively). 1 

Data labelled as positive control is from cells cultured with osteogenic media and the control 2 

is without treatment of the particles. Scalebars represent 100 µm. 3 

  4 
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 1 

Figure 5. Immunostaining of VICs after 21 days of culturing with calcified particles. Data 2 

labelled as control is without treatment and the positive control is from VICs cultured with 3 
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osteogenic media. Coverslips are stained for vimentin (red), α-SMA (red), osteopontin (red), 1 

osteocalcin (green), collagen type I (green), and collagen type III (green). Scalebars 2 

represent 50 µm, inserts for osteopontin show higher magnification. 3 
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 24 

Figure 6. Graphs showing quantitative Western data of VECs (A) and VICs (B) treated with 25 

control (Cont; C) and calcified particles (Calc part; CP1, CP2 and CP3). Graphs show 26 

median and interquartile ranges. * p<0.05 27 
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Figure 7. Cell viability of VECs (A) and VICs (B) with different amounts of particles from 13 

healthy and diseased donors after 7 days. For both cell types, several volumes of the 14 

particles are added; 10, 20, and 50 µl per 500 µl media of the ODs 0.25 and 1.0. Green 15 

represent living cells, red represent dead cells and the control did not receive any treatment. 16 

Quantification of the percentage of living VECs (C) and VICs (D) as determined from the 17 

images with MATLAB for healthy and diseased donors. VECs are considerably smaller in 18 

size than VICs. Scale bars, 100 µm. Data are depicted as mean and SD. * p < 0.05. 19 
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Figure 8. TUNEL staining of VECs (A) and VICs (B) after 7 days of culturing with calcified 11 

particles. Green represents apoptotic cells and in blue the nuclei. Scale bars represent 100 12 

µm. Graph showing the proliferation of VECs (C) and VICs (E) after 7 days of culturing and 13 

of VECs (D) and VICs (F) after 14 days of culturing with different amounts of particles. For 14 

the VECs, in red the positive control (with endothelial media), yellow the control (0.4% FCS 15 

in endothelial media without growth factors and particles); for the VICs, in red the positive 16 

control (with fibroblast media), yellow the control (0.4% FCS in basal media without 17 

treatment of the particles); for both cell types, blue represents OD of 1.0 and green an OD of 18 

0.25 used for the particles. Data are depicted as mean and SD. * p < 0.05. 19 
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Supplemental Figure 1. Graph showing the proliferation of VECs (A) and VICs (C) after 7 5 

days of culturing and of VECs (B) and VICs (D) after 14 days of culturing with different 6 

amounts of particles. For the VECs, in red the positive control (with endothelial media), 7 

yellow the control (0.4% FCS in endothelial media without growth factors and particles); for 8 

the VICs, in red the positive control (with fibroblast media), yellow the control (0.4% FCS in 9 

basal media without treatment of the particles); for both cell types, blue represents a 10 

treatment with particles from healthy donors with an OD of 1.0 and 0.25 and green treatment 11 

with particles from diseased donors with an OD of 1.0 and 0.25 used for the particles. Data 12 

are depicted as mean and SD. * p < 0.05. 13 
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Supplemental Figure 2. Representative SEM micrographs of VECs (A) and VICs (B) after 21 

treatment with calcified particles for 7 days.  Scale bars indicate 50 µm. 22 
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