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Abstract 
  
Research criteria for Alzheimer’s disease recommend the use of biomarkers for diagnosis, but 

whether biomarkers improve the diagnosis in clinical routine has not been systematically assessed. 

Aim is to evaluate the evidence for use of medial temporal lobe atrophy (MTA) as biomarker for 

Alzheimer’s disease at the MCI stage in routine clinical practice, with an adapted version of the 5-

phase oncology framework for biomarker development. A literature review on visual assessment of 

MTA and hippocampal volumetry was conducted with other biomarkers addressed in parallel 

reviews. Ample evidence is available for Phase 1 (rationale for use) and Phase 2 (discriminative ability 

between diseased and control subjects). Phase 3 (early detection ability) is partly achieved: most 

evidence is derived from research cohorts or clinical populations with short follow-up but validation 

in clinical MCI cohorts is required. In phase 4, only the practical feasibility has been addressed for 

visual rating of MTA. The rest of phase 4 and phase 5 have not yet been addressed.  
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1. Introduction 

Biomarker assessment at the time of clinical dementia is important for differential diagnosis and 

thereby also for prognosis and potential treatment. New clinical criteria have introduced the use of 

biomarkers for the diagnosis of Alzheimer’s disease (Dubois et al., 2014, 2007; Jack et al., 2011a; 

McKhann et al., 2011). These criteria also recommend the use of biomarkers for the diagnosis of 

Alzheimer’s disease in non-demented subjects with mild cognitive impairment (MCI) (Albert et al., 

2011). Early diagnosis offers an opportunity for early intervention, improved guidance for caregivers 

and more accurate prognosis.  

 

Several biomarkers for Alzheimer’s disease have been developed; however, there is insufficient 

systematically addressed evidence to implement them for a diagnosis of Alzheimer’s disease at the 

MCI stage in routine clinical practice (Frisoni et al., 2011). To overcome a similar problem in the field 

of oncology, Pepe and colleagues (2001) suggested to systematize the investigation of cancer 

biomarkers based on a framework borrowed from drug development. A similar approach may boost 

the adoption of Alzheimer’s disease biomarkers in clinical practice. An effort has recently been 

launched to adapt the oncology framework to suit the current goal of diagnosis of Alzheimer’s 

disease at the MCI stage, as described in the accompanying summarizing paper (Frisoni et al., in this 

issue). The present study fulfills a specific part of this wider plan: the analysis of the available 

evidence for medial temporal lobe atrophy (MTA) on MRI in the context of this framework. The other 

studies from this effort assessed within the common framework the following biomarkers: episodic 

memory assessment (Cerami et al., in this issue), cerebrospinal fluid measures (Mattsson et al., in 

this issue), amyloid PET (Chiotis et al, in this issue), [18F]FDG-PET (Garibotto et al., in this issue), and 

[123I]-Ioflupane and [123I]-MIBG imaging (Sonni, et al., in this issue). 

 

In a research setting, there are three methods commonly used to assess atrophy of the medial 

temporal lobe: visual rating, manual volumetry and automated volumetry. In visual rating, atrophy is 
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assessed on an ordinal scale. The most widely adopted visual rating scale in research, used in more 

than 100 publications, is the five-point Scheltens scale which was developed over twenty years ago 

(Scheltens et al., 1992). MTA is visually assessed on coronal images taking into account the width of 

the choroid fissure, width of temporal horn and height of hippocampus. Although visual rating scales 

can be broadly applied to a range of imaging acquisition methods and performed by a trained 

radiologist, it is still only sparsely adopted in clinical practice (Gardeniers et al., 2015). In manual 

volumetry, hippocampal atrophy is quantified by drawing multiple regions of interest by an 

experienced rater on adjacent coronal MRI slices, typically 1-3 mm thick. This requires trained raters 

and is time-consuming. Several automated methods, which estimate volumes of structures by means 

of a computer algorithm, have been developed. Most of these algorithms involve an automated 

segmentation and classification of hippocampal tissue. Volume is then calculated as the sum of all 

voxels classified as hippocampal tissue. These techniques require specialist software and expertise, 

are also time-consuming and results can vary across scanners and acquisition protocols. Manual and 

automated volumetry are currently only used in research settings and not yet implemented for 

clinical use.  

 

In this paper, we will review evidence for the maturity of visual rating of MTA (vMTA) and 

hippocampal volume (HCV) as biomarkers for Alzheimer’s disease at the MCI stage, where evidence 

is interpreted under the light of an adapted version of the oncology framework (Pepe et al., 2001; 

Frisoni et al., in this issue).  
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2. Methods  

This review was performed with reference to the oncology framework (Pepe et al., 2001), which was 

adapted to the field of dementia, specifically to the aim of performing the diagnosis of sporadic 

Alzheimer’s disease at the MCI stage (Frisoni et al., in this issue). The lexicon of this framework is 

extensively described in Frisoni et al., in this issue, and is summarized in this section. Only sporadic, 

not familial Alzheimer’s disease, is considered. The standard reference for diagnosis was Alzheimer’s 

disease neuropathology or the development of incident Alzheimer’s dementia at follow-up.  

 

2.1 Glossary  

Alzheimer’s disease is defined as the presence of Alzheimer’s pathology consisting of cerebral 

amyloid plaques and tangles, supposedly leading to a pattern-specific neurodegeneration (medio-

temporal and temporo-parietal distribution). The term is thus independent of the clinical 

manifestation of the disease.  

Alzheimer’s dementia is the clinical syndrome featuring acquired and progressive cognitive 

impairment associated with functional disability as defined by the NINCDS-ADRDA criteria (McKhann 

et al., 1984). Notably, not all cases of clinically diagnosed Alzheimer’s dementia have Alzheimer’s 

disease pathology due to the imperfect accuracy of purely clinical criteria.  

Mild cognitive impairment (MCI) is used to indicate the clinical condition between normality and 

dementia in which patients experience acquired cognitive impairment of greater severity than 

expected by age, but no functional disability. This population includes cases with Alzheimer’s disease 

(about 50%), cases with other neurodegenerative pathologies (10-15%) and cases without a 

neurodegenerative disorder (35-40%) (Bennett et al., 2002; Jack et al., 2008b; Jansen et al., 2015; 

Rowe et al., 2010). The MCI cases with Alzheimer’s disease biomarker positivity are defined as 

Prodromal Alzheimer’s disease in the clinical criteria by Dubois et al. (2010). The focus of this review 

is the use of biomarkers in the MCI stage.  
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Non-Alzheimer neurodegenerative disease includes neurodegenerative disorders that are not 

primarily due to Alzheimer’s pathology. These belong to a large pathological spectrum including 

hippocampal sclerosis, frontotemporal lobar degeneration (FTLD), progressive supranuclear palsy, 

corticobasal degeneration, argyrophilic grain disease, Lewy body disease (LBD) and other alpha-

synucleinopathies such as multiple system atrophy.  

 

2.2 Conceptual framework 

The main phases of the present framework for the development of biomarkers for early diagnosis 

reflect the phases covered in the original oncology framework by Pepe et al. (2001) and in turn 

inspired by pharmaceuticals development. The shift of the reference methodological model from the 

field of oncology to that of dementia implies a shift of aims from screening to diagnosis, as the 

examined biomarkers are validated for use in the clinical population of MCI (Frisoni et al., in this 

issue; Boccardi et al., in this issue). The present review assesses the clinical validity of medial 

temporal lobe atrophy within a translated framework, consisting of five phases with a main aim and 

various sub-aims. These (sub-)aims and evidence reported are summarized in Table 1, together with 

the most pertinent references. There are five consecutive phases of development that should be 

completed before clinical use of the biomarker for prediction of Alzheimer’s disease at the MCI stage.  

Phase 1: Phase 1 studies are preclinical exploratory studies, in which the aim is to find leads for 

potential biomarkers by identifying characteristics specific to the disease, based on pathology 

findings, which could be detected with clinical tests. 

Phase 2: Evaluation of the biomarker’s ability to discriminate patients with Alzheimer’s disease from 

controls. Ideally, evidence is based on studies in which a diagnosis of Alzheimer’s disease is also 

supported by autopsy findings. Sub-aims of phase 2 focus on defining and optimizing the clinical 

assay allowing reliable discrimination between patients and controls (sub-aim 1), determining the 

relation between pathological measurement and biomarker measurement (sub-aim 2) and the 

assessment of possible differential effects of factors in patients and controls that may influence the 
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thresholds for positivity (sub-aims 3 and 4). Relevant factors can be for example age, apolipoprotein 

E ε 4 (APOE4) carrier status and educational attainment.  

Phase 3: Phase 3 studies consist of prospective longitudinal studies and the main aim is to assess the 

ability of the biomarker to detect the disease at the MCI stage by evaluating the biomarker’s ability 

to predict the development of incident Alzheimer’s dementia at follow-up. In other words, to 

distinguish MCI progressors from non-progressors. We included studies examining the biomarker at 

baseline in subjects with MCI and sufficiently long follow-up, ideally over three years. Second main 

aim is to fine-tune the threshold for positivity. Sub-aims are to assess the impact of covariates on the 

discriminatory ability of the biomarker in the MCI stage (sub-aim 1), to compare the usefulness of the 

biomarker in comparison to or in combination with other available biomarkers (sub-aims 2 and 3) 

and to determine a biomarker testing interval (sub-aim 4). 

Phase 4: Main aim of phase 4 is to estimate the accuracy and usefulness of the biomarker-based 

early diagnosis in real world patients. It consists of prospective diagnostic studies in which the 

biomarker is used for an early diagnosis of Alzheimer’s disease, affecting decision-making regarding 

patient management and treatment. Sub-aims are to assess the benefit of the biomarker-based early 

diagnosis (sub-aim 1) and the feasibility of the biomarker assessment (sub-aim 2), and provides 

preliminary evidence on impact on mortality, morbidity and costs (sub-aim 3), and undetected cases 

(sub-aim 4). 

Phase 5: Phase 5 studies aim to quantify the impact of the biomarker-based early diagnosis on 

clinically meaningful outcomes and costs. They consist of disease-control studies assessing the 

reduction in mortality, morbidity and disability allowed by the biomarker-based diagnosis. Sub-aims 

are to assess cost-effectiveness (sub-aim 1), evaluate compliance in different settings (sub-aim 2) and 

to compare different biomarker testing protocols (sub-aim 3). However, this phase can be properly 

carried out only in the context of an effective and accepted treatment available. For the Alzheimer’s 

disease field, only mortality and quality of life may be properly considered within this phase.  
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2.3 Literature search, article selection and evidence evaluation 

References for this review were selected searching the PubMed/Medline database in June 2015. A 

different search algorithm was used for the aims of the 5-phases, each one comprising an aim-

specific key word string and a biomarker specific key-word string: “MTA” OR “medial temporal” OR 

“hippocamp*”. The aim-specific key word strings can be found in supplementary table 1. Only papers 

published in English were included. References were also selected on the basis of the authors’ 

personal knowledge and by screening references from retrieved articles. When aims were 

unequivocally achieved, a reference paper or review was selected by the authors. The final selection 

of articles was based on relevance to topics covered in this review, as judged by the authors.  

For all phases, available literature was assessed and used to evaluate whether each aim was 

considered as Achieved, Partly Achieved, presenting with Preliminary Evidence, or Not Achieved for 

vMTA and HCV. Results of this assessment are visualized in figure 1. Fully Achieved: scientific 

evidence is available and replicated in representative samples in studies without major 

methodological faults. Partly Achieved: scientific evidence is available but not yet sufficiently 

replicated, or samples are not representative, or other significant methodological limitations can be 

found in the available literature. Preliminary evidence: only preliminary evidence is available. Not 

Achieved: no evidence was found and no studies are known to be ongoing at the time of the writing 

of this review. 
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3. Evidence for clinical validity of medial temporal lobe atrophy on MRI 

3.1 Phase 1 – Pilot studies 

The aim of phase 1 studies is to find leads for potential biomarkers based on pathological findings.  

Alzheimer’s disease is characterized by extracellular amyloid beta depositions and intraneuronal or 

extraneuronal neurofibrillary changes, eventually leading to neuronal destruction. Autopsy studies 

have shown that these changes already start many years before the onset of clinical symptoms with 

early and prominent neurofibrillary tangles in medial temporal lobe structures (Braak and Braak, 

1996, 1991; Delacourte et al., 1999; Duyckaerts et al., 2009). These neuropathological changes in the 

medial temporal lobe are accompanied by atrophy, which can be visualized on structural MRI 

(Scheltens et al., 2002).  

The first aim can be considered Fully Achieved for vMTA and HCV.  

 

3.2 Phase 2 – Clinical assay development for clinical disease 

The purpose of the second phase is to find a clinical measurement based on the findings from phase 

1, which can be easily obtained and sufficiently distinguishes subjects with and without Alzheimer’s 

disease. Secondary aims in this phase are to optimize the procedures for performing the 

measurement, assess reproducibility, validate the measurement against pathological measurements 

and assess factors associated with the measurement in controls and diseased subjects.  

 

3.2.1 Phase 2, Primary aim: ability to distinguish patients from controls.  

The primary aim of phase 2 is to assess the ability of vMTA and HCV to distinguish patients with 

Alzheimer’s disease from healthy controls.  

Many case-control studies have evaluated the use of MTA in differentiating subjects with clinically 

diagnosed Alzheimer’s dementia from healthy controls, which have recently been reviewed (Frisoni 

et al., 2013). Average specificity of a visual read of MTA to distinguish clinical Alzheimer’s dementia 

from healthy controls is 79% (CI 75-83) with average-good sensitivity of 70% (CI 65-74). In a 
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pathology verified sample of young Alzheimer’s disease subjects (mean age 59), the sensitivity of 

vMTA was high (92%) with a specificity of 62% (Likeman et al., 2005). Specificities and sensitivities of 

manual hippocampal volumetry are on average 82% (CI 78-85) and 79% (76-82) respectively (Frisoni 

et al., 2013). Specificities and sensitivities for automated measurements of HCV are on average 81% 

(CI 77-85) and 72% (CI 67-77) respectively (Frisoni et al., 2013). The specificty and sensitivity of HCV 

for detecting Alzheimer’s disease were in a similar range in two neuropathological studies: 0.80-

0.87% and 0.75-0.82% (Barnes et al., 2006; Gosche et al., 2002). 

 

Although MTA reasonably well distinguishes subjects with dementia from healthy controls, it is less 

useful in the differential diagnosis of Alzheimer’s dementia. Atrophy of the medial temporal lobe and 

hippocampus is also seen in other neurodegenerative diseases, as well as in vascular dementia 

(Barnes et al., 2006; Bastos-Leite et al., 2007; de Souza et al., 2013; Galton et al., 2001; Harper et al., 

2014; Likeman et al., 2005; van de Pol et al., 2006b). 

 

The primary aim of phase 2 can be considered Fully Achieved for vMTA and HCV.  

 

3.2.2 Phase 2, Secondary aim 1: optimize procedures for biomarker assessment. 

The first secondary aim of phase 2 is to optimize procedures for measuring medial temporal lobe 

atrophy and to assess the reproducibility of this measurement.   

Visual rating of MTA is quick and easy and can be performed by any trained rater, usually a 

radiologist. In contrast to volumetric methods, vMTA is relatively independent of acquisition 

protocol. Merely a good quality anatomical scan is required, which is usually a T1-weighted MRI with 

coronal reconstructions, but can also be a high-resolution CT scan (Wattjes et al., 2009). The 

Scheltens scale has reasonable inter-rater agreement and reproducibility. A study shortly after the 

development of the scale reports inter-rater agreements with kappa values of 0.59-0.62 for 

dichotomized vMTA into present or absent (Scheltens et al., 1995). In more recent publications, the 
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inter-rater kappa is usually higher, up to 0.90 (Tolboom et al., 2010). This may be due to advances in 

imaging acquisition techniques with higher field strengths and better display methods or more 

experience of the raters. Several studies have shown that the reproducibility and accuracy of vMTA is 

higher when scoring is performed by trained investigators (Boutet et al., 2012; Cavallin et al., 2012b).  

 

Volumetric methods may be influenced by scanner type and acquisition protocol (Huppertz et al., 

2010; Jovicich et al., 2009; Nugent et al., 2013; Wonderlick et al., 2009). To increase uniformity of 

MRI acquisition methods between different sites, the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI), developed a standardized protocol for MRI acquisition (Jack et al., 2008a). Although this 

sequence has been adopted by some scanner manufacturers, it is not yet widely implemented for 

clinical use. 

 

Over the years, various methods for manual segmentation of the hippocampus and medial temporal 

lobe have been developed (Konrad et al., 2009). Due to the complexity of the hippocampal region 

and different definitions of anatomical landmarks across research groups, manual volumetry has 

varying reproducibility rates. Recently, effort has been put into the development of a standardized 

method for manual segmentation of the hippocampus: the EADC-ADNI Harmonized Protocol (HarP) 

(Boccardi et al., 2015a). Compared to local protocols, using the harmonized protocol for hippocampal 

segmentation results in higher intra- and interrater agreement (Frisoni et al., 2015). Given the time-

consuming and expensive nature of manual outlining, automated volumetry has higher potential to 

be broadly used in clinical setting. Automated methods approach performance of manual outlining in 

distinguishing healthy controls, MCI and subjects with Alzheimer’s dementia (Frisoni et al., 2013; 

Shen et al., 2010). Several (semi-)automated algorithms have been developed for the automated 

measurement of hippocampal volume. Non-commercial, widely used in research, algorithms include 

FIRST (FMRIB’s integrated registration and segmentation tool, FSL) (Patenaude et al., 2011; Smith et 

al., 2004) and FreeSurfer (Fischl et al., 2002). Several commercially available algorithms have been 
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developed, such as Assessa® (IXICO) based on the LEAP algorithm (Wolz et al., 2010) and 

NeuroQuant® (CorTechs Labs). These various methods use different a priori anatomical information 

on the hippocampus, as well as different computational strategies for volume estimation and 

therefore also provide different volumes for same subjects (Guadalupe et al., 2014; Yu et al., 2014). 

Although steps towards the standardization of automated methods have been undertaken (Boccardi 

et al., 2015b; Jack et al., 2011b; Wolz et al., 2014), their generalizability across acquisition methods 

and centers is still insufficient for their routine application in clinical practice.   

 

This sub-aim can be considered Fully Achieved for vMTA and manual HCV. For automated HCV, this 

aim is considered Partly Achieved.  

 

3.2.3 Phase 2, Secondary aim 2: relationship between pathology and biomarker measurement 

Secondary aim 2 of phase 2 consists of determining the relationship between the biomarker 

measurement and actual pathology.  

Medial temporal lobe atrophy assessed on MRI correlates well with neuropathological findings. In 

post-mortem studies, HCV measured on MRI correlates strongly with histological volume 

measurements (Bobinski et al., 1999). Furthermore, hippocampal atrophy measurements on MRI are 

indicative of Braak neurofibrillary tangle stage at autopsy, even in clinically non-demented subjects 

(Gosche et al., 2002; Jack et al., 2002; Kaur et al., 2014; Whitwell et al., 2008) and HCV on MRI 

correlates strongly with histopathological measures of neuron count and neurofibrillary tangle 

density in the hippocampus (Csernansky et al., 2004; Kril et al., 2004). Good correlations between 

vMTA and Alzheimer pathology at autopsy (Braak staging and plaques and tangles in hippocampus) 

have been demonstrated by a few studies (Barkhof et al., 2007; Burton et al., 2009). However, high 

vMTA scores and decreased HCV are not exclusive to Alzheimer pathology (Barkhof et al., 2007; 

Barnes et al., 2006; Lehmann et al., 2012). Good correlations between Braak stage, neuronal count 
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and HCV on MRI has also been demonstrated for the HarP manual outlining protocol (Apostolova et 

al., 2015).  

 

Several studies have compared visual rating of MTA with volumetric methods and found that vMTA 

ratings correlate well with MRI volumetric measurements (Boutet et al., 2012; Bresciani et al., 2005; 

Clerx et al., 2013; Ridha et al., 2007; Vermersch et al., 1994; Wahlund et al., 1999). 

 

This sub-aim is considered Fully Achieved for vMTA and HCV.  

 

3.2.4 Phase 2, Secondary aim 3: impact of covariates on biomarker measurement in healthy controls 

Phase 2, secondary aim 3 assesses the impact of covariates on the biomarker level in control 

subjects.  

Several factors that influence medial temporal lobe atrophy in cognitively healthy subjects have been 

identified: age, apolipoprotein E (APOE) ɛ4 genotype, vascular risk factors and co-morbid brain 

disease (mostly psychiatric). In studies examining cognitively healthy elderly subjects, a confounding 

effect of preclinical Alzheimer’s disease cannot be ruled out since only very few studies have 

examined pathology verified healthy controls.  

Numerous studies have demonstrated age-related decline in HCV in cognitively healthy adults (Fjell 

et al., 2013; Jack et al., 2015; Lockhart and DeCarli, 2014; van de Pol et al., 2006a). Some studies have 

shown non-linear effects of aging on HCV with increased decline with advancing age (Fjell et al., 

2013; Jack et al., 2015; Raz et al., 2005; Walhovd et al., 2011). Age-related decline in HCV is reflected 

in age-related increase in vMTA scores in cognitively healthy subjects (Cavallin et al., 2012a; 

Scheltens et al., 1992). Older aged subjects are also more prone to have non-Alzheimer pathology 

leading to medial temporal lobe atrophy, such as hippocampal sclerosis (Barkhof et al., 2007). Age-

related decline in HCV is mediated by a protective effect of higher education (Noble et al., 2012). 

Other studies have also shown a protective effect of education on HCV (Schreiber et al., 2016).  
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Various studies report decreased HCV in cognitively healthy subjects with an APOE-ε4 allele 

compared to APOE-ε4 non-carriers (den Heijer et al., 2012; Taylor et al., 2014). However, this effect is 

not undisputed with some researchers finding no effect of APOE-ε4 on cross-sectional HCV (Cherbuin 

et al., 2008; Jack et al., 2015; Okonkwo et al., 2012; Schmidt et al., 1996). A possible explanation for 

these differences could be the inclusion of different study populations, where some of the studies 

that failed to find an effect included younger populations.  

Studies on associations between vascular risk factors, vascular brain lesions and HCV have yielded 

inconsistent results (Lockhart and DeCarli, 2014). In the population-based Rotterdam study, 

researchers found an association between longitudinal hippocampal atrophy rates, vascular white 

matter lesions and diastolic blood pressure (den Heijer et al., 2012). Another large scale study 

showed an effect of smoking and diastolic blood pressure on HCV (Janowitz et al., 2014). Others did 

not find effects of vascular risk factors and vascular white matter hyperintensities on HCV (Gattringer 

et al., 2012).  

Several psychiatric diseases are also associated with decreased HCV in non-demented subjects, such 

as depression (Brown et al., 2014; Geerlings et al., 2012) and post-traumatic stress disorder (Gurvits 

et al., 1996). 

This sub-aim is considered Fully Achieved for vMTA and HCV.  

 

3.2.5 Phase 2, Secondary aim 4: impact of covariates on biomarker measurement in patients with 

Alzheimer’s disease 

Phase 2, secondary aim 4 assesses the impact of covariates on the biomarker measurement in 

subjects with Alzheimer’s disease.  

Many of the same factors that influence medial temporal lobe atrophy in healthy subjects also apply 

to subjects with Alzheimer’s disease. Additionally, several disease-related factors have been shown 

to affect the amount of medial temporal lobe atrophy: age-of-onset, disease stage and clinical 

presentation. A large scale study combining data from the ADNI and AddNeuroMed databases has 



15 
 

shown that in subjects with Alzheimer’s dementia, visually rated MTA scores are influenced by age, 

gender and disease duration (Ferreira et al., 2015). Similarly, lower HCV is found with increasing age 

and increasing cognitive impairment in patients with Alzheimer’s disease (Jack et al., 2012; Peng et 

al., 2015; Pol et al., 2006a).  

Compared to the rest of the brain, medial temporal atrophy is most pronounced at an early disease 

stage; at later stages other cortical areas also become more affected (McDonald et al., 2009; Scahill 

et al., 2002; Whitwell et al., 2007). Subjects with early-onset (age ≤ 65 years) Alzheimer’s dementia 

have different atrophy patterns than subjects with late-onset Alzheimer’s dementia. Subjects with 

early-onset Alzheimer’s dementia have more pronounced parietal and precuneal atrophy, whereas 

subjects with late-onset Alzheimer’s disease have more prominent medial temporal atrophy (Cavedo 

et al., 2014; Frisoni et al., 2007; Ishii et al., 2005; Möller et al., 2013). Moreover, early onset-subjects 

have more frequently a non-memory clinical presentation, which is also associated with relative 

hippocampal sparing (Koedam et al., 2010; Mendez et al., 2012; Whitwell et al., 2011).  

In Alzheimer’s disease, carriership of an APOE-ɛ4 allele is associated with decreased volume of 

medial temporal lobe structures (Bigler et al., 2000; Boccardi et al., 2004; Geroldi et al., 1999; 

Hashimoto et al., 2001; Lehtovirta et al., 1995; Manning et al., 2014). This effect may be limited to 

younger subjects: sensitivity of vMTA to detect early-onset Alzheimer’s dementia is high in APOE-ɛ4 

carriers (82%), but only 47% in APOE-ɛ4 non-carriers (Ferreira et al., 2015), whereas in late-onset the 

sensitivity was around 80%, regardless of APOE genotype.  

Taken together, these studies suggest that medial temporal lobe atrophy may not be useful as a 

biomarker for early diagnosis of Alzheimer’s dementia in young onset patients, especially those 

without an APOE-ɛ4 allele or non-memory presentation. 

Studies on the effects of vascular pathology on medial temporal lobe atrophy have inconsistent 

results, with some finding increased medial temporal lobe atrophy associated with white matter 

hyperintensities (Korf et al., 2005; Leeuw et al., 2006), whereas other studies did not find such a 

relation (Jang et al., 2013). 
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This sub-aim is considered Fully Achieved for vMTA and HCV.  

 
 
3.3 Phase 3 – Prospective longitudinal repository studies 

In phase 3, the ability of medial temporal lobe atrophy to detect subjects with MCI who will progress 

to Alzheimer’s dementia is assessed based on prospective clinical studies. Evidence is presented from 

studies examining medial temporal lobe atrophy as a predictor for clinical decline from the stage of 

MCI. In this phase, criteria for a positive biomarker test are defined and factors influencing the 

abilities of the biomarker to detect pre-clinical disease are assessed. Additionally, in this phase 

different biomarkers are compared and possibly combined for optimal detection.  

 

3.3.1 Phase 3, Primary aim 1: ability of biomarker to predict progression to Alzheimer’s dementia  

The primary aim of phase 3 is to assess the capacity of the biomarker to detect subjects with MCI 

who will progress to Alzheimer’s dementia. 

Compared to cognitively healthy controls, subjects with MCI have reduced HCV in the following 

order: control > MCI > Alzheimer’s dementia (Frisoni et al., 2008; Pennanen et al., 2004; Shen et al., 

2010; Shi et al., 2009). A considerable amount of studies support the ability of medial temporal lobe 

atrophy to predict progression to dementia from the MCI stage. These studies have recently been 

summarized, resulting in an overall specificity of 75% (CI 67-82) and average sensitivity of 60% (CI 51-

68) for the visual rating of MTA on MRI (Frisoni et al., 2013). Most of the studies reported by Frisoni 

et al. have relatively short clinical follow-up in the order of 1-2 years. deCarli et al. (2007) assessed 

data from a clinical trial with 3 year longitudinal follow-up in 190 subjects with amnestic MCI and 

found an average specificity of 98% and sensitivity of 14% for progression to Alzheimer’s dementia 

with a vMTA cut-off score of ≥ 2 (average of left and right) (DeCarli et al., 2007). With a less stringent 

cut-off (≥1), specificity was 69% and sensitivity 51%. Liu et al. (2013) analyzed MCI subjects from the 

ADNI cohort with three year follow-up and found specificity of 82% and sensitivity of 32% for the 
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prediction of progression to Alzheimer’s dementia with a vMTA cut-off of ≥ 3 on any side (Liu et al., 

2013). Which cut-off scores should be used remains a matter of debate and is elaborated upon in the 

next section.  

 

Specificities and sensitivities of manual HCV for prediction of progression to dementia at the MCI 

stage are on average 81% (CI 73-87) and 58% (CI 47-68) respectively (Frisoni et al., 2013). Specificities 

and sensitivities for automated measurements of HCV are on average 66% (CI 61-71) and 70% (CI 63-

76) respectively (Frisoni et al., 2013). Studies in samples with long follow-up (≥ 3 years) have 

reported similar specificities of 80-87% and sensitivities of 60-67% for manual volumetry (Devanand 

et al., 2007; Fritzsche et al., 2010) and 50% and 83% for automated HCV (Bakkour et al., 2009).  

 

Medial temporal lobe atrophy performs reasonably well in the prediction of cognitive decline from 

the MCI stage but is not specific for Alzheimer’s disease (Barnes et al., 2006; de Souza et al., 2013; 

Harper et al., 2014; van de Pol et al., 2006b; Tam et al., 2005). Other imaging markers such as parietal 

or frontal atrophy may be more useful in differentiating between Alzheimer’s disease and other 

underlying pathologies (Harper et al., 2016, 2015; Koedam et al., 2011; Lehmann et al., 2012; Vemuri 

et al., 2011).  

 

In MCI subjects who progress to Alzheimer-type dementia, vMTA rating is associated with time to 

dementia and can therefore also serve as a prognostic marker (van Rossum et al., 2012a). Similar 

results have been found for volumetric assessments of the hippocampus in MCI (Devanand et al., 

2007) and amyloid positive MCI (Jack et al., 2010b; van Rossum et al., 2012b).  

 

Much evidence has already been gathered on the ability of medial temporal lobe atrophy to predict 

progression to Alzheimer’s dementia. However, to fully complete this aim, sensitivities and 

specificities for progression will also need to be assessed in clinical MCI populations, with longer 
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follow-up. Therefore, we consider this aim Partly Achieved for both vMTA and HCV. Data to fully 

achieve this aim could be readily available from memory clinic samples with standardized use of MRI 

(van der Flier et al., 2014).  

 

3.3.2 Phase 3, Primary aim 2: define criteria for positive biomarker test  

The second primary aim of phase 3 is to define criteria for a positive biomarker test.  

Since there is a considerable influence of age on medial temporal lobe atrophy in both healthy 

subjects and patients with Alzheimer’s dementia, age-related cut-offs for vMTA have been proposed 

(Barkhof et al., 2007; Ferreira et al., 2015; Pereira et al., 2014; Scheltens et al., 1992). A recent large-

scaled study combining data from the ADNI and AddNeuroMed studies examined the effects of 

APOE-ɛ4 on vMTA and demonstrated that early-onset Alzheimer’s disease subjects without APOE-ɛ4 

have lower vMTA sores than APOE-ɛ4 carriers (Pereira et al., 2014). This has led to the proposition of 

age-related cut-offs, stratified by APOE genotype. Using this same dataset, Ferreira and colleagues 

found the highest performance of vMTA to distinguish Alzheimer’s dementia from healthy controls 

when using the following general age-adjusted cut-offs (average scores): 45-74: ≥ 1.5; 75-84: ≥2 and 

85-94: ≥2.5 (sensitivity 80%, specificity 77%). For early-onset (≤65 years) APOE-ɛ4 non-carriers a 

vMTA cut-off ≥2 had better performance (Ferreira et al., 2015). These cut-offs will need to be 

validated for use in prediction of progression from MCI in a prospective clinical setting. 

The proposed cut-offs were derived using average vMTA scores of left and right hemisphere. Other 

researchers have used the highest vMTA score on either side to define abnormality (Scheltens et al, 

1992; Geroldi et al., 2006). Pereira et al. (2014) have examined the performance of different vMTA 

cut-off scores for differentiating patients with Alzheimer’s dementia from healthy controls, including 

cut-offs based on average and highest scores. They found a better performance of age-adjusted 

average cut-off scores compared to age-adjusted highest cut-off scores, especially in the group of 

older patients. Another argument for using average scores is the relatively symmetrical distribution 
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of Alzheimer’s pathology, in contrast to some other neurodegenerative diseases (Chan et al., 2001; 

Boccardi et al., 2003).  

 

For volumetric analysis, several methods to define cut-offs have been used in research settings, 

depending on the intended use and need for either higher sensitivity or specificity (Bartlett et al., 

2012). One strategy that is frequently used involves taking the 95% percentile of a reference 

population, with the implication that everything below this is abnormal. Another commonly used 

method is the creation of covariate-corrected Z-scores, also called W-scores (Jack et al., 1997). W-

scores represent where a hippocampal volume would fall on the normal distribution of healthy 

controls, corrected for covariates. W-scores require the availability of a normative data set. 

Advantages of this method are the possibility to include covariates and the relative robustness of 

derived cut-offs against the use of different measurement algorithms or acquisition methods.  

 

A big challenge in defining universal cut-offs in automated volumetric analysis is the influence of 

image acquisition method (such as scanner type and acquisition protocol) on obtained results 

(Huppertz et al., 2010; Jovicich et al., 2009; Nugent et al., 2013; Wonderlick et al., 2009). Due to the 

large variability in HCV obtained from different automated methods (Guadalupe et al., 2014; Yu et 

al., 2014), universal absolute cut-off points cannot be defined. With the development of the HarP 

(Boccardi et al., 2015a), and of certified labels that may be used to train algorithms for automated 

segmentation (Boccardi et al., 2015b), results from automated volumetry may become more 

consistent between methods in the future.  

 

This sub-aim is considered Partly Achieved for vMTA and in the stage of Preliminary Evidence for HCV.  
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3.3.3 Phase 3, Secondary aim 1: impact of covariates on biomarker measurement in subjects with 

MCI 

Secondary aim 1 of phase 3 is to explore the impact of covariates on the discriminatory ability of the 

biomarker to predict progression from the MCI stage.  

Few studies have addressed this issue directly. Factors that may impact the ability of medial temporal 

lobe atrophy to predict Alzheimer’s disease at the MCI stage are age, clinical presentation, and APOE 

genotype. In very old subjects there is age-related hippocampal atrophy in healthy subjects as well as 

in Alzheimer’s dementia patients (van de Pol et al., 2006a), which could affect the discriminatory 

ability between normal and abnormal. In early-onset Alzheimer’s dementia, there is less prominent 

involvement of the medial temporal lobe, making this biomarker less suitable for young subjects 

(Frisoni et al., 2007; Möller et al., 2013). Different clinical subtypes of Alzheimer’s dementia are 

associated with specific brain atrophy patterns, which may already be visible in the MCI stage. 

Compared to amnestic MCI, subjects with non-amnestic MCI have relatively spared medial temporal 

lobes (Geroldi et al., 2006; Vos et al., 2013), which reduces the sensitivity of medial temporal lobe 

atrophy for prediction of progression to Alzheimer-type dementia in non-amnestic MCI. 

Using ADNI and AddNeuroMed data, it has been shown that APOE-ɛ4 carriership and early-onset 

disease before the age of 65 affect the performance of vMTA for prediction of clinical progression 

from the MCI stage (Pereira et al., 2014). Further replication of these findings in clinical cohorts and 

extension to volumetric methods are required.  

This secondary aim is considered Partly Achieved for vMTA and HCV.  

 

3.3.4 Phase 3, Secondary aims 2 & 3: comparison and combination of biomarkers 

Secondary aims 2 and 3 of phase 3 are to compare biomarkers and develop algorithms for positivity 

based on combinations of markers.  

Research criteria developed by the National Institute of Aging and the Alzheimer Association (NIA-

AA) have incorporated different stages of likelihood of developing Alzheimer’s dementia based on 
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the combination of amyloid markers (either CSF or PET) and injury markers, such as medial temporal 

atrophy (Sperling et al., 2011). Neuroimaging and CSF markers are currently widely accepted 

biomarkers for Alzheimer’s disease in research settings (Hampel et al., 2008). There is, however, not 

yet enough knowledge about their use in clinical practice. There is no consensus on which 

biomarkers, in what combination and in which order should be used in the work-up of clinical MCI 

patients. Various studies have examined the combination of multiple imaging markers for prediction 

of decline in patients with MCI, which have recently been summarized (Teipel et al., 2015). 

Compared to FDG-PET, measures of hippocampal atrophy seem to be less accurate at predicting 

conversion to Alzheimer’s dementia from MCI (Brück et al., 2013; Chen et al., 2011; Frisoni et al., 

2013; Shaffer et al., 2013; Yuan et al., 2009) but many studies found highest accuracies for a 

combination of biomarkers (Chen et al., 2011; Shaffer et al., 2013). Studies combining information 

from amyloid PET and structural MRI have also reported highest accuracies for combinations of both 

markers rather than a single biomarker (Jack et al., 2008b; Trzepacz et al., 2014). Multiple studies 

have also examined the combined use of CSF and MRI markers for the prediction of clinical 

progression in subjects with MCI. Some have found better prediction for CSF and others for MRI but 

nearly all of them show added benefit of a combination of both (Bouwman et al., 2007; Eckerström 

et al., 2010; Ewers et al., 2012; Galluzzi et al., 2010; Heister et al., 2011; Prestia et al., 2013; Vos et 

al., 2012). Only the study from Bouwman et al. assessed vMTA in a clinical cohort, the others 

assessed HCV in research settings. Differences in findings between the studies may largely be 

explained by use of highly selected samples, different definitions of MCI (or only inclusion of 

amnestic MCI) and variations in methods used for deriving the biomarker measures.  

Some studies have shown that high vMTA scores and decreased HCV may be better predictors of 

time to clinical progression than evidence of amyloid pathology (Jack et al., 2010b; van Rossum et al., 

2012a). Taken together, these studies suggest that different biomarkers provide complementary 

information and that combinations of biomarkers may be needed for accurate prediction of clinical 

progression to Alzheimer’s dementia at the MCI stage. Although recent efforts are focussing on 
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devising algorithms taking into account all available biomarker data to aid in the prediction of 

progression to Alzheimer’s disease in clinical settings (Rhodius-Meester et al., 2015), more research 

is still needed to determine which biomarkers should be used, in which order they should be 

assessed and what to do in the presence of conflicting results. 

 

These sub-aims can be considered Partly Achieved for vMTA and HCV. 

  

3.3.5 Phase 3, Secondary aim 4: biomarker testing interval 

Secondary aim 4 of phase 3 is to determine a biomarker testing interval.  

Progressive hippocampal atrophy is an important imaging finding in Alzheimer’s dementia. Compared 

to cognitively healthy subjects, hippocampal atrophy rates are 2-4 times greater in subjects with 

Alzheimer’s dementia (Barnes et al., 2009; Henneman et al., 2009; Jack et al., 2004; Morra et al., 

2008; Schott et al., 2005). For repeated testing to be useful for diagnosis or prognosis in clinical 

practice, a biomarker should be able to detect changes over short intervals. A visual rating scale is 

not sensitive enough to detect changes over short term follow-up evaluations in the order of one 

year (Ridha et al., 2007). Repeated testing may be valuable in the case hippocampal volumetry 

becomes available for routine clinical application. Hippocampal atrophy rates can be measured 

reliably over a period of one year and some studies have even show that volumetric atrophy rates 

can be measured over periods as short as 6 months (Barnes et al., 2008; Holland et al., 2012; Leung 

et al., 2010; Schuff et al., 2009). Several longitudinal studies have found that increased hippocampal 

atrophy rates are associated with rapid progression to Alzheimer’s dementia in MCI (Leung et al., 

2013; Macdonald et al., 2013; Sluimer et al., 2009; Wang et al., 2009) and may perform better in 

prediction of cognitive decline than baseline hippocampal volumes alone (Henneman et al., 2009; 

McEvoy et al., 2011).  
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This sub-aim is not applicable for vMTA. For HCV this sub-aim can be considered at the stage of 

Preliminary Evidence.  

 
3.4 Phase 4 – Prospective diagnostic studies 

The primary aim of phase 4 is to determine the operating characteristics of the biomarker in a clinical 

setting.  

Most studies that have examined the use of medial temporal atrophy as a predictor for clinical 

progression in subjects with MCI have used highly selected populations in terms of MCI subtypes, 

scan quality and comorbidities and are therefore not generalizable to a memory clinic sample. In 

order to assess the value of medial temporal atrophy as a biomarker for early diagnosis in MCI, it is 

important to also examine clinical populations using methods that are feasible for broad 

implementation. In phase 4 studies, use of the biomarker leads to early diagnosis and the effects on 

patient management and outcome are assessed. We are not aware of any prospective clinical studies 

examining the systematic use of medial temporal atrophy for the prediction of Alzheimer’s disease at 

the MCI stage.  

 

3.4.1 Phase 4, Secondary aim 1: characteristics of disease detected by biomarker in early stage 

Secondary aim 1 of phase 4 assesses the characteristics of the disease identified in an early stage by 

the biomarker in a clinical setting, specifically with regard to potential benefit for the patient incurred 

by early detection.  

This aim is Not Achieved for vMTA and HCV.  

 

 

3.4.2 Phase 4, Secondary aim 2: feasibility of biomarker measurement 

The secondary aim of phase 4 assesses the practical feasibility of implementing the biomarker 

measurement in a clinical setting and the compliance of test-positive subjects with work-up and 

treatment recommendations. 
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Although not formally assessed, a visual rating of MTA should be feasible in clinical setting. Most 

memory clinics already use imaging in the work-up of memory disorders to exclude other (treatable) 

pathologies such as tumors, vascular damage as well as give direction to underlying 

neurodegenerative pathology such as frontotemporal dementia or progressive supranuclear palsy. 

Tertiary memory clinics or centers associated with a research facility often use standardized MRI 

protocols and may also adopt structured radiology reporting, including a visual rating of MTA (Boutet 

et al., 2012; van der Flier et al., 2014). The application of manual or automated volumetry is still 

distant from implementation in daily clinical practice. To be widely implemented in clinical setting, 

volumetric analysis should be sufficiently standardized, fully automated and easy to use. 

This aim can be considered at the stage of Preliminary Evidence for vMTA and Not Achieved for HCV.  

 

3.4.3 Phase 4, Secondary aim 3: impact on costs and mortality 

The aim is to evaluate the effects of biomarker testing on costs and mortality associated with 

Alzheimer’s disease.  

This aim is Not Achieved for vMTA and HCV.  

 

3.4.4. Phase 4, Secondary aim 4: monitor undetected cases  

This aims includes monitoring disease occurring clinically but not detected by the biomarker testing. 

In order words, this subaim assesses how many subjects with MCI show clinical progression in the 

absence of medial temporal lobe atrophy at baseline and the clinical trajectories of these subjects.  

This aim is Not Achieved for vMTA and HCV.  

 
 
3.5 Phase 5 – Disease control studies 

This final phase addresses whether using biomarkers for early diagnosis reduces the burden of 

Alzheimer’s disease in the general population. There are currently no studies assessing changes in 
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mortality and morbidity, impact on economic costs or overdiagnosis associated with use of medial 

temporal lobe atrophy as diagnostic biomarker for Alzheimer’s disease at the MCI stage.  

This entire phase is considered Not Achieved for vMTA and HCV.  
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4. Conclusions and future perspectives 

In this paper we reviewed the evidence for medial temporal lobe atrophy as a biomarker for 

prediction of Alzheimer’s disease at the MCI stage. We performed this review in the context of a 

wider effort, aiming to accelerate the use of Alzheimer’s disease biomarkers at the predementia 

stage, where differentiating Alzheimer’s disease from normal aging and other causes of cognitive 

impairment is of huge clinical and societal relevance. The effort has borrowed a biomarker validation 

framework developed for oncology biomarkers (Pepe et al., 2001) and ultimately taking inspiration 

from the traditional 4-phase drug development framework. Our working group has adapted the 

oncology framework to the predementia context, highlighting those issues sufficiently investigated 

and those in need of more research. This will allow funders of biomedical research to prioritize 

research topics towards the achievement of the ultimate aim of appropriate, effective and efficient 

use of Alzheimer’s disease biomarkers in the clinic.   

 

In this review, we examined the available evidence for use of medial temporal lobe atrophy for 

prediction of Alzheimer’s disease at the MCI stage in the light of this framework. The first phase has 

been achieved. There is ample evidence to support medial temporal lobe atrophy as a characteristic 

feature of Alzheimer’s disease (phase 1). The second phase, focusing on the ability of the biomarkers 

to distinguish subjects with Alzheimer’s disease from healthy controls has also been achieved for a 

visual rating of MTA. For HCV, phase 2 has not yet been fully completed, with insufficient progress on 

the optimization and standardization of measurement algorithms.  

 

There are still some steps to be taken in the third phase. The current evidence does not support the 

use of vMTA rating or HCV in isolation for the prediction of Alzheimer type dementia at the MCI 

stage. Accuracy for the prediction of progression to Alzheimer’s dementia from the MCI stage has not 

reached clinically acceptable levels with, on average, sensitivities and specificities below 80% (Frisoni 

et al., 2013). It should be noted that most studies have been performed on research samples with 
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short follow-up. Prospective studies on clinical MCI populations with sufficiently long follow-up are 

lacking in the literature. Studies with short follow-up, in the order of 1-2 years, may underestimate 

the predictive ability of the biomarker for clinical progression. The predictive ability of medial 

temporal lobe atrophy is dependent on age, clinical presentation and APOE-ɛ4 genotype (Ferreira et 

al., 2015; Pereira et al., 2014; Vos et al., 2013). However, clear guidelines on cut-offs for clinical 

(sub)populations have not yet been established.  

 

Given the insufficient accuracy of medial temporal lobe atrophy alone for the prediction of 

Alzheimer’s disease at the MCI stage in a clinical setting, phase 4 and phase 5 studies should not be 

undertaken on this single biomarker but rather focus on assessing the impact of combinations of 

biomarkers (Fox et al., 2013; Frisoni et al., 2013). Multiple studies have supported evidence for a 

model in which abnormal amyloid markers are present in early disease; whereas neuronal injury 

markers, such as medial temporal atrophy, may be more useful in predicting advancing pathology 

and thereby serve as a prognostic marker, rather than diagnostic marker (Jack et al., 2010a, 2010b, 

2011c; van Rossum et al., 2012b). Large size clinic-based studies assessing which combinations of 

biomarkers should be used, and in which order and what to do in the case of conflicting biomarker 

results are needed. Related to its potential role as a prognostic marker, HCV may also be valuable as 

a monitor of disease progression and could be used as a biomarker outcome measure in clinical trials 

(Drago et al., 2011; Fox and Freeborough, 1997). For the latter, algorithms will need to have very low 

measurement errors (below 1.5%) to detect effects over a one year follow-up period, as yearly 

hippocampal atrophy rates are in the order of 2.9-5.6% per year for Alzheimer’s disease and 0.3-2.2 

in healthy aging (Frisoni et al., 2010), resulting in an average difference of 3% atrophy per year 

between the groups.  

 

Clinical implementation of a vMTA rating should be achievable, since this is a quick and accessible 

tool, which can be easily learned with adequate training. As structural imaging is already integrated 
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in the work-up of patients with dementia in many clinics, it should be practically feasible to 

implement neuroimaging at the MCI stage as well. Unfortunately, a routine visual assessment of MTA 

is not yet widely adopted, especially in non-specialized clinics (Gardeniers et al., 2015). Adequate 

training may have a significant impact on the performance and application of visual rating scales in 

clinical practice. There might be a role for scientific societies to improve knowledge and know-how 

on visual ratings through the development of guidelines with reference images and training 

programs. Hippocampal volumetry using sophisticated analysis methods, rather than a visual read, 

may ultimately be a more powerful predictor of progression from MCI, but little progress has been 

made towards the integration of these in clinical work streams (Clerx et al., 2013). The EMA has 

approved measurements of HCV for use in clinical trials and similar efforts are being undertaken to 

get approval from the FDA (Hill et al., 2014; Wolz et al., 2014). To be widely adopted in clinical 

setting, volumetric analysis should be fully automated and easy to use, for example through 

implementation on the scanner console.  

 

In this paper, we have discussed the assessment of medial temporal lobe atrophy on MRI. Although 

MRI is the preferred imaging modality in the work-up of dementia, some patients are unable to 

undergo MRI for various reasons (e.g. claustrophobia, pacemaker, unavailability) or MRI is not 

included in national guidelines on dementia care (Falahati et al., 2015). In such cases a high 

resolution CT-scan with multiplanar reconstruction may also be used for the visual assessment of 

MTA, as has been validated by one study (Wattjes et al., 2009). Future research may focus on further 

validating the use of vMTA on CT. Due to the lower contrast resolution, CT has only sporadically been 

used for volumetric measurements (Aguilar et al., 2015).  

 

This review has several limitations. We reviewed the performance of medial temporal lobe atrophy in 

MCI patients, however, the definition of MCI is not homogeneous across different studies. This issue 

is addressed by Cerami et al., in this issue. A further limitation of this study is that, notwithstanding 



29 
 

our efforts to be as inclusive as possible, the literature search was not conducted as a formal 

systematic review. A number of PubMed research strings were proposed centrally for the whole 

project; however, the literature databases and some selection criteria for included papers were 

chosen by the authors of each review, who additionally added papers from personal knowledge or 

other papers reference lists. Second, the original Pepe and colleague’s framework was developed to 

screen cancer in asymptomatic populations and has been further adapted to the early diagnosis of 

Alzheimer’s disease in symptomatic memory clinic patients. Future developments of the field of 

Alzheimer’s disease and in drug development may require and allow to extend this framework to 

asymptomatic preclinical patients. Therefore, the nature of this whole effort is liable to change in the 

near future, but still necessary to proceed in a fruitful way to improve clinical practice in the 

Alzheimer’s field. 

 

5. Acknowledgements 
 
The Geneva Task Force for the Roadmap of Alzheimer’s Biomarkers includes the participants to a 

workshop held in Geneva on December 8-9, 2014. The P.I. of the Geneva Roadmap effort is Giovanni 

B Frisoni, with Bengt Winblad and Clifford R Jack Jr as co-PIs. The task force includes experts in 

biomarker development from the oncology community; experts on diagnostic Alzheimer’s disease 

biomarkers from Switzerland and Europe; representatives of pertinent scientific societies (Federation 

of European Societies of Neuropsychology - FENS, European Society of Neuroradiology - ESNR, 

International Foundation of Clinical Chemistry and Laboratory Medicine - IFCCLM, European 

Association of Nuclear Medicine - EANM, and Swiss Federation of Clinical Neuro Societies - SFCNS); 

representatives of patient advocates, bioethicists and regulatory agencies, and early career 

researchers. The Geneva Task Force has been endorsed by the EADC – European Alzheimer’s Disease 

Consortium. 

The workshop was funded thanks to a competitive grant by the Swiss National Science Foundation 

and unrestricted grants from: Alzheimer Forum Switzerland, Association pour la Recherche sur 

Alzheimer, Genève; Piramal, Eli Lilly & Company, General Electric, Guerbet, TEVA Pharma; Academie 

Suisse de Sciences Médicales, Vifor Pharma Switzerland., Novartis, Siemens, and IXICO. The 

Alzheimer's Association hosted the first follow-up meeting of the initiative at the 2015 AAIC congress 

in Washington. We acknowledge the help from Margherita Mauri and Daria Gennaro (IRCCS 



30 
 

Fatebenefratelli, Brescia, Italy) and Agnese Picco (Università di Genova, Genova, Italy) who took care 

of the logistics of the workshop. 

The following scientific societies took part to the Geneva Workshop for the Roadmap of Alzheimer’s 

Biomarkers on December 8-9 2014. Flavio Nobili was delegate from the European Association of 

Nuclear Medicine (EANM) Neuroimaging Committee. Kaj Blennow was delegate and Chair of the 

International Federation of Clinical Chemistry and Laboratory Medicine Working Group for CSF 

proteins (IFCC WG-CSF). Frederik Barkhof was delegate from the European Society of Neuroradiology 

(ESNR). Stefano Cappa was delegate and Chair of the Federation of European Societies of 

Neuropsychology (FENS). Urs Mosimann was delegate from the Swiss Federation of Clinical Neuro 

Societies (SFCNS). The content of this paper represents the opinion of the individual authors and is 

not necessarily endorsed by the scientific societies which took part to the Geneva Workshop for the 

Roadmap of Alzheimer’s Biomarkers, except the ESNR which formally endorsed it on September 5th 

2015.  

First author has received support from the EU/EFPIA Innovative Medicines Initiative Joint 

Undertaking (EMIF grant: 115372). The VUmc Alzheimer center is supported by Alzheimer Nederland 

and Stichting VUmc fonds. 

Disclosure statement 
Drs ten Kate and drs Lovblad have nothing to disclose. Dr Barkhof has received consulting fees or 
honoraria from Novartis, Roche, Serono, Bayer-Schering, Biogen-IDEC, Genzyme, TEVA and Jansen 
Alzheimer Immunotherapy. Dr Visser reports grants from EU/EFPIA Innovative Medicines Initiative 
Joint Undertaking, grants from EU Joint Programme – Neurodegenerative Disease Research (JPND) 
and ZonMw, during the conduct of the study; other from Roche Diagnostics, grants from Bristol-
Myers Squibb, non-financial support from GE Healthcare, outside the submitted work. Dr Frisoni has 
served in advisory boards for Roche, Lilly, BMS, Bayer, Lundbeck, Elan, Astra Zeneca, Pfizer, Taurx, 
Wyeth, GE, Baxter. He received research grants from Wyeth Int.l, Lilly Int.l, Lundbeck Italia, GE Int.l, 
Avid/Lilly, Roche, Piramal, and the Alzheimer’s Association. In the last two years he received speaker 
honoraria from Lundbeck, Piramal, GE, Avid/Lilly. Dr Boccardi received a research grant from Piramal. 
Dr Scheltens has received grant support (for the institution) from GE Healthcare, Danone Research, 
Piramal and MERCK. In the past 2 years he has received consultancy/speaker fees (paid to the 
institution) from Lilly, GE Healthcare, Novartis, Forum, Sanofi, Nutricia, Probiodrug and EIP 
Pharma. He is co-editor-in-chief of Alz Res & Ther. Dr Jack has provided consulting services for Eli Lily 
and owns stock in Johnson and Johnson. He receives research funding from the National Institutes of 
Health (R01-AG011378, RO1 AG041851, U01-AG06786, U01-AG024904, R01 AG37551, 
R01AG043392), and the Alexander Family Alzheimer's Disease Research Professorship of the Mayo 
Foundation 
 

References 
Aguilar, C., Edholm, K., Simmons, A., Cavallin, L., Muller, S., Skoog, I., Larsson, E.-M., Axelsson, R., 

Wahlund, L.-O., Westman, E., 2015. Automated CT-based segmentation and quantification of 
total intracranial volume. Eur Radiol 25, 3151–3160. doi:10.1007/s00330-015-3747-7 



31 
 

Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., Gamst, A., Holtzman, 
D.M., Jagust, W.J., Petersen, R.C., Snyder, P.J., Carrillo, M.C., Thies, B., Phelps, C.H., 2011. The 
diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from 
the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines 
for Alzheimer’s disease. Alzheimer’s & Dementia 7, 270–279. doi:10.1016/j.jalz.2011.03.008 

Apostolova, L.G., Zarow, C., Biado, K., Hurtz, S., Boccardi, M., Somme, J., Honarpisheh, H., Blanken, 
A.E., Brook, J., Tung, S., Kraft, E., Lo, D., Ng, D., Alger, J.R., Vinters, H.V., Bocchetta, M., 
Duvernoy, H., Jack Jr., C.R., Frisoni, G.B., Bartzokis, G., Csernansky, J.G., de Leon, M.J., 
deToledo-Morrell, L., Killiany, R.J., Lehericy, S., Malykhin, N., Pantel, J., Pruessner, J.C., 
Soininen, H., Watson, C., 2015. Relationship between hippocampal atrophy and 
neuropathology markers: A 7T MRI validation study of the EADC-ADNI 
Harmonized Hippocampal Segmentation Protocol. Alzheimer’s & Dementia 11, 139–150. 
doi:10.1016/j.jalz.2015.01.001 

Bakkour, A., Morris, J.C., Dickerson, B.C., 2009. The cortical signature of prodromal AD: regional 
thinning predicts mild AD dementia. Neurology 72, 1048–1055. 
doi:10.1212/01.wnl.0000340981.97664.2f 

Barkhof, F., Polvikoski, T.M., Straaten, E.C.W. van, Kalaria, R.N., Sulkava, R., Aronen, H.J., Niinistö, L., 
Rastas, S., Oinas, M., Scheltens, P., Erkinjuntti, T., 2007. The significance of medial temporal 
lobe atrophy A postmortem MRI study in the very old. Neurology 69, 1521–1527. 
doi:10.1212/01.wnl.0000277459.83543.99 

Barnes J, Whitwell JL, Frost C, Josephs KA, Rossor M, Fox NC, 2006. Measurements of the amygdala 
and hippocampus in pathologically confirmed alzheimer disease and frontotemporal lobar 
degeneration. Arch Neurol 63, 1434–1439. doi:10.1001/archneur.63.10.1434 

Barnes, J., Bartlett, J.W., van de Pol, L.A., Loy, C.T., Scahill, R.I., Frost, C., Thompson, P., Fox, N.C., 
2009. A meta-analysis of hippocampal atrophy rates in Alzheimer’s disease. Neurobiology of 
Aging 30, 1711–1723. doi:10.1016/j.neurobiolaging.2008.01.010 

Barnes, J., Scahill, R.I., Frost, C., Schott, J.M., Rossor, M.N., Fox, N.C., 2008. Increased hippocampal 
atrophy rates in AD over 6 months using serial MR imaging. Neurobiology of Aging 29, 1199–
1203. doi:10.1016/j.neurobiolaging.2007.02.011 

Bartlett, J.W., Frost, C., Mattsson, N., Skillbäck, T., Blennow, K., Zetterberg, H., Schott, J.M., 2012. 
Determining cut-points for Alzheimer’s disease biomarkers: statistical issues, methods and 
challenges. Biomarkers Med. 6, 391–400. doi:10.2217/bmm.12.49 

Bastos-Leite, A.J., van der Flier, W.M., van Straaten, E.C.W., Staekenborg, S.S., Scheltens, P., Barkhof, 
F., 2007. The Contribution of Medial Temporal Lobe Atrophy and Vascular Pathology to 
Cognitive Impairment in Vascular Dementia. Stroke 38, 3182–3185. 
doi:10.1161/STROKEAHA.107.490102 

Bennett, D.A., Wilson, R.S., Schneider, J.A., Evans, D.A., Beckett, L.A., Aggarwal, N.T., Barnes, L.L., Fox, 
J.H., Bach, J., 2002. Natural history of mild cognitive impairment in older persons. Neurology 
59, 198–205. doi:10.1212/WNL.59.2.198 

Bigler, E.D., Lowry, C.M., Anderson, C.V., Johnson, S.C., Terry, J., Steed, M., 2000. Dementia, 
Quantitative Neuroimaging, and Apolipoprotein E Genotype. Am J Neuroradiol 21, 1857–
1868. 

Bobinski, M., de Leon, M.J., Wegiel, J., DeSanti, S., Convit, A., Saint Louis, L.A., Rusinek, H., 
Wisniewski, H.M., 1999. The histological validation of post mortem magnetic resonance 
imaging-determined hippocampal volume in Alzheimer’s disease. Neuroscience 95, 721–725. 
doi:10.1016/S0306-4522(99)00476-5 

Boccardi, M., Bocchetta, M., Apostolova, L.G., Barnes, J., Bartzokis, G., Corbetta, G., DeCarli, C., 
deToledo-Morrell, L., Firbank, M., Ganzola, R., Gerritsen, L., Henneman, W., Killiany, R.J., 
Malykhin, N., Pasqualetti, P., Pruessner, J.C., Redolfi, A., Robitaille, N., Soininen, H., Tolomeo, 
D., Wang, L., Watson, C., Wolf, H., Duvernoy, H., Duchesne, S., Jack, C.R., Frisoni, G.B., 2015a. 
Delphi definition of the EADC-ADNI Harmonized Protocol for hippocampal segmentation on 
magnetic resonance. Alzheimer’s & Dementia 11, 126–138. doi:10.1016/j.jalz.2014.02.009 



32 
 

Boccardi, M., Bocchetta, M., Morency, F.C., Collins, D.L., Nishikawa, M., Ganzola, R., Grothe, M.J., 
Wolf, D., Redolfi, A., Pievani, M., Antelmi, L., Fellgiebel, A., Matsuda, H., Teipel, S., Duchesne, 
S., Jack, C.R., Frisoni, G.B., EADC-ADNI Working Group on The Harmonized Protocol for 
Manual Hippocampal Segmentation and for the Alzheimer’s Disease Neuroimaging Initiative, 
2015b. Training labels for hippocampal segmentation based on the EADC-ADNI harmonized 
hippocampal protocol. Alzheimer’s & Dementia 11, 175–183. doi:10.1016/j.jalz.2014.12.002 

Boccardi, M., Gallo, V., Yutaka, Y., Vineis, P., Padovani, A., Mosimann, U., Giannakopoulos, P., Gold, 
G., Dubois, B., Jack, C.R., Winblad, B., Frisoni, G.B., Albanese, E., and the Geneva Task Force 
for the Roadmap of Alzheimer’s Biomarkers, 2016. The biomarker-based diagnosis of 
Alzheimer’s disease. 2 – Lessons from oncology. Neurobiology of Aging (in preparation for 
this issue) 

Boccardi, M., Laakso, M.P., Bresciani, L., Galluzzi, S., Geroldi, C., Beltramello, A., Soininen, H., Frisoni, 
G.B., 2003. The MRI pattern of frontal and temporal brain atrophy in fronto-temporal 
dementia. Neurobiology of Aging 24, 95-103. doi:10.1016/S0197-4580(02)00045-3 

Boccardi, M., Sabattoli, F., Testa, C., Beltramello, A., Soininen, H., Frisoni, G.B., 2004. APOE and 
modulation of Alzheimer’s and frontotemporal dementia. Neuroscience Letters 356, 167–
170. doi:10.1016/j.neulet.2003.11.042 

Boutet, C., Chupin, M., Colliot, O., Sarazin, M., Mutlu, G., Drier, A., Pellot, A., Dormont, D., Lehéricy, 
S., Initiative, A. the A.D.N., 2012. Is radiological evaluation as good as computer-based 
volumetry to assess hippocampal atrophy in Alzheimer’s disease? Neuroradiology 54, 1321–
1330. doi:10.1007/s00234-012-1058-0 

Bouwman, F.H., Schoonenboom, S.N.M., van der Flier, W.M., van Elk, E.J., Kok, A., Barkhof, F., 
Blankenstein, M.A., Scheltens, P., 2007. CSF biomarkers and medial temporal lobe atrophy 
predict dementia in mild cognitive impairment. Neurobiology of Aging 28, 1070–1074. 
doi:10.1016/j.neurobiolaging.2006.05.006 

Braak, H., Braak, E., 1996. Evolution of the neuropathology of Alzheimer’s disease. Acta Neurologica 
Scandinavica 94, 3–12. doi:10.1111/j.1600-0404.1996.tb05866.x 

Braak, H., Braak, E., 1991. Neuropathological stageing of Alzheimer-related changes. Acta 
Neuropathol 82, 239–259. doi:10.1007/BF00308809 

Bresciani, L., Rossi, R., Testa, C., Geroldi, C., Galluzzi, S., Laakso, M.P., Beltramello, A., Soininen, H., 
Frisoni, G.B., 2005. Visual assessment of medial temporal atrophy on MR films in Alzheimer’s 
disease: comparison with volumetry. Aging Clin Exp Res 17, 8–13. doi:10.1007/BF03337714 

Brown, E.S., Hughes, C.W., McColl, R., Peshock, R., King, K.S., Rush, A.J., 2014. Association of 
depressive symptoms with hippocampal volume in 1936 adults. Neuropsychopharmacology 
39, 770–779. doi:10.1038/npp.2013.271 

Brück, A., Virta, J.R., Koivunen, J., Koikkalainen, J., Scheinin, N.M., Helenius, H., Någren, K., Helin, S., 
Parkkola, R., Viitanen, M., Rinne, J.O., 2013. [11C]PIB, [18F]FDG and MR imaging in patients 
with mild cognitive impairment. Eur J Nucl Med Mol Imaging 40, 1567–1572. 
doi:10.1007/s00259-013-2478-8 

Burton, E.J., Barber, R., Mukaetova-Ladinska, E.B., Robson, J., Perry, R.H., Jaros, E., Kalaria, R.N., 
O’Brien, J.T., 2009. Medial temporal lobe atrophy on MRI differentiates Alzheimer’s disease 
from dementia with Lewy bodies and vascular cognitive impairment: a prospective study 
with pathological verification of diagnosis. Brain 132, 195–203. doi:10.1093/brain/awn298 

Cavallin, L., Bronge, L., Zhang, Y., Øksengård, A.-R., Wahlund, L.-O., Fratiglioni, L., Axelsson, R., 2012a. 
Comparison between visual assessment of MTA and hippocampal volumes in an elderly, non-
demented population. Acta Radiol 53, 573–579. doi:10.1258/ar.2012.110664 

Cavallin, L., Løken, K., Engedal, K., Øksengård, A.-R., Wahlund, L.-O., Bronge, L., Axelsson, R., 2012b. 
Overtime reliability of medial temporal lobe atrophy rating in a clinical setting. Acta Radiol 
53, 318–323. doi:10.1258/ar.2012.110552 

Cavedo, E., Pievani, M., Boccardi, M., Galluzzi, S., Bocchetta, M., Bonetti, M., Thompson, P.M., 
Frisoni, G.B., 2014. Medial temporal atrophy in early and late-onset Alzheimer’s disease. 
Neurobiology of Aging 35, 2004–2012. doi:10.1016/j.neurobiolaging.2014.03.009 



33 
 

Cerami C., Dubois B., Boccardi M.,  Monsch A.U., Demonet J.F., Cappa S.F., and the Geneva Task 
Force for the Roadmap of Alzheimer’s Biomarkers, 2016. Clinical validity of free and cued 
wordlist recall as a gateway-biomarker for Alzheimer’s disease in the context of a structured 
5-phase development framework. Neurobiology of Aging (Submitted, November 23, 2015; 
NBA 15-927) 

Chan, D., Fox, N.C., Scahill, R.I., Crum, W.R., Whitwell, J.L., Leschziner, G., Rossor, A.M., Stevens, J.M., 
Cipolotti, L., Rossor, M.N., 2001. Patterns of temporal lobe atrophy in semantic dementia and 
Alzheimer’s disease. Annals of Neurology 49, 433-442. doi:10.1002/ana.92  

Chen, K., Ayutyanont, N., Langbaum, J.B.S., Fleisher, A.S., Reschke, C., Lee, W., Liu, X., Bandy, D., 
Alexander, G.E., Thompson, P.M., Shaw, L., Trojanowski, J.Q., Jack Jr., C.R., Landau, S.M., 
Foster, N.L., Harvey, D.J., Weiner, M.W., Koeppe, R.A., Jagust, W.J., Reiman, E.M., 2011. 
Characterizing Alzheimer’s disease using a hypometabolic convergence index. NeuroImage 
56, 52–60. doi:10.1016/j.neuroimage.2011.01.049 

Cherbuin, N., Anstey, K.J., Sachdev, P.S., Maller, J.J., Meslin, C., Mack, H.A., Wen, W., Easteal, S., 
2008. Total and Regional Gray Matter Volume Is Not Related to APOE*E4 Status in a 
Community Sample of Middle-Aged Individuals. J Gerontol A Biol Sci Med Sci 63, 501–504. 

Chiotis K., Saint-Aubert L., Boccardi M., Gietl A., Picco A., Varrone A., Garibotto V., Herholz K., Nobili 
F., Nordberg A., and the Geneva Task Force for the Roadmap of Alzheimer’s Biomarkers, 
2016. Clinical validity of increased cortical uptake of amyloid ligands on PET as a biomarker 
for Alzheimer's disease in the context of a structured 5-phase development framework. 
Neurobiology of Aging (Submitted, November 19, 2015; NBA 15-915) 

Clerx, L., van Rossum, I.A., Burns, L., Knol, D.L., Scheltens, P., Verhey, F., Aalten, P., Lapuerta, P., van 
de Pol, L., van Schijndel, R., de Jong, R., Barkhof, F., Wolz, R., Rueckert, D., Bocchetta, M., 
Tsolaki, M., Nobili, F., Wahlund, L.-O., Minthon, L., Frölich, L., Hampel, H., Soininen, H., 
Visser, P.J., 2013. Measurements of medial temporal lobe atrophy for prediction of 
Alzheimer’s disease in subjects with mild cognitive impairment. Neurobiology of Aging 34, 
2003–2013. doi:10.1016/j.neurobiolaging.2013.02.002 

Csernansky, J.G., Hamstra, J., Wang, L., McKeel, D., Price, J.L., Gado, M., Morris, J.C., 2004. 
Correlations between antemortem hippocampal volume and postmortem neuropathology in 
AD subjects. Alzheimer Dis Assoc Disord 18, 190–195. 

De Souza, L.C., Chupin, M., Bertoux, M., Lehéricy, S., Dubois, B., Lamari, F., Le Ber, I., Bottlaender, M., 
Colliot, O., Sarazin, M., 2013. Is hippocampal volume a good marker to differentiate 
Alzheimer’s disease from frontotemporal dementia? J Alzheimers Dis 36, 57–66. 
doi:10.3233/JAD-122293 

DeCarli, C., Frisoni, G.B., Clark, C.M., Harvey, D., Grundman, M., Petersen, R.C., Thal, L.J., Jin, S., Jack, 
C.R., Scheltens, P., Alzheimer’s Disease Cooperative Study Group, 2007. Qualitative estimates 
of medial temporal atrophy as a predictor of progression from mild cognitive impairment to 
dementia. Arch Neurol 64, 108–115. doi:10.1001/archneur.64.1.108 

Delacourte, A., David, J.P., Sergeant, N., Buée, L., Wattez, A., Vermersch, P., Ghozali, F., Fallet-Bianco, 
C., Pasquier, F., Lebert, F., Petit, H., Menza, C.D., 1999. The biochemical pathway of 
neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 52, 1158–1158. 
doi:10.1212/WNL.52.6.1158 

Den Heijer, T., van der Lijn, F., Ikram, A., Koudstaal, P.J., van der Lugt, A., Krestin, G.P., Vrooman, H.A., 
Hofman, A., Niessen, W.J., Breteler, M.M.B., 2012. Vascular risk factors, apolipoprotein E, 
and hippocampal decline on magnetic resonance imaging over a 10-year follow-up. 
Alzheimer’s & Dementia 8, 417–425. doi:10.1016/j.jalz.2011.07.005 

Devanand, D.P., Pradhaban, G., Liu, X., Khandji, A., Santi, S.D., Segal, S., Rusinek, H., Pelton, G.H., 
Honig, L.S., Mayeux, R., Stern, Y., Tabert, M.H., Leon, M.J. de, 2007. Hippocampal and 
entorhinal atrophy in mild cognitive impairment Prediction of Alzheimer disease. Neurology 
68, 828–836. doi:10.1212/01.wnl.0000256697.20968.d7 

Drago, V., Babiloni, C., Bartrés-Faz, D., Caroli, A., Bosch, B., Hensch, T., Didic, M., Klafki, H.-W., 
Pievani, M., Jovicich, J., Venturi, L., Spitzer, P., Vecchio, F., Schoenknecht, P., Wiltfang, J., 



34 
 

Redolfi, A., Forloni, G., Blin, O., Irving, E., Davis, C., Hårdemark, H., Frisoni, G.B., 2011. Disease 
tracking markers for Alzheimer’s disease at the prodromal (MCI) stage. J Alzheimers Dis 26 
Suppl 3, 159–199. doi:10.3233/JAD-2011-0043 

Dubois, B., Feldman, H.H., Jacova, C., Cummings, J.L., DeKosky, S.T., Barberger-Gateau, P., 
Delacourte, A., Frisoni, G., Fox, N.C., Galasko, D., Gauthier, S., Hampel, H., Jicha, G.A., 
Meguro, K., O’Brien, J., Pasquier, F., Robert, P., Rossor, M., Salloway, S., Sarazin, M., de 
Souza, L.C., Stern, Y., Visser, P.J., Scheltens, P., 2010. Revising the definition of Alzheimer’s 
disease: a new lexicon. The Lancet Neurology 9, 1118–1127. doi:10.1016/S1474-
4422(10)70223-4 

Dubois, B., Feldman, H.H., Jacova, C., DeKosky, S.T., Barberger-Gateau, P., Cummings, J., Delacourte, 
A., Galasko, D., Gauthier, S., Jicha, G., Meguro, K., O’Brien, J., Pasquier, F., Robert, P., Rossor, 
M., Salloway, S., Stern, Y., Visser, P.J., Scheltens, P., 2007. Research criteria for the diagnosis 
of Alzheimer’s disease: revising the NINCDS–ADRDA criteria. The Lancet Neurology 6, 734–
746. doi:10.1016/S1474-4422(07)70178-3 

Dubois, B., Feldman, H.H., Jacova, C., Hampel, H., Molinuevo, J.L., Blennow, K., DeKosky, S.T., 
Gauthier, S., Selkoe, D., Bateman, R., Cappa, S., Crutch, S., Engelborghs, S., Frisoni, G.B., Fox, 
N.C., Galasko, D., Habert, M.-O., Jicha, G.A., Nordberg, A., Pasquier, F., Rabinovici, G., Robert, 
P., Rowe, C., Salloway, S., Sarazin, M., Epelbaum, S., de Souza, L.C., Vellas, B., Visser, P.J., 
Schneider, L., Stern, Y., Scheltens, P., Cummings, J.L., 2014. Advancing research diagnostic 
criteria for Alzheimer’s disease: the IWG-2 criteria. The Lancet Neurology 13, 614–629. 
doi:10.1016/S1474-4422(14)70090-0 

Duyckaerts, C., Delatour, B., Potier, M.-C., 2009. Classification and basic pathology of Alzheimer 
disease. Acta Neuropathol 118, 5–36. doi:10.1007/s00401-009-0532-1 

Eckerström, C., Andreasson, U., Olsson, E., Rolstad, S., Blennow, K., Zetterberg, H., Malmgren, H., 
Edman, A., Wallin, A., 2010. Combination of hippocampal volume and cerebrospinal fluid 
biomarkers improves predictive value in mild cognitive impairment. Dement Geriatr Cogn 
Disord 29, 294–300. doi:10.1159/000289814 

Ewers, M., Walsh, C., Trojanowski, J.Q., Shaw, L.M., Petersen, R.C., Jack Jr., C.R., Feldman, H.H., 
Bokde, A.L.W., Alexander, G.E., Scheltens, P., Vellas, B., Dubois, B., Weiner, M., Hampel, H., 
2012. Prediction of conversion from mild cognitive impairment to Alzheimer’s disease 
dementia based upon biomarkers and neuropsychological test performance. Neurobiology of 
Aging 33, 1203–1214.e2. doi:10.1016/j.neurobiolaging.2010.10.019 

Falahati, F., Fereshtehnejad, S.-M., Religa, D., Wahlund, L.-O., Westman, E., Eriksdotter, M., 2015. 
The Use of MRI, CT and Lumbar Puncture in Dementia Diagnostics: Data from the SveDem 
Registry. Dementia and Geriatric Cognitive Disorders 39, 81–91. doi:10.1159/000366194 

Ferreira, D., Cavallin, L., Larsson, E.-M., Muehlboeck, J.-S., Mecocci, P., Vellas, B., Tsolaki, M., 
Kłoszewska, I., Soininen, H., Lovestone, S., Simmons, A., Wahlund, L.-O., Westman, E., the 
AddNeuroMed consortium and the Alzheimer’s Disease Neuroimaging Initiative, 2015. 
Practical cut-offs for visual rating scales of medial temporal, frontal and posterior atrophy in 
Alzheimer’s disease and mild cognitive impairment. J Intern Med 278, 277–290. 
doi:10.1111/joim.12358 

Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., 
Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, A.M., 2002. Whole Brain 
Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain. 
Neuron 33, 341–355. doi:10.1016/S0896-6273(02)00569-X 

Fjell, A.M., Westlye, L.T., Grydeland, H., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., Holland, D., 
Dale, A.M., Walhovd, K.B., Alzheimer Disease Neuroimaging Initiative, 2013. Critical ages in 
the life course of the adult brain: nonlinear subcortical aging. Neurobiology of Aging 34, 
2239–2247. doi:10.1016/j.neurobiolaging.2013.04.006 

Fox, C., Lafortune, L., Boustani, M., Dening, T., Rait, G., Brayne, C., 2013. Screening for dementia – is 
it a no brainer? Int J Clin Pract 67, 1076–1080. doi:10.1111/ijcp.12239 



35 
 

Fox, N.C., Freeborough, P.A., 1997. Brain atrophy progression measured from registered serial MRI: 
Validation and application to alzheimer’s disease. J Magn Reson Imaging 7, 1069–1075. 
doi:10.1002/jmri.1880070620 

Frisoni, G.B., Bocchetta, M., Chételat, G., Rabinovici, G.D., de Leon, M.J., Kaye, J., Reiman, E.M., 
Scheltens, P., Barkhof, F., Black, S.E., Brooks, D.J., Carrillo, M.C., Fox, N.C., Herholz, K., 
Nordberg, A., Jack, C.R., Jagust, W.J., Johnson, K.A., Rowe, C.C., Sperling, R.A., Thies, W., 
Wahlund, L.-O., Weiner, M.W., Pasqualetti, P., Decarli, C., ISTAART’s NeuroImaging 
Professional Interest Area, 2013. Imaging markers for Alzheimer disease: which vs how. 
Neurology 81, 487–500. doi:10.1212/WNL.0b013e31829d86e8 

Frisoni, G.B., Fox, N.C., Jack, C.R., Scheltens, P., Thompson, P.M., 2010. The clinical use of structural 
MRI in Alzheimer disease. Nat Rev Neurol 6, 67–77. doi:10.1038/nrneurol.2009.215 

Frisoni, G.B., Hampel, H., O’Brien, J.T., Ritchie, K., Winblad, B., 2011. Revised criteria for Alzheimer’s 
disease: what are the lessons for clinicians? The Lancet Neurology 10, 598–601. 
doi:10.1016/S1474-4422(11)70126-0 

Frisoni, G.B., Henneman, W.J.P., Weiner, M.W., Scheltens, P., Vellas, B., Reynish, E., Hudecova, J., 
Hampel, H., Burger, K., Blennow, K., Waldemar, G., Johannsen, P., Wahlund, L.-O., Zito, G., 
Rossini, P.M., Winblad, B., Barkhof, F., 2008. The pilot European Alzheimer’s Disease 
Neuroimaging Initiative of the European Alzheimer’s Disease Consortium. Alzheimer’s & 
Dementia 4, 255–264. doi:10.1016/j.jalz.2008.04.009 

Frisoni, G.B., Jack, C.R., Bocchetta, M., Bauer, C., Frederiksen, K.S., et al., 2015. The EADC-ADNI 
Harmonized Protocol for manual hippocampal segmentation on magnetic resonance: 
Evidence of validity. Alzheimer’s & Dementia 11, 111–125. doi:10.1016/j.jalz.2014.05.1756 

Frisoni, G.B., Perani D., Bastianello S., Bernardi G., Porteri C., Boccardi M., Cappa S.F., Trabucchi M., 
Padovani A, 2016. The use of biomarkers for the diagnosis of Alzheimer’s disease in clinical 
practice: the Italian inter-societal roadmap. Neurobiology of Aging, 2016 (Accepted for 
publication; NBA 15-700) 

Frisoni, G.B., Pievani, M., Testa, C., Sabattoli, F., Bresciani, L., Bonetti, M., Beltramello, A., Hayashi, 
K.M., Toga, A.W., Thompson, P.M., 2007. The topography of grey matter involvement in early 
and late onset Alzheimer’s disease. Brain 130, 720–730. doi:10.1093/brain/awl377 

Fritzsche, K.H., Stieltjes, B., Schlindwein, S., van Bruggen, T., Essig, M., Meinzer, H.-P., 2010. 
Automated MR morphometry to predict Alzheimer’s disease in mild cognitive impairment. 
Int J CARS 5, 623–632. doi:10.1007/s11548-010-0412-0 

Galluzzi, S., Geroldi, C., Ghidoni, R., Paghera, B., Amicucci, G., Bonetti, M., Zanetti, O., Cotelli, M., 
Gennarelli, M., Frisoni, G.B., Group, T.O.M.C.W., 2010. The new Alzheimer’s criteria in a 
naturalistic series of patients with mild cognitive impairment. J Neurol 257, 2004–2014. 
doi:10.1007/s00415-010-5650-0 

Galton, C.J., Gomez-Anson, B., Antoun, N., Scheltens, P., Patterson, K., Graves, M., Sahakian, B.J., 
Hodges, J.R., 2001. Temporal lobe rating scale: application to Alzheimer’s disease and 
frontotemporal dementia. J Neurol Neurosurg Psychiatry 70, 165–173. 
doi:10.1136/jnnp.70.2.165 

Gardeniers, M., Wattjes, M.P., Meulen, E.F.J., Barkhof, F., Bakker, J., 2015. Beeldvormende 
diagnostiek bij dementie: inventarisatie van de praktijk binnen de Nederlandse 
geheugenklinieken. Tijdschr Gerontol Geriatr 47, 2–8. doi:10.1007/s12439-015-0154-0 

Garibotto V., Herholtz K., Boccardi M., Picco A., Varrone A., Nordberg A., Nobili F., Ratib O., and the 
Geneva Task Force for the Roadmap of Alzheimer’s Biomarkers, 2016. Clinical validity of FDG-
PET as a biomarker for Alzheimer’s disease in the context of a structured 5 –phase 
development framework. Neurobiology of Aging (Submitted, November 10, 2015; NBA 15-
884) 

Gattringer, T., Enzinger, C., Ropele, S., Gorani, F., Petrovic, K.E., Schmidt, R., Fazekas, F., 2012. 
Vascular risk factors, white matter hyperintensities and hippocampal volume in normal 
elderly individuals. Dement Geriatr Cogn Disord 33, 29–34. doi:10.1159/000336052 



36 
 

Geerlings, M.I., Brickman, A.M., Schupf, N., Devanand, D.P., Luchsinger, J.A., Mayeux, R., Small, S.A., 
2012. Depressive symptoms, antidepressant use, and brain volumes on MRI in a population-
based cohort of old persons without dementia. J Alzheimers Dis 30, 75–82. doi:10.3233/JAD-
2012-112009 

Geroldi, C., Pihlajamäki, M., Laakso, M.P., DeCarli, C., Beltramello, A., Bianchetti, A., Soininen, H., 
Trabucchi, M., Frisoni, G.B., 1999. APOE-ε4 is associated with less frontal and more medial 
temporal lobe atrophy in AD. Neurology 53, 1825–1825. doi:10.1212/WNL.53.8.1825 

Geroldi, C., Rossi, R., Calvagna, C., Testa, C., Bresciani, L., Binetti, G., Zanetti, O., Frisoni, G.B., 2006. 
Medial temporal atrophy but not memory deficit predicts progression to dementia in 
patients with mild cognitive impairment. Journal of neurology, neurosurgery and psychiatry 
77, 1219–1222. 

Gosche, K.M., Mortimer, J.A., Smith, C.D., Markesbery, W.R., Snowdon, D.A., 2002. Hippocampal 
volume as an index of Alzheimer neuropathology Findings from the Nun Study. Neurology 58, 
1476–1482. doi:10.1212/WNL.58.10.1476 

Guadalupe, T., Zwiers, M.P., Teumer, A., Wittfeld, K., Vasquez, A.A., Hoogman, M., Hagoort, P., 
Fernandez, G., Buitelaar, J., Hegenscheid, K., Völzke, H., Franke, B., Fisher, S.E., Grabe, H.J., 
Francks, C., 2014. Measurement and genetics of human subcortical and hippocampal 
asymmetries in large datasets. Human Brain Mapping 35, 3277–3289. 
doi:10.1002/hbm.22401 

Gurvits, T.V., Shenton, M.E., Hokama, H., Ohta, H., Lasko, N.B., Gilbertson, M.W., Orr, S.P., Kikinis, R., 
Jolesz, F.A., McCarley, R.W., Pitman, R.K., 1996. Magnetic resonance imaging study of 
hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biological 
Psychiatry 40, 1091–1099. doi:10.1016/S0006-3223(96)00229-6 

Hampel, H., Bürger, K., Teipel, S.J., Bokde, A.L.W., Zetterberg, H., Blennow, K., 2008. Core candidate 
neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimer’s & Dementia 4, 
38–48. doi:10.1016/j.jalz.2007.08.006 

Harper, L., Barkhof, F., Fox, N.C., Schott, J.M., 2015. Using visual rating to diagnose dementia: a 
critical evaluation of MRI atrophy scales. J Neurol Neurosurg Psychiatry 86, 1225-33. 
doi:10.1136/jnnp-2014-310090 

Harper, L., Barkhof, F., Scheltens, P., Schott, J.M., Fox, N.C., 2014. An algorithmic approach to 
structural imaging in dementia. J Neurol Neurosurg Psychiatr 85, 692–698. doi:10.1136/jnnp-
2013-306285 

Harper, L., Fumagalli, G.G., Barkhof, F., Scheltens, P., O’Brien, J.T., Bouwman, F., Burton, E.J., Rohrer, 
J.D., Fox, N.C., Ridgway, G.R., Schott, J.M., 2016. MRI visual rating scales in the diagnosis of 
dementia: evaluation in 184 post-mortem confirmed cases. Brain 139, 1211–1225. 
doi:10.1093/brain/aww005 

Hashimoto, M., Yasuda, M., Tanimukai, S., Matsui, M., Hirono, N., Kazui, H., Mori, E., 2001. 
Apolipoprotein E ε4 and the pattern of regional brain atrophy in Alzheimer’s disease. 
Neurology 57, 1461–1466. doi:10.1212/WNL.57.8.1461 

Heister, D., Brewer, J.B., Magda, S., Blennow, K., McEvoy, L.K., 2011. Predicting MCI outcome with 
clinically available MRI and CSF biomarkers. Neurology 77, 1619–1628. 
doi:10.1212/WNL.0b013e3182343314 

Henneman, W.J.P., Sluimer, J.D., Barnes, J., van der Flier, W.M., Sluimer, I.C., Fox, N.C., Scheltens, P., 
Vrenken, H., Barkhof, F., 2009. Hippocampal atrophy rates in Alzheimer disease: added value 
over whole brain volume measures. Neurology 72, 999–1007. 
doi:10.1212/01.wnl.0000344568.09360.31 

Hill, D.L.G., Schwarz, A.J., Isaac, M., Pani, L., Vamvakas, S., Hemmings, R., Carrillo, M.C., Yu, P., Sun, J., 
Beckett, L., Boccardi, M., Brewer, J., Brumfield, M., Cantillon, M., Cole, P.E., Fox, N., Frisoni, 
G.B., Jack, C., Kelleher, T., Luo, F., Novak, G., Maguire, P., Meibach, R., Patterson, P., Bain, L., 
Sampaio, C., Raunig, D., Soares, H., Suhy, J., Wang, H., Wolz, R., Stephenson, D., 2014. 
Coalition Against Major Diseases/European Medicines Agency biomarker qualification of 



37 
 

hippocampal volume for enrichment of clinical trials in predementia stages of Alzheimer’s 
disease. Alzheimer’s & Dementia 10, 421–429.e3. doi:10.1016/j.jalz.2013.07.003 

Holland,D., McEvoy, L.C., Dale, A.M., andthe Alzheimer's Disease Neuroimaging Initiative, 2012. 
Unbiased comparison of sample size estimates from longitudinal structural measures in ADNI. 
Human Brain Mapping 33, 2586-2602. DOI: 10.1002/hbm.21386 

Huppertz, H.-J., Kröll-Seger, J., Klöppel, S., Ganz, R.E., Kassubek, J., 2010. Intra- and interscanner 
variability of automated voxel-based volumetry based on a 3D probabilistic atlas of human 
cerebral structures. Neuroimage 49, 2216–2224. doi:10.1016/j.neuroimage.2009.10.066 

Ishii, K., Kawachi, T., Sasaki, H., Kono, A.K., Fukuda, T., Kojima, Y., Mori, E., 2005. Voxel-based 
morphometric comparison between early- and late-onset mild Alzheimer’s disease and 
assessment of diagnostic performance of z score images. Am J Neuroradiol 26, 333–340. 

Jack, C.R., Albert, M.S., Knopman, D.S., McKhann, G.M., Sperling, R.A., Carrillo, M.C., Thies, B., Phelps, 
C.H., 2011a. Introduction to the recommendations from the National Institute on Aging-
Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. 
Alzheimer’s & Dementia 7, 257–262. doi:10.1016/j.jalz.2011.03.004 

Jack, C.R., Barkhof, F., Bernstein, M.A., Cantillon, M., Cole, P.E., DeCarli, C., Dubois, B., Duchesne, S., 
Fox, N.C., Frisoni, G.B., Hampel, H., Hill, D.L.G., Johnson, K., Mangin, J.-F., Scheltens, P., 
Schwarz, A.J., Sperling, R., Suhy, J., Thompson, P.M., Weiner, M., Foster, N.L., 2011b. Steps to 
standardization and validation of hippocampal volumetry as a biomarker in clinical trials and 
diagnostic criterion for Alzheimer’s disease. Alzheimer’s & Dementia 7, 474–485.e4. 
doi:10.1016/j.jalz.2011.04.007 

Jack, C.R., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, 
P.J., L. Whitwell, J., Ward, C., Dale, A.M., Felmlee, J.P., Gunter, J.L., Hill, D.L.G., Killiany, R., 
Schuff, N., Fox-Bosetti, S., Lin, C., Studholme, C., DeCarli, C.S., Gunnar Krueger, Ward, H.A., 
Metzger, G.J., Scott, K.T., Mallozzi, R., Blezek, D., Levy, J., Debbins, J.P., Fleisher, A.S., Albert, 
M., Green, R., Bartzokis, G., Glover, G., Mugler, J., Weiner, M.W., 2008a. The Alzheimer’s 
disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27, 685–691. 
doi:10.1002/jmri.21049 

Jack, C.R., Dickson, D.W., Parisi, J.E., Xu, Y.C., Cha, R.H., O’Brien, P.C., Edland, S.D., Smith, G.E., Boeve, 
B.F., Tangalos, E.G., Kokmen, E., Petersen, R.C., 2002. Antemortem MRI findings correlate 
with hippocampal neuropathology in typical aging and dementia. Neurology 58, 750–757. 
doi:10.1212/WNL.58.5.750 

Jack, C.R., Knopman, D.S., Jagust, W.J., Shaw, L.M., Aisen, P.S., Weiner, M.W., Petersen, R.C., 
Trojanowski, J.Q., 2010a. Hypothetical model of dynamic biomarkers of the Alzheimer’s 
pathological cascade. The Lancet Neurology 9, 119–128. doi:10.1016/S1474-4422(09)70299-
6 

Jack, C.R., Lowe, V.J., Senjem, M.L., Weigand, S.D., Kemp, B.J., Shiung, M.M., Knopman, D.S., Boeve, 
B.F., Klunk, W.E., Mathis, C.A., Petersen, R.C., 2008b. 11C PiB and structural MRI provide 
complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive 
impairment. Brain 131, 665–680. doi:10.1093/brain/awm336 

Jack, C.R., Petersen, R.C., Xu, Y.C., Waring, S.C., O’Brien, P.C., Tangalos, E.G., Smith, G.E., Ivnik, R.J., 
Kokmen, E., 1997. Medial temporal atrophy on MRI in normal aging and very mild 
Alzheimer’s disease. Neurology 49, 786–794. doi:10.1212/WNL.49.3.786 

Jack, C.R., Shiung, M.M., Gunter, J.L., O’Brien, P.C., Weigand, S.D., Knopman, D.S., Boeve, B.F., Ivnik, 
R.J., Smith, G.E., Cha, R.H., Tangalos, E.G., Petersen, R.C., 2004. Comparison of different MRI 
brain atrophy rate measures with clinical disease progression in AD. Neurology 62, 591–600. 
doi:10.1212/01.WNL.0000110315.26026.EF 

Jack, C.R., Vemuri P, Wiste HJ, et al, 2011c. Evidence for ordering of alzheimer disease biomarkers. 
Arch Neurol 68, 1526–1535. doi:10.1001/archneurol.2011.183 

Jack, C.R., Vemuri, P., Wiste, H.J., Weigand, S.D., Lesnick, T.G., Lowe, V., Kantarci, K., Bernstein, M.A., 
Senjem, M.L., Gunter, J.L., Boeve, B.F., Trojanowski, J.Q., Shaw, L.M., Aisen, P.S., Weiner, 
M.W., Petersen, R.C., Knopman, D.S., Alzheimer’s Disease Neuroimaging Initiative, 2012. 



38 
 

Shapes of the trajectories of 5 major biomarkers of Alzheimer disease. Arch Neurol 69, 856–
867. doi:10.1001/archneurol.2011.3405 

Jack, C.R., Wiste, H.J., Vemuri, P., Weigand, S.D., Senjem, M.L., Zeng, G., Bernstein, M.A., Gunter, J.L., 
Pankratz, V.S., Aisen, P.S., Weiner, M.W., Petersen, R.C., Shaw, L.M., Trojanowski, J.Q., 
Knopman, D.S., Initiative,  the A.D.N., 2010b. Brain beta-amyloid measures and magnetic 
resonance imaging atrophy both predict time-to-progression from mild cognitive impairment 
to Alzheimer’s disease. Brain 133, 3336–3348. doi:10.1093/brain/awq277 

Jack, C.R., Wiste, H.J., Weigand, S.D., Knopman, D.S., Vemuri, P., Mielke, M.M., Lowe, V., Senjem, 
M.L., Gunter, J.L., Machulda, M.M., Gregg, B.E., Pankratz, V.S., Rocca, W.A., Petersen, R.C., 
2015. Age, Sex, and APOE ε4 Effects on Memory, Brain Structure, and β-Amyloid Across the 
Adult Life Span. JAMA Neurol 72, 511–519. doi:10.1001/jamaneurol.2014.4821 

Jang, J.-W., Kim, S., Na, H.Y., Ahn, S., Lee, S.J., Kwak, K.-H., Lee, M.-A., Hsiung, G.-Y.R., Choi, B.-S., 
Youn, Y.C., 2013. Effect of white matter hyperintensity on medial temporal lobe atrophy in 
Alzheimer’s disease. Eur Neurol 69, 229–235. doi:10.1159/000345999 

Janowitz, D., Schwahn, C., Borchardt, U., Wittfeld, K., Schulz, A., Barnow, S., Biffar, R., Hoffmann, W., 
Habes, M., Homuth, G., Nauck, M., Hegenscheid, K., Lotze, M., Völzke, H., Freyberger, H.J., 
Debette, S., Grabe, H.J., 2014. Genetic, psychosocial and clinical factors associated with 
hippocampal volume in the general population. Transl Psychiatry 4, e465. 
doi:10.1038/tp.2014.102 

Jansen, W., Ossenkoppele, R., Knol, D., et al, 2015. Prevalence of cerebral amyloid pathology in 
persons without dementia: A meta-analysis. JAMA 313, 1924–1938. 
doi:10.1001/jama.2015.4668 

Jovicich, J., Czanner, S., Han, X., Salat, D., van der Kouwe, A., Quinn, B., Pacheco, J., Albert, M., 
Killiany, R., Blacker, D., Maguire, P., Rosas, D., Makris, N., Gollub, R., Dale, A., Dickerson, B.C., 
Fischl, B., 2009. MRI-derived measurements of human subcortical, ventricular and 
intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data 
analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage 46, 177–192. 
doi:10.1016/j.neuroimage.2009.02.010 

Kaur, B., Himali, J.J., Seshadri, S., Beiser, A.S., Au, R., McKee, A.C., Auerbach, S., Wolf, P.A., DeCarli, 
C.S., 2014. Association between neuropathology and brain volume in the Framingham Heart 
Study. Alzheimer Dis Assoc Disord 28, 219–225. doi:10.1097/WAD.0000000000000032 

Koedam, E.L.G.E., Lauffer, V., van der Vlies, A.E., van der Flier, W.M., Scheltens, P., Pijnenburg, Y.A.L., 
2010. Early-Versus Late-Onset Alzheimer’s Disease: More than Age Alone. Journal of 
Alzheimer’s Disease 19, 1401–1408. doi:10.3233/JAD-2010-1337 

Koedam, E.L.G.E., Lehmann, M., van der Flier, W.M., Scheltens, P., Pijnenburg, Y.A.L., Fox, N., 
Barkhof, F., Wattjes, M.P., 2011. Visual assessment of posterior atrophy development of a 
MRI rating scale. Eur Radiol 21, 2618–2625. doi:10.1007/s00330-011-2205-4 

Konrad, C., Ukas, T., Nebel, C., Arolt, V., Toga, A.W., Narr, K.L., 2009. Defining the human 
hippocampus in cerebral magnetic resonance images—An overview of current segmentation 
protocols. NeuroImage 47, 1185–1195. doi:10.1016/j.neuroimage.2009.05.019 

Korf, E.S.C., Scheltens, P., Barkhof, F., de Leeuw, F.-E., 2005. Blood Pressure, White Matter Lesions 
and Medial Temporal Lobe Atrophy: Closing the Gap between Vascular Pathology and 
Alzheimer’s Disease? Dementia and Geriatric Cognitive Disorders 20, 331–337. 
doi:10.1159/000088464 

Kril, J.J., Hodges, J., Halliday, G., 2004. Relationship between hippocampal volume and CA1 neuron 
loss in brains of humans with and without Alzheimer’s disease. Neuroscience Letters 361, 9–
12. doi:10.1016/j.neulet.2004.02.001 

Leeuw, F.-E. de, Korf, E., Barkhof, F., Scheltens, P., 2006. White Matter Lesions Are Associated With 
Progression of Medial Temporal Lobe Atrophy in Alzheimer Disease. Stroke 37, 2248–2252. 
doi:10.1161/01.STR.0000236555.87674.e1 

Lehmann, M., Koedam, E.L.G.E., Barnes, J., Bartlett, J.W., Ryan, N.S., Pijnenburg, Y.A.L., Barkhof, F., 
Wattjes, M.P., Scheltens, P., Fox, N.C., 2012. Posterior cerebral atrophy in the absence of 



39 
 

medial temporal lobe atrophy in pathologically-confirmed Alzheimer’s disease. Neurobiology 
of Aging 33, 627.e1–627.e12. doi:10.1016/j.neurobiolaging.2011.04.003 

Lehtovirta, M., Laakso, M.P., Soininen, H., Helisalmi, S., Mannermaa, A., Helkala, E.-L., Partanen, K., 
Ryynänen, M., Vainio, P., Hartikainen, P., Riekkinen Sr, P.J., 1995. Volumes of hippocampus, 
amygdala and frontal lobe in Alzheimer patients with different apolipoprotein E genotypes. 
Neuroscience 67, 65–72. doi:10.1016/0306-4522(95)00014-A 

Leung, K.K., Barnes, J., Ridgway, G.R., Bartlett, J.W., Clarkson, M.J., Macdonald, K., Schuff, N., Fox, 
N.C., Ourselin, S., 2010. Automated cross-sectional and longitudinal hippocampal volume 
measurement in mild cognitive impairment and Alzheimer’s disease. NeuroImage 51, 1345–
1359. doi:10.1016/j.neuroimage.2010.03.018 

Leung, K.K., Bartlett, J.W., Barnes, J., Manning, E.N., Ourselin, S., Fox, N.C., for the Alzheimer’s 
Disease Neuroimaging Initiative, 2013. Cerebral atrophy in mild cognitive impairment and 
Alzheimer disease Rates and acceleration. Neurology 80, 648–654. 
doi:10.1212/WNL.0b013e318281ccd3 

Likeman, M., Anderson, V.M., Stevens, J.M., Waldman, A.D., Godbolt, A.K., Frost, C., Rossor, M.N., 
Fox, N.C., 2005. Visual assessment of atrophy on magnetic resonance imaging in the 
diagnosis of pathologically confirmed young-onset dementias. Arch. Neurol. 62, 1410–1415. 
doi:10.1001/archneur.62.9.1410 

Liu, Y., Mattila, J., Ruiz, M.Á.M., Paajanen, T., Koikkalainen, J., van Gils, M., Herukka, S.-K., Waldemar, 
G., Lötjönen, J., Soininen, H., for The Alzheimer’s Disease Neuroimaging Initiative, 2013. 
Predicting AD Conversion: Comparison between Prodromal AD Guidelines and Computer 
Assisted PredictAD Tool. PLoS ONE 8, e55246. doi:10.1371/journal.pone.0055246 

Lockhart, S.N., DeCarli, C., 2014. Structural Imaging Measures of Brain Aging. Neuropsychol Rev 24, 
271–289. doi:10.1007/s11065-014-9268-3 

Macdonald, K.E., Bartlett, J.W., Leung, K.K., Ourselin, S., Barnes, J., ADNI investigators, 2013. The 
value of hippocampal and temporal horn volumes and rates of change in predicting future 
conversion to AD. Alzheimer Dis Assoc Disord 27, 168–173. 
doi:10.1097/WAD.0b013e318260a79a 

Manning, E.N., Barnes, J., Cash, D.M., Bartlett, J.W., Leung, K.K., Ourselin, S., Nick C. Fox1 for the 
Alzheimer’s Disease NeuroImaging Initiative, 2014. APOE ε4 Is Associated with 
Disproportionate Progressive Hippocampal Atrophy in AD. PLoS ONE 9, e97608. 
doi:10.1371/journal.pone.0097608 

Mattsson N., Lönnborg A., Boccardi M., Blennow K., Hansson O., and the Geneva Task Force for the 
Roadmap of Alzheimer’s Biomarkers, 2016. Clinical validity of Aβ42, tau, and phospho-tau in 
the cerebrospinal fluid as biomarkers for Alzheimer's disease in the context of a structured 5-
phase development framework. Neurobiology of Aging (Accepted for publication; NBA 15-
765) 

McDonald, C.R., McEvoy, L.K., Gharapetian, L., Fennema-Notestine, C., Hagler, D.J., Holland, D., 
Koyama, A., Brewer, J.B., Dale, A.M., 2009. Regional rates of neocortical atrophy from normal 
aging to early Alzheimer disease. Neurology 73, 457–465. 
doi:10.1212/WNL.0b013e3181b16431 

McEvoy, L.K., Holland, D., Hagler, D.J., Fennema-Notestine, C., Brewer, J.B., Dale, A.M., 2011. Mild 
Cognitive Impairment: Baseline and Longitudinal Structural MR Imaging Measures Improve 
Predictive Prognosis. Radiology 259, 834–843. doi:10.1148/radiol.11101975 

McKhann G.M., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.M, 1984. Clinical 
diagnosis of Alzheimer’s disease Report of the NINCDS‐ADRDA Work Group* under the 
auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. 
Neurology 34, 939–939. doi:10.1212/WNL.34.7.939 

McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R., Kawas, C.H., Klunk, W.E., 
Koroshetz, W.J., Manly, J.J., Mayeux, R., Mohs, R.C., Morris, J.C., Rossor, M.N., Scheltens, P., 
Carrillo, M.C., Thies, B., Weintraub, S., Phelps, C.H., 2011. The diagnosis of dementia due to 
Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s 



40 
 

Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & 
Dementia 7, 263–269. doi:10.1016/j.jalz.2011.03.005 

Mendez, M.F., Lee, A.S., Joshi, A., Shapira, J.S., 2012. Nonamnestic Presentations of Early-Onset 
Alzheimer’s Disease. Am J Alzheimers Dis Other Demen 27, 413–420. 
doi:10.1177/1533317512454711 

Möller, C., Vrenken, H., Jiskoot, L., Versteeg, A., Barkhof, F., Scheltens, P., van der Flier, W.M., 2013. 
Different patterns of gray matter atrophy in early- and late-onset Alzheimer’s disease. 
Neurobiology of Aging 34, 2014–2022. doi:10.1016/j.neurobiolaging.2013.02.013 

Morra, J.H., Tu, Z., Apostolova, L.G., Green, A.E., Avedissian, C., Madsen, S.K., Parikshak, N., Hua, X., 
Toga, A.W., Jack Jr., C.R., Weiner, M.W., Thompson, P.M., 2008. Validation of a fully 
automated 3D hippocampal segmentation method using subjects with Alzheimer’s disease 
mild cognitive impairment, and elderly controls. NeuroImage 43, 59–68. 
doi:10.1016/j.neuroimage.2008.07.003 

Noble, K.G., Grieve, S.M., Korgaonkar, M.S., Engelhardt, L.E., Griffith, E.Y., Williams, L.M., Brickman, 
A.M., 2012. Hippocampal volume varies with educational attainment across the life-span. 
Front Hum Neurosci 6. doi:10.3389/fnhum.2012.00307 

Nugent, A.C., Luckenbaugh, D.A., Wood, S.E., Bogers, W., Zarate, C.A., Drevets, W.C., 2013. 
Automated subcortical segmentation using FIRST: Test-retest reliability, interscanner 
reliability, and comparison to manual segmentation: Reliability of Automated Segmentation 
Using FIRST. Human Brain Mapping 34, 2313–2329. doi:10.1002/hbm.22068 

Okonkwo, O.C., Xu, G., Dowling, N.M., Bendlin, B.B., LaRue, A., Hermann, B.P., Koscik, R., Jonaitis, E., 
Rowley, H.A., Carlsson, C.M., Asthana, S., Sager, M.A., Johnson, S.C., 2012. Family history of 
Alzheimer disease predicts hippocampal atrophy in healthy middle-aged adults. Neurology 
78, 1769–1776. doi:10.1212/WNL.0b013e3182583047 

Patenaude, B., Smith, S.M., Kennedy, D.N., Jenkinson, M., 2011. A Bayesian model of shape and 
appearance for subcortical brain segmentation. NeuroImage 56, 907–922. 
doi:10.1016/j.neuroimage.2011.02.046 

Peng, G.-P., Feng, Z., He, F.-P., Chen, Z.-Q., Liu, X.-Y., Liu, P., Luo, B.-Y., 2015. Correlation of 
hippocampal volume and cognitive performances in patients with either mild cognitive 
impairment or Alzheimer’s disease. CNS Neurosci Ther 21, 15–22. doi:10.1111/cns.12317 

Pennanen, C., Kivipelto, M., Tuomainen, S., Hartikainen, P., Hänninen, T., Laakso, M.P., Hallikainen, 
M., Vanhanen, M., Nissinen, A., Helkala, E.-L., Vainio, P., Vanninen, R., Partanen, K., Soininen, 
H., 2004. Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. 
Neurobiology of Aging 25, 303–310. doi:10.1016/S0197-4580(03)00084-8 

Pepe, M., Etzioni, R., Feng, Z., Potter, J.D., Thompson, M.L., Thornquist, M., Winget, M., Yasui, Y., 
2001. Phases of Biomarker Development for Early Detection of Cancer. J Natl Cancer Inst 93, 
1054–1061. 

Pereira, J.B., Cavallin, L., Spulber, G., Aguilar, C., Mecocci, P., Vellas, B., Tsolaki, M., Kłoszewska, I., 
Soininen, H., Spenger, C., Aarsland, D., Lovestone, S., Simmons, A., Wahlund, L.-O., Westman, 
E., AddNeuroMed consortium and for the Alzheimer’s Disease Neuroimaging Initiative, 2014. 
Influence of age, disease onset and ApoE4 on visual medial temporal lobe atrophy cut-offs. J 
Intern Med 275, 317–330. doi:10.1111/joim.12148 

Prestia, A., Caroli, A., Herholz, K., Reiman, E., Chen, K., Jagust, W.J., Frisoni, G.B., Translational 
Outpatient Memory Clinic Working Group, Alzheimer’s Disease Neuroimaging Initiative, 
2013. Diagnostic accuracy of markers for prodromal Alzheimer’s disease in independent 
clinical series. Alzheimer’s & Dementia 9, 677–686. doi:10.1016/j.jalz.2012.09.016 

Raz, N., Lindenberger, U., Rodrigue, K.M., Kennedy, K.M., Head, D., Williamson, A., Dahle, C., 
Gerstorf, D., Acker, J.D., 2005. Regional Brain Changes in Aging Healthy Adults: General 
Trends, Individual Differences and Modifiers. Cerebral Cortex 15, 1676–1689. 
doi:10.1093/cercor/bhi044 

Rhodius-Meester, H.F.M., Koikkalainen, J., Mattila, J., Teunissen, C.E., Barkhof, F., Lemstra, A.W., 
Scheltens, P., Lötjönen, J., van der Flier, W.M., 2015. Integrating Biomarkers for Underlying 



41 
 

Alzheimer’s Disease in Mild Cognitive Impairment in Daily Practice: Comparison of a Clinical 
Decision Support System with Individual Biomarkers. Journal of Alzheimer’s Disease 50, 261–
270. doi:10.3233/JAD-150548 

Ridha, B.H., Barnes, J., van de Pol, L.A., Schott, J.M., Boyes, R.G., Siddique, M.M., Rossor, M.N., 
Scheltens, P., Fox, N.C., 2007. Application of Automated Medial Temporal Lobe Atrophy Scale 
to Alzheimer Disease. Archives of Neurology 64, 849. doi:10.1001/archneur.64.6.849 

Rowe, C.C., Ellis, K.A., Rimajova, M., Bourgeat, P., Pike, K.E., Jones, G., Fripp, J., Tochon-Danguy, H., 
Morandeau, L., O’Keefe, G., Price, R., Raniga, P., Robins, P., Acosta, O., Lenzo, N., Szoeke, C., 
Salvado, O., Head, R., Martins, R., Masters, C.L., Ames, D., Villemagne, V.L., 2010. Amyloid 
imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. 
Neurobiology of Aging, Alzheimer’s Disease Neuroimaging Initiative (ADNI) Studies 31, 1275–
1283. doi:10.1016/j.neurobiolaging.2010.04.007 

Scahill, R.I., Schott, J.M., Stevens, J.M., Rossor, M.N., Fox, N.C., 2002. Mapping the evolution of 
regional atrophy in Alzheimer’s disease: Unbiased analysis of fluid-registered serial MRI. 
PNAS 99, 4703–4707. doi:10.1073/pnas.052587399 

Scheltens, P., Fox, N., Barkhof, F., De Carli, C., 2002. Structural magnetic resonance imaging in the 
practical assessment of dementia: beyond exclusion. The Lancet Neurology 1, 13–21. 
doi:10.1016/S1474-4422(02)00002-9 

Scheltens, P., Launer, L.J., Barkhof, F., Weinstein, H.C., van Gool, W.A., 1995. Visual assessment of 
medial temporal lobe atrophy on magnetic resonance imaging: Interobserver reliability. J 
Neurol 242, 557–560. doi:10.1007/BF00868807 

Scheltens, P., Leys, D., Barkhof, F., Huglo, D., Weinstein, H.C., Vermersch, P., Kuiper, M., Steinling, M., 
Wolters, E.C., Valk, J., 1992. Atrophy of medial temporal lobes on MRI in “probable” 
Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J 
Neurol Neurosurg Psychiatry 55, 967–972. doi:10.1136/jnnp.55.10.967 

Schmidt, H., Schmidt, R., Fazekas, F., Semmler, J., Kapeller, P., Reinhart, B., Kostner, G.M., 1996. 
Apolipoprotein E4 allele in the normal elderly: neuropsychologic and brain MRI correlates. 
Clinical Genetics 50, 293–299. doi:10.1111/j.1399-0004.1996.tb02377.x 

Schott, J.M., Price, S.L., Frost, C., Whitwell, J.L., Rossor, M.N., Fox, N.C., 2005. Measuring atrophy in 
Alzheimer disease A serial MRI study over 6 and 12 months. Neurology 65, 119–124. 
doi:10.1212/01.wnl.0000167542.89697.0f 

Schreiber, S., Vogel, J., Schwimmer, H.D., Marks, S.M., Schreiber, F., Jagust, W., 2016. Impact of 
lifestyle dimensions on brain pathology and cognition. Neurobiology of Aging 40, 164–172. 
doi:10.1016/j.neurobiolaging.2016.01.012 

Schuff, N., Woerner, N., Boreta, L., Kornfield, T., Shaw, L.M., Trojanowski, J.Q., Thompson, P.M., Jack, 
C.R., Weiner, M.W., 2009. MRI of hippocampal volume loss in early Alzheimer’s disease in 
relation to ApoE genotype and biomarkers. Brain 132, 1067–1077. 
doi:10.1093/brain/awp007 

Shaffer, J.L., Petrella, J.R., Sheldon, F.C., Choudhury, K.R., Calhoun, V.D., Coleman, R.E., Doraiswamy, 
P.M., 2013. Predicting Cognitive Decline in Subjects at Risk for Alzheimer Disease by Using 
Combined Cerebrospinal Fluid, MR Imaging, and PET Biomarkers. Radiology 266, 583–591. 
doi:10.1148/radiol.12120010 

Shen, L., Saykin, A.J., Kim, S., Firpi, H.A., West, J.D., Risacher, S.L., McDonald, B.C., McHugh, T.L., 
Wishart, H.A., Flashman, L.A., 2010. Comparison of manual and automated determination of 
hippocampal volumes in MCI and early AD. Brain Imaging Behav 4, 86–95. 
doi:10.1007/s11682-010-9088-x 

Shi, F., Liu, B., Zhou, Y., Yu, C., Jiang, T., 2009. Hippocampal volume and asymmetry in mild cognitive 
impairment and Alzheimer’s disease: Meta-analyses of MRI studies. Hippocampus 19, 1055–
1064. doi:10.1002/hipo.20573 

Sluimer, J.D., van der Flier, W.M., Karas, G.B., van Schijndel, R., Barnes, J., Boyes, R.G., Cover, K.S., 
Olabarriaga, S.D., Fox, N.C., Scheltens, P., Vrenken, H., Barkhof, F., 2009. Accelerating 



42 
 

regional atrophy rates in the progression from normal aging to Alzheimer’s disease. European 
Radiology 19, 2826. doi: 10.1007/s00330-009-1512-5 

Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg, H., 
Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers, J., 
Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M., 2004. Advances in functional and 
structural MR image analysis and implementation as FSL. NeuroImage, Mathematics in Brain 
Imaging 23, Supplement 1, S208–S219. doi:10.1016/j.neuroimage.2004.07.051 

Sonni I., Ratib O., Boccardi M., Picco A., Herholz K., Nobili F., Varrone A., and the Geneva Task Force 
for the Roadmap of Alzheimer’s Biomarkers, 2016. Clinical validity of presynaptic 
dopaminergic imaging with 123I-ioflupane and noradrenergic imaging with 123I-MIBG SPECT in 
the differential diagnosis between Alzheimer’s disease and Dementia with Lewy bodies in the 
context of a structured 5–phase development framework. Neurobiology of Aging (Submitted, 
September 29, 2015; NBA 15-758) 

Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M., Iwatsubo, T., Jack Jr., 
C.R., Kaye, J., Montine, T.J., Park, D.C., Reiman, E.M., Rowe, C.C., Siemers, E., Stern, Y., Yaffe, 
K., Carrillo, M.C., Thies, B., Morrison-Bogorad, M., Wagster, M.V., Phelps, C.H., 2011. Toward 
defining the preclinical stages of Alzheimer’s disease: Recommendations from the National 
Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for 
Alzheimer’s disease. Alzheimer’s & Dementia 7, 280–292. doi:10.1016/j.jalz.2011.03.003 

Tam, C.W.C., Burton, E.J., McKeith, I.G., Burn, D.J., O’Brien, J.T., 2005. Temporal lobe atrophy on MRI 
in Parkinson disease with dementia A comparison with Alzheimer disease and dementia with 
Lewy bodies. Neurology 64, 861–865. doi:10.1212/01.WNL.0000153070.82309.D4 

Taylor, J.L., Scanlon, B.K., Farrell, M., Hernandez, B., Adamson, M.M., Ashford, J.W., Noda, A., 
Murphy, G.M., Weiner, M.W., 2014. APOE-epsilon4 and aging of medial temporal lobe gray 
matter in healthy adults older than 50 years. Neurobiology of Aging 35, 2479–2485. 
doi:10.1016/j.neurobiolaging.2014.05.011 

Teipel, S., Drzezga, A., Grothe, M.J., Barthel, H., Chételat, G., Schuff, N., Skudlarski, P., Cavedo, E., 
Frisoni, G.B., Hoffmann, W., Thyrian, J.R., Fox, C., Minoshima, S., Sabri, O., Fellgiebel, A., 
2015. Multimodal imaging in Alzheimer’s disease: validity and usefulness for early detection. 
The Lancet Neurology. doi:10.1016/S1474-4422(15)00093-9 

Tolboom, N., van der Flier, W.M., Boverhoff, J., Yaqub, M., Wattjes, M.P., Raijmakers, P.G., Barkhof, 
F., Scheltens, P., Herholz, K., Lammertsma, A.A., van Berckel, B.N.M., 2010. Molecular 
imaging in the diagnosis of Alzheimer’s disease: visual assessment of [11C]PIB and 
[18F]FDDNP PET images. J Neurol Neurosurg Psychiatry 81, 882–884. 
doi:10.1136/jnnp.2009.194779 

Trzepacz, P.T., Yu, P., Sun, J., Schuh, K., Case, M., Witte, M.M., Hochstetler, H., Hake, A., 2014. 
Comparison of neuroimaging modalities for the prediction of conversion from mild cognitive 
impairment to Alzheimer’s dementia. Neurobiology of Aging 35, 143–151. 
doi:10.1016/j.neurobiolaging.2013.06.018 

Van de Pol, L.A., Hensel, A., Barkhof, F., Gertz, H.J., Scheltens, P., van der Flier, W.M., 2006a. 
Hippocampal atrophy in Alzheimer disease: Age matters. Neurology 66, 236–238. 
doi:10.1212/01.wnl.0000194240.47892.4d 

Van de Pol, L.A., Hensel, A., van der Flier, W.M., Visser, P.J., Pijnenburg, Y. a. L., Barkhof, F., Gertz, 
H.J., Scheltens, P., 2006b. Hippocampal atrophy on MRI in frontotemporal lobar 
degeneration and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 77, 439–442. 
doi:10.1136/jnnp.2005.075341 

Van der Flier, W.M., Pijnenburg, Y.A.L., Prins, N., Lemstra, A.W., Bouwman, F.H., Teunissen, C.E., van 
Berckel, B.N.M., Stam, C.J., Barkhof, F., Visser, P.J., van Egmond, E., Scheltens, P., 2014. 
Optimizing Patient Care and Research: The Amsterdam Dementia Cohort. Journal of 
Alzheimer’s Disease 41, 313–327. doi:10.3233/JAD-132306 

Van Rossum, I.A., Visser, P.J., Knol, D.L., van der Flier, W.M., Teunissen, C.E., Barkhof, F., 
Blankenstein, M.A., Scheltens, P., 2012a. Injury Markers but not Amyloid Markers are 



43 
 

Associated with Rapid Progression from Mild Cognitive Impairment to Dementia in 
Alzheimer’s Disease. Journal of Alzheimer’s Disease 29, 319–327. doi:10.3233/JAD-2011-
111694 

Van Rossum, I.A., Vos, S.J.B., Burns, L., Knol, D.L., Scheltens, P., Soininen, H., Wahlund, L.-O., Hampel, 
H., Tsolaki, M., Minthon, L., L’Italien, G., van der Flier, W.M., Teunissen, C.E., Blennow, K., 
Barkhof, F., Rueckert, D., Wolz, R., Verhey, F., Visser, P.J., 2012b. Injury markers predict time 
to dementia in subjects with MCI and amyloid pathology. Neurology 79, 1809–1816. 
doi:10.1212/WNL.0b013e3182704056 

Vemuri, P., Simon, G., Kantarci, K., Whitwell, J.L., Senjem, M.L., Przybelski, S.A., Gunter, J.L., Josephs, 
K.A., Knopman, D.S., Boeve, B.F., Ferman, T.J., Dickson, D.W., Parisi, J.E., Petersen, R.C., Jack 
Jr., C.R., 2011. Antemortem differential diagnosis of dementia pathology using structural 
MRI: Differential-STAND. NeuroImage 55, 522–531. doi:10.1016/j.neuroimage.2010.12.073 

Vermersch, P., Leys, D., Scheltens, P., Barkhof, F., 1994. Visual rating of hippocampal atrophy: 
correlation with volumetry. J Neurol Neurosurg Psychiatry 57, 1015. 

Vos, S., van Rossum, I., Burns, L., Knol, D., Scheltens, P., Soininen, H., Wahlund, L.-O., Hampel, H., 
Tsolaki, M., Minthon, L., Handels, R., L’Italien, G., van der Flier, W., Aalten, P., Teunissen, C., 
Barkhof, F., Blennow, K., Wolz, R., Rueckert, D., Verhey, F., Visser, P.J., 2012. Test sequence 
of CSF and MRI biomarkers for prediction of AD in subjects with MCI. Neurobiology of Aging 
33, 2272–2281. doi:10.1016/j.neurobiolaging.2011.12.017 

Vos, S., van Rossum, I.A., Verhey, F., Knol, D.L., Soininen, H., Wahlund, L.-O., Hampel, H., Tsolaki, M., 
Minthon, L., Frisoni, G.B., Froelich, L., Nobili, F.,van der Flier, W., Blennow, K., Wolz, R., 
Scheltens, P., Visser, P.J., 2013. Prediction of Alzheimer disease in subjects with amnestic and 
nonamnestic MCI. Neurology 80, 1124–1132. doi:10.1212/WNL.0b013e318288690c 

Wahlund, L.-O., Julin, P., Lindqvist, J., Scheltens, P., 1999. Visual assessment of medial temporal lobe 
atrophy in demented and healthy control subjects: correlation with volumetry. Psychiatry 
Research: Neuroimaging 90, 193–199. doi:10.1016/S0925-4927(99)00016-5 

Wang, P.-N, Liu, H.-C., Lirng, J.-F., Lin, K.N., Wu, Z.A., 2009. Accelerated hippocampal atrophy rates in 
stable and progressive amnestic mild cognitive impairment. Psychiatry Research: 
Neuroimaging 171, 221–231. doi:10.1016/j.pscychresns.2008.05.002 

Walhovd, K.B., Westlye, L.T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., Agartz, I., Salat, D.H., 
Greve, D.N., Fischl, B., Dale, A.M., Fjell, A.M., 2011. Consistent neuroanatomical age-related 
volume differences across multiple samples. Neurobiology of Aging 32, 916–932. 
doi:10.1016/j.neurobiolaging.2009.05.013 

Wattjes, M.P., Henneman, W.J.P., van der Flier, W.M., de Vries, O., Träber, F., Geurts, J.J.G., 
Scheltens, P., Vrenken, H., Barkhof, F., 2009. Diagnostic Imaging of Patients in a Memory 
Clinic: Comparison of MR Imaging and 64–Detector Row CT. Radiology 253, 174–183. 
doi:10.1148/radiol.2531082262 

Whitwell, J.L., Clifford, R.J., Przybelski, S.A., Parisi, J.E., Senjem, M.L., Boeve, B.F., Knopman, D.S., 
Petersen, R.C., Dickson, D.W., Josephs, K.A., 2011. Temporoparietal atrophy: a marker of AD 
pathology independent of clinical diagnosis. Neurobiology of Aging 32, 1531–1541. 
doi:10.1016/j.neurobiolaging.2009.10.012 

Whitwell, J.L., Josephs, K.A., Murray, M.E., Kantarci, K., Przybelski, S.A., Weigand, S.D., Vemuri, P., 
Senjem, M.L., Parisi, J.E., Knopman, D.S., Boeve, B.F., Petersen, R.C., Dickson, D.W., Jack, C.R., 
2008. MRI correlates of neurofibrillary tangle pathology at autopsy A voxel-based 
morphometry study. Neurology 71, 743–749. doi:10.1212/01.wnl.0000324924.91351.7d 

Whitwell, J.L., Przybelski, S.A., Weigand, S.D., Knopman, D.S., Boeve, B.F., Petersen, R.C., Jack, C.R., 
2007. 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress 
from mild cognitive impairment to Alzheimer’s disease. Brain 130, 1777–1786. 
doi:10.1093/brain/awm112 

Wolz, R., Aljabar, P., Hajnal, J.V., Hammers, A., Rueckert, D., 2010. LEAP: Learning embeddings for 
atlas propagation. NeuroImage 49, 1316–1325. doi:10.1016/j.neuroimage.2009.09.069 



44 
 

Wolz, R., Schwarz, A.J., Yu, P., Cole, P.E., Rueckert, D., Jack Jr., C.R., Raunig, D., Hill, D., 2014. 
Robustness of automated hippocampal volumetry across magnetic resonance field strengths 
and repeat images. Alzheimer’s & Dementia 10, 430–438.e2. doi:10.1016/j.jalz.2013.09.014 

Wonderlick, J.S., Ziegler, D.A., Hosseini-Varnamkhasti, P., Locascio, J.J., Bakkour, A., van der Kouwe, 
A., Triantafyllou, C., Corkin, S., Dickerson, B.C., 2009. Reliability of MRI-derived cortical and 
subcortical morphometric measures: effects of pulse sequence, voxel geometry, and parallel 
imaging. Neuroimage 44, 1324–1333. doi:10.1016/j.neuroimage.2008.10.037 

Yu, P., Sun, J., Wolz, R., Stephenson, D., Brewer, J., Fox, N.C., Cole, P.E., Jack, C.R., Hill, D.L.G., 
Schwarz, A.J., 2014. Operationalizing hippocampal volume as an enrichment biomarker for 
amnestic MCI trials: effect of algorithm, test-retest variability and cut-point on trial cost, 
duration and sample size. Neurobiology of Aging 35, 808–818. 
doi:10.1016/j.neurobiolaging.2013.09.039 

Yuan, Y., Gu, Z.-X., Wei, W.-S., 2009. Fluorodeoxyglucose–Positron-Emission Tomography, Single-
Photon Emission Tomography, and Structural MR Imaging for Prediction of Rapid Conversion 
to Alzheimer Disease in Patients with Mild Cognitive Impairment: A Meta-Analysis. Am J 
Neuroradiol 30, 404–410. doi:10.3174/ajnr.A1357



45 
 

Phase Design General aim Specific aim Progress Evidence in Alzheimer’s disease Important references 

Phase 1—
Preclinical 
Exploratory 
Studies 

Identify the 
rational of the 
biomarker, 
based on 
pathology 

Primary: 
To identify leads for potentially useful 
biomarkers and prioritize identified leads. 

Fully achieved 
Pathological studies show early medial temporal lobe 
involvement with neuronal loss in hippocampus. 

Braak and Braak, 1991; 
Braak and Braak, 1996; 
Delacourte et al., 1999; 
Duyckaerts et al., 2009 

Phase 2—
Clinical Assay 
Development 
for Clinical 
Disease 

Define the 
ability of the 
biomarker to 
discriminate 
patients from 
controls 

Primary 

To estimate TPR and FPR or ROC curve for 
the assay and to assess its ability to 
distinguish subjects with and without 
disease 

Fully achieved 

vMTA and HCV separate clinical Alzheimer’s dementia 
patients from cognitively healthy subjects with good 
sensitivity and specificity. Few studies have examined 
pathologically verified samples.  
vMTA and HCV are less useful in differential diagnosis of 
dementia patients. 

Frisoni et al., 2013; Likeman et 
al., 2005; Barnes et al., 2006; 
Gosche et al., 2002; Bastos-Leite 
et al., 2007; Galton et al., 2001; 
Haper et al., 2014; van de Pol et 
al., 2006b 

Secondary 1: 
To optimize procedures for performing the 
assay and to assess the reproducibility of 
the assay within and between laboratories. 

Fully achieved 
for vMTA; 
Partly 
achieved for 
HCV 

vMTA has good reproducibility in trained raters. 
Standardized method of collecting MRI (ADNI protocol) 
and manual volumetry (EADC-ADNI harmonized 
segmentation protocol) are sparsely implemented in 
memory clinics. Much variability between different 
automated HCV measurement algorithms.  

Scheltens et al., 1995; Tolboom 
et al., 2010; Boutet et al., 2012; 
Cavallin et al. 2012b; Jack et al., 
2008a; Boccardi et al., 2015a; 
Guadalupe et al., 2014; Yu et al., 
2014 

Secondary 2: 

To determine the relationship between 
biomarker tissue measurements made on 
tissue (phase 1) and the biomarker 
measurements made on the noninvasive 
clinical specimen (phase 2) 

Fully achieved 
Good correlation between hippocampal size on MR and 
histological measurements and severity of 
neurodegenerative changes on pathology. 

Bobinski et al., 1999; Gosche et 
al., 2002; Jack et al. 2002; Kaur et 
al., 2014; Whitwell et al., 2008; 
Csernansky et al., 2004; Kril et al., 
2004; Barkhof et al., 2007; Burton 
et al., 2009; Apostolova et al., 
2015 

Secondary 3: 

To assess factors associated with 
biomarker status or level in control 
subjects. If such factors affect the 
biomarker, thresholds for test positivity 
may need to be defined separately for 
target subpopulations. 

Fully achieved 

Well-known age-associated HCV loss (higher vMTA scores). 
Amount of atrophy also dependent on APOE-ɛ4 
carriership, vascular pathology, education; impact of these 
latter variables only relevant for volumetry, not for visual 
rating. 

Fjell et al., 2013; Jack et al., 2015; 
Lockhart and DeCarli, 2014; den 
Heijer et al., 2012; Taylor et al., 
2014; Cherbuin et al., 2008; 
Janowitz et al., 2014; Gattringer 
et al., 2012 
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Secondary 4: 

To assess factors associated with 
biomarker status or level in diseased 
subjects—in particular, disease 
characteristics. 

Fully achieved 

Similar as for healthy subjects: influence of age, APOE-ɛ4, 
vascular pathology. Additionally, clinical presentation is 
relevant: subjects with early onset and primary non-
memory presentation have relatively spared medial 
temporal lobes. 

Ferreira et al., 2015; Jack et al., 
2012; Peng et al., 2015; Cavedo 
et al., 2014; Möller et al., 2013; 
Ishii et al., 2005; Koedam et al., 
2010; Mendez et al., 2012; 
Whitwell et al. 2011; Bigler et al., 
2000; Boccardi et al., 2004; 
Geroldi et al., 1999; Hashimoto et 
al., 2001; Lehtovirta et al., 1995; 
Manning et al., 2014 

Phase 3—
Prospective 
Longitudinal 
Repository 
Studies 

Define the 
ability of the 
biomarker to 
detect the 
disease in its 
early phase 

Primary 1: 
To evaluate the capacity of the biomarker 
to detect the earliest disease stages 

Partly 
achieved 

No evidence in clinical MCI cohorts with long follow-up. In 
research populations or clinical populations with shorter 
follow-up, there is a reasonably good specificity but lower 
sensitivity to predict clinical progression in subjects with 
MCI. 

Frisoni et al., 2013; deCarli et al., 
2007; Liu et al., 2013; Devanand 
et al., 2007; Fritzsche et al., 2010; 
Bakkour et al., 2009  

Primary 2: 
To define criteria for a biomarker positive 
test in preparation for phase 4. 

Partly 
achieved for 
vMTA; 
Preliminary 
Evidence for 
HCV 

Age and APOE-ɛ4 related cut-offs for vMTA based on 
discrimination of controls from Alzheimer’s dementia. 
Validation needed in clinical MCI cohorts.  
No universal cut-offs for volumetry; substantial variability 
between acquisition protocols and measurement 
algorithms.  

Barkhof et al., 2007; Ferreira et 
al., 2015; Pereira et al., 2014; 
Jack et al, 1997 

Secondary 1: 
To explore the impact of covariates on the 
discriminatory abilities of the biomarker 
before clinical diagnosis. 

Partly 
achieved 

Impact of age, APOE-ɛ4 genotype and clinical 
presentation. 

Pereira et al., 2014; Geroldi et al., 
2006; Vos et al., 2013 

Secondary 2: 
To compare markers with a view to 
selecting those that are most promising 

Partly 
Achieved 
 

Various studies on association of two or more core 
biomarkers; usually best predictive value for combination 
of amyloid marker with an injury marker. 

Teipel et al., 2015; Brück et al., 
2013; Chen et al., 2011; Shaffer 
et al., 2013; Yuan et al., 2009; 
Jack et al., 2008b; Trzepacz et al., 
2014; Bouwman et al., 2007; 
Eckerström et al., 2010; Ewers et 
al., 2012; Galluzzi et al., 2010; 
Heister et al., 2011; Prestia et al., 
2013; Vos et al., 2012; Rhodius-
Meester et al., 2015 

Secondary 3: 
To develop algorithms for positivity based 
on combinations of markers. 
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Secondary 4: 
To determine a biomarker testing interval 
for phase 4 if repeated testing is of 
interest. 

Not applicable 
for vMTA; 
Preliminary 
evidence for 
HCV 

Not applicable for vMTA. Preliminary evidence on added 
value of hippocampal atrophy rates for predicting clinical 
progression to Alzheimer’s dementia in patients with MCI.  

Ridha et al., 2007; Leung et al., 
2010, 2013; Macdonald et al., 
2013; Henneman et al., 2009; 
McEvoy et al., 2011; Holland et 
al., 2012; Sluimer et al., 2009; 
Wang et al., 2009 

Phase 4—
Prospective 
Diagnostic 
Studies 

Quantify the 
biomarker 
accuracy and 
usefulness in 
patients 
diagnosed 
and treated 
based on the 
BM 
 

Primary: 

To determine the operating characteristics 
of the biomarker-based test in a relevant 
population by determining the detection 
rate and the false referral rate. Studies at 
this stage involve testing people and lead 
to diagnosis and treatment. 

Not achieved  

 

Secondary 1: 

To describe the characteristics of disease 
detected by the biomarker test—in 
particular, with regard to the potential 
benefit incurred by early detection. 

Not achieved  

 

Secondary 2: 

To assess the practical feasibility of 
implementing the diagnostic program and 
compliance of test-positive subjects with 
work-up and treatment recommendations. 

Preliminary 
evidence for 
vMTA; Not 
achieved for 
HCV 

Imaging integrated in standard work-up for dementia 
patients in most memory clinics. vMTA and quantitative 
assessment not yet widely implemented. 

Boutet et al., 2012; van der Flier 
et al., 2014 

Secondary 3: 
To make preliminary assessments of the 
effects of biomarker testing on costs and 
mortality associated with the disease. 

Not achieved  
 

Secondary 4: 
To monitor disease occurring clinically but 
not detected by the biomarker testing 
protocol. 

Not achieved  
 

Phase 5—
Disease 
Control Studies 

Quantify the 
impact of the 
biomarker-
based 
diagnosis on 
clinically 
meaningful 
outcomes and 

Primary: 
To estimate the reductions in disease-
associated mortality, morbidity, and 
disability afforded by biomarker testing. 

Not achieved  

 

Secondary 1: 

To obtain information about the costs of 
biomarker testing and treatment and the 
cost per life saved or per quality-adjusted 
life year 

Not achieved  
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Table 1: Available or required evidence indicating full, partial or lack of achievement of the phases adapted from the oncology framework (Pepe et al., 2001) 

for visual rating of medial temporal lobe atrophy (vMTA) and hippocampal volume (HCV). 

costs 
 Secondary 2: 

To evaluate compliance with testing and 
work-up in a diverse range of settings. 

Not achieved  
 

Secondary 3: 

To compare different biomarker testing 
protocols and/or to compare different 
approaches to treating test positive 
subjects in regard to effects on mortality 
and costs. 

Not achieved  
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Figure 1: Synopsis of the maturity of a visual rating of medial temporal lobe atrophy (upper panel) and hippocampal volumetry (lower panel) as borrowed 

from the oncology framework (Pepe et al., 2001). AD: Alzheimer’s disease; HC: healthy controls; HCV: hippocampal volume; MCI: mild cognitive impairment; 

vMTA: visual rating of medial temporal lobe atrophy
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Supplementary table 1: 

PhPhasP Phase Aim Aim-specific key words string  

Phase 1: preclinical 
exploratory studies 

Primary aim: To identify leads for potentially useful biomarkers 
and prioritize identified leads. 

NO STRINGS USED 

Phase 2: clinical 
assay development 
for clinical disease 

Primary aim: To estimate TPR and FPR or ROC curve for the assay 
and to assess its ability to distinguish subjects with and without 
disease.  

(“accuracy” OR “sensitivity” OR “specificity” OR “ROC” OR “predictive value”) AND (a) 
AND (b) AND (d).  

 Secondary aim 1: To optimize procedures for performing the assay 
and to assess the reproducibility of the assay within and between 
laboratories. 

(“standardization” OR “visual” OR “measure” OR “assessment” OR “reading” OR 
“quantification” AND (“reproducibility” OR “reliability” OR “agreement”) AND (a) AND (d) 

 Secondary aim 2: To determine the relationship between 
biomarker tissue measurements made on tissue (phase 1) and the 
biomarker measurements made on the noninvasive clinical 
specimen (phase 2).  

("autopsy" OR “autoptic” OR “patholog*” OR “neuropatholog*” OR “istopathol*”) AND 
MRI AND (a) AND (d)  

 Secondary aim 3: To assess factors (e.g. sex, age, etc.), associated 
with biomarker status or level in control subjects. If such factors 
affect the biomarker, thresholds for test positivity may need to be 
defined separately for target subpopulations.  

- (“APOE” OR “Apolipoprotein E”) AND (b) AND (d) 
- (“vascular risk factors” OR “white matter hyperintensities) AND (b) AND (d) 

 

 Secondary aim 4: To assess factors associated with biomarker 
status or level in diseased subjects—in particular, disease 
characteristics. 

- (“APOE” OR “Apolipoprotein E”) AND (a) AND (d) 
- (“vascular risk factors” OR “white matter hyperintensities) AND (a) AND (d) 
- (“early-onset” OR “late-onset”) AND (a) AND (d) 

Phase 3: Prospective 
repository studies 

Primary aim: To evaluate the capacity of biomarkers to detect pre-
clinical disease and define criteria for a positive biomarker test in 
preparation for phase 4.  

- ("follow-up" OR "followup" OR "conversion" OR "progression" OR “decline” OR 
"predict*") AND MRI AND (“visual” OR “rating”) AND (c) AND (d)  
- (“cut-off*” OR “cut-point”) AND (d)  

 Secondary aim 1:To explore the impact of covariates on the 
discriminatory abilities of the biomarker before clinical diagnosis.  

- (“APOE” OR “Apolipoprotein E”) AND (c) AND (d) 
- (“amnestic” OR “non-amnestic”) AND (c) AND (d) 
 

 Secondary aim 2: To compare markers with a view to selecting 
those that are most promising.  

("follow-up" OR "followup" OR "conversion" OR "progression" OR “decline” OR 
"predict*") AND (“combinat*” OR “associat*” OR “compar*”) AND MRI AND (a) AND (c)  

 Secondary aim 3:To develop algorithms for positivity based on 
combinations of markers.  

("follow-up" OR "followup" OR "conversion" OR "progression" OR “decline” OR 
"predict*") AND (“combinat*” OR “associat*” OR “compar*”) AND MRI AND (a) AND (c) 
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 Secondary aim 4:To determine a biomarker testing interval for 
phase 4 if repeated testing is of interest.  

("atrophy rates”) AND (a) AND (c) AND (d) 

Phase 4: Prospective 
Diagnostic Studies 

Primary aim: To determine the operating characteristics of the 
biomarker-based test in a relevant population by determining the 
detection rate and the false referral rate. Studies at this stage 
involve testing people and lead to diagnosis and treatment. 

(“diagnosis” OR “treatment”) AND (a) AND (c) AND (d) 

 Secondary aim 1:To describe the characteristics of disease 
detected by the biomarker test—in particular, with regard to the 
potential benefit incurred by early detection. 

(“clinical diagnosis” OR “treatment” OR “memory clinic”) AND (“benefits” OR “outcome” 
OR “improve*”) AND (a) AND (c) AND (d) 

 Secondary aim 2:To assess the practical feasibility of implementing 
the case finding program and compliance of test-positive subjects 
with work-up and treatment recommendations. 

(“clinical diagnosis” OR “treatment” OR “memory clinic”) AND (“benefit*” OR 
“compliance” OR “mortality” OR “morbidity” OR “QoL” OR “quality of life”) AND (a) AND 
(d) 

 Secondary aim 3:To make preliminary assessments of the effects 
of biomarker testing on costs and mortality associated with the 
disease. 

(“clinical diagnosis” OR “treatment” OR “memory clinic”) AND (“benefit*” OR 
“compliance” OR “mortality” OR “morbidity” OR “QoL” OR “quality of life” OR “cost*”) 
AND (a) AND (d) 

 Secondary aim 4:To monitor disease occurring clinically but not 
detected by the biomarker testing protocol. 

(“clinical diagnosis” OR “memory clinic” OR “criteria” OR “recommendation*”) AND 
(“accuracy” OR “sensitivity” OR “specificity” OR “ROC” OR “predictive value” OR 
“concordance” OR “confirm” OR “negative detection rate” OR “negative referral rate” OR 
“false negative rate”) AND (a) AND (d) 

Phase 5: Disease 
Control Studies 

Primary aim: To estimate the reductions in disease-associated 
mortality, morbidity, and disability afforded by biomarker testing. 

(“diagnosis” OR “detection”) AND (“benefit*” OR “compliance” OR “mortality” OR 
“morbidity” OR “QoL” OR “quality of life” OR “financial impact” OR “cost*” OR 
“effectiveness”) AND (a) AND (d) 

 Secondary aim 1: To obtain information about the costs of 
biomarker testing and treatment and the cost per life saved or per 
quality-adjusted life year 

(“diagnosis” OR “detection”) AND (“benefit*” OR “compliance” OR “mortality” OR 
“morbidity” OR “QoL” OR “quality of life” OR “outcome*”) AND (“financial impact” OR 
“cost*” OR “effectiveness”) AND (a) AND (d) 

 Secondary aim 2: To evaluate compliance with testing and work-up 
in a diverse range of settings. 

(“diagnosis” OR “treatment”) AND (“benefit*” OR “compliance” OR “mortality” OR 
“morbidity” OR “QoL” OR “quality of life”) AND (“primary care” OR “second level” OR 
“third level”) AND “memory clinic” AND “cost*” AND (a) AND (d) 

 Secondary aim 3:To compare different biomarker testing protocols 
and/or to compare different approaches to treating test positive 
subjects in regard to effects on mortality and costs. 

“diagnosis” OR “treatment”) AND (“protocol” OR “recommendation*” OR “criteria”) AND 
(“benefit*” OR “compliance” OR “mortality” OR “morbidity” OR “QoL” OR “quality of 
life”) AND (“financial impact” OR “cost*” OR “effectiveness”) AND (a) AND (d) 

 

(a) (“Alzheimer*”) 
(b) ("Healthy controls" OR "Cognitively normal" OR "controls" OR "normal") 
(c) (“MCI” OR “mild cognitive impairment” OR ”prodromal”) 
(d)  (“MTA” OR “medial temporal” OR “hippocamp*”) 


