Full Bayesian analysis of claims reserving uncertainty

Gareth W. Peters*  Rodrigo S. Targino* Mario V. Wiithrich'

May 20, 2016

Abstract

We revisit the gamma-gamma Bayesian chain-ladder (BCL) model for claims reserving in
non-life insurance. This claims reserving model is usually used in an empirical Bayesian way
using plug-in estimates for variance parameters, because this empirical Bayesian framework
allows us for closed form solutions. The main purpose of this paper is to develop the full
Bayesian case also considering prior distributions for variance parameters, and to study the

resulting sensitivities.
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1 Introduction

The chain-ladder (CL) algorithm is probably to most popular method to set the reserves for non-
life insurance claims. Originally, the CL. method was introduced in a purely algorithmic fashion
and it was not based on a stochastic model. Stochastic models underpinning the CL algorithm
with a statistical model were only developed much later. The two most commonly used stochastic
representations are Mack’s [5] distribution-free CL model and the over-dispersed Poisson (ODP)
model of Renshaw and Verrall [6] and England and Verrall [1]. In this paper we study the
gamma-gamma Bayesian chain-ladder (BCL) model which provides in its non-informative prior
limit another stochastic representation for the CL method. This was first considered in the
claims reserving context by Gisler [3] and Gisler and Wiithrich [4]. The typical application of
the gamma-gamma BCL model was done under fixed (given) variance parameters where plug-in
estimates were used, see Example 2.13 in Wiithrich and Merz [8] for such an empirical Bayesian
analysis. Of course, this (partially) contradicts the Bayesian paradigm. In a full Bayesian
approach one should also model these variance parameters with prior distributions. The aim
of this paper is to study the influence of such a full Bayesian modeling approach and compare

it to the empirical Bayesian modeling approach used in [8]. In particular, we aim at analyzing
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the sensitivity of the prediction uncertainty in the choice of these variance parameters. This is

crucial in solvency consideration and improves the crude estimates usually used in practice.

Organization.

In the next section we introduce the gamma-gamma BCL model and show that we recover the
classical CL reserves in its non-informative prior limit. In Section 3 we provide the prediction
uncertainty formulas in the long-term view and the short-term view, respectively. In Section 4
we give several real data examples and analyze the resulting sensitivities in the choice of the

prior distributions. All proofs are provided in Appendix A.

2 Gamma-gamma Bayesian chain-ladder model

We introduce the gamma-gamma BCL model in this section. In contrast to Model Assumptions
2.6 in [8] we also model the variance parameters in a Bayesian way. We then derive the claims
predictors in the non-informative prior limit which turn out to be identical to the classical CL
predictors, as seen in Theorem 2.2 below.

We denote accident years by 1 < i < I and development years by 0 < 5 < J. Throughout, we
assume I > J. The cumulative claim of accident year i after development year j is denoted by
C;,j, and Cj ; denotes the ultimate claim of accident year i. For more background information
on the claims reserving problem and the corresponding notation we refer to Chapter 1 in [8].

We make the following model assumptions.
Model Assumptions 2.1 (gamma-gamma BCL model).

(a) Conditionally given parameter vectors ® = (Og,...,0;_1) and o = (09,...,075-1), the
cumulative claims (C; j)o<j<g are independent (in accident year i), and Markov processes

(in development year j) with conditional distributions
-2 -2
Cij+1 ’{Ci,j,eﬂ'} ~ T (Ci,jUj ;0,0 ),
foralll<i<IT and0<j<J—1.
(b) The parameter vectors ® and o are independent.

(¢) The components ©; of © are independent and I'(vy;, f;(v; — 1))-distributed with prior pa-
rameters f; >0 and v; > 1 for 0 <j < J—1.

(d) The components o; of o are independent and m;j-distributed having support in (0,d;) for
given constants 0 < d; < oo for all 0 < j < J —1.

(e) (©,0) and C1yp,...,Cro are independent and C;o > 0, P-a.s., for all 1 <i < 1.
These model assumptions imply that we have the following CL properties

IE[CMHICLO,...,C,;j,G),a] = @]_1 Ci,jy (2.1)
Var(C’i7j+1]CZ-70,...,Cm,@,a) = @;20']2- Ci,j- (22)



Thus, for given parameter vectors ® and o we obtain a distributional example of Mack’s [5]
distribution-free CL model with CL factors (9]-_1 and variance parameters @]-_203-. Moreover, for
7j(-) being single point masses for all 0 < j < J — 1 we exactly obtain Model Assumptions 2.6
2

of [8] assuming given (known) variance parameters o5.

The main task in claims reserving is to predict the ultimate claims C; ;, given observations
Dy={Ci;: i+j<t 1<i<I 0<j<J}, at time t > 1.

In complete analogy to the derivations in Section 2.2.1 of [8], the application of Bayes’ rule

provides posterior 7 for the parameters (@, o), conditionally given observations Dy, for ¢t > I,

|

J—1 W+Z(t’”“c”1 (t==DAT
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From this we see that the posteriors of (65, ;) are independent for different development periods
0 <j<J-1. A non-informative prior limit for @;1 corresponds to letting v; — 1 (and the
terms f;(y; —1) will vanish in (2.3)). Therefore, we refer as the non-informative prior limit when
the (component-wise) limits v — 1 are taken, where we set v = (y0,...,7s-1)and 1 = (1,...,1).
We have the following theorem for the claims prediction under this non-informative prior limit

(the proof is given in the appendix).

Theorem 2.2 (CL predictor). Under Model Assumptions 2.1 and fort >1>i>t—n>t—J,
the Bayesian predictor for C;, in its non-informative prior limit is given by

n—1

) P FCL(t) def. ACL(t)
lim B (Cin| D] = G T 770 % 6

M ’
j=t—i

with CL factors ijL(t) defined by

FOL() _ th DA Crjv1

J (t—j—1)NI o
£:1 Ca]

Theorem 2.2 states that in the non-informative prior limit v — 1 we exactly obtain the clas-
sical CL predictor, see Mack [5]. Thus, we have found another stochastic representation that
underpins the CL algorithm with a statistical model. Therefore, we (may) use this model in
its non-informative prior limit to analyze the prediction uncertainty of the CL algorithm. In
contrast to Remark 2.11 of [8] we now obtain this result in the full Bayesian framework, also

considering prior distributions for the standard deviation parameters o.



3 Prediction uncertainty formulas

3.1 Long-term prediction uncertainty formula

The main purpose of this paper is to analyze the influence of the standard deviation parameters
o on the ultimate claim prediction uncertainty, where in contrast to Chapter 2 of [8], these
standard deviation parameters o are also modeled with prior distributions. We analyze the
prediction uncertainty at time ¢ > I in terms of the conditional mean square error of prediction
(MSEP) given by

msepc, ,ip, (E[Cis| Di) = E[(Ciy —E[Ciy| D))?| D] = Var(Ciy| Dy)
— Var(E[Cy4| D1, 0| D) + E[Var (Ciy| Dy, 0)| D). (3.1)

We aim at calculating this conditional MSEP in the gamma-gamma BCL model which provides,
in its non-informative prior limit v — 1, an uncertainty estimate for the CL algorithm, that is,
we aim at calculating the limit

_— ACL(t)\ def. . A

msepe; ;|o, (Cz',J ) = }/gnl msepg, ,p, (E[Ci.s| D).

For 0 <j <J—1andt> I, we define on the intervals (0, d;) the functions

Cij

<1 + i C;ﬁ) (t—j—1)AI (Ci;é“) E

J

(t j 1)AI Cz] II C, :

E i— i,j

Z(t F—DAI c”+1 o2 i=1 I'( =3
=1 U] J

This function (3.2) is the un-normalized marginal posterior density of o, given Dy, in the non-

hj(o;|Dy) =

informative prior limit (this we are going to see in detail below). The following lemma proves

integrability of hj(o;|D;) on interval (0,d;) (the proof is provided in the appendix).

Lemma 3.1. Choose 0 < j < J—1 andt > I. Assume that either (t —j — 1) A1 =1 or that
for at least one accident year 1 <i < (t —j — 1) A I we have

Cij+1 , 0Lt

il 7 ) (3.3)

)

Then, we obtain integrability
d;
ki (Dy) = /0 h; (0| Dy)do; < oo,

To obtain a finite conditional MSEP at time ¢ > [ in the non-informative prior limit we require,
for the data Dy, that

(t—j—1)AI
> Cy>dl holds for all t — I < j < J —1, (3.4)

see also proof of Theorem 3.2, below. We then define the variables

o2

®) J
v :
B Rl




Under (3.4) we obtain, P-a.s.,

2

0 < v < dj
J t—j—1)AI :
ézlj ) C g dJQ

This implies that under (3.3) and (3.4) the following two expectations are well-defined

E[o? (1+\If§.”)]1>t] = k(D) /d 2 (14 93) hy(oy1Dy) do, (3.5)

E[wl|D] = k(D) /\p i(05|Dy) doj, (3.6)

where P denotes the probability measure given by density 7i(0;) = kj(Dy)"thj(o;|Dy) on (0,d;).
We have the following estimate of the conditional MSEP for the CL algorithm (the proof is
provided in the appendix).

Theorem 3.2. Under Model Assumptions 2.1, (3.3) and (3.4), we have fort > I >i>t—J

J-1 J—1
e, o, (COH0) = (@gfu))?j;_i éc}(t) E[o? (1+0))|D,] nz];lﬂ (1+E[w?|D)])
- (e (11 0 lotlm) 1)

and the non-informative prior limit of the aggregated conditional MSEP is given by

mSepZ Ci,7| D¢ (Z CCL t)> = erse\pci,ﬂpt (ézc,:]L(t))

P ZCCL t)CCL (
J

<m

<
—

(2 [s]2) 1)

where the summations run overt —J +1 <1< T andt—J+1 <1< m <1, respectively.

j=t—1

To evaluate this prediction uncertainty formulas we still need to calculate the expected values
given in (3.5) and (3.6). This can be done efficiently with importance sampling or using numerical
integration (note that the corresponding density (3.2) is known up to the normalizing constant

k;(D;)), since one only needs to compute one-dimensional integrals.

3.2 Short-term prediction uncertainty formula

Recent solvency developments [2, 7] require a second, short-term uncertainty view. This second
view studies the one-year update when new information becomes available (which has a direct
influence on the actual earning statement of an insurance company). We therefore define the
so-called claims development result. Choose t > I > i > t—J and define the claims development

result of accident year ¢ at time ¢ + 1 by

CDREtH) =E[Ci | D] —E[Ci 1| Deya] -



Due to the martingale property of successive predictions (assuming integrability) we have
E[CDR{"V|D,] = 0.

For this reason the claims development result is predicted by 0. The conditional MSEP viewed

from time ¢ for this prediction is then defined by (subject to existence)

_ 1) _ o\ p,| =
msep by, (0) = E | (CDR{™Y —0)7| Dy| = Var (E[Crg| D]l D). (37)

%

The following lemma (which holds for any claims reserving method) relates the short-term view

(3.7) to the long-term view (3.1) (the proof is provided in the appendix).

Lemma 3.3. Assume (3.1) exists. Then, fort>1>1i>1t— J we have

msepc; ,p, (E[Cis|Di]) = mseppporn g, (0).

The aim is to study (3.7) in the non-informative prior limit v — 1 of the gamma-gamma BCL
model. We define the credibility weights fort > I >¢t—j>1and 0<j<J—1by

C s
>0=1C

We have the following theorem (the proof is provided in the appendix).

Theorem 3.4. Under Model Assumptions 2.1, (3.3) and (3.4), we have fort > 1>1>t—J

MSep ., (t+1),75 (0) i msep ., t+1), (0)
CDR{"V D, o | CDR{V D,

o) T (ee5[uf]o) -1

j=t—i+1

= (@ff(t))Q

(14 (el2) B[00

and the non-informative prior limit of the aggregated conditional MSEP is given by

def

—_— . .
MSEPS~ cpr(*+ D, ) = Jim mseps~ o e p, 0)

= Z H/ISH)CDR(.HI)\Dt (0)

2
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m,J

<m

(1+&[40[p)) TT (1+af%[s0]D]) - 1] ,

j=t—it1

where the summations run overt —J +1<i<T andt—J+1<i<m <1, respectively.

4 Numerical sensitivities

In this section we study several examples in order to analyze the sensitivities of the prediction
uncertainty to the choice of the prior distributions m;(-) for o;. We start by describing the
empirical Bayesian case considered in [8]. In the empirical Bayesian case we use plug-in estimates

o; for o; which is equivalent to choosing a degenerate prior distribution function m;(o;) =



) {0,=5,} that has a point mass of size 1 in ;. Therefore, we first need to provide the empirical
estimates ;. Observe that in the classical distribution-free CL model of Mack [5] one identifies
= @;20]2, compare formula (3) in Mack [5] to formula (2.2) above. If we use Mack’s [5]

estimates for these variance parameters we obtain at time t = I, for 0 < j < (J — 1) A (I — 3),
the result
2 i Crjt1 %MU)Q
= J
85 = 7 Z ( —Jj ) )
j 1 7]
andif j=J—1=1-—2, we set
-2 2 2 a2 2 4 2
Sj—1 = il {5J73’ SJ-2> 5J72/SJ73} = min {8J737 3J72/5J73} :
Since @j_l plays the role of the CL factor, see (2.1), we set for the empirical standard deviation

estimate of o;

a2
54
~ J .
T Fory for0<j<J—1
j

The model is now fully specified for obtaining the empirical Bayesian estimate [8] and Mack’s
distribution-free CL estimate [5] for the CL reserves and the corresponding conditional MSEPs.

We calculate these for the data given in Table A.1 of [8], see also Table 2 in the appendix (where
L(I)

we additionally provide the parameter estimates ]?JC , §; and d;).

accident CL reserves emp. Bayes’ Mack’s  emp. CDR

year i RiCL(I) msepl/ msepl/2 msep1/2
1 0

2 15.126 0.267 0.267 0.267

3 26.257 0.914 0.914 0.884

4 34.538 3.058 3.058 2.948

5 85.302 7.628 7.628 7.018

6 156.494 33.341 33.341 32.470

7 286.121 73.467 73.467 66.178

8 449.167 85.399 85.398 50.296

9 1°043.242 134.338 134.337 104.311

10 3'950.815 410.850 410.817 385.773

total 6°047.061 462.990 462.960 420.220

Table 1: CL reserves RZCL(I) and rooted conditional long-term MSEPs in the non-informative
prior limit of the gamma-gamma BCL model of Theorem 3.2 with priors 7;(o;) = ¢ {0,=5,}"

Mack’s formula [5] and the conditional short-term MSEP of Theorem 3.4 for the data of Table
2.

This then provides the results given in Table 1 where the CL reserves are defined as the prediction

of the outstanding loss liabilities at time ¢t = I, for I > ¢ > I — J given by
CL(I ACL(I
R () :C“( )_CU_Z,.

)

Note that these results coincide with Tables 2.4 and 2.5 of [8]. Moreover, we remark that

> Cuj>57 forall 0 <j<J—1,



which, in particular, means that (3.4) holds for any d; € (7}, Zé;{ -1 Crj)-
The goal now is to challenge these results by replacing the empirical estimates o; by non-trivial
prior densities 7;(-) for o;. To study the sensitivities we make different choices of the prior
density 7;(-), namely, we choose integers k € {2,...,20} and select uniform priors for m;(-) on
the intervals

(0,dj) = (0,k - 7;) for0<j<J-1. (4.1)

These choices guarantee that the support (0, d;) of m;(-) contains the empirical estimate ¢; and
for increasing k the prior distribution 7;(-) of o; gets less informative; for & = 20 there is a
positive probability that o; is up to 20 times as large as the empirical estimate ;. Moreover,
we note that in all our examples relation (3.4) is fulfilled for the maximal d; = 20 - ;.

For these choices k € {2,...,20} in (4.1) we calculate the rooted conditional long-term MSEP
for aggregated accident years provided in Theorem 3.2 and the rooted conditional CDR MSEP
(short-term view) for aggregated accident years provided in Theorem 3.4. The case k = 1 is
identified with the empirical Bayesian estimate provided in Table 1 (note that this corresponds
to the priors 7j(0j) =6 {0 =Ej})' The only remaining difficulty for this analysis is the calculation
of the one-dimensional integrals (3.5)-(3.6). This can be done either with importance sampling
or with numerical integration. We have seen that in our examples it was sufficiently precise

to divide the intervals (0,d;) into M = 1’000 equally spaced sub-intervals (ajm), aémﬂ)) with
(M+1)

agl) =0 and a; = d;j and then approximate the denominator by the discrete sum
% R 1 (m) | (m+1)
k(D) = [ hy(og|Dr) doy ~ Zl e~ 1 (@™ +a{™V) 2| D),
m=1 a; j

and analogously for the remaining terms. In Figure 1 we provide these (un-normalized) posteriors
hj(oj|Dr) for 0 < j < J—1 and for uniform priors 7;(-) having £ = 2 (in red) and k£ = 5 (in blue),
the dotted green line provides the empirical estimate o;. We see that the bigger development
period j the more volatile is the posterior of o;. The extreme case j = J —1 = I — 2 means that
we have only one single observation C ; from which we cannot estimate a variance parameter
and, henceforth, the posterior of ¢;_; remains a uniform distribution, see Figure 1 (bottom
rhs), this is also seen in derivation (A.3), below.

The conditional MSEP results are presented in Figure 2. The left-hand side (lhs) of Fig-
ure 2 gives the CL reserves ), RZCL(I) aggregated over all accident years 2 < ¢ < [ and

the corresponding confidence bounds of + 2 rfse\plé2 Ci s |Ds >, 6’5}(1 ))7 see Theorem 3.2, and

! (0), see Theorem 3.4, for the different values of k € {2,...,20}. As

/2
S, CDRU |y
expected, we see that the confidence bounds increase with increasing prior uncertainty in ;(-)

+ 2 msep

(i.e. increasing k), however the graph seems to stabilize rather quickly (around k = 5) in this
example. The right-hand side (rhs) of Figure 2 shows this increase relative to the empirical
Bayesian case. We observe an overall increase of roughly 34% (rooted total MSEP) and 29%
(rooted CDR MSEP) relative to the empirical Bayesian one. Thus, we observe an increase, but

not a dramatic one.
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Figure 1: Un-normalized posteriors h;(o;|Dr) for 0 < j < 8 and uniform priors 7;(-) with

k = 2,5, the z-axis is truncated at 6 - 7.

In the remainder we present more examples of different lines of business. In Figure 3 we consider
a motor third party liability (MTPL) insurance portfolio. For this portfolio we have I = 22
accident years and final development period J = 15. We see a similar picture as in the previous
example: the increase of the rooted conditional MSEP stabilizes around & = 5 and the total
increase relative to the empirical Bayesian estimate is roughly 18% and 16%, respectively. The
reason for this fast convergence is that the posterior uncertainty in o;, given Dy, is rather small
for all development periods j regardless of the choice of the prior distribution. This comes from

the fact that we have a large trapezoid (22x16) and even for the latest development period
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Figure 2: Example of Tables 1 and 2, the z-axis displays the different choices k € {1,...
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in (4.1): (lhs) CL reserves ), RZ»CL(I) aggregated over all accident years 2 < ¢ < I and con-
fidence bounds of + 2 rooted conditional MSEPs in the long-term view (total MSEP over all
development periods) and the short-term view (CDR MSEP); (rhs) rooted conditional MSEPs

for k € {2,...,20} divided by the corresponding

corresponds to k = 1).
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Figure 3: Motor third party liability (MTPL) insurance portfolio of a 22x16 trapezoid; relative
increase is 18% (rooted total MSEP) and 16% (rooted CDR MSEP).

J = 15 we have 7 observations.

In Figure 4 we consider a general liability insurance portfolio of size I = 21 and J = 13, the

relative increase amounts to roughly 14% and 12%, respectively, and the picture is very similar
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Figure 4: General liability insurance portfolio of a 21x14 trapezoid; relative increase is 14%
(rooted total MSEP) and 12% (rooted CDR MSEP).
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Figure 5: Industrial property insurance portfolio of a 15x7 trapezoid; relative increase is 14%
(rooted total MSEP) and 13% (rooted CDR MSEP).

to MTPL insurance because posterior uncertainty in o; is again small due to the size of the
trapezoid and the fact that we have 8 observations in the last column J = 13.

In Figure 5 we consider an industrial property insurance portfolio of size I = 15 and J = 6,
the relative increase amounts to roughly 14% and 13%, respectively. Thus, again we obtain a
rather similar picture to the previous examples. Note that here we have 9 observations in the
last column J = 6.

As a rule of thumb we can say that if the right-end point of the posterior functions h;(o;|Dy),

11



given in Figure 1, is sufficiently smooth then increasing the support of the uniform prior m;(-)
does not substantially increase the uncertainty estimates. This holds true as long as we do
not get to close to the threshold (3.4) because at the threshold the conditional MSEP becomes

infinite, see also Theorem 2.12 in [8].

5 Conclusions

We have considered the full Bayesian version of the gamma-gamma BCL model. This model
provides the CL reserves in its non-informative prior limit. Therefore, it can be used to analyze
the prediction uncertainty of the CL claims reserving method. The main purpose of this paper
was to analyze the contribution of the variance parameters to the prediction uncertainty in the
case where these variance parameters are also modeled in a Bayesian way. In our examples
this additional source of uncertainty increases the rooted conditional MSEP between 10% and
40% (compared to the empirical Bayesian version presented in [8]). This increase is bigger for

triangles I = J — 1 and becomes the smaller for trapezoids to bigger the difference I — J is.

A  Proofs

Proof of Theorem 2.2. For explicit details we refer to Section 2.2.1 in [8]. From (2.3) we see that the posteriors
of (©;,0;) are independent for different development periods 0 < j < J — 1. Lemma 2.7 and Corollary 2.8 of [8]
then imply fort > I >i>t—-n>t—J

n—1
E[Conl Diyo] = Coi [] (wy) FoHO 4 - wy))fj) : (A1)
j=t—i
with credibility weights
(t—g—1)AI Cg )
(t) =1 2
w;’ = —= € (0,1).
! MG 02 (- 1)
This implies using the tower property and posterior independence (2.3)
n—1
E[CialD] = E[E[Cinl Duoll D) = i [] E[(w 7750+ 0 -w)s;)| 2]
j=t—i

= Cii—i H (E [w](.t)

j=t—i

Dt} FoRO 4 (1 ~E [MJ@

])s).

The remains the consideration of the conditional expectations of the credibility weights. The bounded support

assumption on o; implies, P-a.s.,

ot (t—j—1)AT Coi
W® = T <<, (A.2)

= t=j—DAI <
é:f N Gy, +dZ (v —1)

)

Since the D;_1-measurable lower bound ggt converges to 1 as y; — 1, the claim follows. ]

Proof of Lemma 3.1. The case (t —j — 1) AI =1 can easily be treated because in that case we have

dj ) .
k]'(Dt) = / & 7Tj(0'j)d0’j = — < 0. (AS)
0
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To prove the integrability on (0,d;) in the case (¢t —j — 1) AI > 1 we need to check that h;(o;|D;) is well-behaved

for 0; — 0. We consider the following logarithm

(t—j—1)AI
(04|Dr)) = log Uf( > Cign
i=1

log (h;
(t—j—1)AI a (t—j—1)AI Ci
+ logD <1+ Z l;) - Z logF< ) +log (m;(05)) . (A.4)
J

o4
=1 =1

C‘,LJ

(t—i—1)AI
> (H'E )(t G—1)AI Cu
.7

II oo

J

The first line on the right-hand side behaves for o; — 0 as

(t—j—1)NI C C
2 4,7 i,j+1
log (aj)Jr g > log DAl +0(1).
J+

i=1 J =1

The terms involving the gamma functions I'(+) are treated by Stirling’s formula
log'(z) = %10g(27r)+ (;cf 7> logx — x + o(z), as T — 0o.
The identity I'(1 4+ z) = zI'(z) and Stirling’s formula applied to the first two terms on the second line on the

right-hand side of (A.4) provide for o; — 0

(t—j—1)AI i (t—j—1)AI i 1 (t—j—1)AT i (t—j—1)AT i
7(t J—NI c, 1 . o\ on

> 1(5-3) g<a;> ( )]+

t—j—1)AI

gD

J
Ci,j
= —log(a’?)+ Z o; o +

i=1 J

If we merge these two terms we obtain for o; — 0 behavior

(t—j—1)NI (t—j—1)NI .
Ci]' C'j+1 =1 Ce,j 1_(t_.7_1)/\1 2
;- log | — + log(a) + O(1)
; o3 ( Cig 3077 Cogia 2 ’
(t—j—1)AI (t—j—1)AI
1 i1 “CL(#) 1-(t—g-—1AI
:072 [ g C’Jlog< C] ) E C,]log(f ) + 2 IOg( )+O( )
L®, Therefore,

By assumption, for at least one accident year 1 < ¢ < (¢t —j — 1) A I we have C; j41/Ci; # f

Jensen’s inequality is strict in the following derivation

(t—j—1)AI c, (t—j—1)A (t—j—1)AI o o
,J+1 _ %7 4,j+1
I D SR S e e
] pr 1 oy iJ
(t—j—1)AI (t—]—l)/\] C C (t—j—1)AI
i,j i,j+1 _ o FCL(t)
=1 i=1 =1 Ly T i=1

Therefore, we can define the following strictly positive constant
(t—j—1)ANIT (t—j—1)AI
o . TCL(t)\ _ i,5+1
€= 2; Cwlog(fj ) Z C,;log( o ) > 0.
i=

This implies for o; — 0 and a strictly positive constant € > 0

hj(o;|Ds) = eXp{—JZ-F 3
This provides integrability in 0 and completes the proof.
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Lemma A.1. Under Model Assumptions 2.1, we have in the non-informative prior limit for
t>1>1i>t—J (subject to existence)

. ~ACLM)Y o L
msepe, ,|p, (C. F ) = ’171_>m1 msepc, | |p, (E[Ci g Dy]) = %1_}1111151 [Var (C; | Dy, 0)| Dy .

1y

Proof of Lemma A.1. We have for the first term in the conditional MSEP decomposition (3.1), using (A.1),
see also Lemma 2.7 and Corollary 2.8 in [8], and using posterior independence (2.3)

Dt>
2, (H E{( 0 FOLW 4 (1,0 f]) ‘ ] H ]E{ 0 FOLW 4 (1 0y, D"F)'

is sandwiched, P-a.s., between a D;_i-measurable lower bound g;-t) that converges to 1 as v; — 1 and

J-1
Var (E [C;, 7| Dy, 0]| Dt) = Cit_iVar ( H (w;-t) ]/CJ-UL(t) +(1-— W§t>)fj>

j=t—1

Since w](-t)

1, see (A.2), we obtain that the right-hand side of the last identity converges to 0 as v — 1. This proves the

lemma. O

Formula (2.3) provides the posterior (marginal) distribution of ¢}, conditionally given D;. This
posterior distribution depends on the explicit choice of the prior parameter v; > 1, to illustrate

this we use the following notation 77(%)(0‘7|Dt) =7 (0| Dy).

Lemma A.2. Choose 0 < j < J—1andt > I, and assume that either (t —j —1)ANI =1 or
for at least one accident year 1 < i < (t —j — 1) A1 we have C; j11/C;; # ijL(t). Consider

Sj(.w) ~ Wj(»'“)(aj]Dt). We have the following convergence in distribution

lim S0 @ 5~ Fi(0;) = k(D) (04| Dy).

vi—1 J

()

We use the notation S j for that standard deviation parameter o; in the above lemma to more

(7]

clearly indicate the dependence of the law of the corresponding random variable S; ) from the

choice of the prior parameter v; and to clearly distinguish random variables S](-Wj ) from their

potential realizations o; in the domain (0, d;).

Proof of Lemma A.2. Convergence in distribution is implied by the corresponding convergence of the moment

generating functions, that is, for any r € R we aim at proving
lim E [exp{rsyj)}‘ Dt] = E [exp{rS;}| D] .
v;—1

From (2.3) we obtain posterior distribution, conditionally given D,

(t—j—1)AT Cy j )
—

J—1 (t—j—1)AI c 7('Yj+ i=1 5
7(o|Dy) :/w(a,amt)de « ] l(fj(% D+ Y 2@_“)
j=0 i=1 J

(t—j— I)AI (t—j—1)AI (Cw'2+1) o3
E : ' %5 .
( . ) | o m;i(0;5) 1 (A.5)
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This again provides posterior independence between the different development years 0 < j < J — 1. We define

the corresponding marginal functions on the intervals (0, d;)

o ('YJ+E(t J—1)AT C7.,> (t—j—1)AI (Ci;,;rl) ,
h]' 7 (05]Dy) = ) (t=j—1)AT Ci 5 H e
i = =1 r

el . .
( ) Z(t i—1)AI C;y, 7+1) J i=1 of = 0-]2,
]

thus the density of S](-W) is given by

7 (0;|Dy)
di 4 (v4) ’
Jo? by (0;|D:s)do;

7rJ(‘“/j)(ffjﬂ)t) =

and we aim at proving the following convergence of moment generating functions

dj ro; g (V5) dj ro;

) e"%ih;"? (0;|Dy)do; 7 e"%hi(o;|Dy)do;
lim & [exp{rs{"”}| D] = tim Jo s oiPados g (05 D1)do;
v;—1

= = E[exp{rS;}| D¢].
vj—1 fodj h;vﬁ(aj'Dt)de k;(Dy) [exp{rS;}| D]

Firstly, observe that we the following point-wise (in ¢;) convergence on the interval (0, d;)

lim h7 (01D) = hy(0;|Dy).

Vi
Thus, there remains to prove the existence of a uniform integrable upper bound such that one can apply Lebesgue’s

dominated convergence theorem which proves the claim.
To find an integrable upper bound we first we remark that for all » € R we have uniform bound on (0, d;)

0 <e™ < max{e™,1}.
There remains the consideration of h;’”)(aﬂ’Dt). We set ¢; = Z(t =N o 5,; and cjp1 = Z(t JmnI Ci,j+1 and

Cyi
A 02, i -1
H(t J—1)AI (%) i T (%) m;(0j). Then we have
J

WP (0,D) = (f505 = 1) + e511/02) "I (3 4 ¢5/02) ploy)

= ploy) / 25T exp{—(f5(1; — 1) + ¢j41/0%)a} da
(0]

= P(ffj)/ exp{(y; — 1) (logz — fjz)} %/ exp{—xc;j41/07} dz.
(0]

Define the function ¢(z) = logx — fjz. It satisfies

lim {(z) = —oc0 and lim £(z) = —o0.
x—0 T—00

Since log = is concave there are only two cases:
(i) £(z) <0 for all z € [0,00). In this case we have for v; > 1

j < Ci 02.
W 0,D) = ploy) / exp{(7; = 1) (@)} 2%9/% exp{~we;+1/07} de
0
g2 T(1+4c¢j/o?
< ploy) / o7 exp{—acs o3} da = plo) D) (o,[D),
0 (cj1/02)!+9/7

Lemma 3.1 then provides the integrable upper bound in the first case (i) and we may apply Lebesgue’s dominated

convergence theorem with proves the claim.
(ii) There exists = € (0,00) such that £(z) > 0. In this case concavity of logz implies that there exist 0 < z1 <
x2 < oo such that £(z) < 0 on [0,z1] U [z2,00) and £(z) > 0 on [z1,z2]. We then have

B (05D) < ploy) / #9/%5 exp{~wey i /o] da
0

+ p(aj)/ (exp {(75 — 1) €)} — 1) /" exp{—wc;i1 /o7 } da.

z1
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Since we consider the limit 7; — 1 we may (and will) w.l.o.g. assume that «; < 2. This implies

K= sup exp{(7; — 1) £(x)} = (f;e)" € (1,00).
1<v; <2, w1 <az<w3

Thus, in this second case (ii) we have for 1 < ; < 2

WD (0;1D) < K hy(o,Dy),

and we have an integrable upper bound also in this case. This finishes the proof of Lemma A.2. m|

Proof of Theorem 3.2. Due to Lemma A.1 it is sufficient to study the limit
lim E [Var (Cy, 7| D, 0)| Dy] .
y—1

The inner conditional variance Var (C;, 5

D¢, o) exactly corresponds to the situation of known standard deviation
parameters . We can therefore directly apply Theorem 2.12 of [8] to obtain this conditional variance. Assumption
(3.4) implies that this conditional variance is finite, P-a.s., in o; and posterior independence of parameters, see

(A.5), implies that we can decouple the corresponding (outer) conditional expectations. This provides the following

identity
J—1 j—1 )
E[Var(Cis| Dio)| D] = Cori Y { E [f:;“) Dt} E {0]2- (f;’“)) (1+<1>]f‘“)‘u]
j=t—i \m=t—i
J—1 )
% H E {(fﬂ”) (1+q)’;rle(t)) Dt:| }
n=j+1
J—1 R 9 . J—1 R 9
st 0 E[(f;’“)) (1+@;J<>)‘Dt] 1 E[(f;’“)) ‘D] ,
j=t—i j=t—i
with )
(I,“_/_y‘(t) _ ]
J zt:—lj—l)AI C[yj +0'J2('Y] _ 2)
and conditional BCL factor
o ne
7O =l FPEO 41wl g, (A.6)

(t)
J
1, see (A.2), we obtain

Since w; "~ is sandwiched, P-a.s., between a D;_i-measurable lower bound g;-t) that converges to 1 as 7; — 1 and

lim E {}?(t)

y—1

y—1

N\ 2 9
Dti| = };CL(t) and lim E {(f;(t)) ’Dt:| _ (f’-;CL(t)) 7

and moreover

~ 2 )
lim E |:a]2 (f;(t)> (1 + @;J(t)) ‘ Dt]

y—1

N2 , 2 ,
lim E {(f;(t)) (1+<1>]J(”)‘Dt] - (ff“”) lim E {1+<1>j.f(“

2

y—1

Di|.

y—1 y—1

Observe that we have point-wise (in o) convergence, P-a.s.,

2
lim @70 = % = g®
v J (t—j—l)/\IC ) 2 J -

=1 2§ — 0j

Since for any «y; € [1,2] the random variables @;’j(t) are uniformly bounded in o; on the interval (0, d;), the claim
of the theorem follows completely analogous to the one of Lemma A.2. The claim for the aggregated claim is also

proved completely analogously. a
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Proof of Lemma 3.3. Observe that (E[C;, D¢=i,....i+s is a Dy-martingale with E [C}, 7| Di+s] = Cj,5. Using
| —E[Ci,7] D)) = (—CDREtH))t of a martingale has uncorrelated

components we receive for t > I >i>t—J

that the innovation process (E[C;,

msepe, o, (E[Cia| D)) = Var(Cis|Di) = Var(E[Ciy| Dir]| D)
= Var(E[Cij|Dit1] — (B[Cig| Des1] — E[Ci | Dits])| Dr)
= VaI“(IE[CI J|Dt+1]|Dt —&—Var(IE[CZ J|Dt+1]— [ i7J|Di+JHDt)
> Var (E[Cis| Dii][Dr) = msep ) g, (0)
This proves the claim. a

Lemma A.3. We have the following identity fort > 1 >t—j>1and0<j<J—1
(1+9)) T o1) -1 (a@)_l o
J Cri: Y J i

Proof of Lemma A.3. We calculate the left-hand side

2 2 2
(t) 9; . _ (o o; B
<1 s ) <Ct—m' ! 1) Lo <1 : M Gy - 0?) <Ct—m' )

2 2 2 2
_ 94 9 9;
Ci—j,; ét:?*l)M Coj — Ct 3sd Z(t I=ON o Cej — 0’]2
= o2 M Cry =0 4 G+ 0]
= o ——
Ci—ji ( M Gy - Uf)
(t)y—1
_ 2 (o;7) VOISR
= 9 SG—j—DAl C, S (a; )57
=1 6j — 9
This proves the claim of the lemma. ]
Proof Theorem 3.4. We have
Var (E[Cis| Disa]|Di) = E[E[Cis|Dipa]’| D] —E[Cis| D).

Theorem 2.2 implies that the last term converges to (@C JL(t))Q, so there remains the consideration of the first
term in the identity above. Recall the definition of the conditional BCL factor (A.6). Note that we have for
t>I>t—j>1land J—12>352>0

}’c;g(t+1) _ w](t+1) J’C;CL(H»I) el _w§t+1))fj
- ét—lj)/\l Ce, (t j)m Cojir . ét 1])/\10 ; ;
- AT T - AT J
Et 1])A Cej+ ‘7 (=1 gt:l])A Crj ét 1])A Cej+ U (=1
_ 0 Cgin ®\ [ @ 7oL O] = o Cimdg ® 7o)
=Y o, +<1_”j>[wj i+ 0 —w )fj} =Y TaL,, +<1_”j>fj ;
where we have defined o
(t) t—J,J
= = € (0,1).
— I
! N Cpjt 02 (45— 1)

Using independence between different development periods j we obtain for i + J >t + 1

J—1

C —7,3 To
E [Ci,J| Dt+1} = Clit—it1 H <E |:Z/J(.t> ’ Dt+1] Zt—g, g+l +E {(1 . VJ(_t)) fj (t)

j=t—i+1 Cr-ss

DmD ,
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where these conditional expectations are taken w.r.t. o;, given D;11. The above formula is analogous to the one
found in the proof of Theorem 2.15 in [8]. We need to calculate the second moment of this expression. We are
going to sandwich this random variable and then consider upper and lower bounds, respectively. First, note that
we have P-a.s., see (A.2),

—(t)

78 def. (1) ZOL(t) 7o (t) FCL(t) () def.
ij = Wy f]' < fj < fj + 1723' i = f]

t =(t)
Observe that fj ) and f; are Di-measurable. Moreover, we obtain D;-measurable bounds, P-a.s.,

() def. Ci—jyj PO R BN O}

Zj —j =Y =t J
o1 Gy +d2(v; = 1) i Ce;

Putting everything together we have (positive) lower and upper bounds, P-a.s.,

J-1
Cejj )
Cit—it1 H (V;t) %ﬁl + (1 - O‘;t)) 1, )

y
j=t—i+1 7+

J-1 O —)
< E[Cig|Dir1] < Citiva H <a§'t) e s (1725']&)) f; >

Co—ii
j=t—it+1 -

Conditionally given Dy, the only random terms in the lower and upper bounds are C; t—it1,...,Ci—s41,7. These
random terms all belong to different accident years and different development periods. Using conditional inde-

pendence between different accident years, given ® and o, as well as posterior independence of parameters in

provides the following bounds

different development periods j implies that we can exchange the conditional expectation and the product, which
J—1
E [Czt—i+1| Dt] H E

2
) Ci—jj+1 @\ 7
vt ot 1)
j=t—it1 t=3d

J—1 . —() 2
< E[E[Ciy| Dl D] < E[Cloin|D] [ E <a§_t> MJF(FH?)) 7, >

Y
j=t—it1 -

Dy

Dt] |

There remains the calculation of these terms. We start with the conditional variance of Cj¢—;11, given Dy,

Var (Ci t—iy1]| Dt) [Var (Cit—it1| Dt, ©,0)| D] + Var (E [Ci4—it1| Dy, ©, o] Dy)
[@;Eio'ffici,t—i Dt] + Var (@;11'01‘,75—1' Dt)

[0, %07_:| D] Cis + E [0, %] Di] CFos — (B[O,
[

E [9;_21 Dt,O'] (Utz—ici,tfi + C’it—i)

Dt] Ci,t—i)2
Dt] —E[Cit—it1] D)

~ 2 )
= E {( 2’_(?) <1+¢Z:L<t>) (07-iCiv—i+ CPiy)

Dt:| —E[Cit—it1] Dt]2 ,

this was also obtained in the empirical Bayesian model in Lemma C.1 of [8]. Using the definition of EHDt] and

the derivations in the proof of Theorem 3.2 in the second step as well as Lemma A.3 in the third step, we obtain

UmE [CF_ | D] = }11—>H11E [(:U_(?)Q (1 + q):i;_i(t)) (02-iCiumi + C20_y) Dt:l

~y—1
— (70 V&l (149w (ot
= it + W, I +1)|D:
1,t—1
_ (&t YV (14 (oa®) E[o®
- i,t—i41 + Qy E \Iltfi D, .

18



Finally, we need to consider the terms under the product. We have for j =t —i+1,...,J —1

Dy

2
El(,® Ci—jjt1 " <1 B a(.t)) f(t)
7 Gy P

Ci—j,j 2t) Ci—jj 2(t)
(s S (o) ) o (o)

t—3,3

® \2 )
I . @ E[Cijj1| D] ( B (t)) A0
= <Ctj,j> Var (Ci—j,j+1| Di) + <Vj Crrs + (1 a; ij .

Moreover, we have

E [Ci—j,j+1| D
and }\.CL(t) = lim ﬁt) < lim ElCisyn| D]
J y—177 y—1 t—3,9 y—1

lim v = a;t)

=(t)
v <lim f, = f7H0.
y—1

J

This implies

2

.. 2

lim B [(ng Cisatn 4 (10 fj}f)) D, p] 1) (770,
v t—j.s =

QI (t)
(aj E [\I/j

and completely analogously for the upper bound. The claim for the aggregated claim follows also completely

analogously. This completes the proof of the theorem. m]
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