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Abstract

Sensory neurons give highly variable responses to stimulation, which can limit the

amount of stimulus information available to downstream circuits. Much work has investi-

gated the factors that affect the amount of information encoded in these population

responses, leading to insights about the role of covariability among neurons, tuning curve

shape, etc. However, the informativeness of neural responses is not the only relevant

feature of population codes; of potentially equal importance is how robustly that informa-

tion propagates to downstream structures. For instance, to quantify the retina’s perfor-

mance, one must consider not only the informativeness of the optic nerve responses, but

also the amount of information that survives the spike-generating nonlinearity and noise

corruption in the next stage of processing, the lateral geniculate nucleus. Our study iden-

tifies the set of covariance structures for the upstream cells that optimize the ability of

information to propagate through noisy, nonlinear circuits. Within this optimal family are

covariances with “differential correlations”, which are known to reduce the information

encoded in neural population activities. Thus, covariance structures that maximize infor-

mation in neural population codes, and those that maximize the ability of this information

to propagate, can be very different. Moreover, redundancy is neither necessary nor suffi-

cient to make population codes robust against corruption by noise: redundant codes can

be very fragile, and synergistic codes can—in some cases—optimize robustness against

noise.
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Author summary

Information about the outside world, which originates in sensory neurons, propagates

through multiple stages of processing before reaching the neural structures that control

behavior. While much work in neuroscience has investigated the factors that affect the

amount of information contained in peripheral sensory areas, very little work has asked

how much of that information makes it through subsequent processing stages. That’s the

focus of this paper, and it’s an important issue because information that fails to propagate

cannot be used to affect decision-making. We find a tradeoff between information content

and information transmission: neural codes which contain a large amount of information

can transmit that information poorly to subsequent processing stages. Thus, the problem

of robust information propagation—which has largely been overlooked in previous

research—may be critical for determining how our sensory organs communicate with our

brains. We identify the conditions under which information propagates well—or poorly—

through multiple stages of neural processing.

Introduction

Neurons in sensory systems gather information about the environment, and transmit that

information to other parts of the nervous system. This information is encoded in the activity

of neural populations, and that activity is variable: repeated presentations of the same stimulus

lead to different neuronal responses [1–7]. This variability can degrade the ability of neural

populations to encode information about stimuli, leading to the question: which features of

population codes help to combat—or exacerbate—information loss?

This question is typically addressed by assessing the amount of information that is encoded

in the periphery as a function of the covariance structure [6, 8–24], the shapes of the tuning

curves [25, 26], or both [27, 28]. However, the informativeness of the population responses at

the periphery is not the only relevant quantity for understanding sensory coding; of potentially

equal importance is the amount of information that propagates through the neural circuit to

downstream structures [29, 30].

To illustrate the ideas, consider the case of retinal ganglion cells transmitting information

about visual stimuli to the cortex via the thalamus, as shown in Fig 1. To quantify the perfor-

mance of the retina, one must consider not only the informativeness of the optic nerve

responses (Ix(s) in Fig 1A), but also how much of that information is transmitted by the lateral

geniculate nucleus (LGN) to the cortex (Iy(s) in Fig 1A) [31]. The two may be very different, as

only information that survives the LGN’s spike-generating nonlinearity and noise corruption

will propagate to downstream cortical structures.

Despite its importance, the ability of information to propagate through neural circuits

remains relatively unexplored [31]. One notable exception is the literature on how synchrony

among the spikes of different cells affects responses in downstream populations [32–36]. This

is, however, distinct from the information propagation question we consider here, as there is

no guarantee that those downstream spikes will be informative. Other work [25, 29, 30, 37, 38]

investigated the question of optimal network properties (tuning curves and connection matri-

ces) for information propagation in the presence of noise.

No prior work, however, has isolated the impact of correlations on the ability of popula-

tion-coded information to propagate. Given the frequent observations of correlations in the

sensory periphery [6, 8, 17, 39–45], and the importance of the information propagation prob-

lem, this is a significant gap in our knowledge. To fill that gap, we consider a model (Fig 1B;
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described in more detail below), in which there are two layers (retina and LGN, for example).

The first layer contains a fixed amount of information, Ix(s), which is encoded in the noisy,

stimulus-dependent responses of the cells in that layer. The information is passed to the sec-

ond layer via feedforward connections followed by a nonlinearity, with noise added along the

way. We ask how the covariance structure of the trial-to-trial variability in the first layer affects

the amount of information in the second.

Although we focus on information propagation, the problem we consider applies to more

general scenarios. In essence, we are asking: how does the noise in the input to a network inter-

act with noise added to the output? Because we consider linear feedforward weights followed

by a nonlinearity, the possible transformations from input to output, and thus the computa-

tions the network could perform, is quite broad [46]. Thus, the conclusions we draw apply not

just to information propagation, but also to many computations. Moreover, it may be possible

to extend our analysis to recurrent, time-dependent neural networks. That is, however, beyond

the scope of this work.

Our results indicate that the amount of information that successfully propagates to the sec-

ond layer depends strongly on the structure of correlated responses in the first. For linear neu-

ral gain functions, and some classes of nonlinear ones, we identify analytically the covariance

structures that optimize information propagation through noisy downstream circuits. Within

the optimal family of covariance structures, we find variability with so-called differential corre-

lations [22]—correlations that are proven to minimize the information in neural population

activity. Thus, covariance structures that maximize the information content of neural popula-

tion codes, and those that maximize the ability of this information to propagate, can be very

different. Importantly, we also find that redundancy is neither necessary nor sufficient for the

population code to be robust against corruption by noise. Consequently, to understand how

correlated neural activity affects the function of neural systems, we must not only consider the

impact of those correlations on information, but also the ability of the encoded information to

propagate robustly through multi-layer circuits.

Fig 1. The information propagation problem. This problem is illustrated with the visual periphery, but the information propagation

problem is general: it arises whenever information is transmitted from one area to another, and also when information is combined to

carry out computations. (A) The retina transmits information about visual stimuli, s, to the visual cortex. The information does not

propagate directly from retina to cortex; it is transmitted via an intermediary structure, the lateral geniculate nucleus (LGN).

Consequently, the information about the stimuli that is available to the cortex, denoted Iy(s), is not the same as the information that retina

transmits, denoted Ix(s). Here, we ask what properties of neural activities in the periphery maximize the information that propagates to

the deeper neural structures. (B) Illustration of our model. Neural activity in the periphery, x, is generated by passing the stimulus, s,

through a set of neural tuning curves, f(s), and then adding zero-mean noise, ξ, which may be correlated between cells. This activity then

propagates via feed-forward connectivity, described by the matrix W, to the next layer. The activity at the next layer, y, is generated by

passing the inputs, W � x, through a nonlinearity g(�), and then adding zero-mean noise, η.

https://doi.org/10.1371/journal.pcbi.1005497.g001
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Results

Problem formulation: Information propagation in the presence of

corrupting noise

We consider a model in which a vector of “peripheral” neural population responses, x, is deter-

mined by two components. The first is the set of tuning curves, f(s), which define the cells’

mean responses to any particular stimulus (typical tuning curves are shown in Fig 2A). Here

we consider a one dimensional stimulus, denoted s, which may represent, for example, the

direction of motion of a visual object. In that case, a natural interpretation of our model is that

it describes the transmission of motion information by direction selective retinal ganglion cells

to the visual cortex (Fig 1) [5, 6, 47]. Extension to multi-dimensional stimuli is straightforward.

The second component of the neural population responses, ξ, represents the trial-to-trial vari-

ability. This results in the usual “tuning curve plus noise” model,

x ¼ fðsÞ þ ξ; ð1Þ

where ξ is a zero mean random variable with covariance Σξ.
The neural activity, x, propagates to the second layer via feed-forward weights, W, as in the

model of [38]. The activity in the second layer is given by passing the input, W � x, through a

nonlinearity, g(�), and then corrupting it with noise, η (Fig 1B),

y ¼ gðW � xÞ þ η; ð2Þ

where the nonlinearity is taken component by component, and η is zero mean noise with

covariance matrix Ση. The function g(�) need not be invertible, so this model can include spike

generation.

While we have, in Fig 1, given one explicit interpretation of our model, the model itself is

quite general. This means that our results apply more broadly than just to circuits in the

Fig 2. Not all population codes are equally robust against corruption by noise. We constructed two model populations, each with

the same 100 tuning curves for the first layer of cells but with different covariance structures, Σξ (see text, especially Eq (4)). The

covariance structures were chosen so that the two populations convey identical amounts of information Ix(s) about the stimulus. (A) 20

randomly-chosen tuning curves from the 100 cell population. (B) We corrupted the responses of each neural population by additional

Gaussian noise (independently and identically distributed for all cells) of variance σ2, to mimic corruption that might arise as the signals

propagate through a multi-layered neural circuit, and computed the “output” information Iy(s) that these further-corrupted responses

convey about the stimulus (blue and green curves). The population shown in green forms a relatively fragile code wherein modest

amounts of noise strongly reduce the information, whereas the population shown in blue is more robust. (C) Input information Ix(s) in the

two model populations (left; “correlated”) and information that would be conveyed by the model populations if they had their same tuning

curves and levels of trial-to-trial variability, but no correlations between cells (right; “trial-shuffled”). For panels B and C, we computed the

information for each of 100 equally spaced stimulus values, and averaged the information over those stimuli. See Methods for additional

details (section titled “Details for Numerical Examples”).

https://doi.org/10.1371/journal.pcbi.1005497.g002
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peripheral visual system. Moreover, while our analysis (below) focuses on information loss

between layers, this should not be taken to mean that there is no meaningful computation hap-

pening within the circuit: because we have considered arbitrary nonlinear transformations

between layers, the same model can describe a wide range of possible computations [46]. Our

results apply to information loss during those computations.

In the standard fashion [6, 12, 20–22], we quantify the information in the neural responses

using the linear Fisher information. This measure quantifies the precision (inverse of the mean

squared error) with which a locally optimal linear estimator can recover the stimulus from the

neural responses [48, 49]. The linear Fisher information in the first and second layers, denoted

Ix(s) and Iy(s), respectively, is given by

IxðsÞ ¼ f 0ðsÞ � Σ� 1

ξ � f
0ðsÞ ð3aÞ

IyðsÞ ¼ f 0ðsÞ � ½Σξ þ ðW
T
eff � Σ

� 1

eff;Z �WeffÞ
� 1
�
� 1
� f 0ðsÞ ð3bÞ

where a prime denotes a derivative. Here Weff are the effective weights—basically, the weights,

W, multiplied by the average slope of the gain function, g(�)—and Σeff,η includes contributions

from the noise in the second layer, η, and, if g(�) is nonlinear, from the noise in the first layer.

(If g is linear, Σeff,η = Ση, so in this case Σeff,η depends only on the noise in the second layer).

This expression is valid if WT
eff � Σ

� 1

eff;Z �Weff is invertible; so long as there are more cells in the

second layer than the first, this is typically the case. See Methods for details (section titled

“Information in the output layer”).

Eq (3b) is somewhat intuitive, at least at a gross level: both large effective noise (Σeff,η) and

small effective weights (Weff) reduce the amount of information at the second layer. At a finer

level, the relationship between the two covariance structures—corresponding to the first and

second terms in brackets in Eq (3b)—can have a large effect on Iy(s), as we will see shortly.

Information content and information propagation put different constraints

on neural population codes

We begin with an example to highlight the difference between the information contained in

neural population codes and the information that propagates through subsequent layers. Here,

we consider two different neuronal populations with identical tuning curves (Fig 2A), nearly-

identical levels of trial-to-trial neural variability, and identical amounts of stimulus informa-

tion encoded in their firing-rate responses; the populations’ correlational structures, however,

differ. We then corrupt these two populations’ response patterns with noise, to mimic corrup-

tion that might arise in subsequent processing stages, and ask how much of the stimulus infor-

mation remains. Surprisingly, the two population codes can show very different amounts of

information after corruption by even modest amounts of noise (Fig 2B).

In more detail, there are 100 neurons in the first layer; those neurons encode an angle,

denoted s, via their randomly-shaped and located tuning curves (Fig 2A). We consider two

separate model populations. Both have the same tuning curves, but different covariance matri-

ces. For reasons we discuss below, those covariance matrices, denoted Σblue
ξ and Σgreen

ξ (blue and

green correspond to the colors in Fig 2B and 2C), are given by

Σblue
ξ ¼ Σ0 þ �f

0ðsÞf 0ðsÞ ð4aÞ

Σgreen
ξ ¼ Σ0 þ �uuðsÞuðsÞ ð4bÞ

Robust information propagation through noisy neural circuits
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where Σ0 is a diagonal matrix with elements equal to the mean response,

Σ0;ij ¼ fiðsÞdij: ð5Þ

Here δij is the Kronecker delta (δij = 1 if i = j and 0 otherwise), and we use the convention

that two adjacent vectors denote an outer product; for instance, the ijth element if uu is ui uj.
The vector u has the same magnitude as f0, but points in a slightly different direction (it makes

an angle θu with f0), and � and �u are chosen so that the information in the two populations,

Ix(s), is the same (�u also depends on s; we suppress that dependence for clarity).

In our simulations, both � and �u are small (on the order of 10−3; see Methods), so the vari-

ance of the ith neuron is approximately equal to its mean. This makes the variability Poisson-

like, as is typically observed when counting neural spikes in finite time windows [1–6]. (More

precisely, the average Fano factors—averaged over neurons and stimuli—were 1.01 for the

“blue” population and 1.04 for the “green” one.) Both model populations also have the same

average correlation coefficients, which are near-zero (see Methods, section titled “Details for

Numerical Examples”).

To determine how much of the information in the two populations propagates to the sec-

ond layer, we computed Iy(s) for both populations using Eq (3b). For simplicity, we used the

identity matrix for the feed-forward weights, W, a linear gain function, g(�), and independently

and identically distributed (iid) noise with variance σ2. Later we consider the more general

case: arbitrary feedforward weights, nonlinear gain functions, and arbitrary covariance for the

second layer noise. Those complications don’t, however, change the basic story.

Fig 2B shows the information in the output layer versus the level of output noise, σ2, for the

two populations. Blue and green curves correspond to the different covariance structures.

Although the two populations have identical tuning curves, nearly-identical levels of trial-to-

trial neural variability, and contain identical amounts of information about the stimulus, they

differ markedly in the robustness of that information to corruption by noise in the second

layer. Thus, quantifying the information content of neural population codes is not sufficient to

characterize them: recordings from the first-layer cells of the two example populations in Fig 2

would yield identical information about the stimulus, but the blue population has a greater

ability to propagate that information downstream.

One possible explanation for the difference in robustness is that the information in the

green population relies heavily on correlations, which are destroyed by a small amount of

noise. To check this, we compared the information of the correlated neural populations to the

information that would be obtained with the same tuning curves and levels of single neuron

trial-to-trial variability, but no inter-neuronal correlations [11, 50, 51] (Fig 2C). We find that

removing the correlations actually increases the information in both populations (Fig 2C;

“Trial-Shuffled”), and by about the same amount, so this possible explanation cannot account

for the difference in robustness. We also considered the case where the correlated responses

carry more information than would be obtained from independent cells. We again found (sim-

ilar to Fig 2C) that there could be substantial differences in the amount of information propa-

gated by equally informative population codes (see Methods, section titled “Details for

numerical examples”, and the figure therein).

These examples illustrate that merely knowing the amount of information in a population,

or how that information depends on correlations in neural responses, doesn’t tell us how

much of that information will propagate to the next layer. In the remainder of this paper, we

provide a theoretical explanation of this observation, and identify the covariance structures at

the first layer that maximize robustness to information loss during propagation through down-

stream circuits.

Robust information propagation through noisy neural circuits
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Geometry of robust versus fragile population codes

To understand, from a geometrical point of view, why some population codes are more sensi-

tive to noise than others, we need to consider the relationship between the noise covariance

ellipse and the “signal direction,” f0(s)—the direction the mean neural response changes when

the stimulus s changes by a small amount. Fig 3A and 3B show this relationship for two differ-

ent populations. The noise distribution in the first layer is indicated by the magenta ellipses,

and the signal direction by the green arrows. The uncertainty in the stimulus after observing

the neural response is indicated by the overlap of the green line with the magenta ellipse.

Because the overlap is the same for the two populations, they have the same amount of stimu-

lus uncertainty, and thus the same amount of information—at least in the first layer.

Although the two populations have the same amount of information, the covariance ellipses

are very different: one long and skinny but slightly tilted relative to the signal direction (Fig

3A), the other shorter and fatter and parallel to the signal direction (Fig 3B). Consequently,

when iid noise is added, as indicated by the dashed lines, stimulus uncertainty increases by

very different amounts: there’s a much larger increase for the long skinny ellipse than for the

short fat one. This makes the population code in Fig 3A much more sensitive to added noise

than the one in Fig 3B.

To more rigorously support this intuition, in Methods, section titled “Analysis behind

the geometry of information loss”, we derive explicit expressions for the stimulus uncer-

tainty in the first and second layers as a function of the angle between the long axis of the

covariance ellipse and the signal direction. Those expressions corroborate the phenomenon

shown in Fig 3.

A family of optimal noise structures

The geometrical picture in the previous section tells us that a code is robust against added

noise if the covariance ellipse lines up with the signal direction. Taken to its extreme, this sug-

gests that when all the noise is concentrated along the f0(s) direction, so that the covariance

matrix is given by

ΣξðsÞ / f 0ðsÞf 0ðsÞ; ð6Þ

the resulting code should be optimally robust. While this may be intuitively appealing, the

arguments that led to it were based on several assumptions: iid noise added in the second

layer, feedforward weights, W, set to the identity matrix, and a linear neural response function

g(�). In real neural circuits, none of these assumptions hold. It turns out, though, that the only

one that matters is the linearity of g(�). In this section we demonstrate that the covariance

matrix given by Eq (6) optimizes information transmission for neurons with linear gain func-

tions (although we find, perhaps surprisingly, that this optimum is not unique). In the next

section we consider nonlinear gain functions; for that case the covariance matrix given by Eq

(6) can be, but is not always guaranteed to be, optimal.

To determine what covariance structures maximize information propagation, we simply

maximize information in the second layer, Iy(s), with respect to the noise covariance matrix in

the first layer, Σξ, with the information in the first layer held fixed. When the gain function,

g(�), is linear (the focus of this section), this is relatively straightforward. Details of the calcula-

tion are given in Methods, section titled “Identifying the family of optimal covariance matri-

ces”; here we summarize the results.

The main finding is that there exists a family of first-layer covariance matrices Σξ, not just

one, that maximizes the information in the second layer. That family, parameterized by α, is

Robust information propagation through noisy neural circuits
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Fig 3. Geometry of robust versus fragile population codes. Cartoons showing the interaction of signal and noise for two

populations with the same information in the input layer. The dimension of the space is equal to the number of cells in the population;

we show a two dimensional projection. Within this space, when the stimulus changes by an amount Δs (with Δs small), the average

neural response changes by f0(s)Δs. Thus, f0(s) is the “signal direction” (green arrows). Trial-by-trial fluctuations in the neural

responses in the first layer are described by the ellipses; these correspond to 1 standard-deviation probability contours of the

conditional response distributions. The impact of the neural variability on the encoding of stimulus s is determined by the projection of

the response distributions onto the signal direction (magenta double-headed arrows). By construction, these are identical in the first

layer. Accordingly, an observer of the neural activity in the first layer of either population would have the same level of uncertainty

about the stimulus, and so both populations encode the same amount of stimulus information. When additional iid noise is added to

the neural responses, the response distributions grow; the dashed ellipses show the resultant response distributions at the second

layer. Even though the same amount of iid noise is added to both populations, the one in panel A shows greater stimulus uncertainty

after the addition of noise than does the one in panel B. Consequently, the information encoded by the population in panel B is more

robust against corruption by noise.

https://doi.org/10.1371/journal.pcbi.1005497.g003
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given by

ΣξðsÞ ¼
a

IxðsÞ
IZðsÞΣy þ

1 � a

IxðsÞ
f 0ðsÞf 0ðsÞ; ð7Þ

where Σy is the effective covariance matrix in the second layer,

Σy � ðW
T
eff � Σ

� 1

Z
�WeffÞ

� 1
; ð8Þ

and Iη(s) is the information the second layer would have if there were no noise in the first

layer,

IZðsÞ ¼ f 0ðsÞ � Σ� 1

y � f
0
ðsÞ ð9Þ

(see in particular Methods, Eq (46)). For this whole family of distributions—that is, for any

value of α for which Σξ is positive semi-definite—the output information, Iy(s), has exactly the

same value,

IyðsÞ ¼
IxðsÞ

1þ IxðsÞ=IZðsÞ
ð10Þ

(see Methods, Eq (76)). This is the maximum possible output information given the input

information, Ix(s).
Two members of this family are of particular interest. One is α = 0, for which the covariance

matrix corresponds to differential correlations (Eq (6)); that covariance matrix is illustrated in

Fig 4A. This covariance matrix aligns the noise direction with the signal direction. Accord-

ingly, as for the geometrical picture in Fig 3, it makes the encoded information maximally

robust.

The other family member we highlight is α = 1, for which Σξ/ Σy. For this case, the covari-

ance matrix in the first layer matches the effective covariance matrix in the second layer; we

thus refer to this as “matched covariance”. To understand why this covariance optimizes infor-

mation in the second layer, we start with the observation that the population activities can be

decomposed into their principal components: each principal component corresponds to a dif-

ferent axis along with the population activities can be projected. The information contained in

each such projection (principal component) adds up to give the total Fisher information (see

Methods, Eq 71). The most informative of these projections are those that have low noise vari-

ance, and which align somewhat with the signal curve—like the blue line in Fig 4B. When Σξ/
Σy, the projections that are most informative in the first layer are corrupted by relatively little

noise in the second layer. Consequently, this configuration enables robust information propa-

gation. In contrast, when the covariance structures in the first and second layers are less well

matched, all projections are heavily corrupted by noise at some point (i.e., either in the first or

the second layer), and hence very little information propagates (Fig 4C).

The family of optima interpolates between the two configurations shown in Fig 4A and 4B

(see also Eq (7)). Almost all members of this optimal covariance family depend on the details

of the downstream circuit: for α 6¼ 0 in Eq (7), the optimal noise covariance at the first layer

depends on the feed-forward weights, W, and the structure of the downstream noise. The one

exception to this is the covariance matrix given by Eq (6): that one is optimal regardless of the

downstream circuit. These are so-called “differential correlations”—the only correlations that

lead to information saturation in large populations [22], and the correlations that minimize

information in general (see Methods, section titled “Minimum information”, for proof). The

fact that correlations can minimize information content and at the same time maximize

robustness highlights the fact that optimizing the amount of information in a population code

Robust information propagation through noisy neural circuits
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versus optimizing the ability of that information to be transmitted put very different con-

straints on neural population codes.

The existence of an optimum where the covariance matrices are matched across layers

emphasizes that not all optimally robust population codes are necessarily redundant. (By

redundant we mean the population encodes less information than would be encoded by a pop-

ulation of independent cells with the same tuning curves and levels of single neuron trial-to-

trial variability [12, 21]; see Fig 2). Notably, if the effective second layer covariance matrix, Σy,
admits a synergistic population code—wherein more information is encoded in the correlated

population versus an uncorrelated one with the same tuning curves and levels of trial-to-trial

Fig 4. Family of optimal covariance matrices. For all panels, green arrows indicate the signal direction, f0(s). Magenta ellipses indicate

the noise in the first layer (with corresponding covariance matrix Σξ), and grey ellipses indicate the effective noise in the second layer (with

corresponding covariance matrix Σy). (A) The covariance ellipse in the first layer has its long axis aligned with the signal direction; this

configuration (which corresponds to differential correlations) optimizes information robustness for any distribution of second layer noise. (B)

The covariance ellipse in the first layer does not have its long axis aligned with the signal direction. However, the covariance ellipse of the

effective noise in the second layer, Σy, has the same shape as the covariance ellipse in the first. In this case, the blue “good” projection—

which is aligned both with a low-variance direction of the first-layer distribution (magenta), and with the signal curve (green), and thus is

relatively informative about the stimulus (see text)—is corrupted by relatively little noise at the second layer. This “matched” noise

configuration is among those that optimize robustness to noise. The optimal family of covariance matrices interpolates between the

configurations shown in panels A and B. (C) Again the covariance ellipse in the first layer does not have its long axis aligned with the signal

direction. But now the “good” projection is heavily corrupted by noise at the second layer. In this configuration, all projections are

substantially corrupted by noise at some point in the circuit, and thus relatively little information can propagate.

https://doi.org/10.1371/journal.pcbi.1005497.g004
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response variability—then the matched case, Σξ/ Σy, will also admit a synergistic population

code, and be optimally robust.

Optimally robust, however, does not necessarily mean the majority of the information is

transmitted; for that we need another condition. We show in the Methods section titled “Vari-

ances of neural responses, and robustness to added noise, for different coding strategies” that

for non-redundant codes, a large fraction of the information is transmitted only if there are

many more neurons in the second layer than in the first. This is typically the case in the periph-

ery. For differential correlations, that condition is not necessary—so long as there are a large

number of neurons in both the input and output layers, most of the information is transmitted.

Nonlinear gain functions

So far we have focused on linear gain functions g(�); here we consider nonlinear ones. This

case is much harder to analyze, as the effective covariance structure in the second layer, Σeff,η,

depends on the noise in the first layer (see Methods, Eq (22)). We therefore leave the analysis

to Methods (section titled “Nonlinear gain functions”); here we briefly summarize the main

results. After that we consider two examples of nonlinear gain functions—both involving a

thresholding nonlinearity to mimic spike generation.

For linear gain functions we were able to find a whole family of optimal covariance struc-

tures, for nonlinear ones we did not even try. Instead, we asked: under what circumstances are

differential correlations optimal? Even for this simplified question a definitive answer does not

appear to exist. Nevertheless, we can make progress in special cases. When there is no added

noise in the second layer (e.g., η = 0 for the model in Fig 1B), differential correlations maxi-

mize the amount of information that propagates through the nonlinearity, so long as the tun-

ing curves are sufficiently dense relative to the steepness of the tuning curves (meaning that

whenever the stimulus changes, the average stimulus-evoked response of at least one neuron

also changes; see Methods). If there is added noise at the second layer, differential correlations

tend to be optimal in cases where the addition of noise at the first layer, ξ, causes reductions in

information, Ix(s). (This means that, so long as there are no stochastic resonance effects causing

added noise to increase information, then differential correlations are optimal.)

We first check, with simulations, the prediction that differential correlations are optimal if

there is no added noise. For that we use a thresholding nonlinearity, chosen for two reasons: it

is an extreme nonlinearity, and so should be a strong test of our theory, and it is somewhat

realistic in that it mimics spike generation. For this model, the responses at that second layer,

yi, are given by

yi ¼ Yðxi � yiÞ ð11Þ

where Θ is the Heaviside step function (Θ(x) = 1 if x� 0 and 0 otherwise), and θi is the spiking

threshold of the ith neuron. This is the popular dichotomized Gaussian model [52–56], which

has been shown to provide a good description of population responses in visual cortex, at least

in short time windows [54], and to provide high-fidelity descriptions of the responses of inte-

grate-and-fire neurons, again in short time windows [57].

In our simulations with the step function nonlinearity, as for all of the other cases we con-

sidered above, the first layer responses are given by the tuning curve plus noise model (Eq (1)).

The tuning curves, f(s), of the 100-neuron population are again heterogeneous (similar to

those in Fig 2A but with a different random draw from the tuning curve distribution), and the

trial-to-trial variability is given by

Σξ ¼ gu Σ0 þ �uuðsÞuðsÞ½ � ð12Þ
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with Σ0 given by Eq (5). This is the same covariance matrix as in Eq (4b), except that we have

included an overall scale factor, γu, chosen to ensure that the information in the input layer is

independent of both �u and u(s) (see Methods, Eq (99)).

Because these (step function) nonlinearities are infinitely steep, the tuning curves are not

sufficiently dense for our mathematical analysis to guarantee that differential correlations are

optimal for information propagation. However, we argue in Methods (section titled “Nonlin-

ear gain functions”), that this should be approximately true for large populations. And indeed,

that’s what we find with our numerical simulation, as shown in Fig 5B. When θu = 0 (recall

that θu is the angle between u(s) and f0(s)), so that u(s) = f0(s), the second term in Eq (12) corre-

sponds to differential correlations; in this case, information increases monotonically with �u.

In other words, information propagated through the step function nonlinearity increases as

“upstream” correlations become more like pure differential correlations. In contrast, when θu
is nonzero (as in Fig 3A), information does not propagate well: information decreases as �u

increases. This is consistent with our findings for the linear gain function considered in Fig 2.

Thus, differential correlations can optimize information transmission even for a nonlinearity

as extreme as a step function.

The lack of explicit added noise at the second layer makes this case somewhat unrealistic. In

neural circuits, we expect noise to be added at each stage of processing—if nothing else, due to

synaptic failures. We thus considered a model in which noise is added before the spike-genera-

tion process,

yi ¼ Yðxi þ ζ i � yiÞ ð13Þ

where zi is zero-mean noise with covariance matrix Σz.

We computed information for this model using the same input tuning curves, spike thresh-

olds, and covariance matrix, Σξ, as without the additional noise (i.e., as in Fig 5). To mimic the

Fig 5. Differential correlations enhance information propagation through “spike-generating” nonlinearities. Responses in the

second layer were generated using the dichotomized Gaussian model of spike generation, in which the input from the first layer was

simply binarized via a step function (see Eq (11)). We varied the correlations in these inputs (see Eq (12)) while keeping the input

information and input tuning curves fixed. (A) Heterogeneous tuning curves in the second layer, evaluated at �u = 0; we show a random

subset of 20 cells out of the 100-neuron population studied in panel B. (B) Information transmitted by the 100-cell spiking population as a

function of �u, which is the strength of the noise in the u(s) direction, for different angles, θu, between u and f0(s) (see Eq (12)). The input

information was held fixed as �u was varied. The information is averaged over 20 evenly spaced stimuli (see Methods, section titled

“Details for Numerical Examples”).

https://doi.org/10.1371/journal.pcbi.1005497.g005
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kind of independent noise expected from synaptic failures, we chose the zi to be iid, and for

simplicity we took them to be Gaussian distributed with variance s2
ζ . We computed the

amount of stimulus information, Iy(s), for several different levels of the added input noise s2
ζ .

We found that for all levels of noise, differential correlations increase information transmis-

sion (Iy(s) increases monotonically with �u in Fig 6A, for which θu = 0). And we again found

that when the long axis of the covariance ellipse makes a small angle with the signal direction,

information propagates poorly (Fig 6B, for which θu = 0.1 rad.).

These numerical findings for a spike-generating nonlinearity with added noise are similar

to the previous cases of a linear transfer function, g(�), with added input noise (Figs 2 and 3),

for which we have analytical results, or a spike generating nonlinearity with no added input

noise (Fig 5), for which we do not. We further argue in Methods (section titled “Nonlinear

gain functions”), that for nonlinear gain functions differential correlations are likely to be opti-

mal if the tuning curves are optimal (in the case of Eq (13), if the thresholds θi are chosen opti-

mally). Taken together, our findings demonstrate that differential correlations in upstream

populations generally increase the information that can be propagated downstream through

noisy, nonlinear neural circuits.

Discussion

Much work in systems neuroscience has investigated the factors that influence the amount of

information about a stimulus that is encoded in neural population activity patterns. Here we

addressed a related question that is often overlooked: how do correlations between neurons

affect the ability of information to propagate robustly through subsequent stages of neural cir-

cuitry? The question of robustness is potentially quite important, as the ability of information

Fig 6. Information propagation through spike-generating nonlinearities with additive input noise. As with Fig 5, responses in the

second layer were generated using the dichotomized model of spike generation, in which the input from the first layer was simply

binarized. Here, though, Gaussian noise was added before thresholding; see Eq (13). We varied the correlations in the input layer (see

Eq (12)) while keeping the input information and input tuning curves fixed for the 100-cell population (same tuning curves and covariance

matrices as in Fig 5). The additive noise at the second layer (the ζi) was iid Gaussian, with variance s2
ζ ; different colored lines correspond

to different values of s2
ζ . (A) Output information versus �u for populations with differential correlations (u = f0(s)). (B) Same as panel A, but

for populations that concentrate noise along an axis, u, that makes an angle of 0.1 rad with the f0(s) direction. For both panels, the input

information was held fixed as �u was varied, and the information was averaged over 20 evenly spaced stimuli.

https://doi.org/10.1371/journal.pcbi.1005497.g006
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to propagate determines how much information from the periphery will reach the deeper neu-

ral structures that affect decision making and behavior. To investigate this issue, we considered

a model with two cell layers. We varied the covariance matrix of the noise in the first layer

(while keeping the tuning curves and information in the first layer fixed), and asked how

much information could propagate to the second layer. Our main findings were threefold.

First, population codes with different covariance structures but identical tuning curves and

equal amounts of encoded information can differ substantially in their robustness to corrup-

tion by additional noise (Figs 2, 5, 6 and 7). Consequently, measurements of information at

the sensory periphery are insufficient to understand the ability of those peripheral structures

to propagate information to the brain, as that propagation process inevitably adds noise. For

instance, populations of independent neurons can be much worse at transmitting information

than can populations displaying correlated variability (Fig 5B). Thus, to understand how the

brain efficiently encodes information, we must concern ourselves not just with the amount of

information in a population code, but also with the robustness of that encoded information

against corruption by noise.

Second, for linear gain functions, or noise-free nonlinear ones with sufficiently dense tun-

ing curves, populations with so-called differential correlations [22] are maximally robust

against noise induced by information propagation. This fact may seem surprising given that

differential correlations are the only ones that lead to information saturation in large popula-

tions [22], and the correlations that minimize information in general. However, in hindsight it

makes sense: differential correlations correspond to a covariance ellipse aligned with the signal

direction (see Fig 3B), and added noise simply doesn’t make it much longer. For nonlinear

gain functions combined with arbitrary noise, differential correlations are not guaranteed to

yield a globally optimal population code for information propagation. However, for the spike-

generating nonlinearity we considered here, differential correlations were at least a local opti-

mum (see Figs 5 and 6).

Third, while differential correlations optimize robustness, for linear gain functions that

optimum is not unique. Instead, there is a continuous family of covariances that exhibit identi-

cal robustness to noise (see Fig 4 and Eq (7)). However, within this family, only differential

correlations yield population codes that are optimally robust independent of the downstream

circuitry. Thus, they are the most flexible of the optima: for all other members of the family,

the optimal covariance structure in the first layer depends on the noise in subsequent layers, as

well as the weights connecting those layers.

The existence of this family of optimal solutions raises an important point with regards to

redundancy and robust population coding. Populations with differential correlations—which

are among the optimal solutions in terms of robustness—are highly redundant: a population

with differential correlations encodes much less information than would be expected from

independent populations with the same tuning curves and levels of trial-to-trial variability (Fig

2C). It is common knowledge that redundancy can enhance robustness of population codes

against noise [58], and thus it is worth asking if our robust population coding results are sim-

ply an application of this fact. Importantly, the answer is no: as discussed in Methods, section

titled “A family of optimal noise structures”, within the family of optimal correlational struc-

tures are codes with minimal redundancy. Moreover, as is shown in Fig 2B, a code can be

redundant without being robust to added noise. In other words, redundancy in a population

code is neither necessary, nor sufficient, to ensure that the encoded information is robust

against added noise. However, there is an important caveat: unless the number of neurons in

the second layer is large relative to the number in the first, and/or the added noise in the sec-

ond layer is small relative to the noise at the first layer, non-redundant codes tend to lose a

large amount of information when corrupted by noise. This contrasts sharply with differential
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correlations, which can tolerate large added noise with very little information loss (see

Methods section titled “Variances of neural responses, and robustness to added noise, for dif-

ferent coding strategies”).

In the case of real neural systems, there will always be a finite amount of information that

the population can convey (bounded by the amount of input information that the population

receives from upstream sources [59]), and so the question of how best to propagate a (fixed)

amount of information is of potentially great relevance for neural communication. Our results

suggest that the presence of differential correlations serves to allow population-coded informa-

tion to propagate robustly. Thus, an observation of these correlations in neural recordings

might indicate that the population code is optimized for robustness of the encoded informa-

tion. At the same time, we note that weak differential correlations might be hard to observe

experimentally [22]. Moreover, our calculations indicate that there exists a whole family of

possible propagation-enhancing correlation structures, and so differential correlations are not

necessary for robust information propagation. This means that observations of either differen-

tial correlations, correlation structures matched between subsequent layers of a neural circuit

(Fig 4), or a combination of the above would indicate that the system enables robust informa-

tion propagation.

How might the nervous system shape its responses so as to generate correlations that

enhance information propagation? Recent work identified network mechanisms that can lead

to differential correlations [60]. While it is beyond the scope of this work, it would be interest-

ing to explicitly study the network structures that allow encoded information to propagate

most robustly through downstream circuits. Relatedly, [38] and [29, 30] asked how the con-

nectivity between layers affects the ability of information to propagate. While we identified the

optimal patterns of input to the multi-stage circuit, they identified the optimal anatomy of that

circuit itself.

Note that we have used linear Fisher information to quantify the population coding efficacy.

Other information measures exist, and it is worth commenting on how much our findings

Fig 7. Not all synergistic population codes are equally robust against corruption by noise. This figure is similar to Fig 2, but with

synergistic instead of redundant population codes. We constructed two model populations—each with the same 100 tuning curves (20

randomly-chosen example tuning curves are shown in panel A)—for the first layer of cells. The two populations have different covariance

structures Σξ for their trial-to-trial variability (see main text, Eq (4)), but convey identical amounts of information, Ix(s), about the stimulus.

(B) We corrupted the responses of each neural population by Gaussian noise (independently and identically distributed for all cells) of

variance σ2, to mimic corruption that might arise as the signals propagate through a multi-layered neural circuit, and computed the output

information, Iy(s), that these further-corrupted responses convey about the stimulus (blue and green curves). (C) Input information Ix(s) in

the two model populations (left; “correlated”) and information that would be conveyed by the model populations if they had their same

tuning curves and levels of trial-to-trial variability, but no correlations between cells (right; “trial-shuffled”). For panels B and C, we

computed the information for 100 different stimulus values, equally spaced between 0 and 2π, and averaged the information over these

stimuli.

https://doi.org/10.1371/journal.pcbi.1005497.g007
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generalize to different measures. In the case of jointly Gaussian stimulus and response distri-

butions, correlations that maximize linear Fisher information also maximize Shannon’s

mutual information [20]. In that regime our findings should generalize well. Moreover, when-

ever the neural population response distributions belong to the exponential family with linear

sufficient statistics, the linear Fisher information is equivalent to the (nonlinear) “full” Fisher

information [29]. In practice, this is a good approximation to primary visual cortical responses

to oriented visual stimuli [61, 62], and to other stimulus-evoked responses in other brain areas

(see [22] for discussion). Consequently, our use of linear Fisher information in place of other

information measures is not a serious limitation.

For encoded sensory information to be useful, it must propagate from the periphery to the

deep brain structures that guide behavior. Consequently, information should be encoded in a

manner that is robust against corruption that arises during propagation. We showed that the

features of population codes that maximize robustness can be substantially different from

those that maximize the information content in peripheral layers. Moreover, by elucidating

the set of covariances structures that optimize information transmission, we found that redun-

dancy in a population code is neither necessary, nor sufficient, to guarantee robust propaga-

tion. In future work, it will be important to determine whether the nervous system uses the

class of population codes that maximize information transmission.

Finally, while our main focus was on information propagation, the model we used—linear

feedforward weights followed by a nonlinearity—is known to have powerful computational

properties [46]. It is, in fact, the basic unit in many deep neural networks. Thus, our main con-

clusion, which is that differential correlations are typically optimal, applies to any computation

that can be performed by this architecture.

Methods

Here we provide detailed analysis of the relationship between correlations, feedforward

weights, and information propagation. Our methods are organized into sections as follows,

• “Information in the output layer”: we derive an expression for the information in the output

layer (Eq (3b)).

• “Identifying the family of optimal covariance matrices”: we identify the optimal family of

first layer covariance structures when the gain function is linear.

• “Nonlinear gain functions”

• “Analysis behind the geometry of information loss”

• “Minimum information”: we prove that differential correlations minimize information.

• “Variances of neural responses, and robustness to added noise, for different coding

strategies”

• “Information in a population with a rank 1 perturbation to the covariance matrix”: we com-

pute information for a noise structure consisting of an arbitrary covariance matrix plus a

rank 1 covariance matrix.

• “Details for numerical examples”

Information in the output layer

Our analysis focuses on information loss through one layer of circuitry; to compute the loss,

we need expressions for the linear Fisher information in the first and second layers.
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Expressions for those two quantities are given in Eqs (3a) and (3b). The first is standard; here

we derive the second.

To make the result as general as possible, we include noise inside the nonlinearity as well as

outside it; if nothing else, that’s probably a reasonable model for the spiking nonlinearity given

in Eq (13). We thus generalize slightly Eq (2), and write

y ¼ gðW � x þ ζÞ þ η ð14Þ

where ζ is zero mean noise with covariance matrix Σz, and here and in what follows we use the

convention that g is a pointwise nonlinearity, so for any vector v, the ith element of g(v) is g(vi).
When Σz = 0, we recover exactly the model in Eq (2).

Using Eq (1) for x, Eq (14) becomes

y ¼ g hðsÞ þW � ξþ ζð Þ þ η ð15Þ

where, recall, ξ and η are zero mean noise with covariance matrices Σξ and Ση, respectively,

and h(s) is the mean drive to neuron i,

hðsÞ �W � fðsÞ: ð16Þ

To compute the linear Fisher information in the second layer, we start with the usual

expression,

IyðsÞ ¼
@EðyjsÞ
@s

� Cov½yjs�� 1
�
@EðyjsÞ
@s

ð17Þ

where E and Cov denote mean and covariance, respectively. The mean value of y given s is, via

Eq (15)),

E½yjs� ¼ Eξ;ζ g hðsÞ þW � ξþ ζð Þ½ � � g hðsÞð Þ: ð18Þ

Like g(�), gð�Þ is a pointwise nonlinearity. To compute the covariance, we assume, as in the

main text, that ξ and η are independent; in addition, we assume that both are independent of

ζ. Thus, the covariance of y is the sum of the covariances of the first and second terms in Eq

(15). The covariance of the second term is just Ση. The covariance of the first term is harder.

To make progress, we start by implicitly defining the quantity δΣg(s) via

Cov g hðsÞ þW � ξþ ζð Þ½ � � dΣgðsÞ þ WeffðsÞ � Σξ �W
T
effðsÞ þ G0

ðsÞ � ΣζðsÞ � G
0

ðsÞ
� �

ð19Þ

where Weff(s) is the actual feedforward weight multiplied by the average slope of g,

Weff;ijðsÞ � g 0 hiðsÞð ÞWij; ð20Þ

and G 0

ðsÞ is the a diagonal matrix with entries corresponding to the average slope of g,

G 0ijðsÞ � g
0 hiðsÞð Þdij: ð21Þ

As in the main text, δij is the Kronecker delta and a prime denotes a derivative. The above

implicit definition of δΣg is motivated by the observation that when g is linear, δΣg vanishes.

Below, in Sec., we show that if ξ is Gaussian, δΣg is positive semi-definite. Here we assume that

the noise is sufficiently close to Gaussian that δΣg remains positive semi-definite, and thus can

be treated as the covariance matrix of an effective noise source. This last assumption is needed

below, in the section titled “Nonlinear gain functions”, where we argue that information loss is

small when δΣg is small (see text following Eq (64)).
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Making the additional definition

Σeff;ZðsÞ � G 0

ðsÞ � ΣζðsÞ � G
0

ðsÞ þ dΣgðsÞ þ ΣZ; ð22Þ

and using Eqs (15) and (19) and the fact that η is independent of both ξ and z, we see that

Cov½yjs� ¼WeffðsÞ � Σξ �W
T
effðsÞ þ Σeff;ZðsÞ: ð23Þ

Combining this with the expression for the mean value of y, Eq (18), the linear Fisher infor-

mation, Eq (17) becomes

Iy ¼ f 0 �WT
eff � Weff � Σξ �W

T
eff þ Σeff;Z

� �� 1
�Weff � f

0 ð24Þ

where we used Eqs (16) and (20) to replace @sE(y|s) with Weff � f
0 and, to reduce clutter, we

have suppresed any dependence on s. To pull the effective weights inside the inverse, we use

the Woodbury matrix identity to write

WT
eff � ½Weff � Σx �W

T
eff þ Σeff;Z�

� 1
�Weff

¼WT
eff � Σ

� 1

eff;Z �Weff � WT
eff � Σ

� 1

eff;Z �Weff � ½Σ
� 1

x
þWT

eff � Σ
� 1

eff;Z �Weff �
� 1
�WT

eff � Σ
� 1

eff;Z �Weff :
ð25Þ

Then, using the fact that [A + B]−1 = A−1 � [A−1 + B−1]−1 � B−1, and applying a very small

amount of algebra, this becomes

WT
eff � ½Weff � Σx �W

T
eff þ Σeff;Z�

� 1
�Weff

¼WT
eff � Σ

� 1

eff;Z �Weff � ½I � Σx � ½Σx þ ðW
T
eff � Σ

� 1

eff;Z �WeffÞ
� 1
�
� 1
�

ð26Þ

where I is the identity matrix. It is then straightforward to show that

WT
eff � Weff � Σξ �W

T
eff þ Σeff;Z

� �� 1
�Weff ¼ Σξ þ ðW

T
eff � Σ

� 1

eff;Z �WeffÞ
� 1

h i� 1

: ð27Þ

Inserting this into Eq (24), we see that the right hand side of that equation is equal to the

expression given in Eq (3b) of the main text.

δΣg is positive semi-definite for Gaussian noise. To show that δΣg (defined implicitly

in Eq (19)), is positive semi-definite for Gaussian noise, we’ll show that it can be written as a

covariance. To simplify the analysis, we make the definition

χ �W � ξþ ζ: ð28Þ

With this definition,

dΣg ¼ Covχ g hþ χð Þ½ � � G0

� Σχ � G
0

ð29Þ

where here and in what follows we are suppressing the dependence on s, Σχ is the covariance

matrix of χ, and G 0

is defined in Eq (21). Because we are assuming that both ξ and ζ are Gauss-

ian, χ is also Gaussian.

We’ll show now that δΣg is equal to the covariance of the function gðhþ χÞ � G 0

� χ. We

start by noting that

Covχ gðhþ χÞ � G0

� χ
� �

¼ Cov½gðhþ χÞ� � 2Cov gðhþ χÞ;G0

� χ
� �

þ G 0

� Σχ � G
0

: ð30Þ
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We’ll focus on the second term, which is given explicitly by

Cov gðhþ χÞ;G 0

� χ
� �

¼ G 0

�
R
dχ PðχÞ χ gðhþ χÞ: ð31Þ

When P(χ) is Gaussian,

PðχÞχ ¼ � Σχ �
@

@χ
PðχÞ: ð32Þ

Inserting this into Eq (31) and integrating by parts, we arrive at

Cov gðhþ χÞ;G0

� χ
� �

¼ G 0

� Σχ �

Z

dχ PðχÞ
@

@χ
gðhþ χÞ: ð33Þ

Using the fact that @ χ g(h + χ) = @ h g(h + χ), the above expression becomes

Cov gðhþ χÞ;G0

� χ
� �

¼ G0

� Σχ �
@

@h

Z

dχ PðχÞ gðhþ χÞ ¼ G0

� Σχ � G
0

: ð34Þ

where the second equality follows from the definition of G (Eq (21)). Inserting this into Eq

(30), we see that the right hand side of Eq (30) is exactly equal to the right hand side of Eq (29).

Thus, δΣg can be written as a covariance, and so it must be positive semi-definite.

Identifying the family of optimal covariance matrices

Here we address the question: what noise covariance matrix optimizes information transmis-

sion? In other words, what covariance matrix Σξ maximizes the information given in Eq (3b)?

That is hard to answer when g is nonlinear, because in that case Σeff,η depends on Σξ via δΣg
(see Eqs (19) and (22)). In this section, then, we consider linear gain functions; in the next we

consider nonlinear ones. To make our expressions more readable, we generally suppress the

dependence on s.
Our goal is to maximize Iy with Ix fixed. Using the definition of Σy given in Eq (8), for linear

gain functions the information in the second layer (Eq (3b)) is written

Iy ¼ f 0 � Σξ þ Σy
h i� 1

� f 0: ð35Þ

We use Lagrange multipliers,

@

@Σξ

f 0 � ½Σξ þ Σy�
� 1
� f 0 � l f 0 � Σ� 1

ξ � f
0
� Ix

� �h i
¼ 0; ð36Þ

where λ is a Lagrange multiplier that enforces the constraint f 0 � Σ� 1

ξ � f
0
¼ Ix. Taking the deriv-

ative and setting it to zero yields

½Σξ þ Σy�
� 1
� f 0f 0 � ½Σξ þ Σy�

� 1
¼ lΣ� 1

ξ � f
0f 0 � Σ� 1

ξ : ð37Þ

In deriving this expression we used the fact that the gain functions are linear, which implies

that Σy does not depend on Σξ. Multiplying by Σξ + Σy on both the left and right, we arrive at

f 0f 0 ¼ l½Iþ Σy � Σ
� 1

ξ � � f
0f 0 � ½Iþ Σ� 1

ξ � Σy�: ð38Þ

This is satisfied when

Σy � Σ
� 1

ξ � f
0
/ f 0 : ð39Þ
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There are two ways this can happen,

Σy � Σ
� 1

ξ / I ð40aÞ

Σy � Σ
� 1

ξ / f 0a ð40bÞ

where a is an arbitrary vector. Combining these linearly, taking into account that Σξ is a covari-

ance matrix and thus symmetric, and enforcing equality in Eq (38), we arrive at

Σ� 1

ξ ¼
Ix

aIZ
Σ� 1

y þ
ða � 1ÞIx

aI2
Z

Σ� 1

y � f
0f 0 � Σ� 1

y þ P � O� 1
� P ð41Þ

where Iη is the information the output layer would have if there was no noise in the input

layer,

IZðsÞ ¼ f 0ðsÞ � Σ� 1

y � f
0
ðsÞ ð42Þ

(this is the same expression as in Eq (9), it’s repeated here for convenience), O is an arbitrary

symmetric matrix, P is a projection operator, chosen so that P � f0 = 0,

P � I �
f 0f 0

f 0 � f 0
; ð43Þ

and α is arbitrary (but subject to the constraint that Σξ has no negative eigenvalues). Note that

P is a linear combination of the right hand sides of Eqs (40a) and (40b)), with a = f0 in the latter

equation. It is straightforward to verify that when Σξ is given by Eqs (41) and (38) is satisfied.

To find an explicit expression for Σξ, not just its inverse, we apply the Woodbury matrix

identity to Eq (41); that gives us

Σξ ¼ Σa � Σa � P � Ωþ P � Σa � Pð Þ
� 1
� P � Σa

ð44Þ

where

Σa �
Ix

aIZ
Σ� 1

y þ
ða � 1ÞIx

aI2
Z

Σ� 1

y � f
0f 0 � Σ� 1

y

" #� 1

¼
aIZ
Ix

Σy �
ða � 1Þf 0f 0

aIZ

" #

: ð45Þ

Inserting this into Eq (44), we arrive at

Σξ ¼
aIZΣy
Ix
þ
ð1 � aÞf 0f 0

Ix
�

aIZ
Ix

� �2

Σy � P � Ωþ
aIZ
Ix

P � Σy � P
� �� 1

� P � Σy : ð46Þ

This is the same as Eq (7) in the main text, except in that equation we let Ω go to1, so we

ignore the projection-related term. Ignoring that term is reasonable, as it just puts noise in a

direction perpendicular to f0, and so has no effect on the information.

By choosing different scalars α and matrices Ω, a family of optimal Σξ is obtained. These all

have the same input information, Ix, and the same output information, Iy, after corruption by

noise. An especially interesting covariance matrix is found in the limit α = 0, in which case

Σξ ¼
f 0f 0

Ix
: ð47Þ

These are so-called differential correlations [22]. Importantly, the choice α = 0 is the only

one for which the optimal correlational structure is independent of the correlations in the out-

put layer, Σy. Note that pure differential correlations don’t satisfy Eq (39). As such, they
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represent a singular limit, in the sense that Σξ in Eq (46) satisfies Eq (39) with alpha arbitrarily

small, but not precisely zero.

The other covariance that we highlight in the text is found for α = 1 and Ω!1, in which

case Σξ ¼
aIZ
Ix
Σy. This is the matched covariance case.

Nonlinear gain functions

We now focus on differential correlations, and determine conditions under which they are

optimal for information propagation when the gain function, g(�), is nonlinear. In this regime,

the effective noise in the second layer (the second term in brackets in Eq (3b)) depends on Σξ.
This greatly complicates the analysis, and to make headway we need to reformulate our mathe-

matical description of differential correlations. This reformulation is based on the observation

that differential correlations correspond to trial-to-trial variability in the value of the stimulus,

s[22]. Consequently, the encoding model in the input layer can be written as a multi-step pro-

cess,

s ¼ s0 þ ds ð48aÞ

x ¼ fðsÞ þ ξðsÞ ð48bÞ

y ¼ gðW � xðsÞ þ ζÞ þ ηðsÞ: ð48cÞ

Here s0 is the value of the stimulus that is actually presented. However, the neurons in the

input layer, x, encode s—a corrupted version of s0. This is indicated by Eq (48a), which tells us

that s deviates on a trial-to-trial basis from s0, with deviations that are described by a zero-

mean random variable, δs.
To see that this model does indeed exhibit differential correlations, we Taylor expand Eq

(48b) around s0, yielding a model of the form

x � fðs0Þ þ f 0ðs0Þds þ ξðs0Þ; ð49Þ

for which the covariance matrix is

Cov½x� ¼ Var½d s�f
0
ðs0Þf

0
ðs0Þ þ Cov½ξjs0�: ð50Þ

The first term corresponds to differential correlations.

Eqs (48b) and (48c) correspond exactly to our previous model (Eq (4a)). Consequently, the

information about s in the first and second layers are still given by Eqs (3a) and (3b) of the

main text. However, we can’t use those equations for the information about s0. For that, we

focus on the variance of its optimal estimator given x, which we denote ŝ0. Because of the Mar-

kov structure of our model (s0$ s$ x), we can construct ŝ0 by first considering the optimal

estimator of s0 given s, and then the optimal estimator of s given x. The variance of ŝ0 given x is

then simply the sum of the variances of these two (independent) noise sources.

The optimal estimator of s0 given s is simply s, with conditional variance

Var½ ŝ0ðsÞjs0� ¼ Var½d s�. The optimal estimator of s given x is ŝðxÞ, with variance Var½ ŝðxÞjs�.
Consequently,

Var½ ŝ0js0� ¼ Var½d s� þ
R
ds Pðsjs0ÞVar½ ŝðxÞjs�: ð51Þ
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As usual, we approximate the variance of ŝðxÞ given s by the linear Fisher information,

yielding an approximation for the total Fisher information about s0 given x,

1

Itot
x ðs0Þ

¼ Var½d s� þ
Z

ds
Pðsjs0Þ
IxðsÞ

: ð52Þ

Similarly, the Fisher information about s0 given y is approximated by

1

Itot
y ðs0Þ

¼ Var½d s� þ
Z

ds
Pðsjs0Þ
IyðsÞ

: ð53Þ

Note that we are slightly abusing notation here: above, Ix(s) and Iy(s) referred to the total

information about the stimulus; now they refer to the information about the stimulus that is

encoded in the first layer, which is different from the actual stimulus, s0. However, it is a conve-

nient abuse, as it allows us to take over our previous results without introducing much new

notation.

Our first step is to parametrize the covariance matrix, ξ, and Var[δs], in a way that ensures

that the information in the first layer Itot
x ðs0Þ remains fixed while we vary ξ and Var[δs]. A con-

venient choice is

Var½d s� ¼
1

Itot
x

Z

ds Pðsjs0Þ
�I0ðsÞ

1þ �I0ðsÞ
ð54aÞ

ΣξðsÞ ¼
1

Itot
x

I0ðsÞΣ0ðsÞ
1þ �I0ðsÞ

; ð54bÞ

where

I0ðsÞ � f 0ðsÞ � Σ� 1

0
ðsÞ � f 0ðsÞ: ð55Þ

Inserting Eq (54) into Eq (52), we see that Itot
x ðs0Þ ¼ I

tot
x , independent of Σ0(s).

The information in the second layer about s, Iy(s), is given by Eq (3b), with Σeff,η given in Eq

(22). It is convenient to make the definition

Σeff;y � ðW
T
eff � Σ

� 1

eff;Z �WeffÞ
� 1
: ð56Þ

This is the analog of Eq (8), but for nonlinear gain functions. It is clear from Eqs (22) and

(19) that Σeff,η depends on Σξ; consequently, it depends on �.

To maximize information with respect to �, we take a two step approach. We write

Iyðs; �; �0Þ � f 0TðsÞ Σξðs; �Þ þ Σeff;yðs; �0Þ
h i� 1

f 0ðsÞ: ð57Þ

Here Σξ(s,�) and Σy(s,�0) are the same as in Eqs (54b) and (56); we have just made the depen-

dence on � explicit. The two steps are to maximize first with respect to �, then with respect to

�0. If the two maxima occurr in the same place, then we have identified the covariance struc-

ture that optimizes information transmission.

In the first step we differentiate Itot
y ðs; �; �0Þ with respect to �. To simplify the expressions, we

make the definition

Σtotðs; �; �0Þ � Σξðs; �Þ þ Σeff;yðs; �0Þ: ð58Þ
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Combining Eqs (53), (54) and (57), we have

@

@�

1

Itot
y ðs0; �; �0Þ

¼
1

Itot
x

Z

ds Pðsjs0Þ
I0

1þ �I0ð Þ
2
þ

Z

ds
Pðsjs0Þ
I2y

f 0 � Σ� 1

tot �
@Σξðs; �Þ
@�

� Σ� 1

tot � f
0
ð59Þ

where we used the fact that for any square matrix A(x), (d/dx)A−1 = −A−1 · dA/dx � A−1, and

we suppressed much of the s, � and �0 dependence for clarity. Using Eq (54b) for Σξ(s,�), the

derivative with respect to � in the second term is straightforward,

@

@�

1

Itot
y ðs0; �; �0Þ

¼
1

Itot
x

Z

ds Pðsjs0Þ
I0

ð1þ �I0Þ
2
�

Z

ds
Pðsjs0Þ
I2y

f 0 � Σ� 1

tot �
I2

0
Σ0

Itot
x ð1þ �I0Þ

2
� Σ� 1

tot � f
0

¼
1

Itot
x

Z

ds Pðsjs0Þ
I2

0

I2y ð1þ �I0Þ
2

I2y
I0
� f 0 � Σ� 1

tot � Σ0 � Σ
� 1

tot � f
0

� � ð60Þ

Then, applying the definition IyðsÞ ¼ f 0 � Σ� 1

tot � f
0
(see Eqs (57) and (58)), and making the

new definition

V � f 0 � Σ� 1

tot � Σ
1=2

0
; ð61Þ

we arrive at the expression

@

@�

1

Itot
y ðs0; �; �0Þ

¼
1

Itot
x

Z

ds Pðsjs0Þ
I2

0

I2y ð1þ �I0Þ
2

V �
Σ� 1=2

0
f 0f 0TΣ� 1=2

0

I0
� I

� �

� V: ð62Þ

The right hand side of Eq (62) is negative or zero if the term in brackets is negative semi-

definite; that is, if all its eigenvalues are non-positive. Since the term in square brackets is a

rank one matrix minus the identity, all but one of its eigenvalues are equal to -1. The remain-

ing eigenvalue is 0, with corresponding eigenvector Σ� 1=2

0
� f 0 (see Eq (55)). Thus,

@ð1=Itot
y ðs0; �; �0Þ=@�Þ � 0, and Itot

y ðs0; �; �0Þmust have a global maximum at � =1. If g is linear,

Σeff,y doesn’t depend on �0, and � =1 corresponds to pure differential correlations. We have,

therefore, recovered the α = 0 limit of Eq (46).

When � =1, Σξ vanishes, and so the expression for the information in the second layer

simplifies considerably. Combining Eqs (53) and (54a), we have, in the �!1 limit,

1

Itot
y ðs0;1; �0Þ

¼
1

Itot
x

þ

Z

ds
Pðsjs0Þ

Iyðs;1; �0Þ
ð63Þ

where

Iyðs;1; �0Þ ¼ f 0ðsÞ �WT
effðs; �0Þ � ΣZ þ G0ðsÞ � ΣζðsÞ � G0ðsÞ þ dΣgðs; �0Þ

h i� 1

�Weffðs; �0Þ � f
0
ðsÞ: ð64Þ

The latter equation follows by combining the fact that Σξ(s,1) = 0 (Eq (54b)) with the defi-

nitions of Σeff,y and Σeff,η (Eqs (56) and (22), respectively).

The total information in the output layer is maximized when Iy(s0;1,�0) is maximized.

That quantity depends on �0 via Σξ(s,�0), the noise covariance in the input layer. As can be seen

from Eq (54b), larger �0 implies smaller Σξ(s,�0). That has two effects. First, when Σξ(s,�0) is

small enough, the covariance matrix δΣg becomes small (see Eq (19), and note that δΣg is posi-

tive definite, as shown in Sec.). This tends to increase Iy(s). However, the effective tuning

curves, Weff(s;�) � f(s), also depend on Σξ(s,�0) (see Eq (20)). It is possible that increasing

Σξ(s,�0) modifes the tuning curves such that Iy(s) increases. Consequently, it is impossible to

make completely general statements.
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Nevertheless, we can identify two regimes. First, if there is no added noise in the output

layer (η = ζ = 0), then Iy(s;1, �) goes to1 as �0 goes to1, thus maximizing the total informa-

tion. This holds, however, only if the tuning curves are sufficiently dense relative to the steep-

ness of the tuning curves; otherwise, the Fisher information is no longer a good approximation

to the true information. For smooth tuning curves this is generally satisfied, but it is not satis-

fied for the noise-free spike generating mechanism we consider in the main text (Eq (11)),

since for that nonlinearity f0(s) = 0 with probability 1. We expect, though, that in the absence

of noise, this particular nonlinearity introduces an error that is Oð1=nÞ, implying that

Iy(s;1, �)/ n2. Numerical simulations corroborated this scaling. Thus, for sufficiently large

populations, differential correlations are optimal for the noise-free spike-generating nonlinear-

ity. Note, though, that the thresholds must be chosen so that there are always both active and

silent neurons; otherwise, in the limit that Σξ vanishes, the activity will contain no information

at all about the stimulus.

The second regime is one in which the tuning curves have been optimized. In this case,

modifying the tuning curves by adding noise decreases information, and again differential cor-

relations optimize information transmission.

To summarize, we have analyzed the scenario considered in the main text (section titled

“Nonlinear gain functions”)—namely, the neural activities at the second layer, y, are given by a

nonlinear function of the neural activities at the first layer, x, with noise added both before and

after the nonlinearity. In this case, whether or not differential correlations in the first layer

optimize information transmission depends on the details. They do if g is linear, the tuning

curves are optimal, or there is no added noise in the second layer and the tuning curves are suf-

ficiently dense relative to the steepness of the tuning curves. If none of these are satisfied, how-

ever, differential correlations may be sub-optimal.

Analysis behind the geometry of information loss

Our goal in this section is to make more rigorous the geometrical arguments in Fig 3. We start

with the observation that, for Gaussian distributed neural responses, the 1 standard-deviation

probability contours for the responses in the first layer (magenta ellipses in Fig 3) are defined

by

Dr � Σ� 1

ξ � Dr ¼ 1; ð65Þ

where Δr� f(s) − r represents fluctuations around the mean response to stimulus s. In two

dimensions, which we’ll focus on here, Eq (65) becomes

Dr2
1

s2
1

þ
Dr2

2

s2
2

¼ 1 ð66Þ

where σ1 and σ2 are the lengths of the principal axes of the covariance ellipse (so s2
1

and s2
2

are

the eigenvalues of Σξ) and Δr1 and Δr2 are distances spanned by the magenta ellipses along

those axes.

As shown in Fig 3, the intersection between the magenta ellipse (the one defined in Eq (66))

and the signal curve tells us the uncertainty in the value of the stimulus. To quantify this uncer-

tainty, we simply set Δr to f0(s)Δsx (the subscript x indicates that this is the uncertainty in the

input layer), insert that into Eq (66), and solve for Δsx. Defining θ to be the angle between f0(s)
and the long principal axis (see Fig 3, and note that θ = 0 in panel B), and letting σ1 correspond
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to the length of the ellipse’s major axis (so σ1 > σ2), we have

jf 0ðsÞj2
cos 2y

s2
1

þ
sin 2y

s2
2

� �

¼
1

Ds2x
: ð67Þ

The left hand side is the linear Fisher information in the first layer [10], a fact that is useful

primarily because it validates our (relatively informal) derivation. More importantly, we can

now see how iid noise affects information. The addition of iid noise simply increases the eigen-

values by σ2, so the ratio of the information in the output layer to that in the input layer is

Iy
Ix
¼

Ds2x
Ds2y
¼

cos 2y

s2
1
þs2 þ

sin 2y

s2
2
þs2

cos 2y

s2
1

þ sin 2y

s2
2

: ð68Þ

We can identify two limits. First, if θ = 0 (as it is in Fig 3B), this ratio reduces to

Iy
Ix

�
�
�
�

y¼0

¼
s2

1

s2
1
þ s2

: ð69Þ

Second, if tan θ� σ2/σ1 (which essentially means the green line in Fig 3 intersects the

covariance ellipse on the side, as in panel A, rather than somewhere near the end, as in panel

B), the ratio of the informations becomes

Iy
Ix

�
�
�
�

tan y�s2=s1

�
s2

2

s2
2
þ s2

: ð70Þ

Because σ1 > σ2, the information loss is larger in the second case than in the first. And the

longer and skinnier the covariance ellipse, the larger the difference in information loss. Thus,

this analysis quantifies the geometrical picture given in Fig 3, in which there is larger informa-

tion loss in panel A (where θ> 0) than in panel B (where θ = 0).

Minimum information

Here we ask: what correlational structure minimizes linear Fisher information? To answer

that, we use the multi-dimensional analog of Eq (67),

IxðsÞ ¼ jf
0
ðsÞj2

X

k

cos 2yk
s2
k

ð71Þ

where s2
k is the kth eigenvalue of the noise covariance matrix and θk is the angle between f0(s)

and the kth eigenvector [10]. We would like to minimize Ix(s) with respect to the angles, θk, and

the eigenvalues, s2
k . Without constraints, this problem is trivial: information is minimized by

having infinite variances for the neural activities. To make the problem better-formulated, we

add a constraint that prevents the optimization procedure from simply identifying that trivial

solution.

We’ll come to the constraint shortly, but first we’ll minimize information with respect to

the angles, θk. That minimum occurs when the eigenvector corresponding to the largest eigen-

value is parallel to f0(s); ordering the eigenvalues so that s2
0

is the largest eigenvalue, we have

cos θ0 = 1 and cos θk > 0 = 0. Consequently, the information at the minimum is

IxðsÞ ¼
jf 0ðsÞj2

s2
0

: ð72Þ
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The next step is to minimize Ix(s) with respect to the eigenvalues, subject to a constraint on

the covariance matrix. We consider constraints of the form

Cðs2
0
; s2

1
; :::Þ � C0 ð73Þ

where, to avoid the trivial solution (of infinite neural variances), C is an increasing function of

each of it’s arguments: for all k,

@Cðs2
0
; s2

1
; :::Þ

@s2
k

� 0: ð74Þ

Examples of Cðs2
0
; s2

1
; :::Þ are the trace of the covariance matrix (the sum of the eigenvalues)

and the Frobenius norm (the square root of the sum of the squares of the eigenvalues).

Because of Eq (74), the information, Eq (72), is minimized and the constraint, Eq (73), is

satisfied when all the eigenvalues except s2
0

are zero. At this global minimum, the covariance

matrix, Σξ, displays purely differential correlations,

Σξ ¼ s2
0
v0v0 / f 0ðsÞf 0ðsÞ ð75Þ

where v0 is the eigenvector associated with the largest eigenvalue. The last term in this expres-

sion follows because the above minimization with respect to the angles forced v0 to be parallel

to f0(s). Thus, for a broad, and reasonable, class of constraints on the covariance matrix, differ-

ential correlations minimize information.

Variances of neural responses, and robustness to added noise, for

different coding strategies

Throughout most of our analysis we focused on optimality of information transmission. How-

ever, also important is how much information is transmitted at the optimum. That’s the sub-

ject of this section. For simplicity we consider a linear gain function, which we set, without loss

of generality, to the identity. That allows us to use the analysis above, in the section titled

“Identifying the family of optimal covariance matrices”, and in particular Eq (46), which links

the noise in the input and output layers.

Our starting point is the derivation of an expression for the ratio of the information in the

output layer to that in the input layer. To do that, we dot both sides of Eq (37) by f0 on the left

and right sides and solve for λ; we then do the same, except we dot with f 0 � Σ� 1

y � ½Σξ þ Σy� on

the left and its transpose on the right. This yields, after a small amount of algebra,

Iy
Ix
¼

IZ
IZ þ Ix

¼
1

1þ Ix=IZ
ð76Þ

where Ix, Iy and Iη are given by Eqs (3a), (3b) and (9), respectively. For information to be trans-

mitted efficiently, Ix, the information in the input layer, must be small compared to Iη, the

information associated with the added noise in the output layer. Below, we investigate the con-

ditions under which Ix� Iη, and thus when information loss is small.

Our strategy is to express Ix/Iη in terms of the single neuron variability, quantified as the

average variance—something that has an easy interpretation. We consider two cases: the

weights are set to the identity (W = I), and the weights are more realistic (each neuron in the

input layer connects to a large number of neurons in the output layer). The first case, identity

weights, is not very realistic; we include it because it is much simpler than the second.

While the analysis is straightforward, it is somewhat heavy on the algebra, so we summarize

the results here. We consider two extremes in the family of optimal covariance structures: the
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“matched” case (α = 1 in Eq (46), and, for simplicity, Ω =1) and differential correlations

(α = 0). For matched covariances, near complete information transfer (Ix� Iη) requires the

effective variance of the noise in the second layer to be small. For identity feedforward weights,

the effective variance in the input and output layers is about the same, so information loss is

large. However, identity feedforward weights are never observed in the brain; instead, each

neuron in the input layer connects to a large number of neurons in the output layer. Using Nx
and Ny to denote the number of neurons in the input and output layers, respectively, and K the

average number of connections per neuron, the effective noise is reduced by a factor or

KN2
x=N

2
y (see Eq 95 below). Thus, if the number of neurons in the output layer is larger than

the number in the input layer by a factor much larger than K1/2, near complete information

transmission is possible. For pure differential correlations, the story is much simpler: so long

as the number of neurons in both layers is large, and the added noise doesn’t have a strong

component in the f0(s) direction, near complete information transmission always occurs.

Identity feedforward weights. We’ll first consider identity feedforward weight, W = I.

We’ll start with the matched covariance case. Using Eq (46), we have

Σξ ¼
IZ
Ix
ΣZ: ð77Þ

Taking the trace of both sides of this expression gives

Ix
IZ
¼
hs2

Z
i

hs2
xi

ð78Þ

where hs2
xi is the average variance of the input layer noise and hs2

Z
i is the average variance of

the added noise. If the added noise is on the same order as the noise in the input layer, infor-

mation loss is high. Because of synaptic failures and chaotic dynamics, we expect the added

noise to be substantial, implying that matching covariances is not an especially good strategy

for transmitting information, in the case where W = I.

Next we consider differential correlations (α = 0 in Eq (46)),

Σξ ¼
IZ
Ix

f 0f 0

f 0 � Σ� 1

Z
� f 0

ð79Þ

where we used Eq (9) for Iη, with Σy replaced by Ση. Taking the trace of both sides gives us

Ix
IZ
¼

1

Nx

f 0 � f 0

hs2
xi f 0 � Σ� 1

Z
� f 0

: ð80Þ

If the added noise doesn’t have much of a component in the f0 direction, then f 0 � Σ� 1

Z
� f 0 is

OðNxÞ. In this case, in the large Nx regime, Ix� Iη, and (according to Eq (76)) information

loss is small. In other words, for large neural populations, differential correlations allow small

information loss even when the amount of added noise is large.

An especially instructive case is iid noise added at the second layer. Using s2
Z

for its variance,

Eq (80) simplifies to

Ix
IZ
¼

1

Nx

s2
Z

hs2
xi
: ð81Þ

Consequently, for differential correlations and reasonably large neural populations, infor-

mation loss is relatively small unless the variance in the second layer ismuch larger than the
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average variance in the first layer (by about a factor of Nx)—something that is not observed in

the brain.

Although pure differential correlations can minimize information loss, they are not biologi-

cally realistic, as they do not display Poisson-like variability. That’s because for differential cor-

relations, the variance of neuron i scales as f 0i ðsÞ
2

rather than fi(s). Fortunately, this can be fixed

with very little information loss by adding Poisson-like variability in the input layer. Doing so

reduces the information only slightly: for the covariance structure given in Eq (4a), the infor-

mation is

Ix ¼
I0

1þ �I0
ð82Þ

where

I0 ¼ f 0 � Σ� 1

0
� f 0 ð83Þ

is the information associated with the covariance matrix Σ0 (see Sec.). That information is

large whenever Σ0 doesn’t contain much of a component in the f0 direction and Nx is large. If

these hold, the information in the input layer is approximately equal to 1/�—exactly what it is

for pure differential correlations. Moreover, so long as Ση also doesn’t contain much of a com-

ponent in the f0 direction, information in the output layer is also close to 1/�, and very little

information is lost. Thus, nearly pure differential correlations are biologically realistic and can

lead to very small information loss.

Realistic feedforward weights. For realistic feedforward weights, W, we need to use Σy
rather than Ση in Eq (77), with Σy given by Eq (8). (Note that because the gain function is the

identity, Weff = W.) We’ll start, as above, with the matched covariance case. Taking the trace of

both sides of Eq (77), but with Ση replaced by Σy, we have

Ix
IZ
¼

tr½Σy�=Nx
hs2
xi

ð84Þ

where tr denotes trace and, as above, Nx is the number of neurons in the input layer. Using the

fact that for any positive semi-definite square n × nmatrix A (i.e., for any covariance matrix A),

tr½A� 1�

n
�

n
tr½A�

; ð85Þ

we have

Ix
IZ
�

1

hs2
xi tr½Σ� 1

y �=Nx
¼

1

hs2
xi tr½WT � Σ� 1

Z
�W�=Nx

; ð86Þ

with the second equality following from Eq (8).

To get a handle on the size of the trace term in the numerator, we note that it can be written

tr½WT � Σ� 1

Z
�W� ¼ tr½WT �W�h1=s2

Z
iW ð87Þ

where, defining vk to be the kth eigenvector of Ση, normalized so that vk � vk = 1, and s2
k to be its

corresponding eigenvalue,

h1=s2
Z
iW �

1

tr½WT �W�

X

k

vk �W �W
T � vk

s2
k

: ð88Þ
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To see that this really is a weighted average, note that because the vk form a complete, ortho-

normal basis,

X

k

vk �W �W
T � vk ¼ tr½W �WT �: ð89Þ

Inserting Eq (87) into Eq (86) gives us

Ix
IZ
�

1

hs2
Z
ih1=s2

Z
iW

1

tr½WT �W�=Nx

hs2
Z
i

hs2
xi
: ð90Þ

This is similar to Eq (78), except for two prefactors. The denominator of the first prefactor

lies between hs2
Z
i=sZ; max and hs2

Z
i=s

Z; min . We’ll assume this is Oð1Þ (for iid noise it is

exactly 1), although we note that it’s possible to make it either relatively large or relatively

small. The second prefactor is more interesting, as it is the sum of a large number of terms,

tr½WT �W�
Nx

¼
1

Nx

XNy

i¼1

XNx

j¼1

W2

ij ð91Þ

where Ny is the number of neurons in the output layer. To determine the size of the weights,

we use that fact that

hyii ¼
XNx

j¼1

Wijfj; ð92Þ

and note that hyii and fi should be about the same size, on average. Assuming that each neuron

in the input layer connects, on average, to K neurons in the output layer, it follows thatWij is

nonzero with probability K/Ny. Consequently,

hyii ¼
X

j

Wij fj �
NxK
Ny
Wtypical ftypical ð93Þ

whereWtypical and ftypical are the typical sizes of the nonzero weights and the fj, respectively. To

ensure that hyii and fi are about the same size, we must have

Wtypical �
Ny
NxK

: ð94Þ

Inserting this into Eq (91), and using the fact thatWij is nonzero with probability K/Ny, we

have

tr½WT �W�
Nx

�
ðNy=NxÞ

2

K
ð95Þ

This can be large ifNy� Nx K1/2. Using this relationship in Eq (90), we see that information

loss can be small in the case of matched covariances, if there is sufficiently large divergence

from the input to output layers.

What about differential correlations, α = 0? To understand information loss in this case, Ση
is replaced by Σy in Eq (80), giving us

Ix
IZ
¼

1

Nx

f 0 � f 0

hs2
xi f 0 �WT � Σ� 1

Z
�W � f 0

ð96Þ
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where we used Eq (8) for Σy. Here the logic is the same as it was in the previous section: so

long as Σy doesn’t have a strong component in the f0 direction, f 0 �WT � Σ� 1

Z
�W � f 0 is OðNyÞ,

and, since f 0 � f 0 � OðNxÞ, information loss is Oð1=NyÞ. Thus, with realistic feedforward

weights, as with the identity case, differential correlations lead to very small information loss

in large populations.

Information in a population with a rank 1 perturbation to the covariance

matrix

In the analysis of nonlinear gain functions in the main text (section titled “Nonlinear gain

functions”), it was necessary to construct a covariance matrix such that the information in the

first layer was independent of �u and u. For that we included a prefactor γu in the definition of

the covariance matrix, Σξ (see Eq (12)). Here we determine how γu should depend on �u and u.

Our starting point is an expression for the inverse of Σξ. As is straightforward to show, via

direct substitution, that’s given by

Σ� 1

ξ ¼ gu Σ0 þ �uuu½ �ð Þ
� 1
¼

1

gu
Σ� 1

0
�

�uΣ
� 1

0
� uu � Σ0

1þ �uu � Σ
� 1

0
� u

� �

: ð97Þ

Thus, the information in the input layer, f 0 � Σ� 1

ξ � f
0
, is given by

f 0 � Σ� 1

ξ � f
0
¼

1

gu
f 0 � Σ� 1

0
� f 0 �

�uðf
0
� Σ� 1

0
� uÞ2

1þ �uu � Σ
� 1

0
� u

� �

: ð98Þ

To ensure that this information is independent of γu, we let

gu ¼
1

Ix
f 0 � Σ� 1

0
� f 0 �

�uðf
0
� Σ� 1

0
� uÞ2

1þ �uu � Σ
� 1

0
� u

� �

: ð99Þ

Note that γu depends on s as well as �u and u.

Details for numerical examples

In this section we provide details for the numerical simulations for each relevant figure.

Fig 2 and its synergistic counterpart, Fig 7. For the numerical examples in Fig 2, we gen-

erated tuning curves for the first layer of cells using Von Mises distributions [16],

fiðsÞ ¼ ri þ ui exp bi cos ðs � φiÞ � 1
� �� �

: ð100Þ

For each cell, the amplitudes, υ, widths, β, peak locations, φ, and baseline offsets, ρ, were

drawn independently from uniform distributions with the following ranges,

• υ: 1–51

• β: 1–6

• φ: 0–2π

• ρ: 0–1

The covariance of the noise in the first layer was given by Eq (4), with the following

parameters,

• blue population: � = 10−3.
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• green population: �u varies with stimulus so that, for each stimulus, the blue and green popu-

lations have identical information (on average, �u = 8 × 10−3); |u(s)| = |f0(s)|; angle between

u(s) and f0(s) = 1/8 of a radian.

With these parameters, the two populations (blue and green) conveyed the same amount of

information about the stimulus.

To rule out the possibility that differences in information robustness were due to differ-

ences in average correlations within the populations, we forced the average correlations to be

the same for the blue and green populations. To do that, we repeatedly took random draws

of the parameters describing the tuning curves (ρ, v, β and φ) until the population averaged

correlations matched between the two populations. This resulted in average correlations of

−7 × 10−5, and we used this set of tuning curves for our subsequent information calculations.

We computed the information, Iy(s), in the second-layer responses using Eq (3b), with

g(x) = x, W = I, and Ση = σ2 I. For the trial-shuffled information (Fig 2C), we used Eq (3a),

with all off-diagonal elements of the covariance matrices Σξ set to zero. For all of these infor-

mation calculations, we computed the information, Ix(s) or Iy(s), for 100 different stimulus val-

ues s, uniformly spaced between 0 and 2π, and then averaged over these 100 different values.

To assess whether synergistic population codes can similarly vary in their robustness to cor-

ruption by noise, we repeated our calculations from Fig 2, but modified the covariance matri-

ces to make the population synergistic (Fig 7C: the correlated responses convey more stimulus

information than would independent cells with the same variances). To do that we again

used the covariance matrices given in Eq (4), but we made � and �u negative: � = −5 × 10−4 and

h�ui = −3 × 10−4 (as in Fig 2, �u depends on the stimulus, s: it was chosen so that for each value

of s the blue and green populations have identical stimulus information). We chose u(s) so that

it had the same magnitude as f0(s) and made an angle of 1/4 of a radian with f0(s). We used the

same functions and distributions for the tuning curves as in Fig 2, but used a different seed for

the random number generator. As in Fig 2, the seed was chosen (via multiple draws of the tun-

ing curve parameters) so that the two populations had the same average correlations (in this

case 2 × 10−5). Also as in Fig 2, the populations were roughly Poisson-like, in the sense that the

mean and variance of the activity of each neuron was approximately equal. (Both the “green”

and the “blue” populations have average Fano factors—averaged over neurons and stimuli—of

0.99.) We again found that equally-informative population codes could vary significantly in

terms of their robustness to noise (Fig 7B).

Fig 5. To generate Fig 5B, we analytically computed the means of the second layer

responses, resulting in the expression

miðsÞ ¼ F
fiðsÞ � yi

siðsÞ

� �

; ð101Þ

where θi is the ith cell’s firing threshold, σi is the standard deviation of the input noise to the

cell, and F(�) is the Gaussian cumulative distribution function. For each cell, the input func-

tion fi(s) was given by a Von Mises distribution, Eq (100) (with the same distribution of param-

eters—v, β, φ and ρ—as in the preceding examples), and the spiking threshold, θi, was set to

3/4 of the peak height of the input tuning curve: θi = 3(ρi + υi)/4.

It is not straightforward to compute the covariance matrix of correlated responses gener-

ated by the dichotomized Gaussian model, so we used Monte Carlo methods to estimate the

covariance: we took 106 draws from the distribution of x, and for each draw we computed the

corresponding responses, y, using the thresholding operation (Eq (11)). We then computed

the covariance of these simulated responses, and used them to estimate the linear Fisher
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information in the second layer activities via the standard expression,

IyðsÞ ¼
@μðsÞ
@s
� CovðyjsÞ� 1

�
@μðsÞ
@s

: ð102Þ

Fig 6. Fig 6 was made in the same fashion as Fig 5, with the exception that noise was

added before the spike generation nonlinearity. The noise, z, was Gaussian and drawn iid with

variance s2
ζ .
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