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Abstract

Patients with obsessive-compulsive disorder (OCD) can be described as cautious and hesi-

tant, manifesting an excessive indecisiveness that hinders efficient decision making. How-

ever, excess caution in decision making may also lead to better performance in specific

situations where the cost of extended deliberation is small. We compared 16 juvenile OCD

patients with 16 matched healthy controls whilst they performed a sequential information

gathering task under different external cost conditions. We found that patients with OCD out-

performed healthy controls, winning significantly more points. The groups also differed in

the number of draws required prior to committing to a decision, but not in decision accuracy.

A novel Bayesian computational model revealed that subjective sampling costs arose as a

non-linear function of sampling, closely resembling an escalating urgency signal. Group dif-

ference in performance was best explained by a later emergence of these subjective costs

in the OCD group, also evident in an increased decision threshold. Our findings present a

novel computational model and suggest that enhanced information gathering in OCD can

be accounted for by a higher decision threshold arising out of an altered perception of costs

that, in some specific contexts, may be advantageous.

Author summary

Patients with obsessive-compulsive disorder (OCD) report to suffer from indecisiveness

and overly cautious decision making. Although many studies captured such a bias experi-

mentally, little is known about the cognitive mechanisms driving such an indecisiveness.

In this study, we investigated 16 juvenile OCD patients and compared their performance
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in a sequential information gathering task to healthy, matched controls. We found an

increased information gathering behaviour in OCD. This was accompanied by increased

winnings in the OCD group. A newly developed Bayesian computational model revealed

that OCD patients outperformed controls in this task because subjective costs for gather-

ing information arose significantly later in the decision making process. This was also

reflected by a later collapse in decision boundaries as captured in a delayed urgency

signal.

Introduction

A core feature of psychiatric illness includes personal suffering and functional impairments in

daily life [1,2] often coupled with a negative impact on a sufferer’s social environment [3].

Whilst this overall negative impact is well recognised, the possibility that some manifestations

of psychopathology might be beneficial is rarely a focus of consideration. Anecdotally, bipolar

disorder may be related to creativity [4], while increased exploration in attention-deficit hyper-

activity disorder can be beneficial in some limited settings [5,6]. Empirical accounts of the

underpinnings of these benefits is sparse, and its deeper understanding could throw light on

fundamental aspects of these conditions.

Obsessive-compulsive disorder (OCD) is characterized by intrusive thoughts (obsessions)

and/or repetitive behaviours (compulsions) [1,2]. In its first formal definition in the 19th cen-

tury it was characterised as a disorder of doubt [7,8]. Phenomenologically, patients with OCD

show a high level of indecisiveness that impairs efficiency of decision making, even for deci-

sions of little relevance [2,9,10]. An increased intolerance of uncertainty [10–12] and a more

cautious decision making style [13–15] are considered to be key features of OCD. For example,

in sequential sampling tasks, which allow participants to sample additional information in per-

forming a task, several studies suggest that patients with OCD sample more and are less certain

about available options [13,14,16,17], although not unequivocally so [18–20]. Although

handicapping in general, it is interesting to conjecture whether these same features might be

beneficial in specific contexts, for example where lengthy deliberation carries little cost relative

to the cost of a wrong decision.

To examine potential benefits that might arise out of excessive information gathering, and

to understand the computational mechanisms underpinning such benefit, we compared per-

formance of a modest sized group of 16 juvenile patients with OCD to that of 16 healthy

matched adolescents during performance of a sequential information gathering task. We find

that the OCD group outperformed controls in terms of their winnings, an advantage linked to

increased information sampling behaviour. To capture the cognitive mechanisms driving this

behavioural difference, we developed a novel Bayesian model and show that an elevated deci-

sion threshold was the driving factor in patients’ increased information gathering, and this in

turn arose out of an altered structure of intrinsic sampling costs.

Materials and methods

Ethics statement

The study was approved by the ethics committee of the Canton of Zurich, Switzerland. All par-

ticipants and their legal guardians provided oral and written informed consent.
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Subjects

Thirty-two adolescent subjects between 13 and 17 years participated in the study. The OCD

group consisted of 16 patients recruited from public and private psychiatric practices in the

cantons of Zurich, Aarau and Bern (Switzerland). All participants were seeing a clinician due

to a primary diagnosis of OCD. Two of the patients were on ward at the time of the study, all

others were in outpatient treatment. The controls were recruited from the general population

and matched to patients for age and IQ (Table 1). All subjects underwent a structured clinical

interview (K-SADS-PL, German version [21]), conducted by experienced clinicians. The OCD

group fulfilled the DSM-5 and ICD-10 criteria for OCD at least once in lifetime, and all but

one fulfilled the ICD-10 criteria of OCD at the time of the experiment. In addition, self-

reported symptom severity in patients was assessed using the CY-BOCS interview [22]. Beha-

vioural results did not change when excluding the subject in remission. Nine patients with

OCD were medicated (medication details in S1 Table). No subject from the control group met

criteria for major psychiatric disorder based on the clinical interview. A detailed list of comor-

bidities is provided in Table 1. Some of the subjects participated in an fMRI experiment at a

later time point, of which data is reported elsewhere [23]. Participants received vouchers for

local stores as reimbursement for their participation (CHF 60). There was no additional reim-

bursement for actual performance on this task. The study was approved by the ethics commit-

tee of the Canton of Zurich, Switzerland. All participants and their legal guardians provided

oral and written informed consent.

Task

The participants performed an information gathering task implemented by the CANTAB

test system (Fig 1, ‘information sampling task’; Cambridge Cognition, Cambridge UK

[18,24]), administered on a touch-screen tablet computer. In each game, subjects were pre-

sented with 25 covered cards. They were told each of these cards was either coloured with

yellow (y) or blue (b; sets of colours varied across games, y and b were chosen here for sim-

plicity). The subjects had to infer on each iteration of the task whether the majority of the 25

Table 1. Characteristics of the participants.

controls OCD significance

age 15.0y±1.1 (range

13.1–16.8)

15.7±1.5 (range 13.4–17.8) t(30) = 1.37,

p>.05

sex (m/f) 8/8 13/3 χ2 (1) = 3.46,

p>.05

IQ estimate1 113±13 111±25 t(30) = .205,

p>.05

medication2 SSRI (n = 8) neuroleptic (n = 2)

symptom severity CY-BOCS (total/

obsessions/compulsions)

15.3±9.6 / 7.1±5.3 / 8.2±5.2

current comorbitities3 F40.2 specific

phobia (n = 2)

F40.2 specific phobia (n = 2) F90.0 ADHD (n = 2) F91.0 CD (n = 1) F93.8

other childhood emotional disorders (n = 2) F95.1 chronic tic disorder (n = 1)

Adolescents with OCD were compared to a group of healthy controls that did not differ in their age, IQ or gender. All participants underwent a clinical

interview and were screened for medications. ADHD: attention-deficit hyperactivity disorder; CD: conduct disorder; SSRI: selective serotonin reuptake

inhibitor. (mean±SD).
1: Waldmann (2008) [78], model 65;
2: Detailed list of medication and doses in S1 Table;
3: Assessed using K-SADS-PL structured interview (German version)

https://doi.org/10.1371/journal.pcbi.1005440.t001
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cards was yellow or blue. Before declaring their decision as to the majority colour, subjects

were free to reveal as many cards as they wished, until they felt certain enough to declare

their chosen colour.

The task involved two conditions. The first 10 games belonged to a ‘fixed’ condition, where

there was no explicit cost for revealing cards. In this condition, the subject received 100 points

upon declaring the correct colour, irrespective of how many cards were opened. A wrong

declaration resulted in a loss of 100 points. The second 10 games belonged to a ‘decreasing’

condition, in which subjects could win 250 points for a correct declaration. However, in this

iteration turning over of a card led to a reduction in the potential overall winnings amount by

10 points. Thus, if a subject correctly declared after turning 3 cards, then they won 220 points

(250–3�10 points). The punishment for a wrong declaration was always 100 points irrespective

of the number of cards that had been turned over in that game.

After each game, a waiting period was interposed before subjects continued with the next

game. This period was dynamically adjusted to approximately level out differences in timing

due to varying response speed in the game. This means that deciding earlier did not lead to

the task ending more quickly, i.e. subjects could not increase their reward rate using a fast

responding strategy. The colour sequences presented to the subjects were predetermined and

were independent of the spatial location of the opened card so that all subjects played with the

exact same sequences.

Behavioural analysis

Based on an hypothesis that patients with OCD may perform better than controls, we first

compared the total points won between groups. To further analyse any behavioural differences

between groups, we then ran repeated-measures ANOVAs with factor condition (‘fixed’,

‘decreasing’) and group (‘OCD’, ‘controls’), followed by post-hoc t-tests to test specific differ-

ences. Although there was no significant group difference in gender (cf. Table 1), there were

more males in the OCD than in the control group. To account for any potential confound, we

Fig 1. Information gathering task. Subjects have to guess whether the majority of the (initially) hidden cards (left panel) are yellow or blue. They can

gather information by selecting cards which then reveal their colour. The subjects are free to open as many cards as they want (middle panels) until they

feel certain enough and declare for one colour (right panel). In the ‘fixed’ condition, there is no explicit cost associated with sampling. Correct choices are

rewarded with 100 credit points, incorrect ones are punished with the same amount. In the ‘decreasing’ condition, sampling is associated with lower

potential wins. For every opened card, subjects will win 10 points less; starting from 250 with no cards opened. False decisions, again, result in a loss of a

fixed 100 points.

https://doi.org/10.1371/journal.pcbi.1005440.g001
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re-ran the behavioural analyses by adding ‘gender’ as a covariate. These analyses did not

change any of the results reported below, which means that gender did not impact in any of

the reported group differences. To examine whether our task findings were related to self-

reported symptom characteristics, we assessed whether indecisiveness or symptom severity in

the OCD group, as recorded using the CY-BOCS [22], was related to the behavioural effects

found in OCD using Spearman rank correlations. Moreover, we also tested whether medica-

tion or a comorbid diagnosis of anxiety (current or lifetime) in OCD patients had any impact

on information gathering behaviour.

Computational modelling

To understand the processes generating any observed behavioural difference between the

groups we developed a set of Bayesian generative models, where each model assumed that dif-

ferent characteristics accounted for participants’ behaviour. Models were compared using

complexity-adjusted model-fits (AIC and BIC), and the winning model was then used for fur-

ther analyses. These models are described in full in the supplemental material.

This winning model was based on principles we previously used to model a different sam-

pling task (the ‘Urns’ task) [25]. At its heart is the idea of Bayesian belief formation about the

generative probabilities that gave rise to the presented sequences. This belief is coupled to a

decision-theoretic choice of action based on inferred subjective costs. At each stage of the

game, a subject is assumed to compute long-run state-action or Q-values [26,27] for choosing

colour y, colour b, as well as for continuing sampling (‘not-deciding’, ND). The computation

of the Q-value for the two colours is based on the probability that the visible evidence was

derived from a board favouring the given colour, and the associated rewards/costs of making a

correct/incorrect decision. The Q-value for not-deciding was computed as the expected value

of the subsequent states, plus a subjective cost per step. The expected values were computed

using backward induction based upon solving the Bellman equation [28]. The decision policy

was determined using a softmax choice rule with an additional lapse rate parameter.

To understand better the structure of the participants’ subjective costs we compared models

with two different cost functions. The first model assumed a cost function that grows linearly

with the number of samples, i.e. the subjective cost for continuing sampling is the same irre-

spective of how much one has already sampled. This would mean that the subjective urge to

make a decision is stable over time. The alternative model assumes that the subjective costs

increase nonlinearly over samples. This means that subjects become more impatient and feel

greater urgency to make a decision as more cards are turned over.

Decision threshold formation

An alternative way to describe the policy arising from our model is via a threshold on the evi-

dence favouring one or the other colour for making a choice. In simple cases of evidence

accumulation and optional stopping, such as standard drift diffusion models [29–31], this

threshold is fixed. However, recent computational, behavioural and neurophysiological studies

have focused on the possibility that the decision threshold decreases over time, associated with

increasing urgency [32–38]. Our model attributes such a decreasing decision threshold to two

factors: a) an objective component of an approaching horizon, given knowledge that there is

only a fixed number of cards, b) an apparent growth in subjective costs per sampling step,

incorporating both explicit and implicit costs.

To understand the dynamic decision threshold in our winning model, we performed two

different analyses. First, we calculated the predicted decision threshold based on each subject’s

model parameters. At each stage, the decision threshold was computed as the indifference
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point between the Q-value of the best colour and the one for not-deciding (relative to the total

evidence). The differences in the decision thresholds were then compared between the groups

by performing independent t-tests for each stage, and then run in a cluster-extent permutation

test to assess the significance of threshold-differences (height threshold t = 1, 1000 iterations)

on the extent of these effects [39,40]. In a second analysis, we showed how actual choice behav-

iour had a different relationship to evidence in the two groups. To do that, we plotted decisions

as a function of both samples and evidence difference, i.e. to illustrate how much evidence an

agent needs for every given stage to make a decision [33]. However, due to few data points in

this sample (10 per subject and condition), we could not perform such an analysis with the raw

behaviour. We exploited our computational model by taking each subject’s best fitting param-

eters and then allowing 1000 simulated agents to perform the task. Based on the multitude of

generated behaviours, we could then calculate the mean evidence difference for each stage and

plot this as a behavioural decision threshold. We again compared the two groups using t-tests

and cluster permutation tests to correct for multiple comparison [39,40].

Model parameter comparison

To understand the aspects of the model that drive the decision threshold and behavioural dif-

ferences, we compared the model parameters between the two groups using non-parametric

Wilcoxon rank-sum tests and corrected for multiple comparisons using Bonferroni correction.

A detailed description of model parameter estimation is provided in the supplement.

Results

Increased performance in OCD

The OCD group won significantly more points than controls throughout the task (OCD: 1929

±268 points, controls: 1406±502, t(30) = 3.67, p = 0.001, mean difference: 522.5, 95%-confi-

dence interval: 231–813). When analyzing the number of points won in the two conditions

separately, a repeated-measures ANOVA confirmed a difference in the main effect of group

(F(1,30) = 13.48, p = .001, marginal means: OCD: 964, CI: 861–1067, controls: 703, CI: 600–

806). Moreover, there was also a main effect of condition (F(1,30) = 7.78, p = .009), but no

interaction (F(1,30) = 2.32, p = .138). Post-hoc t-tests revealed the group difference was pri-

marily driven by the decreasing condition (decreasing condition: OCD: 1104±182, controls:

744±227, t(30) = 4.94, p<0.001, mean difference: 360, C.I.: 211–509; fixed condition: OCD:

825±229, controls: 662±398, t(30) = 1.41, p = .168, mean difference: 114, C.I.: -72-397; Fig 2A),

indicating OCD patients were more successful in this task in terms of points won.

OCD patients gather more information

To obtain a deeper understanding of this superior performance we analyzed the number of

draws before making a decision and the accuracy of their decisions. OCD subjects turned over

significantly more cards compared to controls, as revealed in a main effect of group (F(1,30) =

8.3, p = .007, marginal means: OCD: 13.4, CI: 11.6–15.2, controls: 9.9, CI: 8.1–11.6, Fig 2B).

There was also a main effect of task condition (F(1,30) = 51.64, p < .001), but no interaction

(F(1,30) = 2.17, p = .151). Post-hoc t-tests show that increased sampling in OCD was apparent

in both conditions, but only significantly so in the fixed condition (fixed condition: OCD: 18.1

±5.4, controls: 12.9±6.3, t(30) = -2.47, p = .019, mean difference 5.16, CI: .90–9.41; decreasing

condition: OCD: 8.8±2.7, controls: 6.8±3.0, t(30) = -2.00, p = .054, mean difference 2.02, CI:

-.04–4.08).
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No significant differences in decision accuracy

We analysed participants’ accuracy by comparing how often a subject chose the colour that

was more plentiful at the time of decision. There was no significant difference between groups

(F(1,30) = 1.2, p = .288, marginal means: OCD: 95.6, CI: 92.7–98.5, controls: 93.4, CI: 90.5–

96.4), no condition effect (F(1,30) = 1.7, p = .197) and no interaction (F(1,30) = .54, p = .470).

This suggests that neither group was more random at the point of declaring.

Sequence-dependent performance

To gain further insight into the mechanism accounting for greater winnings in patients, (win

more in the decreasing condition, but sample more in the fixed condition), we analysed the

sequences’ win probabilities as a function of stage. We found that the sequences were less likely

to result in a win around stage 5 (cf. supplementary material for detailed analysis; S4 and S5

Figs). To understand whether lower wins in controls were specifically due to this trough, we

Fig 2. Performance differences in information gathering. Adolescents with OCD won significantly more

points than controls across the entire task. This was mainly driven by an increase in points won during the

decreasing condition (A). OCD patients opened significantly more boxes (B), but did not differ in performance

accuracy (C; accuracy defined as the proportion of choices of the colour that was in the majority of currently

opened cards). (D) Total draws to decision correlated significantly with self-reported general indecisiveness in

OCD patients, linking task behavior to real-world perceived difficulties. *** p< = .001, ** p < .01, * p < .05, t p

< .10.

https://doi.org/10.1371/journal.pcbi.1005440.g002
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simulated balanced sequences and found that the superior performance of patients with OCD

was not an artefact of the sequences. In fact the effect remained in other sequences and was

best explained by patients’ increased sampling. It is noteworthy that the simulated agents’

increased wins were more prominent in the fixed than in the decreasing condition, in line

with our hypothesis of a superior performance of compulsive subjects when the cost of sam-

pling is low.

Information gathering relates to indecisiveness, but not symptom

severity in OCD

The finding of an increased information gathering in OCD raises the question as to whether

there is a relationship to behavioural patterns beyond a laboratory task. A general indecisive-

ness is often reported in OCD as assessed in a clinical interview (CY-BOCS; [22]), but is not

taken into account in providing a description of symptom severity. We correlated information

gathering behaviour in our task with this self-reported indecisiveness in the OCD group and

found a strong correlation with a total number of draws across both conditions (Fig 2D, ρ =

.584, p = .018). This was mainly due to the increased sampling in the fixed condition (ρ = .498,

p = .049), but was also evident in the decreasing condition (ρ = .441, p = .087). Within the

OCD group, we did not observe any relationship of OCD symptom severity with either total

points won (CY-BOCS total: ρ = .143, p = .598; obsessions: ρ = .007, p = .980; compulsions: ρ =

.143, p = .597) or draws to decision (CY-BOCS total: ρ = .157, p = .563; obsessions: ρ = .348, p

= .186; compulsions: ρ = -.044, p = .870). These findings suggest that an increased information

gathering is closely linked to self-reported indecisiveness, but not to a symptom severity,

among OCD patients. Draws to decision might conceivably reflect a decision trait inherent to

OCD, rather than an indication of illness severity. However, the absence of a correlation with

symptom severity could also be caused by an imprecise estimate of the OCD severity due to a

lack in disorder insight in juvenile OCD [41], or the modest size of our patient group that

might not have the sensitivity to detect more subtle associations.

No effect of medication or anxiety

Because many of our OCD patients received medications, we tested whether behavioural dif-

ferences (draws to decision, total points won) were equally distributed across medicated and

unmedicated patients. We found no significant differences for any of these variables (all p’s >

.3). Likewise, a comorbid current or lifetime diagnosis of an anxiety disorder did not affect

patients’ behaviour (p’s> .05).

This also held true when we adopted a machine learning approach (5-fold cross-validation

regression, cf supplemental information) to evaluate whether an additional variable such as

anxiety or medication would improve the prediction of the behavioural markers (draws to

decision fixed condition, total points won), over and above a mere OCD diagnosis. While the

group regressor predicted both behavioural markers (p’s < .05), neither medication status

(p’s>.2) nor anxiety (current and lifetime; p’s>.1) improved the classification. However, given

the relatively small patient sample, a replication of these effects is desirable.

Bayesian computational modelling

To understand behavioural differences at a deeper level, we developed several computational

models of the task and compared their performance. The best model was then used to analyse

model parameters and decision thresholds further.

We used a two-part process in our model selection. In the first part, we compared three

candidate models that embodied different premises. The winning model, ‘Mgenerative’ calculates
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the value for choosing yellow, blue, or continuing sampling. These action values are computed

based on an agent’s belief as to whether the sequence-generator is more likely to deal cards of

yellow or blue colour (i.e. ‘what generative process is likely to cause this sequence’). The second

model, ‘Mmajority’, estimates the action values in the same way as Mgenerative, except for assess-

ing a belief as to whether colour yellow (or blue) is more plentiful across all 25 cards in the par-

ticular set of cards presented. In fact this latter model implements what participants were

instructed to do (i.e. ‘whether there are more cards of yellow or blue’). The third is a heuristic

model (‘Mheuristic’) that involves a simple stopping rule but does not consider the accumulated

evidence. Model comparison showed (S1A Fig) that subjects’ behaviour is best reflected by the

Mgenerative model.

We used the winning model from the first part of our model selection (Mgenerative; S1B Fig)

to compare in the second part whether a linear (as used in part 1) or a nonlinear cost function

performed better, and whether free parameters for the cost-functions were the same across

both conditions. The final winning model had a nonlinear (sigmoidal) cost function (S2 Fig),

defined by three different parameters: a cost parameter c describing how costly sampling is in

general (i.e. scaling factor); the patience parameter p which describes the stage at which a sub-

ject becomes impatient, i.e. at what time point the costs start to escalate (i.e. indifference

point); the slope parameter k describing how quickly a subjects becomes impatient (i.e. slope

of the cost function). In the winning model, both c and k were shared across both conditions,

whereas p differed for the decreasing and fixed condition. This model outperformed a model

where the explicit costs per step (winning 10 points less at every step) in the decreasing condi-

tion were modelled in addition to the cost parameters. This suggests that subjects did not take

these explicit costs into account accurately. The model predictions (policy) of the winning

model are shown in Fig 3.

We also simulated behaviour using the best-fitting parameters for each subject. We found

that these simulations produced very similar behaviour to the actual behaviour of our subjects

(S3 Fig). Additionally, the model fits did not differ between the two groups, meaning that the

model reflected both groups equally well (S3D Fig).

Elevated decision thresholds in OCD

Our model provides an implicit measure of a dynamic decision threshold determining the dif-

ference in cards at each stage at which subjects are more likely to declare than to continue sam-

pling. The way these decision thresholds change over samples, and the way they differ between

the groups, can reveal about factors such as caution and urgency. We compared the model-

predicted decision thresholds at every stage of the game (Fig 4A), and cluster-extent permuta-

tion tests revealed an extended increase of the decision threshold in OCD patients in the fixed

condition (p = .019) and in the decreasing condition (p = .042).

To verify the effects of an altered decision threshold, we used subjects’ best-fitting parame-

ters to generate simulated data from the model. Each subject’s model played the task 1000

times and we then computed the mean evidence difference for each stage and condition (i.e.,

evidence difference between the two colours at the stage where the agent chose; Fig 4B). This

analysis also revealed an increased decision threshold in the OCD group for the fixed (p =

.029) as well as the decreasing condition (p = .013).

Delayed subjective costs drive increased decision thresholds

To understand how the decision thresholds arose, we compared the model parameters

between groups. The main difference was for the patience parameter p in the fixed condition

(p1: controls: 16.34±7.89, OCD: 22.15±4.80; z(186) = -2.92, p = 0.021, Bonferroni corrected).

Information gathering in OCD
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This difference suggests that the intrinsic costs in patients with OCD arose later than in healthy

controls (S2 and S6 Figs). There was also a difference in the slope parameter k of the nonlinear

cost-function, though this did not survive multiple comparison correction (p = .017, uncor-

rected; S2 Fig). These findings show that the subjective costs for OCD patients are smaller and

escalate later in time, as evident in S6 Fig. This less impatient behaviour in OCD helped them

to outperform healthy controls in this task.

Discussion

Indecisiveness and hesitant behaviour are detrimental to daily functioning, and this is exempli-

fied in the handicaps of patients with OCD, for example their time expenditure on compul-

sions that impact on social and occupational functioning [42–44]. Here, we analyse the

neurocognitive mechanisms underlying an increased information gathering behaviour in juve-

nile OCD patients, which in turn enabled these patients to win more points than controls.

Our finding of increased information gathering in OCD complements previous studies

reporting that patients with OCD tend to sample more in related tasks [13,14,16,17], although

the latter observation is not ubiquitous [18–20]. Our computational modelling showed that

increased sampling is reflected in a higher decision threshold in OCD patients. The model

Fig 3. Choice probabilities (policyπ) of the winning model. For each stage of a game (x axis), the model

predicts the average probability of choosing yellow colour (Py), blue colour (Pb), or continuing to sample (pink,

PND). For the fixed condition (top), OCD patients (right) are more likely to continue sampling in conditions

where the majority is not clearly apparent. In the decreasing condition (bottom), the probability of not deciding

is lower than in the fixed condition in both groups (less pinkish colours). It is also noteworthy that OCD

adolescents flexibly adapt their strategy in the decreasing condition, indicating against a general inflexibility in

OCD.

https://doi.org/10.1371/journal.pcbi.1005440.g003
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parameter comparison revealed that this difference is mainly due to lower subjective costs for

sampling in OCD patients, reflected in an altered patience parameter. This means that subjec-

tive costs, such as impatience, only become important after more samples in OCD. It is critical

to note that such subjective costs are only meaningfully defined relative to the potential out-

comes of the task. This means that patients with OCD discount subjective costs (which might

reflect impatience, fatigue, etc.) more than controls relative to making a correct/incorrect deci-

sion. This direct trade-off is also captured by a model comparison where an additional free

parameter moderating the subjective impact of being wrong (Rinc) failed to improve model

predictions. Such a relative discounting of subjective costs may also explain why OCD patients

are more indecisive in so far as it allows them to elaborate at greater length before committing

to a decision. A close correlation between information gathering and a self-reported, global

indecisiveness supports a notion that laboratory elicited increased information gathering has

real-life implications. It is interesting to speculate how this might be related to an increased

intolerance of uncertainty [10,11] where an intolerance could be a metacognitive consequence

of indecisiveness. For example, as patients are aware of their slowness during decision making

they might at the same time endeavour to avoid situations that necessitate time-consuming

deliberations.

We still know little as to how decision thresholds and altered cost perception are instanti-

ated in the brain. The finding of an urgency gating signal [32–35,45] suggests that decision

threshold formation is a dynamic process that changes as function of time. Importantly, such

an urgency signal follows a nonlinear increase, similar to that implied in our modelling results

[38,46]. While such a signal moderates evidence accumulation in motor and premotor areas

[33,38,45], it is unclear where this signal originates. Studies on decision threshold variability

hint at an origin in a cortico-striatal loop that includes anterior cingulate cortex (ACC) and

subthalamic nucleus (STN) [47–49]. The ACC is reported to show altered function and struc-

ture in OCD [23,23,50–54], a target for invasive treatment in OCD [55], while STN is a target

for deep-brain stimulation in this condition [56].

Fig 4. Increased decision thresholds in patients with OCD. The OCD group showed increased decision thresholds in both conditions. The model’s

inherent decision threshold showed a distinction between the OCD group and controls (A). When using the model to simulate data, we again found a

marked increase in decision threshold (as indicated by the mean evidence difference at choice at each stage) for OCD patients (B). Note the growing

evidence difference for the first few draws increases because the magnitude of the difference in evidence is limited by the actual samples (e.g., the

difference after 2 draws can be no more than 2). The increasing errorbars in the decreasing condition at later stages shows that even simulated agents

rarely sample beyond the 15th step in this condition.

https://doi.org/10.1371/journal.pcbi.1005440.g004
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It is important to note that an urgency signal in the context of this task, and also in percep-

tual decision making, is not intended to relate to a concept of ‘negative urgency’ known from

addictive behaviours [57–59]. While the latter characterises the tendency to act rashly in nega-

tive emotional (distressing) states [57,58], the former is not assumed to be directly related to

emotions. Rather, a decision urgency reflects a general property that subjects become more lib-

eral in their decision making as an information sampling process unfolds [32,35]. How such

computations link to emotion remains a matter of debate [60]. However, a delayed urgency to

decide (as per our model) could reflect an increased urgency to continuing sampling in OCD

(i.e. carrying out compulsions) that only slowly wears off as sampling progresses. Such an

hypothesis could also be tested in distinct valence contexts, such as a gain vs a loss domain.

This could also shed light on an assumed relationship between impulsivity and compulsivity,

and between addictive disorders and OCD [61,62].

An advantage of our form of sequential sampling tasks is that all evidence is explicitly dis-

played on the screen and there is little perceptual uncertainty or working memory capacity

limitations that could affect the availability of accumulated information. This is important

because facets of how evidence accumulates (such as leakage of evidence) can masquerade as a

component of a decision threshold. Thus, our findings complement a recent observation of

increased decision thresholds in OCD patients during perceptual decision making [63,64]. An

additional benefit of sequential sampling is that it allows us to infer the change in decision

thresholds at every stage of the sampling process and investigate the evolution of this threshold

over time. Here, a change in decision thresholds was driven by a differential alteration in cost

that arises as one continues sampling.

To our knowledge ours is the first study to show such behaviour in juvenile patients with

OCD. Previous studies tested adult patients, and most used slightly different tasks, known as

‘Urns’ or ‘Beads’ task [13,14,16,17,19,20]. Only one study used the same information sampling

task, but did not find significant differences in draws to decision between the groups [18]. This

failure could reflect a variety of factors, such as disorder chronicity in those older patients or

effects of long-term treatment. Future studies could usefully compare information gathering

in juvenile and adult OCD, or even whether increased information gathering is more closely

related to early-onset rather than late-onset OCD subtypes, which might also have different

neurobiological aetiologies [65,66]. Such approaches could also help identify potential OCD

subtypes that may express an information gathering excess. It would be also interesting to

assess whether obsessive-compulsive personality disorder (OCPD) is also associated with

increased information gathering, given that indecisiveness and perfectionism are considered

as two separate dimensions in OCPD [67], and to assess whether an indecisiveness (as reported

in this manuscript) or a perfectionism factor would be more predictive of such behaviour.

Our modelling revealed that the subjective costs did not match the external cost structure

in several ways. First, in the fixed condition, where no explicit costs apply, subjects express

subjective costs. This is also consistent with the presence of urgency signals in other tasks in

the absence of external costs [34,38]. Second, in the decreasing condition, subjects do not take

the explicit costs accurately into account, as model comparison revealed. Subjective costs are

not represented in a linear manner but as an accelerating function of sampling. Our modelling

thus reveals how subjective costs are biased in general and how these give rise to decreasing

decision thresholds in particular.

The finding that subjects with OCD outperform healthy controls in our task raises the

question as to the ecological circumstances where such advantage might be apparent. One

can speculate this might hold in situations where initial uncertainty can be resolved by

lengthy in-depth elaboration or where extended elaboration comes at a low cost. However,

increased decision thresholds can also be harmful, especially when there is only limited time
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and many decisions must be made. Previous work has shown healthy humans perform near

optimal if they have to trade-off between the time spent for one decision and the number of

decisions that can be made in a limited time [68], though this might not be the case for

patients with OCD. Moreover, a better performance in juvenile OCD patients could also cap-

ture a developmental effect, given that adolescents are assumed to be generally more impul-

sive [69]. Note we consider extended deliberation times in OCD as active sampling and

elaboration, rather than undirected rumination or pondering. One can speculate that an

excess of compulsive, repetitive, behaviours and mental rituals in patients is analogous to

increased sampling behaviour where the goal is one of attaining full certainty that an intru-

sive belief will not prove to be real. For example, because an intrusive thought cannot be dis-

missed with sufficient certainty, patients may develop (irrational) mental rituals that foster

an accumulation of additional evidence to attain a decision threshold. The same may apply

also to checking behaviour, where one may not trust one’s own actions and continue sam-

pling to cross a high decision threshold.

More recently, an increased in habitual decision making bias has gained much attention in

OCD patients and along a compulsivity spectrum [70,71]. Although no study has yet investi-

gated the relationship between habitual behaviour and excessive information gathering, a

direct comparison could be informative in understanding the structure of decision making

biases in OCD. It is possible altered decision thresholds are directly linked to increased habit-

ual behaviour. In particular, an increased decision threshold during model-based decision

making renders it likely that patients with OCD fail to make a decision in the speeded tasks

that are used to probe model-based control, especially if we think of this type of reasoning as

sampling a state-space (such as Monte Carlo tree search [72]). This means that a model-based

system would fail to converge leading to greater reliance on cached, model-free, decision vari-

ables that guide habitual decision making. Alternatively, these two decision making biases

might be completely independent and thus form two OCD subgroups, one driven by indeci-

siveness while the other primarily related to an excess in habit formation.

A limitation of our study is the fact that our sample size is relatively small (N = 16) and

heterogeneous with respect to comorbidity and medication. To assess the effects of medica-

tion on performance, we compared the behavioural (draws to decision, points won) as well

as the model parameters between the medicated (N = 9) and unmedicated patients and

found no evidence for a significant medication effect. Although previous studies used similar

or smaller sample sizes [14,16–18], it is desirable to replicate our behavioural and modelling

results in a larger sample. A larger sample could also allow a more detailed assessment of

medication effects, potentially informing on neurotransmitter involvement in information

gathering and urgency, so extending previous inconclusive studies in relation to the impact

of dopamine and ketamine [73–77]. In addition, this could allow further investigation of the

effect of symptom severity as well as enable characterization of potential subgroups who

might be particularly affected (e.g. checking compulsions). The fact that several patients suf-

fered from comorbidities, such as other anxiety disorders, points to need for validation of

our findings in a sample that is matched for other psychiatric dimensions, such as anxiety

scores.

Conclusions

We show that an increased information gathering in juvenile OCD patients is driven by a

higher dynamical decision threshold due to a delayed urgency to respond in OCD. In this spe-

cific sequential information sampling task more cautious decision making behaviour resulted

in higher task winnings in OCD.
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Supporting information

S1 Text. Computational modelling of information gathering task.

(DOCX)

S1 Fig. Model comparison. (A) In the first part, we found that the Mgenerative model (light grey

bar) outperformed the other alternative models. This model was then used in part 2 to com-

pare variants of linear and nonlinear cost-functions. The model with a cost-per-step c and

slope k that was shared across conditions, but separate indifference points p was the winning

model, which was then used for further analysis.

(TIF)

S2 Fig. Model parameter comparison. Group comparison of the winning model revealed that

OCD had a significantly increased indifference point p1 for the fixed condition. The other

parameters did not survive multiple comparison correction. Bottom right: cartoon of nonlin-

ear cost function: c moderates the height of the costs whereas p determines the change point,

and k the steepness of the slope. Subscript 1: fixed condition; 2: decreasing condition; �� p =

.003, uncorrected.; � p = .017, uncorrected.

(TIF)

S3 Fig. Model-generated behaviour. Generated behaviour from the winning model (best-fit-

ting parameters for each subject, running 1000 simulated agents for each subject) produces

similar behaviours as found in our groups (Fig 2). The simulated OCD agents win more points

(A), make more draws (B), but are similar in their choice acuity (C). (D) The average likeli-

hoods (model performance) for each trial are similar in OCD and controls (z(229) = -1.30, p =

.194), meaning that the model performed similar for both groups. (E) Simulated behaviour

closely resembles each subjects’ number of draws for both conditions (the closer to diagonal,

the more similar).

(TIF)

S4 Fig. Sequence-specific performance. (A) The probability of winning changes as a function

of stage (black line; mean±s.e.m.): increased sampling leads a higher probability of winning. In

the decreasing condition, controls chose at an early stage where the probability of winning was

lowest, whereas patients with OCD chose later and thus won more money in this condition.

(B) The average number of points that one wins during this task depends on the win probabil-

ity at that stage, as well as the external costs. Similar to the win probability, the mean points to

win has a marked trough around stage 5. It is also visible how this has a bigger impact in the

decreasing condition (green), as there are more points at stake during this early phase. It also

becomes apparent how the conditions differ in their incentive structure with a vanishing aver-

age win in the decreasing condition and an increasing win in the fixed condition (gold). (violet

and pink lines indicate choice densities for controls and OCD to indicate the frequency of

their decisions as a function of stage).

(TIF)

S5 Fig. In silico performance using difference sequences. Simulation of behaviour con-

firmed our finding that OCD patients outperform healthy controls in terms of their win-

nings. Even when presented with randomly shuffled sequences, the simulated OCD patients

earn more points than the controls (A). In close resemblance of the actual behaviour (Fig

2A–2C), simulated OCD patients made more draws than the controls (B). (C) Shuffled

sequences show how win probability increases linearly as a function of stage. �� p < .01;
� p < .05; t p < .10.

(TIF)
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S6 Fig. Lower subjective costs in OCD. The subjective costs increase nonlinearly over time,

suggesting that it subjectively becomes more costly to continue sampling as time progresses.

For patients with OCD, these subjective costs are less important for their decision making.

Especially in the fixed condition (A), OCD patients have a higher patience parameter p1 that

indicates that they are more persistent, and less pressed to declare. Please note that the costs

per step in the decreasing condition are relative values that are not directly translatable into

outcome currency (i.e. number of points) because the outcomes of the winning model do not

reflect the actual, objective costs of the task.

(TIF)

S1 Table. Medication details. Detailed list of medication usage in OCD patients (one row per

medicated patient), listed by subjects receiving medication. N/A: data not available.

(DOCX)
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