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ABSTRACT 

 

Objectives: The immature partial mandible GAR IVE from the c. 1.7 Ma old Garba IV site at 

Melka Kunture (Upper Awash Basin, Ethiopia), the earliest human representative from a 

mountain-like environment, represents one of the oldest early Homo specimens bearing a mixed 

dentition. Following its first description (Condemi, 2004), we extended the analytical and 

comparative record of this specimen by providing unreported details about its inner morphology, 

tooth maturational pattern and age at death, crown size and tooth tissue proportions. 

Materials and Methods: The new body of quantitative structural information and virtual 

imaging derives from a medical CT record performed in 2013. 

Results: Compared to the extant human condition and to some fossil representatives of 

comparable individual age, the GAR IVE mandible reveals absolutely and relatively thick 

cortical bone. Crown size of the permanent lateral incisor and the canine fit the estimates of H. 

erectus s.l., while the dm2 and the M1 more closely approach those of H. habilis-rudolfensis. 

Molar crown pulp volumes are lower than reported in other fossil specimens and in extant 

humans. The mineralization sequence of the permanent tooth elements is represented four times 

in our reference sample of extant immature individuals (N=795). 

Conclusions: The tooth developmental pattern displayed by the immature individual from 

Garba IV falls within the range of variation of extant human populations and is also comparable 

with that of other very young early fossil hominins. Taken together, the evidence presented here 

for mandibular morphology and dental development suggest GAR IVE is a robust 2.5-3.5 year 

old early Homo specimen. 



Melka Kunture is a complex of archaeological and paleontological sites of the Ethiopian 

highlands (c. 2000 m asl) extending along the Upper Awash Valley on the western shoulder of 

the Rift Valley, 50 km south of Addis Ababa (Chavaillon and Piperno, 2004a). Following its first 

identification in 1963, within the development of a UN water program, preliminary 

archaeological survey was undertaken one year later by G. Bailloud (Bailloud, 1965). From 1965 

to 1998 the activity of the French Archaeological Mission was directed by J. Chavaillon 

(Chavaillon et al., 1979; Chavaillon and Piperno, 2004b). Since 1999, research in the area has 

been carried on by the Italian Archaeological Mission at Melka Kunture and Balchit (Chavaillon 

and Piperno, 2004b; Mussi et al., 2014; http://www.melkakunture.it/). 

The sites at Melka Kunture (Atebella, Garba, Gombore, Gotu, Karre, Kella, Simbiro, Tcheri-

Arussi, Tuka, Weraba, Wofi) are named after the gullies shaped by the nearby seasonal tributaries 

of the Awash River (Chavaillon and Berthelet, 2004; Gallotti, 2013: fig. 1). Their fluvial-

lacustrine and volcanic deposits accumulated and eroded during most of the Pleistocene in a 

semi-graben depression of c. 3000 km2 whose southwestern edge is the Melka fault (Taieb, 1967; 

Kieffer et al., 2002, 2004; Bardin et al., 2004; Chavaillon and Piperno, 2004a; Raynal and 

Kieffer, 2004; Raynal et al., 2004; Piperno et al., 2009; Morgan et al., 2012; Gallotti et al., 2014; 

Tamrat et al., 2014). 

Relative and absolute chronological assessment of the alluvial and tuffaceous deposits 

outcropping in the nearly 100 km2 area of Melka Kunture have been established on the ground of 

litho- and archaeostratigraphic unit correlations (Taieb, 1967, 1971; Chavaillon and Taieb, 1968; 

Chavaillon et al., 1979; Kieffer et al., 2004; Raynal et al., 2004) and by K/Ar and 40Ar/39Ar 

radiometric ages thanks to the presence of volcanic deposits (in Morgan et al., 2012). Supported 

by an updated magnetostratigraphic record (Tamrat et al., 2014), available evidence shows that 

the exposed sections cover approximately the entire Calabrian Stage (Early Pleistocene), from the 

top of the normal polarity Olduvai Subchron to the early Brunhes (Morgan et al., 2012; Tamrat et 

al., 2014). The archaeological record starts at c. 1.7 Ma with the Oldowan levels of Karre I, 

Gombore I, Gombore Iγ, and Garba IVE-G (Piperno et al., 2009; Morgan et al., 2012; Gallotti, 

2013; Gallotti and Mussi, 2015), while the first evidence of Acheulean from Garba IVD is 

referred to c. 1.5 Ma (Gallotti, 2013). The occurrence of the Acheulean then lasts nearly one 

million years (Chavaillon and Berthelet, 2004; Gallotti et al., 2010, 2014). So far, the early 

Middle Stone Age is represented at the site of Garba IIIB (Mussi et al., 2014), while Late Stone 



Age occurrences lack geochronological resolution because volcanic ashes did not cover the 

Middle-Late Pleistocene sites (Hivernel-Guerre, 1976; Chavaillon et al., 1979; Chavaillon and 

Berthelet, 2004; Mussi et al., 2014). 

Besides Homo (see below), the mammal fossil assemblage from Melka Kunture, particularly 

rich at Garba and Gombore, includes bovids (notably, Alcelaphini and some Antilopini and 

Reduncini), hippopotamids, equids, suids, giraffids, and some proboscideans, rhinocerontids, 

carnivores and non-hominin primates (Oussedik, 1976; Geraads, 1979, 1985; Chavaillon and 

Berthelet, 2004; Geraads et al., 2004a; Gallotti et al., 2010, 2014; Beaudet et al., 2015). This 

assemblage associates Hippopotamus sp. (cf. amphibious and cf. aethiopicus) and other 

artiodactyls indicative of relatively wet grasslands (Kobus) along with grazer (e.g., 

Connochaetes, Damaliscus) and primate taxa (Theropithecus) more commonly found in drier 

open environments (Geraads et al., 2004a, b; Beaudet et al., 2015). While the latter scenario is 

also consistent with information from the microfauna (Sabatier, 1980-82; Geraads et al., 2004b; 

Gallotti et al., 2010) and with some biogeochemical (Bocherens et al., 1996) and palynological 

data (Bonnefille, 1976) supporting the presence of spread C4 grasslands in the area across most 

Early to early Middle Pleistocene (in Morgan et al., 2012), paleoecological interpretations at 

Melka Kunture require caution, as the proportions of mammal taxa, notably the ungulates, reflect 

strong taphonomic biases (Gallotti et al., 2010: 298). However, a more recent palynologically 

based paleoenvironmental reconstruction (Mussi et al., 2015) supports a landscape across most of 

the Pleistocene compatible with the so-called "dry evergreen afromontane forest and grassland 

complex" (Friis et al., 2011; Kebede et al., 2013), with no evidence whatsoever of vegetation 

encountered in the present-day Rift Valley and of any savannah tree species (Mussi et al., 2015). 

The human fossil record from Melka Kunture (Coppens, 2004; updating in Mussi et al., 2014) 

consists so far of the following seven remains: an immature partial mandible (MK 81 GAR IVE 

0043) from Garba IV (Condemi, 2004; Zilberman et al., 2004a, b; Zanolli et al., 2014a) and an 

adult distal humerus (MK 76 GOM IB 7594) from Gombore I (Chavaillon et al., 1977; Senut, 

1979; Carretero et al., 2009; Puymerail et al., 2014; Di Vincenzo et al., 2015), both associated 

with Oldowan industries; two adult cranial portions (MK 73 GOM II 6169 and MK 76 GOM II 

576) from Gombore II (Chavaillon et al., 1974; Chavaillon and Coppens, 1986; Profico et al., 

2016), associated with a middle Acheulean industry; and three juvenile to adult cranial fragments 

from Garba III (MK 78 GAR III A4-W9 n. 1918, MK 78 GAR III B3-A13 n. 1656-1919, and 



MK 78 GAR III A4-W9 n. 1917) associated with an early Middle Stone Age industry 

(Chavaillon et al., 1987; Mussi et al., 2014). 

The immature right mandibular portion MK 81 GAR IVE 0043 (hereafter GAR IVE) was 

discovered in situ in 1981 during excavation of the archaeostratigraphic unit E of Garba IV, a site 

located on the right bank of the Awash, whose Calabrian deposits belong to the lowest part of the 

Melka Kunture Formation (Kieffer et al., 2002, 2004; Raynal and Kieffer, 2004; Raynal et al., 

2004; Gallotti, 2013; Gallotti and Mussi, 2015). Started in 1972 (Chavaillon and Piperno, 1975), 

investigations at Garba IV revealed the presence of several archaeological horizons within a 

stratigraphic sequence of three units almost entirely sandwiched within two tuff layers identified 

along the Garba gully, tuff A0 and the 'Grazia tuff' (Raynal et al., 2004), which have been 

recently dated to 1.429±0.029 Ma and 1.719±0.199 Ma, respectively (Morgan et al., 2012; 

Tamrat et al., 2014). More specifically, the level E (Piperno and Bulgarelli-Piperno, 1975; 

Piperno and Bulgarelli, 2004; Piperno et al., 2004a, b, c, d; Gallotti, 2013), whose polarity is 

normal (Tamrat et al., 2014: fig. 8), lies immediately below the 'Grazia tuff' (Raynal et al., 2004; 

Morgan et al., 2012: fig. 2a; Gallotti, 2013: fig. 2c; Gallotti and Mussi, 2015: fig. 3). 

Accordingly, the age of the specimen GAR IVE should be around/slightly older than 1.7 Ma, thus 

nearly contemporaneous to specimens such as KNM-ER 1805 from the Karari Ridge at Koobi 

Fora, Kenya (McDougall et al., 2012). 

Firstly reported by Condemi (2004; 

http://geoserver.itc.nl/melkakunture/biblio/monograph/melka-687.pdf) and attributed to H. 

erectus/ergaster because of its closer morphological and dimensional similarities to 

penecontemporaneous H. aff. erectus specimens from the Turkana basin (see also Coppens, 

2004), notably the subadult mandibles KNM-ER 820 and KNM-WT 15000 and, to some extent, 

the adult representative ER 992 (rev. and references in Wood and Leakey, 2011), GAR IVE is 

one of the few dentognathic remains from the Early Pleistocene African human record sampling a 

child. It is also noteworthy that, together with the c. 1.4 Ma H. erectus craniodental remains from 

the c. 1500 m asl site of Konso, at the southwestern end of the Main Ethiopian Rift (Suwa et al., 

2007), this specimen represents the oldest of any human remains from a mountain-like 

environment. 

GAR IVE represents a right mandibular corpus preserved between the central deciduous 

incisor (di1) broken socket and the first permanent molar (M1) crypt. It bears a heavily worn first 



deciduous molar (dm1) and a relatively unworn second deciduous molar (dm2), both in 

occlusion. Part of the developing crowns of the lateral permanent incisor (I2) and canine (C), as 

well as the completely formed but still unerupted M1 crown, are also visible. A radiographic 

analysis performed by Condemi (2004) evidenced the presence of the third and fourth premolars 

(P3 and P4) still in their crypt. Based on dental development and wear stages, an age at death of 

3-4 years has been suggested for this individual (Condemi, 2004). Scanning electron microscopy 

(SEM) of the outer enamel texture of the dm1, dm2 and M1 suggests the individual may have 

experienced an inherited pathological condition of enamel formation known as amelogenesis 

imperfecta (Zilberman et al., 2004a, b). However, while these first studies on GAR IVE presented 

basic information on this unique fossil, there is still extremely limited data available regarding the 

structural organization and about skeletal and dental development of early Homo immature 

specimens (e.g., Dean and Smith, 2009; Bermúdez de Castro et al., 2010; Dean, 2016). 

By using imaging techniques applied to an X-ray computed tomography record of GAR IVE, 

the aims of the present study are (i) to integrate details of its outer and inner structural 

morphology; (ii) to define the developmental stage of each virtually extracted tooth and to 

estimate the most likely age at death of this child based on modern human standards; (iii) to 

comparatively assess the size of all, erupted and unerupted, measurable crowns; and (iv) to 

tentatively quantify crown tooth tissue proportions in the deciduous second and permanent first 

molars. 

 

MATERIALS AND METHODS 

 

Observations of the external morphology of GAR IVE were carried out in 2012 and 2013 at 

the Department of Paleoanthropology of the National Museum of Ethiopia, Addis Ababa, where 

the specimen is permanently stored, by using a Nikon SMZ645 stereomicroscope and a Keyence 

VHX-600 digital microscope equipped by a 2.11 Mp CCD camera. In November 2013, the 

specimen was preliminarily detailed by X-ray computed tomography (CT) at the Wudassie 

Diagnostic Centre of Addis Ababa. The acquisitions were performed with a Philips Brilliance16 

equipment according to the following parameters: 140 kV voltage, 100 µA current, 1.76 s 

exposition time per projection. The final volume was reconstructed with a voxel size of 



130x130x300 µm. Subsequent 2D-3D elaborations (quantitative virtual imaging and 

morphometrics) were performed at the ICTP of Trieste. 

The limited resolution of the CT record available to us currently precludes any investigation of 

the enamel microstructure. Accordingly, at this stage of the study, which mainly focuses on the 

previously unreported inner structure of the specimen with the primary aim of refining the overall 

maturational stage of this juvenile individual, no (re)evalution was attempted regarding the 

diagnosis of amelogenesis imperfecta proposed by Zilberman et al. (2004a, b). Nonetheless, we 

note that, irrespective of the nature of such irregularities at the enamel surface (Hillson, 2005: 

168-169) which have been recently observed also in some South African australopith molars 

(Towle et al., 2016), in terms of morphology and proportions, all tooth crowns lack any evidence 

of anomalous features at mesostructural scale (Figs. 1, 3, 4). A semi-automatic threshold-based 

segmentation with manual corrections was carried out following the half-maximum height 

method (HMH; Spoor et al., 1993) and the region of interest thresholding protocol (ROI-Tb; 

Fajardo et al., 2002) and by taking repeated measurements on different slices of the virtual stack 

using Avizo v.6.2. (Visualization Sciences Group Inc.) and ImageJ v.1.48 (Schneider et al., 

2012). 

Besides detailed analytical and comparative information on the outer aspect of the GAR IVE 

partial mandible provided by Condemi (2004), here we specifically investigated the buccolingual 

cross-sectional cortical bone distribution assessed at the dm2 level. For comparative purposes, we 

used the high resolution microtomographic-(µCT-)based record of three human immature 

mandibles available in our files representing: the 2.5-3 years old Neanderthal child from Roc de 

Marsal (OIS 4; Bayle et al., 2009a, 2010; NESPOS Database, 2015); the 3-4 years old late Upper 

Paleolithic child La Madeleine 4 (OIS 1-2; Bayle et al., 2009b, 2010; NESPOS Database, 2015); 

and a 3.5-4 years old extant European individual (spec. EH-UdP; Bayle et al., 2010). Given some 

differences in preservation condition among the specimens and the structural variation of the 

cortical shell at this level, in all cases we only considered the bony portion immediately below the 

thinner perialveolar area (see Fig. 2A). Site-specific cortical thickness variation across each 

section and percent cortical area were assessed using the software package MPSAK v.2.9 

(available in Dean and Wood, 2003). For cortical thickness, we automatically performed 3242 

linear measurements on GAR IVE (investigated cross-sectional perimeter: 43.3 mm; total area: 



215.9 mm2), 557 on Roc de Marsal (31.6 mm/132.5 mm2), 533 on La Madeleine 4 (31.6 

mm/111.6 mm2), and 515 measurements on the extant human specimen (26.2 mm/90 mm2). 

While the resolution of the currently available CT record does not allow for any unambiguous 

distinction between enamel and dentine, we were able to virtually segment, extract and assess 

each tooth element. We  then combined such information with direct observations performed on 

the crown morphology visible on the original specimen. 

The Bayesian analysis of the dental maturational sequence of GAR IVE is based on a tooth-

by-tooth evaluation of the stage of dental mineralization of the teeth according to the scoring 

system (crown and root calcification stages) established by Demirjian et al. (1973) for the 

permanent teeth, and by Liversidge and Molleson (2004) for the deciduous teeth, modified and 

adapted by Bayle et al. (2009a). The estimation relies upon the CT-based examination of the teeth 

preserved in situ within the mandible. The sequence composed by the I2, C, P3, P4 and M1 has 

been compared to those assessed following the same scoring methods on a radiographic and CT 

reference sample of 795 living humans (408 females and 387 males) of African, European, and 

Middle Eastern origins, aged 1-8 years and distributed as follows: 1-2 years (N=14 individuals), 

2-3 years (N=21), 3-4 years (N=74), 4-5 years (N=119), 5-6 years (N=153), 6-7 years (N=178), 

and 7-8 years (N=236) (Braga and Heuzé, 2007; Bayle et al., 2009a, b, 2010; original data). The 

statistical analysis of each dental mineralization sequence was carried out by applying the method 

developed by Braga and Heuzé (2007), using Bayes's rule of conditional probability (Vieland, 

1998; Aitken and Taroni, 2004), with teeth being considered as statistically dependent units and 

prior probabilities uniform. 

Description of the nonmetric crown outer topography follows Scott and Turner (1997) and is 

based on the Arizona State University Dental Anthropology System (ASUDAS) scores (Turner et 

al., 1991). Maximum mesiodistal (MD) and buccolingual (BL) diameters of the two deciduous 

and the first permanent molars were provided by Condemi (2004: tab. 4) and discussed in a wide 

comparative context. However, given the position in the alveolar bone of the growing M1, both 

values were considered underestimated (Condemi, 2004: 694). Accordingly, following the 3D 

reconstruction and virtual extraction of this crown, we refined such measurements and updated 

their comparisons. By using the same imaging techniques, we revised the metric record of the 

dm2 and the M1 and provide here original information on the previously unreported lateral 

incisor and canine crowns and compare their size with the figures from a number of fossil and 



recent human specimens/samples (see Supporting Information). We also digitally measured the 

crown height of the I2, C, and M1 as the maximum projected distance from the cervix to the 

highest point on the crown. 

Because of the advanced degree of wear affecting the dm1 (stage 6 following Smith, 1984; see 

below), only the crowns of the dm2 and of the unworn M1 were virtually isolated from their roots 

for quantifying tissue proportions based on the best-fit plane of the cervical line. The crown pulp 

volume (Vcp) and total crown volume (Vc) were estimated and the percent of coronal volume 

that is pulp was then calculated (Vcp/Vc). Tissue proportions in GAR IVE were then directly 

compared with the microtomographic-based evidence available to us from: the c. 1 Ma H. 

erectus/ergaster M1/2 specimen MA 93 from the Eritrean Danakil (Zanolli et al., 2014b); the late 

Early-early Middle Pleistocene H. erectus dm2 PCG.2 from the Sangiran Dome, Java (Zanolli et 

al., 2012); a sample of 6 dm2s and 11 M1s of European Neanderthals from La Chaise-de-

Vouthon Abri Suard, Krapina, Combe Grenal, and Roc de Marsal (Macchiarelli et al., 2006, 

2013; Olejniczak et al., 2008; Bayle et al., 2009a, 2010; Kupczik and Hublin, 2010; Zanolli et al., 

2012, 2014a; NESPOS Database, 2015); 3 dm2s and 1 M1 sample of the two European Upper 

Paleolithic specimens of Lagar Velho and La Madeleine (Bayle, 2008; Bayle et al., 2009b, 2010; 

NESPOS Database, 2015); and a nearly unworn sample of 7 dm2s and 11 M1s of recent/extant 

Europeans (Bayle, 2008; Olejniczak et al., 2008; Bayle et al., 2010; Zanolli et al., 2012, 2014a; 

and original data). 

Intra- and inter- tests for accuracy of the estimates were run by two observers. Linear, surface, 

and volumetric measurements provided for both tests differences of 3.6%, on average, the highest 

recorded difference reaching 6% for the variable Vcp. 

 

RESULTS 

 

External morphology and cross-sectional structure 

 

The specimen GAR IVE represents a 58 mm long incomplete but relatively well preserved and 

robust right mandibular corpus fragment lacking the ramus and the symphysis (extended 

description and comparisons in Condemi, 2004). It still preserves the fully erupted dm1 and dm2, 

as well as five unerupted permanent teeth (I2, C, P3, P4, and M1), three of them (I2, C and M1) 



visible at the level of the anterior and posterior breakages of the corpus (Fig. 1). On the lateral 

aspect, there is an 8.5 mm high and 6.5 mm large hole below the dm1 (Fig. 1A, E), which likely 

represents a carnivore tooth-mark (Zanolli et al., 2014a). Its inspection by low magnification 

microscopy shows slightly sunken morphology of its sub-rectangular bony rim, reduction 

inwards of its diameters, and the presence on the distal aspect of traces of the nerve canal 

associated to the mental foramen, the latter being no longer preserved (cf. Condemi, 2004). 

Interestingly, CT-based imaging reveals that, whatever its nature, the impact reached the buccal 

aspect of the crypt lodging the growing P3 crown, which bears a distinct transverse fracture (Figs. 

1A, 1B, 3), but did not reach the inner (lingual) mandibular wall (Fig. 1B). At the dm2 level, 

height and breadth (width) of this mandibular body correspond to 20.1 mm and 14.5 mm, 

respectively (Condemi, 2004). Despite damage to the region of the mental formamen, it seems 

clear GAR IVE, like Ledi-Geraru LD 350, from Ethiopia, and other early Homo mandibles 

(Villmoare et al., 2015), lacks the lateral corpus hollow in which the mental foramen is located, 

which distinguishes A. afarensis mandibles across their size range. 

Comparative cortical bone distribution and proportions across the mandibular buccolingual 

virtual section through the mid dm2 in GAR IVE, in a Neanderthal, a European Upper 

Paleolithic, and in an extant human representative, all sampling juvenile individuals whose 

estimated age ranges from c. 2.5 to c. 4 years, are shown in Figure 2. At this cross-sectional level, 

the Ethiopian specimen exhibits the largest dimensions and absolute greatest robustness of the 

corpus outline, notably with respect to the condition displayed by the extant child used in this 

study (Fig. 2A). GAR IVE also shows at all sites absolutely and relatively thicker cortical bone 

(average: 2.4±0.3 mm) than measured in Roc de Marsal (av.: 1.8±0.6 mm), La Madeleine (av.: 

1.6±0.5 mm), and in the extant human mandible (av.: 0.9±0.2 mm) (Fig. 2B). Percent cortical 

area in GAR IVE (42.3%) also exceeds the estimates obtained for all three comparative 

specimens (40.5%, 38.4%, and 23.6%, respectively). 

 

Dental developmental stages 

 

At the time of death of the juvenile individual sampled by GAR IVE, the dm1 was in 

occlusion and heavily worn (stage 6; Smith, 1984), with most of the occlusal enamel removed, 

more so distally than mesially, but still preserving a thin peripheral enamel ring (c. 0.4 mm thick 



lingually and 0.8 mm buccally; contra Zilberman et al., 2004b) (Figs. 1, 3, 4). It shows completed 

mesial and distal roots, with two separated pulp canals in the mesial root but with a reduced pulp 

cavity distally and an occluded root canal in the distal root (Fig. 3). Both roots show signs of 

apical resorption in a manner that reflects the P3 crypt outline beneath these roots (Table 1, Fig. 

3). However, as 4 mm of each root are exposed above the alveolar crestal bone compared with 

only 2 mm exposed on the dm2, it seems that the dm1 was slightly extruded from its socket post 

mortem, as evidenced by the raised contact facet with the dm2 distally. 

The dm2 also was already in occlusion at the time of death, but it shows considerably less 

wear compared to the dm1 (stage 2; Smith, 1984), with small wear facets only appearing on the 

buccal cusps and on the entoconid (Figs. 1, 3, 4). Its two widely mesiodistally spaced roots, with 

open apexes, are incompletely formed (Table 1, Fig. 3). The pulp chamber displays five well 

developed horns corresponding to each cusp. There are two separate root canals (buccal and 

lingual) in the mesial root. Only a single, larger and flat, canal is visible in the distal root (Fig. 3). 

The I2 is preserved within the alveolar bone, its incisal edge lying c. 2 mm below the alveolar 

bone margin (Figs. 1E, 4). Measured from the incisal edge to the farthest point on the base 

margin, the crown is 9.4 mm high. It is complete down to the cement-enamel junction and 

beginning of root formation mesially where there is c. 3.8 mm root dentine formed, but only c. 

1.8 mm distally (Table 1, Fig. 3). Its pulp cavity is finger-shaped (Fig. 3). 

The permanent C germ lies low in the mandibular corpus, with its tip approximately 1.5 mm 

above the level of the base of the I2 germ, and approximately 2.5 mm below the level of the dm1 

root apexes (Figs. 1D-F, 4). The germ measures 7.5 mm high from cusp tip to crown base, which 

may represent 2/3 or less of the final completed crown height (Table 1, Fig. 3). Its pulp cavity 

only shows a rounded horn (Fig. 3). 

The P3 germ, lodged in its crypt under the dm1, measures 7.6 mm from cusp tip to base. It lies 

higher in the alveolar bone than both the canine germ, mesially, and the P4 germ, distally (Fig. 

1D-F). Its base is at the level of the upper margin of the penetrating tooth-mark present on the 

lateral aspect of the mandibular fragment, and at the level of the distal root apex of the dm2, 

distally (Fig. 1E). Its cusp tip lies at the level of the mid-crown of the I2. The buccal and lingual 

cusps of this germ lie directly in the buccolingual plane (Fig. 1F). Crown formation is complete 

at the occlusal surface and active extension and convergence towards the cervical region is seen 

(Table 1, Fig. 3). The pulp chamber only shows a pulp horn under the protoconid (Fig. 3). 



The P4 germ, measuring 5.4 mm from the cusp tip to the base margin, lies in the mandibular 

corpus at approximately the same level as the canine germ, but now with its occlusal surface 

facing buccally (presumably having rotated post mortem). It is positioned at the same level of the 

tooth-mark puncture, but distal to it (Fig. 1D-F). It still lies low between the apical portions of the 

dm2 roots. The outline of the occlusal surface is complete, but the lateral enamel extension 

towards the cervical region had barely begun (Table 1, Fig. 3). The pulp chamber roof only 

shows a low relief, but with evidence of a forming protoconid pulp horn (Fig. 3). 

The M1 is still contained within its bony crypt within the corpus, but is partially visible in 

lingual view (Figs. 1B-E, 4). The mesial cusps lie 4 mm below the alveolar crestal margin, just 

distal to the mid-point of the distal root of the dm2, and at the level of the inferior aspect of the 

bifurcation of the mesial and distal roots of the dm2 (equal also to approximately the level of the 

middle of the I2 crown, anteriorly). The M1 crown is complete and measures 7.4 mm high from 

the mesial cusps to the mesiobuccal cervix. The pulp chamber roof displays five well developed 

horns corresponding to each occlusal cusp (Fig. 3). Approximately 3 mm of root formed below 

the crown distolingually were preserved (Fig. 4I), but likely slightly less than this buccally 

beneath the protoconid cervix. The radicular bifurcation had not begun to form at the time of 

death (Table 1, Fig. 3). The mandibular corpus is incomplete immediately distal to the M1 (Fig. 

1B), leaving no trace of any M2 crypt. 

 

Maturational pattern 

 

The maturational pattern of GAR IVE and the associated scores of each tooth element are 

shown in Table 1, while the results of the Bayesian analysis of the mineralization sequence 

(D/C/C/B/D) displayed by the preserved permanent teeth (I2/C/P3/P4/M1) are presented in Table 

2. Within the comparative sample of 795 extant children aged 1-8 years used in this study (Braga 

and Heuzé, 2007; Bayle et al., 2009a, b, 2010), the maturational sequence displayed by GAR IVE 

has been found four times. All the posterior probabilities associated with the observed 

combinations (N=30) have been efficiently calculated and all are higher than 0.75. Although 0.75 

does not represent an absolute cutoff in a continuous probability distribution (ranging from 0 to 

1), probabilities higher than this formal threshold indicate very likely events, whereas values 



comprised between 0.25 and 0.75 are more likely to be associated with random events, and 

values lower than 0.25 with unlikely events (Braga and Heuzé, 2007). 

In summary, according to the present Bayesian statistical analysis, the occurrence of a 

mineralization sequence like that found in GAR IVE is relatively common in extant humans of 

African, European, and Middle Eastern origins. In the comparative record specifically used in 

this study, the four children sharing their mineralization sequence with the Ethiopian fossil are 

one boy and three girls aged 2.67, 3.92, 4.54, and 6.42 years, respectively. 

 

Occlusal morphology and tooth crown size 

 

Given the amount of occlusal wear extensively affecting the dm1, a mesial fovea and a 

transversal ridge are the only features detectable on its crown (Fig. 4); also, its considerably 

reduced crown dimensions (MD: 8.8 mm; BL: 7.6 mm) cannot be used for any reliable 

comparison. 

The dm2 crown presents five main cusps, including a large hypoconulid (C5; score 5), 

organized in a + occlusal groove pattern (Fig. 4). It lacks both tuberculum intermedium (C7) and 

tuberculum sextum (C6). The anterior fovea is sub-triangular and moderately deep (score 4). It is 

enclosed by a thick uninterrupted mesial marginal ridge with three accessory tubercles (Condemi, 

2004) and by a low incised mid-trigonid crest (score 1B). In addition, a short ridge subdivides the 

mesial fovea. The entoconid, C5 and the low thick distal marginal ridge enclose a groove-shaped 

distal fovea. The protostylid includes two small pits located at mid-crown height at the 

mesiobuccal angle of the protoconid, and a V-shaped groove between protoconid and hypoconid 

However, in absence of information about the underlying dentine morphology and considering 

that all these features are at a comparable crown height, we cannot discard the possibility they 

result from enamel hypoplasia (see Zilberman et al., 2004a, b). Because of the extremely low 

degree of occlusal wear, measures of its crown size (MD: 12.0 mm; BL: 10.2 mm; crown height: 

5.5 mm) are highly reliable. However, the comparative dimensional record available for 

moderately worn Early-Middle Pleistocene human lower dm2s is rather scanty (Wood, 1991; 

Condemi, 2004; Moggi-Cecchi et al., 2006, 2010; Zanolli et al., 2012; see Supporting 

Information, Table S1). Nonetheless, in the comparative record considered in this study, we note 



that GAR IVE is intermediate between H. habilis-rudolfensis, South African early Homo and H. 

erectus s.l. for both MD and BL diameters (Fig. 5). 

While the virtually extracted I2 crown exhibits smooth labial and lingual aspects (Fig. 3) and 

is thus suitable for size assessment (MD: 7.4 mm; BL: 7.1 mm), we measured but did not 

compare its mesiodistal diameter because of the occlusal wear commonly affecting the lower 

front teeth in fossil specimens (cf. Wood, 1991). Conversely, among the Early Pleistocene 

specimens/samples considered in our comparative analysis, its closest fits for the buccolingual 

diameter are the I2s from Dmanisi, Georgia (Martinón-Torres et al., 2008) and the African H. aff. 

erectus assemblage (Wood, 1991), while South African early Homo shows smaller dimensions 

(Moggi-Cecchi et al., 2006) and the values of H. habilis-rudolfensis, Indonesian H. erectus and 

H. antecessor are systematically higher (Wood, 1991; Grine and Franzen, 1994; Bermúdez de 

Castro et al., 1999) (Fig. 5; Table S1). 

The permanent C crown has high and thick mesial and distal ridges, but no tuberculum dentale 

(Fig. 3). For its mesiodistal diameter (8.6 mm), it nears the average values of Chinese and 

African H. erectus, South African early Homo and H. habilis-rudolfensis (Wood, 1991; Moggi-

Cecchi et al., 2006), while the canines from Dmanisi commonly display a more mesiodistally 

expanded crown (Martinón-Torres et al., 2008) (Fig. 5; Table S1). 

Two well-developed main cusps form the growing P3 crown, and the moderately thick 

uninterrupted transverse crest linking them circumscribes a small mesial fossa and a larger distal 

fovea (Fig. 3). As noted above, its buccal aspect is transversally fractured along a plane passing 

laterally to the metaconid apex (Figs. 1F, 3). 

While showing a slightly lower degree of maturation (Table 1), the occlusal morphology of 

the forming P4 crown is similar to that of the P3 (Fig. 3). 

There are five main cusps forming an X-groove pattern on the M1 crown, including a large 

hypoconulid (C5; score 5) (Figs. 3, 4). This crown is absolutely and relatively large (MD: 13.7 

mm; BL: 12.2 mm). In the comparative context considered in the present study (Fig. 5; Table 

S1), its best average dimensional fit are South African early Homo (Wood, 1991; Moggi-Cecchi 

et al., 2006, 2010) and the H. habilis-rudolfensis assemblage (Wood, 1991; Leakey et al., 2012), 

but for both diameters it falls near the upper limits of variation displayed by African and Eurasian 

H. erectus s.l. and African H. heidelbergensis (Wood, 1991; Widianto, 1993; Kaifu et al., 2005; 

Suwa et al., 2007; Martinón-Torres et al., 2008; Lordkipanidze et al., 2013; Zanolli, 2013; Zanolli 



et al., 2014b; Maddux et al., 2015), and also exceeds the estimates available for H. antecessor 

(Bermúdez de Castro et al., 1999, 2008). 

 

Tooth crown tissue proportions 

 

For the dm2 and M1 of GAR IVE, crown pulp (Vcp) and total crown (Vc) volumes and their 

percent ratio are given in Table 3 together with the comparative estimates available from some 

Pleistocene and recent human specimens/samples. As a whole, while for Vcp and the Vcp/Vc 

ratio the dm2 from Garba approximates the modern (fossil and recent) human figures and sets 

GAR IVE systematically apart from the Neanderthal values, for Vc it perfectly fits the condition 

displayed by the Early-early Middle Pleistocene Javanese H. erectus specimen PCG.2, from the 

Kabuh Formation outcropping near the Pucung village, in the southern part of the Sangiran Dome 

(Zanolli et al., 2012). For the M1 of GAR IVE, while it falls within the modern human range for 

all three variables and is also compatible with the wide range of Neanderthal variation, its crown 

tissue proportions differ from the condition recently described for the similarly unworn H. 

erectus/ergaster lower M1/M2 crown MA 93 from the 1.0 Ma site of Mulhuli-Amo, Danakil 

Eritrea (Zanolli et al., 2014b). 

 

DISCUSSION 

 

General size and morphology 

 

For its external morphology and dimensions (Condemi, 2004: tab. 3), the mandibular corpus 

GAR IVE is similar to other early Homo juvenile representatives, such as KNM-ER 820 (Leakey 

and Wood, 1973) and the more fragmentary specimen KNM-ER 1507 (Leakey and Wood, 1974) 

from Koobi Fora (Wood and Leakey, 2011), whose age at death has been estimated at 5.3-6.5 and 

4-6.1 years, respectively (in Wood, 1991). Even at a much earlier dental age, GAR IVE appears 

to lack the lateral corpus hollow in which the mental foramen is located in A. afarensis 

mandibles, and is overall more convex here, like dentally older and adult specimens such as 

KNM-ER 820, KNM-WT 15000, KNM-ER 992. At the dm2 level, the corpus breadth/height 

index of GAR IVE (72%) is slightly higher than measured across the P4 on the adolescent 



skeleton KNM-WT 15000 (left: 66.5; Walker and Leakey, 1993) and intermediate between the 

values reported at the dm2 position for KNM-ER 820 (average: 67.4%) and the more robust ER 

1507 (80%) (Wood, 1991; see tab. 19). Given that both immature specimens from East Turkana 

are developmentally older than GAR IVE as they share the condition of a fully erupted M1 (even 

if root development in KNM-ER 1507 is slightly less advanced than in ER 820; Dean, 1987), the 

mandible from Garba can be considered as absolutely robust. It also has large molar crowns 

(notably, the dm2 and the M1), whose both mesiodistal and buccolingual diameters are slightly 

greater than measured on average in H. erectus s.l., rather nearing the estimates available for H. 

habilis-rudolfensis from East Africa. Conversely, because of the still extremely limited amount of 

information on tooth tissue proportions in fossil Homo currently available for direct comparisons, 

what does seem relevant here is that both GAR IVE's molars display absolutely and relatively 

low crown pulp volumes. However, at this stage of the research, we cannot confidently interpret 

the meaning of this structural signature till some supplementary analyses at a higher resolution 

will be carried out on this specimen and on other penecontemporaneous immature individuals 

from Eastern and Southern Africa. 

Interestingly, evidence for robustness in GAR IVE is compatible with recent suggestions, 

based on the updated analysis of the markedly robust distal humerus MK 76 GOM IB 7594 from 

the >1.393±0.162 Ma old site of Gombore I, near Garba (Di Vincenzo et al., 2015), about 

possible body size adaptations to harsher climatic conditions experienced by early Homo on the 

highlands (at altitudes around 2000 m) compared to those encountered at the time in the lowland 

regions of East Africa (but, for compelling evidence on penecontemporaneous large body-sized 

humans in the rift system, see Bennett et al., 2009; Will and Stock, 2015). However, GAR IVE is 

smaller and less robust compared to mandibular remains from Kenya sampling immature 

individuals of the sympatric taxon Paranthropus boisei, like KNM-ER 1477 and KNM-ER 1820, 

as well as to South African specimens of P. robustus like SK 61, SK 62 and SK 63, from 

Swartkrans (Wood, 1991; see tabs 3 and 5 in Condemi, 2004). GAR IVE is also less robust 

compared to the juvenile P. boisei mandibular portion KGA10-570 from the 1.4 Ma site of 

Konso, c. 400 km apart from Melka Kunture on the Ethiopian plateau (Suwa et al., 1997: tab. 1), 

a specimen representing a left corpus preserving a recently erupted M1 crown and P4 and M2 

germs still in their crypts, displaying at M1 position a higher breadth/height index than measured 

on GAR IVE (Suwa, pers. comm.). 



Robusticity in GAR IVE is also revealed by its cross-sectional structure and cortical bone 

topographic distribution, which closely relate to the functional pattern of masticatory loads 

(Demes et al., 1984; Daegling, 1989; Daegling and Grine, 1991; Daegling and Hotzman, 2003; 

Fukase, 2007; Fukase and Suwa, 2008; Gröning et al., 2009). At the best of our knowledge, no 

directly comparable cortical bone thickness values measured at the same level all along the 

section have been made available so far for immature human fossil mandibles besides the 

evidence reported above for Roc de Marsal and La Madeleine. However, it is noteworthy that 

percent cortical area in the Ethiopian specimen, which largely exceeds the value obtained for a 

single extant child of comparable age used here for comparative purposes (40.5% vs. 23.6%), fits 

the proportions (cortical area/total subperiosteal area, i.e., cortical index) measured at the M1 

level in extant human adult mandibles and in P. robustus (Daegling, 1989: tab. 3; Daegling and 

Grine, 1991: tab. 4), but exceeds those of A. africanus (Daegling and Grine, 1991: tab. 4).  

A microtomographic-based virtual cross-section performed just behind the dm2 crypt of the 

5.3-6.6 years old ATD6-112A partial mandible of H. antecessor (individual H11; Bermúdez de 

Castro et al., 2010) from the late Calabrian (MIS 21) "Aurora archaeostratigraphic set" at 

Atapuerca Gran Dolina, Spain (Bermúdez de Castro et al., 2016), has revealed similarly thick, or 

even slightly thicker, cortical bone compared to the section measured at nearly the same level on 

GAR IVE (original unpublished record courtesy of Bermúdez de Castro and Martín-Francés 

Martín de la Fuente). However, while thickest cortex in both specimens is found inferiorly (2.8 

mm in GAR IVE and 3.2 mm in H11), H11 is on average thicker lingually (2.7 mm) than 

buccally (2.3 mm), which is not the case in GAR IVE (2.2 mm vs. 2.4 mm). At any rate, the lack 

of comparable evidence from Early Pleistocene human specimens inhibits at this stage any 

functional vs. biological interpretation of these results. 

 

Dental developmental pattern 

 

The Bayesian analysis of the dental developmental pattern in GAR IVE shows that it falls 

easily within the variation observed in extant African, European, and Middle Eastern human 

populations. Differences in the sequence, or pattern, of permanent tooth mineralization stages 

arise between taxa because crowns and roots form over different lengths of time. During the 

earliest stages, as in GAR IVE before root formation begins, differences in the pattern of dental 



development are hard to discern in hominins. For example, figure 3 in Alemseged et al. (2006) 

shows that the pattern of the developing mandibular dentition of the 3.3 Ma A. afarensis infant 

from Dikika, Ethiopia (Dik-1-1) bears a number of similarities with GAR IVE. However, despite 

having apparently very similar stages of permanent tooth development to GAR IVE, the 

permanent canine of Dik-1-1 lies much lower in the corpus, well below the level of all the other 

developing permanent teeth. The developing I2 in Dik-1-1 also lies well below the level of the 

alveolar crest in contrast to the I2 of GAR IVE, which is only 2 mm beneath the alveolar crest. 

Moreover, the M1 in Dik-1-1, despite apparently having less root formed, appears to lie higher in 

the alveolus with respect to the distal dm2 root than in GAR IVE. It is the disposition of the tooth 

germs within the mandibles of these specimens that best distinguishes them at this early age, and 

not so much their pattern of tooth development. 

In the future, a comparison of the values collected on GAR IVE with the tooth germ heights 

assessed in the early Homo partial mandibles KNM-ER 820 and KNM-ER 1507 (Wood, 1991; 

Wood and Leakey, 2011), both more advanced in crown height but not necessarily in proportion 

of the total crown formed than the Ethiopian specimen (Krovitz et al., 2003), should allow more 

precise and directly comparable estimates of fractional crown heights. 

The pattern of development of the permanent teeth in GAR IVE also closely resembles that in 

some younger specimens attributed to Paranthropus, such as KNM-ER 1477, SK 64, SK 3978, 

TM 1536, TM 1601 (Skinner and Sperber, 1982; Dean, 1987; Smith et al., 2015). Again, this can 

in part be attributed to their young age where most tooth crowns are still incomplete. In general, 

specimens attributed to Paranthropus show a greater proportion of incisor crown complete at the 

time of M1 crown completion than other fossil hominins (Robson and Wood, 2008; Smith et al., 

2015) and GAR IVE with its incomplete I2 crown at the time of M1 crown completion and root 

initiation does not fit the typical pattern seen in Paranthropus. 

Interestingly, H11 from Atapuerca Gran Dolina is another fossil hominin at a near identical 

stage of development to GAR IVE, with the dm2 root apex also still open and M1 crown also just 

complete. But M1 in H11 is slightly delayed with respect to GAR IVE, with only 0.48 to 1.58 

mm of root formed (Bermudez de Castro et al. 2010: tab. 1), as opposed to ~3 mm in GAR IVE. 

In contrast, both permanent incisor germs in H11 are slightly more advanced with respect to 

GAR IVE and have completed crowns, but with no root formed. This can be interpreted as 

evidence for a slowing or delay in the time taken to form M1 with respect to many earlier 



hominins (Bermudez de Castro et al., 2010). The first evidence for this in the hominin fossil 

record has been reported in another individual from the Gran Dolina, Atapuerca, ATD6-103 

(individual H5; Gómez-Robles et al., 2007, 2011; Bermudez de Castro et al., 2010). The M1s of 

individual H5 had 8-9 mm of root formed with cuspal wear facets indicating only minimal 

attrition close to the time of gingival emergence (Bermudez de Castro et al., 2010). This amount 

of root formed at gingival emergence would have taken more time to form and so provides some 

evidence (all be it indirect) for a later age of M1 emergence than reported for earlier hominins 

(Dean, 2016). This would place H5 from Gran Dolina well within the modern human range for 

age at M1 eruption. However, while the timing of enamel growth and root growth in early Homo 

has been found to be faster on average than in modern humans (Dean et al., 2001, 2010; Dean 

and Smith, 2009; Dean and Cole, 2013), there is little evidence that there was shift to a more 

prolonged period of growth and dental development at the time of the transition from 

australopiths to early Homo (Dean 2016). Until such time, as older individuals with later stages of 

M2 and M3 development can be assigned a secure age at death, it remains difficult to define the 

origins of prolonged dental development and growth among early hominins (Dean, 2016). In 

acknowledgement of these limitations, it is still, however, possible to provide a broad estimate of 

the age at death of this individual (see discussion below). The importance of GAR IVE as a 

juvenile specimen is, however, not that it currently contributes to the debate about differences in 

dental and general growth between early Homo and australopiths; rather, it provides evidence that 

the disposition of developing tooth germs within the corpus and evidence that some aspects of 

external corpus morphology appear already at this young age to differ from those described in A. 

afarensis (Alemseged et al., 2006). This, perhaps for the first, time provides evidence in early 

Homo for what has been clear for some time in infant and juvenile Neanderthals, i.e.,  that 

taxonomically diagnostic morphology already exists in very young mandibles (e.g., Ponce de 

León and Zollikofer, 2001; Bastir et al., 2007). 

 

Individual age at death 

 

An age at death of 3-4 years originally suggested for GAR IVE (Condemi, 2004) may well 

encompass the true age at death of this specimen, but at least one younger individual (2.67 years 

old) in our extant reference sample shows the same developmental pattern. Perhaps, the best 



indication of the age at death of GAR IVE comes from the histological estimates of M1 crown 

formation times assessed in other fossil hominins. Smith et al. (2015) reported the enamel 

formation time in another likely early Homo M1 specimen from Sterkfontein, South Africa (StW 

151; Moggi Cecchi et al. 1998). In this specimen, synchrotron imaging of enamel microstructure 

shows M1 took between 2.4 years (lower ml cusp) to 2.8 years (upper ml cusp) to complete. 

Another M1 attributed to H. erectus from Sangiran, Java (S7-37; Dean et al. 2001) took 2.47 

years to complete the crown. In this specimen, 2.6 mm of root had formed beneath the protocone 

by 3.56 years of age at an average rate of 6.6 µm/day. These M1 crown formation times seem to 

encompass much of the range reported for M1s in several other early hominins such as Sts 2, 

KNM-KP 31712 and DNH 84 (Smith et a. 2015; tabs 2, 3), but root formation rates are known to 

vary enormously (Dean, 2012; Dean and Cole, 2013) and remain unknown in GAR IVE. 

To summarize, based on what we now know of the microstructure of other early fossil 

hominin M1s (in Smith et al., 2015) and in the absence of any direct histological evidence for the 

true crown and root formation times in GAR IVE, the age at death of this juvenile individual 

from Garba might well have been anything between 2.5 and 3.5 years. 

 

CONCLUDING REMARKS 

 

Even if they document the earliest phases in Africa of a long-term techno-cultural (Chavaillon 

and Piperno 2004a, 2004b) and biological adaptation to mountain ecological conditions (Mussi et 

al., 2015), until recently information on the Early Pleistocene human remains from the sites of 

Garba and Gombore, at Melka Kunture, on the Ethiopian highlands, has been poorly reported, 

thus legitimizing the remark that "(t)here is surprisingly limited literature on the Melka Kontouré 

hominids… Clearly, reappraisal of this heterogeneous assemblage is in order" (Schwartz and 

Tattersall, 2003: 172-173; among other titles, see also the lack of paleoanthropological 

information on Melka Kunture in Begun, 2013; Henke and Tattersall, 2015). 

Revisited in context within the framework of an ongoing analytical revision of the whole 

human fossil assemblage from this important Early to Middle Pleistocene site complex (Mussi et 

al., 2014; Puymerail et al., 2014; Zanolli et al., 2014a; Di Vincenzo et al., 2015; Profico et al., 

2016), the present study used a new X-ray computed tomography record to refine and 

successfully expand the original description of the c. 1.7 Ma old early Homo mandibular portion 



GAR IVE from Garba IV (Condemi, 2004; Zilberman et al., 2004a, b), notably the radiographic-

based assessment of its inner structure and tooth developmental pattern (Condemi, 2004). 

Nonetheless, given the only modest resolution of our 2D-3D virtual reconstructions, we admit 

there is still much information to retrieve from this unique specimen, likely representing a 2.5 to 

3.5 years old H. erectus/ergaster (Condemi, 2004; Coppens, 2004). Specifically, future research 

relying upon a high resolution microtomographic record should more precisely image details of 

the enamel-dentine junction of the deciduous second and permanent first molar crowns for 

comparative geometric morphometric analyses and allow the subtle quantification of tooth tissue 

proportions, notably in terms of enamel thickness topographic repartition (cf. Zanolli et al., 

2014b). 
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CAPTIONS FOR FIGURES 

 
Fig. 1. The right mandibular specimen GAR IVE. The original specimen in lateral (A), 

internal (B), and superior (C) views; a CT-based virtual section passing approximatively across 
its mid portion (D); the 3D rendering of the bone (in semi-transparency) and the in situ tooth 
elements (E), where the dotted polygon at the base of the P3 highlights the outer outline of the 
hole opening into the P3 crypt which erased the foramen mentale (see Condemi, 2004); the 
virtually extracted tooth elements (F), where the arrow indicates a mesiodistal fracture running 
along the P3. In all images but B, posterior is to the left. Scale bar, 5 mm. 
 

Fig. 2. (A) Inner structural organization of four mandibular bodies of immature individuals 
virtually sectioned buccolingually across the dm2. From left to right: GAR IVE, the Neanderthal 
from Roc de Marsal (RdM; Bayle et al., 2009a), the Upper Paleolithic human from La Madeleine 
(LM4; Bayle et al., 2009b), and an extant human child (EH, spec. EH-UdP; Bayle et al., 2010). 
The lateral (buccal) aspect of the corpus is systematically to the left. The dotted lines indicate the 
upper limit of the section considered for quantitative assessment. All images, but GAR IVE (CT-
based), obtained from a µCT record (NESPOS Database, 2015). (B) Cortical bone thickness 
distribution (in mm) comparatively assessed across the bony sections shown above (portion 
below the dotted line). b, buccal; i, inferior; l, lingual. Scale bar, 5 mm. 
 

Fig. 3. The virtually extracted and 3D rendered deciduous and permanent tooth elements of 
the mandibular specimen GAR IVE. Enamel and dentine appear in orange, the pulp cavity in 
cyan. b, buccal; d, distal; l, lingual; m, mesial; o, occlusal. Scale bar, 5 mm. 
 

Fig. 4. The two deciduous (dm1 and dm2) and three permanent (I2, C and M1) tooth elements 
of the mandibular specimen GAR IVE visible from the outside shown in different perspectives. b, 
buccal; d, distal; i, inferior; l, lingual; m, mesial; o, occlusal; ol, occlusolingual. Scale bar, 5 mm. 
 

Fig. 5. Crown dimensions (MD and BL diameters, in mm) of the deciduous second molar 
(dm2, A), the permanent lateral incisor (I2, B; BL only), the permanent canine (C, C; MD only) 
and the first permanent molar (M1, D) of the mandibular specimen GAR IVE (black star) 
compared with the average values of some Pleistocene and recent human specimens/samples. 
EUPH: European Upper Paleolithic humans; HA: H. antecessor; HEA: H. erectus/ergaster from 
East Africa; HEC: H. erectus from China; HEG: H. erectus from Georgia; HEJ: H. erectus from 
Java; HHA: African H. heidelbergensis; HHE: European H. heidelbergensis; HHR: H. habilis-
rudolfensis from East Africa; NEA: Neanderthals; NEEHS: Near Eastern early H. sapiens; RH: 
recent humans. The related data (sources, N, means, range, s.d.) are provided in the Supporting 
Information (Table S1). 


