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Abstract 

Objectives 

The application of Contingent Valuation (CV) is growing in health economics, particularly to 

quantify the monetary value of health gains. Protest responses, whereby respondents 

refuse to state the value they place on the health gain, are commonly encountered in CV 

studies, and they tend to be excluded from analysis. Inferences based solely on non-

protesters may be biased because protesters tend to differ from non-protesters on 

observed and unobserved characteristics that predict their responses. The Heckman 

selection model has been commonly used to adjust for protesters, but its underlying 

assumptions may be implausible in this context. We present a Multiple Imputation (MI) 

approach to appropriately address protest responses in CV studies, and compare it to the 

Heckman selection model. 

Methods 

This study exploits data from the multinational EuroVaQ study, which surveyed 

respondents’ willingness-to-pay (WTP) for a Quality Adjusted Life Year (QALY). A simulation 

study assesses the relative performance of MI and Heckman selection models across 

different realistic settings grounded in the EuroVaQ study. We then illustrate the methods in 

the EuroVaQ study for estimating mean WTP for a QALY gain. 

Results 

We find that the MI provides lower bias and mean squared error compared to the Heckman 

approach across all scenarios considered, including different missing data mechanisms. The 

case study illustrates that, protesters are associated with a lower mean WTP for a QALY gain 

than non-protesters, but results differ according to method for handling protesters. 



 

Conclusions 

MI appears to be an appropriate method for addressing protest responses in CV studies.  

 

  



 

Introduction 
Contingent valuation (CV) surveys are one of the principal methods of valuing goods or 

services for which no market exists.1 CV seeks the maximum willingness-to-pay (WTP) for a 

commodity or the minimum willingness to accept compensation for lack of a commodity 

through the presentation of hypothetical scenarios. Values are elicited from respondents in 

the form of an open response or the acceptance/rejection of a single or multiple values 

(bidding games). Valuation of commodities is an essential pre-requisite for Cost-Benefit 

Analysis,2 and hence CV surveys are widely used in formulating environment and transport 

policy. Their application in health care is increasing in areas as diverse as diagnostic tests,3 

dental interventions,4 and estimating the threshold value of a QALY for decision making 

within the cost-utility framework.5 

There are well-documented challenges to the implementation of CV including strategic 

responses, anchoring or framing effects, and refusal to state a WTP value or indicate their 

willingness to pay a given value (protesting).6-8 This paper focus on the specific issue of 

protesting. Respondents commonly refuse to state a WTP value or indicate their willingness 

to pay a given value in CV surveys. This may be because they place a zero value on the 

commodity. Alternatively, respondents may object to the principle of placing a monetary 

value on the commodity, or they may feel strongly that the responsibility for provision falls 

on another actor such as the Government.9 Differentiation between zero values and protest 

responses is usually based on responses to a follow-up question requesting the selection of 

reason(s) for the refusal to respond from a menu of options. There is no universal 

agreement on the criteria for categorising responses as protest or zero values.10 The number 

of protest responses can be sizeable. A recent review of 254 environmental CV studies 



 

indicates around 18% of respondents protested, but demonstrated considerable 

heterogeneity across studies.11 

Protest responses are commonly excluded or assigned a zero value prior to estimating mean 

and median WTP.10 Either approach may bias WTP estimates.12 Zero is unlikely to reflect the 

value placed on the commodity by protesters. Excluding protesters relies on an assumption 

that the probability of protesting is independent of both observed and unobserved factors 

(analogous to missing completely at random, MCAR). If the differences between protesters 

and non-protesters can be explained by differences in the observed data, (protest) 

responses are said to be missing at random (MAR). In this case, bias caused by ‘protesting’ 

can be corrected by adjusting for observed factors that predict the likelihood of protesting. 

If the probability of protesting is associated with unobserved characteristics, then the 

responses are said to be missing not at random (MNAR), and conditioning on the observed 

data may not eliminate bias entirely. 

Previous studies have considered the traditional Heckman selection model13 to adjust for 

non-response (protesters) in contingent valuation studies.14 The Heckman model addresses 

sample selection by adjusting the analysis (regression model) for the probability of being a 

protester (i.e. being selected to the sample). In other words, it recognises the possibility that 

the observed data (non-protesters) may not be a representative sample of the population of 

interest. An alternative approach to deal with sample selection is Multiple Imputation 

(MI).15 This method was originally proposed to deal with non-response in surveys and has 

been applied in other areas such as biostatistics, epidemiology, and social sciences. With MI, 

the idea is to replace each missing (protest) response by a plausible value conditional on the 

observed data. The imputed values are often predicted from a regression model (imputation 



 

model) which includes all the variables associated with the response and the probability of 

being a protester. 

Both Heckman and MI approaches can correct for the potential bias arising from protest 

responses by adjusting for observed differences between protesters and non-protesters. In 

principle, the standard Heckman model can also accommodate potential MNAR 

mechanisms, but this relies entirely parametric assumptions (about both model 

specification and distribution of the data). 

A key distinction between Heckman and MI models is, therefore, the way these approaches 

deal with responses that are not Normally distributed. For example, the standard Heckman 

selection model assumes that the error terms for both the model for the probability of 

being a protester and the model for the observed data follow a bivariate Normal 

distribution. There is considerable evidence that the Heckman approach is highly sensitive 

to violations of this assumption.16,17 While semiparametric18 and non-parametric19 

extensions of the original Heckman model have been proposed, their implementation is 

challenging and not available in standard software. Alternatively, we can transform 

(Normalise) the response prior to estimation so that the Normality assumption is more 

plausible. However, this does not allow the response to be modelled in the original scale 

and requires back-transforming the parameter of interest which may be prone to issues 

such as heteroscedasticity. Unlike the Heckman approach, MI allows the imputation model 

to be estimated separately from the analysis model.20 This provides MI with important 

advantages. Firstly, more plausible distributional assumptions can be made for the 

imputation model. For example, non-Normal responses can be normalised prior to 

imputation and back-transformed to the original scale before applying the analysis model to 



 

estimate the parameters of interest. Second, an appropriate model can be used to estimate 

the parameter of interest while maintaining the outcome of interest in the original scale. 

Third, both imputation and analysis can be modelled semi or non-parametrically in a 

relatively straightforward way.  

This paper presents an MI approach to appropriately address protest responses in CV 

studies, and compares it to Heckman-selection models currently adopted in contingent 

valuation studies. We address this by comparing the methods in a simulation study across a 

range of realistic scenarios, and illustrating these approaches in the multinational EuroVaQ 

survey. The next section describes the motivating example. Then we introduce the statistical 

methods and the design for the simulation study. We then present the results of the 

simulation study and the case study. Finally, we consider the implications and limitations of 

the key findings. 

Motivating example: The EuroVaQ Direct survey 

The EuroVaQ study included two large CV surveys of over 37,000 people as part of a project 

to value a QALY.21-23 Population sampling was broadly representative of the population 

distributions for age, sex, region of country and socio-economic status. The survey analysed 

here contained 13 questions and was split into four versions so that each respondent 

answered 4 or 5 questions. Data were obtained from 13,657 respondents in nine European 

countries. Respondents were allocated to a questionnaire version at random.  

The format of the survey is described in detail elsewhere.23 Respondents were initially asked 

to indicate their own health on a scale of 0 (death) to 100 (full health) and how long they 

expected to live for. The majority of the following CV questions assumed respondents 

maintained their current health state for their life expectancy if they purchased a treatment 



 

to avoid a health loss. The health increases from purchasing treatment were of 

predominantly one QALY in the form of improvements in quality of life (QOL) and gains in 

longevity. In this paper, we focus on responses to five ‘key’ questions. Each of these 

questions appeared in two of the four questionnaire versions. The questions described: 

 Gain in QOL of 25 points over four years (used in simulation study) 

 Gain in QOL of 10 points over ten years 

 Gain in life expectancy of one QALY (at end of natural life) 

 Avoidance of coma, duration equivalent to one QALY (longevity gain now) 

 Postponement of death from terminal illness for one QALY (longevity gain now) 

All five questions form the basis of this case study; simulation studies are performed using 

data from the first question. 

Respondents provided open-ended WTP values constrained by a ‘card sort’ exercise. Prior to 

eliciting payment, respondents were asked whether they would be willing to pay for the 

health gain. Those who agreed to pay were presented with 15 cards containing values 

ranging from ca. 15USD to 460,000USD (in local currency) and asked to sort the cards into 

three categories: amounts they would pay, amounts they would not pay and amounts for 

which they were unsure. An open-ended maximum WTP value was then solicited within the 

range indicated by the respondent’s card sort. Respondents unwilling to pay for the health 

gain were asked to select a reason. Consistent with previous analysis, we categorised these 

respondents as protesters if, from a menu of responses, they selected solely a statement 

that the Government should pay for health care. Respondents selecting any of the 

remaining statements (for example, a statement that they could not afford it) were assigned 

a WTP of zero.  



 

Table 1 summarises response rates to the five key questions we analyse across each version 

of the questionnaire. Respondents choosing not to pay varied from 24% to 48% across 

questions in each of the versions. Between 6 and 10% of all respondents were classified as 

protesters. Protesters differed from non-protesters according to some observed 

characteristics, notably age, sex, social class and education level but not income (Table 2). 

Table 2 also reports mean WTP responses to the five questions according to whether the 

respondents chose to protest for one or more questions (but not always) or never 

protested. Values are reported in USD after conversion at purchasing power parity rates. 

With the exception of the Coma question, mean WTP values for respondents who 

sometimes protested were 53-86% lower than those who never protested. The distribution 

of WTP data was highly skewed with a long right tail and a spike at zero (Figure 1, 

Supplementary material). Log transformation reduced skewness and kurtosis but the 

resulting distribution was still far from Normal (Figure 2, Supplementary material). 

Statistical methods to adjust for protesters 

Heckman selection model 

The Heckman model addresses sample selection by adjusting the analysis (regression 

model) for the probability of being a protester (i.e. being selected to the sample). The 

classical two-step approach involves using a probit regression to derive a correction factor 

(the inverse Mills ratio), which is included in a linear regression of the response.24 This is 

often estimated by Limited information maximum likelihood (LIML), however, this approach 

is sensitive to collinearity between the inverse Mills ratio and the predictors of the 

response. Hence, fitting both models simultaneously using Full Information Maximum 

Likelihood (FIML) is recommended.17 To help identification of the Heckman’s model, 

estimated by either LIML or FIML, the selection model should include at least one variable 



 

that is predictive of the probability of response but unrelated to the response (exclusion 

restrictions).25 A detailed description of the Heckman selection model is provided in the 

supplementary material. 

A central assumption to the standard Heckman selection model is the bivariate Normality, 

and hence WTP data presents challenges to the application of this approach. The 

distribution of WTP data from open-ended responses is typically highly skewed with a spike 

at zero. Log transformation is commonly undertaken to reduce skew and generate 

approximately normal distributions. However, this has two limitations: 1) it does not allow 

the estimation and interpretation of the parameters of interest in the original scale; 2) the 

log transformation does not eliminate the spike at zero. To help address the latter, a Tobit 

specification can be used. This assumes the underlying values of the outcome yi* are left 

censored at zero. More formally, 

yi = yi* if yi* > 0  

yi = 0     if yi* < 0 

where yi* is a latent variable yi = 𝛽𝑥𝑖 + 𝜀𝑖, 𝜀𝑖  ~ 𝑁(0, 𝜎2). The substitution of Tobit 

regression in place of OLS regression in the second step of the Heckman selection model has 

been advocated to allow for WTP data with a large proportion of zero values (Strazzera et al. 

2003a).14  

Multiple imputation 

An alternative approach to deal with sample selection is multiple imputation (MI).15 Briefly, 

MI involves replacing each missing (protest) response by a number of plausible values 

drawn from the posterior conditional distribution of the missing values given the observed 

data. After imputation, the outcome regression model is applied to each imputed dataset to 



 

estimate the parameters of interest. A detailed MI procedure is described in the 

supplementary material. 

A flexible MI approach to address the distributional challenges inherent in WTP data is to 

use chained equations.26 When variables are highly skewed or semi-continuous, semi-

parametric imputation methods, such as Predictive Mean Matching (PMM) are 

recommended.27 Rather than imputing values directly from a posterior Normal distribution, 

PMM replaces missing observations using the observed value whose linear prediction 

matches the closest linear prediction of the missing value. This guarantees that the imputed 

values are sampled only from the observed values, and respects the distribution of the data. 

Simulation design 

Missing data were simulated from the observed WTP responses to one of the five questions 

in the case study - the health gain of 25 points over 4 years. For the purposes of the 

simulation, we focused on the sub-sample of patients who responded to this question and 

assumed that the mean WTP derived from the observed responses (n = 7938) was the ‘true 

value’. We then set some of the responses to missing, and assessed how well the estimates 

provided by the different adjustment methods compared to the ‘true’ values. This allowed 

us to assess the relative performance of the methods in a realistic case study rather than 

using stylised simulated data derived from parametric assumptions. 

Briefly, we examined three broad settings in which missing data (protest responses) were 

simulated as MCAR, MAR and MNAR. For the MCAR setting we randomly replaced a 

proportion of WTP observations with missing values. For the MAR setting we simulated 

missing data using a model in which the chance of protesting was associated with WTP 

responses to other survey questions. For the MNAR settings, the probability of protesting 



 

was associated with the WTP response itself.  In all three settings, we varied the proportion 

of missing data across the range 10-50%. Finally, we also generated missing responses for all 

respondents selected ‘government should pay’ as a reason for not electing to pay for any 

other health gain in the survey regardless of whether they also selected a reason  taken to 

indicate a zero WTP value  (18% of responses). Further details of the simulation mechanisms 

are provided in the supplementary material. 

Selection and imputation models included predictors such as individual characteristics (e.g. 

age, gender, income, education, etc.), country indicators, and the WTP responses for other 

health gain questions. For each broad missing data mechanism (MCAR, MAR and MNAR) we 

investigated the performance of the methods considering the whole sample (base-case), 

two subsets of the observed responses (scenarios 1 and 2), and an additional scenario (3) 

with a different selection/imputation model. These scenarios considered 20% missing data. 

More specifically: 

1. We deleted all respondents with missing household income data. 

2. A common response to extremely high values in contingent valuation studies is to 

delete the top 1% of positive WTP responses. This ‘trim’ mitigates the potential for 

very high values to disproportionately influence mean WTP. We deleted the top 1% 

of WTP responses to the 25 point/4 year QOL gain question. 

3. We excluded the WTP responses to the other health gain questions from both the 

selection and imputation models (mimicking a scenario with a single WTP question). 

Implementation 

We estimated Heckman selection models using both FIML and LIML, considering a Tobit 

specification for the outcome regression. With the Heckman model, it is commonplace in 



 

the literature to log transform WTP data prior to modelling and then interpret the 

coefficients of the semi-Log regression model. It is rarely acknowledged that such inference 

concerns the geometric rather than the arithmetic mean. Conversion to the arithmetic 

mean is possible with the use of smearing factors,28 but complicated by the presence of 

heteroskedasticity.29 To avoid these issues and allow comparison of arithmetic means, we 

applied the Heckman approach to the log-transformed WTP response, but then back-

transformed the predicted values to the original scale prior to estimating mean WTP. 

Both MI approaches (with and without PMM) used a two-stage approach30 to accommodate 

the spike in WTP values at zero:  logistic regression to impute a binary variable indicating 0 

or 1 (positive values) for the missing WTP; conditional on imputing the value 1, a linear 

regression to impute positive values for each missing response. 

For each scenario, we created 500 bootstrap replicates of the EuroVaQ data and generated 

the missing data in each bootstrap sample. Bootstrapping is often preferred to a Monte 

Carlo approach when we wish to simulate from the empirical distribution of the data rather 

than simulating from a specific parametric distribution.31 We then applied the methods to 

the 500 datasets and calculated bias and rMSE as: 

1. 𝐵𝑖𝑎𝑠 =
1

𝑁
∑ 𝜃𝑙 − 𝜃𝑙

𝑁
𝑙=1  

2. 𝑟𝑀𝑆𝐸 = √
1

𝑁
∑ (𝜃𝑙 − 𝜃𝑙)

2𝑁
𝑙=1  

Where 𝜃 denotes the true mean and 𝜃 the estimate obtained from each method in the 𝑙 =

1, … , 𝑁  replicated dataset, with 𝑁 = 500. Briefly, biases closer to zero and lower rMSE 

indicate ‘better’ performance of the methods. While the bias assesses the deviations from 

the true value, the rMSE quantifies the overall accuracy of the method, which includes bias 

and variability.  



 

In the appendix we tabulate the distribution of the observed data set to missing with the 

distribution of the predicted values derived from MI and Heckman selection models for the 

raw (not bootstrapped) data. This study has not considered confidence interval coverage 

since our primary concern is how well (least biased) each method performs compared to the 

true mean WTP, rather than Type-I or Type-II errors related to hypothesis testing. 

Illustrating the methods in the case study 

In the re-analysis of the case study, we applied the FIML Heckman selection model and MI 

with PMM to ‘predict’ WTP values for protesters for the five key questions: the 25 point/4 

year and the 10 point/10 year QOL gains arising imminently, and the three gains in life 

expectancy. We applied these approaches the same way as in the simulations except that 

when undertaking MI we treated household income as a continuous variable and imputed 

missing values. Confidence intervals around both mean and median WTP values were 

derived from 1000 bootstrap replications. 

This study was undertaken without external funding support. 

Results 
Simulation study 

To simplify the presentation of the results, we focus the reporting on the performance of 

the FIML Heckman selection model and MI with PMM. Results for the LIML Heckman 

selection model, the Tobit variant and MI without PMM with 20% missing data are provided 

in the supplementary material. Table 3 reports the bias and rMSE derived from MI and 

Heckman models in each of the three base case settings (MCAR, MAR and MNAR). Overall, 

MI led to the least biased results and lowest rMSE compared with the Heckman selection 

model, irrespective of the missing data mechanism. For MI, in both the MCAR and MAR 

settings, bias and rMSE were consistently low across all missing data proportions; bias and 



 

rMSE were generally much higher with the Heckman selection models. Simulation results 

with the Heckman selection models showed a pattern in which mean WTP was either 

considerably underestimated or overestimated, and the proportion of simulations in which 

mean WTP was overestimated increased with the proportion of missing data. As a result, 

biases are negative at 10-20% missing data and  positive at 40-50% missing data. As 

expected, MI performs poorly when the data is MNAR. However, bias is generally lower 

than that observed with the Heckman selection model and rMSE is always lower. 

Table 4 reports bias and rMSE across the three additional scenarios within each broad 

missing data setting (MCAR, MAR and MNAR). MI continued to outperform the Heckman 

selection model in terms of bias and rMSE. Excluding respondents with missing income data 

had little impact on the performance of either the MI or Heckman methods. After trimming 

the top 1% of WTP responses, bias was considerably reduced for the Heckman selection 

models, but it remained larger than bias with MI; both methods performed much better in 

the MNAR scenario compared to the base case. Excluding covariate WTP data (other WTP 

questions) had a detrimental effect on bias and rMSE for both MI and Heckman selection 

models, but the impact was small in the MCAR and MAR scenarios with MI. Estimation of 

mean WTP for protesters in EuroVaQ 

Table 5 reports the mean and median WTP values for all five ‘key’ health gain questions for 

protesters and for all respondents according to method. Overall, mean WTP values are 

modestly reduced after adjusting for protesters using MI or a Heckman selection model. 

Confidence intervals around mean WTP values indicate a significant difference between 

mean WTP for gains in QOL and gains in longevity in the coma scenario. A further premium 

is placed on gains in longevity in the terminal illness scenario. These results strengthen the 

findings of previous analysis which did not adjust for protesters.23 

After MI, mean WTP values for protesters as a percentage of the mean for non-protesters 

ranged from 34% (25 point/4 year QOL gain) to 47% (increase in life expectancy). These 



 

ratios are similar to those observed when comparing mean WTP for respondents who 

sometimes protested with means for respondents who never protested (Table 2). After 

applying the FIML selection model, mean values for protesters were 4-10% of the 

corresponding means for non-protesters across the five questions. Figure 1 shows the 

distribution of the raw WTP data for non-protesters and predictions for protesters derived 

using MI and the Heckman selection model for three of the five questions.  

Discussion 
We assessed MI and Heckman selection models across a range of realistic settings in which 

empirical WTP data were set to missing completely at random (MCAR), missing dependent 

on observed respondents’ WTP for other questions in the survey (MAR), and missing 

dependent on (unobserved) respondents’ WTP (MNAR). Overall, MI using PMM resulted in 

lower bias and rMSE; mean WTP was consistently underestimated using a Heckman 

selection model at lower proportions of missing data and overestimated at higher 

proportions. The Heckman selection model erratically in simulations , possibly due to 

violations of Normality in the distribution of the log WTP data. This is mitigated after 

trimming the top 1% of WTP values. However, bias and rMSE associated with MI were still 

lower compared to the Heckman model. While in theory the Heckman approach may 

provide flexibility to accommodate data that are MNAR, our results suggest that the 

violation of the bivariate Normality assumption may outweigh those benefits. The 

limitations of this approach in non-Normal data are well documented.20 We have illustrated 

the application of MI to open ended WTP data; application to dichotomous data and 

multiple bid data is relatively straightforward.  



 

The MI approach performed well across all MAR scenarios and no worse than complete-case 

analysis when the data is MNAR. This relied on the inclusion of all observed covariates 

predicting missingness, notably the additional WTP response data. Exclusion of this data led 

to higher bias and rMSE, particularly where missingness was not at random. Future studies 

should carefully consider all variables associated with both the probability of protesting 

(missing) and the incomplete response, including other WTP responses if these exist, so that 

the MAR assumption is more plausible. Sensitivity analysis of the impact of potential 

departures from MAR is recommended.  

This paper considered two MI approaches (two-step MI based on Normality or with PMM) 

that can make more plausible distributional assumptions of WTP responses in CV studies.  

Both are easily implemented within standard statistical software. Surprisingly, our 

simulations found that the MI under Normality performed nearly as well as MI with PMM. 

These findings corroborate previous studies which found that MI is relatively robust to 

departures from Normality.32,33 Importantly, MI offers further advantages compared to the 

Heckman approach: missing data in covariates (such as household income) is naturally 

accommodated; it can be combined with a wide range of models to estimate the parameter 

of interest; and the ease of application of semi-parametric methods can avoid the need to 

transform the dependent variable.  

A number of authors have proposed modifications to the Heckman selection model that 

allow relaxation of some of the distributional assumptions (Vella18 provides a useful 

summary). Gallant and Nychka propose a semi-parametric method that relaxes the 

assumption of bivariate Normality in the error terms.34 Two-step parametric methods have 

also been developed that sidestep the requirement for bivariate Normality including the use 



 

of copula functions to transform the error terms into bivariate Normal distributions.35-37 

However, semi-parametric methods are computationally intense and the two-step 

parametric approaches remain susceptible to collinearity problems in the absence of a 

strong instrument. Despite the availability of a rich source of covariate data, we did not 

identify any variable in the EuroVaQ data which was strongly predictive of missingness 

(protesting) but unrelated to observed WTP values. This is a common challenge when 

estimating selection models.  

Both Heckman and MI approaches suggest that protesters place a lower value on health 

gains than non-protesters. The results after MI indicate mean WTP for protesters of roughly 

40% of the corresponding mean WTP for non-protesters. This ratio is similar to the ratio 

between observed WTP for respondents who sometimes protest and respondents who 

never protest (Table 2) lending support to the results from MI. Studies in health care which 

have examined WTP for protesters are limited. Gervès-Pinquié et al report lower mean WTP 

for protesters after applying a Heckman selection model to data on the WTP for informal 

care.38 In a study of WTP for colorectal cancer tests Whynes and colleagues characterised 

protesters using post valuation comments collected from all respondents.39 They reported 

mean WTP 25-30% lower for protesters. Evidence of the relative value placed on 

environmental commodities by protesters compared to non-protesters is conflicting, with 

some studies reporting higher WTP40,41 and others reporting lower WTP42,43. 

This study has some limitations. The survey was undertaken online which facilitated a large 

sample size. However, respondents may not have given the survey their full attention, 

potentially reducing the quality of the data. Respondents were offered a limited menu of 

responses after electing not to pay and protesters were narrowly defined. Whilst this gives 



 

some confidence that respondents classified as protesters were correctly identified, we may 

have misclassified respondents electing not to pay because they found the scenario 

implausible, or they disengaged from the survey. A further limitation is that the survey was 

not incentive compatible. The distribution of the EuroVaQ WTP data is highly skewed.  

Whilst we observed that MI outperformed Heckman selection models even after ‘trimming’ 

the top 1% of responses it is possible that these distributions, and the resulting poor 

performance of selection models, do not generalize beyond the valuation of health. For the 

purpose of comparing the methods, we have generated missing data from the empirical 

WTP responses in the EuroVAQ study. While the true data generation process is unknown, 

this allowed us to test the methods in a realistic setting. More importantly, we were able to 

control for the missing data mechanism, and applied the same analysis model (to estimate 

mean WTP) across all scenarios, so that any differences across the analytical methods could 

be attributed to their ability to handle the missing data. 

Conclusions 
Previous studies have used the Heckman selection model to correct for selection bias arising 

from protest responses in CV surveys. Our simulation studies found that MI outperformed 

selection models across all MCAR, MAR and MNAR settings. They provided further evidence 

that selection models are sensitive to the bivariate Normality assumption and this may 

result in misleading inferences in the context of CV. MI appeared to generate more plausible 

WTP values for protesters in EuroVaQ, a large contingent valuation survey of health gains, 

and indicated that protesters place a mean value on health gains approximately half that of 

non-protesters. MI is easy to implement and provides additional flexibility to accommodate 

missing covariates and zero WTP values. We recommend the use of MI to adjust for protest 

responses in the analysis of CV data. 
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Tables 
 

Question 
Total 
respondents 

Version 1 Version 2 Version 3 Version 4 
4255 4435 4447 4310 

25 pts/4 
years 

excluded# 0   54 (1.3%) 
missing* 20 (0.5%)   12 (0.3%) 
protesters 254 (5.9%)   287 (6.7%) 
zeros 576 (13.5%)   599 (13.9%) 
positives 3405 (80.0%)   3358 (77.9%) 

10 pts/10 
years 

excluded#   185 (4.2%) 198 (4.6%) 
missing*   13 (0.3%) 11 (0.3%) 
protesters   247 (5.6%) 298 (6.9%) 
zeros   618 (13.9%) 736 (17.1%) 
positives   3384 (76.1%) 3067 (71.2%) 

Extra year 
at the end 
of life 

missing*  15 (0.3%)  10 (0.2%) 
protesters  273 (6.2%)  365 (8.5%) 
zeros  1679 (37.9%)  1703 (39.5%) 
positives  2468 (55.6%)  2232 (51.8%) 

Coma missing*  16 (0.4%)  11 (0.3%) 
protesters  318 (7.2%)  410 (9.5%) 
zeros  865 (19.5%)  963 (22.3%) 
positives  3236 (73.0%)  2926 (67.9%) 

Terminal 
Illness 

missing*  14 (0.3%)  10 (0.2%) 
protesters  304 (6.9%)  351 (8.1%) 
zeros  1163 (26.2%)  1113 (25.8%) 
positives  2954 (66.6%)  2836 (65.8%) 

*respondents with a positive WTP for whom the questionnaire failed to record the final WTP value 
#respondents excluded from a particular question due to very low health or low life expectancy 
 

Table 1. EuroVaQ data: characterisation of responses to five ‘key’ questions across each 

version of the questionnaire.  



 

 
Never protests 

Sometimes/ 
always protests 

 

Variable n Mean n Mean  p value* 

male 15,096 0.49 2,351 0.52 0.005 

Age 15,096 44.5 2,351 45.6 0.007 

Social Class 15,096 3.45 2,351 3.70 <0.0001 

Age left Education 7,864 22.9 1,234 22.2 0.002* 

Household size 15,096 1.71 2,351 1.70 0.17 

Household inc. (PPP$) 13,058 48,557 1,909 50,469 0.41* 

Personal income (PPP$) 7,865 8,227 1,030 8,642 0.76* 

Health (0-100) 15,096 83.2 2,351 82.3 0.009 

Respondent education level 15,096 2.25 2,351 2.10 <0.0001 

Head of household 
education level 15,096 2.19 2,351 2.06 <0.0001 

WTP, 25 pts/4 yrs (PPP$) 7,284 11,352 654 3,970 <0.0001* 

WTP, 10 pts/10 yrs (PPP$) 7,182 11,925 623 5,655 <0.0001* 

WTP, extension of life (PPP$) 7,423 11,519 659 1,581 <0.0001* 

WTP, Coma (PPP$) 7,421 19,141 569 17,711 <0.0001* 

WTP, Terminal illness (PPP$) 7,424 30,626 642 11,022 <0.0001* 
*t test on log transformed data, PPP = Purchasing Power Parity 

 

Table 2. EuroVaQ data: respondent characteristics and responses to ‘key’ questions 

according to respondent categories



 

  



 

 

 MCAR MAR MNAR 

 FIML 
Heckman 

model 

MI with 
PMM 

Heckman 
model 

MI with 
PMM 

Heckman 
model 

MI with 
PMM 

10% missing data 

   Bias -6,025 -188 -9,705 196 -10,163 -3,041 

   rMSE 6,633 2,619 10,908 3,362 10,929 4,707 

20% missing data 

   Bias -4,729 7 -7,204 -222 -10,878 -4778 

   rMSE 5,496 1,806 11,762 2,725 12,103 5527 

30% missing data 

   Bias -2,776 -72 965 250 -9,363 -6,174 

   rMSE 5,091 1,710 18,988 2,407 13,882 6,642 

40% missing data 

   Bias -253 52 14,974 20 -4,775 -7,043 

   rMSE 7,586 1,664 40,213 2,339 21,470 7,344 

50% missing data 

   Bias 5,936 -34 61,263 -109 7,884 -7,533 

   rMSE 15,150 1,520 104,472 2,318 49,249 7,779 

Missing data for respondents selecting ‘government should pay’ in other WTP questions 

   Bias   -2,987 -39   
   rMSE   3,022 577   
rMSE: root mean square error. 

 
Table 3. Simulation studies: Bias and rMSE according to method for estimating the mean 

WTP derived from bootstrap replicates when data are MCAR, MAR and MNAR. 

  



 

 MCAR MAR MNAR 

 FIML 
Heckman 

model 

MI with 
PMM 

Heckman 
model 

MI with 
PMM 

Heckman 
model 

MI with 
PMM 

Scenario 1: Individuals with missing income data are deleted 
   Bias -4,496 62 -5,356 28 -9,987 -4,629 

   rMSE 5,383 2,129 11,002 2,834 11,543 5,625 

Scenario 2: Top 1% of WTP responses are deleted. 

   Bias -1,556 18 -1,044 131 -4,200 -1,680 

   rMSE 2,500 420 8,022 647 5,725 1,788 

Scenario 3: WTP responses to other health gain questions are excluded from selection/imputation 
model 

   Bias -7,823 -201 -9,105 748 -15,855 -6,926 

   rMSE 8,151 1,959 9,341 1,791 16,095 7,391 

Base case (20% missing) 

   Bias -4,729 7 -7,204 -222 -10,878 -4778 

   rMSE 5,496 1,806 11,762 2,725 12,103 5527 

rMSE: root mean square error. 

 
Table 4. Simulation studies: Bias and rMSE for the alternative methods across different 

sensitivity scenarios, compared to the base case, when data are MCAR, MAR and MNAR.
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Question 
Respondent 

category n 

FIML Heckman 
model 

 MI with PMM  

Mean (PPP$)* Median 
(PPP$)* 

Mean (PPP$)* Median 
(PPP$)* 

WTP – 
25 points 
4 years 

Protester 529 416 89 3,652 55 
Observed 7,751 10,807 1,468 10,807 1,468 

All [95% CI] 8,280 
10,143 

[8,703 - 12,032] 
1,138 

[1,098 - 1,150] 
10,354 

[9,192 - 12,256] 
1,150 

[1,150 - 1,468] 

WTP – 
10 points 
10 years 

Protester 543 488 84 4,327 77 

Observed 7,751 11,466 1138 11,466 1,138 

All [95% CI] 8,294 
10,747 

[9,263 - 12,717] 
1,032 

[854 - 1,078] 
11,004 

[9,650 - 13,467] 
1,075 

[1,072 - 1,138] 
WTP - 
extension 
of life 

Protester 619 1016 62 5,095 179 

Observed 7,832 10,785 160 10,785 160 

All [95% CI] 8,451 
10,069 

[8,063 - 12,527] 
143 

[114 - 182] 
10,352 

[8,410 - 13,018] 
160 

[149 - 200] 
WTP - 
Coma 

Protester 702 1825 211 7,798 323 

Observed 7,749 19,194 2,149 19,194 2,149 

All [95% CI] 8,451 
17,751 

[15,949 - 20,033] 
1,548 

[1,510 - 1,976] 
18,255 

[16,684 - 20,838] 
1,647 

[1,647 - 2,157] 
WTP - 
Terminal 
illness 

Protester 637 2,391 1,087 11,945 329 

Observed 7,814 29,246 1,176 29,246 1,176 

All [95% CI] 8,451 
27,222 

[24,239 - 31,580] 
1,803 

[1,617 - 2,276] 
27,969 

[25,444 - 32,193] 
1,976 

[1,791 - 2,298] 
* PPP = Purchasing Power Parity 
 

Table 5. Case study: Mean and Median WTP values for observed (non-protesters), protesters and the entire sample after adjusting for protest 

responses using Heckman selection models and MI using PMM, for each of the five questions in the EuroVaQ survey. 
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Figure Legend 
Figure 1. Mean WTP and dispersion of WTP values for non-protesters (observed) and 

protesters according to method. 
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0

1
0

,0
0
0

2
0

,0
0
0

3
0

,0
0
0

QOL gain - 25pts/4yrs Longevity (Coma) Longevity (Terminal illness)

excludes outside values

WTP observed and estimated for protesters

Observed data Protester (FIML)

Protester (MI)



34 
 

Supplementary material 

Statistical methods to adjust for protesters. 

Heckman selection model 

Heckman’s sample selection correction1 is essentially a two-step process which treats 

sample selection as a form of omitted-variable bias. This approach involves a regression 

model (1), which relates the response 𝑦𝑖 (say, the WTP) with the explanatory variables 𝑥𝑖, 

and the selection model (2) which relates a latent variable 𝑤𝑖 with the variables 𝑧𝑖 that 

predict the probability of being observed (non-protester), as described below, 

𝑦𝑖 = 𝛽𝑥𝑖 + 𝜀𝑖        (1) 

𝑤𝑖 = 𝛾𝑧𝑖 + 𝑣𝑖       (2) 

The first step of Heckman’s approach estimates the probability of observing the response, 

𝑃(𝑟𝑖 = 1), using a probit regression model: 

𝑝𝑟𝑜𝑏𝑖𝑡 𝑃(𝑟𝑖 = 1| 𝑧𝑖) = 𝑝𝑟𝑜𝑏𝑖𝑡 𝑃(𝑤𝑖 > 0| 𝑧𝑖) = 𝛾𝑧𝑖   (1) 

where 𝑟𝑖 = 1 if the response of individual 𝑖 is observed, and 𝑟𝑖 = 0 otherwise. Then, the 

predicted values are used to estimate a ‘correction’ factor, the inverse Mills ratio, 𝜆𝑖 =

𝜑(−𝛾𝑧𝑖)/(1 − Φ(−𝛾𝑧𝑖)). 𝜑 and Φ are the standard normal density and standard normal 

cumulative distribution functions, respectively. In the second step, the correction factor (𝜆𝑖) 

is included as an additional explanatory variable in the regression model, 

𝐸(𝑦𝑖|𝑥𝑖, 𝜆𝑖) = 𝛽𝑥𝑖 + 𝜌𝜎𝜀𝜆𝑖(−𝛾𝑧𝑖)    (2) 

(
𝑣𝑖

𝜀𝑖
) ~𝐵𝑉𝑁 (𝟎, 𝛀 = (

𝜎𝑣
2 𝜌𝜎𝑣𝜎𝜀

𝜎𝜀
2 )) 

where 𝜌 is the correlation between unobserved determinants of the probability of response 

and unobserved predictors of the response itself, (𝑣, 𝜀) is Normally distributed and 

independent of 𝑧 and 𝑥, and 𝜎𝑣
2 = 1. Hence, conditional on the first step, model (2) assumes 

that individuals with observed responses are a random sample of the population, 

𝐸(𝑦𝑖|𝑟 = 1, 𝑥𝑖) = 𝛽𝑥𝑖 + 𝐸(𝜀𝑖|𝛾𝑧𝑖 + 𝑣𝑖 > 0). 
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Multiple imputation 

With MI each missing value is replaced with a set of M plausible values.2 Each of these 

values is drawn, in a Bayesian manner, from the conditional distribution of the missing 

observations given the observed data, so that the set of imputed values reflects the 

uncertainty associated with both the missing data and the estimation of the parameters in 

the imputation model. The regression model (2) is then applied to these multiple imputed 

datasets to estimate the parameters of interest. These M sets of estimates and 

accompanying measures of uncertainty are then combined using Rubin’s rules2 to properly 

reflect the variation both within and between imputations. 

A popular approach to conduct MI is via fully-conditional specification (FCS) or chained 

equations, where missing values are imputed for one variable at a time.3 When imputing a 

continuous variable, say 𝑦𝑖, standard implementation of MI via FCS typically draws values 

from the posterior Normal distribution: 

𝑦𝑖|𝑤𝑖 ~ 𝑁(𝛽𝑤𝑖, 𝜎𝜀
2)       (3) 

The algorithm to impute the missing observations is as follows: 

Step 1. Fit model (3) to the complete data to obtain 𝛽̂, 𝜎̂ and the covariance matrix of these 

(Λ). 𝑤𝑖 should include explanatory variables in model 2 (𝑥𝑖) plus other auxiliary variables 

that are associated with the probability of observing the response and the missing values. 

Step 2. Draw 𝜎𝜀
∗ and 𝛽∗ from the joint posterior distribution of (𝜎𝜀,𝛽), where 𝜎𝜀

∗ =

𝜎̂𝜀√(𝑛𝑜𝑏𝑠 − 𝑘)/𝑔 and 𝛽∗ = 𝛽̂ + (𝜎𝜀
∗/𝜎̂𝜀)𝑢1Λ1/2. g is a random draw from a distribution on 

𝑛𝑜𝑏𝑠 − 𝑘 degrees of freedom, 𝑢 is the vector of random draws from 𝑁(0,1) and Λ1/2 is the 

Cholesky decomposition of Λ. 

Step 3. Replace each missing observation by 𝑦𝑖
∗ = 𝛽∗𝑥𝑖 + 𝑢𝑖𝜎∗. 

Step 4. Repeat steps 1-3 𝑀 times and apply model (2) to the multiple imputed datasets and 

obtain parameters of interest. 

Step 5. Combine 𝑀 multiple estimates using Rubin’s rules. 



36 
 

When variables are highly skewed or semi-continuous (high proportion of zeros) such as the 

WTP responses it may not be possible to find a plausible transformation. In these cases, the 

use Predictive Mean Matching (PMM) may be more plausible.4 The PMM procedure starts 

by estimating missing values using a linear regression for the incomplete variable (step 1). 

However, rather than imputing directly from posterior Normal distribution with mean 𝛽∗𝑥𝑖, 

the linear prediction for each missing value is matched to the closest linear prediction for an 

observed value, with that observed value being used to fill in the missing observation. This 

guarantees that the imputed values are sampled only from the observed values of 𝑦𝑖, which 

may be desirable when a distribution is truncated or ‘lumpy’. 

 

Generation of Missing data in simulation studies 

We generated missing data from the observed responses for the health gain of 25 points 

over 4 years. We chose this question because protest (missing) responses to this question 

were lowest across all questions in the survey. Where respondents had protested for this 

question, and the response was missing we dropped their data for the purposes of the 

simulation. Consequently, we knew the true response for each datum. Simulations were 

then performed by selecting data and changing values to missing (protest) responses. This 

approach avoids the need for parametric assumptions to mimic the likely distribution of the 

data – instead we utilize a large sample of real WTP data. 

To simulate a situation in which protest responses are missing completely at random 

(MCAR) we simply selected n% of the data, at random, and changed values to missing. To 

simulate a situation in which responses are missing not at random (MNAR) we allowed the 

magnitude of the WTP response to influence data selection, with higher values having an 

increased probability of selection. Data were selected using the criteria shown below: 

Let 𝜌𝑖  = exp(log(δ/(1-δ) – α𝑦𝑖
∗ + α𝑦𝑖)/(1 + exp(log(δ/(1-δ)– α𝑦𝑖

∗ + α𝑦𝑖)) 

Let 𝜋𝑖  = random number between 0 and 1 

Replace 𝑦𝑖 = missing if 𝜌𝑖  < 𝜋𝑖, where 𝑦𝑖 is the log of the WTP response, 𝑦𝑖
∗ is the mean of 

the log of the WTP response, and the variables α and δ take the values 0.1 and 0.095, 0.15 
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and 0.19, 0.2 and 0.285, 0.25 and 0.38, and 0.3 and 0.49 for missing data at 10%, 20%, 30%, 

40% and 50%, respectively 

To simulate a situation in which responses are missing at random (MAR) we allowed the 

magnitude of the response to other WTP questions to influence data selection, with higher 

values having an increased probability of selection. Data were selected using the criteria 

shown below: 

Let 𝜌𝑖  = exp(log(δ/(1-δ) – 0.5𝑦𝑖
∗ + 0.5𝑦𝑖)/(1 + exp(log(δ/(1-δ) – 0.5𝑦𝑖

∗ + 0.5𝑦𝑖)) 

Let 𝜋𝑖  = random number between 0 and 1 

Replace 𝑦𝑖 = missing if 𝜌𝑖  < 𝜋𝑖, where 𝑦𝑖 is the mean of the quintile for each of the other 

WTP questions answered by the respondent, 𝑦𝑖
∗ is the intra-respondent mean of the 

respondent mean WTP quintile, and the variable δ takes the values 0.085, 0.18, 0.287, 0.39, 

and 0.5 for missing data at 10%, 20%, 30%, 40% and 50%, respectively 

 

Specification of covariates and model optimisation 

We included covariates for country; sex; age; social class; respondents’ education level; 

head of household education level; household income; household size; health; working 

status and profession of respondent; working status and profession of head of household; 

and question order for questions appearing as part of a pair in which the order was 

randomised. These prognostic variables were fully observed with the exception of the 

household income (14.2% missing). To facilitate comparisons across methods in the 

simulation study, we used an ad-hoc approach to deal with missing data, by dividing values 

into quintiles and including an additional category for missing responses. For the simulation 

studies and all selection models household income was divided into quintiles at country 

level and a missing category created for missing income. Likewise, protest responses for 

each WTP question created missing data where such data was included as a prognostic 

variable. For the simulation studies we calculated the quintile value for responses to each 

question other than the 25 point/4 year QOL gain question answered by the respondent. 

We then calculated the mean across questions for each respondent. This mean value was 

missing for respondents who protested to all other questions. Hence, we specified this value 
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as quintiles and added a category for missing responses when including in MI or Heckman 

selection models. Respondents’ education was assigned to three levels representing 

compulsory only, some additional education and university degree or above. Social class 

was assigned using the ESOMAR algorithm to six classes (A, B, C1, C2, D, E). For the 

simulation studies we created two variables which reported the proportion of the questions 

offered (other than the 25 point/4 year QOL gain question) for which the respondent, firstly, 

elected not to pay and selected the ‘govt should pay’ option or, secondly, elected not to pay 

and selected one or more of the remaining reasons indicating a zero valuation. These 

variables were specified using fractional polynomials where this improved model fit as 

assessed by AIC. 

In the final case study we did not use ad hoc methods to accommodate missing covariate 

data when applying MI. All missing data were imputed. 
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Figures - Distribution of raw and log transformed data 

 

Figure 1. Distribution of raw WTP data 

 

Figure 2. Distribution of logarithm of WTP values
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Tables 
 

 

 MCAR MAR MNAR 

Percentile 
Observed 
(n = 1625) 

Heckman 
model 

MI with 
PMM 

Observed 
(n = 1545) 

Heckman 
model 

MI with 
PMM 

Observed 
(n = 1572) 

Heckman 
model 

MI with 
PMM 

1% 0 4 0 0 1 0 0 3 0 
5% 0 11 0 0 6 0 0 12 0 
10% 0 23 0 72 66 34 77 100 0 
25% 162 338 176 613 378 667 571 521 329 
50% 1,150 1,963 1,489 3,069 1,881 3,073 2,596 3,384 2,196 
75% 5,319 9,238 5,489 11,382 5,516 11,499 10,765 17,180 7,881 
90% 20,013 26,847 17,248 30,732 9,604 30,958 28,747 37,654 22,998 
95% 34,146 40,009 34,497 51,597 12,614 57,495 56,910 54,103 45,996 
99% 133,417 64,123 126,488 229,978 18,203 234,018 453,617 88,934 161,745 
Mean 10,288 8,230 11,329 15,996 3,641 17,586 20,673 12,594 12,001 

 
Table S1. Simulation results for the base case MCAR, MAR and MNAR settings: distribution of WTP responses for the observed sample (‘True’) with 20% 

missing data, and those predicted by FIML Heckman selection model and MI with PMM; bias and rMSE according to method for estimating the mean WTP 

derived from bootstrap replicates 

  



41 
 

 

 MCAR MAR MNAR 

 Heckman MI Heckman MI Heckman MI 

 FIML  LIML Tobit PMM No 
PMM 

FIML  LIML Tobit PMM No 
PMM 

FIML  LIML Tobit PMM No 
PMM 

   Bias 12,047 -4,729 -6,677 7 -638 -4,959 -7,204 -10,728 -222 -869 -10,587 -10,878 -12,948 -4778 -5,269 
   rMSE 

126,880 5,496 6,928 1,806 1,963 44,410 11,762 10,968 2,725 2,515 22,752 12,103 13,210 5527 5,903 
rMSE: root mean square error. 

 
Table 3. Simulation studies: Bias and rMSE according to method for estimating the mean WTP from all models with 20% missing data either 

MCAR, MAR and MNAR. 

 

 
 


