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We study a game involving a firm and a newly hired employee whose capability is initially unknown to

both parties. Both players observe the performance of the employee and update their common posterior

beliefs about the employee’s capability. The learning process presents each party with an option: the firm can

terminate an incapable employee, and a capable employee can leave the firm for greater financial remuneration

elsewhere. To understand the impact of this noncooperative interaction, we examine the Markov perfect

equilibrium termination strategies and payoffs that unfold. We find that in the region of sufficiently high

learning rates, reducing the rate of learning can increase the equilibrium payoff for both parties. Slower

learning prolongs the employment because more performance outcomes must be observed for assessing the

employee’s capability. In the region of sufficiently slow learning rates, reducing the rate of learning can benefit

the firm if the employee is deemed capable but hurt the firm otherwise. Our result identifies a nonfinancial

way for firms to improve retention of capable new employees.
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1. Introduction

A newly hired or promoted employee faces a set of challenges arising from lack of experience and

uncertainty regarding productivity in the new role. Hence, the likelihood of the employee’s success

in the new role is initially unknown to both the firm and the employee. As the employee compiles

a track record, both parties concurrently learn about the employee’s capabilities. This learning

process presents each party with an option: The firm can terminate an incapable employee, and a
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capable employee can voluntarily leave the firm for greater financial remuneration elsewhere. The

following examples typify the context of the firm–employee relationship that we examine in this

study.

• Promotion into a new role. An associate in a consulting firm is promoted to the position of

engagement manager responsible for attracting new clients, for which the employee has limited

experience. Hence, despite their shared optimism based on the employee’s track record in the

previous role, both the firm and the employee are initially uncertain about whether the employee

will succeed in the new role. They will find this out together as they both observe the revenue the

employee generates for the firm. The firm will terminate an unproductive engagement manager,

while a proficient employee might well move to a competing firm that can provide greater financial

remuneration.

• Hiring into a different environment. A successful executive from an established firm joins a

start-up company as a vice president (VP), to run its day-to-day operations. Given the unfamiliar

and unpredictable circumstances of small entrepreneurial firms, both the firm and the new VP

are initially wary about whether the VP’s past success will translate successfully into the new

environment. They will learn this together by observing sales trends. The firm will replace a VP

who is not capable of achieving certain milestones, and a successful VP may choose to join a

different venture with greater potential and financial remuneration.

• Starting a new career. A recent MBA graduate is hired by a company. Despite the MBA’s

promise, neither party knows whether the MBA will be capable in the new managerial role. Both

parties will learn about the new employee’s capabilities after observing the employee’s performance

over time. The company will terminate an incompetent employee, while a successful employee can

move to a different company in response to a better financial offer.

While firms and employees desire cooperative work relationships that stimulate both parties to

act on behalf of their mutual benefit, this is often not the case in practice. As the uncertainty

about the employee’s capability resolves during the employment relationship, the presence of these

exercisable options can prompt the two parties to behave noncooperatively (leading to an uneasy

atmosphere in the workplace). For firms that frequently hire or promote employees, it is important

to understand how the noncooperative interactions influence the employment dynamics and the

firm’s ability to retain its capable employees.

In this paper, we investigate the role of Bayesian learning about employee capability and examine

whether firms should encourage (or empower) their newly hired or promoted employees to engage in
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tasks for which luck plays a relatively small/large role in performance outcomes. From an intuitive

perspective, a higher learning rate, i.e., being able to learn about the employee’s capability more

quickly, may appear to be desirable for both parties. However, in a noncooperative setting, the

firm can exploit the higher learning rate to undermine the employee and vice versa, so it is unclear

which player benefits more from an increased learning rate. Thus, the central question of this paper

is: Which player benefits from a higher rate of learning?

To examine this question, we model the noncooperative interaction between the firm and the

employee as a stopping time game, obtain the equilibrium strategies and payoffs, and analyze

the impact of the learning rate. The employee is assumed to be either capable (high capability

type) or not capable (low capability type). Initially, the employee’s capability type is unknown to

both the firm and the employee, and they share a common prior probability that the employee

is of the high type. As the employee contributes to the firm’s profit stream over time, both the

firm and the employee observe this public information and continuously update their beliefs in

a Bayesian fashion; thus, if high (respectively, low) performance is observed, then this belief will

increase (respectively, decrease). Although the updating of their beliefs may in practice evolve

differently for the firm and the employee, we assume that there is minimal disagreement in their

conceptions regarding the same information, i.e., as per the argument made by Aumann (1976),

after a particular performance is observed, it is not possible for one party to think the employee is

of the high capability type while the other thinks the employee is of the low capability type. We

therefore model the evolution of their beliefs in an identical manner. Such an assumption is also

made by others; see, e.g., Papageorgiou (2013).

At any time during the learning process, either player can terminate the employment relationship:

The firm can dismiss an employee who is deemed to be of low capability, and an employee who

learns of his or her high capability can quit in favor of higher compensation elsewhere. After the

employment relationship is terminated, the firm anticipates a profit stream without the employee

and the employee anticipates an outside option that reflects the employee’s true capabilities. Both
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parties can initiate separation based on their posterior belief about the employee’s capabilities. In

the unique Pareto-dominant Markov perfect equilibrium (MPE) that we obtain, if this posterior

belief falls below a lower threshold, the firm terminates the employee, whereas if it exceeds an

upper threshold, the employee leaves the firm.

We analyze the effect of the learning rate on the equilibrium strategies and payoffs and compare

it to a benchmark, the cooperative Nash bargaining payoffs. In the cooperative model, both parties

(employee and the employer) work together to optimize the total payoff and then split the surplus

total payoff (net of the outside options) according to the Nash bargaining solution (Nash 1950).

That means that the employee and the employer terminate their relationship at the optimal time to

maximize the sum total of the payoffs, which is then divided between the two by a pre-determined

formula that was agreed upon. In the Nash bargaining solution, we find that a higher learning rate

always benefits both parties. In contrast, the effect of the learning rate is more nuanced in the

noncooperative setting. In particular, in the region of sufficiently high learning rates, the opposite

can be true: faster learning can decrease the payoffs for both the firm and the employee at the same

time. In other words, in the noncooperative setting between the firm and the employee, slower

learning can simultaneously benefit both parties. Slower learning prolongs the employment rela-

tionship because more performance outcomes must be observed in order to evaluate the employee.

Since both parties retain the option of discontinuing the employment relationship at any time,

both can minimize their downside risks and take advantage of the relationship for a longer period:

the firm can retain a capable employee longer while minimizing the downside risk of paying an

incapable employee, and at the same time, an incapable employee can remain with the firm longer

and still maintain his or her outside option. We show numerically that this counterintuitive result

is robust to potential wage changes for rewarding high performance as well as to on-the-job learning

that transforms low capability type employees to high capability type employees.

In addition, we identify which player benefits from a higher learning rate based on the learning

rate and the shared belief. Our results thus point to active nonfinancial strategies that firms can
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employ to increase the retention of capable new employees. Firms can control the rate of learning

by assigning (or encouraging/empowering) their newly hired/promoted employees to take on tasks

for which their capability will be revealed quickly or slowly (i.e., depending on whether luck plays

a relatively small/large role in the performance). Depending on how its belief about the capability

evolves, the firm can manage the learning rate appropriately.

From the perspective of game theory, this paper contributes to the literature that examines how

information acquisition (or learning) impacts the equilibrium payoff of the players. Specifically, we

present a surprising example in which slower acquisition of information may improve the payoffs

of both players. While there exist well-known examples of games with incomplete and asymmetric

information in which acquisition of additional information hurts all players (see, for example, Kreps

1988, p. 41), our model presents an example of an incomplete information game in which a similar

result holds despite the information being symmetric.

The Bayesian framework that we utilize is based on the work of Shiryaev (1967), who studied

the single-player decision-theoretic problem of minimizing the cost of errors under two hypotheses

about the drift of a one-dimensional Brownian motion. This same framework has been applied in

various decision-theoretic settings—for example, by Ryan and Lippman (2003), who considered

when to abandon a project of unknown profitability, by Decamps et al. (2005), who identified the

optimal time to invest in an asset of unknown underlying value, and by Kwon (2010), who studied

an expansion and exit decision regarding a pilot project of unknown profitability (that could be in

one of two states). The framework has also been applied to dynamic game models under incomplete

information. For example, Bolton and Harris (1999) studied the free-rider problem arising from

information externality when many agents face the same uncertainty and experimentation, and

Bergemann and Valimaki (2000) examined a multi-agent learning model with two sellers who

compete on price and many buyers who experiment with a new product of unknown quality.

Unlike these papers, we apply the framework to a game between two non-rivalrous players in an

employment relationship.
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We note that the effect of uncertainty has been of particular interest in the economics literature

related to decisions concerning real options. In a model of a firm with an option to enter or exit

an industry, Dixit (1989) obtains the comparative statics of the optimal entry and exit thresholds

with respect to the profit stream’s volatility. Alvarez (2003) proved a general comparative statics

result for the optimal policy and the optimal return with respect to the level of uncertainty for

a class of optimal stopping problems that often arise in economic decisions. The value function

generally increases with uncertainty under conventional situations with real options (Dixit 1992).

Thus, our key finding also provides a stark contrast to the conventional results of real options

models under incomplete information, and this is due to the noncooperative interaction between

firm and employee.

Our paper contributes to the literature in labor economics that examines the impact of uncer-

tainty regarding the type of the employee. To explain the high job mobility of inexperienced and

young workers, Johnson (1978) formulated a job shopping model in which a worker sequentially

tries out jobs to learn about his/her own capability and type. In a similar vein, Viscusi (1980)

studied a model of a Bayesian worker who learns about a job’s attributes on the job and found

that such a worker will prefer jobs with uncertain prospects. Jovanovic (1979) studied a long-run

equilibrium theory of turnover in which a worker’s match with a job is gradually revealed on the

job. Freeman (1977) investigated the employer’s wage strategy in response to the performance of

the worker, using a two-period model in which the information on a worker’s productivity is sym-

metrically or asymmetrically available to both the employer and the worker. More recent studies

include Papageorgiou (2013), who studied the labor market from the perspective of a worker’s

search for a job that matches his/her skills through changing jobs. The key aim of these studies

is to understand how uncertainty impacts labor market dynamics. Our paper complements this

line of research by focusing on the firm level dynamics and how the speed of the resolution of

uncertainty impacts the retention of newly hired/promoted employees within a firm.

Managing the workforce has also long been an important operational problem. In traditional

models, employees have had little leverage over the firm, and the firm unilaterally determines
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whether to retain or terminate its employees (so as to minimize the associated costs). An early

stream of literature examined the setting of employees in production plants and proposed math-

ematical programming models of workforce planning to help firms minimize the long-term costs

associated with hiring, overtime pay, and idle time (Holt et al. 1960, Bitran et al. 1981). The

literature has also utilized queuing-based staffing models in service contexts to minimize person-

nel costs and abandonment penalties for call centers (Pinker and Shumsky 2000, Gans and Zhou

2002). Bassamboo et al. (2006) proposed refinements that account for specialization or learning,

and Arlotto et al. (2014) examined a similar problem using the multi-armed bandit model with

Bayesian learning. In our paper, in contrast, the focal employee directly influences firm profits and

thus holds more leverage over the firm. The firm must take the employee’s option of voluntarily

quitting into account when making a termination decision. On the other hand, recent streams of

this research have taken into consideration the strategic behavior of workers for managing their

self-scheduling capacity in service systems (e.g., Gurvich et al. 2015). Such endeavors require exam-

ining the intrafirm equilibrium dynamics between the firm and its employees. Our work therefore

complements these recent lines of research.

The rest of this paper is organized as follows. In Section 2, we formally introduce the model

and characterize the payoffs for the firm and the employee. In Section 3, we examine the cooper-

ative central decision model as a benchmark for investigating the impact of Bayesian learning. In

Section 4, we resume our study of the noncooperative model to characterize the unique equilib-

rium strategies and payoffs and examine the effect of learning rates. In Section 5, we examine the

robustness of our findings. In Section 6, we discuss some managerial insights, and we conclude in

Section 7. All proofs are provided in the Appendix.

2. Model

We represent the cumulative profit contributed by the employee as a stochastic process X = {Xt :

t≥ 0} given by the Brownian motion

Xt = µt+σBt,
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where µ is the drift (the expected profit per time unit earned by the employee), σ is the constant

volatility, and B ≡ {Bt : t ≥ 0} is a Wiener process. The magnitude of the drift µ represents the

employee’s capability. The value of µ is unknown to both the firm and the employee, but it is

commonly known to be either h for an employee who is capable (high capability type) or ` for an

employee who is incapable (low capability type), where h > `. Note that the constant volatility σ

is independent of the employee’s capability, as it reflects the nature of the job or task at hand;

thus σ represents the degree to which luck contributes to the profit stream. Let (Ω,G, P ) be the

probability space on which Xt, µ, and Bt are measurable, and let F = {Ft : t ≥ 0} denote the

filtration generated by the observable cumulative profit process X = {Xt : t≥ 0}.

Both the firm and the employee have a common prior p0 ≡ P ({µ= h}|F0), the initial probability

(belief) that the employee is capable. We can use the Bayes rule (see Peskir and Shiryaev 2006,

pp. 288-289) to derive the following expression for Pt ≡ P ({µ= h}|Ft) in terms of the observable

process Xt:

Pt =

(
1 +

1− p0
p0

exp

{
−h− `

σ2

[
Xt−

h+ `

2
t

]})−1
.

The time evolution (stochastic differential equation) for Pt is given by

dPt =
h− `
σ

Pt(1−Pt)dB̃t,

where

B̃t ≡
1

σ

(
Xt−

∫ t

0

E[µ|Fs]ds
)

=
1

σ

[
Xt−

∫ t

0

(Psh+ (1−Ps)`)ds
]

is a Wiener process constructed solely from the observable process Xt (Liptser and Shiryayev 1977).

Both players concurrently observe Xt and update their belief about the employee’s capability to

obtain the common posterior probability Pt.

Note that the speed of the Bayesian updating is proportional to
(
h−`
σ

)
Pt(1− Pt). In fact, the

ratio h−`
σ

can be viewed as the signal-to-noise ratio (SNR) of the employee’s observed performance

(cf. Bolton and Harris 1999, Bergemann and Valimaki 2000); we interpret it as the rate of learning
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about the employee’s capabilities. In other words, we will say that low (high) σ corresponds to a

faster (slower) learning rate.

We assume that both the firm and the employee are risk neutral, with a common discount factor

α < 1. For the duration of the employment, the employee earns a fixed wage s and a proportion

λ≥ 0 of the profit Xt that the employee generates. Next, we specify the outside options for the firm

and the employee. If the employment relationship is terminated, the firm will obtain its outside

option u, which can include the expected net present value (NPV) of hiring another employee from

the general pool of workers. On the other hand, the employee will obtain the outside option given

by a random variable W , which represents the present value of the employee’s lifetime income

stream. The random variable W depends on the employee’s true capability: W is equal to wh or w`,

depending on whether µ= h or µ= `; naturally, wh >w`. This assumption is reasonable because

a worker who is capable of contributing to a given firm’s profit is likely to do the same for the

profit of another firm in the same industry (see, e.g., Freeman 1977, Johnson 1978, Gonzalez and

Shi 2010).

The payoffs for the players are the expected values of cumulative discounted profits. Let Ep[·]≡

E[· | P0 = p] denote the expected value conditional on the initial belief P0 = p. The decision variable

for each player is their time of separation. Let τf and τe be the discretionary time of separation for

the firm and the employee, respectively. If we let τS = τf ∧ τe denote the time of separation, then

the expected payoffs for the firm and the employee are, respectively,

Vf (p; τS) = Ep

[∫ τS

0

((1−λ)µ− s)e−αt dt+

∫ τS

0

σe−αt dBt +ue−ατS
]

=
1−λ
α

Ep[µ]− s

α
+Ep[e−ατSgf (PτS )], (1)

Ve(p; τS) = Ep

[∫ τS

0

(λµ+ s)e−αt dt+We−ατS
]

=
s

α
+
λ

α
Ep[µ] +Ep[e−ατSge(PτS )]. (2)

Here we define

gf (p) = u− 1−λ
α

Ep[µ] +
s

α
, ge(p) =Ep[W ]− λ

α
Ep[µ]− s

α
.
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These terms denote, respectively, the firm’s and the employee’s expected NPV of being in

the employment relationship relative to the outside option given the belief that the employee

is of high capability type with probability p. The payoff functions thus depend on τS through

Ep[e−ατSgf (PτS )] and Ep[e−ατSge(PτS )]. The objective of the firm (employee) is to maximize its

payoff by choosing the optimal time τf (τe) of separation given the stopping time chosen by the

employee (firm).

Now we will show that the problem above is equivalent to one with zero sharing of the profit

in which some model parameters are transformed. We define α′ = α/(1− λ), s′ = s/(1− λ), w′h =

wh − λh/α, w′` = w` − λ`/α, σ′ =
√

1−λσ, a re-scaled time t′ = t(1− λ), and τ ′S = τS(1− λ). By

virtue of the property of a Brownian motion, Bt =Bt′/(1−λ) =
√

1−λBt′ . Then the payoff functions

can be re-expressed as

Vf (p;S) = Ep[

∫ τ ′S

0

(µ− s′)e−α
′t′dt′+

∫ τ ′S

0

σ′e−α
′t′dBt′ +ue−α

′τ ′S ]

=
1

α′
Ep[µ]− s′

α′
+Ep[e−α

′τ ′S g̃f (Pτ ′
S
)],

Ve(p;S) = Ep[

∫ τ ′S

0

(λµ/(1−λ) + s′)e−α
′t′dt′+We−α

′τ ′S ]

=
s′

α′
+

λ

α(1−λ)
Ep[µ] +Ep[e−α

′τ ′S g̃e(Pτ ′
S
)] ,

where

g̃f (p) = u− 1

α′
Ep[µ] +

s′

α′
, g̃e(p) =Ep[W ′]− s′

α′
,

with W ′ =w′h with probability p and W ′ =w′` with probability (1− p).

The objectives of the firm and the employee are to maximize Ep[e−α
′τ ′S g̃f (Pτ ′

S
)] and

Ep[e−α
′τ ′S g̃e(Pτ ′

S
)], respectively. Thus, the equilibrium is solely determined by the functional

forms of g̃f (·) and g̃e(·). Furthermore, the dependence on σ lies solely in Ep[e−α
′τ ′S g̃f (Pτ ′

S
)] and

Ep[e−α
′τ ′S g̃e(Pτ ′

S
)]. Finally, we note that g̃f (·) and g̃e(·) are identical to gf (·) and ge(·) for λ= 0 if

we identify the primed parameters as non-primed parameters. Thus, the characteristics of equi-

librium can be examined solely for cases of λ = 0. Without loss of generality, we will therefore

proceed with our exposition using the simplified form for λ= 0. Moreover, we are interested in the
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regime of model parameters in which the firm wants to dismiss a low capability type employee and

retain a high capability type employee, so we assume that (h− s)/α> u> (`− s)/α. Similarly, the

employee will want to quit only if the employee is of a high capability type, and so we assume that

wh > s/α>w`.

3. Benchmark Model: Cooperative Setting

As a benchmark, we investigate a Nash bargaining solution between the firm and the employee

(Papageorgiou 2013). Papageorgiou (2013) shows that through Nash bargaining, a cooperative

separation decision is made along with a nontrivial salary structure that depends on the posterior

belief. In this section, we analyze the cooperative separation decision of a similar Nash bargaining

solution. In particular, we examine the comparative statics of the payoffs with respect to the

learning rate.

3.1. Cooperative Termination Time

In the cooperative model, the firm and the employee agree on the termination time τ ∗ that maxi-

mizes their combined payoff, and they divide the payoff according to the Nash bargaining solution

(Papageorgiou 2013). Note first that the expression for the total payoff is

Vc(p; τ) =Ep[

∫ τ

0

µe−αtdt+ (u+W )e−ατ ] =
Ep[µ]

α
+Ep[gc(Pτ )e

−ατ ] ,

where τ is the agreed stopping time for separation and

gc(p) = u+Ep[W ]− E
p[µ]

α
.

Note that gc(·) is the sum of gf (·) and ge(·) because we are considering total payoff in the cooperative

model. In the Nash bargaining solution, the disagreement points for the firm and the employee

are their outside options, u and Ep[W ] = pwh + (1 − p)w`, respectively. Thus, according to the

canonical bargaining solution of Nash (1950), the respective payoffs for the employee Ve(p) and the

firm Vf (p) are given by the following:

Ve(p; τ) =
1

2
{Vc(p; τ)−u−Ep[W ]}+Ep[W ] , (3)

Vf (p; τ) =
1

2
{Vc(p; τ)−u−Ep[W ]}+u .

The following lemma shows the structure of the optimal termination time.
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Lemma 1. If wh−w`−h/α+`/α< 0, then there is a lower threshold θd such that τ ∗ = inf{t > 0 :

Pt < θd} is the optimal stopping time that maximizes Vc(p; τ). Similarly, if wh−w`−h/α+`/α> 0,

then there is an upper threshold θu such that τ ∗ = inf{t > 0 : Pt > θu} is the optimal stopping time

that maximizes Vc(p; τ).

The lemma states that in the cooperative model, it is optimal for the firm and employee to agree

upfront on the employment separation terms, namely, that they will separate once the common

posterior belief that the employee is a high capability type, Pt, falls below (rises above) an optimally

chosen threshold θd (θu). If wh−w`−h/α+ `/α< 0, then the profit stream µ dominates the payoff

W to the employee upon termination, so the employer’s incentive is accentuated. In this case, the

optimal cooperative decision is to terminate the employment when the employee is believed to

be of low quality, so the optimal policy is to terminate it when Pt falls below a threshold θd. On

the other hand, if wh − w` − h/α+ `/α > 0, then the employee’s incentive is accentuated in the

cooperative decision, so the optimal policy represents the employee’s incentive, i.e., to terminate

the employment when the employee is believed to be of high quality, so the optimal policy is to

terminate it when Pt climbs above a threshold θu.

3.2. Effect of Learning Rate

The cooperative Nash bargaining solution shows that the problem basically amounts to a conven-

tional optimal stopping (i.e., a real options) problem, and that the value function

Vc(p) = sup
τ>0

{
Ep[µ]

α
+Ep[(gf + ge)(Pτ )e

−ατ ]

}
=
Ep[µ]

α
+Ep

[
(gf + ge)(Pτ∗)e

−ατ∗
]

is always nondecreasing with the speed of learning 1/σ. The comparative statics for payoffs from

a central decision making problem with respect to the learning rate was obtained and analyzed in

detail by Ryan and Lippman (2003). We formalize this result in the following proposition:

Proposition 1 (Benchmark). Under the cooperative setting, both of the value functions Ve(p)

and Vf (p) are always non-increasing with σ.
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The intuition is very simple: for the combined problem, the faster learning is better for the

centralized (cooperative) decision maker because the faster gain of information can be exploited

to make a better decision earlier. Furthermore, we can specify the form of the payment transfer

between the two parties as follows:

Proposition 2. The Nash bargaining solution is achieved if the per unit time wage paid to the

employee is of the form

s(Pt) =
1

2
{EPt [µ−αW ] +u}=

1

2
{Pt(h−αwh) + (1−Pt)(`−αw`) +u} . (4)

4. Noncooperative Model of a Separation Game

We now investigate the equilibrium of the noncooperative game theoretic model. We will first

characterize the structure of the best responses of the firm and the employee and show the existence

of Markov perfect equilibrium (MPE) strategies and payoffs. We will then examine how these are

impacted by the rate of learning and illustrate how this differs from the benchmark cooperative

model.

4.1. Markov Perfect Equilibrium

In the noncooperative model, the employment separation time τS is the smaller of the firm’s and

the employee’s stopping times τf and τe: τS = min{τf , τe}. The firm’s objective is therefore to find

a τf that maximizes Eq. (1) given the employee’s strategy τe, and the employee’s objective is to

find a τe that maximizes Eq. (2) given the firm’s strategy τf .

When seeking the equilibrium strategies, we can restrict our attention to stationary Markov

strategies because (a) the posterior process Pt is a Markov process and (b) neither gf (·) nor ge(·)

depends on calendar time (Oksendal 2003, p. 220). A stationary policy for player i ∈ {f, e} can

be represented by the state Pt—specifically, by whether or not Pt ∈ Ci ⊂ [0,1] for some open set

Ci. In other words, the set Ci denotes the stopping strategy for τf = inf{t ≥ 0 : Pt 6∈ Cf} and

τe = inf{t≥ 0 : Pt 6∈Ce}. We now show that these sets can be characterized in terms of thresholds

with respect to Pt.
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Lemma 2. If there exists a best response C∗f to a given strategy Ce, then C∗f = (θf ,1] for some

θf that depends on Ce. Similarly, if there exists a best response C∗e to a given strategy Cf , then

C∗e = [0, θe) for some θe that depends on Cf .

This lemma is intuitive and straightforward. The firm does not want to terminate a high capa-

bility type employee, so it waits until the posterior Pt is sufficiently low. Similarly, the employee

will want to quit the job only if the employee is sufficiently optimistic about his or her capability;

hence the employee waits until the posterior Pt is high enough. Lemma 2 enables us to characterize

the stopping times τi for i∈ {f, e} in terms of a pair of thresholds θf and θe:

τf = inf {t > 0 : Pt ≤ θf} , τe = inf {t > 0 : Pt ≥ θe} .

We will limit our attention to strategy profiles characterized by the pair of thresholds. If θe > θf ,

then the interval (θf , θe) represents the region of continued employment. The expressions for each

player’s payoffs given the strategy profiles, i.e., Vf (p;θf , θe) and Ve(p;θf , θe), are provided in the

Appendix (see Lemmas A-1 and A-2, respectively).

Next, we examine the strategic interaction between the firm and the employee. To understand

their interaction, note that a higher threshold θf implies that the firm will initiate termination of

the employee earlier. So from the employee’s viewpoint, the firm’s threat of termination is greater

when θf is higher. Similarly, a lower θe implies that the employee will leave the firm sooner; so from

the firm’s viewpoint, the employee’s threat of leaving is greater when θe is lower. The following

proposition shows that a player’s threat increases with the opponent’s threat.

Proposition 3. (i) The employee’s best response θe is non-increasing with θf .

(ii) The firm’s best response θf is non-increasing with θe.

The rationale for these claims is as follows. If θf increases, then the employee is terminated

earlier. An earlier termination decreases the overall expected payoff for the employee of remaining

employed, which in turn induces the employee to quit (and seek his or her outside option) earlier

and hence decreases θe. Likewise, if θe decreases, then the employee quits earlier, which decreases
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the firm’s overall expected payoff from the employment relationship. This decrease in turn induces

the firm to dismiss the employee and seek its outside option earlier, thus increasing θf .

An equilibrium strategy profile (θ∗f , θ
∗
e) is one where θ∗f and θ∗e are the best responses to each

other. Note that an MPE can include an equilibrium strategy profile (θ∗f , θ
∗
e) that leads to imme-

diate termination of employment, i.e., θ∗f ≥ θ∗e ; we call this a degenerate profile. For example, the

degenerate strategy profile (θf , θe) with θf = 1 and θe = 0 is always an MPE. The following assump-

tion provides a sufficient condition for the existence of a non-degenerate MPE (i.e., θ∗f < θ
∗
e), which

is where our interest lies.

Assumption 1.
(
s−w`α
whα−s

)(
h−s−uα
uα+s−`

)
> 1.

In essence, this assumption indicates when it is in the interest of both the firm and the employee

to continue their employment relationship. To see this, note first that s − w`α corresponds to

the employee’s loss from leaving if the employee has low capability, while whα − s corresponds

to the employee’s gain from leaving if the employee has high capability. Hence a larger value of

(s−w`α)/(whα−s) signifies a greater loss than the gain from leaving, which induces the employee

to leave later (i.e., the threshold θe is higher). Conversely, h− s− uα corresponds to the firm’s

loss when dismissing a high capability employee, while uα+ s− ` corresponds to its gain when

dismissing a low capability employee. Hence a larger (h− s− uα)/(uα+ s− `) ratio incentivizes

the firm to dismiss the employee later, i.e., the threshold θf is lower. We now obtain the MPE

strategies for our model.

Proposition 4. Under Assumption 1, there exists an MPE with a strategy profile (θ∗f , θ
∗
e) that

satisfies θ∗f < θ
∗
e . Furthermore,

(i) a unique Pareto-dominant MPE is characterized by the highest ratio θ∗e/θ
∗
f among all MPEs;

(ii) for sufficiently small σ, there exists a unique non-degenerate MPE.

Although the uniqueness of an MPE cannot be guaranteed in general, there always exists a

unique Pareto-dominant MPE, according to Proposition 3(i). Furthermore, based on extensive



Author: Retaining Capable New Employees
16 Article submitted to ; manuscript no.

numerical study, we conjecture that the non-degenerate MPE is unique if Assumption 1 is satisfied.

In particular, for a sufficiently small σ, we can prove that the non-degenerate MPE is unique. For

the rest of the paper, we therefore restrict our attention to the unique Pareto-dominant MPE.

4.2. Effects of the Learning Rate

We now investigate how the rate of learning affects MPE strategies and payoffs. In particular, we

examine the comparative statics of θ∗f , θ
∗
e , and the MPE payoffs V ∗f (p)≡ Vf (p;θ∗f , θ

∗
e) and V ∗e (p)≡

Ve(p;θ
∗
f , θ
∗
e) with respect to σ. To derive analytical results and insights about MPE strategies and

payoffs, we will first examine the comparative statics for limiting values of the volatility σ (i.e.,

σ→ 0 and σ→∞). While analytical results are intractable for the general values of σ, one can

always compute the MPE strategies and payoffs numerically. We complement our analytical results

by numerically illustrating V ∗f (p) and V ∗e (p) with respect to the volatility σ for intermediate values

of σ.

The following proposition analytically characterizes the small-/large-σ behaviors of MPE strate-

gies and payoffs.

Proposition 5. Given Assumption 1, the following statements hold:

(i) In the limit σ→ 0, we have θ∗e ↑ θ0e < 1 and θ∗f ↓ θ0f > 0. Moreover, for sufficiently small values

of σ, the MPE payoffs V ∗f (p) and V ∗e (p) increase with σ, ∀p∈ (θ0f , θ
0
e).

(ii) In the limit σ→∞, we have θ∗e ↓ θ∞e ≡ (s/α−w`)/(wh−w`) and θ∗f ↑ θ∞f ≡ (uα+s−`)/(h−`).

Moreover, letting p̂≡
√
θ∞e θ

∞
f /
(√

θ∞e θ
∞
f +

√
(1− θ∞e )(1− θ∞f )

)
, we have V ∗e (p) ↑ s/α and V ∗f (p) ↓

[Ep(µ)− s]/α, ∀p∈ (θ∞f , p̂), and V ∗e (p) ↓ s/α and V ∗f (p) ↑ [Ep(µ)− s]/α, ∀p∈ (p̂, θ∞e ).

Part (i) of Proposition 5 examines the region of fast learning rates (or small σ). The volatility

σ is low when the outcomes of an employee’s tasks are relatively predictable (e.g., sales in known

markets). In such settings, both the firm and the employee learn quickly about the latter’s capa-

bility. Here, the MPE thresholds do not converge to extreme values (0 or 1), i.e., θ∗e ↑ θ0e 6= 1 and

θ∗f ↓ θ0f 6= 0, even as σ→ 0. This is due to the noncooperative interaction between the firm and

the employee—namely, the mutual threat of employment termination (Proposition 3) reduces both
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players’ expected payoffs (the values of waiting before termination), inducing both to terminate

earlier.

Remarkably, in this region of high learning rates, the expected payoffs for both the firm and the

employee increase with σ (i.e., lowering the learning rate benefits both parties) as long as the prior

probability p is within an intermediate regime. This result, which is in stark contrast to that for

the cooperative benchmark model of Section 3, is a direct consequence of the noncooperative inter-

action between the firm and the employee. When the employee’s capability is uncertain, increased

volatility in the employee’s performance will delay the separation decisions of both the firm and the

employee. Although neither party knows a priori which party will benefit the most from prolonged

employment under such uncertainty, there is minimal downside risk because each party has the

option of terminating the relationship at any point. More volatility in performance prolongs the

employment relationship, which could prove to be favorable for both parties.

Part (ii) of Proposition 5 examines the region of slow learning rates (or large σ). The volatility

σ is high when the outcomes of the employee’s tasks are relatively unpredictable (as in R&D or

new product sales). Under this condition, both the firm and the employee will learn very slowly

about the employee’s capability. Note that both players continue the employment relationship if

Pt ∈ (θ∞f , θ
∞
e ), even in the limit as σ→∞. If σ is very large, then the rate of learning is extremely

low and convergence of Pt to either threshold will take a long time. Hence, the decisions of both

players are made as if their beliefs will never be updated. It follows that the players will either

terminate the employment almost immediately or wait a long time before taking any action. The

limiting values of the payoff functions V ∗e (p)→ s/α and V ∗f (p)→ (Ep[µ]− s)/α follow as a result

of discounting.

We observe that in the region of low learning rates, as σ increases, the expected payoffs for

the firm and the employee move in opposite directions. For higher values of p, with p ∈ (p̂, θ∞e ),

V ∗f (p) increases with σ while V ∗e (p) decreases with σ. Slower learning benefits the firm because

it delays the (likely capable) employee’s decision to quit while it hurts the employee because it
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σ \ p p∈ (0, θ0f ) p∈ (θ0f , θ
∞
f ] p∈ [θ∞f , p̂] p∈ [p̂, θ∞e ] p∈ [θ∞e , θ

0
e) p∈ (θ0e ,1)

Cooperative ∀σ

∂V ∗f (p)

∂σ
< 0

∂V ∗f (p)

∂σ
< 0

∂V ∗f (p)

∂σ
< 0

∂V ∗f (p)

∂σ
< 0

∂V ∗f (p)

∂σ
< 0

∂V ∗f (p)

∂σ
< 0

∂V ∗e (p)

∂σ
< 0

∂V ∗e (p)

∂σ
< 0

∂V ∗e (p)

∂σ
< 0

∂V ∗e (p)

∂σ
< 0

∂V ∗e (p)

∂σ
< 0

∂V ∗e (p)

∂σ
< 0

Noncooperative

low σ

N/A
∂V ∗f (p)

∂σ
> 0

∂V ∗f (p)

∂σ
> 0

∂V ∗f (p)

∂σ
> 0

∂V ∗f (p)

∂σ
> 0 N/A

N/A
∂V ∗e (p)

∂σ
> 0

∂V ∗e (p)

∂σ
> 0

∂V ∗e (p)

∂σ
> 0

∂V ∗e (p)

∂σ
> 0 N/A

high σ

N/A N/A
∂V ∗f (p)

∂σ
< 0

∂V ∗f (p)

∂σ
> 0 N/A N/A

N/A N/A
∂V ∗e (p)

∂σ
> 0

∂V ∗e (p)

∂σ
< 0 N/A N/A

Table 1 Summary of comparative statics of V ∗f (p) and V ∗e (p) for different regions of σ and p.

delays the employee’s desired confirmation of being highly capable. For lower values of p, with

p ∈ (θ∞f , p̂], V
∗
f (p) decreases with σ while V ∗e (p) increases with σ. In this case, slower learning

hurts the firm because it delays the confirmation of the (likely incapable) employee’s low capability

while it benefits the employee because it delays the firm’s decision to terminate employment. It

is interesting to note that while a lower learning rate no longer benefits both parties, it continues

to benefit at least one party; this differs from the cooperative benchmark case, in which slower

learning never benefits any party.

Overall, the comparative statics of the payoffs for the firm and the employee have a rich structure

with respect to the learning rate, and they exhibit stark differences between the cooperative model

and the noncooperative model. The comparative statics results are summarized in Table 1.

Although it is not possible to analytically characterize the effect of the learning rate for the inter-

mediate values of σ, one can numerically compute the equilibrium payoffs. To better understand

these regions of σ, we have conducted extensive numerical studies. Figure 1 plots an illustrative

representation of V ∗f (p) and V ∗e (p) with respect to σ (top half) and with respect to p (bottom

half), and exhibits two key features. First, and most importantly, we observe that the comparative

statics for the low σ-region (Proposition 4(i)) holds as long as σ < 3, and that for the high σ-region,

(Proposition 4(ii)) holds as long as σ > 10. In other words, the comparative statics for the limiting
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values of σ described in Proposition 4 apply to intermediate values of σ. Second, we observe a

relatively smooth crossover from the comparative statics results for the low σ-region to those for

the high σ-region. In sum, the numerical analysis reveals that Proposition 4 applies to nontrivial

regions of σ, and it provides important insights regarding the comparative statics for intermediate

regions of σ.

Lastly, we remark that it is not always true that slow learning prolongs the employer-employee

relationship in our model. The relationship between the speed of learning and the time to termi-

nation depends on the value of the posterior as shown by Kwon and Lippman (2011). A slower

learning has two countervailing effects on the time to termination. On one hand, slower learning

may encourage the players to take more time to gather more information before making the termi-

nation decision. On the other hand, slower learning decreases the value of learning per unit time

which may discourage the players from waiting longer to learn about the quality of the employee.

Depending on which effect dominates, the slower learning may hasten or delay the termination

decisions. For example, if p takes an intermediate value within (θ0f , θ
0
e), slower learning tends to

delay the time to termination for sufficiently small values of σ, which leads to Proposition 5(i). In

other regions of p, this may no longer be true, in which case the value functions do not necessarily

increase with σ.

5. Extensions and Robustness of the Main Results

In this section, we check the robustness of our key results against the posterior-dependence of the

wage (Section 5.1) and the potential improvement of the employee’s capability through on-the-job

learning (Section 5.2).

5.1. Posterior-Dependent Wage

Until now, we have assumed that the firm pays the employee a fixed salary. In this subsection, we

relax that assumption and allow the firm to pay the employee more if the employee is believed to

be capable.
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Figure 1 V ∗f (p) and V ∗e (p). (Parameters: α= 1, h= 6, `= 3, s= 3, wh = 4, w` = 1, and u= 1; θ0f = 0.07, θ0e = 0.93,

θ∞f = 0.33, θ∞e = 0.67, p̂= 0.5.)

Linear wage contract. First, we consider the simplest possible posterior- dependence of the wage:

a wage schedule that depends linearly on the posterior p. Suppose that the wage is given by

s(p) = s0 + s1p for some s1 > 0. Then the payoffs are given by the following:

Vf (p; τS) = Ep[

∫ τS

0

(µ− s(Pt))e−αtdt+ue−ατS ] =
1

α
[Ep[µ]− s(p)] +Ep[e−ατSgf (PτS )] ,

Ve(p; τS) = Ep[

∫ τS

0

s(Pt)e
−αtdt+We−ατS ] =

1

α
s(p) +Ep[e−ατSge(PτS )] ,

where

gf (p) = u− 1

α
{Ep[µ]− s(p)} , ge(p) =Ep[W ]− s(p)

α
.
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The payoffs thus depend on τS through Ep[e−ατSgf (PτS )] and Ep[e−ατSge(PτS )]. Note that if we

replace h− s1 with h and wh− s1/α with wh, then the forms of gf (·) and ge(·) reduce to the forms

with s1 = 0. Hence, as long as h− s1− ` > 0 and wh− s1/α−w` > 0, the main results of the paper

continue to apply to this case. If h− s1 − ` < 0, then the wage schedule is too steeply in favor of

the employee, so the best response of the firm is to dismiss the employee when Pt is sufficiently

high. Similarly, if wh− s1/α−w` > 0, then the wage schedule is so much in favor of the firm that

the employee’s best response is to leave the firm only if Pt is sufficiently low. Overall, a wage that

increases with Pt does not affect the main results, provided that s1 is not unreasonably high.

We hasten to add that our result is robust to a profit-sharing compensation plans as given by (1)

and (2). In fact, we can map any profit-sharing plan to one with no profit-sharing compensation

using exactly the same argument presented at the end of Section 2. However, in case of a non-

linear wage, i.e., if s(·) is non-linear, then the mapping no longer holds true, and the profit-sharing

compensation needs to be explicitly considered in addition to the wage.

Lastly, we remark that the wage structure (4) that achieves the Nash bargaining solution of

Section 3.2 is also linear in posterior. However, the analysis of the current section does not apply

to the Nash bargaining framework because the employer and the employee must cooperatively

work together to achieve the bargaining solution whereas the present analysis applies to a non-

cooperative game.

Nonlinear wage contract. More complicated nonlinear posterior-dependent wages can be incor-

porated in the model in a similar manner, although general analytical expressions may not be

available. One particular nonlinear form of wage contract that turns out to yield a particularly

tractable form of the solution is a logarithmic wage of the form s(x) = s0 + s1 ln x
1−x . Using the

same parameter values as Figure 1, Figure 2 plots V ∗e (p) and V ∗f (p) assuming this logarithmic wage

function, with s0 = 3 and s1 = 0.2 with respect to σ (top half) and with respect to p (bottom half).

Comparison of Figure 2 with Figure 1 reveals that the main results (Proposition 4) of the paper

continue to hold even in the case of a nonlinear wage schedule, namely, both V ∗e (p) and V ∗f (p)

increase with σ for smaller values of σ, and either V ∗f (p) or V ∗e (p) increases with σ for larger values

of σ.
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Figure 2 V ∗f (p) and V ∗e (p) under a nonlinear wage contract s(p) = 3+0.2 ln p
1−p . (Parameters: α= 1, h= 6, `= 3,

s= 3, wh = 4, w` = 1, and u= 1.)

5.2. Impact of On-the-job Learning

So far, we have assumed that a low quality employee remains low quality throughout the duration

of the employment relationship. In this subsection, we relax this assumption and allow a low quality

employee to become a high quality one through on-the-job learning.

We assume that the transformation takes place at a random exponential time with an arrival

rate of η > 0. For notational convenience, we define µ̄= (h+ `)/2 and closely follow the formulation

provided by Ryan and Lippman (2005). By virtue of Ryan and Lippman (2005), the posterior

probability Pt = P ({µ= h}|Ft) that a given employee is of high quality can be expressed as

Pt =
(1− p)

∫ t
0

exp{β
σ
[Xt−Xs− µ̄(t− s)]}ηe−ηsds+ p exp[β

σ
(Xt− µ̄t)]

(1− p)e−ηt + (1− p)
∫ t
0

exp{β
σ
[Xt−Xs− µ̄(t− s)]}ηe−ηsds+ p exp[β

σ
(Xt− µ̄t)]

,
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Figure 3 V ∗f (p) and V ∗e (p) under on-the-job learning with rate η = 0.5. (Parameters: α= 1, h= 6, `= 3, s= 3,

wh = 4, w` = 1, u= 1.)

where p= P0 is the initial posterior. The SDE of Pt is given by

dPt = η(1−Pt)dt+βPt(1−Pt)dW̃t ,

where

W̃t :=
1

σ
{Xt−

∫ t

0

(Psh+ (1−Ps)`)ds} .

The MPE strategies and the associated payoff functions can be derived using the same formalism

utilized in Kwon (2013). Using the same model parameter values as in Figure 1, Figure 3 plots

V ∗e (p) and V ∗f (p) with arrival rate η= 0.5 with respect to σ (top half) and with respect to p (bottom

half). Comparison with Figure 1 demonstrates that the main results of the paper (Proposition 4)
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continue to hold once again, namely, both V ∗e (p) and V ∗f (p) increase with σ for smaller values of

σ, and at least one party benefits from slower learning (i.e., either V ∗f (p) or V ∗e (p) increases with

σ) for larger values of σ.

6. Discussion

In this section, we discuss the implications of our research, which are twofold. First, from a the-

oretical perspective, one contribution is the discovery of an atypical example of a game in which

a faster learning rate (more information per unit time) can decrease the payoff for both players.

More specifically, we find that in the region of high learning rates (low σ), the equilibrium for both

players, V ∗f (p) and V ∗e (p), can increase with σ. This is precisely the opposite of the conventional

wisdom that a higher learning rate is generally beneficial, as was also shown in the cooperative

benchmark case.

Second, our result points to an active nonfinancial strategy that firms can employ to increase

their retention of capable employees: Firms can control the learning rate σ by assigning their new

employees to tasks in which their capabilities will be revealed more quickly or more slowly. For

example, a consulting firm may provide its new engagement managers with incentives/penalties

for seeking new clients in new sectors, and an entrepreneurial firm might encourage its VP to

develop and market products that inherently rely more on luck (i.e., that are more challenging)

or discourage the VP from doing so. If luck plays a relatively large (small) role in performance

outcomes, employees will be criticized less (more) for failing to generate revenue, and they will

also take less (more) credit for their short-term successes. This approach to retaining employees is

robust to change in compensation packages or on-the-job learning by employees.

Specifically, according to Table 1, the firm should first examine whether the new employee is

assigned to tasks with values of σ that are too low. If so, it behooves the firm to encourage the

employee to take more risks in order to increase σ, because doing so mutually benefits both parties.

This is because this will prolong the duration of employment while each party retains the option

of terminating employment. If the task is relatively volatile, i.e., the value of σ is high, then firms
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should next examine the prevailing values of p. If both the firm and the employee think that the

employee is likely to be capable (p > p̂), then it behooves the firm to encourage the employee to

take on more volatile projects, as doing so benefits the firm but hurts the employee. On the other

hand, if p < p̂, then the firm should reverse that approach.

7. Conclusions

This paper examined the setting in which an employee is hired into a new role and both the firm

and the employee must learn about the employee’s capability. This learning process presents both

parties with an option: The firm can terminate the employee’s employment if the employee turns

out not to be capable, and the employee can leave the firm for greater financial remuneration if he

or she turns out to be highly capable. We explored how this noncooperative interaction impacts

the duration of the relationship and which party (if any) benefits from a faster learning rate. Our

analysis provides counterintuitive and practical insights into how firms can manage noncooperative

interactions and retain capable employees.
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Appendix. Mathematical Proofs.

Proofs of Lemma 1 and Proposition 1. See Ryan and Lippman (2003). �

Proof of Proposition 2. If s(Pt) is the wage paid to the employee, then the employee’s payoff is given by

Ue(p) = Ep[

∫ τ∗

o

s(Pt)e
−αtdt+We−ατ

∗
] ,

which must equal to Ve(p; τ
∗) given by (3). Theory of stopping problems (Oksendal 2003) dictates that

AUe(p) = −s(p) must be satisfied, where A is the characteristic differential operator for Pt (Peskir and

Shiryaev 2006) given by

A ≡ −α+
1

2

(
h− `
σ

)2

p2(1− p)2∂2
p .

Hence, s(p) =−AVe(p; τ∗), which leads to (4). �

Proof of Lemma 2. In order to obtain the best response to the opponent’s strategy, we need to utilize

optimal stopping theory. The most direct way to find the optimal solution is to construct a candidate value

function Vi(p;Cf ,Ce) which is a return function to a candidate policy Ci, and to verify that it satisfies a

number of sufficient conditions as laid out by Theorem 10.4.1 of Oksendal (2003). One of the conditions

stipulates that AVi(p;Cf ,Ce) = 0. Here the term −α replaces the term ∂t from the time-dependent charac-

teristic operator (Oksendal 2003) because the payoff from Markov strategies is time-invariant except for the

discount factor e−αt. The positive fundamental solutions to the equation Af(p) = 0 are given by equations

(5). Note that φ(·) is convex decreasing while ψ(·) is convex increasing. Then the value function Vi(p;Cf ,Ce)

is given by a linear combination of φ(·) and ψ(·).
We first consider the firm’s best response. We note that Agf (p) =−αgf (p). Because gf (·) is a decreasing

function and because of the inequalities (h− s)/α> u> (`− s)/α, there is y ∈ (0,1) such that Agf (p)> 0 for

p > y and Agf (p)< 0 for p < y. By the argument of Oksendal (2003), p. 215, the best response of the firm

must contain (y,1] and cannot have a component disconnected from (y,1]. Thus, the best response is (θf ,1]

for some θf < y which depends on Ce. Using an analogous argument, we can show that the employee’s best

response is [0, θe) for some θe which depends on Cf . �

The next two lemmas establish each player’s unique best response and expected payoff given the other

player’s strategy, and will be useful for Proposition. Let γ ≡
√

1 + (8ασ2)/(h− `)2 and

φ(p)≡ p(1−γ)/2(1− p)(1+γ)/2, ψ(p)≡ p(1+γ)/2(1− p)(1−γ)/2. (A1)
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Lemma A-1. The employee’s best response is determined as follows:

(i) If ge(θf ) ≥ 0, then the employee’s best response is to quit immediately (θe ≤ θf ), and Ve(p;θf , θe) =

s/α+ ge(p) for all p∈ [0,1].

(ii) If ge(θf ) < 0, then there exists a unique best response θe > θf that satisfies the equality a1φ(θf ) +

a2ψ(θf ) = ge(θf ), where

a1 =
ψ(θe)

2γ

[(
wh−

s

α

) γ− 1

1− θe
+
(
w`−

s

α

) γ+ 1

θe

]
, a2 =

φ(θe)

2γ

[(
wh−

s

α

) γ+ 1

1− θe
+
(
w`−

s

α

) γ− 1

θe

]
.

The employee’s expected payoff is

Ve(p;θf , θe) =


s
α

+ a1φ(p) + a2ψ(p) for p∈ (θf , θe),

s
α

+ ge(p) otherwise.

(A2)

Lemma A-2. The firm’s best response is determined as follows: (i) If gf (θe) ≥ 0, then the firm’s best

response is to dismiss the employee immediately (θf ≥ θe) and Vf (p;θf , θe) = 1
α

[ph+ (1− p)`− s] + gf (p) for

all p∈ [0,1].

(ii) If gf (θe) < 0, then there exists a unique best response θf < θe that satisfies the equality b1φ(θe) +

b2ψ(θe) = gf (θe), where

b1 =
ψ(θf )

2γ

[(
u+

s−h
α

)
γ− 1

1− θf
+

(
u+

s− `
α

)
γ+ 1

θf

]
, b2 =

φ(θf )

2γ

[(
u+

s−h
α

)
γ+ 1

1− θf
+

(
u+

s− `
α

)
γ− 1

θf

]
.

The firm’s expected payoff is

Vf (p;θf , θe) =


1
α

[ph+ (1− p)`− s] + b1φ(p) + b2ψ(p) for p∈ (θf , θe),

1
α

[ph+ (1− p)`− s] + gf (p) otherwise.

(A3)

Proof of Lemma A-1. To prove this Proposition, we solve the optimal stopping time problem of the

employee to obtain supτe E
p[e−ατe∧τf ge(Pτe∧τf )]. Let’s assume that θf < θe. Under the firm’s strategy θf ,

the domain of the employee’s value function is restricted to [θf ,1]. To prove the existence of the best

response, we only need to find θe and the solution f(·) to Af(p) = 0 for p ∈ (θf , θe) which is continuous in

[θf ,1] and which satisfies the smooth-pasting condition f ′(θe) = g′e(θe). The solution f(·) also has to satisfy

f(p)≥ ge(p) for all p ∈ [θf ,1], f(θf ) = ge(θf ), and Af(p)≤ 0 for all p ∈ (θe,1]. In the end, f(p) is identified

as supτe E
p[e−ατe∧τf ge(Pτe∧τf )]. (See Oksendal 2003, Theorem 10.4.1.).

From Af(p) = 0 for p∈ (θf , θe) and the continuity, f(·) must have the following form:

f(p) =


a1φ(p) + a2ψ(p) for p∈ [θf , θe]

ge(p) for p∈ {θf}∪ [θe,1]

for some coefficients a1 and a2. The coefficients a1 and a2 are determined by the conditions f(θe) = ge(θe)

and f ′(θe) = g′e(θe).
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We first establish that a unique solution θe to

a1φ(θf ) + a2ψ(θf ) = ge(θf ) (A4)

exists if ge(θf ) < 0. Equation (A4) is derived from the condition f(θf ) = ge(θf ). Define βf ≡ θf/(1− θf ),

βe ≡ θe/(1− θe), and η ≡ βe/βf . Note that βf (βe) is strictly increasing in θf (θe) and that η > 1 if θf < θe.

From Eq. (A4) we obtain the following equation for η:

s/α−w`
(wh− s/α)βf

=
j(η, γ)

j(η−1, γ)
(A5)

where j(η, γ) = η(γ+1)/2(γ− 1) + η−(γ−1)/2(γ+ 1)− 2γ . (A6)

It is straightforward to prove that j(η, γ) takes a minimum value of 0 at η = 1 and is strictly positive for

η 6= 1. Since we are interested in η > 1, j(η, γ) and j(η−1, γ) are strictly positive. Let

m(η, γ)≡ j(η, γ)

j(η−1, γ)
.

After some algebra, we obtain

∂ηm(η, γ) =
(γ2− 1)

[j(η−1, γ)]2η
(ηγ/2− η−γ/2)[ηγ/2− η−γ/2− γ(η1/2− η−1/2)] .

It is straightforward to prove that ηγ/2 − η−γ/2 − γ(η1/2 − η−1/2) > 0 for all η > 1 and γ > 1 because its

derivative with respect to η is strictly positive for η > 1. It follows that ∂ηm(η, γ) > 0 for all η > 1 and

γ > 1. We also note that j(η, γ)/j(η−1, γ)→ 1 in the limit η ↓ 1 and j(η, γ)/j(η−1, γ)→∞ in the limit

η→∞. Hence, j(η, γ)/j(η−1, γ) monotonically increases in η if η > 1, and it can take any value in (1,∞).

We conclude that there is a unique value of η ∈ (1,∞) which satisfies Eq. (A5) given βf , wh, w`, and s/α as

long as s/α−w`

(wh−s/α)βf
> 1, which is equivalent to the condition ge(θf )< 0.

We observe that θf < θe can be satisfied only if ge(θf )< 0. If ge(θf )≥ 0, then there is no solution η > 1

that satisfies Eq. (A5). Thus, the employee’s best response is to quit immediately. This proves statement

(ii).

Next, we prove f(p)≥ ge(p). We first inspect the sign of a1 and a2. Suppose that both a1 and a2 have the

same sign, either positive or negative. Since φ(·) and ψ(·) are both convex, f(p) = a1φ(p) + a2ψ(p) is either

strictly convex or strictly concave, and it cannot intersect with a linear function ge(p) twice (at θe and θf )

if f ′(θe) = g′e(θe) is satisfied. Hence, a1 and a2 must have opposite signs. If a1 > 0 and a2 < 0, then f(·) is

monotonically decreasing, which contradicts the condition f(θf ) = ge(θf )< ge(θe) = f(θe). Thus, a1 < 0 and

a2 > 0.

Since f(·) cannot be strictly convex or concave in the interval [θf , θe], f(·) must be concave-convex from

the functional form of φ(·) and ψ(·), i.e., f(p) must be concave for p < pI and convex for p > pI for some

inflection point pI ∈ (θf , θe). It follows that f(p)−ge(p) is concave-convex which vanishes at p∈ {θf , θe} with

a vanishing first derivative at p= θe. The only way this is possible is if f ′(p)− g′e(p) is positive at θf , turns

negative once somewhere in the interval (θf , θe), and approaches zero as p→ θe. It follows that f(p)≥ ge(p)
for all p∈ [θf ,1].

Now we confirm the inequality Af(p)≤ 0 for p ∈ (θf ,1]. Because Af(p) = 0 for p ∈ (θf , θe), we only need

to check the interval [θe,1]. From Af(p) = 0 and ∂2
pf(p)> 0 for p ↑ θe, we find that f(θe)> 0 or ge(θe)> 0.

That implies that Age(p) =−αge(p)< 0 for p > θe since ge(·) is increasing. This proves that the solution θe

to Eq. (A4) is the best response threshold. �
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Proof of Lemma A-2. Proof is analogous to Proof of Lemma A-1. �

Proof of Proposition 3. Suppose that the given threshold θf of the firm increases. This implies that the

firm will dismiss the employee earlier even if the employee would like to stay. Let θ′f > θf and τf = inf{t≥
0 : Pt ≤ θf}, τ ′f = inf{t≥ 0 : Pt ≤ θ′f}. Because τf ≥ τ ′f , the employee’s optimal expected gain from stopping

satisfies the following:

sup
τ≥0

Ep[e−ατ∧τf ge(Pτ∧τf )] = sup
0≤τ≤τf

Ep[e−ατge(Pτ )]≥ sup
0≤τ≤τ ′

f

Ep[e−ατge(Pτ )] = sup
τ≥0

Ep[e−ατ∧τ
′
f ge(Pτ∧τ ′

f
)] .

Hence, the payoff to the employee decreases in θf . If the payoff f(p) to the employee decreases, then the best

response upper threshold θe decreases because (θf , θe) is identified as {p : f(p)> ge(p)}. This proves that θe

decreases in θf . We can use a similar argument to prove that θf also decreases in θe. �

Proof of Proposition 4. (i) Suppose θe and θf are best responses to each other. Then they must satisfy

Eq. (A5). Similarly, from Proposition 2,

b1φ(θe) + b2ψ(θe) = gf (θe) (A7)

which is the condition that θf is the best response to θe, the following condition has to be satisfied:(
h− s−uα
uα+ s− `

)
βe =

j(η, γ)

j(η−1, γ)
, (A8)

where j(η, γ) is given by Eq. (A6).

The thresholds θe and θf are completely determined if and only if βe = θe/(1− θe) and βf = θf/(1− θf )

are determined. Hence, it suffices to determine the values of βeβf and η≡ βe/βf . From the ratio of Eqs. (A5)

to (A8), the value of βeβf is given by(
s−w`α
whα− s

)(
uα+ s− `
h− s−uα

)
= βeβf . (A9)

There is a value of βeβf ∈ (0,∞) which satisfies this equation because the left-hand-side is positive. Next,

by multiplying Eqs. (A5) and (A8), we obtain(
s−w`α
whα− s

)(
h− s−uα
uα+ s− `

)
= k(η, γ) , (A10)

where the right-hand-side

k(η, γ)≡ 1

η

[
j(η, γ)

j(η−1, γ)

]2
takes the value of 1 in the limit η ↓ 1 and ∞ in the limit η→∞. Hence, there exists at least one value of

η > 1 which satisfies this equation as long as the left-hand-side is larger than 1.

Note: Assumption 1 is actually a necessary and sufficient condition for an MPE with θf < θe if the function

k(η, γ) is strictly larger than 1 for all η > 1 and γ > 1. Our numerical study indicates that k(η, γ) is larger

than 1 for all values of η ∈ (1,100) and γ ∈ (1,100), so we speculate that Assumption 1 is a necessary and

sufficient condition for an MPE with θf < θe. Moreover, the same numerical study shows that k(η, γ) is a

strictly increasing function of η. From the apparent monotonicity of k(·, γ), we further speculate that there

is a unique value of η that satisfies Eq. (A10) and that the MPE is unique.

Next, note that there are a finite number of values of η which satisfy Eq. (A10) because the function

k(η, γ) is continuously differentiable and k(η, γ)→∞ in the limit η→∞. Thus, there are a finite number
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of MPEs. Let n be the total number of MPEs, and let Si = (θf,i, θe,i) denote the ith MPE strategy profile

with the firm’s threshold θf,i and the employee’s threshold θe,i. In particular, we index Si in such a way that

θe,i > θe,j if i < j. Then θf,1 < θf,2 must be true because the firm’s best response θf must decrease in the

strategy θe of the employee by Lemmas A-1 and A-2. Hence, θf,1 < θf,2 < θe,2 < θe,1 must be satisfied. From

the proof of Lemma A-1, we note that Ve(p;θf,2, θe,2)≤ Ve(p;θf,1, θe,2) because θf,2 > θf,1. By the property

of MPEs, we have

Ve(p;S2) = Ve(p;θf,2, θe,2)≤ Ve(p;θf,1, θe,2)≤ Ve(p;θf,1, θe,1) = Ve(p;S1) .

Similarly, we can show that Vf (p;S2)≤ Vf (p;S1). We can repeat the same argument for all i between 2 and

n and conclude that Ve(p;S1) ≥ Ve(p;Si) and Vf (p;S1) ≥ Vf (p;Si). Thus, S1, which has the highest ratio

θe,i/θf,i, is the Pareto-dominant MPE.

(ii) Since γ ↓ 1 as σ→ 0, it suffices to study the limits of small values of δ≡ γ− 1. We note that

j(η,1 + δ) = (x− 1− lnx)δ+
1

2
(lnx)(x− 1 +

1

2
lnx)δ2 +O(δ3)

in the limit δ→ 0. Hence, Eq. (A10) reduces to(
s−w`α
whα− s

)(
h− s−uα
uα+ s− `

)
=

(η− 1− lnη)2

η(η−1− 1 + lnη)2
+O(δ) .

Let

k(η)≡ (η− 1− lnη)2

η(η−1− 1 + lnη)2
. (A11)

Now we prove that there is a unique MPE in the small-σ limit by showing that k(η) is strictly increasing

for η > 1. We note that
dk(η)

dη
=

(η− 1− lnη)

(1− η+ η lnη)3
k1(η)

where k1(η) ≡ η(lnη)2 + (η2 − 1) lnη − 3η2 + 6η − 3. We note that k1(1) = 0 and that its first and second

derivatives vanishes at η = 1, and its third derivative is zero at η = 1 but strictly positive for η > 1. Conse-

quently, d2k1/dη
2, dk1/dη, and k1(η) are all strictly positive and increasing for η > 1. It follows that k(η) is

strictly increasing for all η > 1.

Next, we prove that θ∗e decreases in σ while θ∗f increases in σ by showing that η∗ decreases in σ in the

small-σ limit. To do so, we simply need to show limγ→1+ ∂γm(η∗, γ)> 0 and use the expression

dη∗

dγ
=−

(
2m(η∗, γ)

η∗

)
∂γm(η∗, γ)

∂ηk(η∗, γ)
,

which is derived by applying the implicit function theorem on Eq. (A10), since we already know that

dk(η)/dη > 0. After some algebra,

lim
γ→1+

∂γm(η, γ) =
(η− 1− lnη)η lnη

(1− η+ η lnη)3
·m1(η),

where m1(η) =−2(η− 1)2 +
1

2
(η2− 1) lnη+ η(lnη)2 .

We note that m1(1) = 0, and its first and second derivatives vanishes at η = 1 and its third derivative is

strictly positive for η > 1 from the property of η2−2η lnη−1. Consequently, d2m1/dη
2, dm1/dη, and m1(η)

are all increasing and strictly positive for η > 1. It follows that limγ→1+ ∂γm(η, γ)> 0 for all η > 1. Therefore,

dη∗/dσ < 0 is true, and θ∗e decreases in σ while θ∗f increases in σ from Eq. (A9). �
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Proof of Proposition 5. (i) From Eq. (A11), we note that limη→1 k(η) = 1 and limη→∞ k(η) =∞. Hence,

if ( s−w`α

whα−s
)(h−s−uα
uα+s−` )> 1, there exists a finite value of η ∈ (1,∞) which satisfies Eq. (A10) in the limit σ→ 0.

It means that θ∗e 6→ 1 and θ∗f 6→ 0 in the limit σ→ 0.

Let θ∗f (σ) and θ∗e(σ) denote the MPE thresholds when the volatility is σ. Similarly, let V ∗e (p;σ) and

V ∗f (p;σ) denote the MPE payoffs when the volatility is σ. For p∈ (θ∗f (σ), θ∗e(σ)), we study the limiting values

limσ→0 V
∗
e (p;σ) and limσ→0 V

∗
f (p;σ). From Eq. (A2), V ∗e (p;σ) = s/α+ a1φ(p) + a2ψ(p) where a1 and a2 are

given in Proposition 1. For small values of σ,

a1φ(p) + a2ψ(p) = pwh + (1− p)w`−
s

α
+O(σ2) = ge(p) +O(σ2) .

Hence, limσ→0 V
∗
e (p;σ) = s/α+ ge(p). However, V ∗e (p;σ)> s/α+ ge(p) for σ > 0 by the property of the best

response of the employee. Thus, we conclude V ∗e (p;σ)> limσ→0 V
∗
e (p;σ). Using the same procedure, we can

show that V ∗f (p;σ)> limσ→0 V
∗
f (p;σ).

From the fact that a1 and a2 have well-defined Taylor series with respect to σ2, for any fixed value of

p, we can express V ∗f (p;σ) = V ∗f (p; 0) + C2n
f (p) · σ2n + O(σ2n+2) and V ∗e (p;σ) = V ∗e (p; 0) + C2m

e (p) · σ2m +

O(σ2m+2) for some integers n≥ 1 and m≥ 1, where C2n
f (p) and C2m

e (p) are coefficients of the leading terms

of Taylor expansions of V ∗f and V ∗e . By virtue of the inequalities V ∗f (p;σ)> limσ→0 V
∗
f (p;σ) and V ∗e (p;σ)>

limσ→0 V
∗
e (p;σ), we conclude that these leading coefficients C2n

f (p) and C2m
e (p) are positive. Therefore,

V ∗e (p;σ) and V ∗f (p;σ) increase with σ for p∈ (θ∗f (σ), θ∗e(σ)) and for sufficiently small values of σ.

(ii) In the large-γ limit, we find that

m(η, γ) = η+O(γ−1) , k(η, γ) = η+O(γ−1) .

From Eqs. (A8) and (A9), we find that β∗e ≡ θ∗e/(1− θ∗e) and β∗f ≡ θ∗f/(1− θ∗f ) are given by

β∗e =
s−w`α
whα− s

+O(γ−1) , β∗f =
uα+ s− `
h− s−uα

+O(γ−1) .

So we obtain β∗e → β∞e , β∗f → β∞f , θ∗e → θ∞e and θ∗f → θ∞f . The O(γ−1) terms can be obtained directly from

Eqs. (A4) and (A7):

β∗e = β∞e (
γ+ 1

γ− 1
) +

2ge(θ
∞
f )
√
β∞e

(wh− s/α)
√
θ∞f (1− θ∞f )

(
β∞e
β∞f

)−γ/2
+ o((β∞e /β

∞
f )−γ/2) , (A12)

β∗f = β∞f (
γ− 1

γ+ 1
) +

2gf (θ∞e )
√
β∞f

(u+ s/α−h/α)
√
θ∞e (1− θ∞e )

(
β∞e
β∞f

)−γ/2
+ o((β∞e /β

∞
f )−γ/2) . (A13)

Hence, θ∗e ↓ (s/α−w`)/(wh−w`) and θ∗f ↑ (uα+ s− `)/(h− `) as γ→∞.

To prove part (ii), we need to inspect the large-γ behaviors of a1φ(p) + a2ψ(p) and b1φ(p) + b2ψ(p) [see

Lemmas A-1 and A-2 for Eqs. (A2) and (A3)]. We insert Eq. (A12) into the expressions for a1 and a2 in

Lemma A-1 to obtain the following:
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