
 1

Towards Intelligent Transport Systems:
Geospatial Ontological Framework and Agent Simulation

Seong Kyu Choi

Thesis submitted for the Degree of Doctor of Philosophy (PhD)

Department of Civil, Environmental and Geomatic Engineering

UCL

2017

 2

I, Seong Kyu Choi, confirm that the work presented in this thesis is my own. Where
information has been derived from other sources, I confirm that this has been indicated
in the thesis.

 3

Abstract

In an Intelligent Transport System (ITS) environment, the communication component is of high

significance as it supports interactions between vehicles and the roadside infrastructure.

Existing studies focus on the physical capability and capacity of the communication

technologies, but the equally important development of suitable and efficient semantic content

for transmission has received notably less attention. Using an ontology is one promising

approach for context modelling in ubiquitous computing environments. In the transport domain,

an ontology can be used both for context modelling and semantic contents for vehicular

communications. This research explores the development of an ontological framework

implementing a geosemantic messaging model to support vehicle-to-vehicle communications.

To develop an ontology model, two scenarios (an ambulance situation and a breakdown on the

motorway) are constructed to describe specific situations using short-range communication in

an ITS environment. In the scenarios, spatiotemporal relations and semantic relations among

vehicles and road facilities are extracted and defined as classes, objects, and properties/relations

in the ontology model. For the ontology model, some functions and query templates are also

developed to update vehicles’ movements and to provide some logical procedures that vehicles

need to follow in emergency situations. To measure the effects of the vehicular communication

based on the ontology model, an agent-based approach is adopted to dynamically simulate the

moving vehicles and their communications following the scenarios.

The simulation results demonstrate that the ontology model can support vehicular

communications to update each vehicle’s context model and assist its decision-making process

to resolve the emergency situations. The results also show the effect of vehicular

communications on the efficiency trends of traffic in emergency situations, where some vehicles

have a communication device, and others do not. The efficiency trends, based on the percentage

of vehicles having a communication device, can be useful to set a transition period plan for

implanting communication devices onto vehicles and the infrastructure.

The geospatial ontological framework and agent simulation may contribute to increase the

intelligence of ITS by supporting data-level and application-level implementation of

autonomous vehicle agents to share knowledge in local contexts. This work can be easily

extended to support more complex interactions amongst vehicles and the infrastructure.

 4

Acknowledgements

It has been a very long journey, and there have been a lot of twists and turns along the way. This

thesis would not have been possible without extraordinary supports from many people.

I would like to express my sincere appreciation to my supervisor, Professor Muki Haklay, for

his enthusiasm, guidance and patience. I owe Dr Patrick Weber and Dr Artemis Skarlatidou a

real debt of gratitude for their help to untangle the arguments and structure of this thesis

throughout the writing process. I want to thank former supervisors, Dr Pragya Agarwal and Dr

Rod Bera, who gave me a chance to start this journey. My thanks also go to the examiners, Prof

Christopher B. Jones and Dr Claire Ellul. Their thorough comments and advice admittedly

helped me to revise the thesis.

Friends and colleagues at CEGE, Chorley and CASA, past and present, have been inspiring and

helpful, particularly Amon, Anna, Ateen, Berk, David, Donghan, Gianfranco, Gonzalo, Jenny,

Jess, Pinai, Sakpod, Sindy, Sunghyun, Tina, Vyron. I would also like to thank my great family

friends in Korea and London for their moral support.

Finally, I am very grateful to my parents, my brother Eun-Kyu, my wife Sookjoo and my

daughter Hannah for bearing with this long journey. I love you!

 5

Table of Contents

Abstract .. 3	

Acknowledgements .. 4	
Table of Contents ... 5	

List of Figures .. 10	

List of Tables ... 13	
Glossary ... 16	

Abbreviations ... 19	

1. Introduction .. 21	
1.1 Challenges in transport systems ... 21	

1.2 Intelligent infrastructure and vehicles ... 22	

1.3 Vehicular communication technologies .. 24	
1.4 Context modelling and simulation for vehicular communications 28	

1.5 Research aim, research questions, and objectives ... 30	
1.6 Methodology .. 32	
1.7 Thesis structure .. 35	

2. Ontology in Information Science ... 37	

2.1 Introduction .. 37	
2.2 Why ontology? ... 37	

2.3 Ontology standards .. 39	
2.3.1 Definition of ontology .. 40	
2.3.2 Ontology languages .. 42	

2.3.2.1 Resource Description Framework (RDF) and RDF Schema (RDFS) 44	

2.3.2.2 Web Ontology Language (OWL) .. 45	
2.3.3 Ontology query languages .. 46	

2.3.4 Ontology rule languages ... 49	
2.4. Ontological research in related domains ... 52	

2.4.1 Top-level ontologies ... 54	

2.4.2 Ontologies in ITS-related domains ... 55	
2.4.2.1 Geospatial ontologies ... 56	

2.4.2.2 Ontologies in pervasive computing .. 60	
2.4.2.3 Ontologies in road transport systems ... 62	

2.5 Summary and discussion ... 64	

3. Agent-oriented approach .. 68	

 6

3.1 Introduction ... 68	

3.2 Agent-oriented system development ... 69	
3.2.1 Capabilities of intelligent agents .. 69	

3.2.2 Agent-oriented methodologies ... 71	

3.2.3 Agent-oriented platforms for modelling and simulation ... 76	
3.2.3.1 Swarm .. 78	

3.2.3.2 NetLogo ... 79	

3.2.3.3 Repast .. 79	
3.2.3.4 Mason .. 80	

3.2.4 Choosing concepts and platforms for ITS simulation .. 81	

3.2.4.1 Choosing concepts from agent methodologies .. 81	
3.2.4.2 Choosing agent simulation platform .. 82	

3.3 Agent-oriented research in ITS-related domains .. 83	
3.3.1 Agent-oriented research in the geospatial domain ... 84	
3.3.2 Agent-oriented research in transport systems .. 87	

3.4 Mobility models in VANET simulations .. 89	

3.5 Summary and discussion ... 91	
4. Constructing scenarios ... 93	

4.1 Introduction ... 93	
4.2 Target application area selected from ITS user services ... 93	

4.2.1 User services as the whole organisation of ITS applications 94	
4.2.2 User services in the Emergency Management bundle ... 96	

4.2.3 User services in the Advanced Vehicle Safety Systems bundle 99	
4.2.4 The target application area of this research ... 101	

4.3 DSRC Scenarios .. 103	

4.3.1 A scenario about an ambulance ... 105	
4.3.2 Another scenario about a car breakdown on the motorway 108	

4.4 Spatiotemporal relations and location representation for the scenarios 110	

4.4.1 Spatiotemporal relations for communication-based traffic interactions 111	

4.4.1.1 Conventional traffic interactions without vehicular communications 111	
4.4.1.2 Extended spatiotemporal relations via vehicular communications 112	

4.4.2 Relative location representation ... 114	

4.5 Summary and discussion ... 116	
5. Geospatial ontological framework ... 119	

 7

5.1 Introduction .. 119	

5.2 Domain ontology of the ITS domain ... 120	
5.2.1 Four upper classes of the domain ontology .. 120	

5.2.2 Referring existing domain ontologies .. 122	

5.2.3 Classes and their hierarchy in the domain ontology ... 124	
5.3 Task ontology for DSRC ... 125	

5.3.1 Communications between vehicles and road infrastructure 126	

5.3.2 Five upper classes of the task ontology .. 127	
5.4 Application ontology of the VEIN model ... 129	

5.4.1 Classes and their hierarchy of the application ontology ... 129	

5.4.2 Road element’s connectivity .. 131	
5.4.3 Vehicles’ location and route information ... 132	

5.5 Validation of the VEIN application ontology .. 136	
5.5.1 Sequential description of the interactions between vehicles 137	
5.5.2 Instantiating vehicles and their interactions for the ambulance scenario 140	
5.5.3 Instantiating vehicles and their interactions for the breakdown scenario 146	

5.6 Extensibility of the VEIN application ontology model ... 150	
5.7 Summary and discussion ... 155	

6. Agent modelling and simulation .. 158	
6.1 Introduction .. 158	
6.2 Vehicle agents and the road environment .. 159	

6.2.1 Vehicles as intelligent agents ... 159	

6.2.1.1 Vehicle’s internal states ... 160	
6.2.1.2 Vehicle’s speed and inter-vehicle distance .. 162	

6.2.2 The road environment .. 166	

6.3 Agent modelling .. 169	
6.3.1 The purpose of the simulation and expected results ... 169	
6.3.2 The virtual road environment as modelling space .. 170	

6.3.2.1 The road environment for the ambulance scenario .. 171	

6.3.2.2 The road environment for the vehicle breakdown scenario 173	
6.3.3 Model assumptions ... 174	

6.3.4 Vehicle agents’ attributes and behaviours .. 175	

6.4 Agent simulation .. 176	
6.4.1 Agent, context, and projection ... 177	

 8

6.4.2 Classes and their hierarchy .. 178	

6.4.2.1 Setup procedure (initialisation procedure) ... 179	
6.4.2.2 Dynamic procedure .. 181	

6.4.3 Simulation outputs ... 182	

6.5 Pilot simulation ... 186	
6.5.1 Verification and Validation .. 186	

6.5.2 How many simulation runs? .. 187	

6.6 Simulation results .. 189	
6.6.1 Simulation results of the ambulance scenario .. 190	

6.6.2 Simulation results of the breakdown scenario ... 193	

6.7 Summary and discussion ... 198	
7. General discussion ... 201	

7.1 Introduction ... 201	
7.2 Ontology modelling for sharing spatiotemporally dynamic situations 201	

7.2.1 Comparisons with other ontology models ... 202	
7.2.2 SPIN-based ontological messaging model ... 203	

7.2.3 Ontology evaluation ... 204	
7.3 Suitability of the agent simulation for vehicular communication 206	

7.3.1 Vehicular mobility model .. 206	
7.3.2 Vehicular communications as triggers of vehicles’ proactive and reactive interactions

 ... 207	
7.4 From limited situations to general situations .. 209	

7.4.1. Different communication types for different situations .. 209	
7.4.2. Vehicle agents’ behaviour in heavy traffic ... 210	

7.5 Methodological discussion .. 212	

7.6 Chapter summary .. 214	
8. Conclusion ... 216	

8.1 Reflecting on the research questions ... 217	

8.2 Research outcomes: scenarios, the ontology, and the agent simulation 219	

8.3 Research contributions .. 222	
8.4 Research limitations .. 223	

8.5 Future work ... 225	

8.6 Concluding remarks .. 227	
References ... 229	

 9

Appendices ... 243	

Appendix A - Dedicated Short-Range Communication (DSRC) .. 243	
A.1 DSRC capability and its possible contents ... 243	

A.2 DSRC radio frequency and information exchange protocols 245	

A.3 DSRC in Vehicle Infrastructure Integration (VII) and ITS programs 248	
Appendix B – Context modelling/representation techniques .. 251	

Appendix C - ANOVA to decide the number of simulation runs ... 253	

C.1 Single Factor ANOVA: the number of vehicles affected by ambulance 253	
C.2 Single Factor ANOVA: the total affected time of vehicles by ambulance 254	

C.3 Single Factor ANOVA: ambulance's travel time ... 255	

Appendix D – Simulation source code .. 257	
D.1 Parameters and simulation initialisation ... 257	

D.1.1 GlobalVariables.java .. 257	
D.1.2 VeinContextCreator.java .. 259	
D.1.3 Infra.java .. 260	

D.2 Road geography and network ... 276	

D.2.1 RoadElement.java .. 276	
D.2.2 RoadEdge.java ... 278	

D.2.3 MyRepastEdge.java ... 279	
D.2.4 Junction.java ... 280	

D.3 Vehicle and route .. 281	
D.3.1 Vehicle.java .. 281	

D.3.2 EmergencyVehicle.java ... 297	
D.3.3 BrokenVehicle.java .. 302	
D.3.4 PrivateVehicle.java .. 306	

D.3.5 Route.java ... 317	
D.3.6 MyShortestPath.java .. 323	

D.4 Vehicular communication .. 324	

D.4.1 CommunicationMessage.java .. 324	

 10

List of Figures

Figure 1.1 - The national ITS architecture of the United States (taken from

www.its.dot.gov/arch/) .. 25	

Figure 1.2 - Top-level architecture of Co-operative Vehicles-Infrastructure Systems (Kompfner,

2010) .. 26	
Figure 1.3 - Methodological framework of this research .. 32	

Figure 2.1 - Convergence of some fields based on ICT .. 55	

Figure 2.2 - Classes of GeoOWL .. 58	
Figure 2.3 - A navigation ontology (after Yang and Worboys, 2011) .. 59	

Figure 2.4 - Key concepts derived from the top-level ontology, DOLCE 66	

Figure 3.1 - Analysis, design, and implementation phase of agent development process 69	
Figure 3.2 - Concepts used in the BDI architecture (Giorgini and Henderson-Sellers, 2005) 71	

Figure 3.3 - An example of suborganisations (Zambonelli et al., 2003) 73	
Figure 3.4 – An example of actor diagram model (Bresciani et al., 2004) 75	
Figure 3.5 - An example of agent interaction diagram (Bresciani et al., 2004) 75	

Figure 4.1 - The environment, suborganisations, and interaction media of an ITS environment

(from Sill et al., 2011) ... 94	
Figure 4.2 - A timeline to provide an appropriate response to an emergency situation 97	

Figure 4.3 - The target application area of this research ... 103	
Figure 4.4 - A scenario of an ambulance communicating with the vehicles around it 106	
Figure 4.5 - Snapshots of the ambulance scenario .. 106	

Figure 4.6 - Ambulance’s expected route depending on the road status 107	

Figure 4.7 - Sensing technologies assisting in traffic situations .. 108	
Figure 4.8 - A scenario of a broken-down car broadcasting its sudden stop 109	

Figure 4.9 - Snapshots of the vehicle breakdown scenario ... 110	
Figure 4.10 - An example of binary relations based on vehicular communications 113	

Figure 5.1 - The feature class and its subclasses in the VEIN domain ontology 123	

Figure 5.2 - Ontology properties (from http://www.ordnancesurvey.co.uk/oswebsite/ontology/)

 ... 123	

Figure 5.3 – Four classes of the VEIN domain ontology .. 125	
Figure 5.4 - Architecture flows for vehicle-to-vehicle communication and vehicle-to-

infrastructure communication .. 126	

Figure 5.5 - Classes extracted for the task ontology .. 127	

 11

Figure 5.6 - Five upper classes and their subclasses in the task ontology 128	

Figure 5.7 - UML-like class diagram of the VEIN application ontology 130	
Figure 5.8 - A SPIN rule and new triples for road elements’ connectivity 132	

Figure 5.9 - A SPIN template to update vehicle’s relative location information 135	

Figure 5.10 - Sequential tasks of an ambulance and a private vehicle 138	
Figure 5.11 - Sequential tasks for a broken-down vehicle and a private vehicle 139	

Figure 5.12 - Interaction between an ambulance and a vehicle based on the ontology model and

DSRC message ... 140	
Figure 5.13 - The SPIN template to instantiate the ambulance in each vehicle’s ontology model

 .. 141	

Figure 5.14 - Argument values of the SPIN update template from the ambulance’s DSRC

message .. 142	

Figure 5.15 - The SPIN function to check if a vehicle needs to give way to the ambulance or not

 .. 145	
Figure 5.16 - Interaction between a broken-down vehicle and a vehicle approaching the

breakdown spot based on the ontology model and DSRC message .. 147	

Figure 5.17 - The SPIN template to instantiate the broken-down vehicle in the approaching

vehicles’ ontology model ... 148	

Figure 5.18 - The SPIN function to check if a vehicle is inside the effect zone of the vehicle

breakdown .. 149	
Figure 5.19 - Instances and their binary relations within a scenario .. 151	
Figure 5.20 - An ASK query (i.e. ‘is there an ambulance moving towards the traffic controller?’)

and the result .. 152	
Figure 6.1 - Recommended minimum safe stopping distance (Driving Standards Agency, 2007)

 .. 164	

Figure 6.2 - The default speed data for roads to calculate the travel time attribute in the road

network ... 166	
Figure 6.3 - Hybrid environments depending on the percentage of the OBE-implanted vehicles

 .. 170	

Figure 6.4 - Hospital locations and the road network within the M25 171	
Figure 6.5 - Road networks around three hospitals ... 172	

Figure 6.6 - Dual carriageways around London .. 173	

Figure 6.7 - An example of road feature editing for the road direction and connectivity 174	

 12

Figure 6.8 - An example of simulation for the ambulance scenario around University College

Hospital .. 183	
Figure 6.9 - An example of simulation for the breakdown scenario on a motorway 184	

Figure 6.10 - Different effect zones of an ambulance ... 192	

Figure 6.11 - Trends of the percentages of unaffected vehicles in eleven vehicle groups 193	
Figure 6.12 - Request zone of a breakdown in the 0% DSRC-equipped vehicle group 194	

Figure 6.13 - Request zone of a breakdown in the 100% DSRC-equipped vehicle group 195	

Figure 6.14 - Trends of the percentage of unaffected vehicles in five vehicle groups 195	
Figure 6.15 - Cullen and Frey graph of the observations (i.e. the percentages of unaffected

vehicles) ... 196	

Figure 6.16 - Scatterplots and regressions between the number of requested vehicles and the

number of unaffected vehicles ... 197	

Figure 6.17 - The percentage of unaffected vehicles in two different DSRC ranges 198	
Figure 7.1 - Relations between organisation concepts in the thesis .. 212	
Figure A.1 - North American DSRC frequency allocation ... 245	
Figure A.2 - DSRC frequency in Europe and North America (edited from Seeberger, 2008) . 247	

Figure A.3 - Promising ITS communication standards and applications (Sill et al., 2011) 250	
Figure A.4 - Boxplot of four groups with the number of affected vehicles 254	

Figure A.5 - Boxplot of four groups with the total affected time of vehicles by ambulance 255	
Figure A.6 - Boxplot of four groups with ambulance’s travel time .. 256	

 13

List of Tables

Table 1.1 - Interaction types among four main classes of ITS architecture 27	
Table 1.2 – Applications of V2V and V2I communications (Gáspár et al., 2014) 27	

Table 2.1 - Definitions of an ontology (after Gómez-Pérez et al., 2004) 41	

Table 2.2 - Two categories of ontology languages based on its base logic 43	
Table 2.3 - An example of triples .. 44	

Table 2.4 - Comparison between RDF/RDFS and OWL (after McGuinness and Harmelen, 2004)

 .. 45	
Table 2.5 – Comparison between RDQL and SPARQL (Hutt, 2005) ... 47	

Table 2.6 – Functionality comparison between SWRL and SPIN (Mamadolimova et al., 2011)

 .. 50	
Table 2.7 – Four different top-level ontologies ... 54	

Table 3.1 – Analysis and design phases of the Gaia, Tropos, and Prometheus methodologies .. 72	
Table 3.2 – Comparison of ABMS platforms (Kravari and Bassiliades, 2015; Zheng et al., 2013)

 .. 82	

Table 3.3 – Vehicular mobility models for VANET simulation (Härri et al., 2007; Yin-fei et al.,

2015) .. 90	
Table 3.4 – Mobility features of the vehicular mobility models (Härri et al., 2007; Manikandan

and Dhas, 2012; Yin-fei et al., 2015) ... 91	
Table 4.1 - ITS User Services (Architecture Development Team, 2005) 95	
Table 4.2 - Subservices, operational functions, and communication types in the Emergency

Management bundle (Architecture Development Team, 2005) ... 98	

Table 4.3 - Subservices, operational functions, and communication types in the Advanced

Vehicle Safety Systems bundle (Architecture Development Team, 2005) 100	

Table 4.4 - An example of emergency vehicle alert message (Michaels et al., 2010) 105	
Table 5.1 - Properties/relations related to each vehicle’s movement .. 133	

Table 5.2 - A vehicle’s properties and related instances .. 134	

Table 5.3 - Logics of the function to check whether or not the vehicle needs to give way to the

ambulance .. 144	

Table 5.4 - Results of SPIN functions and the SPIN template for each time stamp 146	
Table 5.5 - Logics of the function to check whether or not a vehicle needs to consider the

presence of the breakdown spot ... 149	

Table 5.6 - Results of SPIN functions and the SPIN template for each time stamp 150	

 14

Table 5.7 - SPARQL queries to support the ambulance scenario in the third condition 152	

Table 5.8 - Possible SPARQL queries to support the situation of a second emergency vehicle

 ... 153	

Table 5.9 - Possible lane property and variable for a multi-lane situation 154	

Table 6.1 - A vehicle agent’s BDI in an emergency situation ... 161	
Table 6.2 – Free-flow car speed ranges in 2010 (Department for Transport, 2011a; Department

for Transport, 2011c) ... 163	

Table 6.3 – Mathematical description of IDM .. 165	
Table 6.4 - Key fields for join operations to get one way and no entry restrictions (ESRI UK,

2006) .. 167	

Table 6.5 - Field names to get one way and no entry restrictions (ESRI UK, 2006) 167	
Table 6.6 - Road types used in the simulation ... 168	

Table 6.7 - National standards for red calls (NHS Information Centre, 2008) 173	
Table 6.8 - Vehicle agent’s attributes and behaviours ... 176	
Table 6.9 - Context and projection used in the simulation .. 177	
Table 6.10 - Class groups and class hierarchy for the agent simulation 178	

Table 6.11 – The CommunicationMessage Class extracted from the VEIN application ontology

 ... 179	

Table 6.12 - The list of variables in the log file during the simulation 185	
Table 6.13 - Different approaches for determining sample size .. 188	
Table 6.14 - ANOVA of the four groups to decide the number of simulation runs 189	
Table 6.15 - Simulation summary ... 190	

Table 6.16 - Coefficients of linear regressions of unaffected vehicles from the breakdown 197	
Table 7.1 - Different content levels of an ontology for evaluations (Brank et al., 2005) 205	
Table 7.2 - Scenario-based approaches to describe traffic situations .. 213	

Table A.1 - Comparison of DSRC to various wireless technologies (Dulmage et al., 2006) ... 244	
Table A.2 - Possible contents for DSRC (Schagrin, 2008) ... 245	
Table A.3 - Changes from VII to today’s ITS program in the United States (Sill et al., 2011) 249	

Table A.4 – Comparison of context modelling/representation techniques (Perera et al., 2014)251	

Table A.5 - Condition to accept or reject for single factor ANOVA .. 253	
Table A.6 - Summary of four groups with the number of vehicles affected by ambulance 254	

Table A.7 - F-statistics of the four groups with the number of vehicles affected by ambulance

 ... 254	
Table A.8 - Summary of four groups with the total affected time of vehicles by ambulance ... 255	

 15

Table A.9 - F-statistics of the four groups with the total affected time of vehicles by ambulance

 .. 255	
Table A.10 - Summary of four groups with ambulance’s travel time 256	

Table A.11 - F-statistics of the four groups with ambulance’s travel time 256	

 16

Glossary

Agent-
Based
Modelling
and
Simulation
(ABMS)

An Agent-Based Modelling and Simulation (ABMS) is a computational
model for simulating the actions and interactions of autonomous agents
(individual or collective entities such as organizations or groups) with a view
to assessing their effects on the system as a whole. It combines elements of
game theory, complex systems, emergence, computational sociology, multi-
agent systems, and evolutionary programming.

Beliefs,
Desires, and
Intentions
(BDI)

Beliefs, Desires, and Intentions (BDI) architectures are widely used to reflect
agents’ goals, and the resulting plans and actions. Beliefs, desires, and
intentions are agents’ abstract (external) characteristics, and can be
transposed into agents’ internal characteristics. Beliefs (what they know and
what they know how to do) represent an agent’s knowledge-base, while
desires (what goals they would like to achieve) represent an agent’s goals
(objectives) and intentions (the goals they are currently committed to
achieving) are mapped to plans.

Descriptive
Ontology
for
Linguistic
and
Cognitive
Engineering
(DOLCE)

The Descriptive Ontology for Linguistic and Cognitive Engineering
(DOLCE) is a top-level ontology that has a clear cognitive bias and aims at
capturing the ontological categories underlying natural language and human
common sense. DOLCE, however, does not commit to a strictly ‘referentialist
metaphysics’ related to the intrinsic nature of the world. Rather, the
categories it introduces are thought of as cognitive artefacts, which are
ultimately depending on human perception, cultural imprints and social
conventions. In this sense, they intend to be just descriptive notions, which
assist in making already formed conceptualisations explicit. DOLCE is an
ontology of particulars (also known as things), in the sense that its domain of
discourse is restricted to them.

Intelligent
Transport
Systems
(ITS)

Intelligent Transport Systems (ITS) are advanced applications which aim to
provide innovative services relating to road transport, in which information
and communication technologies are applied. It enables infrastructure,
vehicles and users to be better informed and make safer, more coordinated,
and ‘smarter’ use of transport networks.

Multi-Agent
System
(MAS)

A multi-agent system (MAS) is a system composed of multiple interacting
intelligent agents within an environment. Multi-agent systems can be used to
solve problems that are difficult or impossible for an individual agent or a
monolithic system to solve. Intelligence may include some methodical,
functional, procedural or algorithmic search, find and processing approach.

 17

Ontology An ontology is ‘a model of (some aspect of) the world (domain)’ that
introduces a vocabulary (of concepts) relevant to that domain, and also
specifies the meaning (semantics) of the terms contained in this vocabulary
using properties/relations (e.g. is a, is part of) based on a suitable logic.

Resource
Description
Framework
(RDF)

The RDF model is used as a fundamental conceptual description or modelling
of information for the Semantic Web. It is similar to classic conceptual
modelling approaches such as entity-relationship or class diagrams, as it is
based upon the idea of making statements about resources (in particular Web
resources) in the form of subject-predicate-object expressions.

Semantic
Web

The Semantic Web is an advanced version of the current Web where
intelligent software agents can retrieve and manipulate information by
encouraging the inclusion of semantic content in Web pages. The Semantic
Web aims at converting the current Web of unstructured documents into a
Web of data using formal semantic descriptions such as RDF and OWL.

SPARQL
Protocol
and
RDF Query
Language
(SPARQL)

SPARQL (a recursive acronym) is an official RDF query language, which is a
query language for ontology models, able to retrieve and manipulate data
stored in RDF or OWL. SPARQL allows four kinds of query form that are
SELECT, CONSTRUCT, DESCRIBE, and ASK. SELECT statements return
results of matching variables from a query, and CONSTRUCT statements
return a RDF graph which is a result of matching variables from a set of triple
templates. DESCRIBE forms return an RDF graph to describe resources, and
ASK statements return a boolean which is true or false from the matching
pattern.

SPARQL
Inference
Notation
(SPIN)

SPIN is a SPARQL-based rule and constraint language that can provide
reusable query templates and functions with a SPARQL-friendly syntax.
SPIN was designed by combining concepts from object-oriented languages,
query languages, and rule-base systems so that it can define a kind of
behaviours of ontology classes and instances in the SPARQL-like syntax that
can be stored and represented in RDF or OWL. SPIN can define rules and
query templates easily using familiar SPARQL expressions. SPIN also
provides user-defined functions, which are composed of an argument and a
nested SPARQL query.

Tick Time within an agent simulation environment is regarded as a discrete event
whose quantum unit of time is known as a ‘tick’. If event x and y are
scheduled at tick one and two respectively, event y will execute after x.

Top-level
ontology

In information science, a top-level ontology (also known as foundation
ontology) is an ontology that describes very general concepts that are the
same across all knowledge domains. It supports very broad semantic

 18

interoperability for ontologies under this top-level ontology. It is usually a
hierarchy of entities and associated rules (both theorems and regulations) that
attempts to describe those general entities that do not belong to a specific
domain or application.

Web
Ontology
Language
(OWL)

OWL is another ontological specification for conceptual description or
modelling of information of the Semantic Web. It was built on top of RDF
and RDF schema to cover their limitations and extend the vocabulary for
cardinality constraints, richer property characteristics, etc. OWL can express
complex semantics as a vocabulary extension of RDF and RDFS using
classes, properties, relations, cardinality, etc.

 19

Abbreviations

ALC Attributive Language with Complements

ABMS Agent-Based Modelling and Simulation

ANOVA Analysis of Variance

BDI Beliefs, Desires, and Intentions

BFO Basic Formal Ontology

CA Cellular Automata

CVIS Co-operative Vehicles-Infrastructure Systems

DL Description Logic

DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering

DSRC Dedicated Short-Range Communication

GIS Geographic Information Systems

GPS Global Positioning System

ITN Integrated Transport Network

ITS Intelligent Transport Systems

MAS Multi-Agent Systems

OBE On-Board Equipment of DSRC

OWL Web Ontology Language

OWL QL OWL Query Language

RACER Reasoner for A-boxes and Concept Expressions Renamed

RDF Resource Description Framework

RDQL RDF Data Query Language

RSE Road-Side Equipment of DSRC

SWRL Semantic Web Rule Language

SPARQL SPARQL Protocol and RDF Query Language

SUMO Suggested Upper Merged Ontology

UML Unified Modelling Language

URIs Universal Resource Identifiers

 20

VANET Vehicular Ad-hoc Network

XML eXtensible Markup Language

W3C World Wide Web Consortium

 21

1. Introduction

1.1 Challenges in transport systems

Transport is a system that includes activities and a set of facilities consisting of the means and

equipment necessary for the movement of passengers or goods from one place to another

(Ipfelkofer et al., 2006). There are various transport modes, such as air, rail, road, water, space,

etc. Among these transport modes, road transport currently takes the lion’s share of the traffic,

with 90% of passengers and 82% of lifted goods travelling by road in Great Britain in 2012 and

2010, respectively (Department for Transport, 2013). In addition, it is forecasted that road

traffic volume in 2040 will be 43 percent higher than in 2010 (Department for Transport, 2013).

This means that, in the long term, the volume of road traffic in the UK will continue to grow.

The constant growth of road transport is caused by the combined factors of people, travel, goods

lifted, and vehicles on roadways. In this context, safety, mobility, and productivity challenges

are significant issues in road transport (Maccubbin et al., 2008).

To address these challenges and improve the performance of the transport system, there are

many regulations, such as congestion charges, road tax, pollution tax, and so on. In addition,

many technologies have been applied to enhance the performance of road networks. For

example, inductive loops in a roadbed, video cameras, and bus detectors at traffic lights have all

been used to create efficient traffic flows. Geographic Information Systems (GIS) have also

been used within this context.

Geographic information describes features and phenomena on the Earth’s surface by using their

location in geographic space (x, y, z) and time (Goodchild et al., 1999). It is therefore not

surprising that GIS have been applied widely in the area of road transport in order to represent

transport activities, as they lend themselves to such descriptions (Goodchild, 2000). A road

network and its facilities such as traffic signs, traffic lights, and bus stops can be conceptualised

with objects1 (or geoobjects) in GIS and then can be better managed.

Recently, with the advances made in real-time communications, what were previously just

Information Technologies (IT) including GIS, which were applied in the field of road transport,

1 Objects (or geoobjects) and fields (or geofields) are widely accepted terms for geographic information.
They are used to describe discrete entities and continuous processes, respectively (Goodchild et al., 2007).
Objects treat identifiable and relevant entities with points, lines, and areas while fields deal with spatial
distribution such as elevation, rainfall, and temperature (Worboys and Duckham, 2004).

 22

have started evolving towards Information and Communication Technologies (ICT)2 under the

label of Intelligent Transport Systems (ITS). ITS are advanced applications that aim to provide

innovative services and enable various road users to be better informed and make safer use of

transport networks (European Parliament and Council of the European Union, 2010). From the

perspective of the use of ICT in ITS, this research explores how real-time geographic

information can be used to support safety and mobility in an ITS environment in the near future.

In the following section (Section 1.2), the definition of intelligence in the context of this

research is presented. The importance of the communication component for advanced transport

systems is discussed in Section 1.3. Section 1.4 gives an overview of context modelling and

simulation-based approaches for vehicular communications. Then, Section 1.5 addresses the

research aim, the research questions, and the research objectives, while the procedural

framework and methodology are introduced in Section 1.6. Finally, the structure of this thesis is

described in Section 1.7.

1.2 Intelligent infrastructure and vehicles

As this research studies the role of geographic information and communication technologies in

an ITS environment, it is important to describe what is meant by an ITS environment. An ITS

environment means an advanced form of a road environment, in which each element may play

intelligent roles to enhance the road environment itself. Accordingly, this section outlines the

intelligence aspect of three elements of road transport.

Intelligence can be defined literally as the capacity to understand semantics in order to reason,

make decisions, and solve problems using knowledge and experience (Gottfredson, 1997).

Since road transport comprises three elements (i.e. infrastructure, vehicles, and operation), each

element has to be considered separately in order to build an intelligent road transport system.

Specifically, infrastructure refers to fixed structures, such as roadways and road facilities, while

vehicles are conveyances to move people and lifted goods on roadways. The infrastructure and

vehicles are operated by humans (e.g. vehicle owners/drivers or members of operating

organisations). If the vehicles and infrastructure are intelligent, mutual interaction among

vehicles, infrastructure, and humans can occur, which can improve traffic environments. The

2 Information and Communication Technologies (ICT) have been often used as an extended concept of
Information Technology to emphasise on the role of real-time communications (Stevenson et al., 1997).

 23

term ‘intelligent’ for intelligent vehicles and infrastructure can be explained from two aspects:

artificial intelligence and ambient intelligence.

On the one hand, intelligent vehicles and infrastructure are instances of artificial intelligence (or

intelligent agents) in the road transport domain. An intelligent agent is a flexible and

autonomous computational entity that can communicate with other agents in a dynamic and

unpredictable environment (Luck et al., 2005). There are many computational entities and

sensors which can be referred to as finite state machines or finite state automata. They have

input, output, storage, and control units, but they are limited by the fact that their control unit

can only change their internal states with already-fixed logics (Linz, 2001). Intelligent agents

differ from these computational entities as they are autonomous and have social ability.

Intelligent agents can communicate and collaborate with each other to share some information

and knowledge, so potentially, they can resolve undetermined situations.

On the other hand, an ITS setting can be seen as an instance of ambient intelligence, since

ambient intelligence can be characterised by context-awareness, ad hoc networks, and smart

sensors (Strang and Linnhoff-Popien, 2004). An ITS setting is composed of intelligent vehicles

and roadside facilities which share their traffic situations based on a vehicular network and

location sensors such as Global Positioning System (GPS). An ITS setting, as an instance of

ambient intelligence, can make the traffic environment responsive, proactive, and sensible by

bringing situational information into traffic scenes so that it deals with the needs and desires of

intelligent vehicles and the road infrastructure. By connecting vehicles and road facilities, a

transport environment can be a rich network in which sensing, computing, and processing

powers are embedded.

Therefore, intelligent vehicles and infrastructure can be described as instances of intelligent

agents in an ambient intelligence for the road transport domain. At present, drivers gather traffic

information mostly from their senses and depend on their audio-visual interpretation of the

information. They can also get some general traffic information from the radio or a traffic route

map with voice assistance from a navigation system. Traditionally, the infrastructure has been

regarded simply as the traffic environment for moving vehicles, which are just carrying people

and goods. However, currently, intelligent vehicles and infrastructure already started to assist

drivers by acting as intelligent agents with full or partial powers of computing, sensing, and

communicating to improve the safety, mobility, and productivity of transport (Maccubbin et al.,

2008; Ohmori et al., 2000).

 24

As we have seen so far, intelligent vehicles and infrastructure may provide information and

knowledge beyond drivers’ visibility so that the efficiency and safety of the whole transport

system can be improved. Recently, the automotive industry, including traditional automakers

and suppliers and high-tech companies such as Google, is developing sensor-based solutions to

enable intelligent vehicles to monitor their surroundings and to identify appropriate navigation

paths as well as obstacles and relevant signage in real-time (Silberg et al., 2012; Howard and

Dai, 2014). Self-driving car3 technology represents these sensor-based solutions. As of 2013,

four U.S. states (Nevada, Florida, California, and Michigan) and the District of Columbia have

passed laws finitely permitting self-driving cars (Smith and Weiner, 2013). In parallel,

connectivity-based solutions are also being developed to implement connected vehicles via

vehicular communications (Silberg et al., 2012; Howard and Dai, 2014). However, as vehicular

communications are based on the responses of neighbouring vehicles and road infrastructure,

this is relatively expensive and will take time to implement.

Yet, both solutions and their convergence will be required to ‘facilitate adequate mimicking of

human senses’, and enable intelligent vehicles to compensate for human error and slow reaction

times (Silberg et al., 2012). In particular, for intelligent vehicle agents’ social ability to share

traffic information and knowledge in real-time, the power of communication is essential. The

next section outlines how advances in communication technologies influence the applications in

transport systems.

1.3 Vehicular communication technologies

When data is processed, organised, structured or presented to answer a specific question in a

given context, it is called information. Until recently, the usages of information have been

limited to providing services and applications only for human agents (e.g. public usage of public

officers and individual usage of individual drivers). However, in an ITS environment,

geographic information can assist intelligent vehicles and infrastructure directly. The usage of

information (e.g. geographic information, traffic information) can be extended further by

supporting the situation awareness of intelligent vehicles and infrastructure.

3 It is also known as a robotic car, a driverless car, an intelligent car, or an autonomous car.

 25

One approach that can improve the complex interactions of road transport systems is to

intervene in transport systems directly by implementing situation-aware vehicles and

infrastructure that contain advanced information, communication, and sensing technologies. In

this way, vehicles and infrastructure are ‘keeping track of what is going on around’ them, are

‘tightly coupled to the dynamics of the environment’, and are enabled to understand and resolve

various traffic situations autonomously as participants in a complex, dynamic transport system

(Moray, 2004, p.4).

From this perspective (i.e. intelligent usage of intelligent vehicles and infrastructure),

communication and information are tightly coupled to support the interactions of vehicles and

roadside facilities. According to the U.S. Intelligent Transport Systems Joint Program Office

(Sill et al., 2011), the ITS architecture of the United States can be categorised into four classes:

traveller, centre, vehicles, and infrastructure (Figure 1.1). Europe also has a similar ITS

architecture with four classes: handheld system, central system, vehicle system, and roadside

system (Figure 1.2).

Figure 1.1 - The national ITS architecture of the United States (taken from www.its.dot.gov/arch/)

 26

Figure 1.2 - Top-level architecture of Co-operative Vehicles-Infrastructure Systems (Kompfner,

2010)

Theoretically, when complete knowledge of a road network’s status is gained, we can find

optimal solutions for our purposes (Winter and Nittel, 2006). However, it is impossible to get

complete knowledge because a transport system is dynamic and changeable in real time.

Therefore, the central communications of transport centres just provide general information to

vehicles on a road network. Traffic control centres broadcast car accidents and congestions on

main roads using radio and digital signboards, but still, general information is not enough to

resolve local traffic situations containing urgent vehicle movements. If there is a local problem

that needs to be solved, local ad hoc communications among vehicles and infrastructure can be

a useful and efficient solution.

As mentioned in Figure 1.1 and Figure 1.2, in an ITS setting, there are four main classes:

Vehicle class (VE), Infrastructure class (IN), Centre class (CE), and Traveller class (TR).

Among these classes, 16 types of interactions (10 types of two-way interactions) can be

provided (Table 1.1) For vehicles (i.e. motorised road users, mainly cars) as the main users of

the road transport, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications

(shaded parts of Table 1.1) can be of great importance in local situations.

 27

Table 1.1 - Interaction types among four main classes of ITS architecture

Interactions among
the four classes VEa INa CEa TRa

VEb VEa$VEb INa!VEb CEa!VEb TRa!VEb

INb VEa!INb INa $INb CEa!INb TRa!INb

CEb VEa!CEb INa!CEb CEa $CEb TRa!CEb

TRb VEa!TRb INa!TRb CEa!TRb TRa $TRb

There are comfort/entertainment applications, but mostly applications of V2V and V2I

communication are related to traffic safety and efficiency, such as intersection collision

avoidance, approaching emergency vehicle warning, emergency vehicle signal pre-emption,

work zone warning, etc. (Al-Sultan et al., 2014). These Vehicular Ad-hoc Network (VANET)

applications can be categorised by communication types and purposes (Table 1.2).

Table 1.2 – Applications of V2V and V2I communications (Gáspár et al., 2014)

Purpose V2V use cases V2I use cases

Traffic
safety

• Warnings on entering intersections
• Hazardous location warning: obstacle

discovery, reporting accidents
• Sudden stop warnings: forward collision

warning, pre-crash sensing or warning
• Lane change/keeping warnings/assistance
• Privileging ambulances, fire trucks, and

police cars

• Warning for hazardous situations (e.g.
congestions, accidents, obstacles etc.)

• Merging assistance
• Intersection safety
• Speed management
• Rail crossing operations
• Priority assignment for emergency

vehicles

Traffic
efficiency

• Enhanced route guidance and navigation
• Intelligent intersections: adaptable traffic

lights, automated traffic intersection
control, green light optimal speed advisory

• Merging assistance: enters an on-ramp to a
limited access roadway (it is also a safety
application)

• Variable speed limits

• Traffic jam notification
• Prior recognition of potential traffic

jams
• Dynamic traffic light control
• Dynamic traffic control
• Connected navigation

The Dedicated Short Range Communication (DSRC) is a standard that is designed specifically

to support short-range V2V and V2I communications between fast moving vehicles and the

infrastructure (Fernandes and Nunes, 2007). Of course, other wireless communications such as

Long Term Evolution (LTE) can be considered as an additional physical layer to implement an

ITS environment, but DSRC is a necessary and not replaceable physical layer of VANET for

 28

time-sensitive and safety-critical applications (Mlinarsky and Onishi, 2012; Pinyon Labs/Noblis,

Inc., 2010). A more detailed description of DSRC can be found in Appendix A.

This section has demonstrated the importance of communication technologies in an ITS

environment. The four main classes of ITS architecture are interconnected with various

communication technologies, which allow subsystems of each class to exchange information

with each other. Therefore, the use of geographic information in an ITS environment requires

also the use of communication technologies, and the contents and data formats of

spatiotemporal information can be dependent on communication technologies. The next two

sections cover new context models and simulation-based approaches that have originated with

the advent of ad hoc vehicular communication technology.

1.4 Context modelling and simulation for vehicular communications

Previous DSRC-related research has emphasised the physical capability and capacity of DSRC

by focusing on the improvement of the lower layers4 of the communication (Jiang et al., 2006;

Xu et al., 2004; Yin et al., 2004), but the equally important development of suitable and

efficient semantic contents for vehicular communications has received notably less attention

(Eigner and Lutz, 2008). Recently, in the VANET research community, there are emerging

trends of Internet of vehicles (Bonomi et al., 2012; Gerla et al., 2014; Yang et al., 2014) and

vehicular cloud computing (Hussain et al., 2012, 2015, Olariu et al., 2011, 2013). With these

advanced concepts, vehicles are not only communication resources but also computing

resources.

An ITS setting can also be seen as the vehicular version of a ubiquitous computing 5

environment because it is composed of intelligent vehicles and roadside facilities which share

4 The Open Systems Interconnection (OSI) Reference Model represents the flow of data in a network,
from the physical connections (physical layer) up to the user’s applications (application layer) (Computer
Desktop Encyclopedia, 2011). When two computing devices communicate on a network, the software at
each layer on one device assumes it is communicating with the same layer on the other device. The OSI
Reference Model includes seven layers: 1) physical layer, 2) data-link layer, 3) network layer, 4) transport
layer, 5) session layer, 6) presentation layer, and 7) application layer. The upper layers (Layers 7 through
to 4) are more geared to the type of application than the lower layers (Layers 3 through to 1), which are
designed to move packets from the sending station to the receiving station.
5 Ubiquitous computing, which is also called ambient intelligence or pervasive computing, is a trend to
make an environment responsive, proactive and sensible by bringing information into our physical world
so that it deals with the needs and desires of users (The European Commission’s Information Society

 29

their traffic situations based on vehicular communications and location sensors. For the

productive use of these resources, vehicles’ context-awareness (i.e. context acquisition, context

modelling, context reasoning, and context dissemination) is essential to adjust dynamically to

the current context (Nassar et al., 2012). A semantic message model is needed for intelligent

vehicles to share situational information, understand the context of the messages, and take

action in a way that resolves a situation. It is because contexts are mainly related to spatial

relations, such as where you are, who you are with, and which object or resource you can use

(Dey, 2001). For implementing vehicles’ context-awareness, an ontological context model is

one relevant candidate that is compatible with ad hoc networks and smart sensors.

Strang and Linnhoff-Popien (2004) and Perera et al. (2014) compared existing context

modelling techniques (i.e. key-value modelling, mark-up scheme modelling, graphical

modelling, object oriented modelling, logic based modelling, and ontology based modelling) at

a general level. Then, they evaluated that the ontology-based context model is the most efficient

format to manage context, as ontologies ‘offer an expressive language to represent the

relationships and context’, ‘share a common understanding of the structure of information

among people or software agents’. Ontologies also ‘provide comprehensive reasoning

mechanisms’, ‘allow knowledge sharing by decoupling the knowledge from the application and

program code’, and ‘integrate the knowledge on different domains into applications, which are

not even known at the design time’ (Appendix B).

In the VANET research community, Nassar et al. (2012) preferred ontology-based models for

the context representation and exchange between vehicles. Ebers et al. (2013) and Nundloll et al.

(2011) also adopted ontological approaches to provide effective ‘on-the-fly’ interoperability by

bridging (classifying, matching, and mapping) semantic differences of the VANET protocols.

There have been some studies using ontologies for traffic context models that are compatible

with vehicular communications (Eigner and Lutz, 2008; Eigner and Mair, 2009; Barrachina et

al., 2012; Section 2.4.2.3). However, they have not addressed how an ontology model can

support vehicles’ processing and reactions through ontology querying and reasoning.

Apart from the context/messaging model of vehicular communication, the performance

evaluation of vehicular communications is another crucial part of implementing ITS

Technologies Advisory Group, 2005). The Ubiquitous computing paradigm can be characterised by
context-awareness, ad hoc networks, and smart sensors (Strang and Linnhoff-Popien, 2004). Through the
connecting of objects, our environment can be a rich network in which sensing, computing, and
processing power are embedded (Sharpe and Hodgson, 2006).

 30

environments. Simulation-based approaches have been used because they take advantage of

field operational tests (i.e. high degree of realism) and analytical evaluation (closed analytic

description for broad conclusions) while avoiding potential dangers/costs of field operational

tests and oversimplification of analytical evaluation (Dressler and Sommer, 2015). There are

various levels of vehicular mobility modelling in traffic simulation, but in VANET simulation,

each vehicle can be seen as a communication subject and a vehicle node at the same time.

Therefore, the mobility model of a VANET simulation is designed to provide a general mobility

pattern of vehicular nodes rather than a traffic analysis (Härri et al., 2007; Khairnar and

Pradhan, 2010), and the level of detail of the mobility model depends on the purpose of the

simulation (Section 3.4).

1.5 Research aim, research questions, and objectives

To support vehicles’ interaction in local situations, this research adopts DSRC as the physical

foundation of vehicular communication. To fill the gap of knowledge in ontology querying and

reasoning in such an environment, this research aims to propose a geosemantic ontology model

representing communication contents and examine whether it supports vehicles’ action/reaction

process in local situations. In order to narrow the aspects of the ontology model and its

examination, four partial questions were formulated, and the research objectives pursued in

order to answer the questions, which are as listed below:

• Which area of ITS applications will benefit most from intelligent vehicles and their

short-range communications? Which traffic situations should be modelled to generate

this benefit?

There are many well-defined subareas (e.g. traffic management, transportation management,

emergency management, vehicle safety systems, etc.) and their subservices already in ITS.

Accordingly, there is a need to estimate in which area spatiotemporal information can

support vehicles’ communications and collaborations better. For a geosemantic message

model for intelligent vehicles, this research explores service areas of ITS applications to

find appropriate subservice area, and based on that traffic situations emphasising the

benefits of vehicular communications are described.

 31

• What are the core contents of the vehicular communications in the traffic situations?

If there is a local situation and a communicative vehicle (or infrastructure) is responsible

for or deeply involved with the situation, the vehicle can generate and send a message to

neighbour vehicles for individual and overall safety and efficiency. In this case, the

communication message may reflect the perspective of the communication sender (i.e.

communicative vehicle or infrastructure). Even though individualised information cannot

describe all aspects of a situation as it just delivers partial information about the situation, it

can be accepted on condition that the neighbour vehicles can understand what to take

immediate action. This research formulates a set of such descriptions of a situation as

communication contents.

• How can the contents of the vehicular communications be linked effectively with

intelligent vehicles’ actions?

Communication contents can be inputs that provide a basis for intelligent vehicles to

understand a situation, so that communication contents can be tightly coupled to the

vehicles’ internal states (e.g. current location, speed, etc.). Communication contents and

vehicles’ states and behaviours represent the data layer and the application layer of

intelligent vehicles, respectively. To support vehicles’ behaviours and decision-making

process, this research needs to develop a vehicle agent model showing the conceptual links

between communication contents and vehicles’ internal states and behaviours.

• If communicative6 vehicles have an influence over the whole system, how can the

impact be measured?

Even though this research deals with communicative vehicles, hybrid situations, whereby

communicative vehicles and non-communicative vehicles coexist, have to be considered.

This is because these situations are inevitable during the transition towards an ITS

environment. With various hybrid situations that have different numbers of intelligent

vehicles, the degree of vehicular intelligence and associated benefits can be measured. To

provide such situations, this research needs to develop a simulation platform to examine

vehicular communications in various hybrid situations.

6 A communicative vehicle is a car that has a vehicular communication device, so that it can communicate
with other communicative vehicles and road facilities to send and receive information about a traffic
situation.

 32

To answer the research questions and achieve the research objectives, this research used

ontological and agent-based approaches for its overall methodological framework. The next

section will describe the research procedure and methodology.

1.6 Methodology

As mentioned, the overall aim of this research is ‘to propose a geosemantic ontology model

representing communication contents and examine whether it supports vehicles’ action/reaction

process in local situations’. If vehicles (and road facilities) share situational information in

advance through ad hoc short-range communications, this may facilitate a better understanding

and autonomous conflict resolution of various traffic situations. In particular, from the

perspective of the convergence of ICT in road transport, the emphasis is on geosemantic

contexts and communication contents for vehicles and road facilities.

The research methodology was designed to achieve this research aim by answering the research

questions. The three stages of the methodological framework of the thesis, namely, constructing

scenarios (Chapter 4), ontology modelling (Chapter 5), and agent simulation (Chapter 6), are

shown in Figure 1.3.

Figure 1.3 - Methodological framework of this research

 33

Stage 1: Selecting a target application area and constructing scenarios that represent the

target application area

Generally, an overall system can be seen as multiple suborganisations in agent development,

and each agent plays several roles autonomously to achieve the subgoals of the overall system

(Zambonelli et al., 2003). So, organisational structures and rules are used to capture and

categorise agents’ roles/subgoals and their interactions. In this thesis, the organisational concept

is adopted to specify the scope of the implementation of this research by choosing a

suborganisation, in which short-range communication technology may be useful to resolve a

situation. In an emergency, each agent may accept that the most important temporary goal is to

assist and resolve the emergency. Therefore, during the emergency situation, each agent’s goal

can be simplified, and every participant vehicle in the situation can be considered as an agent in

a suborganisation. In this way, organisational rules can represent each agent’s goals in the

situation. A list of ITS user services is used to find a target application area (suborganisation),

and after the target service is selected two scenarios are developed to extract basic declarations

and rules for the situations. The scenarios show a detailed depiction of reasonable situations,

objects and their relations/interactions, which could be used for the development and

implementation in the next stages. Detailed descriptions about choosing a target application area

and constructing scenarios can be found in Chapter 4.

Stage 2: Development of an ontology model to assist vehicles’ context awareness

This research suggests a geospatial ontology to share geosemantic data/information effectively.

Generally in top-level ontologies, time-dependent entities are described as events or processes

rather than as objects. Moving vehicles in a road network can be modelled as dynamic

geoobjects (Goodchild et al., 2007), or dynamic collectives that can also be seen as dual-aspect

phenomena that may be presented as either objects or events depending on different viewpoints

(Galton, 2005). In this research, vehicles (and road facilities) themselves are seen as objects (i.e.

individual elements) as the main bodies of communications and interactions. Consequently,

short-range communications and interactions among vehicles (and road facilities) are treated as

major events (i.e. the collective actions of groups of individual elements).

Based on several scenarios of communicative vehicles in local situations, an ontology model is

developed to support semantic contents for vehicular communications and vehicles’ context

awareness. Vehicles, a road network, road facilities, and their spatiotemporal relations as

 34

described in the scenarios are transformed into the classes and objects of an ontology model,

along with their properties and relations. Organisational rules are also expressed as ontology

rules in the model. In this way, such a geospatial ontology helps make the vehicles and road

infrastructure more context-aware and collaborative. It is fair to say that a geospatial ontology

supports a suborganisation if several scenarios of the suborganisation can be redescribed using

the ontology model. In an ontology model, any component of a scenario can be expressed in

another way using a subset (vehicle instances, road facility instances, and their relations) of the

ontology model.

Since this research deals with short-range vehicular communications in an ITS setting, a domain

ontology for ITS and a task ontology for vehicular communications were developed. Both

ontologies follow the general concepts of the Descriptive Ontology for Linguistic and Cognitive

Engineering (DOLCE), which was chosen as the top-level ontology, even though some

conceptual amendments are necessary for intelligent vehicle agents, as is further explained in

Section 2.4.3. Then, an application ontology is developed to describe the concepts in the

scenarios, and some classes of the domain ontology and the task ontology are merged and

simplified. To build ontologies, Web Ontology Language (OWL) is used as the ontological

language, SPARQL Protocol and RDF Query Language (SPARQL) is used as the query

language, and SPARQL Inference Notation (SPIN) is used as the ontology rule language. The

application ontology is validated by instantiating vehicles and their semantic relations to fulfil

given tasks. Chapter 5 presents the process of the ontology modelling, from developing a

domain ontology and a task ontology to developing and validating an application ontology.

Stage 3: Agent modelling and simulation to examine the effects of communicative vehicles

An ontology model developed in the second stage contains classes, objects, and properties

(including object properties, otherwise known as binary relations) to describe local emergency

situations. It also includes ontology functions and rules that may be useful to resolve the

situations. In this stage, an agent-based modelling and simulation framework is implemented to

support vehicular communication sharing context information and their spatiotemporal relations

to support knowledge sharing among intelligent vehicles and road infrastructure. In this research,

the ontology-based messaging model is not tightly integrated to the simulation framework.

Instead, a vehicular communication class is provided as a replication of the ontology model to

be linked with intelligent vehicle agents’ internal states and behaviours, because agents are

simulated, not physically implemented.

 35

An agent model is developed to describe the dynamic situations of two scenarios, and then

communications and interactions among vehicle agents in local situations are simulated. The

agent simulations are performed to check if there are any positive effects of the DSRC-equipped

vehicles in several hybrid situations, where each simulation has a different percentage of

DSRC-equipped vehicles. In contrast with the fact that altering existing vehicles and

infrastructure to provide such situations in a physical way is prohibitively expensive and

difficult to achieve, a simulation platform that can provide a virtual experiment environment to

test futuristic road situations is preferred.

To build the agent model, some important variables related to vehicle agents in the road

environment are presented. Road network geometry and route information are used to build the

virtual road environment, and some traffic statistics are used to set individual vehicles’ internal

states randomly. Action rules for intelligent vehicles in emergency situations are also

formulated as vehicles’ behaviours. Then, a number of simulations are carried out with different

portions of communicative vehicles for each scenario to examine the effects of communicative

vehicles in the situations. This research skips the need for the analysis of parameter sensitivity

because the simulations will be executed with only one variable parameter, which is the portion

of the communicative vehicles. Chapter 6 describes the whole process of the agent modelling

and simulation to examine the ontology model in situations of the two scenarios.

1.7 Thesis structure

This chapter introduced the challenges of communication-based spatiotemporal information of

ITS in order to resolve local traffic situations. Focusing on the semantic contents of short-range

vehicular communication technology, the research questions and the methodological framework

have also been presented. To answer the research question and cover the research objectives, the

rest of the thesis is structured as follows.

Chapter 2 covers ontology standards and ontological research in related domains. It gives a

comprehensive description of ontology and introduces the extant ontology languages to

investigate the potential of ontology for sharing information and knowledge. Then, it presents

an overview of existing top-level ontologies and three ITS-related domain ontologies.

Chapter 3 reviews the methodologies and platforms used to develop agent systems as well as

agent-oriented research in ITS-related domains. From a computer science perspective, it reviews

 36

agent-oriented methodologies and agent modelling and simulation platforms for implementing

intelligent vehicles and their communications. It also reviews existing agent-oriented research in

three different perspectives of ITS-related domains and mobility models for VANET

simulations.

In Chapter 4, a target application area is selected from the ITS services, and two motivating

scenarios are developed to describe some situations of the target application area. It also

outlines spatiotemporal relations and linear referencing to support effective traffic interactions

in the situations of the scenarios.

Chapter 5 proposes a geospatial ontological framework with a domain ontology, a task ontology,

and an application ontology to support the aforementioned scenarios. For the evaluation of the

application ontology, sequential tasks representing the scenarios are instantiated by using the

application ontology to show how the ontology can provide support to resolve the situational

issues of the scenarios.

Chapter 6 describes agent simulations to provide dynamic environments of the scenarios. Since

the spatiotemporal relationships of vehicles and the road infrastructure depend on the location of

the vehicles at a particular time, they may change when vehicles move from one place to

another. Agent simulations provide dynamic environments, which represent the emergency

situations of the scenarios with different parameters. In the simulation environment, the effects

of vehicular communications on the traffic flow in an emergency situation are measured.

Chapter 7 provides a general discussion about the research results, namely, the scenarios, the

ontology model, and the simulation results. It discusses organisational concepts for the scenario

development, ontology modelling for sharing spatiotemporally dynamic situations, and the

suitability of the agent simulation for examining the local vehicular communication and its

contents.

Finally, Chapter 8 concludes this thesis by reconsidering the research questions and outcomes.

The research contributions and the limitations of the research outcomes are discussed, and the

suggestions for further research are provided.

 37

2. Ontology in Information Science

2.1 Introduction

This research explores how vehicles and road facilities can collaborate with each other to

resolve local situations by acting as intelligent agents. Communication, interaction, and

collaboration between intelligent actors thus sit at the core of the research problem. To

implement intelligent vehicles and their communications, the vehicles need to have three layers

in terms of implementation. The first layer is the physical layer of the vehicular communication,

as outlined in Section 1.4, which is outside the scope of this research. Here, the focus will be on

the development of an ontology model to describe the spatiotemporal data framework as the

data layer of vehicular communication to support local traffic situations, especially for safety-

critical applications.

In this chapter, ontological approaches are explored to provide a context/data model for the

semantic communication contents of intelligent vehicles. Section 2.2 emphasises the value of an

ontological model comparing to other data models. Section 2.3 describes the definition of

ontology in information science and reviews ontology standards. Section 2.4 reviews top-level

ontologies and ontological research in ITS-related domains. Top-level ontologies and domain

ontologies are reviewed to provide a foundation for the modelling basis and semantic

possibilities of this research.

2.2 Why ontology?

Section 1.3 dealt with the physical layer of vehicular communication and described how short-

range communication standards for the vehicular environment make local communications

possible in various traffic situations. As emphasised in Section 1.4, another important facet that

facilitates the use of intelligent vehicles and infrastructure is context awareness. Ontology-based

modelling is preferred for context modelling in an ITS environment, which is a vehicular

version of a ubiquitous computing environment. Vehicular communications provide media for

context sharing (i.e. context acquisition, context modelling, context reasoning, and context

dissemination). This section particularly draws a comparison between ontological models and

other data transfer/storage models.

 38

On the one hand, there are popular data transfer/exchange formats such as Extensible Markup

Language (XML) and JavaScript Object Notation (JSON). With a normal programming

language, an XML/JSON document could be processed efficiently for an application. However,

in this approach, the data exchange format should be application-dependent, and there is no

standard for structures. An ITS environment, in which various traffic subsystems and

communication protocols exist, may involve many levels of information. Data in XML can be

represented in different ways so that an application needs the document type definition (DTD)

or the schema to understand the data. However, when there is a need to extend an XML/JSON

document that is defined by a DTD or schema, all the applications using the DTD or schema

have to be changed, so it is not extensible (Sequeda, 2012). By contrast, in ontology, using

triples (subjects-predicates-objects) is the only standardised way to represent data, and a triple

already includes schema itself.

On the other hand, there has been a huge change in data storage and management with the

advent of the cloud, mobile, social media, and Internet of Things (IoT) applications. There has

been a need to develop a new mechanism for storage and retrieval of the non-relational (semi-

and unstructured) and hybrid datasets to support a large number of globally distributed

concurrent users in real-time and to rapidly adapt to changing requirements. Under these

circumstances, leading Internet companies including Google, Amazon, Facebook, Twitter, and

Linkedin have established a very flexible database technology called ‘NoSQL’ to overcome the

limitations of the tabular relations used in Relational DataBase Management Systems (RDBMS)

and support big data and real-time web applications (McCreary and Kelly, 2013).

There are four types of NoSQL databases, which are key-value store, document store, column

store, and graph database. A key-value store (e.g. DyanmoDB, BerkeleyDB) is used for storing

simple schema-less data, while a document database (e.g. MongoDB, CouchDB) stores,

retrieves, and manages document-oriented data/information in some standard encodings (e.g.

XML, JSON). A column store (e.g. Cassandra, BigTable) treats sections of columns of data as

data tables to provide high performance in a highly scalable architecture, while a graph database

(e.g. Neto4j, InfoGrid) is designed for storing data and their relationships. Social relations,

public transport links, and road network topologies can be well represented as graphs.

Triplestore is a type of decentralised directed labelled graph database for the storage and

retrieval of triples through semantic queries and ontology-based inference, and also known as

Resource Description Framework (RDF) database (see Section 2.3.2 for the details). A

triplestore provides a solid standardised query language (performing filtering on values and

 39

grouping as well as graph traversal), ontology-based inference (capturing complex logic), and

well-defined universal interchange formats, which graph databases are not able to provide

(Ontotext, 2014). The central concepts of triplestores have the same foundation with the

Semantic Web, which is an advanced version of the current Web where intelligent software

agents can retrieve and manipulate information so that computers can deliver the users’

requirements more accurately (Berners-Lee et al., 2001).

To sum up, under an ITS environment, data/information can be considered as a partial

data/information of the whole situation of the environment, and a distributed and extensible data

model is necessary to serve as a messaging model as well as a context model. The triple-based

graph representation of an ontology model has potential to deal with various situations, which

are beyond the intended design, by providing flexible descriptions, querying, and reasoning.

2.3 Ontology standards

In the transport domain, a data/message model for vehicular communication should be simple

and small in terms of the communication device and information transmission. It has to express

relations among vehicles and the road infrastructure to describe a situation. In addition,

messages transmitted from different vehicles and road infrastructure can be aggregated to

describe a shared situation. Since participating vehicles are regarded as the nodes of a vehicular

network, the data/message model has to be compatible with a vehicular network as well. In

short, the data/message model for vehicular communication needs to express attribute-value

pairs and structural relationships, but also be compatible with a network structure.

The transition of the Web environment towards Semantic Web can be a significant reference in

terms of the data model and network structure even though it is relatively static compared to the

vehicular environment. Under the concept of the Semantic Web, current Web documents will be

converted into a web of data/resource in a more descriptive and structured form. Ontologies for

the Semantic Web are good examples of such data models providing expressiveness and

simplicity as well as network compatibility and scalability (Bergman, 2009).

Therefore, this research adopts an ontological approach both for context modelling and semantic

contents for vehicular communications to deal with communication-based spatiotemporal

information in an ITS setting. Since an ontology may describe an abstract model or shared

 40

knowledge with a machine-readable format, it can express spatiotemporal contexts containing

vehicles on the road and traffic events, and their spatiotemporal relations. It can also provide

reasoning power based on the open-world assumption so that it may be useful to handle partial

information and knowledge of traffic situations.

To develop an ontology, it is necessary to establish how information and knowledge can be

modelled in a machine readable format. This section presents the definition of ontology and

how it can be used for describing concepts in a format. In the following sections, the definition

and history of ontology are presented. Then, the characteristics and potentials of extant ontology

languages, ontology query languages, and ontology rule languages for sharing and extracting

information and knowledge in a domain are explored. Finally, as a conclusion of this survey for

ontology, specific ontology language and ontology query language are chosen for this research

to handle situational information in an ITS setting.

2.3.1 Definition of ontology

The ancient Greeks were concerned with the nature of being, existence, or reality as a way of

understanding the world or some part of it. An ontology is a catalogue of kinds of being and

their relations of dependency as well as their conditions of existence (Marshall, 1998). Ontology

was initiated as an explicit part of philosophy and is the study of all things which exist and of

categories of things that exist or may exist (Sowa, 2000). On the other hand, the ontology of a

certain domain is about vocabularies, terms, and concepts in that domain, as well as their

classification, taxonomy, relationships, and domain axioms (Gasevic et al., 2006).

The term ‘ontology’ was taken from philosophy and began being used by artificial intelligence

researchers in the 1980s. For terminological clarification of the term ‘ontology’, Guarino and

Giaretta (1995) proposed using ‘Ontology’ with an upper-case ‘O’ to refer to a branch of

philosophy and a theory of the nature of being or existence, and using ‘ontology’ with a lower-

case ‘o’ to represent a logical theory relating to the conceptualisation used by researchers in

computer and information science and its various domains.

In computer and information science, an ontology is ‘an explicit specification of a

conceptualisation’ (Gruber, 1993, p.199). Gruber’s definition of an ontology is the most quoted

and reused by ontology researchers (Table 2.1). Studer et al. (1998, p.184) merged Gruber’s and

Borst’s definition and proposed a definition of an ontology as ‘a formal, explicit specification of

 41

a shared conceptualisation’ of a domain (Gruber, 1993; Borst, 1997; Gómez-Pérez et al., 2004).

Recently, Horrocks (2008, p.61) defined an ontology as ‘a model of (some aspect of) the world

(domain)’ that introduces a vocabulary (of concepts) relevant to a domain and specifies the

meaning (semantics) of the terms contained in this vocabulary using properties/relations (e.g. is

a, is part of) based on a suitable logic (Baader et al., 2009; Horrocks, 2009).

Table 2.1 - Definitions of an ontology (after Gómez-Pérez et al., 2004)

Definition of an ontology Defined By
An ontology defines the basic terms and relations
comprising the vocabulary of a topic area as well as the
rules for combining terms and relations to define
extensions to the vocabulary.

Neches et al., 1991

An ontology is an explicit specification of a
conceptualisation. Gruber, 1993

An ontology is a logical theory which gives an explicit,
partial account of a conceptualisation. Guarino & Giaretta, 1995

An ontology provides the means for describing
explicitly the conceptualisation behind the knowledge
represented in a knowledge base.

Bernaras et al., 1996

Ontologies are defined as a formal specification of a
shared conceptualisation. Borst, 1997

An ontology is a hierarchically structured set of terms
for describing a domain that can be used as a skeletal
foundation for a knowledge base.

Swartout et al., 1997

An ontology is a set of logical axioms designed to
account for the intended meaning of a vocabulary. Guarino, 1998

An ontology is a formal, explicit specification of a
shared conceptualisation. Studer et al., 1998

An ontology may take a variety of forms, but it will
necessarily include a vocabulary of terms and some
specification of their meaning.

Jasper and Uschold, 1999

An ontology as ‘a model of (some aspect of) the world
(domain)’ that introduces a vocabulary (of concepts)
relevant to a domain and specifies the meaning
(semantics) of the terms based on a suitable logic

Horrocks, 2008
Baader et al., 2009
Horrocks, 2009

For concepts, their relations, and constraints in a domain to be accepted by a group or a

community that includes users and computers, an ontology has to be in a machine-interpretable

format that is explicitly defined by a specific abstract model of shared and consensual

knowledge and formal representation (Studer et al., 1998). Therefore, an ontology can refer to

and identify a certain phenomenon, topic, or subject area in the world through the representation

 42

of classes, properties, axioms, and instances, as highlighted in the following list (Agarwal, 2005;

Genesereth and Nilsson, 1987; Gruber, 2009).

• Class: A class defines a group of objects that have the same properties. Classes can

have hierarchical relations as a super class and subclasses. Terms or words can be used

for the name of the class, since they can represent a concept for the class, e.g. road,

traffic light, traffic sign.

• Property: Properties can describe the status or characteristics of a class as well as the

relationships between classes. A binary relation between two classes represents their

interactions, e.g. speed limit of a road.

• Axiom: Axioms are defined as restrictions or characteristics of properties which

specify the characteristics of classes either partially or fully. So, an axiom is always

true in a domain, e.g. each traffic light controls vehicles on a road.

• Instance: Instances refer to the objects of a domain that are individualised from classes,

e.g. Gower Street.

These four components represent concepts, their hierarchy, and their relations as well as the

semantics of concepts and relations. In a physical space like a road network, they can be used to

describe a traffic situation, which includes vehicles, the road itself, and the road’s facilities. A

traffic situation can be expressed with reference to the four components above. Each element

can be generated by sharing situational information from each vehicle’s perspective via

vehicular communications. To share an ontology, the ontology and its components should be

defined and formalised into a computer file. To find a proper way to store and process an

ontology for describing traffic situations, we turn in the next section to explore ontology

languages.

2.3.2 Ontology languages

As mentioned in the previous section, an ontology has to be formal, so the ontology

specification must be ‘given in a language that comes with a formal syntax and semantics’ in

order to make the ontology ‘machine executable and machine interpretable’ (Staab and Studer,

2009, p.viii). With the four components of ontology (class, property, axiom, and instance),

semantics in a domain can be encoded in an ontology language based on a syntactical form of a

logic.

 43

There are several ontology languages, such as Knowledge Interchange Format (KIF), Resource

Description Framework (RDF), and Web Ontology Language (OWL) (Table 2.2). These

ontology languages can be categorised by their base logic, which is either first-order logic or

description logic. The detailed description about knowledge representation of first-order logic

and description logic can be found in Appendix B.1. Compared to first-order logic, description

logic has a low level of complexity, and its concept is similar to object-oriented modelling. In

addition, an ontology language based on description logic provides well-defined semantics with

formal properties as well as querying and reasoning algorithms (Horrocks, 2010). An ontology

language based on such description logic can be a more suitable and convenient basis for

knowledge representation of vehicular communications in the transport domain. The ontology

model of this research should also be able to describe vehicles’ movements, relations, and

decision-making procedure efficiently in order to support their intelligence. Therefore, this

section focuses on ontology languages based on description logic.

Table 2.2 - Two categories of ontology languages based on its base logic

Structure Ontology language Description

first-order logic
(FOL)

Knowledge
Interchange Format

(KIF)

KIF was developed for the interchange of
knowledge among different computer programs
using declarative semantics.

description
logic (DL)

Resource Description
Framework (RDF)
and RDF Schema

(RDFS)

RDF allows to exchange machine-understandable
descriptions of resources on the Web using triple
patterns. Resources and properties are defined in
RDF Schema.

Ontology Language
(OWL)

OWL can be used to make an application which can
process Web contents by itself. It provides various
vocabulary and formal semantics to develop self-
directed Web contents.

In particular, RDF and OWL are reviewed in the following subsections; they are formal

ontology languages of the Semantic Web for providing a flexible data model that is suited for

specifying a schema and executing queries on an ad hoc basis and defining the meaning of data

within the context of its interrelationships with other data. Even though Extensible Mark-up

Language (XML) and XML Schema can be used for representing, storing, and querying data, it

is fair to say that XML is designed for data serialisation rather than informational content. In

this research, RDF and OWL can be applied to provide semantics for vehicular communications.

 44

2.3.2.1 Resource Description Framework (RDF) and RDF Schema (RDFS)

The RDF model is based on a simple graph to express triple relations using a triple statement

consisting of a subject, a predicate, and an object (Hayes, 2004). To make a triple statement

(subject-predicate-object), Universal Resource Identifiers7 (URIs), blank nodes, and literals can

be used. However, a blank node can be a subject in a statement only after it has been mentioned

as an object (e.g. _:a of Table 2.3), while a literal, such as a string or a number, can only be an

object. In Table 2.3, this thesis is described using triples as an example, mentioning the author

and publisher of this thesis. The first statement of this example comprised two URIs and one

string, and it means that this thesis was created by me.

Table 2.3 - An example of triples

Subject Predicate Object
URIref | nodeID URIref URIref | nodeID | literal

<http://www.my/thesis/> <http://purl.org/dc/elements/1.1/creator> “Seong K. Choi”
<http://www.my/thesis/> <http://purl.org/dc/elements/1.1/publisher> _:a
_:a <http://purl.org/dc/elements/1.1/title> “UCL”
_:a <http://purl.org/dc/elements/1.1/source> <http://www.ucl.ac.uk/>

RDF is a flexible and extendable format to express information using triples (subject-predicate-

object) so that it can integrate distributed information which is expressed with various types

(Klyne and Carroll, 2004). A set of RDF triples forms a RDF graph, and RDFS semantically

extends RDF as RDF’s vocabulary description language to specify classes of resources and their

properties, such as rdfs:Datatype, rdfs:range, rdfs:domain, rdfs:subClassOf,

etc. (Brickley and Guha, 2004). Even though RDF represents the binary relations between two

resources (a subject and an object) and RDF Schema (RDFS) can express hierarchy and

inheritance for classes (rdfs:subClassOf) and properties (rdfs:subPropertyOf),

there are still limitations to expressing detailed semantics such as equivalence between concepts,

uniqueness and cardinality of properties, range restrictions, transitive property, etc. (Cardoso,

2006).

7 The following definition of URIs was written by Connolly (2006) on http://www.w3.org/Addressing/:
“Uniform Resource Identifiers (URIs) are short strings that identify resources in the Web: documents,
images, downloadable files, services, electronic mailboxes, and other resources. They make resources
available under a variety of naming schemes and access methods such as HTTP, FTP, and Internet mail
addressable in the same simple way.” URIs may not request an actual Web page, whilst Uniform
Resource Locators (URLs) do.

 45

2.3.2.2 Web Ontology Language (OWL)

As mentioned in the previous section, RDF and RDFS provide the basic elements of ontologies

that can support only simple semantics for describing classes and properties. OWL was built on

top of RDF/RDFS to cover their limitations and extend the vocabulary for cardinality

constraints, richer property characteristics, etc. As a vocabulary extension of RDF and RDFS,

OWL can express complex semantics by using classes, properties, relations, cardinality, etc.

(Table 2.4).

Table 2.4 - Comparison between RDF/RDFS and OWL (after McGuinness and Harmelen, 2004)

Ontology RDF/RDFS OWL

Basic
Elements

Resources
Properties

Classes

Based on the basic elements of RDF; add
more vocabulary for describing properties
and classes

Vocabulary

type
subClassOf

subPropertyOf
range

domain
label

comment

disjointWith
complementOf

sameAs
equivalentClass

Symmetric
Transitive
inverseOf

allValuesFrom
someValuesFrom

minCardinality
maxCardinality

Expressivity

More flexible (data relationships
can be explored from all angles)
More efficient (not linear like a
traditional database,
not hierarchical like XML)

OWL vocabulary allows systems to express
and make sense of first order logic for
inferences

Flavours RDF/RDFS

• OWL1 Lite
• OWL1 DL

• OWL1 Full

• OWL2 DL

- OWL2 EL
- OWL2 QL
- OWL2 RL

• OWL2 Full

The current version of OWL is OWL 2, and it has three sublanguages (profiles), which are

OWL 2 EL, OWL 2 QL, and OWL 2 RL (W3C OWL Working Group, 2009). Each

sublanguage has different aspects of expressive power, which means a different structure of the

ontologies and reasoning tasks for different application scenarios, like those below (Motik et al.,

2009).

 46

• OWL 2 EL is particularly suitable for applications that need very large numbers of

ontologies (classes and properties). OWL 2 EL provides expressive power for a large

biomedical ontology.

• OWL 2 QL is suitable for applications that have very large instance data and need lots

of conjunctive queries using AND, OR, and NOT connectives. This profile is designed

to store large data in a standard relational database system, and the database system

rewrites an ontology query to an SQL query to get query answering.

• OWL 2 RL is suitable for applications that require scalable reasoning and expressive

power at the same time. It is compatible with large instance data in the form of RDF

triples, and a subset of OWL 2 can be implemented using rule-based technologies.

OWL 2 RL can be considered as suitable for this research because it allows RDF forms and

rule-based technologies. Using OWL 2 RL profile, intelligent vehicles can have relative

location information in an RDF form as a declarative data model of triples describing a situation.

In addition, rule-based expressions can be shared to support vehicles’ action plans in specific

situations. These two benefits of OWL 2 RL may represent a declarative approach and a

procedural approach respectively, which are necessary to implement intelligent systems.

2.3.3 Ontology query languages

To query and process ontology models such as RDF and OWL, RDF Data Query Language

(RDQL), SPARQL Protocol and RDF Query Language (SPARQL) are compared in this section.

RDQL has a similar structure to SQL, so users can easily apply their SQL knowledge to

ontology querying. There are several systems using RDQL such as Jena, RDFStore, Sesame,

PHP XML Classes, 3Store, RAP-RDF API for PHP, Joseki RDF Server, etc. (Seaborne, 2004).

However, RDQL does not support Schema (T-box) query and disjunction (OR) operations, so a

query can only obtain instance-related results and cannot have OR operators (Table 2.5).

SPARQL was developed to complement and extend RDQL, and it has also been an official

recommendation from the World Wide Web Consortium (W3C) since January 2008. In contrast

to RDQL, SPARQL also provides a bracelet ({}) for using a block of triple patterns (more than

one triple pattern), and a single dot (.) divides the triple patterns in a bracelet. In this way, more

complex expression is possible in a triple pattern.

 47

Table 2.5 – Comparison between RDQL and SPARQL (Hutt, 2005)

Advanced features RDQL SPARQL
Value comparison and data type support yes yes

Generalized path expressions yes yes
Closure

(results of any query operation are also graphs) no yes

Optional values
(similar to outer join of SQL) no yes

Advanced set operations
(union and disjunction of graph pattern) no yes

SPARQL allows four kinds of query form, namely, SELECT, CONSTRUCT, DESCRIBE, and

ASK (Harris and Seaborne, 2012). The SELECT statements return the results of matching

variables from a query, and the CONSTRUCT statements return an RDF graph, which is a result

of matching variables from a set of triple templates. The DESCRIBE forms return an RDF

graph to describe resources, and the ASK statements return a boolean, which is true or false

depending on the matching pattern.

A SPARQL query is composed of a result specification, a dataset definition, and a restriction

definition. The result specification specifies the contents of fields from a query result with a

SELECT clause. In a SELECT clause, fields for the query result have to be provided as

variables. The dataset definition part indicates paths for the graphs with a FROM clause or FROM

NAMED clause. The restriction definition part defines matching patterns for resources, literals,

and properties in triples with the WHERE clause. The basic pattern of a SPARQL query uses

triple patterns that have the same variable in a WHERE clause.

The following example represents a SPARQL query and its result from OWL data. In the data

part, there is a class hierarchy. The Commercial_Vehicle class is a subclass of the

Vehicle class, and the Vehicle class is a subclass of the Feature class. In addition, the

data part includes an instance taxi1 of the Commercial_Vehicle class, as well as its

properties and relations. It has current coordinates (longitude geo:long and latitude

geo:lat) and is located on roadElement1. The relation between taxi1 and

roadElement1 was built by an object property SpatialRelations:isLocatedOn.

Some information and/or knowledge can be extracted from an OWL file. In this example, the

query asked to find cars on roadElement1, and then the result showed the cars’ ID and

coordinates.

 48

OWL data:
<rdf:RDF
 xmlns="http://www.mydomain.com/my03#"
 xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#"
 <owl:Ontology rdf:about="">
 <owl:imports rdf:resource=
 "http://www.ordnancesurvey.co.uk/…/v0.2/SpatialRelations.owl"/>
 </owl:Ontology>
 <owl:Class rdf:about="#VEhicle">
 <rdfs:subClassOf rdf:resource="http://www.opengis.net/gml/_Feature"/>
 </owl:Class>
 <owl:Class rdf:ID="Commercial_Vehicle">
 <rdfs:subClassOf rdf:resource="#VEhicle"/>
 </owl:Class>
 …
 <Commercial_Vehicle rdf:ID="taxi1">
 <geo:lat>51.41299</geo:lat>
 <geo:long>-0.28135</geo:long>
 <SpatialRelations:isLocatedOn rdf:resource="#roadElement1"/>
 </Commercial_Vehicle>
 …
</rdf:RDF>
SPARQL query:
SELECT ?carID ?lat ?long
WHERE
 { ?car SpatialRelations:isLocatedOn ?roadElements .
 ?roadElements rdfs:label "roadElement1" .
 ?car rdf:ID ?taxiID .
 ?car geo:lat ?lat .
 ?car geo:long ?long .
 }
Query result:
 carID lat long

 "Taxi1" 51.42199 -0.28135

As vehicles are moving on the road, there is a need to update information related to vehicles’

internal states (e.g. coordinates, speed). SPARQL 1.1 contains an update language, which

provides update, create, and remove operations (Gearon et al., 2012). The following example

uses the same data as the above example to demonstrate a SPARQL/Update query to update the

RDF data. If a car is moving and its location can be acquired from a GPS receiver, the current

location of the car can be updated repeatedly with a SPARQL/Update query as shown below.

SPARQL UPDATE query:
DELETE { ?s geo:lat 51.41299;
 geo:long -0.28135}
INSERT { ?s geo:lat 51.41298;
 geo:long -0.28134}
WHERE { ?s rdfs:label "taxi1"}

 49

Moreover, as a spatial extension to SPARQL for geographic information, there is a standard

called GeoSPARQL to support spatial semantics. GeoSPARQL makes spatial queries possible

by combining the spatial indexing and computation with ontologies such as RDF and OWL

(Perry and Herring, 2012). It can represent relationships between spatial objects (e.g.

distance, disjoint, intersects, touches, overlaps, equals, within,

contains, etc.) in a two-dimensional space. For example, it is possible to find all features

(i.e. ?targetPolygon) that the feature my:aPolygon contains, where spatial calculations

are based on my:hasExactGeometry as shown below.

GeoSPARQL query:
PREFIX my: <http://example.org/ApplicationSchema#>
PREFIX geo: <http://www.opengis.net/geosparql#>
PREFIX geof: <http://www.opengis.net/def/geosparql/function/>

SELECT ?targetPolygon
WHERE { my:aPolygon my:hasExactGeometry ?aGeom .
 ?aGeom geo:asWKT ?aWKT .
 ?targetPolygon my:hasExactGeometry ?tGeom .
 ?tGeom geo:asWKT ?tWKT .
 FILTER (geof:sfContains(?aWKT, ?tWKT)
 && !sameTerm(?aGeom, ?tGeom))
}

2.3.4 Ontology rule languages

There is a W3C standard for rules interchange, Rules Interchange Format (RIF), but it was

created to be an interchange format between rule engines rather than to be a rule language

(Kifer and Boley, 2010). For this reason, it is limited to general-purpose rules that can be

executed directly over RDF/OWL stores (Polikoff, 2011). Therefore, this section outlines two

ontology rule languages, Semantic Web Rule Language (SWRL) and SPARQL Inference

Notation (SPIN), which are W3C Member Submissions since 2004 and 2011, respectively.

Firstly, SWRL was proposed as a composite of OWL and Rule Markup Language (RuleML),

which is a rule language that shares inference rules and that can be stored in an ontology model

(Horrocks et al., 2004). It includes a complex abstract syntax to express Horn-like rules for

OWL Lite and OWL DL (http://www.w3.org/Submission/SWRL/swrl.owl). The rules are

similar to the if-then format exemplified here: if a condition (antecedent) is true, then a

conclusion (consequent) will be true. For example, if x1 is located on r1 and x1 is in front of

x2, then x2 is located on r1.

 50

Horn-like rule
locatedOn(?x1,?r1) ∧ inFrontOf(?x1,?x2) ⇒ locatedOn(?x2,?r1)

Abstract syntax
Implies(Antecedent(locatedOn(I-variable(x1) I-variable(r1))
 inFrontOf(I-variable(x1) I-variable(x2)))
 Consequent(locatedOn(I-variable(x2) I-variable(r1))))

Secondly, SPIN is a SPARQL-based rule and constraint language that can provide reusable

query templates with a SPARQL-friendly syntax with additional components over the standard

SPARQL facilities and SWRL, as listed in Table 2.6 (Knublauch et al., 2011; Mamadolimova et

al., 2011). SPIN was designed by combining concepts from object-oriented languages, query

languages, and rule-based systems, so it leverages object-oriented principles such as

encapsulation and object behaviour to make it easier for machines and humans to understand,

interact and process linked data resources (Knublauch et al., 2011). SPIN was chosen as the

ontology rule language for this research because it can be tightly coupled within an ontology

model to represent some logics. The logic of a rule can be tested with a SPARQL query and

then converted into a SPIN rule or template easily because SPIN is an extension of SPARQL. In

addition, in a SPIN rule or template, SPIN functions or magic properties (a.k.a. property

functions) can be used to avoid reasoning.

Table 2.6 – Functionality comparison between SWRL and SPIN (Mamadolimova et al., 2011)

Functionality SWRL SPIN
Rule chaining yes yes

Integration with OWL yes yes
Built-in/extensible features yes yes

Executable on SPARQL support graph server no yes
Class rules and constraints no yes

Reusable parameterised SPARQL query templates no yes
User-defined functions no yes

Update values no yes
Supports negation no yes

Remove triple no yes

While each vehicle’s location can be treated as an asserted triple and updated by a

SPARQL/UPDATE query (see section 2.3.3), spatiotemporal relations among vehicles and road

facilities might be acquired by reasoning as inferred triples. However, when dealing with traffic

situations that include dynamically moving vehicles, reasoning is not an option to describe their

spatiotemporal relations. This is because most inference engines are restricted only to adding

new inferred triples from existing asserted triples and rules, and updating already inferred triples

 51

is not allowed. This is called monotonic reasoning, in which facts believed true will not be

invalidated. If the asserted triples are static and remain still, this reasoning is reliable.

However, in cases where asserted triples need to be updated often, the monotonic reasoning

cannot be a good solution because it has to be reset and inferences be run again in order to keep

all inferred triples true. There is a way to perform incremental inferences to keep all inferred

triples up to date and true after each change, but it is an acknowledged difficult problem in

computer science. It can be efficient only if data changes rarely and if queries are executed often.

This research deals with moving vehicles, so their locations are changing all the time, and the

above is not the case. In the case of moving vehicles, using SPIN functions or magic properties

dynamically can be a better choice than reasoning because they can compute property values

dynamically on demand (Knublauch, 2011).

For instance, if there is a function :getDist and a magic property :isInFrontOf to

compute relative locations among vehicles, the function and the magic property have a nested

SPARQL query. The examples below show the body of :getDist and :isInFrontOf that

have logics to find :isInFrontOf relations by calculating their distance using :getDist

to the coming junction if they are on the same road and moving in the same direction.

spin:body of the function :getDist
SELECT ?distance
WHERE {
 ?arg1 :posx ?x1 .
 ?arg1 :posy ?y1 .
 ?arg2 :posx ?x2 .
 ?arg2 :posy ?y2 .
 BIND (afn:sqrt((?x1 - ?x2) * (?x1 - ?x2)
 + (?y1 - ?y2) * (?y1 - ?y2)) as ?distance) .
}
spin:body of the magic property :isInFrongOf
SELECT ?isInFrontOf
WHERE {
 ?arg1 :isLocatedOn ?road .
 ?arg1 :comingJunction ?junc .
 ?isInFrontOf :isLocatedOn ?road .
 ?isInFrontOf :comingJunction ?junc .
 BIND (:getDist(?arg1, ?junc) as ?thisDist) .
 BIND (:getDist(?isInFrontOf, ?junc) as ?otherDist) .
 FILTER (?thisDist < ?otherDist) .
}

In terms of triple statements, a magic property can be used as a predicate while the argument of

a magic property represents the left-hand side of the statement (the subject). The right-hand side

 52

(the object) of the triple is computed by the nested SPARQL query, which is the body of the

magic property (Knublauch, 2009). When the :isInFrontOf predicate is used in a query, the

spin body above will get the results with different bindings (one for the variable ?arg1 and the

other for the variable ?isInFrontOf). The following examples show three different cases of

bindings. In the first query of the example, the nested SPARQL query is executed with the

variable ?arg1, which is left blank, and the other variable ?isInFrontOf, which is pre-

bounded with Vehicle1. The second query shows the case where the argument ?arg1 is pre-

bounded with Ambulance1, and ?isInFrontOf is left blank. Both sides of the predicate

can be blank, and the results will return all existing :isInFrontOf relations in the whole

model.

SPARQL query using a magic property with blank subject:
SELECT *
WHERE {
 ?ambulance :isInFrontOf :Vehicle1 .
}

SPARQL query using a magic property with blank object:
SELECT *
WHERE {
 :Ambulance1 :isInFrontOf ?vehicle .
}

SPARQL query using a magic property with blank subject and blank object:
SELECT *
WHERE {
 ?ambulance :isInFrontOf ?vehicle .
}

2.4. Ontological research in related domains

The previous section discussed how to describe information in an ontology and how to extract

further information by reasoning throughout ontology languages and ontology query languages.

RDF and OWL are commonly accepted ontology languages while SPARQL and

SPARQL/Update are the latest ontology query languages and provide additional functions.

An ontology helps to describe shared information and knowledge formally and precisely with

logical constants and a set of statements. In an ITS setting, an ontology can depict a traffic

situation that involves vehicles and road facilities, so it can be used by intelligent vehicles and

infrastructure not only to identify one another but also to interact with each other. Consequently,

 53

it can be used by intelligent vehicles and infrastructure to be more responsive and to increase

the safety and mobility of the transport system.

The semantic contents of communication (i.e. vehicles’ current location and the current road

status) expressed in an ontology model (OWL) may be updated in real time using SPARQL and

SPIN. In terms of semantics and interoperability, an ontology can be useful for shared and

consensual knowledge of traffic situations so that it can be a fundamental base for contents of

interactions among intelligent geoobjects.

According to Guarino (1998), ontologies can be classified into three levels in accordance with

their domain dependence: top-level ontologies are domain independent while domain ontologies,

task ontologies, and application ontologies are domain dependent.

• Top-level ontologies describe general concepts of the world as a whole and relations

between the ontologies that are independent across all domains, such as space, time,

matter, objects, events, actions, etc.

• Domain ontologies and task ontologies describe the vocabulary related to a specific

domain or a specific task or activity respectively, with the particular meaning of the

terms introduced in the top-level ontology.

• Application ontologies describe concepts that rely on a particular domain and task at the

same time by specializing in related ontologies. There is a close connection between the

application ontologies and the roles played by domain entities for a particular activity.

This section examines existing domain-independent ontologies and domain-dependent

ontologies. Even though top-level ontologies are domain-dependent and there are no direct

relations between top-level ontologies and ITS-related ontologies, top-level ontologies are

important because they deal with a part of the theoretical foundation for all domains. Therefore,

in the following sections, top-level ontologies are surveyed before reviewing ITS-related

domain ontologies. After that, ITS-related ontological research is reviewed from three different

perspectives.

 54

2.4.1 Top-level ontologies

A top-level ontology provides a framework of common knowledge and broad concepts that are

general and universal, so domain-dependant ontologies can be composed by importing or

extending from a top-level ontology (Semy et al., 2004). If a domain ontology adopts a top-level

ontology, the domain ontology can be built based on the theoretical structure and the semantic

richness of the top-level ontology.

As the foundation of the domain, the top-level ontology cannot only provide a modelling basis

and design patterns, but also can affect the semantic possibilities of the domain ontology with

its relevant concepts and logics (Oberle et al., 2007; Semy et al., 2004). Since there are several

top-level ontologies, it is necessary to identify which top-level ontology is suitable for the

domain ontology of the research.

To find a suitable top-level ontology, Table 2.7 reviews four well-known top-level ontologies,

which are Cyc ontology, Descriptive Ontology for Linguistic and Cognitive Engineering

(DOLCE), Suggested Upper Merged Ontology (SUMO), and Basic Formal Ontology (BFO).

Table 2.7 – Four different top-level ontologies

Top-level
ontology

Description

Cyc
ontology

• A comprehensive knowledge-base to support AI applications from common-sense
background knowledge (Matuszek et al., 2006)

• Provides context reasoning and problem-solving for various domains, and it can be
divided into upper ontology, middle ontology, and lower ontology

• The upper Cyc ontology (i.e. top-level Cyc ontology) has three top classes:
Individual, PartiallyIntangible, and
MathmaticalOrComputationalThing (Cycorp, 2002b)

DOLCE

• The foundational ontologies library for the WonderWeb project by the Laboratory for
Applied Ontology (LOA) (Gangemi et al., 2003)

• DOLCE is an ontology of particulars (i.e. things) based on the fundamental
distinction between endurants and perdurants

• Top level categories in DOLCE can be split into four classes: Endurant (spatial
thing), Perdurant (temporal thing), Quality (entity that is observed or measured,
such as shape, sound, smell, colour, and length), and Abstract (time interval and
space region can be subclasses of this class)

SUMO

• A formal language mapping to all the WordNet (http://wordnet.princeton.edu) words,
which consist of nouns, verbs, adjectives, and adverbs following different grammatical
rules and is widely used by artificial intelligence researchers

• It is composed of SUMO itself, the Mid-Level Ontology (MILO), and a broad range of
domain areas, such as communication, countries and regions, distributed computing,
transportation, viruses, etc. (Pease et al., 2002)

• In SUMO, things can be split into two classes, which are the Abstract and
Physical classes. The Object and Process classes are subclasses of the

 55

Physical class, and they are conceptually similar to the endurant and
perdurant classes of DOLCE, respectively.

BFO

• Developed to support the scientific research domain (e.g. medical domain,
geographical domain, disaster relief domain, etc.)

• Provides a single framework for three-dimensional (SNAP) and four-dimensional
(SPAN) perspectives, which are continuants (i.e. endurants, static/spatial features) and
occurants (i.e. perdurants, dynamic/temporal processes)

• Continuant is a three-dimensional enduring objects, and occurant is a four-
dimensional event or process that exists only temporarily in between their initial and
terminal boundaries (Grenon and Smith, 2004)

2.4.2 Ontologies in ITS-related domains

ITS can be defined as combinations of computers, databases, maps, and sensors for vehicles and

infrastructure (Department for Transport, 2004). Traditionally, GIS covers computers, databases,

and maps in the above definition while pervasive computing8 covers wireless computers and

sensors. In terms of the convergence of advanced Information and Communication, we focus on

specific traffic situations, in which the definitions of the three domains (i.e. GIS, pervasive

computing, and ITS) are compatible (Figure 2.1). This section explores ontological approaches

in these three domains.

Figure 2.1 - Convergence of some fields based on ICT

The geosensor concept is an example of the convergence of GIS, pervasive computing, and ITS.

A geosensor network is a decentralised ad hoc wireless network that senses location-related or

8 Pervasive computing, which is also called ambient intelligence or ubiquitous computing, is a new trend
towards ubiquitous appliances that you can access when and where you need it. Hansmann et al. (2003)
described pervasive computing through four characteristics, which are decentralization, diversification,
connectivity, and simplicity. In Section 1.2, the term ‘ambient intelligence’ was used instead of pervasive
computing in order to emphasise the importance of intelligent vehicles and infrastructure.

 56

geospatial phenomena in a ubiquitous computing environment (Nittel et al., 2004a; Winter and

Nittel, 2006). Geosensor networks have been used to support dynamic phenomena with

monitoring and interaction based on a Mobile Ad hoc Network (MANET) in real time (Nittel et

al., 2004b). There are studies about ad hoc shared-ride trip planning using geosensor networks,

which can provide ‘instantaneous transportation supply and demand’ for local clients who have

a mobile device connected to a geosensor network without service pre-notification by hosts or

pre-booking by clients (Raubal et al., 2007, p.366). The ad hoc shared-ride system was

described as follows by Raubal et al. (2007, p.366-367):

“Advances in technology allow envisioning of an ad hoc, peer-to-peer shared-ride

system. This decentralised system will be based on a mobile geosensor network (Winter

and Nittel, 2006). In this mobile geosensor network each node is represented by a

software agent on a mobile device, either attached to a client or to a host. Clients and

hosts have positioning sensors on board, are moving, and can communicate with each

other via radio within a limited range. Clients can negotiate directly with nearby hosts

for rides.”

The above description shows that GIS, pervasive computing, and ITS, are inter-disciplinary and

multi-disciplinary technologies. Likewise, ontologies in these three domains can be seen as a

convergence in terms of geographic representation and context modelling. Firstly, for the

geospatial domain, ontologies can provide a supplemental framework and domain knowledge to

represent dynamic geographic information in space and in space-time. Secondly, in pervasive

computing, ontologies can provide context models not only for computational entities, such as

intelligent agents and sensor networks, but also for various and diverse types of situations.

Lastly, ontologies in the transport domain support the geographical representation of vehicles

and road infrastructure, traffic contexts, and vehicular communications. Therefore, in the next

three sub-sections, a comprehensive review of the relevant work related to ontologies in these

three domains is presented from the three different points of view: the geospatial domain, the

pervasive computing domain, and the transport domain.

2.4.2.1 Geospatial ontologies

In geographic space, human activities, physical phenomena, and their interactions can be

represented as spatiotemporal information with objects, events, and processes. A geographic

ontology can be considered as the ontology of geographic space and of the objects and

 57

phenomena in geographic space simultaneously (Smith and Mark, 1998). There are two

additional points for the ontology of geographic space: not only can it be used to supplement the

weaknesses of GIS in representing dynamics phenomena, but it can also function as a formal

format for sharing spatiotemporal information and knowledge. Thus, the usage of geospatial

ontologies can be classified into three categories: a supplemental framework of dynamic

concepts in GIS, a domain ontology of geographic space, and an ontology of the objects and

phenomena in geographic space.

Firstly, geospatial ontologies can be used to enrich and expand current GIS concepts. Grenon

and Smith (2004) presented a framework for the geographical representation of objects, events,

and processes using SNAP-SPAN ontology. There are several research projects designed to

expand GIS concepts and functions with SNAP-SPAN ontology because SNAP-SPAN ontology

includes dynamic/temporal features in four-dimensional perspectives. Worboys and Hornsby

used ontological approaches for geographical objects, events, and processes as well as dynamic

representations for moving objects (Worboys and Hornsby, 2004; Worboys, 2005). Goodchild

et al. (2007) also proposed a model of dynamic geoobjects through time using three conditions:

movement (stationary or moving), shape (elastic or rigid), and internal structure (uniform,

evolving).

Secondly, geospatial ontology is a domain ontology for physical space and spatial relations as

well as abstract spaces, which can be mapped as features (Reuter and Zipf, 2008). The

International Organisation for Standardization’s Technical Committee (ISO/TC) 211 provides

specifications and standards for geographic information (ISO 19100), and in addition,

ontologies for geographic information (ISO 19150) are under development as shown below:

• ISO 191009: Geographic Information/Geomatics (Reference Model/19101, Conceptual

Schema Language/19103, Spatial Schema/19107, Temporal Schema/19108, Rules for

Application Schema/19109, Methodology for Feature Cataloguing/19110, Spatial

Referencing by Coordinates/19111, Spatial Referencing by Geographic Identifier/19112,

Metadata/19115, Services/19119, and Geography Markup Language (GML)10/19136)

9 The overview and facesheets of the ISO geographic information series of standards can be found at
http://www.isotc211.org/Outreach/Overview/Overview.htm.
10 GML (http://www.opengeospatial.org/standards/gml) is also a standard of the Open Geosptial
Consortium (OGC). GML serves as a modeling language for geographic systems as well as an open
interchange format for geographic transactions on the Internet.

 58

• ISO 1915011: Geographic Information - Ontology (Part 1: Framework/19150-1, Part 2:

Rules for developing ontologies in the Web Ontology Language (OWL), Part 3:

Semantic operators/19150-3, Part 4: Service ontology/19150-4, Part 5: Domain

ontology registry/19150-5, and Part 6: Service ontology registry/19150-6)

For the Semantic Web environment, the W3C Geospatial Incubator Group proposed GeoOWL,

a simple ontology model of geospatial resource description, to represent the relationship

between a feature and its geometry (Lieberman et al., 2007). As shown in Figure 2.2, a

geoobject can be an instance of gml:_Feature class which has a geo:where property. With a

geo:where property, the location and the shape of a geoobject can be described with a subclass

of the gml:_Geometry class such as gml:Point, gml:LineString, gml:Polygon, etc.

Figure 2.2 - Classes of GeoOWL

Thirdly, geospatial ontology can be used to describe objects, events, and processes in

geographic space. Yang and Worboys (2011) proposed a navigation ontology to provide

seamless navigation between indoor space and outdoor space. For pedestrian navigation and

vehicle navigation, domain ontologies for indoor space and outdoor space and a task ontology

11 ISO 19150 was at the end of the enquiry stage of development on 5 June 2014. It was initiated to
review the potential and benefit of ontologies and the Semantic Web to achieve the objectives of ISO/TC
211 for the interoperability of geographic information.

 59

for navigation were presented with a well-defined hierarchical taxonomy. For example, the

domain ontologies for indoor and outdoor space included concepts such as Container,

Passage, Connector, Surface, Obstacle, Portal, etc. (Figure 2.3 a). Rooms and

cities can be instances of the Container class as they contain something for indoor space and

outdoor space, respectively. The Passage class is a subclass of the Container class, and it

can be defined as a way or channel that vehicles or pedestrians can pass through (e.g. outdoor

roads, indoor corridors). Outdoor bridges and indoor stairs connect two objects through a barrier,

so they belong to the Connector class, which is a subclass of the Passage class. While the

domain ontologies are based on the concept of spaces that contain some physical objects, the

navigation task ontology is designed to represent agents’ journey on the linear network. The

navigation task ontology contains subclasses such as NavAgent (i.e. Vehicle and

Pedestrian), NavStructure (i.e. Link, Node, Path), and NavEvents including

various turning events (Figure 2.3 b).

 (a) Structure ontology of indoor space (b) Navigation task ontology

Figure 2.3 - A navigation ontology (after Yang and Worboys, 2011)

 60

Using three points of view, this section has shown that geospatial ontologies can be used for the

conceptual expansion of geographic representation, the domain knowledge itself, and modelling

activities and phenomena in geographic space. The next section will describe how ontologies

can support context awareness of intelligent agents in pervasive computing environments.

2.4.2.2 Ontologies in pervasive computing

Intelligent vehicles and an ITS environment can be seen as a specific domain of pervasive

computing, however this section reviews ontological approaches in pervasive computing from a

broad perspective. An ontology provides a description of the concepts and interrelations for

modelling contextual information, making high and formal expressiveness possible as well as

reasoning power (Baldauf et al., 2007). Thus, computational agents in a pervasive computing

environment, and their goals, plans, actions can be modelled with an ontology to provide

contextual information of the pervasive computing environment. Practical and conceptual

ontology models are proposed to support various computing entities and sensors of pervasive

computing as follows.

Chen et al. (2004) defined a Standard Ontology for Ubiquitous and Pervasive Applications

(SOUPA), which has two sets of ontologies - SOUPA Core and SOUPA Extension. SOUPA

Core ontologies include concepts like agent, belief-desire-intention (BDI),

action, and policy. With SOUPA ontologies, the knowledge, goals, and policies of

intelligent agents can be clearly described in the ontologies. SOUPA is a domain ontology for

developers of applications in the pervasive computing environment to support knowledge

sharing and interoperability so that system developers may focus on the implementation itself

rather than building their own ontologies. Furthermore, developers can extend ontologies for

their specific purpose by referencing SOUPA Extension ontologies. The Context Broker

Architecture (CoBrA) ontology, which was developed for a context-aware system in a smart

space, such as an intelligent meeting room, is a good example of an extension from SOUPA

(Chen et al., 2004, 2005).

Wang et al. (2004) proposed a context ontology (CONON) for addressing specific issues in

context modelling and reasoning in pervasive computing environments. CONON is divided into

an upper ontology and domain-specific ontologies not only to share general classes of basic

context, but also to provide reusability and flexibility for specific domain knowledge. The upper

 61

ontology defines several classes for describing locations, people, activities, computing entities,

and other concepts, while the domain-specific ontologies describe detailed features, which may

vary in different domains to bring extensibility.

Seremeti et al. (2009) proposed the activity sphere based on an ontology model that describes a

task-based activity relating to available resources to support semantic interoperability in a

ubiquitous computing environment. Each resource, such as a user, a device, or a service, has a

local ontology itself, and for the specific activity, a sphere ontology can be made by aligning

and merging local ontologies related to the activity. If a new device joins the activity, the sphere

ontology will be updated by the sphere manager and ontology manager. In this way, an ontology

is used not only to represent resources with local ontologies, but also to represent an activity as

a sphere ontology.

For emergency management, Galton and Worboys (2011) pointed out that ontological

conceptualisation can be useful to handle various and diverse types of information in an

emergency situation since information events can be collected by trained officials with well-

structured procedures and protocols, crowd-sourced data from the public, and automated

monitoring devices from sensor networks. According to their information ontology, an

information event is enacted by an information agent, who creates a new information bearer by

using an information instrument. The content of an information bearer is the information entity

that it carries. Their information ontology is composed of several classes, which follow the

continuants and occurrents concept of BFO. Information events are the occurrents or perdurants

of BFO, while information agents, information bearers (forms of information), information

entities (contexts of information), and information instruments (e.g. pens, keyboards, printers,

and photocopiers) endure through time as continuants or endurants. In order to support crowd-

sourced data and data from sensor networks, the information ontology was expanded to cover

collections of sensor readings and sensor-reading events based on the object aggregate (i.e.

collection of continuants) and the process aggregate (i.e. collection of occurrents) of BFO. A

sensor, which is an information agent, collects information by sensor readings when there are

sensor-reading events. An ontology of sensors and sensor readings (as an extension of

information ontology) covers various spatiotemporal events (e.g. a time series of sensor

readings, a spatial distribution of sensor readings, and a spatiotemporal distribution of sensor

readings).

As we have seen so far, ontologies in pervasive computing described situations and events so

that computational entities could recognise a change of situation and adopt their action to that

 62

changing situation. It also showed that ontological modelling has potential when dealing with

various and diverse types and expressions of information captured by various sources from the

general public to sensor networks. An ontology model in pervasive computing can be seen as a

domain ontology, a task ontology, and an application ontology without strict classification.

Since a pervasive computing environment is composed of implemented services and

applications, the level of ontologies is relatively unimportant in this domain. However,

regardless of the level of ontology, it was shown how the ontologies in pervasive computing

supported context modelling and context awareness. The next section will review how

ontologies can support the transport domain and traffic situations.

2.4.2.3 Ontologies in road transport systems

Similar to the geospatial ontology, an ontology in road transport systems can be considered as

the ontology of the road transport domain and of the traffic situations in road transport. There

are two additional points for the ontology of traffic situations: not only can it be used to

describe traffic situations, but it can also support the traffic situations directly as an ontology

model that is tightly linked to vehicular communication. Thus, the usage of ontologies in

transport systems can be classified into three categories: a domain-level ontology, an ontology

describing traffic situations, and an ontology model supporting traffic situations directly via

vehicular communication.

Firstly, some researchers have focused on developing a domain ontology or a task ontology.

Lorenz et al. (2005) presented an Ontology of Transportation Networks (OTN) as an encoding

of Graphic Data Format (GDF), which is a map delivery format and a standard for storing

geographical data, especially for ITS applications, such as car navigation systems and location-

based services. From the ontological notions of GDF themes, they extended OTN classes with

timetables for public transport in the Road_and_Ferry_Features class and the

Meteorology class for weather information. Kuhn (2001) proposed a procedure to derive a

task ontology for car navigation by analysing the text of the German traffic code. The traffic

codes provided various descriptions about the car navigation including objects and actions

relevant to driving, driving instructions containing navigation information, and travel narratives

explaining observations and decisions during navigation. After selecting suitable actions and

objects from verbs and nouns in the text, a cross-tabulation of actions and objects was made to

 63

extract entailment relations between objects and actions, and a hierarchy of action classes

described activities for car navigation.

Secondly, there are ontologies to describe the relative location of a vehicle on the road and the

situations of a car park or of public transport. Hornsby and King (2008) also adopted an

ontology using four different motion relations (isBehind, inFrontOf, driveBeside,

and passBy) in a road environment, based on the assumption that pairs of geosensors are

implanted to collect information for moving vehicles. Each case of motion relations between

two vehicles represents conceptually different semantics. For example, if an

EmergencyRoadVehicle object and an Automobile have an isBehind relation, the

EmergencyRoadVehicle object can be inhibited on account of the Automobile object.

The movement of each vehicle at a specific time is possibly stored in a spatiotemporal database,

and the motion relations are extracted from the database using queries by a structured query

language (SQL). Lee and Meier (2007) proposed an ontology-based spatial context model

(Primary-Context Ontology) with object-based traditional context modelling (Primary-Context

Model) for the semantics of context information relating to a car parking system. The Primary-

Context Model (PCM) provides a uniform storage model for spatial information, and the

Primary-Context Ontology (PCOnt) represents their association so that PCM and PCOnt may

deliver the semantic meaning of the information as a smart parking space locater service. Wang

et al. (2005) proposed an ontology-based public transport query system for Semantic Web and

wireless device-based intelligent agents. Vehicle, route, station, and organisation were the four

key classes, and they were established using Protégé and Jena software. To provide its query

results, the lowest transfer time was used to calculate the shortest path because the lower the

transfer time, the lower the trip fare in a public transport domain.

Lastly, there are some studies using ontologies for a traffic context model that is compatible

with vehicular networks. An ontological context model was proposed to support collision

avoidance applications based on VANET (Eigner and Lutz, 2008). This vehicle ontology

provided the necessary data for collision calculation (vehicle ID, current position, current speed,

current acceleration, etc.). Each vehicle has an instance of the vehicle ontology and uses it as a

packet format for collision avoidance messages. This research showed that importing additional

ontologies and modelling environmental aspects or the street network could be useful to avoid

redundant geometric calculation, although the model itself got progressively complex. Another

ontology model for a wind-gust warning system was proposed to support context-based

addressing (Eigner and Mair, 2009). When a warning is triggered, recipient vehicles analyse the

 64

message based on the condition of their locations and routes. It shows how an ontology model

can be compatible with a context model and vehicular communications. Meanwhile, to share

situational information about the vehicles involved in road accidents, Barrachina et al. (2012)

proposed the VEhicular ACcident ONtology (VEACON). By using in-vehicle sensors and the

ontology (i.e. accident class, vehicle class, environment class, occupant class), an accident

vehicle can build a warning message and send the message to the emergency services to ask

help for a rescue, and to nearby vehicles in order to prevent additional accidents. The ontology

was specially designed to provide an interoperable data structure for both alert information

sharing and accidents' severity prediction via vehicular communications. The aforementioned

approaches present ontological solutions that are suitable to build traffic context models and

exchange vehicular information. However, they have not addressed how an ontology model can

support vehicles’ processing and reactions through querying and reasoning.

2.5 Summary and discussion

This research explores local traffic situations and vehicular communications to resolve the

situations. As a standard model of a directed graph, an ontology-based model has advantages of

structuring information using a graph. On top of that, it provides a straightforward and uniform

data model supporting decentralised and dynamic schemas, a powerful standard query language,

and standardised and implementation-independent data interchange formats. For an ITS

environment, in which various subsystems and communication protocols coexist, it has concrete

advantages of data portability and interoperability as well as partial information processing,

querying, and reasoning. This chapter reviewed the value of an ontological approach (Section

2.2), ontology standards (Section 2.3) and ontological research in related domains (Section 2.4)

to build a data layer for vehicular communications.

First, Section 2.2 compared ontological model to other data transfer models and data storage

models. It showed that ontology model provides distributed and extensible standardised

universal data exchange model and standardised query languages

Second, Section 2.3 explored ontology-related data formats and standards. To implement the

ontology model to describe the shared information and knowledge of intelligent vehicles, OWL

is used as an ontology language, SPARQL as an ontology query language, and SPIN as a syntax

for SPARQL-based rules and functions. To describe vehicles’ movements, interactions,

 65

decision-making procedures, an ontology based on description logic provides well-defined

semantics with object-oriented properties as well as querying and reasoning algorithms

compared to an ontology based on first-order logic. OWL is the formal ontology of the

Semantic Web, and it is applied to describe semantics of traffic situations related to vehicular

communications in this research. SPARQL supports both A-Box query and T-Box query

mechanisms and provides powerful expressions. As the aim of this research is to develop an

ontology model to support communicative vehicles on the road, the spatial relations of

GeoSPARQL are inappropriate to represent vehicles’ interrelations. For example, the direct

geometric distance (i.e. Euclidean distance) between two vehicles’ absolute coordinates cannot

represent their network distance (a.k.a. road distance) properly since they are moving on a road

network. Therefore, this research focuses on creating its own method to represent vehicles’

interrelations. With SPIN, SPARQL’s syntax is extended to describe class rules and functions.

Topbraid Composer is used as a modelling environment to develop the ontology model.

Ontology modelling is based on triple patterns, which are very useful for vehicles to describe

relative location information referring to road elements. By sending and receiving relative

information, intelligent vehicles can rebuild and re-sketch a situation from their own perspective

so that inputs for the decision-making process for vehicles to resolve the situations can be

simplified and minimised.

Third, Section 2.4 reviewed four top-level ontologies (Cyc, DOLCE, SUMO, and BFO) and

ontological research in three related domains (the geospatial domain, pervasive computing

domain, and transport domain). Section 2.4.1 discussed the existing top-level ontologies and

related ontology research in the ITS-related domain in terms of the convergence of information

and communication technologies. This research deals with vehicular communications, so the

ontology model covers a domain/task ontology describing communicative vehicles and an

application ontology for practical communications among vehicles. DOLCE and its four super-

classes (endurant, perdurant, quality, and abstract) provided a clearer framework

to describe intelligent vehicles’ movements and communications. An intelligent vehicle can be

an instance of the endurant class, and its travelling or communication can be described as a

perdurant (Figure 2.4). In addition, spatiotemporal attributes of vehicles, such as location

and speed, can be modelled within the quality category while the abstract category can

be used for mathematical or logical axioms or the measurement basis of the quality category

(Masolo et al., 2003). Traditionally, vehicles and road infrastructure have been categorised into

the Non-Agentive Physical Object class. However, in an ITS environment,

intelligent vehicles (and infrastructure) can be considered as intelligent agents that have

 66

communication power as well as sensing, computing, and processing powers. Therefore, they

also need to have characteristics of the Agentive Physical Object class.

Figure 2.4 - Key concepts derived from the top-level ontology, DOLCE

Even though this research focuses on developing suitable ontologies for vehicular

communications, there is a need to describe general geographic and traffic contexts of vehicles

and the road environment. Several concepts of the existing domain /task ontologies (e.g.

GeoOWL, Yang and Worboys’ navigation ontology, OTN) in Section 2.4.2 can be reused to

build the domain, task, and application ontologies of this research. For the domain ontology, the

feature class of GeoOWL can be referred to describe vehicles’ location and road shapes, while

the road furniture and road structure classes of OTN can be used to model the road environment.

The concept of the subclasses of Yang and Worboys’ navigation task ontology will be useful to

build the task ontology of this research. In spite of the useful classes and concepts of the

existing ontologies, it can be said that the ontologies in the related domain are mostly designed

based on existing standards of geographic information or static road environment, so they still

have shortcomings in terms of representing vehicles’ dynamic processing and reactions via

vehicular communications.

To sum up, it is still necessary to create an ontological model for describing intelligent vehicles’

movements and communications for this research, which is the intersection part of the three

ITS-related domains. To describe intelligent vehicles and infrastructure, some concepts of

DOLCE need to be expanded. Similarly, classes of the existing ontologies in the related

 67

domains can be adopted or used to develop the domain ontology if the concept of classes is

amended to be suitable to an ITS environment. The task and application ontologies for vehicular

communications also need to be uniquely created to describe intelligent vehicles’ dynamic

properties and relations, but still temporal aspects and relative aspects of geographic

representations can be referred to conceptually from the existing ontologies.

 68

3. Agent-oriented approach

3.1 Introduction

The previous chapters have described vehicular communication technologies and ontology

modelling, which represent the physical layer and the data layer for implementing ITS. For

vehicular communication, DSRC was emphasised as the prominent short-range communication

technology of ITS for local communications. For data modelling and context modelling,

ontology language standards and ontology-related research in the domain were outlined for the

semantic contents of vehicular communications.

This chapter explores intelligent agents as the application layer for implementing intelligent

vehicles and their communications. Since this research deals with the development of a data

layer and an application layer for intelligent vehicles and their communications, the application

layer has to be built on top of the data layer, which is the ontological framework. Therefore, an

agent-based approach can be used not only to implement communicative vehicles representing

the application layer, but also to examine the communication model by empirical validation.

There are two sections in this chapter: agent-based system developments and agent-based

research in the related domain. Section 3.2 outlines four capabilities of intelligent agents

(autonomous, reactive, proactive, and social characteristics) and the agent-oriented system

development process, including the analysis, design, and implementation phases. Agent-based

methodologies are reviewed to emphasise new agent abstractions and design/development

issues, such as organisational concepts and the environmental model. For the agent

implementation phase, agent-based modelling and simulation platforms are reviewed, and one

platform is chosen to simulate intelligent vehicles. Section 3.3 reviews agent-oriented research

in three domains (GIS, pervasive computing, and transport system) to highlight road transport’s

geographically distributed, autonomous, and dynamic characteristics. Section 3.4 reviews

mobility models that support different macroscopic and microscopic mobility features for

different purposes.

 69

3.2 Agent-oriented system development

In the introduction chapter, the definition of intelligent agents was already described focusing

on their autonomous and communicative characteristics. To implement intelligent vehicles and

road infrastructure, there is a need to understand intelligent agents’ essential capabilities and

investigate what kinds of agent-based approaches exist and which development platforms could

be used. Therefore, this section first describes the four essential capabilities of intelligent agents

in more detail, and secondly, reviews agent development processes including 1) methodologies,

2) development platforms, and 3) modelling and simulation platforms (Figure 3.1). After the

review of agent-based methodologies, physical development platforms, and modelling and

simulation platforms, there is a discussion regarding which methodology and platform is most

suited to the purpose of this research.

Figure 3.1 - Analysis, design, and implementation phase of agent development process

3.2.1 Capabilities of intelligent agents

In order to develop intelligent vehicles and infrastructure, several characteristics of agent

models need to be provided. Wooldridge and Jennings (Wooldridge and Jennings, 1995;

Wooldridge, 2009) define four essential attributes of intelligent agents, necessary for flexible

autonomous behaviours in different environments, in order to meet an agent model’s goals.

• Autonomous: Intelligent agents are able to decide for themselves whether or not to

perform an action in specific environments in order to achieve their design objectives.

• Reactive: Intelligent agents are able to perceive their environment and respond in a

timely fashion to changes that occur in it in order to satisfy their design objectives.

• Proactive: Intelligent agents are able to exhibit goal-directed behaviours by taking the

initiative in order to satisfy their design objectives.

 70

• Social: Intelligent agents are capable of interacting with other agents (and possibly

humans) via cooperation (working together as individuals in a team voluntarily to

achieve a shared goal), coordination (orderly managing/arranging the

interdependencies between activities of different groups to maintain unity of action by

a central authority), and negotiation (solving semantic conflicts among parties and

reaching agreements on matters of common interest) in order to satisfy their design

objectives.

An ITS environment can be regarded as a dynamic multi-agent environment, and it may have

multiple applications running concurrently, implying the ability of intelligent vehicles and road

infrastructure (as agents) to multitask. Therefore, an intelligent vehicle must have the autonomy

to decide ‘what actions it should take at what time’ (Zambonelli et al., 2003, p.318), in order to

complete its journey by interacting with other vehicles and the road infrastructure. A traffic

situation can be described at the aggregate level, but also reflects the decentralised nature of

road transport (the individual level). Traffic situations vary from signal change at an intersection

to a traffic jam or a traffic accident on a road segment. To deal with dynamic and unpredictable

traffic situations, intelligent vehicles need to operate in a flexible way to keep between ‘reactive

behaviour in response to the environment’ and ‘proactive behaviour towards the achievement of

their designed objectives’ (Zambonelli et al., 2003, p.318). In addition, vehicles are moving at

high speed on the road, so their coalitions for interactions do not remain static, but constantly

change. In this context, agents’ social abilities are of special importance. For an agent’s social

interaction, coordination and negotiation are as important as cooperation to achieve multi-

purpose goals. However, this research focuses on the development of short-range

communications among vehicles and the infrastructure to resolve local situations. It means that

for our purposes, agents’ interactions would be mostly treated as their cooperation rather than

coordination and negotiation.

To achieve goals, an agent needs plans and actions. The belief-desire-intention (BDI)

architecture is widely used to reflect agents’ goals and the resulting plans and actions. Beliefs,

desires, and intentions are agents’ abstract (external) characteristics, and they can be transposed

into agents’ internal characteristics (Figure 3.2). Specifically, in terms of agent design and

implementation, beliefs (what they know and what they know how to do) represent an agent’s

knowledge-base, while desires (what goals they would like to achieve) represent an agent’s

goals (objectives) and intentions (the goals they are currently committed to achieving) are

mapped to plans. For the agent’s actions, each goal has a link to one or more plans.

 71

Figure 3.2 - Concepts used in the BDI architecture (Giorgini and Henderson-Sellers, 2005)

3.2.2 Agent-oriented methodologies

The previous section explored agents’ characteristics and demonstrated the potential of an

agent-based approach to implement intelligent vehicles and infrastructure. When comparing the

agent-based approach with the traditional object-oriented view (Booch, 1994), an object is not

autonomous and proactive since ‘its internal activity can be solicited only by service requests

coming from an external thread of control’ (Zambonelli et al., 2003, p.321). In addition, an

object does not have ‘reactive behaviour in response to the environment’ because in the

environment, it perceives the world only by its internal attributes or other objects (Zambonelli et

al., 2003, p.318).

The boundary between the view of objects and agents is getting blurred because of the advent of

‘today’s distributed and concurrent’ characteristics of systems in various domains (Zambonelli

et al., 2003, p.318). The Objective C language, for instance, uses Smalltalk-style message

passing instead of calling an object instance’s method (Apple Inc., 2011), so the sending and

receiving of messages look similar to agents’ social interaction. However, an object interacts

with other objects only when accessing external services and data, so their interactions may

show interdependencies between objects, not agents’ social abilities (cooperation, coordination,

and negotiation) as described in Section 3.2.1.

 72

Therefore, for the implementation of agents, new analysis and design methodologies are

developed in order to describe new agent abstractions and design/development issues. This

section will review the agent-based analysis and design methodologies that describe agents’

autonomous abstractions and the environment in which agents will be situated and interact with.

There are three methodologies (Gaia, Tropos, and Prometheus) that are most frequently referred

to in agent-related research, and the analysis and design phase of these methodologies are

summarised in Table 3.1.

Table 3.1 – Analysis and design phases of the Gaia, Tropos, and Prometheus methodologies

Methdology Analysis and design phase

Gaia methodology

1. Analysis phase
• Overall system (global organisation) is subdivided into sub-organisations,

and an environmental model is made to represent the environment of the
suborganisations.

• Organisational rules are captured in accordance with the functionalities
and competences required by the organisation as well as agents’
permissions, responsibilities, interaction patterns.

2. Architectural design phase
• Organisational structure and patterns are created taking into account the

organisational rules as well as the organisational efficiency.
• Roles and their position in the organisation are captured in a role model.
• The topology of the interaction patterns and the control regime of the

organisation’s activities are defined in an interaction model.
3. Detailed design phase
• An agent model is made, and an agent class of the agent model can be

derived from a role or several related roles.
• A service model is made to identify agents’ interaction with the inputs,

outputs, pre-conditions, and post-conditions of each service.

Tropos methdology

1. Early requirements analysis phase
• The domain stakeholders (humans) as social actors and their

dependencies relating to their goals, plans, and resources are identified
2. Late requirements analysis phase
• Actors are added to the system, along with their functional and non-

functional dependencies for the environment.
3. Architecture design phase
• Subsystems and data/control interconnections are defined as actors and

dependencies, respectively.
4. Detailed design phase
• Agent capabilities, Interactions and the implementation platform are

specified..

Prometheus

1. System specification phase
• Functionalities with inputs (percepts) and output (actions) from the

environment are described.
2. Architectural design phase
• Functionalities are assigned to agents, and agents are grouped regarding

their interactions when agents share the same data.
3. Detailed design phase
• Agents have a more detailed internal structure to achieve the objectives

of targeting an implementing platform.

 73

First, the analysis and design process of the Gaia12 methodology can be divided into analysis,

architectural design, and detailed design phases. This methodology differs from conventional

object-oriented methodologies by identifying the importance of the concept of organisational

abstractions and environmental models (Wooldridge et al., 2000; Jennings, 2001; and

Zambonelli et al., 2003). Agents or individuals can be grouped as an agent organisation or a

human organisation by their roles, responsibilities, and interactions. Each agent or individual in

the organisation plays one or more roles autonomously to achieve its responsibilities or

subgoals for the overall system. Interactions among agents/individuals do not imply their

data/control interdependencies, but can be regarded as means (e.g. cooperation, coordination,

and negotiation) of realising agents’ roles in the system. Therefore, organisational abstractions

(organisational rules and organisational structures) offer a realistic perspective to see an overall

system as multiple organisations, making possible the capture and appropriate categorisation of

an agent’s roles/subgoals and their interactions during the analysis and design phases. Figure 3.3

shows an example of an agent system that can be divided into different suborganisations, in

which agents can act and interact with other agents and the environment to achieve their

different objectives.

Figure 3.3 - An example of suborganisations (Zambonelli et al., 2003)

12 Gaia means ‘the mother Earth’ in Greek mythology, and in Gaia theory, all the living organisms on the
Earth and the Earth's environment form a single complex system.

 74

Second, the analysis and design process of the Tropos13 methodology can be divided into four

phases: early requirement analysis, late requirement analysis, architecture design, and detailed

design. This methodology supports the conceptual modelling of agent-oriented systems with a

set of Unified Modelling Language (UML) class diagrams (Bresciani et al., 2001; Bresciani et

al., 2004). Throughout analysis and design phases of this methodology, actors, their goals and

their plans, as well as their capabilities and their dependencies, are modelled. An actor

represents a physical, social, or software agent that has a role or position, and its strategic

interests can be described as a goal. There are two kinds of goals, namely, hard goals and soft

goals. Hard goals have a clear definition and/or criteria to measure whether they have been

achieved or not, while soft goals have not. Actors can execute plans or deliver resources

(physical entities or information) to achieve some goals, and their ability to define, choose, and

execute a plan in specific conditions or events are described as their capabilities. If there is a

dependency between two actors, it indicates that one actor depends on the other to achieve some

goals. Various UML diagrams are used to represent these modelling activities graphically: actor

diagrams and goal diagrams (for the analysis phase), capability and plan diagrams (for the

design phase), and agent interaction diagrams (for the implementation phase). Figure 3.4 shows

an example of an actor diagram showing the stakeholders (actors) of an e-culture system.

Citizens have a strong intention (hard goal) to get cultural information from the local council

since they have paid their taxes, and they expect the taxes will be well spent (soft goal) to

provide cultural information and services through the Internet. Figure 3.5 exemplifies an agent

interaction diagram to describe interactions between a user and three system agents of the e-

cultural system. When the user asks for information, the user interface asks the user for the

query specification, and then the user interface queries the directory facilitator to get the address

of a free query handler agent that can provide the requested service.

13 The name of the methodology originates from the Greek word ‘trope’, which means easily changeable
or easily adaptable.

 75

Figure 3.4 – An example of actor diagram model (Bresciani et al., 2004)

Figure 3.5 - An example of agent interaction diagram (Bresciani et al., 2004)

Third, the analysis and design process of the Prometheus14 methodology can be divided into

system specification, architectural design, and detailed design phases. This methodology draws

from and integrates the practical experiences of agent implementations with industry

practitioners and undergraduate students (Padgham and Winikoff, 2003). It also uses various

diagrams including UML (e.g. interaction diagrams, interaction protocols) throughout the

phases.

The analysis and design process of aforementioned methodologies demonstrated not only the

concepts (organisational abstraction, the environment model) and notations (agent interaction

diagram), but also the processes and techniques of agent-based analysis and design

14 In Greek mythology, Prometheus was the wisest Titan, and his name means ‘fore-thinker’ because he
could foretell the future. He inspired humans by giving useful tools (including fire) to them.

 76

methodologies. These concepts, notations, and processes make possible the development of

agent roles (capabilities) and interactions from preliminary models to complete models during

the analysis and design process. The next section will review various platforms that can be

chosen for the implementation of agents.

3.2.3 Agent-oriented platforms for modelling and simulation

Two methods exist for the implementation of agents: implementing independent agents

physically as subsystems that have agent capabilities, or building a virtual environment in a

computer in which agents can communicate with each other and perceive the environment.

Generally, the former is called Multi-Agent Systems (MAS) while the latter is called Agent-

Based Modelling and Simulation (ABMS). Conte et al. (1998, p.3) differentiate between MAS

and ABMS by describing the former as ‘societies of artificial autonomous agents’ and the later

as ‘artificial societies of autonomous agents’, respectively.

There are several Multi-Agent Systems (MAS) platforms (i.e. JASON, JADE, JADEX, and

JACK) to implement multiple intelligent agents (i.e. intelligent vehicles and infrastructure)

within a physical environment (i.e. an ITS environment). Each platform provides at least two

components in order to implement multi-agent systems as shown below (Winikoff, 2005):

• an agent-oriented programming language that allows the agent to be written directly

using agent concepts (e.g. plans, goals, beliefs) rather than it being encoded in non-

agent-oriented languages.

• a set of libraries or frameworks providing facilities for inter-agent communication,

including facilities for transmitting and receiving messages, and for locating agents.

Apart from that, Agent-Based Modelling and Simulation (ABMS) can be another option to

examine intelligent vehicle agents. Experiments based on the physical implementation of

intelligent vehicles can be ‘costly and restricted to a small number of conditions and repetitions’

(Helbing and Balietti, 2012). Therefore, this section focuses on ABMS platforms that can

simulate vehicle agents’ movements and communications in a virtual road environment on a

computer system.

 77

Before the development of ABMS, a social system used to be modelled using a set of

rules/equations representing the global behaviours of the aggregate system’s individual

elements. However, with rules/differential equations, it is almost impossible to model individual

interactions, which can be a crucial element of representing a dynamic and complex system.

The agent-based simulations have improved the potential of computer simulation as a tool for

dealing with social science issues (Conte et al., 1998). In addition, the agent modelling

paradigm provides a way to understand the effects of interactions of individuals as a bottom-up

approach to the whole system (Crooks, 2010a).

An agent simulation platform provides an artificial environment (space and time) for agents in a

computer. A space, as an environment in which agents behave and interact, may be discrete,

continuous, or characterised by networks. In general, there are five types of model space:

Cellular Automata (CA) model, Euclidean space model, GIS topology model, network topology

model, and aspatial (non-spatial) model (Macal and North, 2010). A CA model represents a

discrete space while a Euclidean space model and GIS topology model describe continuous

spaces. In the CA model, an agent moves from cell to cell on a grid and interacts with its

neighbours (4-cell von Neumann neighbourhood or 8-cell Moore neighbourhood). Agents travel

in two-dimensional or three-dimensional spaces in the Euclidean space model, while links

between agents are defined more generally in the network model. In the GIS model, agents

move in a realistic geospatial landscape, and in the aspatial model, the locations of agents are

not important and a link between two agents is made randomly.

Time within an agent simulation environment is regarded as a discrete event whose quantum

unit of time is known as a ‘tick’ (Crooks, 2007). If event x and event y are scheduled at tick

one and two respectively, event y will execute after x. During the time interval, agents are

dynamic in either state (i.e. change) or space (i.e. movement), and they affect other agents’

dynamic characteristics (Brown et al., 2005). To represent agents’ dynamic characteristics

(movements, behaviours and events) in a time step, agent simulation platforms provide

scheduled events in three ways (Brown et al., 2005).

• Events may be sequenced in a synchronous step-wise fashion. For example, each agent,

set of agents, or non-agent object is signalled to perform its tasks once at each time

step or once every n time steps.

• An event may be scheduled to occur only once at some time step n. Any number of

different events may be scheduled to occur in this fashion providing a predetermined

history of events to take place.

 78

• The model may encapsulate ‘event-driven’ processes whereby model agents may

trigger events to occur or may add events to the schedule or queue of events to take

place.

The agent-based approach has potential for capturing emergent 15 phenomena, in which

individual behaviours can be characterised by if-then rules, or agent interactions, which are

heterogeneous and can generate network effects (Bonabeau, 2002). From a social, political, and

economic viewpoint, emergent phenomena can be classified into four areas; 1) flows (e.g.

evacuation, traffic, etc.), 2) markets (e.g. stock market, strategic simulation, etc.), 3)

organisations (e.g. operational risk, organisational design, etc.), and 4) diffusion of innovation

and adoption dynamics (Bonabeau, 2002). This research focuses on implementing intelligent

vehicle agents that have the communication power to resolve emergency situations on the road,

so it can be categorised into the first area of the above categorisation (i.e. traffic flows).

There are several agent modelling and simulation platforms providing not only a framework as

a set of standard concepts for designing and describing agent-based models, but also a library of

software tools implementing the framework and providing simulation tools (Allan, 2010). The

following subsections examine four well-known ABMS platforms: Swarm, NetLogo, REcursive

Porous Agent Simulation Toolkit (REPAST), and Multi-Agent Simulation of Neighbourhoods

(MASON). These platforms are focused on describing some events and agents’ individual

interactions, so they are different from agent development platforms (e.g. JASON, JADE,

JADEX), instead providing agent concepts (e.g. plans, goals, beliefs) and inter-agent

communication specifications. A modeller can simplify and/or abstract events and agents’

interaction in his/her own way. Therefore, the following subsections do not indicate the

suitability for ontology modelling on each platform.

3.2.3.1 Swarm

Swarm was the first and most mature agent modelling and simulation platform following the

‘framework and library’ paradigm, which was initially developed at the Santa Fe Institute, USA

in 1994, and has been maintained by the non-profit Swarm Development Group

15 Emergent is the adjective form of emergence. Emergence is the process of complex pattern formation
from a multiplicity of relatively simple interactions. Emergence is central to the theories of complex
systems.

 79

(www.swarm.org). Originally, Swarm was written in Objective-C, but now Java Swarm allows

Swarm’s Objective-C libraries to be called from Java so that users can write their part of a

Swarm model in Java. In the Swarm platform, a collection of agents is considered as a ‘swarm’

with a schedule of events over those agents. There are two kinds of swarm: 1) model swarm for

the actual model, and 2) observer swarm to observe the model.

3.2.3.2 NetLogo

NetLogo is a multi-platform general purpose complexity modelling and simulation environment

from the Centre for Connected Learning and Computer-Based Modelling (CCL), Northwestern

University, USA. It is a descendant of StarLogo, which was a modelling environment for K-12

students to explore decentralised systems, and is in use in the social and natural sciences.

NetLogo, contains four types of agents: turtles, patches, links, and the observer (CCL, 2011).

Turtles are agents moving on patches, which are fixed agents, such as a landscape or a space. A

turtle can also have links (relationships) with other turtles to form a network. The observer

watches the NetLogo world of turtles and patches providing overall model management.

3.2.3.3 Repast

Repast was initially developed as a Java implementation of Swarm by researchers at the

University of Chicago and the Argonne National Laboratory of USA. However, it is a totally

independent platform now since it has diverged considerably from Swarm to focus on various

social science applications. Repast has been developed for different platforms: Repast J (based

on Java language), Repast Py (based on the Python scripting language), and Repast .NET (based

on Microsoft.Net framework such as C#). These platforms have now reached maturity and are

no longer being maintained. Two new platforms have been released, namely, Repast Simphony

in 2007 and Repast for High Performance Computing (Repast HPC) in 2010 (see

http://repast.sourceforge.net/docs.html for the details).

Repast Simphony supports a new Graphic User Interface (GUI) for visual model development,

and a run-time GUI for visual model execution, automated database connectivity, automated

output logging, and results visualisation. Also, Repast Simphony has strengthened its GIS

support and differentiated itself from other platforms by using Geotools (an open source java

 80

GIS toolkit) and Java Topology Suite (JTS) extensively. For the modelling, there are two new

concepts, namely, contexts and projections. A context is a bucket to hold a group of agents,

while a projection allows the definition of relationships of agents in a space model (e.g. CA

model, Euclidean model, GIS topology model, Network topology model). Agents are added in a

context when they are created, and they are removed when they die. A context needs a link with

a projection to provide within it a model space for agents.

Repast Simphony provides three programming styles based on Java for the users’ different

tastes and experiences, as follows.

• the ReLogo (the Repast dialect of NetLogo) approach for users with existing NetLogo

models, users with limited programming backgrounds, or users want rapid prototyping

• the flowchart approach for users who want visual model construction

• the Java approach for users who have Java programming experience and want to

create highly customised simulations

Repast HPC was designed for users with C++ programming experience and who need to run

their models on a large-scale parallel computing platform. Repast HPC also provides two

different programming styles: Logo-style C++ approach and standard C++ approach.

3.2.3.4 Mason

Mason is a Java-based open source platform, which was designed as a smaller and faster

minimal simulation toolkit for researchers focusing on computationally demanding models by

the Evolutionary Computation Laboratory and the Centre for Social Complexity in the George

Mason University, USA (Railsback et al., 2006). It is developed especially for researchers who

perform many simulation runs, so it was designed to add, remove, and modify features easily

(Luke et al., 2004). It also provides some extensions that support GIS and social network

topologies so that it can represent agents on the CA model, Euclidean model, network model,

and GIS model.

 81

3.2.4 Choosing concepts and platforms for ITS simulation

Section 3.2 reviewed agent methodologies (analysis and design phase), physical agent

development platforms, and agent modelling and simulation platforms. After reviewing these

methodologies and platforms, this section outlines which concepts and platforms could be

chosen and applied to this research. The concept of suborganisations and environmental model

in the Gaia methodology is useful to specify the research scope and develop possible ITS

scenarios. Also, BDI-related terms and visual notations of Tropos and Prometheus are used to

describe intelligent vehicles and their communications. To implement vehicle agents and their

communications, the agent modelling and simulation platforms are reviewed for virtual

simulation, and Repast is chosen for the agent modelling and simulation platform.

3.2.4.1 Choosing concepts from agent methodologies

By reviewing widely used agent methodologies, it was realised that describing the environment

and agents’ interactions differentiates agent methodologies from conventional object-oriented

methodologies (Section 3.2.2). Based on the organisational concepts (e.g. suborganisations,

organisational rules, and organisational structure) and the environmental model, the Gaia

methodology provides clear modelling abstractions and techniques to derive agents’ role model

and interaction model. Meanwhile, Tropos and Prometheus use a similar organisational concept

(i.e. actor/subsystem in Tropos, agent grouping in Prometheus) to describe agents’ data/control

dependencies rather than their interactions and cooperations.

On the other hand, with regard to agent-related terms and notations for modelling, Tropos and

Prometheus use BDI-related terms (e.g. beliefs, goals, actions, plans) and visual notations (e.g.

goal diagrams, capability and plan diagram, and interaction diagram) during the analysis and

design phases in order to specify agent capabilities and interactions. For instance, Tropos and

Prometheus use visual notations based on the UML sequence diagram to express agents’

interactions (e.g. agent interaction diagram and interaction protocols) while Gaia uses tabular

notations (e.g. role schema, protocol definition) to describe roles and interaction protocols.

In conclusion, this research adopts the organisational concepts and the environmental model

from the Gaia methodology to define agents’ roles and interactions, and uses visual notations of

Tropos and Prometheus to express agent classes and their interactions. An ITS setting has well-

 82

defined subsystems and applications to support various traffic situations so that using

organisational abstractions of Gaia would be very useful to develop vehicle agents in an ITS

setting. In addition, vehicles in an ITS setting also interact with their environment via sensors

and effectors (see the vehicle to infrastructure interaction in Table 1.1), and the road

infrastructure can be designed as a part of the environment or as a set of active agents depending

on situations and applications. Therefore, the environmental model of Gaia is also necessary to

describe an ITS setting. For the notations for agent classes and their interactions, visual

notations of Tropos and Prometheus could be used. In particular, an agent interaction diagram

based on the UML sequence diagram could be very practical to describe several interactions

among agents with a timeline since the vertical dimension of a sequence diagram represents

time.

3.2.4.2 Choosing agent simulation platform

This chapter reviewed four agent modelling and simulation platforms in Section 3.2.3, namely,

Swarm, NetLogo, Repast, and Mason. These platforms provide an integrated environment to aid

the modelling of agents and their environment as well as to manage running the simulation.

Even though each platform has a similar structure for modelling, scheduling, monitoring, and

displaying, they still have different characteristics (Table 3.2).

Table 3.2 – Comparison of ABMS platforms (Kravari and Bassiliades, 2015; Zheng et al., 2013)

Criteria Simulation platform
Swarm NetLogo Repast MASON

Terms for
Agents model swarm turtle agent, context model

Terms for
Environment space patch projection field

License GPL GPL New BSD Academic Free
License V3

Open source yes no yes yes
Simplicity complicated simple simple complicated

Learnability average easy easy average
Scalability average good good average

Performance average good high good
Stability average good high good

Robustness low average high average
Programing

language
Objective-C,

Java NetLogo Java, Python,
C++ Java

 83

In terms of usability, scalability and extensibility, Repast Simphony was chosen as the agent

simulation platform for this research because it has been developed in a way that applies the

virtues of Swarm and NetLogo and provides the most powerful GIS support using Geotools and

JTS. In addition, logics and code developed based on Repast Simphony can be reusable when

implementing physical vehicle agents using Java-based agent development platforms. Moreover,

Repast provides Repast HPC; this is a large-scale simulation platform for high performance

computing, but was developed by adopting the same architecture as that used in Repast

Simphony. Therefore, to extend the simulation for larger areas or larger datasets, the

programming logic and design patterns developed in Repast Simphony can be migrated into

Repast HPC easily even though they use different programming languages. While it is beyond

the scope of this research, one of the important future research issues is to extend the simulation

model with a larger dataset.

3.3 Agent-oriented research in ITS-related domains

As described in Figure 2.1, this research follows the view that GIS, pervasive computing, and

ITS domains are tightly linked in terms of the convergence of advanced information and

communication technologies. This convergence may be supported by three characteristics of

road transport, as summarised by Burmeister et al. (1997): the transport domain is

geographically and functionally distributed, subsystems have a high degree of autonomy, and

settings are various and dynamic. This section explores agent-oriented research from two

different perspectives16: the geospatial domain and the road transport domain. Agent-oriented

research in these domains demonstrates several ways to simulate agents’ interactions in a model

space representing a real world geographic environment, to implement intelligent agents to

allow the space itself to possess intelligence, and to support dynamic traffic situations with

communication technologies, respectively.

16 Since agent-oriented research in pervasive computing has been mostly focused on indoor applications
such as smart homes, classrooms, and workplaces (Cook et al., 2003; Cook et al., 2009; Shen et al., 2005),
agent-oriented research in the pervasive computing domain is not included in this section.

 84

3.3.1 Agent-oriented research in the geospatial domain

Agent-based modelling and simulation has various applications in the physical, biological,

ecological, social, economic, and management sciences, but in many cases, physical

components of real-world systems are modelled as agents and agents’ environment (Macal and

North 2010). Schelling (1971) modelled economic segregation patterns from unorganised

individual behaviours to get collective results, and his model has often been referred to as the

first social agent-based model, in which agents and agent interactions represent unorganised

individuals and the social process of segregation (i.e. separation, sorting) of their

neighbourhoods. However, at that time, there were limitations to developing this kind of model

because of a lack of computing power and of any applicable programming mechanism.

Epstein and Axtell (1996) proposed an agent-based social simulation environment called

‘Sugarscape’ based on a 51 by 51 cellular space, which is considered as the first large-scale

agent model. In the Sugarscape space, agents move around to perform various behaviours and

tasks, which can vary from simply collecting and consuming sugar to death, reproduction,

cultural/informational exchange, combat, trade, disease transmission, and so on. Sugarscape

also needs a rule to regenerate its environment; for example, sugar could grow back at different

rates in different regions. They introduced various specific scenarios and variables using

Sugarscape, so this model has been used as a good introduction to agent modelling and

simulation (e.g. NetLogo, MASON).

The majority of agent-based modelling and simulation has been done based on the CA model

space because it is simple and easy to apply various rules for agents’ states and behaviours. The

CA model space has been used for various applications in human geography, such as urban

residential segregation (Benenson et al., 2002; Flache and Hegselmann, 2001; Fossett, 2006),

urban growth (Batty, 2001), urban sprawl (Rand et al., 2002), the impact of green belts (Brown

et al., 2004), and land use/cover change (An et al., 2005; Evans and Kelley, 2004; Evans et al.,

2006; Parker and Meretsky, 2004).

Apart from agent-based urban modelling, there has been another trend to model human

movement in local areas using GIS data sets (point, line, and polygon features) to represent real-

world geographic features for the simulation environment. Haklay et al. (2001) proposed the

STREETS model to simulate pedestrian movement in a town centre. In the STREET model,

building data were used to create a cellular surface representing agents’ walkability, and nodes

of a street network, building entrances, and gateway locations (e.g. car parks, on-street parking

 85

areas, railway stations, and bus stops) were used for agents’ planned routes (i.e. intended

sequences of waypoints). To define agents’ routes, simple statistical distributions were used to

set each agent’s socioeconomic group (i.e. shopping preference related to income and gender in

this context) and behaviours (e.g. speed, visual range, etc.). In addition, Batty et al. (2003)

simulated relatively large numbers of pedestrians for the Notting Hill Carnival in order to

predict pedestrian movements in panic situations and evacuation scenarios. A GIS data set (e.g.

a road network, the parade route, location points of sound systems, and tube stations) and

network analysis of GIS were used to provide a cellular space for agents’ accessibility and

shortest routes from the parade route and sound systems to tube stations (entry points). For open

spaces, Gimblett et al. (2002) applied an agent-based approach to develop a recreational

behaviour simulator to support the decision making of environment protection and to evaluate

the recreational use of national park environments. Original and alternative trail paths for hikers,

bikers, and off-road vehicles of Broken Arrow Canyon, Arizona, USA, are mapped and

extracted using a GIS and are used for the simulations.

Even though the aforementioned simulations using CA model spaces showed the potential of

agent-based approaches and GIS data sets describing urban phenomena and human behaviours,

CA model spaces (a series of discrete cells) still have limitations when presenting geometric

details of various geographic features that have different sizes (e.g. buildings and houses) and

patterns (e.g. linear features, such as roads) (Crooks, 2010b). Since several simulation platforms

have started to support the GIS topology model space as one of their model spaces making it

possible to use vector-based GIS data sets (e.g. shapefiles) for the agent environment, it is

possible to use a more explicit geographical space in the modelling and simulation process

nowadays.

Crooks (2010b) presented an agent-based segregation model using vector GIS data to represent

the urban environment explicitly. He applied the Schelling’s model to simulate residential

segregation within a hypothetical cityscape, and explored how geographic features (e.g. points,

lines, and polygons) might be affected during the simulation process. Two vector layers were

used: a polygon layer representing the model space of urban environment and a point layer

representing agents. The model was based on the Repast platform and Java Topology Suite

(JTS), which is a set of Java-based libraries to provide spatial analysis functions. In the

simulation, a point agent uses the standard overlay operators (e.g. point-in-polygon, buffering,

and intersection) of JTS to calculate its neighbourhood and boundaries of area taking into

consideration physical features, such as rivers, motorways, and railways in the urban

 86

environment. It showed how geometry and spatial analysis operation can be integrated directly

into the simulation process on a continuous space.

Malleson (2010) adopted an agent-based model to represent the process and dynamics behind

crime, especially for residential burglary. A vector-based GIS data set of Leeds (e.g. UK

administrative boundaries, roads, buildings), acquired from the Ordnance Survey MasterMap

Topography layer and the Integrated Transport Network (ITN) layer, was used for the accurate

representation of the urban environment (i.e. household-level or street-level environment). In

addition, the Leeds crime dataset (e.g. crime locations, date/time of offence, and/or victim

information, nominal offender data), deprivation statistics, and Output Area Classification

(OAC) indicating the social characteristics of local areas, were used to extract spatiotemporal

patterns of city-wide burglary in Leeds. Household-level factors (i.e. accessibility, visibility,

occupancy, security, attractiveness, and traffic volume) and community-level factors (i.e.

community cohesion, community similarity) are considered to simulate residential burglary risk

in Leeds on the Repast Simphony platform.

Manley and Cheng (2011) presented multi-agent simulation of drivers’ reactions to replanning

their route after an unexpected road closure and subsequent delay across urban road networks.

They simulated individual drivers’ behaviours by defining agents’ personal knowledge and

experience of the road network in order to predict the movement of non-recurrent congestion in

response to a road closure. It was implemented using the Java-based Repast Simphony platform,

and the road network of London was acquired from the Ordnance Survey MasterMap ITN layer.

Driver agents are categorised into three profiles for different levels of spatial knowledge: taxi

driver, commuter, or tourist. A taxi driver’s knowledge covers the whole road network while

commuters know partial information, and tourists know only the key roads. Although the

simulation used simple abstractions of drivers’ behaviours, it predicted the distribution of

vehicle flows and the non-recurrent congestions caused by a road closure.

We have reviewed agent-based approaches that model social agents and their unorganised

behaviours/interactions in terms of the agents’ movements in the geographic space. CA models

have been widely used to represent a geographic space, but recently, the use of vector datasets

for agent simulation is increasing because the geographic features of a vector dataset can

represent a geographic space with several layers that have different dimensions (e.g. points,

lines, polygons, and 3D features). Particularly, linear features can provide a better

representation of roads in a geographic space to simulate in more detail the dynamic movements

of pedestrians or vehicles because their movements in each time ‘tick’ are not limited and

 87

regularised by a cell size. The next section will review in more detail how agent technologies

can support the transport domain and traffic situations.

3.3.2 Agent-oriented research in transport systems

Similar to the agent-oriented research in the geospatial domain, agent-based modelling and

simulation has been adopted to analyse and design various applications in road transport

including traffic management, traffic guidance/control, and capacity/resource management

(Burmeister et al., 1997). In spite of the potential of an agent-based approach for various

possible applications, this section focuses on reviewing agent modelling and simulation for real-

time traffic guidance and control based on vehicles’ interactions and communications.

Hallé and Chaib-draa (2005) simulated a platoon of cars to increase highway traffic density and

safety. For collaborative driving, they adopted a hierarchical architecture of three layers

(guidance layer, management layer, and traffic control layer). Each vehicle has a guidance layer

to control the vehicle actuators (longitudinal control and lateral control), while a management

layer determines the inter-platoon and intra-platoon communications and a traffic control layer

supports V2I communications (e.g. sign boards, traffic signals). It showed that the decentralised

platoons was more flexible than the centralised platoons because each agent could make a

choice to increase its own safety despite the fact that it exchanged more messages than the

centralised model.

Dresner and Stone (2005, 2004) proposed a reservation-based agent system to handle traffic

congestion at an intersection. They divided an intersection into reservation tiles (cells), and each

tile could be reserved by one car per time stamp. To improve the coordination protocol, seven

message types are used. A vehicle sends the intersection a message (request, change-

request, cancel, reservation-completed) containing its expected arrival time and

speed to the intersection, its maximum and minimum acceleration, its length and width, etc. The

intersection agent simulates the vehicle’s journey and assigns intersection cells to the vehicle by

sending a message (confirmation, rejection, acknowledgment) at each time stamp.

Eichler et al. (2005) presented a simulation environment that combined a network simulator and

a traffic simulator in order to investigate the benefits of vehicle-to-vehicle communications.

Vehicles were regarded as moving nodes of a communication network and moving agents on a

road network at the same time. A scenario was used in which a car broke down and sent a

 88

warning message to surrounding cars, and the simulation result showed that, in most cases,

wireless enabled cars received the warning message from the broken-down car and found a new

route to avoid getting stuck in congestion.

Kesting et al. (2008) simulated inter-vehicle communications on freeway traffic to resolve a

stop-and-go wave situation by store-carry-forward (SCF) strategy using the opposite driving

direction. A communication message is generated by a communicative vehicle on the occasion

of a local speed change and sent to a communicative vehicle in the opposite driving direction.

The message is then sent back to a communicative vehicle in the original driving direction. The

recipient vehicle can predict the future traffic situation. In this way, two communicative

vehicles in the same driving direction can communicate with each other beyond the

communication range by using a communicative vehicle on the opposite driving direction as a

relay station.

In the urban setting, the design of broadcast routing protocol and vehicular cooperation can be

more challenging because of complex road geometry and intersections. Viriyasitavat et al.

(2010) proposed a new routing protocol for SCF strategy in the urban setting and simulated the

performance of the protocol. Desai et al. (2013) investigated an agent-based congestion

avoidance solution by performing cooperative route-allocation decisions at junctions along the

route. Every vehicle agent exchanges its preferred route, undertaking internal processing of

successive virtual negotiations to calculate overall utility and individual utility, and then shares

the final resulting allocations. It showed that the local negotiation strategy is a promising

strategy for effective traffic route allocation and congestion management.

We have reviewed agent-based modelling and simulations describing specific traffic situations

and vehicular communications. The traffic situations represent cars on the motorway, cars at an

intersection, and a car breakdown. The simulation results show that the safety and mobility of

transport can be improved if vehicles and/or the road infrastructure are situation-aware and

autonomous, and the situation awareness of vehicle agents can be acquired by vehicular

communications. Therefore, it can be said that vehicular communication is a compulsory

component for both agent simulation and physical agent implementation in the transport domain

for the transition towards ITS.

 89

3.4 Mobility models in VANET simulations

In the simulation of vehicular communications, it is essential to model the road traffic and

movement patterns of mobile vehicles to evaluate the performance of vehicular communication.

This section outlines the different usages of the mobility model in traffic simulations and

VANET simulations and then provides mobility features in various VANET mobility models.

Road traffic simulations can be classified into three types, which are macroscopic, mesoscopic,

and microscopic, depending on the level of detail of the model representing vehicle mobility,

traffic flow and road network topology (Yin-fei et al., 2015). A macroscopic traffic model

describes traffic flow as a whole continuous flow that can be defined by macroscopic

parameters such as speed and density, so it does not draw the details of individual vehicles such

as lane change. A mesoscopic traffic model describes inflow and outflow of vehicles on road

sections and intersections, so a group of vehicles on a certain road section is treated as a unit to

be modelled. A microscopic model deals with each vehicle as a basic unit of the traffic flow so

that it can reflect individual vehicles' microscopic behaviour such as car following, overtaking,

lane changing, and so forth. Currently, various transport planning authorities, agencies and

consultants have adopted simulators to model individual vehicles and their behaviour to

evaluate/predict the impact of planned development or changes of a road infrastructure

(Papageorgiou and Maimaris, 2012). TRANSIMS, CORSIM, VISSIM, PARAMICS, AIMSUN,

SimTraffic, and TransModeler are such traffic simulators supporting macroscopic and

microscopic levels of simulations (Henchey et al., 2013; Khairnar and Pradhan, 2010).

Meanwhile, in the VANET research community, vehicles are treated as nodes of a network and

determining the regulation of node movements is the essential part of the simulation (Al-Sultan

et al., 2014). In addition, when evaluating network routing protocols, it is necessary that a

mobility model is integrated with generic network simulators such as OPNET, NS-2, NS-3, and

OMNet++ (Pan, 2008). Aforementioned commercial traffic simulators such as TRANSIMS,

CORSIM, VISSIM, PARAMICS provide models of exact vehicular mobility and vehicular

behaviour for traffic analysis, but they require commercial licenses and do not provide an API

for the integration with a network simulator. For these reasons, commercial traffic simulators

are not popular in the VANET research community, and open-source vehicular mobility models

providing global vehicular mobility patterns for VANET simulation are widely accepted

instead. In a VANET simulation, the mobility model is designed to provide a general mobility

 90

pattern of vehicular nodes rather than very detailed vehicular movements for traffic analysis

(Härri et al., 2007; Khairnar and Pradhan, 2010).

A vehicular mobility model for the VANET simulation can be developed based on synthetic

models, survey-based models, trace-based models (Table 3.3); or existing mobility models can

also be used. The features of the existing major vehicular mobility models that can import GIS

dataset for the road topology are compared in Table 3.4. Vehicles’ macroscopic mobility

features (i.e. multi-lane, initial and destination position, trip generation, path computation, and

velocity) are related to generate an initial traffic flow. The microscopic mobility features (i.e.

car following model, lane changing model, intersection management model) have to be taken

into consideration to model vehicles’ general interaction. Nevertheless, all the microscopic

mobility features are not compulsory for the vehicular mobility model, and the level of detail of

the mobility model can be simplified depending on the purpose of the simulation.

Table 3.3 – Vehicular mobility models for VANET simulation (Härri et al., 2007; Yin-fei et al.,

2015)

Models Description

Synthetic
models

- Mathematical models reflecting a realistic physical effect
- Five classification (Fiore, 2006)
• Stochastic models wrapping all models containing purely random motions
• Traffic stream models looking at vehicular mobility as hydrodynamic

phenomenon
• Car Following Models, where the behaviour of each driver is modelled

according to vehicles ahead
• Queue Models which models roads as FIFO queues and cars as clients
• Behavioural Models where each movement is determined by a behavioural

rules imposed by social influences for instance

Survey
based

models

- By including large scale surveys and gathered extensive statistics of real traces
into a mobility model, a generic mobility model is able to reproduce the non
random behaviour observed in real daily life urban traffic

 - Surveys and statistics of real traces over commuting time, lunch time,
traveling distance, preferred lunch politics

Trace based
models

- Extracting generic mobility patterns from movement traces
 - Extrapolating patterns not observed directly by the traces

 91

Table 3.4 – Mobility features of the vehicular mobility models (Härri et al., 2007; Manikandan and

Dhas, 2012; Yin-fei et al., 2015)

Models
Macro-mobility Micro-mobility

Multi
lane

Init/Dest
position Velocity Multi

lane
Init/Dest
position

Lane changing
(overtaking)

Multi
lane

RiceM
(Saha and Johnson,

2004)
no r u no no no no

MOVE
(Karnadi et al., 2007)

SUMO/TraNS
(Behrisch et al., 2011)

yes r, ap s, r-d yes yes no no

STRAW
(Choffnes and

Bustamante, 2005)
no r s yes yes no no

GrooveSim/
GrooveNet

(Mangharam et al.,
2006, 2005)

no r u, r-d no no no yes

SSM/TSM
(Mahajan et al., 2006) no r u, r-d no yes no no

VanetMobiSim
(Härri et al., 2006) no ap u, r-d yes yes yes yes

r: random, ap: attraction point, u:uniform, s: smooth, r-d: road dependent

3.5 Summary and discussion

This chapter reviewed agent development paradigms (Section 3.2), agent related research in

related domains (Section 3.3), and mobility models in VANET simulations (Section 3.4). Agent

methodologies and various simulation platforms are reviewed in Section 3.2. From the

methodologies, organisational concepts (of Gaia) and visual notations (of Tropos/Prometheus)

were chosen to design and describe agent’s roles and interactions. Organisational concepts are

used for categorising a whole ITS domain into subsystems to specify the application area of this

research. In addition, visual notations are applied to design intelligent vehicles’ interactions and

communications. Repast Simphony was chosen as an agent modelling and simulation platform.

Following this decision, Section 3.3 reviewed agent-based approaches in the geospatial domain

and transport domain to show the potential of vehicle agents’ autonomy and capabilities based

on context awareness and social interactions. The geospatial domain and transport domain

showed a pattern for use with agent modelling and simulation approaches focusing on agents’

movements, behaviours, and social interactions among people or vehicles in the geographical or

traffic environment. In the transport domain, some agent-related research has started to simulate

vehicles’ communications to show the potential of vehicular communications for traffic

 92

guidance and control in real-time. Section 3.4 reviewed various mobility models for the

VANET simulation. The level of detail of the macroscopic mobility features and microscopic

mobility features can be decided depending on the purpose of the simulation.

In this research, an agent simulation is constructed to assess the effects of agent

communications in road transport. For the simulation, there is a need to develop a vehicular

mobility model to generate a mobility pattern of vehicular nodes. The ontological

communication message model, which will be developed here, can be used or replicated for the

simulation.

 93

4. Constructing scenarios

4.1 Introduction

In the previous two chapters, ontological approaches and agent-based approaches were

reviewed and discussed from the perspective of intelligent vehicle agents. An ontological model

can support the development of intelligent vehicle agents as a context model as well as the

message contents of their communications. In addition, an agent model can be used to simulate

the dynamics in traffic situations related to vehicles’ movements and communications in order

to measure the effect of vehicular communications, which are based on the ontological

framework.

This chapter outlines the first stage of the methodological framework (Figure 1.3), choosing a

target application area and specifying possible traffic situations and vehicular communications

as scenarios. In Section 4.2, ITS user services are regarded as the whole organisation of ITS

applications, and a user service is chosen to describe emergency traffic situations, in which

DSRC can provide support to resolve the situations. In Section 4.3, two scenarios are proposed

to describe an ambulance situation and another situation of a car breakdown on the motorway.

Section 4.4 describes existing traffic interactions and potential traffic interactions based on

vehicular communications. A conceptual diagram based on spatiotemporal relations among

vehicles and road facilities on a road network is presented, and the relative location

representation of vehicles is described to support intuitive communication contents from the

perspective of individual vehicle’s and to simplify the decision-making process of vehicles.

4.2 Target application area selected from ITS user services

As a multi-agent system is considered as a computational organisation, organisational concepts

are increasingly used to analyse and design multi-agent systems as a crucial component of

agent-oriented methodologies (Zambonelli et al., 2001). The organisational role, as the main

organisational concept, identifies agents’ roles within the system and the interaction protocols in

which the different roles are involved (Zambonelli et al., 2001). As discussed in Chapter 3, the

Gaia methodology provides three additional organisational concepts, namely, organisational

 94

rules, organisational structures, and organisational patterns, to support the organisational role

model.

Figure 4.1 - The environment, suborganisations, and interaction media of an ITS environment

(from Sill et al., 2011)

As shown in Figure 4.1, a multi-agent system can be comprised of several computational

suborganisations. These suborganisations are implemented as applications and services that

constitute one big computational organisation/system. An ITS environment can be seen as a

multi-agent system, ITS applications/services and their communication technologies correspond

with the suborganisations and interaction media of a multi-agent system. In this section, ITS

services are considered as suborganisations, so one suborganisation is chosen that is related to

emergency traffic situations using local vehicular communications. Section 4.2.1 lists the whole

organisation of ITS applications, and service bundles supporting a vehicle’s situation-aware

characteristic by communications are highlighted in Section 4.2.2 and Section 4.2.3. Lastly, the

target application area is chosen in Section 4.2.4.

4.2.1 User services as the whole organisation of ITS applications

To choose a target area, ITS user services representing all the application areas of the ITS

domain are listed in Table 4.1 in terms of the organisational concept of intelligent agent

 95

development. ITS user services are derived from the view of various users (e.g. the travelling

public, different system operators) to show what kinds of services and applications should be

developed in ITS. Each user-service bundle can be considered as a suborganisation, and each

user service within it represents more detailed suborganisations within a suborganisation. There

are 33 user services in Table 4.1, and each service is grouped into one of eight bundles as

possible service areas/composites: Travel and Traffic Management, Public Transportation

Management, Electronic Payment, Commercial Vehicle Operations, Emergency Management,

Advanced Vehicle Safety Systems, Information Management, and Maintenance and

Construction Operations.

Table 4.1 - ITS User Services (Architecture Development Team, 2005)

User-Service Bundle User Service

1. Travel And Traffic Management

1.1 Pre-trip Travel Information
1.2 En-route Driver Information
1.3 Route Guidance
1.4 Ride Matching And Reservation
1.5 Traveller Services Information
1.6 Traffic Control
1.7 Incident Management
1.8 Travel Demand Management
1.9 Emissions Testing And Mitigation
1.10 Highway Rail Intersection

2. Public Transportation
 Management

2.1 Public Transportation Management
2.2 En-route Transit Information
2.3 Personalised Public Transit
2.4 Public Travel Security

3. Electronic Payment 3.1 Electronic Payment Services

4. Commercial Vehicle Operations

4.1 Commercial Vehicle Electronic Clearance
4.2 Automated Roadside Safety Inspection
4.3 On-board Safety And Security Monitoring
4.4 Commercial Vehicle Administrative Processes
4.5 Hazardous Materials Security And Incident Response
4.6 Freight Mobility

5. Emergency Management
5.1 Emergency Notification And Personal Security
5.2 Emergency Vehicle Management
5.3 Disaster Response And Evacuation

6. Advanced Vehicle Safety
 Systems

6.1 Longitudinal Collision Avoidance
6.2 Lateral Collision Avoidance
6.3 Intersection Collision Avoidance
6.4 Vision Enhancement For Crash Avoidance
6.5 Safety Readiness
6.6 Pre-crash Restraint Deployment
6.7 Automated Vehicle Operation

7. Information Management 7.1 Archived Data
8. Maintenance And Construction
 Management

8.1 Maintenance And Construction Operations

 96

A range of technologies for information and communications can be considered to implement

these services. However, since this research aims to support situation awareness and the

collaboration of intelligent vehicles (and infrastructure) by DSRC, the target application area

should be related to local vehicular communications. Emergency vehicles, such as police cars,

fire engines, and ambulances, can be proactive participants of local emergency situations, which

vary, ranging from traffic incidents to disasters to evacuations. Meanwhile, vehicles in the

vicinity of an emergency vehicle have to be reactive in order to cooperate to resolve the

situation or to avoid being another obstacle in the situation.

Therefore, exploring services related to proactive emergency vehicles and reactive vehicles

around the emergency situations can be a good starting point to find a target application area.

Situation-aware (proactive and reactive) characteristics of intelligent vehicle agents in

emergency traffic situations are well-expressed in the user services in the fifth and sixth user-

service bundles in Table 4.1, which deal with emergency management and advanced vehicle

safety systems, respectively. Services in these two bundles are examined in the following two

subsections to find the target application area by checking which services support the situation

awareness and vehicular communication.

4.2.2 User services in the Emergency Management bundle

In the Emergency Management bundle, there are three user services: Emergency Notification

and Personal Security; Emergency Vehicle Management; and Disaster Response and

Evacuation (Architecture Development Team, 2005). This section examines these three user

services in a time sequence, and then their operational functions, communication contents and

types are reviewed to find a target application area that is suitable for the purpose of this

research.

The three user services in the emergency management can be categorised into two parts based

on a timeline from the occurrence of an incident or a disaster to the arrival of the response

service on site as shown in Figure 4.2. The Emergency Notification and Personal Security user

service belongs to the first part of the time sequence, which focuses on reducing the time from

the occurrence of an incident or a disaster to the notification of an appropriate response body.

The Emergency Vehicle Management user service and Disaster Response and Evacuation user

 97

service belong to the second part, which minimises the time required to provide the response to

the site after the notification (Architecture Development Team, 2005).

Figure 4.2 - A timeline to provide an appropriate response to an emergency situation

Information for the first part of the time sequence focuses on giving notification of the

occurrence of an incident or a disaster with its static location/area and type. Meanwhile, services

in the second part of the time sequence support the response resources (personnel and/or

vehicles) accessing the scene, so they require more dynamic information when describing a

situation. In this context, dynamic information means that it contains and supports the dynamic

movements of response vehicles and personnel. For instance, when an emergency vehicle is

moving to the scene, its communicating targets and the communication contents (information)

are also changing.

To find a user service requiring dynamic information in terms of communication subjects and

contents in the Emergency Management bundle, each user service’s subservices, operational

functions, and communication types are described in Table 4.2. The first and third user services,

which are the Emergency Notification and Personal Security user service and the Disaster

Response and Evacuation user service, are based on the centre-related communications; the

former gives notification of an incident or a disaster while the latter provides efficient

information for safe evacuation from the scene. The second service, the Emergency Vehicle

Management user service, requires various types of vehicle-related communications to assist

emergency vehicles and their movements. It has three subservices (i.e. Emergency Vehicle Fleet

Management, Route Guidance, and Signal Priority), and each subservice has different

operational functions and communication types.

 98

Table 4.2 - Subservices, operational functions, and communication types in the Emergency

Management bundle (Architecture Development Team, 2005)

User Service Subservices and operational functions Communication type

Emergency
Notification and

Personal Security

The Driver and Personal Security subservice and
the Automated Collision Notification subservice:
• Notifying the occurrence of an incident with its

location and type (e.g. mechanical breakdown,
fire, non-injury accident, or injury accident)

Vehicle-to-Centre
Traveller-to-Centre

The Remote Security and Emergency Monitoring
subservice, the Wide Area Alert subservice, and
the Protect Sensitive Traveller Information
subservice:
• Broadcasting security-related information (e.g.

threat alerts, severe weather warnings, natural
and human-caused disasters, military
operations, and civil emergencies) with its
coverage (location/area)

Centre-to-Centre
Centre-to-Infrastructure
Centre-to-Vehicle
Centre-to-Traveller

Emergency
Vehicle

Management

The Fleet Management subservice:
• Providing communication connections between

a dispatch centre and emergency vehicles
• The dispatch centre makes real-time localisation

of emergency vehicles possible
• The centre can dispatch nearest emergency

vehicles to an incident site so that response and
arrival times of emergency service can be
shortened resulting in improvement of dispatch
efficiency

Vehicle-to-Centre
Centre-to-Vehicle

The Route Guidance subservice:
• Assisting dispatcher and emergency vehicle

driver in determining the optimal (in terms of
time) route to reach the incident scene, and, if
required, from the incident scene to a suitable
hospital

• Providing route guidance for directing the
emergency vehicle driver to the destination

Centre-to-Vehicle
in-vehicle

The Signal Pre-emption subservice:
• Providing the capability to pre-empt traffic

signals on an emergency vehicle’s route so that
the emergency vehicle is nearly always
presented with a green signal and makes it
possible to minimise its travel time

• Warning drivers of affected vehicles that an
emergency vehicle is approaching

Vehicle-to-Infrastructure
(or Centre-to-Infrastructure)
Vehicle-to-Vehicle

Disaster
Response and

Evacuation

• Providing information for more efficient, safer
evacuation for the general public in the vicinity
of the disaster and the response personnel and
resources accessing to the scene

Centre-to-Vehicle
Centre-to-Traveller

In the Emergency Management bundle, communication technologies have primary roles to give

notification of an incident and to share situational information with emergency vehicles as well

as with affected vehicles and the road infrastructure. Although all user services in this service

bundle are aimed at minimising the response time to an incident, the second user service (the

 99

Emergency Vehicle Management user service) requires vehicle-related communications, the

contents of which are directly related to vehicles’ movements.

4.2.3 User services in the Advanced Vehicle Safety Systems bundle

In the service bundle of Advanced Vehicle Safety Systems, there are seven subservices:

Longitudinal Collision Avoidance, Lateral Collision Avoidance, Intersection Collision

Avoidance, Vision Enhancement for Crash Avoidance, Safety Readiness, Pre-crash Restraint

Deployment, and Automated Vehicle Operation (Architecture Development Team, 2005). This

section reviews these seven user services, which enhance drivers’ perceptions of potential

incidents with advanced electronics, communications, and processing and control systems.

User services of the Advanced Vehicle Safety Systems bundle are primarily based on sensors

(e.g. video sensors, laser sensors, infrared sensors), information processing, and automatic

vehicle control (vehicle steering, braking, and/or throttle actions) to minimise the number and

severity of crashes and collisions (Architecture Development Team, 2005). However, as a

subordinate information transmission, vehicle-to-vehicle and vehicle-to-infrastructure

communications can support various situations, in which a vehicle is about to change lanes or

cross an intersection, or a collision is impending. Table 4.3 represents subservices, functional

operations, and possible subsidiary communication types in the Advanced Vehicle Safety

Systems bundle. The first three user services allow the driver to perceive approaching vehicles

to avoid longitudinal, lateral, and intersection collisions using in-vehicle sensors and/or vehicle-

to-vehicle communications. The fourth user service (i.e. the Vision Enhancement for Crash

Avoidance service) would be implemented by in-vehicle sensors during periods of poor

visibility, such as night time or foggy conditions. Furthermore, the infrastructure to vehicle

communication can assist intelligent vehicles (or the drivers) in complying with traffic signals

and signs. Likewise, vehicle-to-vehicle and vehicle-to-infrastructure communications can assist

intelligent vehicles (or the drivers) by providing the information about road conditions,

anticipating an imminent collision, and allowing vehicle check-in to a dedicated highway lane,

which are for the fifth, sixth, and seventh user services, respectively.

 100

Table 4.3 - Subservices, operational functions, and communication types in the Advanced Vehicle

Safety Systems bundle (Architecture Development Team, 2005)

User Service Subservices and operational functions Possible
 communication type

Longitudinal
Collision

Avoidance

Rear-End Crash Warning and Control, Adaptive
Cruise Control (ACC), Head-On Crash Warning
and Control, and Backing Crash Warning and
Control:
• Augmenting the driver’s ability to avoid or

decrease the severity of a two-vehicle collision in
which vehicles are moving in essentially parallel
paths prior to the collision, or one in which the
struck vehicle is stationary

Vehicle-to-Vehicle
Infrastructure-to-Vehicle

Lateral Collision
Avoidance

Lane Change/Blind Spot Situation Display,
Collision Warning and Control, Lane/Road
Departure Warning and Control:
• Enhancing the driver’s perception to avoid

collisions that arise when a vehicle moves out of
its lane and moves in a forward direction

Vehicle-to-Vehicle

Intersection
Collision

Avoidance

Warning of imminent collisions with crossing
traffic, Warning of stop control (stop sign or traffic
signal) in the intersection ahead:
• Augmenting the driver’s ability to avoid or

decrease the severity of collisions that occur at
intersections

Infrastructure-to-Vehicle
Vehicle-to-Vehicle

Vision
Enhancement for
Crash Avoidance

• Augmenting visually-acquired information in
situations where driving visibility is low (such as
night time or foggy conditions) in order to avoid
collisions with other vehicles, fences,
pedestrians, or obstacles

• Assisting the driver in complying with traffic
signals and signs

Vehicle-to-Vehicle
Infrastructure-to-Vehicle
(mainly implemented by
in-vehicle sensors such as
passive far infrared
sensor, active radar, laser
radar, etc.)

Safety Readiness

Impaired Driver Warning and Control Override,
Vehicle Condition Warning, and In-Vehicle
Infrastructure Condition Warning:
• Providing drivers with a warning regarding their

own driving performance, the condition of the
vehicle, and the condition of the roadway as
sensed from the vehicle

Infrastructure-to-Vehicle
Vehicle-to-Vehicle

Pre-Crash
Restraint

Deployment

• Anticipating an imminent collision and
activating passenger safety systems prior to the
actual impact to reduce injuries and fatalities
resulting from vehicle accidents

Vehicle-to-Vehicle
(mainly implemented by
sensors capable of
detecting the rapid
closing of distance
between the vehicle itself
and other vehicles before
an actual impact occurs)

Automated
Vehicle

Operations (AVO)

• Improving the safety and efficiency of highway
travel by moving suitably equipped vehicles
under fully automated control (i.e. hands-off and
feet-off operation) as part of the traffic flow by
vehicle check-in to an AVO designated lane

Vehicle-to-Infrastructure
Vehicle-to-Vehicle

 101

In the Advanced Vehicle Safety Systems bundle, in-vehicle sensors and processors have

primary roles to reduce the number and the severity of crashes. Nevertheless, vehicular

communications still have subsidiary roles in this bundle to transmit situational information

locally for the (potentially) affected vehicles. Although all the user services in this service

bundle deal with sudden collisions and obstacles on the roadways or at an intersection, the first,

second, third, and fifth user services (i.e. the three Collision Avoidance user services, and the

Safety Readiness user service) are directly related to the information about the vehicle’s

movements and the road conditions.

4.2.4 The target application area of this research

In Section 4.2.2 and Section 4.2.3, the Emergency Management service bundle and the

Advanced Vehicle Safety Systems service bundle were examined to find the user services that

support the situation awareness and vehicular communication. A user service (i.e. the

Emergency Vehicle Management user service) from the Emergency Management service

bundle and four user services (i.e. the three Collision Avoidance user services and the Safety

Readiness user service) from the Advanced Vehicle Safety Systems service bundle were chosen

to represent user services requiring dynamic situational information (e.g. vehicles’ movements)

and vehicular communications (vehicle-to-vehicle and vehicle-to-infrastructure

communications). This section specifies the target application area from the chosen user

services in these two service bundles.

First, the Emergency Vehicle Management user service of the Emergency Management service

bundle is examined. It has three subservices: the Fleet Management subservice, the Route

Guidance subservice, and the Signal Pre-emption subservice. The Fleet Management subservice

and the Route Guidance subservice can be implemented based on Centre-to-Vehicle

communication and/or In-Vehicle communication. For these two subservices, emergency

vehicles have a fixed communication connection with a dispatch centre to update their locations

and to be informed regularly so that the communication subjects are static as long as emergency

vehicles are inside the dispatch centre’s coverage. Meanwhile, the Signal Pre-emption

subservice can be implemented with ad hoc local communications from an emergency vehicle

because the communication targets are dynamically changing as the emergency vehicle travels

to the incident site or to the hospital. Whilst the emergency vehicle is travelling along its route,

 102

it interacts with traffic signal controllers and vehicles around it to minimise travel time to the

scene and avoid potentially dangerous conflicts at the same time. The Signal Pre-emption

subservice can be realised using vehicle-to-vehicle communication and vehicle-to-infrastructure

communication, both of which DSRC is designed for. Of course, the dispatch centre can also

control traffic signals for the emergency vehicle since the dispatch centre monitors the

emergency vehicle’s movements. However, the emergency vehicle has to communicate with

vehicles that it is approaching anyway so local and direct communications (vehicle-to-

infrastructure and vehicle-to-vehicle communication) from the emergency vehicle can be more

effective.

Second, three Collision Avoidance user services and the Safety Readiness user service from the

Advanced Vehicle Safety Systems service bundle are examined. For the three Collision

Avoidance user services, vehicle-to-vehicle communications can be used to enhance vehicle’s

situation awareness by sharing vehicles’ location and movement. For the Safety Readiness,

vehicle-to-vehicle and infrastructure-to-vehicle communications can be used to share

information about the conditions of a vehicle and of a road segment, respectively. Even though

these user services are mainly implemented by electronics (e.g. sensors, processing and control

systems), vehicular communications can be used to enhance drivers/vehicle agents’ situation

awareness. In addition, the situations of these user services are compatible with the situations of

the Signal Pre-emption subservice of the Emergency Management bundle.

From two service bundles, subservices relating to the urgent situations containing vehicles’

dynamic movements are selected as the target application area (Figure 4.3). In emergency

situations, vehicular communications can enhance intelligent vehicles’ (or drivers’) situation

awareness to resolve the situations. The Signal Pre-emption subservice of the Emergency

Management service bundle represents emergency vehicles’ proactive characteristics based on

vehicle-to-infrastructure and vehicle-to-vehicle communications. As shown in Figure 4.3, seven

subservices exist as part of the Advanced Vehicle Safety Systems service bundle, which

represents the reactive characteristics of intelligent vehicles in emergency situations. These

subservices are compatible with vehicle-to-vehicle and vehicle-to-infrastructure

communications. The possible communication contents of the chosen target application area

may include the vehicle's heartbeat data (e.g. vehicle’s position, speed, direction of travel, and

size) and the signal phase and timing data of traffic signals.

 103

Figure 4.3 - The target application area of this research

To cover all the ITS services, vehicle agents have to support several services simultaneously,

and they need to cooperate, coordinate, and negotiate with each other to provide multiple

services and achieve multiple goals. However, the aim of this research is to show the potential

of real-time vehicular communications in safety-critical applications. Therefore, the target

application area is chosen, focusing on vehicle agents’ voluntary cooperation as individuals.

The individual vehicle agents resolve an emergency situation by communications rather than

their coordination and negotiation by a managing authority.

The next section will describe two DSRC scenarios representing situation-aware (proactive and

reactive) vehicle agents and their local vehicular communications from the chosen target

application area.

4.3 DSRC Scenarios

By 2004, more than 100 DSRC applications have been suggested, and the list is still expanding

(Schnacke, 2004). In many cases, applications need several different interactions between

vehicles and infrastructure in a similar setting. Even though specified applications cannot cover

all possible situations and events that may occur, the process of describing situations for

implementing an application is necessary. Scenarios can be the bridge between applications and

Emergency Notification
and Personal Security

Emergency Vehicle
Management

Disaster Response
and Evacuation

Longitudinal Collision
Avoidance

Lateral Collision
Avoidance

Intersection Collision
Avoidance

Vision Enhancement
for Crash Avoidance

Safety
Readiness

Pre-Crash Restraint
Deployment

Automated Vehicle
Operations (AVO)

The Emergency Management bundle The Advanced Vehicle Safety Systems bundle

Signal
Preemption

Rear-End Crash
Warning and Control

Head-On Crash
Warning and Control

Lateral Collision
Warning and Control
Warning of imminent

collisions
with crossing traffic

Warning of stop sign or
traffic signal

in the intersection ahead

Vehicle Condition
Warning

In-Vehicle Infrastructure
Condition Warning

Vehicle-to-Vehicle communication &
Vehicle-to-Infrastructure commmunication

in emergency situations

 104

situations since a scenario is ‘a rich and detailed portrait of a plausible future world’ presenting

challenges and opportunities (The Futures Group, 1994, p.1). In this section, two scenarios are

proposed to describe situations representing the target application area.

In system development, various types of scenarios (e.g. story, situation, simulation, sequence,

etc.) are used for different purposes. In this research, scenarios are used to describe problematic

traffic situations and to highlight the potential of DSRC applications that can resolve the

situations. Therefore, for the discussion here, a scenario means a story-like dynamic situation

that provides a narrated description of a sequence of events bringing traffic contexts in a

futuristic situation with imagined snapshots. From the scenarios, a geospatial ontological

framework is developed in Chapter 5, and then agent modelling and simulation is used to

examine vehicular communications and the ontological framework in Chapter 6. Therefore, in

this thesis, the term ‘simulation’ has a different meaning from the term ‘scenario’.

In a scenario, interactions among vehicles and road facilities are regarded as building blocks to

describe a part of the situation from the perspective of vehicles and road facilities. Scenarios are

very useful to find and categorise essential interaction components that can be used to build up a

semantic framework for describing and resolving various situations.

For scenarios, the communication environment can be assumed to fulfil one of three conditions:

first, every vehicle and road facility can communicate with every other; second, some vehicles

and road facilities can communicate with each other; or third, only limited vehicles and road

facilities can communicate with each other. Even though this research focuses on the first

condition dealing with communicative vehicles, hybrid situations wherein communicative

vehicles and non-communicative vehicles coexist have to be considered. This is because these

situations are inevitable during the transition period towards an ITS environment. Even after the

transition, there is a possibility that some communicative vehicles can experience device/system

failure somehow, and in this case, the communicative vehicles have to be treated as non-

communicative vehicles.

The following two sections describe two scenarios exploring possible communications and

communication contents to resolve emergency situations. The first scenario outlines a situation

of an approaching ambulance that represents the Signal Pre-emption subservice of the

Emergency Management bundle. The second scenario describes a car breakdown situation

relating to the Safety Readiness user service from the Advanced Vehicle Safety Systems bundle.

 105

4.3.1 A scenario about an ambulance

The Signal Pre-emption subservice of the Emergency Management service bundle represents

vehicle-to-infrastructure communications and vehicle-to-vehicle communications to provide the

capability to pre-empt traffic signals and warn the drivers of affected vehicles around an

emergency vehicle, respectively. The first scenario focuses on the vehicle-to-vehicle

communications in an emergency situation where an ambulance broadcasts an alert message

warning of its approaching to ask for priority over the vehicles around it. This scenario is based

on the assumption that all vehicles have an OBE and can communicate with each other. The

communication message must include the contents of the ambulance’s movement, such as its

location, speed, flight path vector (FPV), communication range, etc. (Table 4.4).

Table 4.4 - An example of emergency vehicle alert message (Michaels et al., 2010)

Item Value
Lat 51.4115136
Long -0.3127456
Speed 22.3 m/s
Heading in FPV due east

Key Phrase “emergency vehicles on roadway”
Heading Applied east and westbound traffic
Extent for 50 meters
Mass 2500 kg
Response Equip Ambulance
Responder Type ambulance units
Response Type ‘01’ = emergency
Response Details Complex byte representing
 SirenInUse ‘10’ = inUse
 LightbarInUse ‘10’ = inUse
 MultiVehicleResponse ‘01’ = singleVehicle

From the example shown in Table 4.4, an ambulance scenario was generated (Figure 4.4). In the

scenario, an ambulance (A1) and another vehicle (V1) are following separate routes, which

meet at an intersection (i1). If A1 is in a hurry to get to the hospital and there are cars travelling

towards the same intersection as A1, subsequently sharing the same road segments, A1 can

request priority over the other vehicles. Their interactions and movements are described with

time stamps in Figure 4.5. The ambulance A1 requests priority over cars towards r3. There

could be vehicles in front of A1 on r1, r2, and r3. In this case, there is one vehicle (V1) on r2,

and V1 gives priority to the ambulance (A1). Even though the scenario uses only an ambulance

 106

and a vehicle to show possible interaction between an emergency vehicle and the vehicles

around it, the scenario can be extended with other vehicles and traffic signals for its

implementation.

Figure 4.4 - A scenario of an ambulance communicating with the vehicles around it

Figure 4.5 - Snapshots of the ambulance scenario

When the roads are not crowded, the ambulance A1 needs to consider only vehicles on the roads

it is going to. However, if there is a traffic jam on the lane that A1 is in, and the opposite lane is

not too crowded, A1 may use the opposite lane to move as quickly as possible in an emergency

situation (Figure 4.6). In this case, A1 has to be aware of vehicles in both directions and

communication targets can be increased.

A1

V1

r2

r1

r3

r4

r6

r5

r7

r8

A1

V1

r2

r1

r3

r4

r6

r5

r7

r8

A1

V1

r2

r1

r3

r4

r6

r5

r7

r8

r2

r1

r3

r4

r6

r5

r7

r8

A1

V1

A1V1

i1 i1

i1 i1

(a) A1 requests priority over cars
 towards r3

(b) V1 slows down and stops at i1
 to give priority to A1

(c) Both A1 and V1 are on r3,
 and A1 is in front of V1

(d) Both A1 and V1 passed r3

 107

Figure 4.6 - Ambulance’s expected route depending on the road status

The ambulance scenario is developed based on the assumption that all vehicles have at least a

communication device and a position sensor, such as GPS, in order to share traffic situations

based on their locations. However, as mentioned at Section 1.2, an ITS setting is composed of

intelligent vehicles and roadside facilities, which have context-awareness, ad hoc networks, and

smart sensors (Strang and Linnhoff-Popien, 2004). If the vehicular communication network

cannot cover all vehicles and infrastructure, which is the second condition or third condition

mentioned of the communication environment described in Section 4.3, other sensors, such as

video camera, LIDAR, or radar sensor, can be used to identify vehicles in the vicinity and to

supplement the limitation of partial communication.

Let us suppose a situation of the second condition where only some vehicles can communicate

with each other at an intersection. In this case, even though A1 and V1 can communicate with

each other, A1 could not know whether there are other vehicles on r2 and r3 near the

intersection. However, if V1 has an optical sensor and processing power as well as a

communication device, it can assist the ambulance partly with three actions (Figure 4.7 a). First,

it can sense whether there are other vehicles ahead on r2 and r3. Second, it can send

information back to the vehicles behind by communicating and turning on the emergency lights

so that it can control the cars behind it to give the ambulance priority. Thirdly, it can inform the

ambulance that the vehicles behind it are in control and whether there are more cars in front of it

on r2 and r3. Therefore, the situation can be fully controlled when V1 senses that there is no

car ahead on r2 and r3.

On the other hand, if ambulance A1 is in the third condition of the communication environment,

only limited vehicles and road facilities, such as ambulances and traffic controllers, can

A1

V1

r1

r2

r3

A1

V1

r1

r2

r3

(a) Roads are not crowded (b) One way traffic is blocked,
 but the opposite way is fine

 108

communicate with each other. In this case, if there are no traffic lights on the intersection, there

is no way to assist the ambulance by communication. However, if there are traffic lights and a

traffic controller on the intersection, the ambulance can request a green signal from the traffic

controller. Then the traffic controller may present a green signal for the ambulance while it

presents a red signal to vehicles on r2 and r3 (Figure 4.7 b). If there is a roadside sensor

monitoring road r3, this can result in a case similar to the above situation in the second

condition.

Figure 4.7 - Sensing technologies assisting in traffic situations

Despite the fact that additional sensors can be used to describe a situation, the research adheres

to the basic scenario, in which vehicles have only a communication device and a position sensor.

Vehicles that have these two devices fulfil the minimum conditions to be considered as

intelligent vehicles, and in this way, the research can focus on developing a reliable

spatiotemporal data framework for vehicular communications.

4.3.2 Another scenario about a car breakdown on the motorway

As mentioned above, in some cases, communication technology is not enough to resolve a

situation. In many cases, sensing technologies are essential for gathering information from the

physical environment. Various sensors can be implanted into vehicles and road facilities in

order to assist safe traffic flows on the road by capturing situational information from the real

world environment, as described in Section 4.2.3. After vehicle and infrastructure agents receive

the information, they can then share the information and cooperate with each other via

A1

V1

r1

r2

r3

(a) An example of the second condition

V1's sensor

V1's emergency

 light

A1r1

r2

r3

(b) An example of the third condition

road-side sensor

red light

 109

communications to prepare for the situation and avoid being part of the problem. For example,

if there is an icy road or an icy bridge ahead and a vehicle gets the information from its sensor

directly or by communication with other vehicles that have already sensed the icy spot, they

may change lanes to avoid the ice or slow down to minimise the risks in advance. If there is a

car accident on the motorway, the accident scene can be a traffic obstacle. An icy road, a foggy

area, and an accident spot are similar in the way that they can be obstacles to traffic flows on the

road. The second scenario is developed to represent vehicle/infrastructure condition warning

subservices, which are part of the Safety Readiness user service in the Advanced Vehicle Safety

Systems service bundle.

In the second scenario, a car breakdown situation is depicted as a traffic obstacle on the

motorway (Figure 4.8). There is a vehicle B1 on the right lane of a two-lane motorway17 for

each direction, and a sudden problem occurs in vehicle B1’s engine (Figure 4.9a). So, the driver

of the vehicle B1 turns the emergency lights on and manages to pull the vehicle over into the

left-hand lane of the motorway since there is no hard shoulder or breakdown lane on this road

section of the motorway (Figure 4.9b). Then, the driver of the vehicle notifies a breakdown

service provider of its condition and awaits the response. If the broken-down vehicle B1 can

broadcast its presence to the vehicles behind, the recipient vehicles (i.e. V2, V3, and V4 of

Figure 4.9c) can slow down or change lanes. Since the vehicle stops on the second lane, which

is designed for large and slow-moving vehicles, such as goods vehicles and buses, it is hard for

coming vehicles to realise the situation if the vehicles (e.g. V4 of Figure 4.8) have an obstructed

view because of large vehicles in front.

Figure 4.8 - A scenario of a broken-down car broadcasting its sudden stop

17 Normally, there are more than two lanes (e.g. dual three-lane motorway, dual four-lane motorway), but
a dual two-lane motorway is considered for a simple description of the vehicle breakdown scenario.

Right lane

Left lane

Vehicle B1 broadcasts
its presence and breakdown

Vehicle V4 is warned of
the stationary vehicle B1 ahead

B1

 110

Figure 4.9 - Snapshots of the vehicle breakdown scenario

If a recipient vehicle also can communicate with others, it cannot only relay the broadcast

message of the broken-down car, but can also communicate its sudden braking or sudden lane

change to the vehicles heading towards it. Using vehicle-to-vehicle communications, vehicles

can receive the situational information about an obstacle (i.e. the car breakdown in this scenario)

and have more response time to slow down and change lanes without any sudden reactions.

Even though this scenario contains the vehicle-to-centre communication to notify a breakdown

service provider of the car breakdown, it is designed to highlight the vehicle-to-vehicle

communications to broadcast/give warning of the broken-down car’s presence to vehicles

approaching the scene.

4.4 Spatiotemporal relations and location representation for the

scenarios

Two scenarios were described in Section 4.3 representing the use of vehicle-to-vehicle

communications to resolve emergency situations. The first scenario was about an ambulance,

which travels much faster than other cars, while the second scenario was about a car breakdown,

which is a sudden obstacle and danger that blocks rapidly moving vehicles on the motorway.

Using communications, the ambulance in the first scenario could request priority over cars and

traffic signals, and in the second scenario, vehicles heading towards the car breakdown spot

could reduce their speed gently and prepare to stop and/or change lanes. In both cases, vehicles

are informed about a situation beforehand via vehicular communications so that they have more

response time to prepare for and take action to deal with the situation.

(a) A sudden problem occurs in B1's engine,
 and B1 pulls over on the left lane

(b) The broken vehicle B1 broadcasts
 its presence to the vehicles behind

(c) The recipient vehicles (V2, V3, V4)
 slow down and change lanes

(d) The recipient vehicles pass B1without
 sudden breaking or sudden lane changes

V4
B1

V3V2

B1

V4V3

V2 V4V3 V2 V3 V4

B1 B1

 Left lane
Right lane

 Left lane
Right lane

 Left lane
Right lane

 Left lane
Right lane

V2

 111

For both scenarios, communications are essential for vehicles and the infrastructure to share

traffic situations. For the communication contents, vehicles’ dynamic locations and their spatial

relations (i.e. distance relations and directional relations) are crucial elements because their

relative locations are key information to decide whether they are in the affected area of the

emergency. The following two subsections outline spatial relations and linear referencing to

support effective traffic interactions and location representation, respectively. Section 4.4.1

outlines how conventional traffic interactions can be extended by vehicular communications

based on spatiotemporal relations among vehicles and the road infrastructure. Section 4.4.2

proposes a relative representation of vehicles’ locations and movements for simple and intuitive

communication contents. From the perspectives of spatial relations and location representation,

situational information of the scenarios can be extracted as components of the communication

contents.

4.4.1 Spatiotemporal relations for communication-based traffic interactions

This section describes how vehicular communications can support traffic interactions by

generating spatiotemporal relations among vehicles and the road infrastructure. It starts with

describing conventional traffic interactions without communications. Then, it demonstrates how

traffic interactions can be extended by vehicular communications. Finally, it shows how spatial

relations can be generated by vehicular communications.

4.4.1.1 Conventional traffic interactions without vehicular communications

Regardless of communication technologies, (drivers of) vehicles and the road infrastructure

already cooperate, coordinate, and negotiate with each other following traffic situations and

instructions. When a vehicle reduces its speed or is turning right at an intersection, it interacts

with the vehicles around it by turning on the brake-lights or the indicator. It also follows traffic

signals and traffic signs along the road. However, in emergency situations, emergency vehicles

are exempt from several traffic rules and regulations by law.

 112

For example, in the emergency situation of the first scenario, the drivers of the emergency

vehicles (police car, fire engine, ambulance, etc.) can treat a red traffic light as a give way sign18

and exceed the statutory speed limit19. Emergency vehicles override general traffic instructions,

and most road users should allow emergency vehicles’ priority. The problem is that if drivers’

perception and response time for an emergency vehicle is not fast enough, the rapidly moving

emergency vehicle may be involved in exposure to an incident/collision at an intersection or

blocking by vehicles ahead. Even if an ambulance approaching an intersection is asking for

priority over other vehicles by using its siren and strobe warning light, the traffic signal

controller of the intersection is not aware of the ambulance’s presence. The traffic lights at the

intersection will still function in accordance with the already fixed cycle based on the hourly

statistics of the traffic volumes of the road. Therefore, potentially affected vehicles heading to

the intersection may experience a conflict between a green signal and the ambulance’s approach.

Likewise, in the emergency situation of the second scenario, the broken-down car on the

motorway can have a negative influence on the traffic flow and so cause a traffic jam.

Following vehicles could slow down suddenly and become stuck in the traffic jam without

knowing why. If the following vehicles have an obstructed view because of larger goods

vehicles and coaches, they can misunderstand the situation and not try to change lanes until they

get a clear view of the scene, which can exacerbate the situation.

4.4.1.2 Extended spatiotemporal relations via vehicular communications

As described in the scenarios, if vehicles (and road facilities) can send and receive situational

information via communication technologies, they can request and respond to such information

to improve the safety and efficiency of the traffic flow in real time and resolve various local

situations.

To support traffic interactions based on vehicular communications, information about vehicles’

movements, traffic signal’s location, and their spatial relations at a specific time, has to be a part

of the communication contents. There can be two kinds of spatial relations: static spatial

relations and dynamic spatial relations. If there is a traffic light controller at an intersection and

18 Regulation 36 of the Traffic Signs Regulations and General Directions 2002,
 http://www.legislation.gov.uk/uksi/2002/3113/regulation/36/made
19 Section 19 of the Road Safety Act 2006, http://www.legislation.gov.uk/ukpga/2006/49/section/19

 113

four road segments are connected to the intersection, the traffic light controller and the four road

segments have spatial relations, which are not changing and are temporally static. Meanwhile, if

there are vehicles on the road segments, spatial relations between the vehicles and the traffic

light controller can be dynamic as vehicles are moving on the roads and their locations are

spatially changing continuously. This kind of spatial relation is only valid in a specific time

period when the vehicles are coming to the intersection that the traffic controller controls, so

their dynamic spatial relations can be regarded as spatiotemporal relations.

Figure 4.10 describes binary relations between individuals (instances) of Vehicle, Route,

RoadElement, Intersection, and TrafficLightController classes on a road network. For example,

a vehicle has an origin, a destination, a current location, and its own route for a journey, while a

traffic light controller is located near an intersection and controls the traffic lights for vehicles

on the road towards the intersection. Basically, a binary relation between two objects means that

an object has another object as a property so that it is also called as an object property. Since

this research has focused on emergency situations on the road, most binary relations in Figure

4.10 represent spatial relations or spatiotemporal relations among vehicles and road facilities

referring to the road geography and network.

Figure 4.1020 - An example of binary relations based on vehicular communications

20 It follows the representation (i.e. legend) of OWL ontologies (i.e. individuals, classes, properties) that
was written by Horridge et al. (2011).

 114

There are various possible binary relations (dotted lines in Figure 4.10) between a vehicle and a

traffic signal controller and between a vehicle and another vehicle. If the ambulance of the first

scenario is heading towards an intersection at which a traffic signal controller controls the

traffic lights, the vehicle-to-infrastructure communication link between the ambulance and the

traffic light controller can be made. The ambulance needs to transmit a warning message to the

traffic controller to request its signal pre-emption. Likewise, vehicle-to-vehicle communication

links are necessary for the ambulance of the first scenario and the broken-down vehicle of the

second scenario to send a warning message to potentially affected vehicles in the vicinity of the

ambulance or the broken-down vehicle. It is obvious that the location and route information of

the ambulance or the broken-down vehicle referring to the road geography and network is

important for the recipient vehicles to find out whether to take action or not. If a vehicle

receives a message from the ambulance, the vehicle needs to calculate its location relative to the

ambulance. If the vehicle is in front of the ambulance and they have a shared route, the vehicle

needs to take action when it is in the affected area. If a vehicle on the motorway receives an

alert message from the broken-down vehicle, and it is located behind the broken-down vehicle,

it also needs to take action.

To sum up, spatiotemporal relations among vehicles and the road infrastructure are essential to

support vehicular communications. When vehicles share their locations and routes with

reference to the road geography and network via vehicular communications, their

spatiotemporal relations can be generated to represent the interrelation of the participant

vehicles of the situations of the scenarios.

4.4.2 Relative location representation

In Section 4.4.1, the binary relations representing spatiotemporal relations among vehicles and

road facilities are emphasised because an entire situation can be depicted by describing the

spatially related participants of the situation. A binary relation between two vehicles can be

generated when they communicate with each other to share information about their presence

and compare their locations to decide whether the recipient vehicle is in the affected area of the

situation and so take action or not. This section proposes a relative location representation to

simplify the communication contents and split the geometric calculation from the decision-

making process of vehicles.

 115

To implement the first scenario, the ambulance needs to broadcast a communication message,

and the recipient vehicles need to check whether they are in a situation to give way to the

ambulance or not. For the second scenario, the car involved in the breakdown needs to

broadcast a communication message about its presence. Of course, another vehicle or a road

facility that senses the breakdown can broadcast a warning message on behalf of the broken-

down vehicle. The recipient vehicles in both scenarios need to analyse the received message to

check whether they need to slow down and give way to the ambulance or change lanes to avoid

the broken-down vehicle. In both cases, the recipient vehicles need to analyse the message to

check whether they are affected by the situation or not. In the emergency situations (i.e. an

approaching ambulance in the first scenario and a car breakdown spot ahead in the second

scenario), the recipient vehicles’ interactions and responses depend on their spatiotemporal

relations. Their location and route have to be compared with the location and route of the

ambulance or broken-down vehicle to identify whether they can be affected by the emergency

situation or not. This decision-making process of vehicles can involve geometric calculations,

but the direct geometric distance (i.e. Euclidean distance) between two vehicles cannot

represent their network distance (a.k.a. road distance) properly. Therefore, this research

proposes a relative representation of geographical locations as an improved way to represent

vehicles' spatiotemporal interrelation and support their interrelations.

In a transport network, in order to describe a situation, a location expression is required in

emergency reporting, highway maintenance, etc. (Noronha and Church, 2002). Coordinates,

street addresses, or landmarks can be used to express the location of a traffic situation. However,

communicating parties in the transport domain have used linear referencing, in which a location

is expressed relatively as a distance from a known reference point along a road centerline. This

method is useful to dispatch a worker to a linear referenced location (e.g. a tunnel 3 km along a

road from a reference point, rather than to a pair of coordinates, a street address, or a landmark)

(Noronha and Church, 2002). In an ITS setting, vehicles and the roadside infrastructure are

interconnected and form a vehicular network so that they can share each other’s location-related

messages in real time. Therefore, their relative locations can be used as communication contents

to implement various DSRC applications, such as intersection collision avoidance, lane change

warning, forward collision warning, or emergency vehicle warning (Schagrin, 2008).

The location and speed of the ambulance and vehicles in the first scenario can be represented

relatively, i.e., in reference to local road segments and junctions. To simplify the scenario and

focus on vehicles’ longitudinal interrelation, the road network was treated as a one-dimensional

 116

linear space, and lane-level positioning and lane-related properties were not considered. The

ambulance A1’s location (absolute coordinates) and speed (50 mph), (see Figure 4.5 a) can thus

be referred to as 69.46 metres or 3.1 seconds from the intersection i1; while the vehicle V1’s

location and speed (30 mph) is 60.72 metres or 4.5 seconds to the intersection. In this example,

the vehicle V1 needs to decelerate and stop before entering the intersection in order to give way

to the ambulance because 1.4 seconds is not enough time to avoid a collision. In this way, the

relative representation of a vehicle’s location in an emergency scene helps each vehicle to

understand the situation from an individual perspective so that each vehicle’s decision-making

process can be simplified by comparing the ambulance’s and the vehicle’s relative distance/time

to a junction, which are scalar values, thus avoiding geometric calculations. It can be

implemented if the ambulance broadcasts a warning message containing the relative distance

and speed to a junction, and recipient vehicles around it calculate their own relative position and

compare their relative location to the ambulance’s relative location in turn. Of course, geometric

calculations are necessary for each vehicle to generate relative information, but in this way, the

decision-making process and geometric calculations can be separated.

4.5 Summary and discussion

This chapter described a process to extract the target application area from the ITS user services

(Section 4.2), two scenarios representing the chosen target application area (Section 4.3), and

spatiotemporal relations and location representation to decompose scenarios and build

communication contents (Section 4.4).

First, Section 4.2 showed how a target application area can be selected from all the ITS user

services. Two service bundles, which are the Emergency Management service bundle and the

Advanced Vehicle Safety System service bundle, are extracted to represent intelligent vehicles’

proactive and reactive characteristics based on vehicular communications. Then, several

subservices in the two service bundles are chosen as the target application area of this research.

The subservices in the chosen target application area deal with the dynamically moving vehicles

based on vehicle-to-vehicle communications so that the target application area corresponds with

the purpose of this research. This section also showed the general process used to extract a

specific area (subsystem) from the whole system so that the process of this section can be used

to extract different target areas representing the different characteristics of intelligent vehicles

and infrastructure.

 117

Second, in Section 4.3, two scenarios were developed to represent the chosen target application

area. The first scenario describes a situation related to an ambulance while the second scenario

depicts a breakdown situation on the motorway. The both scenarios contain dynamically

moving vehicles and their communications. For the first scenario, the affected area of the

ambulance is spatially dynamic as the ambulance is rapidly travelling on the road towards the

incident spot or the hospital. The ambulance can be regarded as an obstacle for other vehicles

because it disturbs the traffic flow. Similarly, the vehicles in the traffic flow can be regarded as

obstacles for the ambulance if the ambulance’s journey is delayed because the road is crowded.

Meanwhile, the broken-down vehicle in the second scenario is spatially stationary.

Consequently, the affected area of the breakdown can be spatially static; if vehicles are moving

at free flow speeds and have enough time to respond to the breakdown, the breakdown will not

cause a traffic jam. In this case, it is obvious that the broken-down vehicle is the obstacle for the

vehicles approaching the breakdown spot. The two scenarios depict two different traffic

situations representing the chosen target application area, in which vehicular communications

may have a positive influence on resolving the situation.

Third, Section 4.4 showed how traffic interactions can be extended via vehicular

communications and how spatial information about vehicles’ locations and movements can be

used as communication contents that describe traffic situations. The traffic situations of the

scenarios can be decomposed into objects/agents and their properties including binary relations,

and each component can be a part of the communication contents. In particular, vehicles and

road facilities refer to the road geography and network to represent their locations and

movements, so relative location representation (a.k.a. linear referencing) is proposed. The

relative location representation simplifies the communication contents and separate geometric

calculations from the decision-making process of the recipient vehicles.

For the process of constructing scenarios throughout the chapter, the analysis phase of the Gaia

methodology (Section 3.2.2) was referred. The target application area and two scenarios are

selected from whole ITS user services based on the sub-organisation concept of the

methodology. The communication-based interactions and relative location representation are

demonstrated to support intelligent vehicle’s interactions and decision-making process resolving

the emergency situations. In the scenario, resolving an emergency situation can be seen as an

organisational rule. Therefore, in a perspective of the Gaia methodology, it can be said that in

this chapter two sub-organisations are selected, and organisational rules are captured.

 118

The scenarios developed in this chapter will be used for the ontology modelling in Chapter 5

and the agent modelling and simulation in Chapter 6. An ontological message model for

vehicular communication is designed to support vehicles’ processing and reactions through

ontology querying and reasoning in Chapter 5. Chapter 5 will explain how ontology class

structure and querying/reasoning patterns are created in the message model and a

communication message can trigger neighbour vehicles’ reaction to resolve the emergency

situation. Conceptually, the process of Chapter 5 can be seen as the architectural design phase of

the Gaia methodology. The ontological message model is replicated in a vehicle agent class for

the simulation in Chapter 6. Building a vehicle agent model for the simulation can be seen as

the detailed design phase of the Gaia methodology, and then the simulation is done instead of an

implementation.

 119

5. Geospatial ontological framework

5.1 Introduction

This chapter outlines the second stage of the methodological framework (Figure 1.3), that is,

developing a geospatial ontology model for intelligent vehicles and infrastructure to share

geosemantic information in an ITS environment. The ontology model contains a domain

ontology, a task ontology, and an application ontology. Even though the domain ontology

covers general concepts of the ITS domain, the task ontology and application ontologies focus

on specifying the communications among vehicles and road facilities. Since vehicles and

infrastructure are the most important components of the research, the ontology model is named

‘VEIN’ in reference to the ‘VEhicle’ and ‘INfrastructure’ classes.

In the following sections, the development process of the domain ontology, the task ontology,

and the application ontology of the VEIN ontology model are explained. Then, the application

ontology of the VEIN model is examined to demonstrate how vehicles and their interactions in

the scenarios can be modelled. First, Section 5.2 outlines the domain ontology of the VEIN

ontology model to describe situations in road transport based on the four main classes (vehicle,

road infrastructure, centre, and traveller) of the ITS architecture and with reference to existing

ontologies. Second, Section 5.3 deals with the task ontology to describe vehicle-to-vehicle

communications and vehicle-to-infrastructure communications based on On-Board Equipment

(OBE) and Road-Side Equipment (RSE), which are DSRC devices for vehicles and road

facilities, respectively. For the domain ontology and the task ontology, this research provides

only classes and their hierarchy in order to focus on the application ontology. Third, the

application ontology of the VEIN model is developed in Section 5.4 to describe two scenarios

with reference to the domain ontology and the task ontology. To satisfy the scenarios, some

classes in the application ontologies are simplified and removed whilst properties and relations

are added to describe the scenarios in more detail. Section 5.5 demonstrates how vehicles and

their interactions in the two scenarios can be instantiated with the application ontology of the

VEIN model. Some functions and query templates are made in the application ontology to assist

vehicles’ action and response in emergency situations. Lastly, Section 5.6 summarises and

concludes the chapter.

 120

5.2 Domain ontology of the ITS domain

In an ITS environment, there can be many applications, for example, arterial management,

freeway management, crash prevention and safety, road weather management, or emergency

management (Maccubbin et al., 2008). Even though this research focuses on short-range

vehicular communication, the domain ontology should contain the general concepts of the ITS

domain to ensure the opportunity that it can be extended for other ITS applications. Therefore,

the process of building the domain ontology starts with a review of the four upper classes

conceptualising the ITS architecture described in Section 1.3. Then, on top of the four upper

classes, subclasses are captured and categorised from scenarios and existing transport ontologies

in order to build classes and their hierarchy to describe a general ITS environment.

5.2.1 Four upper classes of the domain ontology

The four upper classes, which are Vehicle, Infrastructure, Centre, and Traveller,

are derived from the four main classes of the ITS architecture as described in Section 1.3. It

seems that these four classes are concepts that are compatible with the conventional road

transport domain since they describe concepts that already exist, but there is a big difference

between the conventional road transport domain and the ITS domain. In the ITS domain,

vehicles, infrastructure, traffic centres, and travellers have most of the communication power.

They can send and receive communication messages to share situational information so that

they can be aware of situations beforehand and have a longer response time to take action when

there is an emergency situation.

The subclasses of the four upper classes can affect each other based on their spatiotemporal

relations. The possible interactions and relationships among the four upper classes are described

in Table 1.1 of Section 1.3. A subclass in the VEhicle class and another subclass of the

INfrastructure class can have a binary relation based on their locations at a particular

time, and two subclasses belonging to different upper classes can communicate with each other

to assist each other or to resolve situations. For example, a signal controller may send a stop

sign violation warning to a vehicle in order to avoid a collision when the vehicle ignores traffic

signals and tries to cross an intersection rapidly. A public transport vehicle may also request its

 121

priority to the traffic signal controller, in which case the traffic signal controller reschedules the

traffic signals to resolve the situation.

A domain ontology should provide concepts (i.e. classes, terms) and the specific meaning of the

concepts to represent a specific domain as a concept or term can have many different meanings.

For example, the word ‘vehicle’ can be used for any manufactured device that moves people

and goods, such as bicycles, motorcycles, trains, ships, boats, and aeroplanes. In this thesis, the

word ‘vehicle’ refers to mobile machines that travel on the road in an ITS environment. So, the

four upper classes of the domain ontology for the ITS domain are specified with the definition

as follows.

• ‘Vehicle’ indicates a mechanical road vehicle that has an engine to carry people or

goods from place to place. Commuter cars, police cars, ambulances, and black cabs can

be instances of this class. A vehicle may have an On-Board Equipment (OBE) for

DSRC as a communication agent. VEhicle is a category and a super-class.

• ‘Infrastructure’ indicates the fixed installations that allow vehicles to operate by

providing the road environment. Road segments, intersections, traffic signs, traffic

signals, and bridges can be instances of this class, and they may have a Road-Side

Equipment (RSE) for DSRC. INfrastructure is a category and a super-class.

• ‘Centre’ indicates a traffic centre that can communicate with vehicles, infrastructure,

and travellers’ mobile devices to transmit traffic information. For example, a dispatch

centre can dispatch emergency vehicles to an emergency scene via mobile

communication. A traffic centre can have a wire communication connection with road

facilities because traffic centres and road facilities are both static and fixed spatially.

Centre class is a category and a super-class.

• ‘Traveller’ indicates (potential) road users such as pedestrians, drivers, or

passengers of a vehicle who may have a mobile device to communicate with vehicles,

the road infrastructure, and traffic centres. For example, a traveller can notify a traffic

centre of a car accident to help them to dispatch emergency vehicles and resolve the

situation. Traveller is a category and a super-class.

Even though this research focuses on the two scenarios described in Section 4.3, four upper

classes are developed to model general concepts in the ITS domain. Instances of the Vehicle

class and the Infrastructure class are subjects of communications. They are also

instances of the road vehicles and the physical environment respectively to provide the road

 122

services to the road users that are instances of the Traveller class. The Centre class can be

seen as a subclass of the Infrastructure class because it is also part of the road

infrastructure that is providing the road service. However, in this research, the Centre class is

defined as an upper class because it is the major subject of central communications providing

general information (e.g. car accidents and congestions) on the road using radio and digital

signboards.

Based on the four upper classes (Vehicle, Infrastructure, Centre, and Traveller),

subclasses are generated. Even though some environmental events may affect the road

environment and the road service, environmental classes are not considered for this research

into vehicular communication since the environmental states can be translated as road states (e.g.

rainfall to wet road condition). Meanwhile, rail transport is another major transport system on

land, and road transport and rail transport sometimes intersect. So, some classes are added in the

domain ontology to represent road facilities for the spots on which two transport systems

intersect (e.g. railway crossing).

5.2.2 Referring existing domain ontologies

Developing an ontology involves following several steps: determining the domain and scope of

the ontology, defining classes and their class hierarchy, defining the properties of the classes

and the relations among the classes, creating instances of the classes, and creating rules/axioms

(Noy and McGuinness, 2001). When defining the classes and their hierarchy for the VEIN

domain ontology, some existing ontologies and terms were reviewed and used to represent

situations of the two scenarios.

The VEIN domain ontology refers to GeoOWL (Lieberman et al., 2007), which describes a

feature’s location or geometry with simple coordinates. In GeoOWL, where property is used as

an object property, in which the domain is Feature class and the range is Geometry class.

Therefore, the four upper classes of the domain ontology described in Section 5.2.1 (i.e.

Vehicle, Infrastructure, Centre, and Traveller) are defined as subclasses of the

Feature class, so that they can describe their locations or shapes by using geometry (Figure

5.1).

 123

Figure 5.1 - The feature class and its subclasses in the VEIN domain ontology

Subclasses of the VEhicle class are captured from the ITS architecture of the U.S.

Department of Transportation to describe their functions (Architecture Development Team,

2007). Some classes of OTN (Lorenz et al., 2005) are reused for subclasses of the

INfrastructure class. OTN has many classes and complex relations, but OTN classes such

as Land Cover and Use class and Railways class are not used, since the scenarios here

describe on-road situations. In addition, some OTN classes and properties are simplified and

modified in the VEIN domain ontology.

Some Ordnance Survey Ontologies containing object properties (i.e. SpatialRelations

and NetworkRelations) are also referred to in order to describe the road connectivity and

the relative location of a vehicle or a road facility on the road (Figure 5.2). Object properties can

have various characteristics; for example, they can be symmetric, transitive, inverse, etc. For

example, the isConnectedTo property of the NetworkRelations ontology is a

symmetric property (owl:Symmetric), which means that if X is connected at Y, then Y is

also connected at X; the SpatialRelations:isLocatedBehind property may be stated

to be transitive (owl:Transitive), which means if X is located behind Y and Y is located

behind Z, then X is located behind Z. A property isLocatedInFrontOf can be an inverse

property (owl:inverseOf) of the SpatialRelations:isLocatedBehind property.

Figure 5.2 - Ontology properties (from http://www.ordnancesurvey.co.uk/oswebsite/ontology/)

 124

These properties may have restrictions on which values can be used (owl:allValuesFrom,

owl:someValuesFrom) or how many values can be used (owl:minCardinality,

owl:maxCardinality, owl:cardinality). For instance, if on the road there are a

traffic light controller and traffic lights, their relations can be described with a property

(controls). In this case, the controls property can have restrictions; the domain has to be

the traffic light controller class (owl:allValuesFrom Traffic_Light_Controller),

the range has to be the traffic light class (owl:allValuesFrom Traffic_Light), and a

traffic controller must control at least one traffic light (owl:minCardinality is 1).

5.2.3 Classes and their hierarchy in the domain ontology

The VEIN domain ontology is developed based on the four upper classes and existing

ontologies/concepts to describe the four main components of the ITS architecture. Classes and

their hierarchy in the domain ontology are shown in Figure 5.3. The Traveller, Centre,

Vehicle, and Infrastructure classes are subclasses of the Feature class so that

points, lines, and polygons can be used to represent the locations or shapes of the instances of

these classes. The Traveller class is an equivalent class to the RoadUser class that

contains various road users, such as passenger, pedestrian, cyclist, etc. The Centre class

describes various traffic operation systems (i.e. administrations, managements, and services)

including signalling operations, safety managements, and emergency managements. The

VEhicle class indicates a mechanical road vehicle that has an engine and an OBE, and it is the

super class for emergency vehicles, private vehicles, public transport vehicles, etc. The

INfrastructure class refers to road facilities that have an RSE, and it is a category for the

roads themselves, the road furniture, and the road structures. The domain ontology is for general

descriptions of a road environment that is based on the four upper classes of the ITS architecture.

The following two sections will describe the task ontology and the application ontology for the

vehicular communications and the situations of the two scenarios, respectively.

 125

Figure 5.3 – Four classes of the VEIN domain ontology

5.3 Task ontology for DSRC

This section describes the concepts and classes relating to the communication task of vehicular

communications, namely, DSRC. Two communication agent classes for vehicles and

infrastructure are the main subjects of possible communications for the developed scenarios. As

communication nodes, subclasses of the Vehicle class have an OBE as an object property,

while the subclasses of the INfrastructure classes have an RSE. Their communication

messages are also categorised into four subclasses. The main classes of the task ontology are

extracted from DSRC communication flows among OBEs and RSEs, and then some general

 126

classes for communication events, communication processes, communication nodes and links

are also generated as classes in the task ontology.

5.3.1 Communications between vehicles and road infrastructure

In a vehicular environment, there may be dynamic phenomena relating to moving vehicles, such

as traffic signals, traffic jams, car accidents, etc. Some traffic events, such as traffic signals, are

necessary to control traffic flows and provide efficient traffic services, while other traffic events,

such as car accidents, have negative effects on traffic flow. Sections 4.4 already described

specific situations of the scenarios to demonstrate how vehicular communications can extend

traffic interactions and have positive effects on traffic flow. Since vehicles and traffic lights

have different locations and signals at a time respectively, they can share their dynamic

properties via communications to improve safety in urgent situations.

Figure 5.4 shows DSRC communications in traffic situations, in which emergency vehicles are

involved, extracted from the architecture flows of the U.S. ITS architecture (Architecture

Development Team, 2012). Of course, communications for parking management or toll

collection are possible, but they are omitted in the figure in order to focus on the

communications for vehicle safety. In the figure, a dotted line means an interaction between

vehicles while a line means an interaction between a vehicle and a road facility. To share traffic

situations, communication messages can contain emergency vehicle alerts, signal pre-emption

requests, intersection status, etc. (Michaels et al., 2010).

Figure 5.4 - Architecture flows for vehicle-to-vehicle communication and vehicle-to-infrastructure

communication

emergency vehicle alert,
vehicle signage data

Vehicle
(OBE)

Emergency
Vehicle
(OBE)

Road Infrastructure
(RSE)

environmental probe data,
probe archive data,

traffic probe data,
vehicle intersection safety data,

vehicle safety data

Other Vehicle
(OBE)

vehicle intersection safety data,
vehicle safety data

Vehicle to Vehicle Communications

Roadside to Vehicle Communications

local signal preemption request

broadcast traveller information,
intersection status,
roadway safety data,
vehicle signage data

 127

From the vehicle-to-vehicle communications and vehicle-to-infrastructure communications

described in Figure 5.4, some ontology classes for communication agents and communication

messages are extracted. The Vehicle(OBE) class and the Infrastructure(RSE) class

are defined for vehicles that have an OBE and road infrastructure that has an RSE, respectively.

Additionally, communication messages among vehicles and infrastructure are categorised into

four message types: alert message (i.e. warning message), probe message, request message, and

safety message (Figure 5.5).

Figure 5.5 - Classes extracted for the task ontology

5.3.2 Five upper classes of the task ontology

Based on the communication agents and communication messages developed in the previous

section, the task ontology is extended to support communications for four communication

agents, namely, Vehicle, Infrastructure, Centre, and MobileDevice. The first

three classes are the same as the classes in the domain ontology because each of them is already

integrated with a communication equipment. Otherwise, the Traveller class of the domain

ontology cannot be integrated with the MobileDevice class because the Traveller class

is a class for human agents, and it is impossible to integrate them physically. Instead, a traveller

can have a handheld device for communications. Therefore, in the task ontology, the

MobileDevice class is created to represent travellers’ handheld devices.

 128

Figure 5.6 - Five upper classes and their subclasses in the task ontology

To describe communications among communication agents, there are four more classes:

CommunicationMessage, CommunicationEvent, CommunicationProcess, and

CommunicationStructure (Figure 5.6). Communication agents share situational

information by using communication messages. Various contents can be included in the

messages, such as a request, a warning, etc. Based on message types, several subclasses are

defined in the CommunicationMessage class. When a communication agent, such as a

vehicle or a road facility, generates information about a traffic situation, it has to share the

information by sending and receiving messages, which are defined in the

CommunicationEvent class. If the communication is a type of broadcasting, it is not

necessary to build a communication network, but the case can arise where two communication

bodies need to maintain the communication link. For example, the communication links

between a dispatch centre and emergency vehicles are necessary. Communication node,

communication link, and communication network are defined as subclasses of the

communication structure class, while the CommunicationProcess class

 129

represents the low-level protocols of the communication. Even though the task ontology is

designed to cover the general communication tasks in an ITS environment, the low-level

protocols and processes of the communication are beyond the scope of this research because of

the focus on the semantic contents of the communication among vehicles and road infrastructure.

In conclusion, five upper classes were proposed as the task ontology of the VEIN model to

represent vehicular communications. In the next section, based on the domain ontology and the

task ontology, the application ontology of the VEIN model is described to implement vehicular

communications in the situations depicted in the two scenarios. While the domain ontology and

the task ontology focus on the classes and their hierarchy, the application ontology deals with

the properties and relations of classes to instantiate intelligent vehicles and their interactions.

5.4 Application ontology of the VEIN model

To describe the aforementioned two scenarios in the application ontology, geographic objects,

such as road elements, junctions (e.g. intersections, roundabouts), and vehicles, are defined as

classes of the ontology. The ontology also needs to have properties and relationships

(hierarchical relations and semantic relations) between classes to provide the context of the

scenario. In addition, some SPIN functions and templates are used to update instances of the

application ontology representing traffic situations from the communication messages. This

section explains classes, properties, relations, SPIN functions, and the SPIN template to

instantiate the vehicles of the scenarios and to implement their interactions via vehicular

communications.

5.4.1 Classes and their hierarchy of the application ontology

The Vehicle and Infrastructure classes are subclasses of the Feature class, so the

instances of these classes have the where property to represent vehicles’ locations and road

facilities’ geometries (locations and/or shapes). However, as this research follows the relative

location representation to separate the geometric calculations from the vehicle’s decision-

making process, the application ontology is developed to conceptualise the two main classes

(VEhicle and INfrastructure) and their properties and relations to describe the vehicles

in the traffic situations of the scenarios and their communications (Figure 5.7). A partial route of

 130

a vehicle, an instance of the VEhicle class, can be represented with a list of upcoming

junctions (comingJunctions), and the vehicle’s location and direction can be described

with the current road element (currentRoadElement), the next junction

(nextJunction), and the distance remaining to the next junction

(remainingDistanceToNextJunction). The road connectivity can be also described

with the startsAt, endsAt, and isConnectedTo properties. The controls property

can be used to describe relations between a traffic light controller and the traffic lights while the

serves property can describe relations between traffic lights and road elements. This

application ontology defines the necessary subclasses, properties, and relations for the

VEhicle and INfrastructure classes only for the two scenarios, but it may be extended

to support other scenarios in the future.

Figure 5.7 - UML-like class diagram of the VEIN application ontology

We have given a description of key classes, properties, and relations for the vehicle and

infrastructure classes. The defined properties describe the relative locations of vehicles and road

facilities, and they can also be used for vehicular communications to share information about

traffic situations and interact with each other. Based on these properties and relations, the next

section explains how to build a road network topology that is necessary for vehicles’ routes.

 131

5.4.2 Road element’s connectivity

The road network is the basic road environment and the essential reference to describe vehicles’

locations and route since vehicles are travelling on the road. It can be built from the road

geometry of all navigable roads that can be extracted from road restriction information. This

section simply shows how the road connectivity can be made from the road geography in

general so that road restrictions are not considered.

To build the road network as a basic road environment for the scenarios, the link-node topology

of the road network was inserted using startsAt and endsAt properties, in which the

domain is Road_Element class and the range is Junction class. Since the range of the

startsAt and endsAt properties is an object (i.e. an instance of Junction class) rather

than a data type (i.e. int, double, String, etc.), these properties are defined as object properties

(owl:ObjectProperty). These properties are also defined as functional properties (i.e.

owl:FunctionalProperty), which can have only one unique value for each instance. So,

every instance of the Road_Element class has only one starting junction and only one ending

junction as the value of the startsAt and endsAt properties, respectively. In addition, there

is a property (isConnectedTo) to represent the link-link topology of the road network. The

triples using the isConnectedTo property can be generated automatically from the link-node

topology (i.e. startsAt and endsAt properties). Figure 5.8 shows a SPIN rule in the

Road_Element class to infer road elements’ connectivity and its results. The SPIN rule is

basically a SPARQL CONSTRUCT query, in which the system variable ?this, UNION, and

FILTER were used for the current instance of the class and the OR operation, and to avoid self-

reference, respectively. This research assumes that the road network is static, so this SPIN rule

was used just once, and inferred triples containing the isConnectedTo property were

inserted as asserted triples into the ontology model.21

21 Ontologies may contain asserted triples, which assert the properties of individuals, as ground facts. A
SPIN rule is used to generate new triples (i.e. inferred triples) based on information of existing triples (i.e.
asserted triples) by inferrencing. In the view of inferencing, asserted triples are the input of the
inferencing process and inferred triples are the output of the inferencing process. The inferred triples
represent the link-link topology of the road network, and it is part of ground facts in this research, so they
are treated as asserted triples.

 132

(a) an inference rule

in the Road_Element class
(b) the (grey-coloured) values
are generated automatically

(c) a set of new triples generated
based on the rule

Figure 5.8 - A SPIN rule and new triples for road elements’ connectivity

As we have seen so far, the SPIN rule using the isConnectedTo property demonstrates how

indirect relations (i.e. link-link topology) of the road network can be made from the direct

information (i.e. link-node topology) automatically. It also shows that SPIN rules can be used

not only to extract information from the developed dataset, but also to construct further

information for the dataset itself in the data construction phase. The next section outlines

vehicles’ properties and relations to represent their dynamic locations with reference to the road

network.

5.4.3 Vehicles’ location and route information

Vehicles are the main road users that travel fast on the road, and they are the essential

components of dynamic road situations. From the perspective of geographic information, a

vehicle’s dynamic movements can be represented by its current location and route information.

Vehicles’ location and route information can be used to share their presences via vehicular

communications in order to improve their traffic interactions and resolve traffic situations.

 133

In order to store a vehicle’s absolute coordinates, speed, route, and relative information, some

object properties were designed, and these can be categorised into three parts (Table 5.1). The

first part is the vehicle’s absolute location and speed. The second part describes the vehicle’s

route information, referencing road elements and junctions. The property comingJunctions

can have a junction list (rdf:List), which has five junctions to represent a vehicle’s partial

route. The third part represents the vehicle’s relative location, which depends on the previous

two parts.

Table 5.1 - Properties/relations related to each vehicle’s movement

Purpose Property Domain Range
Vehicle’s absolute
location and speed

geo:where VEhicle gml:_Geometry
vein:isAtASpeedOf VEhicle xsd:double

Vehicle’s
route information

vein:previousJunction VEhicle Junction
vein:comingJunctions VEhicle JunctionList
vein:nextJunction VEhicle Junction
vein:currentRoadElement VEhicle Road_Element
vein:nextRoadElement VEhicle Road_Element

Vehicle’s
relative location

vein:remainingDistanceToNextJunction

VEhicle xsd:double
vein:remainingTimeToNextJunction

VEhicle xsd:double

Table 5.2 shows how a vehicle describes its absolute location and route information in the

VEIN application ontology. The geo:where property is used as an object property to describe

its coordinates, and several object properties (e.g. previousJunction, nextJunction,

currentRoadElement, and nextRoadElement) are used to describe its route

information. In Table 5.2, the vehicle V1 has object values vein#n97 and vein#i1 for the

previousJunction and nextJunction properties, respectively. It means that there is a

URI reference named ‘vein’, and it has fragment resources such as n97 and i1 representing a

node and an intersection on a road network. The vehicle V1‘s two properties mean that the

vehicle already passed the node n97 and moves towards the intersection i1.

 134

Table 5.2 - A vehicle’s properties and related instances

Description Source code

Vehicle V1’s current
coordinates and route
information

<vein:Private_Vehicle rdf:ID="V1">
 <geo:where rdf:resource="#P_V1"/>
 <vein:isAtASpeedOf
 rdf:datatype="http://www.w3.org/2001/XMLSchema#double">
 13.4112e0</vein:isAtASpeedOf>
 <vein:previousJunction rdf:resource="vein#n97"/>
 <vein:nextJunction rdf:resource="vein#i1"/>
 <vein:currentRoadElement rdf:resource="vein#r2"/>
 <vein:nextRoadElement rdf:resource="vein#r3"/>
</vein:Private_Vehicle>
<gml:Point rdf:ID="P_V1">
 <gml:pos
 rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 517426.918 169319.8</gml:pos>
</gml:Point>

Intersection i1’s
location

<vein:Intersection rdf:about="vein#i1">
 <geo:where rdf:resource="vein#P_i1"/>
</vein:Intersection>
<gml:Point rdf:about="vein#P_i1">
 <gml:pos
 rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 517479.987 169349.316</gml:pos>
</gml:Point>

Here, it is assumed that a navigation system is implanted in each vehicle, and each vehicle’s

VEIN ontology model is integrated with its navigation system, so that partial route and relative

location information of each vehicle’s ontology model can be updated in the same cycle in

which its absolute location and the turn indicator information are updated in the navigation

system. In this circumstance, a vehicle’s relative location can be inferred from existing asserted

triples (e.g. its absolute location and partial route information) and SPIN rules.

However, the VEIN application ontology uses SPIN functions and templates rather than SPIN

rules to generate the vehicle’s relative location as an asserted triple, not as an inferred triple.

Usually, keeping inferences up to date after each change of assertions will be efficient if the

asserted data remain static and rarely change, but when dealing with fast-moving vehicles, it is

more efficient and accurate to compute the values of interest dynamically on demand using

SPIN functions (Knublauch, 2011). As obtaining relative information is a very repetitive

process, a SPIN template is defined in the VEIN model to support this cyclic update of relative

information (Figure 5.9). The SPIN query template uses three arguments (inputs) and two SPIN

 135

functions to obtain the vehicle’s information (coming junction, current coordinates, and current

speed) and to compute its relative information (remaining distance and time to the next

junction), respectively.

Figure 5.9 - A SPIN template to update vehicle’s relative location information

Recently, the stream reasoning approach that integrates data streams and reasoning systems is

gaining popularity for supporting various traffic applications (e.g. traffic monitoring, traffic

pattern detection). The applications deal with time-varying data elements, with a one-timestamp

model (e.g. Continuous-SPARQL, SPARQLstream) or a two-timestamps model (e.g. EP-

SPARQL/Etalis) (Valle et al., 2009; Valle, 2014). For example, in a traffic management system,

a registered continuous query, which gets streams of answers from input streams, can be used to

search slow traffic events and automatically modify a speed limit on a certain road section

(Anicic et al., 2012). Thus, stream reasoning is necessary when dealing with incrementally

available, multiple, heterogeneous, gigantic data streams ‘to support the decision process of

extremely large numbers of concurrent users’ in real-time (Stuckenschmidt et al., 2010).

However, continuous semantics are still challenging, and many relevant reasoning methods are

not able to deal with high frequency data streams (Stuckenschmidt et al., 2010; Valle, 2014).

This research deals with an ontology as a vehicular messaging model to support a local data

Arguments

Functions

 136

transmission between a rapidly moving ambulance and nearby vehicles on top of DSRC. The

vehicles can send/receive information to one another at an adjustable information exchange rate,

in which maximum possible rate is approximately 10 times per second, i.e. about 100 ms.

Therefore, the contents and the processing of the message have to be designed minimally to

keep DSRC’s low latency. Even in a real-time streaming processing system, live feeds provide a

major input of data to maintain the system’s current state by processing them in memory. For

these reasons, storing or querying streaming data can be an optional process (Mladenić et al.,

2012), and the stream data/reasoning approach is not considered in this research.

As we have seen so far, SPIN functions and templates can be useful to update a vehicle’s

relative location and route information. Each vehicle’s relative information depends on the route

information, which is determined by its origin and destination on the road network, so real-time

traffic information, such as road restriction or road traffic status, can be crucial in reality. The

road network information and traffic situation can be shared via vehicular communications, but

this research deals with the physical road network only, with the assumption that the instances

of road elements and junctions are simply stored as asserted triples in the VEIN ontology model.

Consequently, each vehicle obtains the road network information from the VEIN model in order

to compute the relative information.

The next section explains how the ambulance of the ambulance scenario and the broken-down

car of the breakdown scenario can each generate/send a message (partial information) from its

own ontology model and how recipient vehicles can instantiate the ambulance or broken-down

car into their ontology model to calculate their relative locations and make decisions.

5.5 Validation of the VEIN application ontology

To demonstrate how the VEIN application ontology can be used in dynamic situations, two

tasks are developed in a time sequence based on snapshots of the two scenarios (Figure 4.5 and

Figure 4.9). Following the sequential tasks, vehicles and their movements and interactions are

instantiated by using the classes, properties, and relations of the application ontology.

Section 5.5.1 describes vehicles’ interactions in a time sequence as tasks to validate the VEIN

application ontology. It shows two time sequences for the ambulance scenario and the

breakdown vehicle scenario. Section 5.5.2 instantiates the ambulance and the vehicles around it

in order to demonstrate how information about the ambulance’s dynamic movements can be

 137

shared with the vehicles in the vicinity of the ambulance by updating their ontology model.

Section 5.5.3 explains instances of the broken-down vehicle and approaching vehicles to the

breakdown spot on the motorway. Since the main role of SPIN functions and templates is to

update vehicles’ ontology model for each snapshot of the scenarios, their logics and return

values are also presented.

5.5.1 Sequential description of the interactions between vehicles

Since the VEIN application ontology has been developed for an ITS application based on

scenarios, it can be evaluated by using it for specific tasks from the scenarios. In this section,

two sequential interaction diagrams are used as tasks for the two scenarios.

First, sequential tasks of an ambulance and a private vehicle are used to evaluate the application

ontology for the first scenario (Figure 5.10). The ambulance and the private vehicle obtain their

absolute coordinates from a GPS receiver iteratively. When they obtain new location

coordinates, they execute a SPIN query template to obtain relative locations. In the ambulance’s

communication message, its relative location will be included to share its presence and

movement. When the ambulance broadcasts a communication message to vehicles around it and

a private vehicle receives the message, the private vehicle executes a SPIN query template to

create, update, or delete the ambulance’s instance. When the private vehicle receives the

message for the first time, the ambulance’ instance is created in its ontology model. Then,

whenever the private vehicle receives a new message from the ambulance, the ambulance’s

instance is updated in the private vehicle’s ontology model to keep it up to date.

 138

Figure 5.10 - Sequential tasks of an ambulance and a private vehicle

The private vehicle has its own instance and the ambulance’s instance in its ontology model,

therefore it can obtain the ambulance’s relative location and the emergency rule. The emergency

rule can be passed from the ambulance, or just some parameters of the emergency rule can be

included in the communication message if the ambulance’s request is based on the emergency

rule that is already stored in the VEIN ontology. Normally, the aim of the emergency rule is to

assist vehicles potentially affected by the ambulance, and the emergency rule is also generated

in the format of a SPIN template. So, the ambulance’s relative location and the private vehicle’s

location are used as parameters of the SPIN template, and the logic of the emergency rule is

stored in the template. If the private vehicle has the same route as the ambulance and they are

close enough, the emergency rule template will return a value for giving way to the ambulance.

The communication has to be minimised, but if it is worthwhile the private vehicle answering

the ambulance to resolve the situation, it is possible to do so.

Second, the sequential tasks of a broken-down vehicle and a private vehicle are developed from

the breakdown scenario to evaluate the application ontology (Figure 5.11). These sequential

tasks are quite similar to the sequential tasks of the ambulance scenario, but there are

differences. Since the broken-down vehicle is a stationary vehicle, there is no iterative process

send a message to vehicles around about its presence
(its relative location and give away request)

iterative

get relative location

iterative

:Ambulance :PrivateVehicle

get absolute location

get relative location

get absolute location

iterative iterative

Instantiate the ambulance
(create, update, or delete its instance)

If it has the ambulance instance in it

get ambulance’s relative location

get the emergency rule

compare two vehicles’ relative locations
referring the emergency rule

give way to the ambulance

an (optional) response message
 that it allows the ambulance’s priority

 139

involved in obtaining its position. The message from the broken-down vehicle is also static, so

there is no update for the broken-down vehicle instance in the ontology model of the private

vehicle. In addition, the message from the broken-down vehicle is a warning message, so the

private vehicle may not answer the broken-down vehicle after it has slowed down and changed

lanes.

Figure 5.11 - Sequential tasks for a broken-down vehicle and a private vehicle

Here, we described the two sequential tasks representing the interactions of the two scenarios to

evaluate the application ontology. The sequential tasks describe subtasks necessary for a vehicle

that receives a message from an ambulance or a broken-down vehicle to perform an action (e.g.

give way to the ambulance, slow down, and change lanes). The following two subsections

describe vehicle instances to demonstrate how vehicles can perform the tasks with the

application ontology for each scenario.

send a message to vehicles around about its presence
(its relative location and a warning to get ready to change lanes)

get relative location

iterative

:BrokenVehicle :PrivateVehicle

get absolute location

get relative location

get absolute location

iterative iterative

Instantiate the broken vehicle
(create or delete its instance)

If it has the broken vehicle instance in it

get broken vehicle’s relative location

get the emergency rule

compare two vehicles’ relative locations
referring the emergency rule

slow down and/or change lanes

 140

5.5.2 Instantiating vehicles and their interactions for the ambulance scenario

Interactions between the ambulance and the vehicle, as shown in the ambulance scenario of

Section 4.3.1 and in Figure 5.10, are implemented based on the VEIN ontology model and

DSRC messages. Each vehicle’s ontology model inherits the VEIN model for the road network

information, classes and properties for vehicles, and SPIN functions and templates. As shown in

Figure 5.12, each vehicle’s ontology model has its own instance to represent its absolute and

relative location, which can be updated via its navigation system and SPIN templates. When a

vehicle V1 receives DSRC messages from an ambulance A1, the ontology model of the vehicle

uses the DSRC messages as inputs of a query template repeatedly to instantiate the ambulance

in it. Focusing on the ontology model, it is assumed that there is a pseudo DSRC message set

that broadcasts the relative locations of the ambulance to support the decision-making regarding

whether the vehicle needs to give way to the ambulance.

Figure 5.12 - Interaction between an ambulance and a vehicle based on the ontology model and

DSRC message

When the vehicle receives a DSRC message from the ambulance, the vehicle can use the DSRC

message to update its own ontology model by executing an update query from the SPIN update

template (i.e. vein:updateInformationFromEmergencyVehicleDSRCMessage)

(Figure 5.13). When the vehicle receives the message from the ambulance, an update query

based on the query template can be executed to create, update, or delete the instance of the

ambulance in its own ontology model. To instantiate the ambulance in the vehicle’s ontology

model, the query template uses several variables, such as oldEVehicleAmbul,

newEVehicleAmbul, and newEVehicleAmbul2, to check if the ambulance’s instance has

already been created in its ontology model and, if the vehicle is in the ambulance’ vicinity, to

Classes and
properties for

the road network

Instances of
the road network

Classes and
properties for

vehicles

SPIN functions
and templates

Classes and
properties for

the road network

Instances of
the road network

Classes and
properties for

vehicles

SPIN functions
and templates

Instance of the vehicle

Instance of the ambulance

Absolute info

Relative info

Absolute info

Relative infoRelative info

A VEHICLE: V1 An Ambulance: A1

Broadcast DSRC message
(ambulance’s relative info)

Compare and
make a decision

Instance of the ambulance

VEINVEIN

 141

give way to the ambulance. If the oldEVehicle variable’s value is null, the newEVehicle

variable’s value is not null, and the newEVehicle2 variable’s value is null, the vehicle does

not have the ambulance’s instance in its ontology model because the vehicle is not yet in the

effect zone of the ambulance. If the oldEVehicle variable’s value is not null and the

newEVehicle2 variable’s value is null, the query template deletes the ambulance’s instance

from the vehicle’s ontology model because the vehicle is no longer in the effect zone of the

ambulance. Figure 5.14 shows how the SPIN template can use DSRC messages as its arguments

to execute an update query for the vehicle’s ontology model. The SPIN template uses eight

arguments based on the DSRC message from the ambulance, such as the ambulance’s unique

name, its relative location, and the guided distance and time to request its priority (i.e. 200

meters and 10 seconds in this case). Using these arguments, the SPIN update template compares

partial routes and relative locations between the ambulance and the vehicle, and supports the

vehicle’s action to give way to the ambulance.

Figure 5.13 - The SPIN template to instantiate the ambulance in each vehicle’s ontology model

 142

Figure 5.14 - Argument values22 of the SPIN update template from the ambulance’s DSRC message

The SPIN template also uses two IF functions inside the BIND clauses to set variables based on

the return value of some logics, as highlighted in the lower rectangle of Figure 5.13. The first IF

function of the SPIN template checks if an instance of the ambulance exists in the vehicle’s

ontology model. If an instance of the ambulance already exists in the vehicle’s ontology model,

the IF function returns ‘true’. The second IF function of the template checks whether the vehicle

needs to give way to the ambulance based on a decision-making logic (i.e. emergency rules)..

To develop the decision-making logic, and the emergency rules of the SPIN function

(fnInTheSituationOfEmergencyVehicle) that contain three different cases are

explained with pseudo code and descriptions (Table 5.3). The emergency rules are then

22 Note that the second, third, and fourth arguments are regarded as objects for the sake of simplicity.
However, in a real communication, these objects’ unique identifiers can be used instead to minimise the
volume of the sender’s DSRC message set. The argument for the given distance range
(arg7DistanceRange) was set to 60.96 meters by referring to the effect range of the new howler sirens of
ambulances in Oklahoma, U.S.A. According to the Emergency Medical Services Authority (EMSA, 2009)
in Oklahoma, the howler sirens emit low-frequency tones that cause objects within 200 feet (i.e. 60.96
metres) to reverberate, and catch drivers’ attention much more quickly. The argument for the given time
range was set to 3.0sec (60.96 m / (30mph *1.5)).

 143

implemented as a SPIN function (i.e. vein:fnInTheSituationOfEmergencyVehicle

in Figure 5.15). In the first case, the vehicle and the ambulance are on the same road element,

the vehicle is in front of the ambulance. Their distance (or time) is shorter than the distance (or

time) range of the ambulance’s request, which are 7th and 8th arguments of the SPIN update

template as parts of the ambulance’s DSRC message. It means that if the vehicle is within the

request zone of the ambulance, it needs to give way to the ambulance. The second case shows

that the vehicle and the ambulance are not on the same road element, the vehicle is not on the

road element which the ambulance is heading towards, they are moving towards the same

junction, and their distance (or time) is shorter than the given distance/time range. Lastly, in the

third case, the vehicle is on the road element which the ambulance is moving towards, the

vehicle is in front of the ambulance, and their distance (or time) is shorter than the given range.

 144

Table 5.3 - Logics of the function to check whether or not the vehicle needs to give way to the

ambulance

Situation Pseudo Code Comments

Case 1

If (V1’s current road == A1’s current road AND
 V1’s next junction == A1’s next junction AND
 (A1’s distance to next junction
 > V1’s distance to next junction) AND
 (A1’s distance/time to next junction
 - V1’s distance/time to next junction
 < given distance/time range)
) then V1 is in the situation of Case 1

• V1 and A1 are on the same road
• They are moving in the same direction
• V1 is in front of A1
• Their distance (or time) is shorter than

given distance range (or time range)
• Give-way request and Forward collision

warning

If (V1’s current road == A1’s current road AND
 V1’s next junction != A1’s next junction AND
 (A1’s distance to next junction
 > V1’s distance from previous junction) AND
 (A1’s distance/time to next junction
 - V1’s distance/time from previous junction
 < given distance/time)
) then V1 is in the situation of Case 1

• V1 and A1 are on the same road
• They are moving in the opposite direction
• V1 is in front of A1
• Their distance (or time) is shorter than

given distance range (or time range)
• Give-way request and Head-on collision

warning

Case 2

If (V1’s current road :isConnectedTo
 A1’s current road AND
 V1’s current road :isConnectedTo
 A1’s next road AND
V1’s next junction == A1’s next junction AND
 ((A1’s distance to next junction
 < given distance range AND
 V1’s distance to next junction
 < given distance range OR
 (A1’s time to next junction
 < given time range AND
 V1’s time to next junction
 < given time range))
) then V1 is in the situation of Case 2

• V1 and A1 are not on the same road
• V1 is not on the road that A1 is heading to
• V1 is on the road that is connected to A1’s

current road and A1’s next road
• V1 and A1 are coming to the same junction
• A1’s distance (or time) to the junction is

shorter than given distance range (or time
range)

• V1’s distance (or time) to the junction is
shorter than chosen suggested giving-way
distance range (or time range)

• Possible suggested giving-way ranges
- given distance range (or time range)

 like other cases
- (2 * A1’ distance (or time) to the junction

+ given distance range (or time range)) / 3
- A1’s distance (or time) to the junction
- Two-second gap to the junction
• Give-way request and Intersection collision

warning

Case 3

If (V1’s current road != A1’s current road AND
 V1’s current road == A1’s next road AND
 V1’s next junction != A1’s next junction AND
 (A1’s distance/time to next junction
 + V1’s distance/time from previous junction
 < given distance/time range)
) then V1 is in the situation of Case 3

• V1 and A1 are not on the same road
• V1 is on the road that A1 is heading to
• V1 is in front of A1
• They are moving in the same direction
• Their distance (or time) is shorter than

given distance (or time)
• Give-way request and Forward collision

warning

If (V1’s current road != A1’s current road AND
 V1’s current road == A1’s next road AND
 V1’s next junction == A1’s next junction AND
 (A1’s distance/time to next junction
 + V1’s distance/time to next junction
 < given distance/time range)
) then V1 is in the situation of Case 3

• V1 and A1 are not on the same road
• V1 is on the road that A1 is heading to
• V1 is in front of A1
• They are moving in the opposite direction
• Their distance (or time) is shorter than

given distance (or time)
• Give-way request and Head-on collision

warning

 145

Figure 5.15 - The SPIN function to check if a vehicle needs to give way to the ambulance or not

When the vehicle receives a message from the ambulance, the update query for the ambulance’s

instance is executed, and the function (fnInTheSituationOfEmergencyVehicle)

inside the update query template returns ‘true’ only if the vehicle is in one of these three cases.

In the fnInTheSituationOfEmergencyVehicle function, the

remainingTimeToNextJunction 23 property is used as a subsidiary to the

remainingDistanceToNextJunction property, so these two properties are used as one

23 The remainingTimeToNextJunction property cannot be used alone as a replacement of the
remainingDistanceToNextJunction property. There can be a situation in which a vehicle is
heading towards an ambulance and it is moving extremely fast, so that the defined distance range may not
give the vehicle enough time to react. With the defined time range, this property is devised to support this
kind of situation that is beyond the design of the defined distance range. For example, a vehicle is heading
to an ambulance and it is moving extremely fast, even though the vehicle is outside the defined distance
range the vehicle will be requested to give way to the ambulance if it is in the defined time range.

 146

set. Table 5.4 summarises the return values of the functions and the results of the update query

template for each time stamp of the ambulance scenario, which is described in Figure 4.5.

Table 5.4 - Results of SPIN functions and the SPIN template for each time stamp

Time
Stamp

V1’s
relative location

A1’s
relative location

Return value of
the function A*

Return value of
the function B**

Working clause of the
Update Query Template

Figure
4.5 a

on r2, to i1,
60 meters,

4.5 seconds

on r1, to i1,
70 meters,

3.0 seconds
False True only INSERT clause

Figure
4.5 b

on r2, to i1,
20 meters,
3 seconds

on r1, to i1,
35 meters,

1.5 seconds
True True

DELETE clause
 and INSERT clause

Figure
4.5 c

on r3, to n1,
60 meters,

4.5 seconds

on r3, to n1,
50 meters,

2.1 seconds
True False only DELETE clause

* Function A is the first of the two if functions (red boxed in Figure 5.13). It checks if the ambulance’s
instance exists already in the vehicle's ontology model.
** Function B is the second of the two if functions (red boxed in Figure 5.13). It checks if the vehicle is inside
the effect zone of the ambulance (and needs to give way to the ambulance).

5.5.3 Instantiating vehicles and their interactions for the breakdown

scenario

Interactions in the breakdown scenario of Section 4.3.2 and sequential tasks in Figure 5.11,

which is a breakdown situation on the motorway, are also implemented based on the VEIN

application ontology and DSRC messages. Each vehicle’s VEIN ontology model and the

updating process is the same as described in Figure 5.12, but the communication subject

broadcasting an alert message is the broken-down vehicle instead of the ambulance (Figure

5.16). When a vehicle (V1) in the vicinity of the breakdown spot receives DSRC messages from

the broken-down vehicle (B1), the ontology model of the approaching vehicle uses the received

messages as inputs of a query template repeatedly to instantiate the broken-down vehicle in it.

Focusing on the ontology model, it is assumed that there is a pseudo DSRC message set that

broadcasts the relative locations of the broken-down vehicle to warn of its presence on the

motorway and to allow the vehicles approaching the breakdown spot to have a longer response

time to avoid sudden braking or lane changes.

 147

Figure 5.16 - Interaction between a broken-down vehicle and a vehicle approaching the breakdown

spot based on the ontology model and DSRC message

When the vehicle (V1) receives a DSRC message from the broken-down vehicle (B1), an

update query can be executed to update the vehicle V1’s ontology model from the SPIN

template (i.e. vein:updateInformationFromVehicleStationaryDSRCMessage)

(Figure 5.17). As the broken-down vehicle is a stationary vehicle in the breakdown situation, the

query template does not update the broken-down vehicle’s location. In this situation, the DSRC

message is required to inform about the presence of the vehicle breakdown, and the update

query only creates or deletes the instance of the broken-down vehicle in the vehicle’s ontology

model based on the approaching vehicle’s relative distance/time to the breakdown scene. The

query template uses two boolean variables, which are bVehicleStationaryExisted and

bInTheSituation, to check if the vehicle’s ontology model contains the instance of the

broken-down vehicle already and if the vehicle is in the effect zone of the vehicle breakdown

(i.e. 1000 meters and 30 seconds in this case), respectively. If the instance of the breakdown

already exists in the vehicle’s ontology model, and the vehicle is no longer in the effect zone of

the vehicle breakdown, the query template deletes the broken-down vehicle’s instance. If the

vehicle does not have the instance of the broken-down vehicle in its ontology model, and it is in

the effect zone of the vehicle breakdown, the query template creates the instance of the broken-

down vehicle in its own ontology model to warn about the presence of the vehicle breakdown.

Classes and
properties for

the road network

Instances of
the road network

Classes and
properties for

vehicles

SPIN functions
and templates

Classes and
properties for

the road network

Instances of
the road network

Classes and
properties for

vehicles

SPIN functions
and templates

Instance of the vehicle

Instance of the broken vehicle

Absolute info

Relative info

Absolute info

Relative infoRelative info

A Vehicle: V1 A Broken Vehicle: B1

Compare and
make a decision

Instance of the broken vehicle

VEINVEIN

Broadcast DSRC message
(broken vehicle’s relative info)

 148

Figure 5.17 - The SPIN template to instantiate the broken-down vehicle in the approaching vehicles’

ontology model

As shown in the red box of Figure 5.17, this SPIN query template uses a different SPIN

function (vein:fnInTheSituationOfVehicleStationary) to check the situation of

the vehicle breakdown ahead. This function only returns ‘true’ when the vehicle is in the two

cases that can be defined by the vehicles’ relative location with reference to motorway links and

junctions. Two different cases of the function are described in Figure 5.18 and Table 5.5. In the

first case, the broken-down vehicle and an approaching vehicle are on the same motorway link,

and distance and time differences between two vehicles are shorter than the distance/time range

the broken-down vehicle provides. In the second case, even though the broken-down vehicle

and the approaching vehicle are not located on the same motorway link, the vehicle is moving

towards the motorway link that the broken-down vehicle is located on, and their distance and

time are shorter than the defined distance/time range. If the return value in either case is true, it

 149

means that the vehicle is within the guided distance and time to change the lanes to avoid the

broken-down vehicle ahead.

Figure 5.18 - The SPIN function to check if a vehicle is inside the effect zone of the vehicle

breakdown

Table 5.5 - Logics of the function to check whether or not a vehicle needs to consider the presence

of the breakdown spot

Situation Pseudo code Comments

Case 1

If (V1’s current motorway link == B1’s current motorway link AND
 (V1’s distance to next motorway junction
 > B1’s distance to next motorway junction) AND
 (V1’s distance to next motorway junction
 - B1’s distance to next motorway junction
 < given distance range OR
 V1’s travel time to B1’s location < given time range)
) then V1 is in the situation of Case 1

• V1 and B1 are on the same
motorway link

• B1 is in front of V1
• Their distance (or time) is

shorter than given distance
range (or time range)

Case 2

If (V1’s next motorway link == B1’s current motorway link AND
 (V1’s distance to its next motorway junction
 + B1’s distance from its previous motorway junction
 < given distance range OR
 V1’s time to B1’s location < given time range)
) then V1 is in the situation of Case 2

• V1 and B1 are not on the same
road link, but B1 is located on
the road link that V1 is
heading to

• Their distance (or time) is less
than given distance (or time)

Figure 4.9 shows a situation of a broken-down vehicle and a vehicle on a motorway link of M25

heading to Junction 11, the relative positions of the two vehicles are given by the broken-

 150

vehicle B1 and the vehicle V2. Here, the return values of the two boolean variables

(bVehicleStationaryExisted and bInTheSituation) and the results of the update

query template for each time stamp can be gained as shown in Table 5.6. If the vehicle V2 has

an instance of B1 in its ontology model, it means that the vehicle V2 is inside the effect zone of

the vehicle breakdown ahead.

Table 5.6 - Results of SPIN functions and the SPIN template for each time stamp

Time
stamp

B1’s
relative location

V2’s
relative location

Value of the
bVehicleStationar
-yExisted variable

Value of the
bInTheSituation
variable

Working clause of the
Update Query Template

Figure
4.9 b

on M25, to
Junction 11,
5500 meters

on M25, to
Junction 11,
6450 meters

False True only INSERT clause

Figure
4.9 c

on M25, to
Junction 11,
5500 meters

on M25, to
Junction 11,
5650 meters

True True None

Figure
4.9 d

on M25, to
Junction 11,
5500 meters

on M25, to
Junction 11,
5450 meters

True False only DELETE clause

5.6 Extensibility of the VEIN application ontology model

So far, we have followed the development of the VEIN application ontology (i.e. classes,

properties, and queries) in order to cover the aforementioned scenarios focusing on vehicle-to-

vehicle communications. The application ontology can be easily extended to vehicle-to-

infrastructure communications by adding some classes and properties referring to the

domain/task ontology. To emphasise the extensibility of the application ontology, this section

deals with possible situations with traffic lights, a second emergency vehicle, and multi-lane

roads.

First, the VEIN application ontology can be extended to vehicle-to-infrastructure

communications by adding some classes, properties, and queries referring to road facilities, such

as traffic lights. Classes and properties can be added to describe additional features and their

relations in a different situation. Based on triple (subject-predicate-object) patterns of ontology,

a situation can be described in a graph-based network model, in which each node has some links,

based on triple patterns (subject-predicate-object) of ontology. Nodes represent instances of

 151

classes, and links represent their binary relations. The network model describing a situation can

be extended by using additional triples. For example, if there are traffic lights and a traffic

controller at an intersection (e.g. intersection i1 is used in the ambulance scenario and is

illustrated by Figure 4.5), the situation can be described with instances of additional classes (e.g.

Traffic_Light and Traffic_Light_controller) and their binary relations (e.g.

serves and controls), as shown in Figure 5.19.

I

 (a) Instances (b) Binary relations among instances

Figure 5.19 - Instances and their binary relations within a scenario

Query logics that extract information related to road facilities (e.g. traffic lights) can also be

easily implemented as SPARQL queries. The additional queries, which represent additional

logics, will be compatible with the already developed SPIN functions and templates of the

VEIN ontology since the logics of the VEIN ontology have been developed from SPARQL

queries. The Structured Query Language (SQL) is suitable for querying and extracting data

from tabular and structured representations. Meanwhile, SPARQL is a language for querying

collections of triples (subject-predicate-object) in a graph-based model, so that it can traverse

relationships easily and explicitly in RDF/OWL (Melton, 2006). By using binary relations

between traffic lights and a traffic light controller, between traffic lights and road elements, and

between vehicles and road elements, context information can be collected from various

viewpoints (i.e. the ambulance’s point of view and/or the traffic light controller’s point of view).

For example the queries in Table 5.7 have been developed to support an effective

communication strategy between an ambulance and a traffic controller in an intersection. The

first query of Table 5.7 asks whether there are ambulances at the roads towards an intersection

where the traffic controller TC1 is located. The second query of Table 5.7 asks which signal

controller the ambulance has to communicate with in order to request a signal pre-emption. In

 152

these queries, the ambulance’s nextJunction property represents the ambulance’s direction

towards the traffic controller TC1. Departing from SELECT statements, an ASK form can be

used for a similar purpose, but it just returns true or false. Figure 5.20 shows how binary

relations and a class hierarchy can be used to describe possible relations between emergency

vehicles and a traffic light controller in an ASK query. If there are any emergency vehicles (i.e.

ambulance, fire engine, or police car) on the roads that the traffic light controller covers, the

result of the ASK query will be true. It may be also useful to check whether the traffic controller

has to take action or not.

Table 5.7 - SPARQL queries to support the ambulance scenario in the third condition

Purpose SPARQL query Result

To check whether there
are ambulances towards

the traffic controller

SELECT ?ambulance
WHERE {

?trafficController rdfs:label "TC1".
?trafficController :isLocatedAt ?junction.

 ?trafficController :controls ?trafficLight.
 ?trafficLight :serves ?roadElement.

?ambulance :currentRoadElement ?roadElement.
?ambulance :nextJunction ?junction.

 ?ambulance rdf:type :Ambulance.
}

A1

To find a traffic
controller that the
ambulance has to
communicate with

SELECT ?trafficController
WHERE {
 ?ambulance rdfs:label "A1".

?ambulance :currentRoadElement ?roadElement.
?ambulance :nextJunction ?junction.

 ?trafficLight :serves ?roadElement.
?trafficController :controls ?trafficLight.
?trafficController :isLocatedAt ?junction.

}

TC1

 (a) An ASK query (b) Subclasses of the Emergency_Vehicle class

Figure 5.20 - An ASK query (i.e. ‘is there an ambulance moving towards the traffic controller?’)

and the result

 153

Second, the VEIN application ontology can be extended to deal with a second emergency

vehicle in a situation. In the ambulance scenario, only one emergency vehicle was considered in

the situation, and its request zone for asking its priority to neighbour vehicles was set fixed.

However, in the situation of a second emergency vehicle, if the distance between the first

emergency vehicle and the second emergency vehicle is close enough, their emergency rule

(give away request) cannot be treated separately. The two emergency vehicles may provide one

merged emergency rule to the neighbour vehicles to minimise the possible confusion caused by

multiple emergency vehicles near each other.

An emergency vehicle sends its ‘give way’ request to the neighbour vehicles only when the

vehicles are inside its request zone to minimise its negative impact on the traffic flow. However,

emergency vehicles can communicate amongst themselves to share their presences and

movements in preparation for a possible collaboration. If an emergency vehicle checks a second

emergency vehicle’s presence nearby, it needs to expand its request zone temporarily to

consider the second emergency vehicle’s presence. In the VEIN application ontology, it is

possible by changing the ‘distance range’ argument of the SPIN update template (e.g.

vein:updateInformationFromEmergencyVehicleDSRCMessage) (Figure 5.13).

Table 5.8 provides an example of how an emergency vehicle can check for a second emergency

vehicle’s presence, and expand its request zone for asking priority to the neighbour vehicles

temporarily.

Table 5.8 - Possible SPARQL queries to support the situation of a second emergency vehicle

Purpose SPARQL query

To check the presence of a second
emergency vehicle and s and their

distance

SELECT Distinct ?ev2 ?ev2dist

WHERE {
 ?emergencyVehicle rdfs:subClassOf :Emergency_Vehicle .
 ?ev1 rdf:type ?emergencyVehicle .
 ?ev1 :myself true .
 ?ev2 rdf:type ?emergencyVehicle .
 FILTER (?ev1 != ?ev2).
 ?ev1 :currentRoadElement ?currentRoadElement .
 ?currentRoadElement :isConnectedTo ?connectedRoadElement .
 {?ev2 :currentRoadElement ?currentRoadElement}
 UNION {?ev2 :currentRoadElement ?connectedRoadElement .
 }.
 BIND(:getDist(?ev1, ?ev2) as ?ev2dist).
}

To change the ambulance’s
request range temporarily considering

the second emergency vehicle

BIND (smf:if(?ev2dist <= ?distanceRangeToAskPriority * 2),
 ?distanceRangeToAskPriority * 2, ?distanceRangeToAskPriority))
as ? distanceRangeToAskPriority).

 154

Third, even though the VEIN application ontology emphasised vehicles’ longitudinal

interrelation rather than vehicles’ lateral interrelation, it can be extended to deal with a multi-

lane situation. The application ontology was developed as a vehicular communication message

model for the ambulance scenario and the breakdown scenario on top of a one-dimensional

linear road network. An ambulance’s goal is to bypass traffic at the highest possible speed to

save a life, and it can be done safely and efficiently when the nearby vehicles give the

ambulance a clear lane to pass (or give the ambulance more room to travel by stopping or

pulling over if the roads are crowded). Accordingly, it is fair to say that the emphasis on the

vehicles’ longitudinal interrelation was appropriate. Even though two-dimensional or three-

dimensional descriptions such as roadway width and multi-lane properties were not considered,

the VEIN application ontology model can be extended easily to support vehicles’ lateral

interrelations. For example, with a new property vein:lane and a new

variable ?onTheSameLane, the SPIN functions and the SPIN templates of the VEIN

application ontology can be amended (Table 5.9).

In the breakdown scenario, it was assumed that the broken car pulled into the left lane and

stopped as far to the left as possible to minimise its adverse effect on the traffic flow. A warning

of the broken vehicle was received by drivers in the inside lane approaching the breakdown.

They were then required to change lanes as far away as possible from the breakdown if the

traffic flow allows. Even though the VEIN application ontology for the breakdown scenario was

focused on their longitudinal distance, for a clearer description of the breakdown case, the

‘vein:lane’ property can be used.

Table 5.9 - Possible lane property and variable for a multi-lane situation

Description Source code
Vehicle V1’s

road information

?myVehicle vein:currentRoadElement ?myCurrentRoad .

?myVehicle vein:lane ?myLane .

Ambulance A1’s

road information
?ambulVehicle vein:currentRoadElement ?ambulCurrentRoad .

?ambul vein:lane ?ambulLane .

New variable

?onTheSameLane

BIND (smf:if((?myCurrendRoad = ?ambulCurrentRoad)
 &&(?myLane = ?ambuLLane), true, false))
as ?onTheSameLane).

It has been demonstrated how classes, properties/relations, and query logics in the ontology

model can be extended for vehicle-to-infrastructure communications, a second emergency

vehicle, and a multi-lane situation. Based on the additional classes and their semantic relations,

 155

a situation can be described in more detail, and additional information and knowledge can be

extracted from the ontology model by using SPIN functions and templates as well as SPARQL

queries.

5.7 Summary and discussion

This chapter outlined the VEIN ontology model from three different perspectives, that is, for the

domain ontology, the task ontology, and the application ontology, which were described in

Section 5.2, Section 5.3, and Section 5.4, respectively. It also demonstrated how vehicles and

their interactions can be instantiated using the VEIN application ontology in Section 5.5.

First, Section 5.2 showed a domain ontology for an ITS environment. The four upper classes of

the domain ontology represented the four main classes of the ITS architecture. Even though this

domain ontology provides classes only for the general road users, such as pedestrians,

cyclists/bicycles, motorcyclists/motorcycles, and vehicles, it can be extended to other road users

(e.g. powered wheelchairs, mobility scooters, horse riders) for a specific purpose. The domain

ontology contains a class for level crossings (railroad crossing) where a road intersects a railway

line without recourse to a bridge, but it does not consider transferring between transport modes.

To use this domain ontology for intermodal passenger transport, which involves other transport

modes (e.g. airways, railways, waterways), transferring facilities, such as train stations, airports,

and piers, can be added.

Second, in Section 5.3, the task ontology was developed to model communications among the

four upper classes (i.e. vehicles, infrastructure, travellers, and centres) of the domain ontology.

The CommunicationAgent class and the CommunicationMessage class are extracted

from the data flows representing the actual information exchanged across subsystems of the

Vehicle class and the Infrastructure class. Then, classes for communication event and

communication network are added to represent the communication itself and communication

connection, respectively. The task ontology can be seen as a conceptual bridge between the

domain ontology and the application ontology representing vehicular communications.

Third, Section 5.4 showed the application ontology of the VEIN model to support the situations

of the two scenarios. It focused on properties and relations rather than classes and their

hierarchy to describe a vehicle’s route and relative location. It also provides SPIN functions and

templates to update a vehicle’s route and location and keep them as asserted information. When

 156

a situation is described with the instances of classes and their properties, a set of triples

(declarative sentences) may represent the situation. Similarly, a vehicle’s states in the situation

can be seen with the directly related triples. In addition, each triple can be used for further

knowledge and reasoning for the vehicle to take action, especially in partially observable

environments.

Fourth, Section 5.5 demonstrated how the interactions between vehicles for each snapshot of the

scenarios can be implemented by DSRC messages and the VEIN application ontology. Each

vehicle has its own ontology model, which inherits classes, properties, SPIN functions, and

SPIN templates from the VEIN ontology model. Each vehicle itself is instantiated in its own

ontology model while it can instantiate other vehicles in its model when it receives a DSRC

message from them. It also shows that the ontology model can be updated if DSRC messages

deliver arguments of a query template. Additionally, it may deliver a whole query or partial

ontology to update the ontology model depending on the applications.

Fifth, Section 5.6 highlighted the extensibility of the ontology model for the OBE-to-RSE

communications and the situations of a second emergency vehicle and a multi-lane road. The

graph-based representation made the ontology model flexible and extensible so that instances of

road facilities and their properties/relations are easily added, and new information can be

extracted by additional queries. Apart from that, new properties for road elements can be added.

Currently, there is no property for the road element’s directional information in the current

ontology model, while a vehicle’s direction on a road element can be acquired with its

previousJunction and nextJunction properties. Each vehicle’s ontology model was

intended to keep minimum ground facts for the vehicle’s current state. However, road elements’

directional information is compulsory to assign a vehicle’s route. The ontology model can be

extended to support a situation that a vehicle changes its route to avoid a traffic congestion

(Desai et al., 2013) by defining additional properties (e.g. directional information, restriction

information) to the road element class. Properties, which are not even known at the design time,

can be easily added, and this flexible extensibility is a benefit of using an ontology model.

In summary, this chapter proposed the VEIN ontology model that consists of classes, instances,

and object properties to describe vehicles’ movements in the road environment. For the VEIN

application ontology, SPIN functions and templates are built in order to implement the

information update from the communications among vehicles via OBE. Consequently, the

VEIN model provides a single ontological framework from the domain ontology and task

ontology supporting general ITS environments to the application ontology to cover the

 157

ambulance scenario and the vehicle breakdown scenario. The VEIN ontology model also uses a

relative description for the vehicle’s locations in order to simplify the decision-making logic (to

check whether a vehicle needs to take action in an emergency situation or not) by splitting the

geometric calculation from the decision-making process. Even though the VEIN ontology

model has focused on the interaction between the vehicles of the two scenarios, it covers both a

declarative approach that describes vehicles’ movements and a procedural approach that

describes the rules of a system or desired behaviours of a vehicle in emergency situations.

Therefore, it can be easily extended for more complex interactions among vehicles and the

infrastructure.

This chapter highlighted sharing vehicles’ presence (i.e. partial route and relative location) by

sending/receiving their partial ontology as the contents of DSRC message. However, it did not

deal with the volume issues of the ontology model and the DSRC message set. The large

volumes of the ontology model and the DSRC message set may delay vehicles’ processing and

communication respectively, and they can have a negative effect on vehicles’ situation

awareness. Thus, it is better for each vehicle to maintain minimum volumes of the ontology

model and the DSRC message set. To keep minimum ground facts in each vehicle’s ontology

model to maintain the vehicle’s current state, the ontology model can keep minimal road

information. The road information consists of only its own route, connected roads, and their

link–link topology, in memory in real-time. To minimise the volume of DSRC message set,

vehicles can share their partial route by using unique identifiers (i.e. URIs) of road elements and

junctions. There is no need for all vehicles to use the same map database in order to use road

features’ identifiers, but it is necessary that each road/junction element on the map databases

can be referred with its own identifier. Under the assumption that vehicles can refer same road

features with same identifiers, vehicles can share their relative location throughout vehicular

communications properly.

 158

6. Agent modelling and simulation

6.1 Introduction

The previous chapter proposed the VEIN ontology model as a messaging model emphasising

the information exchanges by DSRC, and the static snapshots of the scenarios were used to

validate the messaging model. This chapter outlines vehicles’ movement and communication

events in a dynamic virtual road environment that is modelled by Agent-Based Modelling and

Simulation (ABMS). This chapter presents the third stage of the methodological framework

(Figure 1.3), that is, modelling and simulating intelligent vehicles and their communications in a

virtual road environment.

The rest of this chapter comprises six sections. Section 6.2 provides information that is essential

for modelling vehicle agents’ characteristics and their movements in the road environment.

Section 6.3 describes the modelling process for the virtual road environment, in which vehicle

agents move and interact with each other by sharing communication messages. Focusing on two

scenarios, this section outlines the purpose of the simulation, the virtual road environment as a

modelling space, the model’s assumptions, and the vehicle agent’s attributes and behaviours.

Following this, Section 6.4 considers the development of the simulation environment using

Repast Simphony from its context, projection, and class hierarchy to setup the procedure,

dynamic procedure, and the output data of the simulations. Section 6.4 also includes a

description of the logic for the vehicles’ communications based on their locations and

movements following predefined routes on the road network. Section 6.5 describes the

preliminary simulations in order to verify the algorithms for vehicles’ movements and

communications and to decide the number of simulation runs. Section 6.6 presents the

simulation results and statistics using different initial parameters (e.g. different portions of

OBE-implanted vehicles in situations). The simulation results are analysed to identify the effect

of vehicular communications on the efficiency pattern of traffic in different simulation settings

(i.e. different portions of OBE-implanted vehicles and non-OBE vehicles) in the two scenarios.

Finally, Section 6.7 summarises the chapter and concludes with an overview of the main issues

discussed in this chapter.

 159

6.2 Vehicle agents and the road environment

There are two kinds of emergency events in terms of vehicular movement in the road

environment. The first refers to ‘static events’, which have a fixed location or coverage (e.g. a

car breakdown, road work ahead, or foggy area), and the second refers to ‘dynamic and spatially

moving events’, such as an emergency vehicle that requires the area to be clear around it. When

a vehicle is heading towards a static event, or when a dynamic event is coming towards a

vehicle, the vehicle should take action to resolve the situation. If beforehand, the vehicle

receives, through vehicular communication, information with respect to an event, then it will

have more time to respond to this specific event.

These two different kinds of emergency events were described as two scenarios in Section 4.3.

In the scenarios, it is assumed that vehicles can communicate with each other to share

information about their presence and traffic events. The agent simulation is designed to provide

a virtual environment of these emergency events, in which vehicle agents can reduce their

speeds safely to be ready in advance, having been alerted via vehicular communication, and so

avoid conflict with the events or pass through the events safely.

This section discusses the modelling process of intelligent vehicles and their environment.

Specifically, it explains intelligent vehicles’ characteristics including their movements and

communications based on their relative location and route. Then, the road environment, where

vehicles are moving, is outlined, focusing on how it can be created, using geographic

information such as road network and facilities locations (e.g. hospitals for the ambulance

scenario), for the simulation purposes.

6.2.1 Vehicles as intelligent agents

Vehicles move and interact with each other as agents in the road environment, while during the

simulation, the individual behaviours of each vehicle can be measured. A benefit of agent-based

modelling is that a whole traffic system can be explained and analysed based on vehicles’

individual behaviours (i.e. movements and interactions). Using vehicular communications,

vehicles are informed beforehand about a situation, so they have a longer response time to

prepare and take action to deal with the situation. The effects of these communications amongst

vehicles in an emergency situation can be measured only at the individual level because in this

 160

research, short-range vehicular communication (i.e. DSRC) has been used for a vehicle to share

information about its presence and situation with neighbouring vehicles. In addition, the

coalition of vehicles for the communication constantly changes as vehicles move while

following their routes, and vehicles in the vicinity of the emergency situation participate in the

communication only to resolve the situation.

The focus here is on a vehicle agent’s internal states and several road traffic statistics. The

vehicle agent’s internal states represent the driver’s mental states, which are related to his/her

next action/behaviour. The road traffic statistics includes national speed limits, recommended

minimum stopping distance, and free-flow24 speeds in order to model vehicles’ speed and inter-

vehicle distance.

6.2.1.1 Vehicle’s internal states

As mentioned in Section 3.2.1, an agent’s characteristics can be described using a BDI

architecture, and an agent’s beliefs, desires, and intentions can be mapped onto its knowledge-

base, goals, and plans for action, respectively. Building a vehicle agent’s BDI model that

represents the driver’s knowledge, goals, and intentions in a general situation would be a

complicated and challenging process, and indeed, building such a model is beyond the scope of

this research. This research deals only with vehicular interactions by communication in

emergency situations, and in an emergency situation, most vehicles will take action in order to

resolve the situation by following the emergency rules. Therefore, resolving the emergency

situation is regarded as the most important goal temporarily, so a driver’s BDI model can be

simplified.

Since the simulation focuses on the vehicles’ communications and movements during the

emergency situation, the vehicle agent’s behaviours before the emergency situation are not

measured. Instead, throughout the simulation and before the emergency situation, it is assumed

that the different speed and location of each vehicle are represented by the driver’s behaviours.

Generally, an agent will act based on the intention to achieve a goal from its priority list of goals,

while these goals and intentions change over time according to the agent’s internal states and

24 Free-flow speed is the term used to describe the average speed that a driver would travel if there were
no congestion or other adverse conditions (e.g. bad weather).

 161

external variables (i.e. the environment’s external variables and neighbour agents’ internal

states). So, an agent will define a goal and form a plan for achieving this goal based on its

current internal states and the external variables. However, when a vehicle agent encounters an

emergency event, this becomes the most important short-term goal for the vehicle to achieve

irrespective of its individual objectives, and it will take action to resolve the emergency

situation. In this context, an agent can sense an emergency situation, and its intentions can be

reactions, such as stop, slow down, move again, or change lanes. Therefore, when considering

emergency situations, an agent’s BDI architecture could be simplified by using the agent’s

memory, policy, and performance (Table 6.1).

Table 6.1 - A vehicle agent’s BDI in an emergency situation

BDI General content Possible content in an emergency Simplified term

Beliefs Internal knowledge
of the world

The vehicle’s and neighbour
vehicles’ location/ speed/ route on
the road network in an emergency

situation

Memory
to understand

current traffic situation

Desires Goals to achieve
Generally accepted reactions to
resolve the emergency situation

without any conflict over the event

Policy to act
without the conflict

over the emergency rule

Intentions
Most important

goals,
most doable plans

Resolving the emergency situation
= the most important goal

(temporarily)

Performance (behaviour)
 to resolve the situation

In agent-based modelling, perception, performance (behaviour), memory, and policy are the

agents’ four important characteristics (Abdou et al., 2012), so vehicles that communicate with

each other in an emergency situation can be considered and modelled as agents. Even though

vehicles are following static emergency rules in an emergency situation, each vehicle’s

behaviours will differ depending on its internal states, such as its relative location, speed, and

route.

As was noted earlier, vehicle agents’ behaviours are limited and simplified only for actions to

resolve an emergency situation, which is the most important temporary goal for vehicle agents

to achieve. So, the vehicle agents are designed to measure the effect of vehicular

communications in an emergency situation by sharing the information related to their presence

and current traffic events. Even though all general aspects of drivers’ behaviours are not

 162

considered, the limited behaviours of vehicle agents are enough to build a simulation

environment for different proportions of communicative25 vehicles in an emergency situation.

6.2.1.2 Vehicle’s speed and inter-vehicle distance

To simulate proper vehicle density on the road, it is crucial to set a specific number of vehicles

because the coverage of the road network will be fixed. Since vehicles are moving at high speed

on the road network, their speed and inter-vehicle distance are also important variables. As road

environments have been designed for road users, mainly cars, there are traffic instructions and

recommendations for a vehicle’s speed and braking distance based on roads’ type, geometry,

circumstance, etc. The speed of vehicles and the recommended stopping distances can be

referred to in order to simulate an ideal road environment that has a proper vehicle population

and that is close to the road’s designed capacity.

On the one hand, speed limits play ‘a fundamental role’ as ‘an indicator of the nature and risks

posed by that road’ to motorised and non-motorised road users (Department for Transport, 2006,

p.2). If there are no congestion or other adverse conditions, the average speed of vehicles on

roads is closely related to the speed limits of the roads (Table 6.2). In the simulation, measured

free-flow car speed ranges in Table 6.2a and Table 6.2d are used to randomise vehicles’ initial

speeds for the simulation of the ambulance scenario and the breakdown scenario, respectively.

Even though vehicles’ speed in the simulation can be set at greater than the national speed limits,

it is important to note that the speed limit is not a target speed for all circumstances. In reality,

for safety reasons, drivers need to slow down when they approach a bend in the road, a

roundabout/junction, roadworks, and so on. They also need to reduce their speed not only when

they share the road with other road users (e.g. pedestrians, motorcyclists, etc.), but also when

they drive at night or in bad weather.

On the other hand, each vehicle needs to leave enough space from the vehicle in front, in order

to be prepared for a sudden change in the front vehicle’s behaviours (e.g. when the front vehicle

slows down or stops). There are recommended stopping distances based on vehicles’ speed, and

even in faster-moving traffic flows. A vehicle needs to allow at least a two-second gap from the

25 A communicative vehicle is a car that has a vehicular communication device, so that it can
communicate with other communicative vehicles and road facilities to send and receive information about
a traffic situation.

 163

front vehicle for its own safety (Driving Standards Agency, 2007). If the vehicle travels at the

speed of 30 mph, its ideal stopping distance from the front vehicle is 23 metres (Figure 6.1). On

a one-way single-track road with a 2300 metres length and where 100 vehicles with the speed of

30 mph are randomly located, it can be said that their average distance may be similar to the

typical stopping distance of 23 metres. Meanwhile, the road network of a local area in reality is

composed of a number of linear features, and the road environment can be treated as a two-

dimensional space, so the average distance between vehicles should be different from the above

case of the long single-track road. Therefore, after vehicles are simulated, the average inter-

vehicle distance needs to be checked, and then the number of vehicles can be adjusted to get a

rational average inter-vehicle distance by a process of trial and error.

Table 6.2 – Free-flow car speed ranges in 2010 (Department for Transport, 2011a; Department for

Transport, 2011c)

Vehicle speed of cars Percentage Vehicle speed of cars Percentage
Under 20 mph 5 % Under 20 mph 1 %

20-29 mph 49 % 20-29 mph 3 %
30-34 mph 30 % 30-39 mph 17 %
35-39 mph 12 % 40-49 mph 44 %
40-44 mph 3 % 50-59 mph 28 %
45-49 mph 1 % 60-64 mph 5 %

50 mph and over 0 % 65-69 mph 2 %
More than 5 mph over limit 16 % 70 mph and over 1 %

Average speed (mph) 30 mph More than 10 mph over limit 1 %
Number observed (thousands) 54,544 Average speed (mph) 47 mph

(a) on Built-up roads (30 mph limit) Number observed (thousands) 42,251

 (b) on Single carriageways (60 mph limit)

Vehicle speed of cars Percentage Vehicle speed of cars Percentage
Under 30 mph 0 % Under 50 mph 4 %

30-39 mph 0 % 50-59 mph 14 %
40-49 mph 3 % 60-64 mph 14 %
50-59 mph 17 % 65-69 mph 19 %
60-64 mph 17 % 70-74 mph 21 %
65-69 mph 21 % 75-79 mph 15 %
70-79 mph 32 % 80-89 mph 12 %

80 mph and over 10 % 90 mph and over 2 %
More than 10 mph over limit 10 % More than 10 mph over limit 14 %

Average speed (mph) 68 mph Average speed (mph) 69 mph
Number observed (thousands) 43,847 Number observed (thousands) 385,917

(c) on Dual carriageways (70 mph limit)

(d) on Motorways (70 mph limit)

 164

Figure 6.1 - Recommended minimum safe stopping distance (Driving Standards Agency, 2007)

In our daily lives, the majority of vehicles exceed the speed limits and occasionally do not

maintain the necessary stopping distances (Brake, 2010; Department for Transport, 2011b;

Department for Transport, 2011d). In the simulation, an ideal road environment, in which

vehicles travel at a desired speed if they can and maintain a safe stopping distance from the

front vehicle, is considered, and the free-flow vehicle population for each simulation is set

mathematically. A vehicle travels at a desired speed if there is no vehicle in front, but the

vehicle needs to slow down to keep a safe distance from the lead vehicle. There are several car-

following models (e.g. Krauss Model, Nagel and Schreckenberg Model, Wiedeman Psycho-

Physical Model, General Motors Model, Gipps Model, Intelligent Driver Model) to define

acceleration/deceleration function of a vehicle’s dynamic behaviour when approaching the lead

vehicle (Härri et al., 2007). In this research, the time-continuous Intelligent Driver Model (IDM)

is adapted to produce realistic acceleration profiles and reactions of vehicles in a single lane

traffic situation, and its mathematical description is presented in Table 6.3 (Treiber and Kesting,

2013).

To model vehicles approaching a stationary vehicle (for the broken car in the second scenario)

or a junction (for the first scenario), a traffic light model or an junction/intersection management

model is necessary. A simple non-signalised junction management model is implemented based

on the dynamic term 𝑣∆𝑣/(2 𝑎𝑏) of the IDM and the first-in-first-out (FIFO) principle. The

dynamic term can be simplified and seen as the kinematic deceleration of a vehicle when

approaching to a stationary vehicle or a junction.

 165

Table 6.3 – Mathematical description of IDM

Equation

𝑣 = 𝑎 1 −
𝑣
𝑣!

δ
−

𝑠∗ 𝑣,∆𝑣
𝑠

2

𝑠∗ 𝑣,∆𝑣 = 𝑠! +𝑚𝑎𝑥 0, 𝑣𝑇 +
𝑣∆𝑣
2 𝑎𝑏

 s: the current distance, s*: the desired distance
Parameters Road Motorway

Desired Speed v0 at free flow
(When followed by other vehicles)

See Table 6.2a See Table 6.2d
30 mph 60/70/80 mph

Time gap T 1.0 s
Minimum gap S0 2 m

Acceleration exponent δ 4
Acceleration a 1.0 m/s2

Comfortable deceleration b 1.5 m/s2
Vehicle length 5 m

Meanwhile, in a general situation, vehicles travel according to their own goals and plans as long

as their movements are not strongly against traffic instructions. It is possible to model

individual-level behaviours according to statistics and surveys about drivers’ behaviours and

attitudes. However, this is still one of the most difficult aspects of agent-based modelling and

simulation, and as stated earlier, it is beyond the scope of this research, since it is a separate

research question that deals with general traffic analysis and requires the implementation of a

different simulation approach.

Our focus here is on vehicles’ actions through vehicular communications in emergency

situations, in which emergency rules can be generally accepted to resolve the situations.

Therefore, the simulation itself is intended to provide a virtual road environment, in which

vehicles send/receive traffic information and have more time to prepare for an emergency

situation. To measure the effect of vehicular communications in an emergency situation, the

simulation has to be executed based on the assumption that there is proper number of vehicles

and no other traffic obstacles, such as a traffic jam, except the emergency event itself. In

addition, the simulations focus on communications from an emergency vehicle or a broken-

down vehicle to the vehicles in the vicinity, rather than communications amongst neighbouring

vehicles.

Here we have presented some statistics and measurements that can be used to set the vehicles’

properties (e.g. speed, inter-vehicle distance) in the simulation. The next section outlines the

road environment and its initial dataset in more detail.

 166

6.2.2 The road environment

As a model space, the geometric information of a virtual road environment is necessary for

locating the vehicle agents on it and simulating their movements and interactions. The geometry

of a road network and routing information within the M25 area were acquired from the OS

MasterMap Integrated Transport Network (ITN) layer. ArcGIS 10 and Productivity Suite 2.1

were used to get a feature dataset and a network dataset from the OS MasterMap ITN data. The

ITN layer contains Great Britain’s road network, and there are three main elements: Road

Network, Road Routing Information (RRI), and Urban Paths (Ordnance Survey, 2011).

First, the Road Network theme represents the geometry of Great Britain’s road network from

motorways, A-roads, and B-roads to local streets, pedestrianised streets, and alleys. Road

network analysis supports various kinds of network analysis, for example, routing for a shortest

path, servicing a set of orders, finding a closest facility, identifying a service area, and finding

the allocation of facilities. For the purposes of the previously noted analyses, there are two ways

of calculating the vehicles’ accessibility: a) using travel distance and b) using travel time. To

use travel time for the network analysis, it is necessary to use general speeds for the roads when

building the road network, as shown in Figure 6.2.

Figure 6.2 - The default speed data for roads to calculate the travel time attribute in the road

network

 167

Second, RRI includes routing information for drivers on mandatory and banned turns and other

restrictions. The routing information of RRI is also categorised into three qualifiers:

environmental qualifiers, vehicular qualifiers, and date/time qualifiers. Environmental qualifiers

contain information with respect to one-way streets, level crossings (railroad crossing), bridge

heights, traffic calming measures, etc. Vehicular qualifiers describe the types of vehicles

affected by the routing information, such as a section of road (e.g. bus use only). Date/time

qualifiers show periodic information like seasonal road closures or bus lanes operating at certain

times of the day only.

Some environmental qualifiers of routing information are also used to obtain information about

one-way and no-entry restrictions. This information is acquired by joining the road links feature

class (RDLK) and the two tables (RRIDL, ENVQ) described in Table 6.4. When the feature class

and two tables are joined, the Qualifier field and the DirectedLinkOrientation

field illustrate the restriction attribute and its direction, respectively (Table 6.5). The ‘+’ value

of the OneWay field shows an one-way flow from the beginning to the end of the road link

while the ‘–’ value of the field indicates an one-way flow in the opposite way. These Join

operations consider only road links where the whole road link has the restriction, so partial road

link restrictions such as bus lanes in conjunction with date/time qualifier data are not considered

in the simulation.

Table 6.4 - Key fields for join operations to get one way and no entry restrictions (ESRI UK, 2006)

Source Table / FC Join Field Target Table / FC Join Field
RRIDL TOID ENVQ TOID
RDLK TOID RRIDL_ENVQ RRIDL.DIRECTEDLINKTOID

Table 6.5 - Field names to get one way and no entry restrictions (ESRI UK, 2006)

Attribute Source Fieldnames Description

OneWay RRIDL.DirectedLinkOrientation
where ENVQ.Qualifier = ‘One Way’

One way and direction
“+” : Permitted flow is in the direction
of the digitisation of the line
“-” : Permitted flow is against the
direction of digitisation of the line
“N” : There is no one-way restriction,
flow can occur in either direction

NoEntry

RRIDL.DirectedLinkOrientation
where ENVQ.Qualifier = ‘No Entry’

Indicates that the link is no entry
“+” : No entry at the start of the line as
digitised
“-” : No entry at the end of the line as
digitised
“N” : The link does not have a no-entry
restriction

 168

Third, Urban Paths is a new theme for man-made footpaths, subways, steps, footbridges and

cycle paths in urban areas. It was made to join up path and road centrelines by adding the links

and nodes of urban paths to the ITN network in order to encourage multi-modal travel in towns

and built-up areas. However, as we focus on the movement of vehicles, the Urban Paths theme

is not relevant to the proposed simulation.

Even though vehicles can move on most types of roads in the road network - except

pedestrianised streets and alleys - in this simulation, three types of major (motorway, A-road, B-

road) and minor roads are used as an environment in which vehicle agents can travel (Table 6.6).

A-roads, B-roads, and minor roads are used for the ambulance scenario, while motorways and

some dual carriageway A-roads are utilised for the breakdown scenario.

Table 6.6 - Road types used in the simulation

ITN road type (DescTerm) Vehicle access Used in the simulation
Motorway P P
A-road P P
B-road P P
Minor road P P
Local Street P
Private Road - Publicly Accessible P
Private Road - Restricted Access P
Pedestrianised Street
Alley

Section 6.2 presented the traffic statistics that can be used to model vehicles’ properties (e.g.

speed and inter-vehicle distance). Even though roads are designed for vehicles to keep within

speed limits and to maintain the recommended minimum safe stopping distance, it is assumed

that using traffic statistics of vehicle speed and inter-vehicle distance is more realistic than using

traffic regulations and recommendations for modelling moving vehicles on the road. We have

also outlined the process of building a virtual road environment and explained how a directed

road network was extracted and simplified for vehicle agents.

 169

6.3 Agent modelling

This section attempts to bridge the communication massage model that was developed from the

scenarios and the agent simulation by presenting the dataset used to build the virtual road

environment as well as the vehicle agents’ attributes and behaviours. It begins by clarifying the

purpose of the agent simulation, which is to examine the model for vehicular communications in

dynamic situations (Section 6.3.1). Then, Section 6.3.2 describes the virtual road environment

for the ambulance scenario and the vehicle breakdown scenario. Section 6.3.3 presents the

modelling assumptions, while Section 6.3.4 outlines the vehicle agents’ attributes and

behaviours.

6.3.1 The purpose of the simulation and expected results

This simulation is designed to provide a dynamic road environment where an ambulance or a

broken vehicle communicate with its neighbour vehicles to share its presence and elicit their

reactions/behaviours to resolve an emergency situation (i.e. the ambulance scenario and the

breakdown scenario in Chapter 4). The concepts of the VEIN application model are reused to

develop the vehicle agents’ communication behaviour, but the simulation itself does not provide

a dynamic validation of the VEIN application ontology. As a dynamic validation of the

vehicular communications, the simulation just provides a virtual environment of the dynamic

situations that may examine vehicles’ possible proactive/reactive behaviour based on the

vehicular communications.

Vehicles’ communications and interactions can be simulated repeatedly with different

parameters, and the results can be used to show the effect of vehicular communications in

different situations. We assume that hybrid environments, in which different portions of OBE-

implanted vehicles and non-OBE vehicles, are simulated to assess the effect of vehicular

communications on the traffic efficiency in emergency situations and to support the transition to

the ITS environment for the OBE-implanted vehicles. To achieve this, five types of hybrid

environments are simulated for situations of the two scenarios, and each environment represents

from 0% of OBE-implanted vehicles to 100 % of OBE-implanted vehicles (Figure 6.3).

 170

Figure 6.3 - Hybrid environments depending on the percentage of the OBE-implanted vehicles

One benefit of agent modelling and simulation is that it shows macro-level regularities from

micro-level individual interactions (Abdou et al., 2012). During the simulations of the scenarios,

the total number of affected vehicles will be logged to represent the relationships between the

vehicular communications and the effects of the emergency situation to the traffic flow. In this

context, the vehicular communications represent micro-level individual interactions, while the

effects of the vehicular communications on the traffic flow represent the macro-level regularity.

Therefore, the agent simulations in the five hybrid environments that represent the transition of

the percentage from 0% of OBE-implanted vehicles to 100 % of OBE-implanted vehicles are

useful to check if there are any positive effects of the vehicular communications to the whole

traffic flow. In addition, as mentioned in the introduction, altering existing vehicles and

infrastructure to provide such environments in a physical way is prohibitively expensive and

difficult to achieve, so futuristic road situations are better to be simulated before any physical

implementation actually takes place.

6.3.2 The virtual road environment as modelling space

The virtual road environment has to be sufficiently large to permit enough heterogeneity and

opportunities for vehicular interactions, and at the same time, it has to describe the road

environment for the situations of two scenarios. The scenarios represent sudden traffic obstacles

on the road; the former represents a spatially dynamic obstacle with the example of the sudden

appearance of a rapidly moving vehicle from behind or from other directions, and the latter

 171

depicts a spatially static but temporally sudden obstacle, such as a sudden vehicle breakdown in

front.

Even though there are other kinds of traffic obstacles (spatiotemporally static obstacles, like

roadworks), this research focuses on spatially dynamic obstacles and spatially static obstacles

on the road, as described in the scenarios (Section 4.3). In the simulation, as the vehicles move

and communicate with each other on the road, the virtual road environment is necessary to

simulate the vehicles’ movements and communications. The following two sections outline the

virtual road environments for modelling the ambulance scenario and the vehicle breakdown

scenario.

6.3.2.1 The road environment for the ambulance scenario

For the ambulance scenario, the geometric part for the road environment consists of the road

network and hospital points. The road network of Greater London was generated from

Ordnance Survey MasterMap ITN layer, and using data from the NHS website a point layer was

created to represent hospitals in London that have an accident and emergency (A&E)

department (Figure 6.4). Three hospitals were chosen from the hospital layer to extract local

road networks for each hospital in order to simplify and localise the road environment. Each

road network for a hospital represents a different road geometry in urban and suburban areas

(Figure 6.5).

Figure 6.4 - Hospital locations and the road network within the M25

 172

a) University College Hospital

 (b) Kingston Hospital (c) Princess Royal University Hospital

Figure 6.5 - Road networks around three hospitals

According to the national standards for red calls, an emergency response should reach 75

percent of calls within eight minutes for an immediately life threatening condition, such as

cardiac arrest (Table 6.7). However, ideally, help by trained ambulance personnel should be

provided within five minutes of a cardiac arrest (Pell et al., 2001; Torp-Pedersen et al., 1989).

Consequently, service area analysis is carried out to extract local road networks that are

accessible to each hospital within five minutes (the shaded areas26 of Figure 6.5).

26 Only shaded areas of the road networks are used for the simulations. To create a simpler simulation
environment as designed in Table 6.6, local streets are also removed from the road networks.

 173

Table 6.7 - National standards for red calls (NHS Information Centre, 2008)

Red call Category Condition National target for
emergency response

Red 8 Category A Immediately life threatening condition
(e.g. cardiac arrest, respiratory arrest) 75% in 8 minutes

Red 19 Category B Serious but not immediately life threatening
condition (e.g. traumatic injuries or fractures) 95% in 19 minutes

6.3.2.2 The road environment for the vehicle breakdown scenario

For the vehicle breakdown scenario on the motorway, the M25 motorway carriageways are

extracted from the Ordnance Survey’s MasterMap ITN layer. Some dual carriageway A-roads

that are directly connected to M25 and/or around motorway junctions are also considered

(Figure 6.6). As dual carriageways are used for the road environment of the breakdown scenario,

vehicles on one carriageway have no influence on the traffic flow on the other carriageway.

Figure 6.6 - Dual carriageways around London

When importing OS MasterMap ITN data into a feature dataset and a network dataset in a

geodatabase, ArcCatalog and Productivity Suite were used. A network dataset in a geodatabase

is a virtual feature dataset, which only exists logically for the network analysis in ArcGIS.

However, for the simulation in the Repast Simphony, a road network has to be loaded within a

shape file format. In the original shapefile, road features around interchanging motorways are

split into smaller pieces and a road feature does not represent a motorway segment/junction

 174

properly. Thus, road features are edited to express the road connectivity of motorway segments

and junctions around two interchanging motorways, as shown in Figure 6.7.

(a) Before editing (b) After editing

Figure 6.7 - An example of road feature editing for the road direction and connectivity

6.3.3 Model assumptions

Generally, when modelling emergent 27 phenomena, existing theories and information are

required to support and justify the model, but the simulation in this research is not a case of

emergent phenomena. The simulation was designed to supplement the static validation of the

communication messaging model, which described the vehicles’ movements and

communications with static snapshots in the previous chapter. Through the simulation, a

dynamic virtual road environment is built to examine the effect of the vehicular communication

to support vehicles’ interactions by sharing their locations and movements in advance.

It is assumed that vehicles are the only agents for the simulations. In order to simplify the

simulations, road facilities, such as traffic signals, are not considered as agents. In addition, to

compare the effect of the OBE-implanted vehicles in emergency situations, the portion of OBE-

implanted vehicles is treated as the only different parameter for simulations. Other parameters,

such as the number of vehicles, and each vehicle’s preferred speed, origin, destination, and

route, are fixed and remain static.

27 Emergent is the adjective form of emergence. Emergence is the process of complex pattern formation
from a multiplicity of relatively simple interactions. Emergence is central to the theories of complex
systems.

 175

Of course, an emergency situation on the road is still in the boundary of the complex transport

systems and patterns, which arises from the multiplicity of relatively simple interactions among

vehicles and the road infrastructure, so it could be considered as an emergent phenomenon.

However, in the simulations many variables are simplified and fixed to examine the potential of

the vehicular communication. Thus, this research demonstrates that local interaction amongst

vehicles can be supported by information and communication technologies, especially in

emergency situations.

6.3.4 Vehicle agents’ attributes and behaviours

Vehicle agents share their relative locations via communications, so their attributes and

behaviours are related to spatiotemporal information and vehicular communications. Thus,

vehicle agents’ attributes and behaviours are designed based on the classes and properties of the

VEIN application ontology (Table 6.8). Every vehicle agent has general attributes (e.g. current

coordinates, current speed, current road element, next junction element, etc.) for travelling. The

emergency vehicle and broken-down vehicle have proactive methods for sending messages,

while the others have reactive methods to respond by reducing speed, giving way to the

ambulance or changing lanes to avoid the broken-down vehicle.

For vehicles that are travelling, each vehicle’s initial route is calculated from its origin to its

destination. For the ambulance scenario, the destination of the emergency vehicle (i.e.

ambulance) is fixed to the hospital’s location. For other vehicles, the nodes and vertices of road

features are used both for an origin and a destination to build their route. Then, in every time

‘tick’,28 each vehicle agent updates its location information and checks whether there is a

request/warning from an emergency vehicle or a broken-down vehicle. If there is an emergency

situation, a vehicle proceeds to a decision-making process based on its own location and the

information transmitted from an emergency vehicle to allow its driver to take action appropriate

to the occasion.

28 Time within an agent simulation environment is regarded as a discrete event whose quantum unit of
time is known as a ‘tick’ (Crooks, 2007). If event x and y are scheduled at tick one and two respectively,
event y will execute after x.

 176

Table 6.8 - Vehicle agent’s attributes and behaviours

Vehicle class Attributes Behaviours Remarks

Vehicle
(all vehicles)

origin, destination,
current coordinates,

current speed,
currentRoad, nextRoad

prevJunction, nextJunction,
distanceToNextJunction,

timeToNextJunction,
routeSegments,
routeJunctions

travel()

Common
attributes

and
behaviours

Private vehicle

getRequested(),
answerBack(),

changeVelocityIDM(),
changeVelocityJunctionManagement(),

stop(),
moveOverToTheRightLane()

Reactive
behaviours

Emergency vehicle,
Broken-down vehicle

distanceRange,
timeRange request(), warning() Proactive

behaviours

6.4 Agent simulation29

The previous two sections described vehicle agents’ attributes and behaviours as well as their

virtual road environment to cover dynamic interactions, mainly communications, among

vehicles to share their geospatial information to resolve the emergency situations in the

scenarios.

This section outlines several important points that are used to develop agent models and to test

them using simulations. Repast Simphony was chosen as the agent modelling and simulation

platform. Thus, explanations and descriptions about agent implementation are closely related to

Repast Simphony. Amazon Elastic Compute Cloud (for a Windows platform) and a Mac OS X

platform are used as the simulation servers.

Section 6.4.1 explains the context and projection, which are agents’ container and model space,

respectively. Then, Section 6.4.2 outlines descriptions about agent classes and their hierarchy. It

covers the setup procedure, which outlines initial parameters and variables for agents and the

environment, and the dynamic procedure, which covers the agents’ states including their speed

and route as well as the agents’ behaviours, such as their movements and giving way to an

29For the simulation, Repast Simphony 1.2.0 was used, and the workspace (for source code and data) is
obtainable at https://goo.gl/aaOxhA. Major parts of the source code are also provided in Appendix D.

 177

ambulance. Finally, Section 6.4.3 shows what kinds of data can be extracted and logged during

the simulations.

6.4.1 Agent, context, and projection

In Repast Simphony, contexts and projections are used to organise agents and their space. As

described in Section 3.2.3.3, a context acts as a container for agents while a projection

represents agents’ location and their spatial relations in the context. In the simulation, a context

and two projections are used (Table 6.9). Vehicle agents, road elements, and junctions are added

into the context. Road elements and junctions are the basic elements used to build the geometry

of the road environment. A road environment can be represented as a geographic space and as a

network. Therefore, two projections, a GIS topology model space (i.e. roadGeography) and a

network topology model space (i.e. roadNetwork), are used in the simulation.

Table 6.9 - Context and projection used in the simulation

Type Elements

Context

• vein.Vehicle
o vein.EmergencyVehicle
o vein.BrokenVehicle
o vein.PrivateVehicle

• vein.RoadElement
• vein.Junction

Projection
• GIS topology model space: roadGeography
• Network topology model space: roadNetwork

The GIS space is needed to allocate vehicle agents’ location on the road, and the network space

is used to calculate vehicles’ shortest route based on the weights (e.g. lengths) of the edges.

With the two model spaces (projections), vehicles’ movements and their spatial/social relations

can be represented. Since each projection offers various methods to query, calculate, and

analyse features and objects in the model space, various geographic (spatial) analyses can be

performed, for example, spatial overlay and buffer analysis for the geographic projection, and

network analysis for the network projection.

 178

6.4.2 Classes and their hierarchy

For the agent simulation, several Java classes are built on top of the Repast Simphony platform.

Some Java classes are made to represent vehicle agents and road network, and other classes are

designed to initialise parameters, build the context, and set the projection for the agents’

environment. These classes can be categorised into four groups, namely, the parameters and

simulation initialisation group, the road geography and road network group, the vehicle and

route group, and the vehicular communication group (Table 6.10). The first group is composed

of the classes that initialise the simulation environments and set the parameters, which can

affect the simulation results. The second group contains the classes that generate the road

environment for the vehicles to move on. The third group contains the classes for vehicle agents

and their route. Last, in the fourth group, there is a communication message class duplicating

functionality from the VEIN application ontology. Its properties and methods are logically

mapped from properties and query functions/templates of the VEIN application ontology (Table

6.11). Even though the class is not directly integrated with the VEIN application ontology, it

reproduces vehicular communications to trigger the vehicle agents’ reactive behaviours during

the simulations.

Table 6.10 - Class groups and class hierarchy for the agent simulation

Class group Class and class hierarchy

Parameters and
simulation

initialisation

• vein.GlobalVariables
• vein.VeinContextCreator
 (implements repast.simphony.dataLoader.ContextBuilder<T>)

• repast.simphony.context.DefaultContext<T>
o vein.ContextOne

• vein.Infra

Road
geography and

network

• vein.RoadElement
• vein.RoadEdge
• repast.simphony.space.graph.RepastEdge<T>

o vein.MyRepastEdge<T>
• vein.Junction

Vehicle and
Route

• vein.Vehicle
o vein.EmergencyVehicle
o vein.BrokenVehicle
o vein. PrivateVehicle

• vein.Route
• vein.MyShortestPath<T>

 (implements repast.simphony.space.projection.ProjectionListener<T>)
Vehicular

Communication • vein.CommunicationMessage

 179

Table 6.11 – The CommunicationMessage Class extracted from the VEIN application ontology

VEIN application ontology The CommunicationMessage class

geo:where

vein:isAtASpeedOf

double x, y;

double speed;

vein:previousJunction

vein:comingJunctions

vein:nextJunction

vein:currentRoadElement

vein:nextRoadElement

Junction previousJunction;

ArrayList<Junction> comingJunctions;

Junction nextJunction;

RoadEdge currentRoadEdge;

RoadEdge nextRoadEdge;

vein:remainingDistanceToNextJunction

vein:remainingTimeToNextJunction

double remainingDistanceToNextJunction;

double remainingTimeToNextJunction;

vein:updateRelativeLocation

vein:fnInTheSituationOfEmergencyVehicle

vein:fnInTheSituationOfVehicleStationary

boolean updateRelativeLocation()

boolean isInTheSituationOfEmergencyVehicle()

boolean isInTheSituationOfVehicleStationary()

Meanwhile, each class in Table 6.10 can be seen as a part of the modelling procedures (i.e.

setup procedure and dynamic procedure). The next two sections describe the classes in the setup

procedure to initialise the virtual road environment and vehicle agents’ properties, and the

dynamic procedure to update vehicles’ states (e.g. movement, communication, and reaction),

respectively.

6.4.2.1 Setup procedure (initialisation procedure)

In the setup procedure, the variables for vehicle agents and the road environment are initialised.

Then, the virtual road environment is built, and vehicle agents are instantiated with their

properties such as speed, route, etc.

The GlobalVariables class is composed of global parameters that can affect the initial

settings of vehicle agents and the road environment. Assigned values of global parameters are

set when the simulation is executed from a parameter file in the XML format. The batch mode

is used with a parameter file to obtain simulation results from different percentages of

communicative vehicles. A parameter file sets the initial values for the vehicle population, the

percentage of DSRC vehicles, the DSRC vehicles’ communication range, the number of

ambulances or broken-down cars, a shape file name for the road environment, etc.

The VeinContextCreator class implements the ContextBuilder interface to build a

context as a container of agents and a projection to set a space for the context. It has a

 180

build(Context<Object> context)method that plays a role similar to a main()

function in C or Java programming. This function uses some methods of the Infra class to

generate a road environment from a shape file and instances of vehicle agents. The European

Petroleum Survey Group (EPSG) Projection 27700 (i.e. British National Grid) was used as the

projection for the context. The British National Grid is a projected coordinate system, which

makes it easier to deal with distance-based calculations for vehicles’ movements during the

simulation.

All instances for the road environment and vehicle agents are built in the Infra class. This

class generates road elements, a road network, and vehicle agents, and sets the vehicles’

properties, such as their origin, destination, and route. The Infra class has methods to create

and set instances of the road element, the road network, and the vehicles. It also has some

methods to get/find agents from the context. To represent the road geometry, each instance of

the RoadElement class is generated from each feature (polyline) of the road shapefile, which

is extracted from the ITN layer. After loading the shapefile, the route of an ambulance or a

broken vehicle is defined, and then the road elements that are located away from the route are

removed by buffering analysis to simplify the virtual road environment. Instances of the

RoadElement class have properties for one-way roads and some restrictions, and these

properties are used to generate a road network, which has realistic routes and road access. The

road network is composed of edges (instances of the MyRepastEdge class) and junctions

(instances of the Junction class). A feature (polyline) of a road element has two nodes and

additional vertices to express the road element’s geometry information. Junctions are generated

from nodes (two end points) of road element features, and each edge of the network is created

by using two junctions and the length of a road element. To represent a one-way street, directed

edges are used for the road network, so a two-way street has two road edges to allow vehicles to

travel in both directions.

The Vehicle class defines the properties and methods for vehicles, and it is the super class of

the EmergencyVehicle class, the BrokenVehicle class, and the PrivateVehicle

class. A vehicle’s origin, destination, speed, and route are initialised in the setup procedure. The

Route class generates a vehicle’s moving track on the road with reference to the road

geography and road network to set and update the vehicle’s movement and journey during the

simulation. For a vehicle’s route, its origin junction and destination junction are chosen

randomly, and then the MyShortestPath class examines whether there is a possible

shortest path between the origin and the destination. Dijkstra’s algorithm (Dijkstra, 1959) is

 181

used for the shortest path, which is provided by the Java Universal Network/Graph Framework

(JUNG) library, as a part of Repast Simphony. If a vehicle’s origin and destination are given too

close to each other and their Euclidean distance is less than 1 km, either the origin or the

destination will be reassigned until the vehicle gets a proper path. The RoadEdge class is

designed for a vehicle’s route, which is a list of directed road elements from the origin to the

destination.

6.4.2.2 Dynamic procedure

During the simulation, there are three dynamic methods for vehicles’ movements,

communications, and reactions. These methods are included in the step() method of the

Vehicle class, and they are checked and executed in each ‘tick’ for vehicles to take action

based on their current location. First, the travel() method of the Vehicle class represents

the vehicles’ movements. A vehicle’s travel distance per unit time is dependent on the vehicle’s

speed and the duration of the unit time, and a global variable TRAVEL_PER_TURN is used for

vehicles to convert their speed to distance in every time ‘tick’ in order to update the vehicle’s

location during the simulation. To obtain a vehicle’s next location in each ‘tick’, the vehicle

needs to have a list of vertices of road edges in the route, and its next location can be a vertex, a

node, or somewhere between them. Second, the EmergencyVehicle class and

BrokenVehicle class, which inherit the Vehicle class, have additional properties and

methods to send and receive communication messages. There are two methods; request()is

used to make requests and getAnswerback()is used to obtain responses from affected

vehicles. Third, vehicles in the vicinity of an emergency vehicle or a broken-down vehicle need

to react properly. There are two methods; these are stop()to give way to the ambulance and

moveOverToTheRightLane()to avoid the broken-down vehicle.

Each vehicle has its own instance of the CommunicationMessage class, and its

updateRelativeLocation() method is used to update the vehicle’s current relative

location. When a vehicle get a request from an emergency vehicle or a broken-down vehicle,

either of the InTheSituationOfEmergencyVehicle() method or the

isInTheSituationOfVehicleStationary() method is used to check if the vehicle

needs to take an action or not. This class is also a container to share a vehicle’s partial route and

its relative location based on their remaining distance and remaining time to a junction or a

 182

road’s node. To describe a partial route, some properties for the previous and next junctions,

current and next road edges, and upcoming junctions are defined. In addition, there are some

methods to obtain the remaining distance and time to the next junction from a vehicle’s current

location to calculate a vehicle’s relative location.

The getRemainingDistanceToNextJunction()method translates a vehicle’s absolute

location (two-dimensional coordinates) into a numeric value, which represents the distance from

the vehicle’s location to the next junction to simplify the communication contents and the

decision-making process. Vehicles have a different speed and different remaining time to the

junction even if two vehicles have the same remaining distance to the same next junction. So,

there is the getRemainingTimeToNextJunction()method to allow a vehicle to obtain

the relative time to its next junction. In this way, a vehicle’s absolute location can be

represented relatively with reference to a junction. If several vehicles are heading towards the

same junction, the vehicle’s location can be represented relatively.

6.4.3 Simulation outputs

Based on initial parameters and randomised variables, the simulation runs may give different

results. To obtain and analyse the data and statistics of the simulation results, some data are

extracted and logged as outputs. Repast Simphony contains a package called

repast.simphony.data.logging.outputter for data logging in various formats

and time durations. For the simulation results of the ambulance scenario and the breakdown

scenario, the ambulance and the broken-down vehicle collect some data related to themselves

and to the vehicles around them per every time ‘tick’.

Figure 6.8 shows an example of the ambulance scenario where a rapidly moving ambulance is

heading towards a hospital. In each time ‘tick’ (0.1 sec), the locations of the ambulance and the

other vehicles are updated, and the ambulance’s communication targets change constantly

during the journey towards the hospital. The ambulance is shown as a big red point, while the

vehicles around it are shown as smaller blue points. The ambulance shares its location and

partial route information in real-time, and the effect of vehicular communications on the traffic

efficiency in an emergency situation is measured during the simulation to support the transition

towards ITS.

 183

 (a) Initial allocation of vehicle agents

(b) After 1000 ticks (c) After 2000 ticks

 (d) After 2500 ticks (e) After 3000 ticks

Figure 6.8 - An example of simulation for the ambulance scenario around University College

Hospital30

Figure 6.9 shows an example of the breakdown scenario where rapidly moving vehicles are

heading towards a breakdown spot. In each time ‘tick’, the locations of the vehicles are updated,

and the broken-down vehicle’s communication targets change constantly. The broken-down

vehicle is shown as a red point, while vehicles that need to change lanes because of the

breakdown are described as sky-blue points with labels (i.e. v01, v02, v03, etc.). The broken-

30A dynamic example of the ambulance simulation is obtainable at https://youtu.be/-vgDR77Rels.

 184

down vehicle shares its location and partial route information via vehicular communication, and

the effect of vehicular communications on the traffic efficiency in the breakdown situation is

measured during the simulation.

(a) After 100 ticks (b) After 200 ticks (c) After 300 ticks (d) After 400 ticks

(e) After 500 ticks (f) After 600 ticks (g) After 700 ticks (h) After 800 ticks

Figure 6.9 - An example of simulation for the breakdown scenario on a motorway31

Table 6.12 shows the list of the data logged in every time ‘tick’ in the simulation runs. The log

file can be split into three parts. The first part stores the emergency vehicle’s travelling in every

‘tick’, the second part saves the parameter values of the simulation, and the third part keeps the

history of the number of vehicles that receive the request from the emergency vehicle (i.e. the

ambulance or the broken-down vehicle) as well as the number of vehicles that are

affected/unaffected by the ambulance or the broken-down vehicle. In the ambulance situation,

the vehicles that slowed down, stopped and gave way to the ambulance are considered as the

31A dynamic example of the breakdown simulation is obtainable at https://youtu.be/PK8H_OELnSI.

 185

affected vehicle. In the breakdown situation, the affected vehicles mean the vehicles that could

not change lanes because of through traffic on the right lane they wish to enter so that they are

slowed down and stopped behind the breakdown until they find an opportunity to change lanes.

During the simulation, the effect of the communications (sharing an emergency vehicle’s

presence, relative location, partial route, and emergency rules) on the traffic flow is measured. If

a vehicle is not disturbed by the emergency vehicle (i.e. the ambulance or the broken-down

vehicle) even though it is inside the effect zone of the emergency vehicle, the vehicle is counted

as an unaffected vehicle. In the PrivateVehicle class, static variables are used to obtain the

number of affected vehicles and unaffected vehicles by the emergency vehicle’s presence.

Table 6.12 - The list of variables in the log file during the simulation

Variable Description
Tick() Accumulated time (number)
this.getName() The message sender vehicle’s name
this.getSpeed() The message sender vehicle’s speed
this.getCurrentCoordinateX() The vehicle’s current x coordinate
this.getCurrentCoordinateY() The vehicle’s current y coordinate
this.getCurrentRoadFID() Current road ID that the vehicle is on
this.getNextJunctionID() Next road ID of the vehicle will be on
this.getRemainDistanceToNextJunction() The vehicle’s remained distance to the next junction
this.getDTravelTime() The vehicle’s accumulated travel time (sec)
this.isArrived() True when the vehicle arrives at the destination
GlobalVariables.iRondomSeed Random seed value for random number generator
GlobalVariables.iPercentUsingOnt Percentage of the vehicles that have an OBE
GlobalVariables.numVehicle Total number of vehicles except the message sender
GlobalVariables.numEmergencyVehicle The number of message sender
GlobalVariables.commrange Communication coverage distance (metre)
this.getNumOfVehicleRequested() The total number of vehicles that receive the message
this.getNumOfDSRCVehicleRequested The number of DSRC vehicles that receive the message
this.getNumOfNonDSRCVehicleRequested() The number of non-DSRC vehicles
this.getNumOfVehicleAffected() The total number of affected recipient vehicles
this.getNumOfDSRCVehicleAffected() The number of affected DSRC vehicles
this.getNumOfNonDSRCVehicleAffected() The number of affected non-DSRC vehicles
this.getNumOfVehicleUnaffected() The total number of unaffected recipient vehicles
this.getNumOfDSRCVehicleUnaffected() The number of unaffected DSRC vehicles
this.getNumOfNonDSRCVehicleUnaffected() The number of unaffected non-DSRC vehicles

This section demonstrated the classes and their hierarchy and showed how this information is

used to implement the simulation based on the Repast Simphony platform. Each class is

illustrated with its methods in the setup procedure and the dynamic procedure, which initialise

 186

the simulation environment and update the vehicle agents’ attributes and states in every ‘tick’. It

also outlined which variables are extracted and logged during the simulations as simulate

outputs.

The next section explains the process used to verify and validate the simulation logic and

justifies the sample size of the simulation (i.e. the number of simulation runs) to get statistical

results. This process is a preliminary process to check the simulation logic and model, so it has

to be done before the execution of the simulation.

6.5 Pilot simulation

Before the main simulation is run, the simulation logic and model have to be justified to check

whether they represent the situations of the scenarios. In addition, a statistical explanation is

required to decide how many simulations are required. Section 6.5.1 describes the simulation

verification and validation process, and Section 6.5.2 explains how the number of simulation

runs is decided in order to statistically analyse the results.

6.5.1 Verification and Validation

The verification process is concerned with the simulation logic and whether it is working as

expected, while the validation process is concerned with whether the simulation models the real

system properly (Abdou et al., 2012). Since vehicles travel on a road, vehicle agents’

movements and reactions are verified by visual display. To verify the vehicle agents’ reactions

in accordance with the emergency rules in the vicinity of an ambulance and a breakdown, a set

of test cases is used in a similar way to the ontology validation described in Section 5.5. The test

set is made with a small size road network and small number of vehicles to verify the

behavioural rules, which are described in the ontology model, and to check whether vehicles

move and react as designed. The test set represents an extreme situation (i.e. a much smaller

number of vehicles and a smaller road network), so that the vehicles’ movements and

interactions in the simulation can be easily predicted for the verification.

For modelling and simulations, there is a common validation pattern, which is to compare the

output of the simulation with real data collected about the targeted ‘real system’ (Abdou et al.,

 187

2012). The main objective of this research is to explain possible interactions among vehicles

based on vehicular communications. For the vehicular mobility model of the simulation,

synthetic models such as a car-following model (IDM) and a simple FIFO-based junction

management model, and a communication-based behaviour model are adopted and implemented.

Even though the mobility model in this simulation is not based on real surveys or traces, most of

the VANET simulations use a synthetic mobility model, which is based on mathematical

equations, to produce a realistic vehicular mobility (Al-Sultan et al., 2014). The mobility model

of this simulation is acceptable in this regard. So, the verification of the vehicle agents’

reactions can be seen as a predictive validation without any replication of an existing situation

in a specific region, and the model is acceptable in this regard. However, this simulation model

can be extended to replicate existing traffic situations with real data in the future.

6.5.2 How many simulation runs?

To analyse the simulation results, it is necessary to have statistical distributions over many

simulations runs. According to Helbing and Balietti (2012), at least 100 simulation runs are

required for statistical analysis. In order to decide the size of simulation runs, traditional

statistical approaches for determining sample size, and various precision levels are considered

(Table 6.13).

Basically, three parameters (i.e. precision, confidence level, and variability) are needed to yield

a proper sample size from large populations that follow a normal distribution (Israel, 2012;

Miaoulis and Michener, 1976). Table 6.13 presents approaches for determining sample size with

a 95% confidence level and the maximum degree of variability based on the assumption that the

measured attributes of the sampling are dichotomous (Israel, 2012). Since there are several

random parameters such as vehicles’ initial locations and their routes in the simulations, there

could be a countless number of simulation cases. So, in this calculation, it is considered that N

is bigger than 100,000. The confidence level can be set at 90%, 95%, or 99%, but a 95%

confidence level is used for determining the number of simulating runs since it has been

generally stated in applied practice (Millner et al., 2006; Assessment Operation Group, 2012).

 188

Table 6.13 - Different approaches for determining sample size

Approach
Description
or equation

Precision
level (e)

Confidence
level (Z)

Degree of
variability (P)

Sample
size (n)

Using
a published table
(Yamane, 1967)

𝑛 =
𝑁

1 + 𝑁 𝑒 !

(size of population N
> 100,000)

±10% (0.1)

95% (1.96)
Maximum

(0.5)

100
±7% (0.07) 204
±5% (0.05) 400
±3% (0.03) 1,111

Formula
for proportions

(Cochran, 1963)
𝑛 =

𝑍!𝑝 1 − 𝑝
𝑒!

±10% (0.1)

95% (1.96)
Maximum

(0.5)

96.04
±7% (0.07) 196.00
±5% (0.05) 384.16
±3% (0.03) 1067.11

Even though the measured attributes (e.g. delayed time of vehicles around an ambulance or a

broken-down vehicle) of the simulations are continuous and cannot be grouped into two

categories, the approaches based on proportions with the maximum variability, described in

Table 6.13, are adopted for determining the sample size of the simulation runs. Yamane’s table

produces more conservative (larger) sample sizes than does Cochran’s formula, so sample sizes

from Yamane’s table are used here.

When assuming a 95% confidence level and maximum variability, the sample size is dependent

upon the precision level. To choose a proper sample size of the simulation runs, sample sizes

from four different precisions (i.e. ±3%, ±5%, ±7%, and ±10%) are considered. Preliminary

simulations are executed with four different runs for the ambulance scenario, and their results

are analysed. The number of vehicles affected by the ambulance, and the ambulance’s travel

time are reviewed separately by the analysis of variance (ANOVA) for a single factor. The null

hypothesis was that the means and variances of the four groups are similar, and a 95%

confidence level (significance level a = 0.05) was assumed. The results of ANOVA show that

the p value is bigger than the significance level a (0.05), and the F calculated value is smaller

than the F critical value for each simulation, so the null hypothesis is accepted (Table 6.14). It

justifies that four different groups, which represent four different numbers of simulation runs,

have similar means and variances. Therefore, 100 simulation runs are executed and analysed for

each situation. All the statistical summaries of variance analysis for these four groups are

presented in Appendix C.

 189

Table 6.14 - ANOVA of the four groups to decide the number of simulation runs
Single factor P-value a F F crit Comparison Result

The number of vehicles
affected by ambulance 0.526 0.05 0.744 2.610 P value > a,

F < F crit
Accept Null
Hypothesis

The total affected time of
vehicles by ambulance 0.614 0.05 0.602 2.610 P value > a,

F < F crit
Accept Null
Hypothesis

Ambulance’ travel time 0.567 0.05 0.676 2.610 P value > a,
F < F crit

Accept Null
Hypothesis

6.6 Simulation results

This section presents the simulation results of two scenarios, namely, the ambulance scenario

and the breakdown scenario. As mentioned in Sections 6.3.1 and 6.5.2, the simulations are

designed to provide 100 result sets of 5 different communication environments. Each set uses

the same settings except for a different portion of OBE-implanted vehicles (DSRC-equipped

vehicle) from 0% to 100% (Table 6.15). A situation that has 0% of OBE-implanted vehicles

represents the ‘conventional’32 approach, while a situation with 100% of OBE-implanted

vehicles represents the ‘vehicular communication’ approach. In the simulation, an OBE-

implanted ambulance or broken-down vehicle only sends the communication messages, and the

OBE-implanted vehicles around it receive the messages and take actions to resolve the situation.

Therefore, it is implied that the effect of DSRC-equipped vehicles represents the effect of the

communication messages on the traffic flow in emergency situations.

For each of the three different cases of the ambulance scenario, as well as for the breakdown

scenario on the motorway, 100 sets of simulation results are generated as described in the

simulation output section (i.e. Section 6.4.3). Each set has randomised initial states (e.g.

vehicles’ routes and a road network). The number of vehicles and the size of the road network

can have an influence on the simulation results, so these are kept consistent for each set of

simulations. The road network for each set of simulations is generated in a small area along the

ambulance’s route or the breakdown spot by using buffering, and the number of vehicles is

calculated based on the length of a road network of each simulation. In the simulation, vehicles’

32 By conventional approach we mean traditional transport interactions on the road without vehicular
communications, e.g. an ambulance’s siren, drivers’ visual scanning behaviour, etc.

 190

preferred speed are set based the free-flow speed33, but they could not travel at free-flow speed

when approaching the lead vehicle or road junctions.

Table 6.15 - Simulation summary

Scenario Road network The number of
Vehicles

Hybrid Environment for
Vehicular Communications

Ambulance Scenario
(three different

hospital locations)

Buffered and
minimised
based on

ambulance’s route
or breakdown spot

Constant traffic
flow34

based on
the total length of

a road network

Set of five different
communication
environments

(from 0% of OBE-implanted
vehicles to 100% by 25%)

Breakdown Scenario
on the Motorway

We now turn to outline the simulation results for the ambulance scenario and the breakdown

scenario. Each section presents the simulation results of each scenario, and it contains a simple

description of the simulation and the specific meaning of the efficiency in the simulation. It also

provides the effect of vehicular communications on the efficiency trends of traffic in emergency

situations, and statistical analysis of the efficiency trends.

6.6.1 Simulation results of the ambulance scenario

The simulation for the ambulance scenario is designed to provide an environment in which an

ambulance shares information about its presence and its movements via its siren or vehicular

communication. In the scenario, vehicular communications are used to state an ambulance’s

priority to neighbouring vehicles. An ambulance’s siren as well as vehicular communication is

used to help the ambulance to reach the hospital as quickly as possible. In either case (i.e. the

use of siren or vehicular communications), the ambulance can travel without slowing down if all

cars from all directions pull over at once. Therefore, to compare the conventional approach (i.e.

ambulance’s siren) and the vehicular communication approach in the situation of the ambulance

scenario, a simple comparison, such as an ambulance’s travel time to the hospital, is inadequate.

Nevertheless, it is fair to say that the ambulance can share more detailed information about its

presence and movement beforehand via vehicular communications. The communication

provides neighbouring vehicles with enough time to respond and give way to the ambulance.

33 Each vehicle’s preferred speed is randomly set by using the free-flow car speed range in Table 6.2a for
the ambulance scenario and Table 6.2d for the breakdown scenario.
34 A quarter of the maximum number of free-flow vehicles on a road network is used for each simulation.
The maximum number of free-flow vehicles is calculated based on the assumption that vehicles travel at
the speed limit and keep the two-second rule.

 191

Even though an ambulance’s request zone is designed to be the same35 during the simulation,

there is a difference in the ambulance’s effect zone between the 0% DSRC-equipped vehicle

group and the 100% DSRC-equipped vehicle group (Figure 6.10). The 0% DSRC-equipped

vehicle group represents the conventional method for an ambulance to request priority by using

its siren, and the effect zone of the ambulance’s siren (i.e. the patterned area of Figure 6.10a) is

almost the same as its request zone. When the drivers of vehicles hear the ambulance’s siren, on

most occasions, they will be affected by the ambulance to give it a clear lane to pass (or give it

more room to travel by stopping or pulling over if the roads are crowded). An ambulance’s goal

is to bypass traffic at the highest possible speed to save a life, and it can be done safely and

efficiently when the nearby vehicles make way for the ambulance. Meanwhile, in the 100%

DSRC-equipped vehicle group, the ambulance broadcasts its own location and route via

communication messages, so its effect zone (i.e. the patterned area of Figure 6.10b) can vary

depending on its route. If a recipient vehicle is informed that its route is not overlapping with

the ambulance’s route, the recipient vehicle will not need to give way to the ambulance and may

not be affected by the ambulance’s presence even though it is in the ambulance’s broadcast

range.

With this simulation environment, it is expected that the total number of affected vehicles may

decrease with the numerical increment of DSRC-equipped vehicles because the effect zone of

an ambulance’s DSRC is relatively smaller than its siren’s effect zone. In other words, the total

number of unaffected vehicles (i.e. the total number of requested vehicles – the total number of

affected vehicles) will increase with the increase in the number of DSRC-equipped vehicles, so

that undesirable delays of neighbouring vehicles will be minimised. Therefore, in the

35 The effective distance of siren penetration through closed windows of moving vehicles can be
dramatically short. To remedy this shortcoming, low-frequency siren has been developed. According to
the Emergency Medical Services Authority (EMSA, 2009) in Oklahoma, the howler sirens emit low-
frequency tones that cause objects within 200 feet (i.e. 60.96 metres) to reverberate, and catch drivers’
attention much more quickly. The low-frequency sound waves penetrating solid materials allowing
vehicle operators to feel the sound waves. The Howler is not a replacement to the vehicle's primary siren.
Howler low frequency tone siren is an effective added layer of warning for intersections and high risk
areas. So, in the simulation, an ambulance’s request zone was set to 60.96 meters by referring to the effect
range of the new howler sirens of ambulances. For the DSRC-equipped vehicles, they may get the
message from an ambulance in advance and take more time to be ready for the situation, but they cannot
give way for the ambulance in advance if they are too far from each other. A DSRC-equipped vehicle’s
time window for making way for an ambulance will be similar with a non-DSRC vehicles if the non-
DSRC vehicle already noticed the coming ambulance. The ambulance scenario was focused to measure
the effects of the communication sharing precise info including its partial route (Figure 6.10), minimising
the disturbances by the ambulance. So, the effect zone was set to 60.96 m both for the siren and the
DSRC.

 192

simulations of the ambulance scenario, this tendency may become more pronounced as the

number of DSRC-equipped vehicles increases, and it can be considered that the efficiency of the

whole system (i.e. the efficiency of traffic in an ambulance situation) is increased.

(a) Effect zone of the ambulance A1’s siren (the 0% DSRC-equipped vehicle group)

(b) Maximum effect zone of the ambulance A1’s communication messages

(the 100% DSRC-equipped vehicle group)

Figure 6.10 - Different effect zones of an ambulance

The simulation results reveal an increasing trend of unaffected vehicles corresponding to the

increase in the number of DSRC-equipped vehicles (Figure 6.11). In the simulations, vehicular

communications play a positive role in minimising the number of vehicles that are affected by

the ambulance’s presence. In other words, the vehicular communications (replicating the VEIN

application ontology) are more efficient than an ambulance’s siren when it comes to reducing

the undesirable delays of neighbouring vehicles.

However, as demonstrated by the visual patterns in Figure 6.11, there are variations in the

degree of the increasing trends of unaffected vehicles. Some cases show strongly increasing

trends of unaffected vehicles. In other cases, the increasing trends of unaffected vehicles are

relatively weaker. The various degrees of the increasing tendency in the efficiency trends may

depend on the road geography and vehicles’ relative locations and routes, which were randomly

set for each simulation. In most cases, the outliers, which are beyond the upper quartile in the

 193

boxplots of Figure 6.11, are appeared when the ambulance’s route in a simulation contains

roads with reservation (i.e. dual carriageways). Further research is required to study whether

road geography affects the degree of the increasing trend of the percentage of unaffected

vehicles in an emergency situation, but it is beyond the scope of this research.

(a) University College Hospital

 (b) Kingston Hospital (c) Princess Royal University Hospital

Figure 6.11 - Trends of the percentages of unaffected vehicles in eleven vehicle groups

6.6.2 Simulation results of the breakdown scenario

The previous section discussed the simulation results of the ambulance scenario, which showed

the effect of vehicular communications on traffic efficiency in an emergency situation by

focusing on minimising the effect zone of an ambulance. This section outlines the simulation

results of the breakdown scenario on the motorway. It presents the effect of vehicular

communications in a breakdown situation by focusing on extending the request range for a

 194

breakdown spot. Consequently, the simulation for the breakdown scenario is designed to

provide an environment in which a broken-down car broadcasts its presence and warning

messages far beyond other drivers’ visual scanning range. These broadcasts give (the drivers of)

the vehicles heading towards the breakdown spot more time to reduce speed or change lanes

safely.

Even though the drivers’ response times for a sudden traffic event/accident may vary, the effect

of the traffic event can be minimised if the drivers of the vehicles heading towards the

breakdown spot are informed about the situation beforehand and have enough time to react.

Therefore, a breakdown’s request zone is designed to be different from that of an ambulance. In

the 0% DSRC-equipped vehicle group, a four-second gap36 at the speed of 70 mph (i.e. 192

metres, 210 yards) is regarded as drivers’ average response range (Figure 6.12). In contrast, in

the 100% DSRC-equipped vehicle group, a breakdown’s request zone is extended to a 16-

second gap (i.e. 768 metres, 840 yards, twelve-second gap + four-second gap) via vehicular

communications (Figure 6.13). The safe time gaps for overtaking the breakdown spot for

moving vehicles and vehicles that have stopped are set as four seconds and six seconds,

respectively.

(a) If safe, V1 moves over to the right lane

(b) If not safe, V1 slows down or stops, and then finds a chance to move over

Figure 6.12 - Request zone of a breakdown in the 0% DSRC-equipped vehicle group

36 The Automobile Association (AA) recommends that a driver on a motorway needs to anticipate what is
coming next by sweeping the road ahead visually (look two seconds ahead, four seconds ahead, and
twelve seconds ahead). So, a two-second gap, four-second gap, and twelve-second gap can be considered
as a short-range, mid-range, and long-range visual scanning distance, respectively. In this simulation, it is
considered that four seconds will give drivers time to react easily in a relaxed way. Meanwhile, a 16-
second gap is regarded as far long-range distance, which is beyond drivers’ visual scanning range.

 195

(a) If safe, recipient vehicles move over to the right lane

(b) Even though V2 cannot move over now, it has more time to find a chance to move over

Figure 6.13 - Request zone of a breakdown in the 100% DSRC-equipped vehicle group

With this simulation environment, it is expected that the total number of vehicles that overtake a

broken-down car safely without slowing down may increase with the numerical increment of

DSRC-equipped vehicles. This is because the request range of the broken-down car in the 100%

DSRC-equipped vehicle group is relatively longer than that in the 0% DSRC-equipped vehicle

group. A longer request range means that drivers of the vehicles heading towards the breakdown

will be warned in advance and so will have more time to move over to the right-hand lanes

without slowing down and stopping. Therefore, in the simulations of the breakdown scenario,

the effect of the breakdown will decrease as the number of DSRC-equipped vehicles increases.

The simulation results show an increasing trend of unaffected vehicles corresponding to the

increase in the number of DSRC-equipped vehicles (Figure 6.14).

Figure 6.14 - Trends of the percentage of unaffected vehicles in five vehicle groups

 196

The Cullen and Frey graph (Figure 6.15) and the Chi-squared p-value (i.e. 0.18 > 0.05) from the

probability distribution, which is created by fitting the normal distribution to the observations

(i.e. the percentages of unaffected vehicles), indicate that the observations are from a normal

distribution.

Figure 6.15 - Cullen and Frey graph of the observations (i.e. the percentages of unaffected vehicles)

The proportional relations between the number of unaffected vehicles and the number of

requested vehicles are examined in detail. In order to test the proportional relations between the

number of unaffected vehicles and the number of requested vehicles, the vehicles are divided

into two groups, namely, the DSRC-equipped vehicle group and the Non-DSRC vehicle group.

For each vehicle group, a linear regression analysis is performed. The linear regression results

show that the increase of unaffected vehicles occurs due to the effect of the DSRC vehicles

(Figure 6.16 and Table 6.16). The regression equation of the DSRC-equipped vehicle group has

a higher coefficient (i.e. 0.80) and R-squared value (i.e. 0.98). It indicates that the regression

model of the DSRC-equipped vehicle group is more significant statistically, and for every

additional requested vehicle, you can expect the number of unaffected vehicles to increase by an

average of 0.80.

 197

 (a) DSRC-equipped vehicles only (b) Non-DSRC vehicles only

Figure 6.16 - Scatterplots and regressions between the number of requested vehicles and the

number of unaffected vehicles

Table 6.16 - Coefficients of linear regressions of unaffected vehicles from the breakdown

Vehicle
Group

Coefficients

 Estimate Std. Error t value Pr(>|t|)

DSRC-
equipped
Vehicles

only

intercept 0.9096 0.3860 2.356 0.0189
x-variable 0.8024 0.0061 131.300 < 2e-16

 Residual standard error: 3.213 on 398 degrees of freedom
 Multiple R-squared: 0.9774, Adjusted R-squared: 0.9774
 F-statistic: 1.724e+04 on 1 and 398 DF, p-value: < 2.2e-16

Non-DSRC
Vehicles

only
Hospital

intercept -4.2522 0.5218 -8.149 4.79e-15
x-variable 0.705515 0.008467 83.328 < 2e-16

 Residual standard error: 4.364 on 398 degrees of freedom
 Multiple R-squared: 0.9458, Adjusted R-squared: 0.9457
 F-statistic: 6944 on 1 and 398 DF, p-value: < 2.2e-16

In a DSRC-only environment, additional simulation with two different DSRC ranges (768m

range versus 1152m range) is also performed to test the impact of DSRC-range changes. For the

further extended DSRC range (1152m), two times of the long-range visual scanning distance

(two times of twelve-second gap) is used. With the additional extended DSRC range (1152m),

vehicles approaching the breakdown could change lanes as farther away as possible, so the

simulation result shows a higher number of unaffected vehicles with 1152m communication

range than with 768m range (Figure 6.17).

 198

 (a) Designed traffic density (b) Two times of designed traffic density

Figure 6.17 - The percentage of unaffected vehicles in two different DSRC ranges

6.7 Summary and discussion

This chapter outlined the process of the design and implementation of vehicle agents and their

road environments based on the Repast Simphony platform. Section 6.2 summarised the traffic

statistics and the GIS dataset that can describe vehicle agents’ movements and the road

environment, respectively. Section 6.3 outlined the conceptual modelling for the simulation, and

Section 6.4 explained the implementation of the simulation. The preliminary simulation and the

statistical analysis of the simulation results were presented in Section 6.5 and Section 6.6,

respectively.

First, Section 6.2 showed which information could be used to represent vehicle agents’ internal

states and road geometry and network. A vehicle agent’s belief-desire-intention (BDI)

architecture could be simplified into the vehicle’s attributes and methods in the simulation, so

the object-oriented approach of the agent in the Repast Simphony was adopted without

extension to represent vehicle’s characteristics. For the vehicles’ movements, it seems that using

traffic measurements leads to a more realistic simulation because drivers in a free traffic flow

often break the regulations and ignore recommendations. For the road environment, route

information for public transport (e.g. bus lane and their operating time) and Urban Paths for

pedestrians are not considered because considering multi-modal travel is beyond the scope of

 199

this research. Thus, the Road Network theme and limited RRI of the ITN layer are used to build

a simple directed network describing one-way streets and turning restrictions.

Second, in Section 6.3, the purpose of the simulation and expected results were presented to

clarify the reason for the modelling process. Then, two different datasets of road network were

extracted from the ITN layer and stored as shapefiles. Vehicle agents’ general properties and

methods are also designed during this process. In order to focus on vehicular communications,

the model assumed that vehicle agents are the only agents, and it differs from other agent

simulations of emergent phenomena. The shapefiles and the conceptual model of vehicle agents

are independent of the Repast Simphony platform, so they can be used for other agent

modelling and simulation platform.

Third, Section 6.4 showed the implementation of the agent simulation on the Repast Simphony

platform. It focused on describing the class hierarchy in the setup procedure and the dynamic

procedure. When considering a simulation environment with these two procedures, the

properties and methods of each class could be easily designed and built. Variables representing

the simulation outputs are also collected in every ‘tick’ for the statistical analysis.

Fourth, Section 6.5 demonstrated a preliminary simulation with two different processes. First,

the simulation logic of vehicles’ movements and interactions were verified with a small dataset.

Second, in order to determine the sample size of the simulation runs, two different approaches

(Cochran, 1963; Yamane, 1967) were used. Four different precision levels (i.e. group sizes)

were compared based on the analysis of variance (ANOVA). The analysis results showed that

outputs from the four different numbers of simulation runs had similar means and variances. So,

a ±10% precision level was chosen to obtain the size of the simulation runs (i.e. 100 simulation

runs). It also matched with the minimum size of simulation runs proposed by Helbing and

Balietti (2012).

Fifth, in Section 6.6, simulation results were presented and discussed for the ambulance

scenario and the breakdown scenario. First, the simulation results of the ambulance scenario

showed that the communication messages sharing an ambulance’s precise geographic

information had a positive influence on minimising the effect of an ambulance’s presence on the

whole system. Second, the simulation results of the breakdown scenario demonstrated that by

broadcasting the breakdown warning to an extended range in advance, recipient vehicles had

more time to change lanes without slowing down. In both scenarios, the vehicular

communications contributed to minimising the effect of the emergency situation on the whole

 200

traffic flow. The simulation results also showed that the effect of vehicular communications on

the traffic efficiency in emergency situations might vary depending on situational variables (e.g.

road geometry, vehicles’ interrelation, etc.).

In conclusion, this chapter gave an explanation of the agent modelling and simulation process,

which was designed to supplement the static validation of the VEIN application ontology by

providing dynamic situations of vehicular communications. In the simulation, realistic road

geography is used to model vehicle agents’ movements and reactions in emergency situations.

After the ambulance’s or the broken-down vehicle’s route is defined, its route is used to execute

a buffer analysis to remove unnecessary parts of the road network and minimise memory usage

during the simulations. For vehicle agents’ characteristics in emergency situations, the VEIN

application ontology was replicated onto vehicle agent’s attributes and methods, mainly in the

CommunicationMessage class. Consequently, the communication message class can be

easily replaced with another class to support the physical communication if necessary.

 201

7. General discussion

7.1 Introduction

The previous three chapters described the three main stages of the methodological framework,

which was summarised in Section 1.6. In Chapter 4, the target application area of the thesis was

extracted from a list of all ITS services, and two scenarios were developed. Chapter 5 outlined

the geospatial ontological framework, which aimed to assist vehicles’ context awareness and

communications at the domain level, task level, and application level. Chapter 6 presented the

agent modelling and simulation, which provided a dynamic virtual road environment and

different proportions of communicative vehicles, to examine the situations that are described in

the scenarios. Each chapter also included the corresponding results, i.e. the spatiotemporal

relations and the relative representation for vehicular communications of the scenarios discussed

in Chapter 4, the validation of the ontology model by instantiating vehicles in Chapter 5, and the

statistical results of the agent simulations in Chapter 6.

This chapter reviews and evaluates the results of these three chapters, and goes on to discuss the

research findings in a broader perspective. Specifically, Section 7.2 discusses the relative

location representation, emergency rules, and the SPIN-based approach of the VEIN ontology.

Section 7.3 examines whether the agent simulation, which is discussed in Chapter 6, is

appropriate to examine the effect of the vehicular communications. Section 7.4 describes

general traffic situations and high traffic density to discuss pros and cons and extensibility of

the research outcomes. Finally, Section 7.5 reflects upon logical resemblances between the

scenarios (Chapter 4), the ontology model (Chapter 5), and the simulations (Chapter 6), and

discusses the whole methodological approach from a wider perspective.

7.2 Ontology modelling for sharing spatiotemporally dynamic situations

This section discusses the application ontology of the VEIN ontology model, which was

described in Chapter 5. The VEIN ontology model includes a domain ontology, a task ontology,

and an application ontology, and these ontologies are developed to support the scenarios at

different levels. The VEIN application ontology, which contains classes, instances, and

properties, as well as SPIN functions and SPARQL query templates, was produced as the

application layer of the intelligent vehicle implementation. Consequently, this section mainly

 202

examines the application ontology, as it provides the fundamental ontology of the intelligent

vehicle implementation. The following sections compares the VEIN application ontology with

other ontology models, discusses SPIN-based approach and ontology evaluation of this research.

7.2.1 Comparisons with other ontology models

This section compares the VEIN ontology model with existing top-level ontology (i.e. DOLCE)

and other ontological research related to vehicles’ interrelations and communications, which are

mostly reviewed in Chapter 2.

DOLCE and its four super-classes (i.e. Endurant, Perdurant, Quality, and Abstract)

were referred in the process of building the VEIN ontology model. An emergency vehicle and

neighbour vehicles are seen as instances of the Vehicle class, which is categorised into the

Endurant class of DOLCE. Vehicles’ movements and communications are categorised into

the Perdurant class. The relative location representation and emergency rules are used to

trigger neighbour vehicles’ reaction in the vicinity of an emergency vehicle. A vehicle’s

spatiotemporal properties (e.g. remained distance to a junction) belong to the Quality

category, while the relative location representation and emergency rules are categorised as a

measurement basis and mathematical/logical axioms of the Abstract class, respectively.

DOLCE provides classes and their hierarchy, but the concepts of the VEIN ontology are

represented as properties, SPIN functions and templates. Therefore, it is unable to have one-to-

one matches between DOLCE classes and VEIN classes/properties/functions/templates. Still,

DOLCE provids a good conceptual foundation to build an application ontology supporting a

dynamic traffic situation.

In terms of defining semantic interrelation between vehicles, the relative location representation

and emergency rules of this research can be seen similar to the concept of the motion relations

(isBehind, inFrontOf, driveBeside, and passBy), which Hornsby and King (2008)

proposed. They also provided SQL queries to compute the motion relations. They also assumed

that an underlying sensor network captures positional data about moving objects in real-time. In

this environment, each vehicle’s driver can extract specific ‘motion relation’ information by

querying and reasoning from the spatiotemporal sensor database that is linked with an ontology

of vehicle classes. However, as described in Section 5.4.3, continuous semantics dealing with

high frequency data streams and storing/querying streaming data are still challenging (Mladenić

 203

et al., 2012; Stuckenschmidt et al., 2010; Valle, 2014). To overcome this limitation and avoid

overloads of reasoning, the ontology model of this research uses SPIN functions and templates

that can be processed in memory to keep each vehicle’s ontology model up to date.

Eigner and his colleagues (2008, 2009) adopted ontological context model compatible with

vehicular communications. However, relationships between ontology classes and specific

queries were not represented. Michaels et al., (2010) and Barrachina et al. (2012) proposed

communication message models for an emergency vehicle and a vehicle involved in an accident,

respectively. In the message, absolute coordinates are main source for the location of the

message sender. In contrast, the VEIN application ontology adapted relative location

representation as main location source, and the request (i.e. emergency rules) of a message

sender (i.e. an emergency vehicle, broken car) could be made based on the relative locations of

the message sender and potential message receiver (i.e. a neighbour vehicle). One benefit of

using relative location representation is that a local event detection can be done based on a

simple triple-based information extraction without geometric calculations. Based on the relative

location representation and the triple-based information extraction, a request message from the

message sender can be set easily, and a network distance (a.k.a road distance) will be applied

automatically for the request range.

To sum up, the VEIN application ontology uses the relative location representation and

emergency rules. This approach can extract triple-based information simply without geometric

calculation, and it can be utilised for traffic situation detection.

7.2.2 SPIN-based ontological messaging model

A communication message has to contain partial information of a traffic situation, which might

change as vehicles move, as traffic variables are dynamic in real time. Consequently, up-to-date

information about the situation is necessary for vehicles at each point, and each vehicle’s

spatiotemporal properties are updated by SPIN functions and SPIN templates in the VEIN

application ontology.

The combination of SPIN functions and SPIN templates was useful for the instantiation of a

vehicle in the VEIN ontology model. In the model dealing with moving vehicles, assertions are

mostly related to their locations, which constantly change. If the model were to use data-driven

inferences to calculate and compare vehicles’ geometries, increases in the number of inferred

 204

triples would be observed. Thus, two SPIN templates are presented to avoid overloads of

inferences.

The first template obtains assertions of a vehicle’s relative location (distance/time) dynamically

on demand from two-dimensional coordinates by referencing road elements and junctions in

SPIN functions. These SPIN functions act in a similar manner to a scalar-valued

function/method of a programming language that accesses data and returns a single value, such

as a string, number, or bit value. The first SPIN template can be seen as a registered continuous

query, which gets streams of answers from input streams. Anicic et al. (2012) used a registered

continuous query to search slow traffic events and automatically modify a speed limit on a

certain road section for the central management. However, in this research, it is used as an

internal process to keep a vehicle’s location-related properties up to date avoiding the burden of

reasoning processes.

In the second template, a DSRC message, providing the relative location information of the

ambulance or the broken-down vehicle, is used as input in the SPIN template and the SPIN

function of a vehicle’s ontology model in order to insert, update, and delete the instance of the

ambulance or the broken-down vehicle. For a semantic application in the vehicular environment

dealing with moving vehicles, it seems that SPIN offers a good alternative solution, that is, a

query-driven backward reasoning, to avoid overloads of inferred data and to integrate with other

technologies (e.g. DSRC in this case).

We can conclude that the relative location representation a SPIN-based approach can make a

vehicle’s decision-making process simple and avoid resource-intensive information extraction.

The next section discusses the evaluation approach of the VEIN application ontology and

introduces additional evaluation approaches that access an ontology by examining different

levels of contents.

7.2.3 Ontology evaluation

The thesis demonstrated in Section 5.5 how the interactions and communications amongst

vehicles in the scenarios can be implemented by DSRC messages that instantiate vehicles and

their spatiotemporal properties/relations based on the VEIN application ontology. This section

discusses the approach to evaluate the VEIN application ontology in comparison to other

approaches.

 205

An ontology can be evaluated using various approaches, which can be classified into the

following four categories (Brank et al., 2005): comparing the ontology with a ‘golden standard’

(which may itself be an ontology), comparing the ontology with a source of data (e.g. a

collection of documents) by checking whether the ontology covers the concepts of a domain

(Brewster et al., 2004), using the ontology in an application and evaluating the results (Porzel

and Malaka, 2004), and evaluating the ontology by assessing how well the ontology meets a set

of predefined criteria, standards, requirements, etc. The aforementioned evaluation methods can

be recategorised based on the different content levels of ontology to examine whether particular

ontology contents fit a specific domain, as shown in Table 7.1.

Since the VEIN ontology model has been developed for a specific application area, that is,

short-range vehicular communications in emergency situations for an ITS environment, the

evaluation of the VEIN application ontology has been limited to the application-level contents.

Therefore, the application-level contents of the VEIN ontology model were evaluated by the

query results (Sections 5.5.2 and 5.5.3) of the given sequential tasks (Section 5.5.1). The

instance examples of the given sequential tasks (Figure 5.10 and Figure 5.11) and the return

values of the SPIN query templates (Table 5.4 and Table 5.6) of the ontology model were seen

as potential applications implementing the two scenarios, so that the approach used here could

be classified into the third category (i.e. using the ontology in an application and evaluating the

results) above.

Table 7.1 - Different content levels of an ontology for evaluations (Brank et al., 2005)

Level Evaluation targets

Lexical, vocabulary, or data layer Concepts, instances, facts, etc.

Hierarchy or taxonomy Hierarchical is-a relations between concepts

Other semantic relations Non-taxonomic relations besides is-a relations

Context or applications level
How the results of the application are affected

by the use of the ontology

Syntactic
Syntactic requirements and considerations
(e.g. avoiding a loop between definitions)

Structure, architecture, design
Pre-defined design principles
or criteria; structural concerns

However, the instantiation of vehicles and their interactions based on specific sequential tasks

was undertaken statically and conceptually and not within the context of a real application.

Therefore, it might be controversial whether the instantiation of the VEIN application ontology

 206

can be considered as outputs of an application. To supplement this weakness, agent simulations

are executed to represent vehicle instances in dynamic situations, and the discussion about agent

simulations is explored next.

7.3 Suitability of the agent simulation for vehicular communication

The simulation results were summarised and analysed in Section 6.6 to assess how much

vehicles’ individual communications would affect a whole traffic situation, especially in

emergency situations. Even though vehicular communication can be described as one vehicular

network, actual communications can be realised only by individual vehicles (and road facilities)

that have a communication device to send and receive situational information to each other.

The concept of the VEIN ontology model is replicated in a communication message class for

the simulation, and each vehicle’s movements and communications are simulated. The

following two subsections discuss the vehicular mobility model and vehicles’ communication-

based interactions applied in the simulation.

7.3.1 Vehicular mobility model

To examine vehicular communication, a road environment and a traffic flow have to be

generated first. For the simulation of this research, a mobility model was implemented to model

each vehicle’s dynamics relating to its location, velocity, and the distance/time to the lead

vehicle or a junction. A microscopic vehicular mobility may consist of car-following model,

overtaking model, and junction/intersection model (Härri et al., 2007). This section discusses

these three components implemented in the simulation of this research.

First, for each vehicle’s microscopic mobility, the Intelligent Driver Model (IDM) was adapted

as a car following model. Since IDM is a mathematical model, it cannot fully explain drivers’

perception and decision-making process, but it is practical to model mobility patterns of a

following vehicle to avoid collision with the lead vehicle (Treiber and Kesting, 2013).

According to Kerner (1999), there can be three phases of traffic, which are free flow,

synchronized flow, and wide moving jams. In the simulation, a low traffic density was applied

and each vehicle’s preferred speed was set in the initialisation procedure based on the statistics

 207

of free-flow speed ranges. Throughout the simulations, vehicles approaching the lead vehicle or

a junction slowed down, and synchronised flows with no significant stoppage were observed.

Second, an overtaking model is partly implemented for the breakdown simulation. As described

in Section 5.6, this research emphasised the vehicles’ longitudinal interrelation, and the

ontology model and the simulation was designed in that way. Therefore, multi-lane roads and an

overtaking model are not implemented in this simulation even though the breakdown simulation

allowed restricted lane changes to avoid the breakdown.

Third, a simple non-signalised junction management model was implemented based on the

kinematic deceleration of the IDM and the first-in-first-out (FIFO) principle. The FIFO

principle is violated in real traffic, and there are non-strictly FIFO diverging rule models for

signalised urban intersections in the domain of traffic flow modelling. However, the focus on

this simulation was not analysing the traffic flow at an intersection, but providing a realistic

synchronised traffic forming near roundabouts and intersections. In this regard, the FIFO model

was appropriate.

To sum up, the car-following model and the simple FIFO model applied to the simulation was

appropriate to reproduce synchronised flows, and the overtaking model was not considered

because a low traffic density was assumed.

7.3.2 Vehicular communications as triggers of vehicles’ proactive and

reactive interactions

This section explores the appropriateness of the agent simulation environment in terms of

examining the effect of vehicular communications. From this perspective, the simulation results

and agent’s communication messaging model are reviewed separately.

First, the simulation results showed the cause-and-effect relationship between vehicles’

individual communications and traffic flow efficiency in an emergency situation. According to

Epstein (2008), a modelling/simulation approach can be applied for various reasons (i.e. to

predict or explain a phenomenon, guide data collection, illuminate core dynamics, suggest

dynamical analogies, raise new questions, etc.) if its results provide stationary distributions and

regularities of interest. The agent simulation delivered statistical distributions and macroscopic

regularities, which emerged from individual vehicles’ local interactions, over many simulation

 208

runs. In the simulation, vehicles’ dynamic and complex interactions were simplified in order to

focus on the effect of communicative vehicles, which share situational information and

behavioural rules in emergency situations. Accordingly, during the simulation, vehicular

interactions in predefined emergency situations were captured not only to explain the effect of

vehicular communications, but also to illuminate the core dynamics of vehicular

communications.

Second, during the simulation of emergency situations, vehicle agents’ proactive and reactive

interactions occurred based on their communication-based behaviours, which was tightly linked

with vehicular communications. For the ambulance scenario, the ambulance stated its priority to

the vehicles in its immediate vicinity and the neighbouring vehicles gave way to the ambulance.

For the breakdown scenario, the broken-down car warned the vehicles heading towards the

scene of its presence, and the recipient vehicles moved over to the right-hand lane. The

proactive behaviour of the message sender vehicle and the recipient vehicles’ reactive behaviour

were both triggered by emergency rules, which were part of their own messaging model.

Vehicle agents shared information about their presence (i.e. location and route) and traffic

situations by sending/receiving vehicular communication messages. These communication

messages were then used to update the vehicles’ declarative memory37, which was stored as

instances and properties/relations in their own messaging model. During the updating process of

their messaging model, each vehicle updated its relative location and the emergency vehicle’s

request. Then, each vehicle checked its emergency rules based on its own procedural memory38

to make sure whether it needed to perform particular types of action. This circular process

enabled each vehicle to keep up-to-date with its messaging model and to use its instances and

properties as parameters of the emergency rules.

In summary, the vehicles’ movements and communication-based interactions were measured as

the simulation results. In addition, we have discussed how vehicle agents’ communication

messaging model could link vehicle agents’ behaviours. The next section discusses general

traffic situations whether the agent simulation can support the transition towards intelligent

communicative vehicles.

37 Declarative memory stores specific personal experiences and factual information (e.g. vehicle’s
location and partial route in the communication messaging model replicating the VEIN ontology model).
38 Procedural memory is for the performance of particular types of action. A vehicle agents’ procedural
memory logically corresponds to SPARQL functions and query templates of the VEIN ontology model.

 209

7.4 From limited situations to general situations

This research was focused on the limited emergency situations (i.e. the ambulance scenario and

the breakdown scenario), that has relatively low traffic volume and an emergency vehicle sends

a message to neighbour vehicles (i.e. one-way communication). However, there can be various

communication types to support different situations. In high traffic volume, vehicle agents’

behaviour can also be different. This section explores different traffic situations to discuss pros

and cons and extensibility of the scenario, the ontology model, and the simulation of this

research.

7.4.1. Different communication types for different situations

By message delivery schemes, broadcasting types can be divided into five ways: anycast (one to

any), broadcast (one to all), multicast (one to a group), unicast (one to one), geocast (one to a

specific area). The communication in the ambulance scenario can be seen as geocast, and one-

way communication is preferred as a time-critical solution. It is because the ambulance may

expect answerbacks from the neighbour vehicles by their instant give-way reactions rather than

sending messages back.

However, there are other situations that two-way communication is necessary. Payment-related

applications such as toll payment and parking slot reservation contain a financial transaction

during the process, and two-way communication (i.e. unicast) is required. For these kind of

application, DSRC is not necessary. Radio Frequency IDentification (RFID), Near-Field

Communication (NFC) and mobile communication can be applied instead.

In a situation dealing with fast moving vehicles but not time-critical, two-way DSRC can be

used. The reservation-based control at an intersection (Dresner and Stone, 2004, 2005) or the

cooperative route-allocation to avoid congestion (Desai et al., 2013) can be a good example of

two-way V2I communication (i.e. geocast) and two-way V2V communication (i.e. geocast or

multicast), respectively. The case of freeway traffic to resolve a stop-and-go wave (Kesting et

al., 2008) can be seen as a multi-hop communication (i.e. anycast).

To sum up, this research chose a one-way single-hop V2V communication (i.e. DSRC, geocast),

but there can be various communication types suitable for different situations. The

communication types categorised by direction of communication (one-way, two-way),

 210

forwarding of message (single-hop, multi-hop), and message delivery schemes (anycast,

broadcast, multicast, unicast, geocast) (Daraghmi et al., 2013; Kargl et al., 2006).

7.4.2. Vehicle agents’ behaviour in heavy traffic

The ontology model and the simulation framework are developed based on two emergency

situations on the assumption that there is no heavy traffic. Based on this assumption, intelligent

vehicles’ BDI model was simplified and their cooperation resolving an emergency situation is

modelled and simulated. However, in heavy traffic, even not in an emergency situation,

communicative vehicles and infrastructure should elicit their coordination and negotiation to

improve road safety and efficiency.

The simple FIFO-based road junction management model cannot be applied in the situation of

traffic congestion. A traditional traffic control operation (i.e. traffic lights) or intelligent

intersection control based on V2I and V2V communications should be applied to model a

realistic traffic flow. If there is a communicative intersection controller, vehicles approaching

the intersection can follow its coordination, which is based on real-time analytics of traffic

conditions. Vehicles can pass through the intersection smoothly without the danger of collision

or becoming entangled at the intersection (Yang et al., 2014). The intelligent intersection

controller can also interact with neighbour intersection controller or an emergency vehicle to

coordinate a green light wave to allow continuous traffic flow in one main direction (Bonomi et

al., 2012).

The breakdown situation can be extended to a lane closure situation, in which traffic merges

into a reduced number of lanes (e.g. from three lanes to two lanes). In the breakdown situation

with low traffic density, the emergency rule of the ontology model was designed to trigger the

early merging phenomena between two lanes (i.e. the lane of the breakdown and the right lane).

Consequently, the simulation was designed such that merging traffic on the lane of the

breakdown changes lanes as early as possible after the detection of the breakdown, but yields to

through traffic on the right lane they wish to enter. However, traffic congestion may occur when

dealing with high traffic volume on multiple lanes, and the merging pattern could be more

complex. In this situation, many authorities encourage drivers to use the late merge (zipper

merge) method to reduce speed differences between lanes and increase safety. So, a zipper

merge model needs to be added to the ontology model and the simulation framework, and an

 211

event-driven process is also required to notice traffic congestion and activate the zipper merge

model to change the vehicles’ reactions. Besides, to minimise complex zipper effects on

multiple lanes (e.g. two zippers from three lanes to two lanes or three zippers from four lanes to

three lanes) in traffic congestion, a coordinate rule/logic can be designed to make vehicles on all

lanes equally disadvantaged to reduce queue backups. A roadside beacon broadcasting a

coordination rule can be implanted on the signboard of the lane closure. For the coordination,

vehicles (or vehicle platoons) can be asked to do different behaviours (keep the lane or change

to the right lane) based on which lane they are on and how far from the lane closure.

When modelling complex situations of high volume traffic, the detailed traffic models

explaining traffic control and drivers’ behaviours have to be implemented into the ontology

model and the simulation framework. In general situations, Vehicle agents’ BDI model cannot

be simplified anymore because vehicles have long-term goals and plans that can conflict with

each other. Vehicles’ desires and intentions can be shared for a negotiation via communications.

Desai et al. (2013) suggested a cooperative route allocation to avoid congestions, and each

vehicle communicates with each other to share its initial route and compute individual welfare

and overall welfare to decide its revised route at every junction. This kind of situation can be a

practical scenario to extend the BDI model of the ontology model and the simulation framework.

The concepts (i.e. BDI, action, policy) of SOUPA (Chen et al., 2004, 2005) can also be applied

to link the BDI model and a negotiation rule/behaviour.

To sum up, additional coordination/negotiation rules can be made and shared as parts of

communication messages among intelligent vehicles and infrastructure to manage/control these

complex situations safely and efficiently. If a communication sender (e.g. intersection controller,

roadside beacon) has higher authority than communication receiver (e.g. vehicles nearby), its

controlling rule triggering different behaviours from vehicles nearby can be seen as a

coordination rule. In a situation of large-scale, long-lasting congestion over a wide area, central

management authority can intervene directly in the operation of traffic control or via Center-to-

Infrastructure communication (i.e. hierarchical coordination). Meanwhile, if communication

messages are sent and received between vehicles, controlling rules need to contain conditions to

reach agreements on the situation so that the rules can be considered as negotiations between

autonomous vehicles. Of course, there can be a situation that traffic flow is affected by the

interplay between hierarchical coordination and autonomous negotiation.

 212

7.5 Methodological discussion

The previous three sections discussed the results of the three main stages of the methodological

framework. We now turn to the whole methodological approach. To provide an insight into the

further development of geo-ontologies and simulations for future scenarios and applications, the

methodological approach is reviewed and reflected upon.

The use of a list of ITS user services, which was considered as an entire logical organisation of

ITS applications, proved to be an important tool for extracting a specific target application.

Though the use of user services and scenarios is common, the conceptual link of a logical

organisation and a spatiotemporal organisation as an integral part of the scenario development is

an interesting aspect of this research. This research demonstrates that such an approach can help

in understanding the technological perspective (i.e. logical organisation) and situational

perspective of an application (i.e. spatiotemporal organisation) when developing a futuristic

scenario (Figure 7.1). A holistic perspectives of the ITS environment can facilitate the

modelling of intelligent vehicles as individual organisations and members of an organisation

simultaneously.

Figure 7.1 - Relations between organisation concepts39 in the thesis

Since the concepts of the scenarios and spatiotemporal organisations are compatible, the

conceptual relations of organisations that are shown in Figure 7.1 can be explained in a simple

39 According to Krikorian (1935, p.122-124), an organisation can be defined as ‘a collection of different
elements in a set of relations forming a whole’, and it can be classified into five different types depending
on the character of elements, relations, and the whole, i.e., logical organisation, spatiotemporal
organisation, substantial organisation, causal organisation, and purposive organisation.

 213

way using the scenarios throughout this thesis. Chapter 4 states that the meaning of the term

‘scenario’ has been limited to represent story-like static snapshots of dynamic situations, which

are the two DSRC scenarios. However, in general, a sequence/structure or a simulation can also

be considered as a type of scenario from a broader perspective (Alexander, 2004). Therefore, all

three main outcomes can be regarded as scenario-based approaches to describe traffic situations

in different perspectives (Table 7.2).

Table 7.2 - Scenario-based approaches to describe traffic situations

Type Description Contents Perspective

Scenario
Narrative description of

a traffic situation
Vehicles’ location,

their spatiotemporal relations
Overall

snapshot

Ontology
Computational description of

vehicle objects, their properties
and relations

Properties and relations,
SPARQL templates

Object-
oriented,

sequential

Agent
Computational description of interactions

 between intelligent vehicle agents
in the dynamic processes of traffic flow

Entities,
behavioural rules

Dynamic,
interactional

From the ITS user services representing logical organisations and two scenarios representing

spatiotemporal organisations in Chapter 4, a geospatial ontological framework was developed in

Chapter 5, and the ontology model was examined with time sequences of vehicular interactions.

Then, in Chapter 6, simulations of vehicular communications were carried out to model

dynamic situations and measure the effect of vehicular communications. The ontology model

and the agent simulation were developed as a data layer and an application layer that support the

vehicular communications to resolve emergency situations, which can be seen as organisational

rules in emergency. In the data level, some ontology properties, SPIN functions and templates

of the VEIN ontology were used for a vehicle to recognise the situations and then decide

whether it has to take action or not, while these properties, query functions and templates are

replicated for vehicle agents’ behaviours in the simulation.

The VEIN ontology model was designed to support vehicle agents’ cooperation, communication,

and decision-making in limited emergency situations. However, the ambulance scenario can be

used for a variety of emergency vehicles, and the breakdown scenario can be used for road

traffic accidents, road maintenance, and road repair. In general, if a situation can be described

using spatiotemporal relations between the proactive participants of the situation and some

temporal organisational norms can be used to resolve the situation, the ontology model can be

extended to support the situation. Temporal organisational norms and their effects on the whole

vehicle agent society in the situation can be measured in the agent simulations.

 214

It should be noted that the idea of the modelling and simulation methodologies was borrowed

from computer science. In many cases in computer science, a model is described by a formal

language to specify particular kinds of systems, or it is embedded in a computer program that

simulates the particular behaviours of a system. Since this research has dealt with the messaging

model for vehicular communication, these two options are not mutually exclusive; thus, both

options were chosen as main parts of the methodology. A geo-ontology model was developed

from the scenarios, and then a communication messaging model representing the concept of the

ontology model was replicated onto the vehicle agents’ behaviours for the simulations.

As a whole, the research has demonstrated that the scenario-based approach is useful as a

development scheme for building an ontological framework. It also showed that an agent-based

simulation environment is useful to examine the effect of vehicular communications on the

traffic flow in a situation of the scenarios. Even though agents’ communication-based

interactions are simulated in this research, there is an on-going research toward vehicular

computing and information-centric networking that proposes a common virtual platform (i.e.

inter-networked resources) consisting of vehicles’ data storage, sensors, and computing

resources (Gerla et al., 2014). In addition, JENA reasoning engine (http://jena.apache.org) and

SPIN API (http://topbraid.org/spin/api/) have to be implemented to activate an ontology model

in a vehicular computing platform. It can be one further step towards vehicular context-

awareness.

7.6 Chapter summary

This chapter discussed the ontology model, the agent simulation, and the methodological

approach of this research to support vehicle agents’ communication in the road environment to

resolve emergency situations. Section 7.2 compared the VEIN ontology with other ontology

models and then focused on the relative location representation and emergency rule to simplify

vehicle’s decision-making process. Benefits of a SPIN-based approach were justified. It also

explained how two sequential tasks (Figure 5.10 and Figure 5.11) and query outcomes (i.e. the

return values of the SPIN query templates in Table 5.4 and Table 5.6) were used for the

evaluation. Section 7.3 discussed the suitability of the agent simulation focused on the vehicular

mobility model and vehicles’ communication-based behaviour. 7.4 explained how the ontology

model and the simulation could be extended to support general traffic situations. Section 7.5

 215

highlighted the conceptual links between the logical and spatiotemporal organisations to

consider technological and situational aspects of building a futuristic scenario. The concept of

the scenarios (i.e. spatiotemporal organisations), the ontology model, and the agent simulation

was discussed from a broader perspective to outline the similarities of the traffic situations that

were described in Chapters 4, 5, and 6. It also described how the scenarios and the ontology

model could be extended and how the organisational norms of the emergency situations could

be measured.

 216

8. Conclusion

The area of intelligent vehicle applications can be charted along two dimensions: the degree of

autonomy and the degree of cooperation (Silberg et al., 2012). Recently, there has been fast-

growing attention and technical progress for the development of autonomous cars40. The

automotive industry has mainly focused on the design and development of sensor techniques

(e.g. radar, lidar, GPS, computer vision, etc.) for an autonomous car to increase the degree of

autonomy and ultimately, to navigate without human input. Even though vehicular

communication technologies for vehicular cooperation receive less attention than sensor

technologies for autonomous cars, the high degree of vehicle autonomy creates the need also for

a higher degree of vehicular cooperation in many ITS applications (Silberg et al., 2012). In

addition, physical communication technologies (e.g. DSRC) are becoming mature and are

becoming the basic cornerstones for V2V and V2I environments. For the dimension of

vehicular cooperation, this research has explored the development of appropriate

communication contents among vehicles on top of physical communication technologies.

Considering the importance of a vehicular communication network and its contents, this

research has attempted to build a vehicular version of a Semantic Web by developing a

geospatial ontology model that could be used as a vehicle’s context model as well as

communication contents. This research also examined vehicles’ communications using both

static and dynamic instantiations of vehicles and their interactions. For the dynamic

instantiations, a virtual road environment and vehicle agents were simulated focusing on the

short-range vehicular communications of specific traffic situations (i.e. local emergency

situations). The following sections revisit the research questions and then outline the research

outcomes, the research contributions, the research limitations, and suggestions for future work.

40 It is also known as a robotic car, a driverless car, or a self-driving car. However, throughout this thesis,
the term ‘autonomous’ has been used to refer specifically to vehicle agents’ flexible autonomous
behaviours based on their social abilities (i.e. cooperation, coordination, and negotiation) to resolve
emergency situations by providing information/warning to assist drivers.

 217

8.1 Reflecting on the research questions

The main aim of this research was ‘to explore how geosemantic data/information can be used to

make a transport system more intelligent’ based on the vehicular communication in an ITS

environment. This thesis was intended to achieve this research aim by answering the research

questions, which were described in Section 1.5. This section summarises and discusses how

these research questions were addressed throughout the research undertaken.

• Which area of ITS applications will benefit most from intelligent vehicles and their

short-range communications? Which traffic situations should be modelled to generate

this benefit?

This research question was formulated to find time-sensitive dynamic traffic situations, in

which geographic information has a significant role to resolve the situations. In order to

assist vehicles in these kinds of situations, spatiotemporal information representing moving

vehicles’ location, route, and interrelation had to be the main parts of the description of

traffic situations.

To answer this research question, the two scenarios that represented vehicular

communications in emergency traffic situations were developed, through following a two-

step process. In the first step, from a well-defined list of the ITS user services (Section

4.2.1), two ITS service bundles (Sections 4.2.2 and 4.2.3) were highlighted to represent

immediate vehicular communications in emergency traffic situations. In the second step,

the target application area (Section 4.2.4) was specified on the basis of whether real-time

communication (sending and receiving real-time spatiotemporal information) plays an

indispensable role to cause vehicles’ instantaneous interactions. Finally, two scenarios (i.e.

the ambulance scenario in Section 4.3.1 and the vehicle breakdown scenario in Section

4.3.2) were developed to describe vehicular communication in local traffic situations

representing the target application. The scenarios represented proactive vehicles (i.e. an

ambulance and a broken-down vehicle) and reactive neighbouring vehicles in the vicinity

of the emergency situations.

 218

• What are the core contents of the vehicular communications in the traffic situations?

The second research question was asked to specify what kind of information could

comprise communication messages in the specific traffic situations, which were already

defined from the first research question.

In Section 4.4, dynamic inter-vehicle relations and relative location representation were

emphasised as potential parts of communication contents. Subsequently, In Chapter 5, a

geospatial ontological framework (i.e. VEIN ontology) was proposed as a network-centric

communication contents model to describe vehicles’ dynamic locations and relations. In

the ontological messaging model, relative location information of an emergency vehicle

was the one part of the core contents and an emergency rule that describes the emergency

vehicle’s request was the other. With relative location representation, two vehicles’ relative

distance/time could be acquired by simple comparison between two scalar values. It

enables to make the emergency rule without geometric calculations. The emergency rules

were defined as query templates, so vehicles could cooperate with the emergency vehicle

by performing an action based on a query result.

• How can the contents of the vehicular communications be linked effectively with

intelligent vehicles’ actions?

An intelligent vehicle agent takes action based on its internal states and external

environment. A vehicle’s internal states can be represented by its beliefs (i.e. knowledge-

base), desires (i.e. goals), and intentions (i.e. plans for actions). Furthermore, for a vehicle

in a traffic flow, its neighbouring vehicles can be considered as parts of its external

environment. Thus, descriptions of vehicles’ presences and routes were the main part of the

vehicular communication contents to share/resolve traffic situations. However, even though

vehicles could send and receive situational information that was closely linked to vehicles’

internal states via vehicular communications, communication messages themselves were

not the main body of action. There was a need for a linkage between the communication

message model (i.e. VEIN application ontology) and the vehicle agents’ properties and

methods that trigger their reactions.

The development of the agent-based simulation platform, which modelled vehicles’

movements, communications, and interactions in emergency situations, was described in

Sections 6.2 to 6.4, as the process to link the vehicular communication messages (i.e. a

 219

replication of the VEIN ontology model) and the agent’s properties and methods. As this

research deals only with emergency traffic situations, a vehicle agent’s beliefs, desires, and

intentions (BDI) could be easily simplified as a vehicle agent’s properties and methods to

take action in a way that resolves an emergency situation (Section 6.2). A virtual road

environment was built to simulate vehicle agents’ movements and communications

(Section 6.3). For virtual communications to trigger vehicle agents’ reactions, a Java class

(i.e. CommunicationMessage) was developed on top of the Repast Simphony platform

as a replication class of the VEIN application ontology (Section 6.4).

• If communicative vehicles have an influence over the whole system, how can the impact

be measured?

This research focused on the communications between an emergency vehicle and its

neighbouring vehicles (i.e. an emergency vehicle’s proactive requests/warnings and its

neighbour vehicles’ reactions). To model vehicles’ microscopic mobility, a car-following

model and a FIFO-based junction management model are implemented in the agent

simulation framework (Section 6.2). During the simulation, movements and

communication between an emergency vehicle and the neighbouring vehicles are modelled,

and the number of vehicles that are not disturbed by an emergency vehicle is counted

(Section 6.4). Even though direct communications among neighbouring vehicles were not

considered, the simulation results showed increasing trends of traffic efficiency with the

increase of DSRC-equipped vehicles and their communications (Section 6.6).

We have revisited the research questions and seen how the research framework was built to

answer the research questions. Even though this research focused on local emergency situations,

each component of this framework can be easily extended and modified for the design and

development of intelligent vehicle agents in other traffic situations. The next section describes

the research outcomes (i.e. the scenarios, the ontology model, and the agent simulation), which

have been developed and discussed throughout this thesis.

8.2 Research outcomes: scenarios, the ontology, and the agent simulation

After the literature review of the ontological and agent-based approaches in the intersection area

of the ITS-related domains, a three-level (i.e. description level, data level, and application level)

 220

research procedure was undertaken for the implementation of intelligent vehicles throughout

Chapters 4, 5, and 6.

The main outcomes of this research consist of three components: futuristic scenarios, a

geospatial geosemantic messaging model, and an agent simulation environment. These three

components represent a description level (i.e. two scenarios in local emergency situations), a

data level (i.e. a geospatial ontological framework to support vehicular communication

messages), and an application level (i.e. an agent simulation to model vehicle agents and their

interactions) for the implementation of intelligent vehicles. This section outlines these main

outcomes and examines their characteristics.

• Scenarios: an ambulance case and a broken-down car case

This thesis provided two specific scenarios (i.e. the ambulance scenario and the breakdown

scenario), which were described in Chapter 4. The two scenarios illustrated two different

traffic situations: a spatially dynamic influence based on an ambulance’s movements and a

spatially static influence because of a broken-down vehicle’s presence, in which vehicular

communications might have a positive effect on resolving the situations.

Along with the scenarios, this thesis provided two additional ancillary outcomes. First,

based on a logical organisational concept, the target application area was extracted to

specify the situations, which focused on intelligent vehicles’ proactive and reactive

characteristics based on vehicular communications. This process for extracting the target

application area presented a general process to extract an application area from the whole

ITS system. Second, vehicles’ locations in the scenarios are represented based on scalar

value properties and binary relations with local road segments and junctions rather than

their coordinates, focusing on the vehicles’ longitudinal interrelations. By simplifying the

geosemantic descriptions for vehicles’ interrelations and the decision-making processes,

the relative descriptions (i.e. vehicles’ spatiotemporal relations and relative location

representation) set up a base for the ontological modelling of vehicles’ communication

messages.

• Geospatial ontological framework: the VEIN ontology

To support intelligent vehicles’ movements and communications in an ITS environment,

the VEIN ontology was developed as a hierarchical ontological framework, which was

 221

composed of a domain ontology, a task ontology, and an application ontology. Based on

the VEIN domain ontology that provided the four main classes (i.e. vehicles, infrastructure,

travellers, and centres) of the ITS architecture, the VEIN task ontology and the VEIN

application ontology were developed.

As a network-centric messaging model of AI (i.e. intelligent vehicles), the VEIN

application ontology was designed to store declarative (i.e. bottom-up) statements and

procedural (i.e. top-down) statements. The declarative statements were used to describe

vehicles’ relative locations in a specific time, whist the procedural statements defined

emergency rules to support vehicles’ autonomous interactions to resolve emergency

situations. These statements were all written in the triple patterns so that the VEIN

application ontology could be seen as a single ontological framework.

• Agent simulation to model vehicles’ movements and communications

To supplement the static validation of the VEIN application ontology, the agent simulation

environment was developed to provide a dynamic virtual road environment, in which

vehicle agents were moving and interacting with each other. For the road geography of the

two scenarios, two different road datasets were extracted from the ITN layer and then

stored as shapefiles. To represent a vehicle agent’s internal states in emergency situations,

the vehicle agent’s beliefs, desires, and intentions (BDI) architecture was simplified onto

the vehicle’s attributes and methods. The agent simulation environment was implemented

using Repast Simphony, and simulation outputs were collected in every ‘tick’ during the

simulations.

A simulation normally includes a proper validation concerning whether the simulation is a

good model of the real system. Since this research deals with a futuristic situation, the

verification of the emergency rules in a test set was used as the predictive validation of the

futuristic situation. The main simulations were executed with different proportions of

OBE-implanted vehicles for each scenario, and the result of the regression analysis showed

that the effect of vehicular communication in an emergency situation increases linearly

when there are more OBE-implanted vehicles in the situation.

In summary, as this research deals with vehicular communication network on a road network, it

provides a unique theme for the modelling and simulation of vehicular interrelations. The next

section describes the research contributions to the domain of intelligent transport systems.

 222

8.3 Research contributions

This research uses triples of ontology to describe vehicles’ spatiotemporal interactions in order

to emphasise the network-centric characteristics of a vehicular communication network on a

road network. The novel contributions of this research can be described in four aspects: 1)

articulating the need of relative location representation and emergency rules as core contents of

the communication message to trigger neighbour vehicles’ reaction effectively; 2) proposing a

SPIN-based ontological messaging model that provides a query-driven backward reasoning to

avoid overload of inferred data; and 3) presenting a simulation framework that can evaluate the

communications in the emergency situations.

First, this research proposed an ontological approach, which has been used to support the

developments of the vehicles’ context model and communication messaging model. For a

vehicle in a traffic situation, its VEIN ontology model represented its relative location and

spatiotemporal relations with other vehicles and/or road elements. With the network-centric

descriptions of the ontology model, partial information (i.e. partial ontology) of an individual

vehicle could be easily extracted from its whole context model and then merged with another

vehicle’s partial ontology. By sending and receiving its ontology-based messages (e.g. an

emergency vehicle’s relative location and the emergency rule), the recipient vehicles could

understand the surrounding situation, and then take action to resolve and/or avoid the situation.

Second, a SPIN-based ontological messaging model (i.e. VEIN ontology) was developed to

apply the relative location representation and emergency rules in a practical way. In the VEIN

application ontology, the relative location of a vehicle was represented by its properties (e.g.

remained distance to a node) and relations (e.g. which road it is located on, which node it is

heading to). A vehicle’s relative location could be easily translated into a distance/time towards

a junction or another vehicle so that the vehicle’s decision process to resolve a situation could

be simplified. In the ontology model, several SPIN functions and query templates were also

developed to assist vehicles/drivers by dealing with emergency rules (e.g. giving way or

changing lanes). To avoid overloads of reasoning, but still keep the benefits of ontology, this

research adopted SPIN functions and templates. Using SPIN functions and templates, it is

possible to represent context in programming code level in computer memory, which is a

 223

benefit of the object-based context model, and detect emergency situations (i.e. event detection),

which is a benefit of the logic-based context model.

Third, this research has validated vehicular communications in a dynamic traffic environment

by using an agent-based simulation, which supplemented the static validation of the VEIN

application ontology. To replicate the concept of the ontological context/messaging model, a

communication message class was developed. Two emergency traffic situations were simulated

in order to examine the advantage of sharing situational information via the communication

technology on the road. Even though the scope of this research was limited to the predefined

emergency situations, the agent simulation environment could be extended for modelling other

traffic agents (e.g. traffic signal controller). An agent simulation framework has also provided

that could measure the effect of vehicular communications on the traffic efficiency in specific

situations. With the agent simulation framework, various situational environments (e.g. different

communication ranges, traffic density, emergency rules) can be generated and compared to each

other or expected theoretical results.

Yet, as this research has focused on very specific emergency traffic situations, there are research

limitations. The next section discusses the research limitations from two different perspectives:

research outcomes and research method.

8.4 Research limitations

The previous two sections (Sections 8.2 and 8.3) outlined the main research outcomes and

research contributions. Even though this thesis has addressed the research aim, there are

limitations that need to be considered. This section describes the limitations of the three main

outcomes (i.e. the scenarios, the ontology model, and the agent simulation) as well as the

methodological limitations.

• Scenarios: locality of each scenario and cooperation-focused description

The scenarios were focused on building a vehicular communication message model to

support vehicular cooperation in specific emergency situations, in which vehicles share

geospatial information to resolve a shared traffic situation. Therefore, the scenarios were

built on top of the subservices of the ITS user services, and reflected only parts of reality.

In a real traffic situation, the locality and independency of each scenario cannot be assumed

 224

any more. There would be cases where two or more events might happen in proximity and

a vehicle on a road may be in the impact zone of several events, but these multiple traffic

situations have not been discussed. When dealing with several concurrent traffic situations,

vehicular coordination and negotiation have to be considered in order to prioritise and

allocate resources to resolve several situations in sequence.

• The VEIN ontology: restricted availability for emergency situations that contain point

events on a linear network

The VEIN ontology was developed as a communication message model on the conceptual

basis of an ad hoc vehicular network (i.e. DSRC) and ontology-based context modelling.

As a network-centric message model on top of restricted scenarios, vehicles’ locations

were described with relative distance and time from/to a road element. Even though

relative geographic representation of the VEIN ontology enabled SPARQL queries to be

made without spatial indices, it is limited to point features/events on a linear road network.

The linear road network model (i.e. one-dimensional linear space) provided a simplified

and abstracted description of the real world road network, but it was focused on describing

vehicles’ longitudinal interrelation, rather than vehicles’ lateral interrelation. Consequently,

two-dimensional or three-dimensional descriptions, such as roadway width and multi-lane

properties, were not considered.

• The agent simulation: strict adherence to the predefined emergency rules without

learning and updating vehicles’ behaviours

The agent simulations focused on examining the effect of the vehicular communication to

share vehicles’ geospatial information in emergency situations, so vehicle agents’

adaptation or learning was beyond the scope of this research. Consequently, despite the fact

that vehicles were modelled in an agent-based way, vehicles were quite limited to ‘learn

and update their behaviours’ from a decision-making perspective (Johnston et al., 2013).

Drivers’ different behaviours could also affect the traffic flow, but were not considered

since this research deals with emergency situations that drivers needed to follow

emergency rules, which were compulsory for their own safety.

Apart from limitations of the research outcomes, there is another limitation caused by the

methodological framework. The research questions were developed like a parallel circuit rather

 225

than a series circuit so that each research outcome can be treated as an individual solution of

each research question. The VEIN application ontology was developed as a communication

messaging model, and the agent simulation was just designed to demonstrate the effects of

vehicular communications by linking the communication message to the vehicle agents’

behaviours. Even though the communication message class for the simulation was built based

on the concept of the VEIN application model by replicating its properties and functions in a

Java class, the VEIN application ontology was not physically coupled with the simulation.

Therefore, the agent simulation has fundamental limitations and cannot be treated as an

independent solution for providing dynamic validation of the VEIN application ontology.

• Restricted simulation environment: limited to vehicle-to-vehicle communications and

static road-related information

During the simulation, it was assumed that each vehicle had its own storage for its

ontology model not only to keep the whole static road network, but also to update vehicles’

presence via OBE-to-OBE communications. Vehicle-to-infrastructure communication (i.e.

OBE-to-RSE communication) and vehicle-to-centre communication, which could expand

the ontology model for vehicle agents to receive/update dynamic road-related information

in realistic traffic situations, were not considered in the simulation. Consequently, ontology

storage options for the aforementioned communication types (i.e. road-segment based

partitioning for RSE, traffic analysis zone based partitioning for traffic centre) were not

considered in the simulation.

Based on the aforementioned research limitations, the next section will recommend directions

for future research.

8.5 Future work

The previous section (Section 8.5) provided detailed descriptions of the research limitations,

and they can be considered as guidelines to refine the research outcomes and research method.

This section outlines recommendations for future research to improve the VEIN ontology and

the agent simulation, which can be regarded as the two main columns that support the research

framework. Providing more scenarios can extend the VEIN application ontology, and the

implementation of vehicle agents can be extended by providing an Application Programming

 226

Interface (API) that reads/writes the VEIN ontology model as well as providing a more

sophisticated decision-making framework. The simulation framework can be improved by

providing more detailed vehicle mobility models and realistic traffic volumes.

• Providing more scenarios to extend the VEIN application ontology

The VEIN domain ontology and the VEIN task ontology were developed by analysing

transport features/elements and vehicular communication devices/elements, respectively.

Then, the VEIN application ontology was developed as a limited set of subclasses,

properties, and relations as well as SPIN rules and SPARQL templates. The same

procedure can be done with other scenarios in order to extend the VEIN application

ontology. Additional scenarios can describe vehicle-to-infrastructure communication, other

vehicular sensors (e.g. LIDAR, ultrasonic, optic sensors, etc.), and concurrent situations in

which vehicles need to coordinate and negotiate.

• Providing an API to access the VEIN ontology

Since the vehicular communications were simulated in a virtual road environment, the

VEIN ontology model was logically mapped onto vehicle agents’ properties (i.e. internal

states) and methods (i.e. behaviours). It was enough to examine whether the ontology

model could be regarded as having reliable communication contents to resolve the

emergency situations. However, to become an independent messaging model and to be

integrated with the simulation, the VEIN ontology model needs to provide an API for

accessing its own ontology storage to get/set asserted triples, SPIN functions, and

SPARQL templates. In addition, building an ontology API would be the first important

step for the physical implementation of intelligent vehicles.

• Developing advanced decision-making process for intelligent vehicles

The VEIN ontology contains SPARQL templates, which represent vehicle agents’ current

decision-making process. These templates only check if a vehicle meets a predefined

situation by measuring the vehicle’s relative distance/time from an emergency

location/zone. This kind of predefined routines can be powerful when dealing with a

simple situation, but an advanced decision-making process for vehicles is essential to deal

with various complex situations. With the integration of vehicles’ predefined cooperation

rules (i.e. emergency rules) and additional coordination and negotiation rules, a stage-by-

 227

stage decision-making framework (e.g. situation - options – choose – act – evaluate) needs

to be developed.

• Replicating more realistic traffic situation for the simulation

For the microscopic vehicle mobility, the simulation framework only provides a car-

following model (IDM) and an unsignalised FIFO-based junction/intersection management.

Multi-lane roads, vehicles’ overtaking, and traffic controls (e.g. traffic lights at

junctions/intersections) can be implemented to reproduce realistic vehicles’ movements.

For realistic traffic volume at a given moment in a particular area, it is also required to use

additional surveys and statistics of real traces of vehicles in real daily life urban traffic over

commuting time, lunchtime, weekdays, weekends.

8.6 Concluding remarks

The advancement of Information and Communication Technologies (ICT) has led to the

transition of transport systems towards Intelligent Transport Systems (ITS). This research chose

emergency situations in an ITS environment as the target application area to illustrate the

actuality of a geospatial ontology that could support communications of vehicles to resolve the

situations locally and autonomously. The approach outlined in this thesis can be applied to build

other ontological models that accentuate spatiotemporal relations. For example, based on

spatiotemporal relations among road users and road facilities, a flexible public transportation

routing/scheduling model, a speed enforcement model, a traffic signal enforcement model, or a

road-geometry warning model can be developed as an application ontology. However, since this

research has adopted the agent simulation instead of the physical implementation of multi

vehicle agents, several ontological issues (i.e. speed issues, inference issues, storing issues, etc.)

need to be considered when contemplating a physical implementation of an ontology model

and/or a multi-agent system.

Meanwhile, the ontology-based messaging model demonstrates the potential of vehicle agents

that communicate with each other in emergency situations, which can be categorised as special

cases. Therefore, to support general cases in various situations in ITS and other domains, the

context model for the vehicle agents (and the road infrastructure agents) has to be extended to

represent their beliefs, desires, and intentions (BDI). In addition, for the physical

 228

implementation of autonomous vehicle agents, it has to be interconnected and compatible with

other sensors (i.e. LIDAR, ultrasonic, and optic sensors) and techniques (i.e. information

extraction, machine-learning, etc.) to recognise the traffic and road environment.

In conclusion, in order to support communication and sensor technologies, it is necessary to

explore a new way for intelligent agents to capture, store, and share geographic information and

knowledge on a distributed network without a central geodatabase. In the way of this

exploration, the current concept and functionality of geographic information, which is based on

the geovisualisation-oriented and geodatabase-oriented framework, would be extended both for

human and intelligent agents.

 229

References

Abdou, M., Hamill, L., Gilbert, N., 2012. Designing and Building an Agent-Based Model, in:
Agent-Based Models of Geographical Systems. Springer, pp. 141–165.

Agarwal, P., 2005. Ontological considerations in GIScience. International Journal of
Geographical Information Science 19, 501–536. doi:10.1080/13658810500032321

Alexander, I., 2004. Introduction: Scenarios in System Development, in: Alexander, I., Maiden,
N. (Eds.), Scenarios, Stories, Use Cases : Through the Systems Development Life-
Cycle. John Wiley & Sons.

Allan, R.J., 2010. Survey of Agent Based Modelling and Simulation Tools (Technical Report
No. DL-TR-2010-007). Science and Technology Facilities Council, UK.

Al-Sultan, S., Al-Doori, M.M., Al-Bayatti, A.H., Zedan, H., 2014. A comprehensive survey on
vehicular Ad Hoc network. Journal of Network and Computer Applications 37, 380–
392. doi:10.1016/j.jnca.2013.02.036

An, L., Linderman, M., Qi, J., Shortridge, A., Liu, J., 2005. Exploring complexity in a human–
environment system: an agent-based spatial model for multidisciplinary and multiscale
integration. Annals of the Association of American Geographers 95, 54–79.

Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N., 2012. Stream reasoning and complex event
processing in ETALIS. Semantic Web 3, 397–407. doi:10.3233/SW-2011-0053

Apple Inc., 2011. The Objective-C Programming Language.
Architecture Development Team, 2012. National ITS Architecture Physical Architecture.

Research and Innovative Technology Administration (RITA), US Department of
Transportation (US DOT), Washington, DC, USA.

Architecture Development Team, 2007. National ITS Architecture Documents: EXECUTIVE
SUMMARY. Research and Innovative Technology Administration (RITA), US
Department of Transportation (US DOT), Washington, DC, USA.

Baader, F., Horrocks, I., Sattler, U., 2009. Description Logics, in: Handbook on Ontologies.
Springer, pp. 21–43.

Baldauf, M., Dustdar, S., Rosenberg, F., 2007. A survey on context-aware systems.
International Journal of Ad Hoc and Ubiquitous Computing 2, 263–277.

Batty, M., 2001. Polynucleated Urban Landscapes. Urban Stud 38, 635–655.
doi:10.1080/00420980120035268

Batty, M., Desyllas, J., Duxbury, E., 2003. Safety in Numbers? Modelling Crowds and
Designing Control for the Notting Hill Carnival. Urban Stud 40, 1573–1590.
doi:10.1080/0042098032000094432

Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D., 2011. SUMO–simulation of urban
mobility: an overview, in: Proceedings of SIMUL 2011, The Third International
Conference on Advances in System Simulation. ThinkMind.

Benenson, I., Omer, I., Hatna, E., 2002. Entity-based modeling of urban residential dynamics:
the case of Yaffo, Tel Aviv. Environment and Planning B 29, 491–512.

Bergman, M.K., 2009. Advantages and Myths of RDF. Structured Dynamics LLC.
Bernaras, A., Laresgoiti, I., Corera, J., 1996. Building and Reusing Ontologies for Electrical

Network Applications’, in: 12th European Conference on Artificial Intelligence.
Budapest, Hungary, pp. 298–302.

Berners-Lee, T., Hendler, J., Lassila, O., 2001. The semantic web: a new form of web content
that is meaningful to computers will unleash a revolution of new possibilities. Scientific
American.

Bonabeau, E., 2002. Agent-based modeling: Methods and techniques for simulating human
systems. Proceedings of the National Academy of Sciences 99, 7280–7287.
doi:10.1073/pnas.082080899

 230

Bonomi, F., Milito, R., Zhu, J., Addepalli, S., 2012. Fog Computing and Its Role in the Internet
of Things, in: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud
Computing, MCC ’12. ACM, New York, NY, USA, pp. 13–16.
doi:10.1145/2342509.2342513

Booch, G., 1994. Object-oriented analysis and design with applications. Addison-Wesley.
Borst, W.N., 1997. Construction of engineering ontologies. Centre of Telematica and

Information Technology, University of Tweenty: Enschede, The Netherlands.
Brank, J., Grobelnik, M., Mladenić, D., 2005. A survey of ontology evaluation techniques.

Presented at the Conference on Data Mining and Data Warehouses (SIKDD 2005) at
7th International Multi-conference on Information Society (IS 2005), Ljubljana,
Slovenia.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J., 2004. Tropos: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent
Systems 8, 203–236. doi:10.1023/B:AGNT.0000018806.20944.ef

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J., 2001. A knowledge level
software engineering methodology for agent oriented programming, in: Proceedings of
the Fifth International Conference on Autonomous Agents, AGENTS ’01. ACM, New
York, NY, USA, pp. 648–655. doi:10.1145/375735.376477

Brewster, C., Alani, H., Dasmahapatra, S., Wilks, Y., 2004. Data driven ontology evaluation.
Presented at the International Conference on Language Resources and Evaluation
(LREC 2004), Lisbon, Portugal.

Brickley, D., Guha, R.V., 2004. RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Recommendation.

Brown, D.G., Page, S.E., Riolo, R., Rand, W., 2004. Agent-based and analytical modeling to
evaluate the effectiveness of greenbelts. Environmental Modelling & Software 19,
1097–1109. doi:10.1016/j.envsoft.2003.11.012

Burmeister, B., Haddadi, A., Matylis, G., 1997. Application of multi-agent systems in traffic
and transportation. Software Engineering. IEE Proceedings 144, 51–60. doi:10.1049/ip-
sen:19971023

Cardoso, J., 2006. Developing An Owl Ontology For e-Tourism, in: Cardoso, J., Sheth, A.P.
(Eds.), Semantic Web Services, Processes and Applications, Semantic Web and Beyond.
Springer US, pp. 247–282.

CCL, 2011. NetLogo 4.1.3 User Manual. Center for Connected Learning and Computer-based
Modelling (CCL).

Chen, H., Finin, T., Joshi, A., 2005. The SOUPA Ontology for Pervasive Computing, in:
Tamma, V., Cranefield, S., Finin, T., Willmott, S., Walliser, M., Brantschen, S., Calisti,
M., Hempfling, T. (Eds.), Ontologies for Agents: Theory and Experiences, Whitestein
Series in Software Agent Technologies and Autonomic Computing. Birkhäuser Basel,
pp. 233–258.

Chen, H., Perich, F., Finin, T., Joshi, A., 2004. SOUPA: standard ontology for ubiquitous and
pervasive applications, in: The First Annual International Conference on Mobile and
Ubiquitous Systems: Networking and Services (MOBIQUITOUS 2004). pp. 258–267.
doi:10.1109/MOBIQ.2004.1331732

Choffnes, D.R., Bustamante, F.E., 2005. An integrated mobility and traffic model for vehicular
wireless networks, in: Proceedings of the 2nd ACM International Workshop on
Vehicular Ad Hoc Networks. ACM, pp. 69–78.

Cochran, W.G., 1963. Sampling techniques. Wiley.
Computer Desktop Encyclopedia, 2011. OSI Model. The Free Dictionary.
Connolly, D., 2006. Naming and Addressing: URIs, URLs, ... http://www.w3.org/addressing/.

 231

Conte, R., Gilbert, N., Sichman, J., 1998. MAS and Social Simulation: A Suitable Commitment,
in: Sichman, J., Conte, R., Gilbert, N. (Eds.), Multi-Agent Systems and Agent-Based
Simulation, Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp. 1–9.

Cook, D.J., Augusto, J.C., Jakkula, V.R., 2009. Ambient intelligence: Technologies,
applications, and opportunities. Pervasive and Mobile Computing 5, 277–298.
doi:10.1016/j.pmcj.2009.04.001

Cook, D.J., Youngblood, M., Heierman, E.O., Gopalratnam, K., Rao, S., Litvin, A., Khawaja, F.,
2003. MavHome: an agent-based smart home, in: Proceedings of the First IEEE
International Conference on Pervasive Computing and Communications (PerCom 2003).
IEEE, pp. 521–524. doi:10.1109/PERCOM.2003.1192783

Crooks, A.T., 2010a. Using Geo-spatial Agent-Based Models for Studying Cities (No. CASA
Working Paper 160), CASA Working Papers Series. Centre for Advanced Spatial
Analysis, University College London.

Crooks, A.T., 2010b. Constructing and implementing an agent-based model of residential
segregation through vector GIS. International Journal of Geographical Information
Science 24, 661–675. doi:10.1080/13658810903569572

Crooks, A.T., 2007. The Repast Simulation/Modelling System for Geospatial Simulation (No.
CASA Working Paper 123), CASA Working Papers Series. Centre for Advanced
Spatial Analysis, University College London.

Cycorp, 2002. OpenCyc Selected Vocabulary and Upper Ontology [WWW Document].
OpenCyc Documentation. URL http://www.cyc.com/cycdoc/vocab/upperont-
diagram.html (accessed 5.25.12).

Daraghmi, Y.-A., Stojmenovic, I., Yi, C.-W., 2013. A taxonomy of Data Communication
Protocols for Vehicular Ad Hoc Networks, in: Basagni, S., Conti, M., Giordano, S.,
Stojmenovic, I. (Eds.), Mobile Ad Hoc Networking: The Cutting Edge Directions. John
Wiley & Sons.

Department for Transport, 2013. Transport statistics Great Britain 2013. Department for
Transport.

Department for Transport, 2011a. Vehicle speeds on built up roads by speed limit and vehicle
type in Great Britain, annual from 2006 (No. SPE0102). Department for Transport,
Great Britain.

Department for Transport, 2011b. Vehicle speeds on non built up roads by road type and vehicle
type in Great Britain, annual from 2006 (No. SPE0101). Department for Transport,
Great Britain.

Department for Transport, 2011c. Vehicle speeds on built up roads in Great Britain, annual from
2005 (No. SPE0104). Department for Transport, Great Britain.

Department for Transport, 2011d. Vehicle speeds on non-built-up roads in Great Britain, annual
from 2005 (No. SPE0103). Department for Transport, Great Britain.

Department for Transport, 2006. Setting local speed limits, DfT Circular 1/06 (No. DfT Circular
1/06). Department for Transport, Great Britain.

Department for Transport, 2004. The Future of Transport: a network for 2030. Stationery Office.
Desai, P., Loke, S.W., Desai, A., Singh, J., 2013. CARAVAN: Congestion avoidance and route

allocation using virtual agent negotiation. IEEE Transactions on Intelligent
Transportation Systems 14, 1197–1207.

Dey, A.K., 2001. Understanding and Using Context. Personal and Ubiquitous Computing 5, 4–7.
doi:10.1007/s007790170019

Dijkstra, E.W., 1959. A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271. doi:10.1007/BF01386390

Dresner, K., Stone, P., 2005. Multiagent traffic management: an improved intersection control
mechanism, in: Proceedings of the Fourth International Joint Conference on

 232

Autonomous Agents and Multiagent Systems, AAMAS ’05. ACM New York, NY,
USA, Utrecht, The Netherlands, pp. 471–477. doi:10.1145/1082473.1082545

Dresner, K., Stone, P., 2004. Multiagent Traffic Management: A Reservation-Based Intersection
Control Mechanism, in: Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems - Volume 2, AAMAS ’04. IEEE
Computer Society Washington, DC, USA, New York, USA, pp. 530–537.
doi:10.1109/AAMAS.2004.190

Dressler, F., Sommer, C., 2015. Simulation of Vehicular Networks.
Driving Standards Agency, 2007. The Official Highway Code. The Department for Transport.
Dulmage, J., Tsai, M., Fitz, M., Daneshrad, B., 2006. COTS-based DSRC testbed for rapid

algorithm development, implementation, and test, in: Proceedings of the 1st
International Workshop on Wireless Network Testbeds, Experimental Evaluation &
Characterization, WiNTECH ’06. ACM, New York, NY, USA, pp. 113–114.
doi:10.1145/1160987.1161017

Ebers, S., Hellbück, H., Pfisterer, D., Fischer, S., 2013. Collaboration between VANET
applications based on open standards, in: 2013 IEEE Vehicular Networking Conference.
Presented at the 2013 IEEE Vehicular Networking Conference, pp. 174–177.
doi:10.1109/VNC.2013.6737606

ECC, 2008. ECC Decision of 14 March 2008 on the harmonised use of the 5875-5925 MHz
frequency band for Intelligent Transport Systems (ITS) (No. ECC/DEC/(08)01).
Electronic Communications Committee (ECC), European Conference of Postal and
Telecommunications Administrations (CEPT).

Eichler, S., Ostermaier, B., Schroth, C., Kosch, T., 2005. Simulation of car-to-car messaging:
analyzing the impact on road traffic, in: 13th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems,
2005. Presented at the 13th IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, 2005, IEEE, pp. 507–510.
doi:10.1109/MASCOTS.2005.64

Eigner, R., Lutz, G., 2008. Collision Avoidance in VANETs - An Application for Ontological
Context Models, in: Sixth Annual IEEE International Conference on Pervasive
Computing and Communications. pp. 412–416. doi:10.1109/PERCOM.2008.42

Eigner, R., Mair, C., 2009. Using Context Ontologies for Addressing and Routing in Mobile Ad
Hoc Networks, in: Eighth International Conference on Networks. pp. 415–420.
doi:10.1109/ICN.2009.72

EMSA, 2009. EMSA’s New Sirens Shake Drivers to Attention [WWW Document]. URL
https://www.emsaonline.com/mediacenter/articles/00000622.HTML (accessed 7.28.14).

Epstein, J.M., 2008. Why Model? Journal of Artificial Societies and Social Simulation 11, 12.
Epstein, J.M., Axtell, R., 1996. Growing artificial societies: social science from the bottom up.

Brookings Institution Press.
ESRI UK, 2006. Using OS MasterMap® Integrated Transport Network (ITN) Layer with

ArcGIS (ESRI (UK) White Paper).
ETSI, 2008. ETSI EN 302 571 V1.1.1, Intelligent Transport Systems (ITS);

Radiocommunications equipment operating in the 5 855 MHz to 5 925 MHz frequency
band; Harmonized EN covering the essential requirements of article 3.2 of the R&TTE
Directive (No. DEN/ERM-TG37-007). European Telecommunications Standards
Institute (ETSI).

ETSI, 2006. ETSI TR 102 492-2 V1.1.1, Electromagnetic compatibility and Radio spectrum
Matters (ERM); Intelligent Transport Systems (ITS); Part 2: Technical characteristics
for pan European harmonized communications equipment operating in the 5 GHz
frequency range intended for road safety and traffic management, and for non-safety

 233

related ITS applications; System Reference Document (No. DTR/ERM-RM-036-2).
European Telecommunications Standards Institute (ETSI).

European Commission, 2008. Cars that talk: Commission earmarks single radio frequency for
road safety and traffic management (No. IP/08/1240). Europa.eu.

European Parliament, Council of the European Union, 2010. Directive 2010/40/EU of the
European Parliament and of the Council. Official Journal of the European Union 50,
207.

Evans, T.P., Kelley, H., 2004. Multi-scale analysis of a household level agent-based model of
landcover change. Journal of Environmental Management 72, 57–72.
doi:10.1016/j.jenvman.2004.02.008

Evans, T.P., Sun, W., Kelley, H., 2006. Spatially explicit experiments for the exploration of
land-use decision-making dynamics. International Journal of Geographical Information
Science 20, 1013–1037.

Fernandes, P., Nunes, U., 2007. Vehicle Communications: A Short Survey, in: IADIS
International Conference on Telecommunications, Networks and Systems. Lisbon,
Portugal, pp. 134–138.

Fiore, M., 2006. Mobility models in inter-vehicle communications literature. Politecnico di
Torino.

Flache, A., Hegselmann, R., 2001. Do Irregular Grids make a Difference? Relaxing the Spatial
Regularity Assumption in Cellular Models of Social Dynamics. Journal of Artificial
Societies and Social Simulation 4.

Fossett, M., 2006. Ethnic Preferences, Social Distance Dynamics, and Residential Segregation:
Theoretical Explorations Using Simulation Analysis. Journal of Mathematical
Sociology 30, 185–273.

Fremont, G., 2004. European DSRC Applications Developments. Presented at the 11th ITS
World Congress, Special Session 27: Development of DSRC Multiple Application,
Nagoya, Japan.

Galton, A., 2005. Dynamic Collectives and Their Collective Dynamics, in: Cohn, A., Mark, D.
(Eds.), Spatial Information Theory, Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, pp. 300–315.

Galton, A., Worboys, M., 2011. An Ontology of Information for Emergency Management, in:
Proceedings of the 8th International ISCRAM Conference. Lisbon, Portugal.

Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., 2003. Sweetening WORDNET with
DOLCE. AI Magazine 24, 13–24. doi:10.1609/aimag.v24i3.1715

Gasevic, D., Djuric, D., Devedzic, V., 2006. Model driven architecture and ontology
development. Springer-Verlag.

Gáspár, P., Szalay, Z., Aradi, S., 2014. Highly Automated Vehicle Systems. BME MOGI.
Gearon, P., Passant, A., Polleres, A., 2012. SPARQL 1.1 Update. W3C Working Draft.
Genesereth, M.R., Nilsson, N.J., 1987. Logical foundations of artificial intelligence. Morgan

Kaufmann Los Altos, CA.
Gerla, M., Lee, E.K., Pau, G., Lee, U., 2014. Internet of vehicles: From intelligent grid to

autonomous cars and vehicular clouds, in: 2014 IEEE World Forum on Internet of
Things (WF-IoT). Presented at the 2014 IEEE World Forum on Internet of Things (WF-
IoT), pp. 241–246. doi:10.1109/WF-IoT.2014.6803166

Gimblett, H.R., Richards, M.., Itami, R.M., 2002. Simulating wildland recreation use and
conflicting spatial interactions using rule-driven intelligent agents, in: Integrating
Geographic Information Systems and Agent-Based Modeling Techniques for
Simulating Social and Ecological Processes. Oxford University Press, pp. 211–243.

Giorgini, P., Henderson-Sellers, B., 2005. Agent-oriented methodologies: an introduction, in:
Agent-Oriented Methodologies. Idea Group Publishing, pp. 1–19.

 234

Gómez-Pérez, A., Fernández-López, M., Corcho, O., 2004. Ontological Engineering: With
Examples from the Areas of Knowledge Management, E-Commerce and the Semantic
Web. Springer.

Goodchild, M.F., 2000. GIS and Transportation: Status and Challenges. GeoInformatica 4, 127–
139. doi:10.1023/A:1009867905167

Goodchild, M.F., Egenhofer, M.J., Kemp, K.K., Mark, D.M., Sheppard, E., 1999. Introduction
to the Varenius project. International Journal of Geographical Information Science 13,
731–745. doi:10.1080/136588199240996

Goodchild, M.F., Yuan, M., Cova, T.J., 2007. Towards a general theory of geographic
representation in GIS. International Journal of Geographical Information Science 21,
239–260. doi:10.1080/13658810600965271

Gottfredson, L.S., 1997. Mainstream science on intelligence: An editorial with 52 signatories,
history, and bibliography. Intelligence 24, 13–23.

Grant, J., Beckett, D., 2004. RDF Test Cases. W3C Recommendation.
Grenon, P., Smith, B., 2004. SNAP and SPAN: Towards Dynamic Spatial Ontology. Spatial

Cognition & Computation 4, 69–104. doi:10.1207/s15427633scc0401_5
Gruber, T., 2009. Ontology, in: Liu, L., Özsu, M.T. (Eds.), Encyclopedia of Database Systems.

Springer Publishing Company, Incorporated.
Gruber, T., 1993. A translation approach to portable ontology specifications. Knowledge

acquisition 5, 199–220.
Guarino, N., 1998. Formal Ontology and Information Systems, in: Guarino, N. (Ed.), Formal

Ontology in Information Systems: Proceedings of the First International Conference
(FOIS’98). IOS Press, Trento, Italy, pp. 3–15.

Guarino, N., Giaretta, P., 1995. Ontologies and Knowledge Bases towards a Terminological
Clarification, in: Mars, N.J.I. (Ed.), Towards Very Large Knowledge Bases: Knowledge
Building & Knowledge Sharing. IOS Press, Amsterdam, Netherlands.

Haklay, M., O’Sullivan, D., Thurstain-Goodwin, M., Schelhorn, T., 2001. “So go downtown”:
simulating pedestrian movement in town centres. Environment and Planning B:
Planning and Design 28, 343 – 359. doi:10.1068/b2758t

Hallé, S., Chaib-draa, B., 2005. A collaborative driving system based on multiagent modelling
and simulations. Transportation Research Part C: Emerging Technologies 13, 320–345.
doi:10.1016/j.trc.2005.07.004

Hansmann, U., Merk, L., Nicklous, M.S., Stober, T., 2003. What Pervasive Computing Is All
About, in: Pervasive Computing: The Mobile World. Springer, pp. 11–24.

Härri, J., Filali, F., Bonnet, C., 2007. Mobility Models for Vehicular Ad Hoc Netw orks: A
Survey and Taxonomy (Research Report), RR-06-168. Department of Mobile
Communications, Eurecom.

Härri, J., Filali, F., Bonnet, C., Fiore, M., 2006. VanetMobiSim: generating realistic mobility
patterns for VANETs, in: Proceedings of the 3rd International Workshop on Vehicular
Ad Hoc Networks. ACM, pp. 96–97.

Harris, S., Seaborne, A., 2012. SPARQL 1.1 Query Language. W3C Working Draft.
Helbing, D., Balietti, S., 2012. Agent-based Modeling, in: Helbing, D. (Ed.), Social Self-

Organization - Agent-Based Simulations and Experiments to Study Emergent Social
Behavior. Springer-Verlag Berlin Heidelberg, pp. 25–70.

Henchey, M.J., Batta, R., Blatt, A., Flanigan, M., Majka, K., 2013. A simulation approach to
study emergency response. J Simulation 8, 115–128. doi:10.1057/jos.2013.20

Holfelder, W., 2004. Vehicle-to-Vehicle and Vehicle-to-Infrastructure Communication Recent
Developments, Opportunities and Challenges, in: Automotive Software Workshop,
Future Generation Software Architectures in the Automotive Domain: Connected
Services in Mobile Networks. San Deigo, CA, USA.

 235

Hornsby, K.S., King, K., 2008. Modeling Motion Relations for Moving Objects on Road
Networks. GeoInformatica 12, 477–495. doi:10.1007/s10707-007-0039-7

Horridge, M., Knublauch, H., Rector, A., Stevens, R., Wroe, C., 2011. A Practical Guide To
Building OWL Ontologies Using Protege 4 and CO-ODE Tools Edition 1.3.

Horrocks, I., 2010. Description Logic: a Formal Foundation for Languages and Tools.
Horrocks, I., 2009. OWL 2: The Next Generation. London Semantic Web Meetup Group

Seminar. London, UK.
Horrocks, I., 2008. Ontologies and the semantic web. Commun. ACM 51, 58–67.

doi:10.1145/1409360.1409377
Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M., 2004. SWRL: A

Semantic Web Rule Language Combining OWL and RuleML. W3C Member
Submission.

Howard, D., Dai, D., 2014. Public Perceptions of Self-driving Cars: The Case of Berkeley,
California. Presented at the The Transportation Research Board (TRB) 93rd Annual
Meeting, Washington, D.C.

Hussain, R., Rezaeifar, Z., Oh, H., 2015. A Paradigm Shift from Vehicular Ad Hoc Networks to
VANET-Based Clouds. Wireless Pers Commun 83, 1131–1158. doi:10.1007/s11277-
015-2442-y

Hussain, R., Son, J., Eun, H., Kim, S., Oh, H., 2012. Rethinking Vehicular Communications:
Merging VANET with cloud computing, in: 2012 IEEE 4th International Conference on
Cloud Computing Technology and Science (CloudCom). Presented at the 2012 IEEE
4th International Conference on Cloud Computing Technology and Science
(CloudCom), pp. 606–609. doi:10.1109/CloudCom.2012.6427481

Hutt, K., 2005. A comparison of RDF query languages, in: Proc. of 21th Computer Science
Seminar. Hartfort, Connecticut.

Ipfelkofer, F., Lorenz, B., Ohlbach, H.J., 2006. Ontology Driven Visualisation of Maps with
SVG - An Example for Semantic Programming, in: Tenth International Conference on
Information Visualization (IV 2006). pp. 424–429. doi:10.1109/IV.2006.79

Israel, G.D., 2012. Determining Sample Size (No. PE0D6), UF/IFAS Extension. Electronic
Data Information Source of UF/IFAS Extension, nstitute of Food and Agricultural
Sciences (IFAS), University of Florida, Gainesville, FL 32611.

Jasper, R., Uschold, M., 1999. A framework for understanding and classifying ontology
applications, in: Proceedings 12th Int. Workshop on Knowledge Acquisition, Modelling,
and Management KAW. pp. 16–21.

Jennings, N.R., 2001. An agent-based approach for building complex software systems.
Commun. ACM 44, 35–41. doi:10.1145/367211.367250

Jiang, D., Taliwal, V., Meier, A., Holfelder, W., Herrtwich, R., 2006. Design of 5.9 ghz dsrc-
based vehicular safety communication. IEEE Wireless Communications Magazine 13,
36–43. doi:10.1109/WC-M.2006.250356

Johnston, K.M., North, M.J., Brown, D.G., 2013. Introducing agent-based modelling in the GIS
environment, in: Johnston, K.M. (Ed.), Agent Analyst, Agent-Based Modeling in
ArcGIS. Esri Press, Redlands, California, pp. 1–30.

Kargl, F., Ma, Z., Schoch, E., 2006. Security engineering for VANETs, in: 4th Workshop on
Embedded Security in Cars (Escar 2006). Citeseer.

Karnadi, F.K., Mo, Z.H., Lan, K., 2007. Rapid generation of realistic mobility models for
VANET, in: 2007 IEEE Wireless Communications and Networking Conference. IEEE,
pp. 2506–2511.

Kerner, B., 1999. Congested Traffic Flow: Observations and Theory. Transportation Research
Record: Journal of the Transportation Research Board 1678, 160–167.
doi:10.3141/1678-20

 236

Kesting, A., Treiber, M., Helbing, D., 2008. Agents for traffic simulation. arXiv preprint
arXiv:0805.0300.

Khairnar, V.D., Pradhan, S.N., 2010. Mobility Models for Vehicular Ad-hoc Network
Simulation. International Journal of Computer Applications 11, 8–12.
doi:10.5120/1573-2103

Kifer, M., Boley, H., 2010. RIF Overview. W3C Working Group Note.
Klyne, G., Carroll, J.J., 2004. Resource Description Framework (RDF): Concepts and Abstract

Syntax. W3C Recommendation.
Knublauch, H., 2011. Update inferences. TopBraid Suite Users.
Knublauch, H., 2009. Magic Properties with SPIN. Composing the Semantic Web.
Knublauch, H., Hendler, J.A., Idehen, K., 2011. SPIN - Overview and Motivation.
Kompfner, P., 2010. e-Car - Connecting up the dots. Presented at the FITCE.be (Belgian

Federation of Telecom Engineers of the EU) symposium, Interdisciplinary Institute for
Broadband Technology (IBBT), Gent, Belgium.

Kravari, K., Bassiliades, N., 2015. A Survey of Agent Platforms. JASSS 18, 11.
Krikorian, Y.H., 1935. The Concept of Organization. The Journal of Philosophy 32, 119–126.

doi:10.2307/2016073
Kuhn, W., 2001. Ontologies in support of activities in geographical space. International Journal

of Geographical Information Science 15, 613–631. doi:10.1080/13658810110061180
Lee, D., Meier, R., 2007. Primary-Context Model and Ontology: A Combined Approach for

Pervasive Transportation Services, in: Fifth Annual IEEE International Conference on
Pervasive Computing and Communications Workshops (PerCom Workshops ’07). pp.
419–424. doi:10.1109/PERCOMW.2007.95

Lieberman, J., Singh, R., Goad, C., 2007. W3C Geospatial Ontologies. W3C Incubator Group
Report.

Linz, P., 2001. An Introduction to Formal Languages and Automata. Jones & Bartlett Learning.
Lorenz, B., Ohlbach, H.J., Yang, L., 2005. Ontology of transportation networks. REWERSE

Deliverable A1-D4.
Luck, M., McBurney, P., Shehory, O., Willmott, S., 2005. Agent technology: computing as

interaction (a roadmap for agent based computing).
Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., 2004. Mason: A new multi-agent

simulation toolkit, in: Proceedings of the 2004 SwarmFest Workshop.
Macal, C.M., North, M.J., 2010. Tutorial on agent-based modelling and simulation. Journal of

Simulation 4, 151–162. doi:10.1057/jos.2010.3
Maccubbin, R.P., Staples, B.L., Kabir, F., Lowrance, C.F., Mercer, M.R., Philips, B.H., Gordon,

S.R., 2008. Intelligent Transportation Systems Benefits, Costs, Deployment, and
Lessons Learned: 2008 Update. Research and Innovative Technology Administration
(RITA), U.S. Department of Transportation (US DOT), Washington, DC, USA.

Mahajan, A., Potnis, N., Gopalan, K., Wang, A., 2006. Evaluation of mobility models for
vehicular ad-hoc network simulations, in: IEEE International Workshop on Next
Generation Wireless Networks (WoNGeN).

Malleson, N., 2010. Agent-Based Modelling of Burglary (PhD thesis). School of Geography,
The University of Leeds.

Mamadolimova, A., Ambiah, N., Lukose, D., 2011. Modeling Islamic Finance Knowledge for
Contract Compliance in Islamic Banking, in: König, A., Dengel, A., Hinkelmann, K.,
Kise, K., Howlett, R.J., Jain, L.C. (Eds.), Knowledge-Based and Intelligent Information
and Engineering Systems, Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp. 346–355. doi:10.1007/978-3-642-23854-3_37

Mangharam, R., Weller, D., Rajkumar, R., Mudalige, P., Bai, F., 2006. Groovenet: A hybrid
simulator for vehicle-to-vehicle networks, in: 2006 Third Annual International
Conference on Mobile and Ubiquitous Systems: Networking & Services. IEEE, pp. 1–8.

 237

Mangharam, R., Weller, D.S., Stancil, D.D., Rajkumar, R., Parikh, J.S., 2005. GrooveSim: a
topography-accurate simulator for geographic routing in vehicular networks, in:
Proceedings of the 2nd ACM International Workshop on Vehicular Ad Hoc Networks.
ACM, pp. 59–68.

Manikandan, A., Dhas, C.S.G., 2012. ANALYSIS OF MOBILITY MODELS FRAMEWORK
FOR VEHICULAR AD HOC NETWORKS. International Journal of Scientific &
Engineering Research 3.

Manley, E., Cheng, T., 2011. Multi-agent simulation of drivers reactions to unexpected
incidents on urban road networks, in: The 19th GIS Research UK (GISRUK)
Conference. Plymouth, UK.

Marshall, G., 1998. ontology. A Dictionary of Sociology.
Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., 2003. WonderWeb Deliverable

D18, Ontology Library (final).
Matuszek, C., Cabral, J., Witbrock, M., DeOliveira, J., 2006. An introduction to the syntax and

content of Cyc, in: Proceedings of the 2006 Association for the Advancement of
Artificial Intelligence (AAAI) Spring Symposium on Formalizing and Compiling
Background Knowledge and Its Applications to Knowledge Representation and
Question Answering. Stanford University, California, USA, pp. 44–49.

McCreary, D., Kelly, A., 2013. Making Sense of NoSQL: A guide for managers and the rest of
us, 1 edition. ed. Manning Publications, Shelter Island.

McGuinness, D.L., Harmelen, F. van, 2004. OWL Web Ontology Language Overview. W3C
Recommendation.

Melton, J., 2006. SQL, XQuery, and SPARQL: what’s wrong with this picture, in: Proc. XTech:
“Building Web 2.0.” Amsterdam, The Netherlands.

Miaoulis, G., Michener, R.D., 1976. An Introduction to Sampling. Kendall/Hunt Publishing
Company.

Michaels, C., Kelley, D., Sumner, R., Chriss, S., 2010. DSRC Implementation Guide: A guide
to users of SAE J2735 message sets over DSRC. SAE International.

Millner, J., Hale, M., Thompson, B., Roberts, C., 2006. Global Positioning System Handbook:
GPS Data Collection for Integration with Geographic Information Systems Standards,
Specifications and Best Practice Field Guide. Department of Sustainability and
Environment & Department of Primary Industries, The State of Victoria, Australia.

Mladenić, D., Škrjanc, M., Kenda, K., Moraru, A., Bradeško, L., Fortuna, B., Škraba, P., 2012.
Semantic data streams and stream ontologies software (No. Deliverable D4. 5).
ENVISION (Environmental Services Infrastructure with Ontologies) Consortium.

Mlinarsky, F., Onishi, H., 2012. Wireless Technology Assessment for Automotive Applications.
Presented at the ITS America 22nd Annual Meeting & Exposition.

Moray, N., 2004. Ou sont les neiges d’antan? (Where are the snows of yesteryear?), in: Human
Performance, Situation Awareness and Automation Conference, 2nd. Daytona Beach,
Florida, USA, p. 4.

Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C., 2009. OWL 2 Web Ontology
Language Profiles. W3C Recommendation.

Nassar, L., Jundi, A., Golestan, K., Sattar, F., Karray, F., Kamel, M., Boumaiza, S., 2012.
Vehicular Ad-hoc Networks(VANETs): Capabilities, Challenges in Context-Aware
Processing and Communication Gateway, in: Kamel, M., Karray, F., Hagras, H. (Eds.),
Autonomous and Intelligent Systems. Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 42–49.

Neches, R., Fikes, R.E., Finin, T., Gruber, T., Patil, R., Senator, T., Swartout, W.R., 1991.
Enabling Technology for Knowledge Sharing. AI Magazine 12, 36.
doi:10.1609/aimag.v12i3.902

 238

NHS Information Centre, 2008. Ambulance Services, England 2007-08. NHS Information
Centre, Part of the Government Statistical Service.

Nittel, S., Duckham, M., Kulik, L., 2004. Information Dissemination in Mobile Ad-Hoc
Geosensor Networks, in: Egenhofer, M.J., Freksa, C., Miller, H.J. (Eds.), Geographic
Information Science, Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
pp. 206–222.

Nittel, S., Stefanidis, A., Cruz, I., Egenhofer, M., Goldin, D., Howard, A., Labrinidis, A.,
Madden, S., Voisard, A., Worboys, M., 2004. Report from the first workshop on geo
sensor networks. SIGMOD Rec. 33, 141–144. doi:10.1145/974121.974146

Noronha, V., Church, R.L., 2002. Linear Referencing and Alternate expressions of Location for
Transportation (Task Order 3021). Vehicle Intelligence and Transportation Analysis
Laboratory, National Center for Geographic Information and Analysis, Santa Barbara,
California, USA.

Noy, N.F., McGuinness, D.L., 2001. Ontology development 101: A guide to creating your first
ontology.

Nundloll, V., Grace, P., Blair, G.S., 2011. The Role of Ontologies in Enabling Dynamic
Interoperability - Springer. Presented at the International Conference of Distributed
Applications and Interoperable Systems (DAIS) 2011, Reykjavik, Iceland, p. pp 179-
193. doi:10.1007/978-3-642-21387-8_14

Oberle, D., Ankolekar, A., Hitzler, P., Cimiano, P., Sintek, M., Kiesel, M., Mougouie, B.,
Baumann, S., Vembu, S., Romanelli, M., Buitelaar, P., Engel, R., Sonntag, D.,
Reithinger, N., Loos, B., Zorn, H.-P., Micelli, V., Porzel, R., Schmidt, C., Weiten, M.,
Burkhardt, F., Zhou, J., 2007. DOLCE ergo SUMO: On foundational and domain
models in the SmartWeb Integrated Ontology (SWIntO). Web Semantics: Science,
Services and Agents on the World Wide Web 5, 156–174.
doi:10.1016/j.websem.2007.06.002

Ohmori, S., Yamao, Y., Nakajima, N., 2000. The future generations of mobile communications
based on broadband access technologies. Communications Magazine, IEEE 38, 134–
142. doi:10.1109/35.888267

Olariu, S., Eltoweissy, M., Younis, M., 2011. Towards autonomous vehicular clouds. ICST
Transactions on Mobile Communications and Applications 11, e2.
doi:10.4108/icst.trans.mca.2011.e2

Olariu, S., Hristov, T., Yan, G., 2013. The Next Paradigm Shift: From Vehicular Networks to
Vehicular Clouds, in: Basagni, S., Conti, rco, Giordano, S., Stojmenovic, I. (Eds.),
Mobile Ad Hoc Networking. John Wiley & Sons, Inc., pp. 645–700.

Ontotext, 2014. THE TRUTH ABOUT TRIPLESTORES, The Top 8 Things You Need to
Know When Considering a Triplestore.

Ordnance Survey, 2011. OS MasterMap® Integrated Transport NetworkTM Layer Getting
started guide. Ordnance Survey, SOUTHAMPTON, United Kingdom,.

Padgham, L., Winikoff, M., 2003. Prometheus: A Methodology for Developing Intelligent
Agents, in: Giunchiglia, F., Odell, J., Weiß, G. (Eds.), Agent-Oriented Software
Engineering III. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 174–185.

Pan, J., 2008. A survey of network simulation tools: Current status and future developments.
Papageorgiou, G., Maimaris, A., 2012. Modelling, Simulation Methods for Intelligent

Transportation Systems, in: Abdel-Rahim, A. (Ed.), Intelligent Transportation Systems.
Parker, D.C., Meretsky, V., 2004. Measuring pattern outcomes in an agent-based model of

edge-effect externalities using spatial metrics. Agriculture, Ecosystems & Environment
101, 233–250. doi:10.1016/j.agee.2003.09.007

Pease, A., Niles, I., Li, J., 2002. The suggested upper merged ontology: A large ontology for the
semantic web and its applications, in: Working Notes of the Association for the

 239

Advancement of Artificial Intelligence (AAAI) - 2002 Workshop on Ontologies and the
Semantic Web. Edmonton, Canada.

Pell, J.P., Sirel, J.M., Marsden, A.K., Ford, I., Cobbe, S.M., 2001. Effect of reducing ambulance
response times on deaths from out of hospital cardiac arrest: cohort study. BMJ 322,
1385–1388. doi:10.1136/bmj.322.7299.1385

Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D., 2014. Context aware computing for
the internet of things: A survey. IEEE Communications Surveys & Tutorials 16, 414–
454.

Perry, M., Herring, J., 2012. OGC GeoSPARQL - A Geographic Query Language for RDF Data
(OGC Implementation Standard No. OGC 11-052r4). Open Geospatial Consortium.

Pinyon Labs/Noblis, Inc., 2010. IntelliDrive Deployment Scenarios Workshop Scenarios and
Supporting Material, in: IntelliDrive Operational Scenarios Operational Scenarios
Workshop. Washington, DC, USA.

Polikoff, I., 2011. Comparing SPIN with RIF. Voyages of the Semantic Enterprise.
Porzel, R., Malaka, R., 2004. A task-based approach for ontology evaluation. Presented at the

Workshop on Ontology Learning and Population at the 16th European Converence on
Artificial Intelligence (ECAI 2004), Valencia, Spain.

Railsback, S.F., Lytinen, S.L., Jackson, S.K., 2006. Agent-based Simulation Platforms: Review
and Development Recommendations. SIMULATION 82, 609–623.
doi:10.1177/0037549706073695

Rand, W., Zellner, M., Page, S.E., Riolo, R., Brown, D.G., Fernandez, L., 2002. The complex
interaction of agents and environments: An example in urban sprawl, in: Proceedings of
Agent. pp. 149–161.

Raubal, M., Winter, S., Teβmann, S., Gaisbauer, C., 2007. Time geography for ad-hoc shared-
ride trip planning in mobile geosensor networks. ISPRS Journal of Photogrammetry and
Remote Sensing 62, 366–381. doi:10.1016/j.isprsjprs.2007.03.005

Reuter, A., Zipf, A., 2008. Geographic Information Science: Where Next?, in: Wilson, J.P.,
Fotheringham, A.S. (Eds.), The Handbook of Geographic Information Science.
Blackwell Publishing Ltd, pp. 609–619.

Saha, A.K., Johnson, D.B., 2004. Modeling mobility for vehicular ad-hoc networks, in:
Proceedings of the 1st ACM International Workshop on Vehicular Ad Hoc Networks.
ACM, pp. 91–92.

Schagrin, M., 2008. National VII Architecture – Data Perspective, in: Transportation Research
Board 2008 Annual Meeting, Session 415. Washington, DC, USA.

Schelling, T.C., 1971. Dynamic models of segregation. The Journal of Mathematical Sociology
1, 143–186. doi:10.1080/0022250X.1971.9989794

Schnacke, D., 2004. Proposed Applications for 5.9Ghz DSRC in North America. Presented at
the 11th ITS World Congress, Special Session 27: Development of DSRC Multiple
Application, Nagoya, Japan.

Seaborne, A., 2004. RDQL - A Query Language for RDF. W3C Member Submission.
Seeberger, D., 2008. Frequency Allocation for ITS.
Semy, S.K., Pulvermacher, M.K., Obrst, L.J., 2004. Toward the Use of an Upper Ontology for

U.S. Government and U.S. Military Domains: An Evaluation.
Sequeda, J., 2012. Introduction to: RDF vs XML - DATAVERSITY [WWW Document]. URL

http://www.dataversity.net/introduction-to-rdf-vs-xml/ (accessed 11.1.16).
Seremeti, L., Goumopoulos, C., Kameas, A., 2009. Ontology-based modeling of dynamic

ubiquitous computing applications as evolving activity spheres. Pervasive and Mobile
Computing 5, 574–591. doi:10.1016/j.pmcj.2009.05.002

Sharpe, B., Hodgson, T., 2006. Technology Forward Look- Towards a Cyber Urban Ecology.
Foresight Directorate, London, UK.

 240

Shen, W., Lang, S.Y.T., Wang, L., 2005. iShopFloor: an Internet-enabled agent-based
intelligent shop floor. IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews 35, 371–381. doi:10.1109/TSMCC.2004.843224

Silberg, G., Wallace, R., Matuszak, G., Plessers, J., Brower, C., Subramanian, D., 2012. Self-
Driving Cars – The Next Revolution (White paper). KPMG.

Sill, S., Christie, B., Diephaus, A., Garretson, D., Sullivan, K., Sloan, S., 2011. Intelligent
Transportation Systems (ITS) Standards Program Strategic Plan for 2011–2014 (No.
FHWA-JPO-11-052). Research and Innovative Technology Administration (RITA),
U.S. Department of Transportation (US DOT), Washington, DC, USA.

Smith, B., Mark, D.M., 1998. Ontology and geographic kinds, in: Proceedings of the 8th
International Symposium on Spatial Data Handling (SDH’98). Vancouver, Canada.

Smith, B.W., Weiner, G., 2013. Automated Driving: Legislative and Regulatory Action [WWW
Document]. The Center for Internet and Society at Stanford Law School. URL
http://cyberlaw.stanford.edu/wiki/index.php/Automated_Driving:_Legislative_and_Reg
ulatory_Action#cite_note-0 (accessed 8.21.13).

Sowa, J.F., 2000. Knowledge representation: logical, philosophical, and computational
foundations. Brooks/Cole Pacific Grove, CA.

Staab, S., Studer, R., 2009. Preface, Overview, in: Staab, S., Studer, R. (Eds.), Handbook on
Ontologies. Springer, pp. vii–xvi.

Stevenson, D., Anderson, I., Berwin, N., Heppell, S., Summers, N., Whatford, C., Winkley, D.,
1997. Information and communications technology in UK schools An independent
inquiry.

Strang, T., Linnhoff-Popien, C., 2004. A context modeling survey, in: Workshop on Advanced
Context Modelling, Reasoning and Management. Nottingham, UK.

Stuckenschmidt, H., Ceri, S., Valle, E.D., Harmelen, F.V., 2010. Towards expressive stream
reasoning, in: Semantic Challenges in Sensor Networks. Number 10042 in Dagstuhl
Seminar Proceedings, Dagstuhl, Germany, Schloss Dagstuhl - Leibniz-Zentrum Fuer
Informatik.

Studer, R., Benjamins, V.R., Fensel, D., 1998. Knowledge engineering: Principles and methods.
Data & Knowledge Engineering 25, 161–197. doi:10.1016/S0169-023X(97)00056-6

Swartout, B., Patil, R., Knight, K., Russ, T., 1997. Toward distributed use of large-scale
ontologies. Presented at the Association for the Advancement of Artificial Intelligence
(AAAI) Spring Symposium, The AAAI Press, Menlo Park, California, USA, pp. 138–
148.

The Assessment Operation Group, 2012. Guidelines for Using Confidence Intervals for Public
Health Assessment. The Washington State Department of Health, U.S.A.

The European Commission’s Information Society Technologies Advisory Group, 2005.
Ambient Intelligence: From Vision to Reality, in: Ambient Intelligence. IOS Press, pp.
45–68.

The Futures Group, 1994. SCENARIOS. The Futures Group.
Torp-Pedersen, C., Birk-Madsen, E., Pedersen, A., 1989. The time factor in resuscitation

initiated by ambulance drivers. Eur Heart J 10, 555–557.
Treiber, M., Kesting, A., 2013. Traffic Flow Dynamics. Springer Berlin Heidelberg, Berlin,

Heidelberg.
US Department of Transportation, 2009. Intelligent Transportation Systems Standards Fact

Sheet, IEEE 1609 - Family of Standards for Wireless Access in Vehicular
Environments (WAVE). US Department of Transportation.

US Federal Communications Commission, 2006. FCC Report and Order 06-110: Amendment
of the Commission’s Rules Regarding Dedicated Short-Range Communication Services
in the 5.850-5.925 GHz Band (5.9 GHz Band), Amendment of parts 2 and 90 of the

 241

Commission’s Rules to allocate the 5.850-5.925 GHz Band to the Mobile Service (No.
FCC Report and Order 06-110). Federal Communications Commission (FCC).

US Federal Communications Commission, 2003. FCC Report and Order 03-324: Amendment
of the Commission’s Rules Regarding Dedicated Short-Range Communication Services
in the 5.850-5.925 GHz Band (5.9 GHz Band), Amendment of parts 2 and 90 of the
Commission’s Rules to allocate the 5.850-5.925 GHz Band to the Mobile Service (No.
FCC Report and Order 03-324). Federal Communications Commission (FCC).

US Federal Communications Commission, 1999. FCC allocates spectrum in 5.9, GHz range for
intelligent transportation systems uses (No. Report No. ET 99-5). Federal
Communications Commission News.

Valle, E.D., 2014. Introduction to Stream Reasoning. Presented at the Tutorial on Stream
Reasoning for Linked Data, Collocated with the 13th International Semantic Web
Conference (ISWC 2014), Riva del Garda, Trentino, Italy.

Valle, E.D., Ceri, S., Harmelen, F. van, Fensel, D., 2009. It’s a Streaming World! Reasoning
Upon Rapidly Changing Information. IEEE Intelligent Systems 24, 83–89.
doi:10.1109/MIS.2009.125

Viriyasitavat, W., Bai, F., Tonguz, O.K., 2010. UV-CAST: an urban vehicular broadcast
protocol, in: Vehicular Networking Conference (VNC), 2010 IEEE. IEEE, pp. 25–32.

W3C OWL Working Group, 2009. OWL 2 Web Ontology Language Document Overview.
W3C Working Draft.

Wang, J., Ding, Z., Jiang, C., 2005. An Ontology-based Public Transport Query System, in: The
First International Conference on Semantics, Knowledge and Grid (SKG ’05). p. 62.
doi:10.1109/SKG.2005.41

Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K., 2004. Ontology Based Context Modeling and
Reasoning using OWL, in: Second IEEE Annual Conference on Pervasive Computing
and Communications Workshops. Orlando, Florida, USA, pp. 18–22.
doi:http://doi.ieeecomputersociety.org/10.1109/PERCOMW.2004.1276898

Winikoff, M., 2005. JackTM Intelligent Agents: An Industrial Strength Platform, in: Bordini,
R.H., Dastani, M., Dix, J., Fallah Seghrouchni, A. (Eds.), Multi-Agent Programming.
Springer-Verlag, New York, pp. 175–193.

Winter, S., Nittel, S., 2006. Ad hoc shared‐ride trip planning by mobile geosensor networks.
International Journal of Geographical Information Science 20, 899–916.
doi:10.1080/13658810600816664

Wooldridge, M., Jennings, N.R., 1995. Agent theories, architectures, and languages: A survey,
in: Intelligent Agents, Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
pp. 1–39.

Wooldridge, M., Jennings, N.R., Kinny, D., 2000. The Gaia Methodology for Agent-Oriented
Analysis and Design. Autonomous Agents and Multi-Agent Systems 3, 285–312.
doi:10.1023/A:1010071910869

Wooldridge, M.J., 2009. An Introduction to MultiAgent Systems. John Wiley and Sons.
Worboys, M., 2005. Event‐oriented approaches to geographic phenomena. International Journal

of Geographical Information Science 19, 1–28. doi:10.1080/13658810412331280167
Worboys, M., Duckham, M., 2004. Models of geospatial information, in: GIS: A Computing

Perspective. CRC Press, pp. 133–167.
Worboys, M., Hornsby, K., 2004. From Objects to Events: GEM, the Geospatial Event Model,

in: Egenhofer, M.J., Freksa, C., Miller, H.J. (Eds.), Geographic Information Science,
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp. 327–343.

Xu, Q., Mak, T., Ko, J., Sengupta, R., 2004. Vehicle-to-vehicle safety messaging in DSRC, in:
First ACM International Workshop on Vehicular Ad Hoc Networks. New York, NY,
USA, pp. 19–28. doi:10.1145/1023875.1023879

Yamane, T., 1967. Statistics: an introductory analysis. Harper & Row.

 242

Yang, F., Wang, S., Li, J., Liu, Z., Sun, Q., 2014. An overview of Internet of Vehicles. China
Communications 11, 1–15. doi:10.1109/CC.2014.6969789

Yang, L., Worboys, M., 2011. A Navigation Ontology for Outdoor-Indoor Space (Work-in-
progress). Presented at the Third ACM SIGSPATIAL International Workshop on
Indoor Spatial Awareness (ISA 2011), Chicago, IL, USA.

Yin, J., ElBatt, T., Yeung, G., Ryu, B., Habermas, S., Krishnan, H., Talty, T., 2004.
Performance evaluation of safety applications over DSRC vehicular ad hoc networks, in:
First ACM International Workshop on Vehicular Ad Hoc Networks. New York, NY,
USA, pp. 1–9. doi:10.1145/1023875.1023877

Yin-fei, D., Ying-yong, Z., Nian-feng, L., 2015. Research Overview on Vehicular Ad Hoc
Networks Simulation." 8.3 (2015): . International Journal of Control and Automation 8,
207–216.

Zambonelli, F., Jennings, N., Wooldridge, M., 2001. Organisational Abstractions for the
Analysis and Design of Multi-agent Systems, in: Ciancarini, P., Wooldridge, M. (Eds.),
Agent-Oriented Software Engineering, Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, pp. 407–422.

Zambonelli, F., Jennings, N.R., Wooldridge, M., 2003. Developing multiagent systems: The
Gaia methodology. ACM Trans. Softw. Eng. Methodol. 12, 317–370.
doi:10.1145/958961.958963

Zheng, H., Son, Y.-J., Chiu, Y.-C., Head, L., Feng, Y., Xi, H., Kim, S., Hickman, M., 2013. A
Primer for Agent-Based Simulation and Modeling in Transportation Applications (No.
FHWA-HRT-13-054). The Federal Highway Administration (FHWA).

 243

Appendices

Appendix A - Dedicated Short-Range Communication (DSRC)

This research chooses DSRC as the physical layer of vehicular communication to describe

specific traffic situations. On top of DSRC, this research focused on the data layer (i.e. context

modelling and semantic contents for vehicular communications) and the application layer (i.e.

implementation of intelligent and communicative vehicle agents) of vehicular communication.

Even though this research was designed based on DSRC technology, the contents of this thesis

were not tightly related to DSRC technology itself. Therefore, detailed explanations of DSRC

were not included in the main contents.

This appendix describes DSRC capacity, possible contents, radio frequency allocation, related

standards, and application-level support to complement the physical capability and capacity of

DSRC. The capability and possible contents of DSRC are covered in Appendix A.1. Appendix

A.2 outlines DSRC radio frequency and information exchange protocols, while Appendix A.3

describes possible applications of ITS via various communication modes, and the role of DSRC

in safety-critical applications.

A.1 DSRC capability and its possible contents

Various wireless communication technologies can be applied to interconnect moving vehicles in

order to create a Vehicular Ad-hoc Network (VANET) (Architecture Development Team, 2007;

Kompfner, 2010). In this wireless ad hoc network, every participating vehicle is treated as a

wireless router or node transmitting messages. To avoid traffic collisions for example, it is

paramount that warning messages are sent using low-latency communication standards.

Dedicated Short-Range Communication (DSRC) is one such standard, designed as a short to

medium range (up to 1 km) wireless protocol in the 5.9 GHz band for fast moving vehicles

(over 60 miles per hour) in order to support vehicle-to-infrastructure communication and

vehicle-to-vehicle communication (Fernandes and Nunes, 2007).

There are various wireless communication technologies such as 3rd Generation of mobile

communication (3G), Worldwide Interoperability for Microwave Access (WiMAX), Wireless

Fidelity (WiFi), Infrared and, Dedicated Short Range Communication (DSRC) (Kompfner,

 244

2010). Different types of communication can be appropriate to implement interactions among

vehicles and infrastructure depending on situations. DSRC has better capabilities (low latency,

high data transfer rate, and high mobility communications) compared to other wireless

technologies in order to support communications of high-speed vehicles on the road (Table A.1).

Table A.1 - Comparison of DSRC to various wireless technologies (Dulmage et al., 2006)

 DSRC Cellular Wi-Fi WiMAX

Data rate 3-27Mbps < 2 Mbps 6-54Mbps 30 to 40 Mbps

Latency < 50ms Seconds Seconds Second

Range < 1km < 10km < 100m < 15km

Mobility > 60 mph > 60 mph < 5mph > 60 mph
Nominal

Bandwidth 10MHz < 3MHz 20MHz 3.5 Mhz -
10MHz

Operating
Band

5.86 - 5.92GHz
(ITS-RS)

800 -
900MHz,

1.8 - 1.9GHz

2.4GHz,
5.2GHz
(ISM)

2.5GHz

IEEE standard 802.11p (DSRC),
1609 (WAVE) N/A 802.11a 802.16e

DSRC is the most appropriate physical layer of communications for vehicles and infrastructure

in an ITS environment, especially for safety-critical applications (Appendix A.2). The DSRC

technology allows vehicles - via On-Board Equipment (OBE) - and roadside facilities - via

Road-Side Equipment (RSE) - to send and receive messages to resolve potential problematic

situations. For example, DSRC is used for warning a possible traffic collision or giving way to

an emergency vehicle. If there is a traffic situation, the vehicles in the vicinity and the road

infrastructure communicate with each other to understand the current situation in advance and

subsequently perform an action that will resolve this situation.

Table A.2 summarises some possible DSRC communication content types (for vehicle-to-

infrastructure, infrastructure-to-vehicle, and vehicle-to-vehicle), which guide the further

development of relevant DSRC’s semantic contents. For example, an ambulance driving to an

emergency site could ask a traffic controller to turn traffic lights green to avoid hold-ups at red

lights or intersections (vehicle-to-infrastructure communication). A signal controller with an

RSE can send a stop sign violation warning to a specific vehicle which is in danger of running a

red light (infrastructure-to-vehicle communication) (Holfelder, 2004). Additionally, vehicle-to-

vehicle communications can be used to resolve other traffic situations. If there is an accident on

the motorway and some vehicles that have an OBE are either involved in the accident or coming

to the accident spot, the vehicles can send information back to other vehicles toward the scene

 245

by communication and turning on emergency lights. Recipient vehicles can relay the

information back to other vehicles again. Therefore, vehicles towards the accident spot can

reduce their speeds more safely and get ready for the accident spot in advance (Holfelder, 2004).

Table A.2 - Possible contents for DSRC (Schagrin, 2008)

Communication type Collection, Distribution and Exchange of Data

Vehicle to
Infrastructure

• Probe Data
• Trip Path Data (opt-in)
• Transaction Data (e.g. E-Payment)

Infrastructure to
Vehicle

• Advisory Message Data (e.g. travel times, incident information, local
signage)

• Localised Map Data (e.g. detailed roadway geometry for signalised
intersections, non-signalised intersections, road curve segments)

• Signal Phase & Timing Data
• Position Corrections
• Transaction Data (e.g. E-Payment)

Vehicle to Vehicle • Heartbeat Data (e.g. vehicle’s position, speed, direction of travel, and
size)

A.2 DSRC radio frequency and information exchange protocols

In the USA, the DSRC band (5.850 - 5.925 GHz) was allocated with seven 10 MHz channels

which consist of one control channel (Ch 178) and six service channels (US Federal

Communications Commission, 2006, 2003, 1999). As Figure A.1 shows, for the US DSRC

allocation, Ch 172 is assigned for vehicle-to-vehicle communications, Ch 174 and Ch 176 are

for middle-range services, Ch 180 and Ch 182 are for short-range services, and Ch 184 is for

intersections services (US Federal Communications Commission, 2003; US Federal

Communications Commission, 2006). Additionally, Ch 174/176 and Ch 180/182 may be

combined to create two 20 MHz channels (Ch 175 and Ch 181). As the US DSRC allocation is

compatible with Canadian DSRC allocation and Mexican DSRC allocation, it provides a single

North-America-wide frequency band.

Figure A.1 - North American DSRC frequency allocation

 246

Since 2008, European DSRC frequency has changed rapidly. The European Commission (EC)

decided to allocate 30 MHz of the 5.875 – 5.905 GHz spectrum for DSRC to provide a single

EU-wide frequency band (European Commission, 2008). Furthermore, the Electronic

Communications Committee (ECC, 2008) of the European Conference of Postal and

Telecommunications Administrations (CEPT) decided to use the 5.875 – 5.925 GHz band and

recommended to use the 5.855 – 5.875 GHz band for ‘the harmonised implementation of ITS’.

For the harmonised European standard for ITS, the European Telecommunications Standards

Institute (ETSI, 2008) is working under the Radio and Telecommunications Terminal

Equipment (R&TTE) Directive Article 3.2, which is about effective use of the radio

spectrum/orbital resource so as to avoid harmful interference.

• ETSI EN 302 571 Candidate Harmonised Standard - Radiocommunications equipment

operating in the 5.855 GHz to 5.925 GHz frequency band

Consequently, the requested European frequency spectrum for DSRC was proposed in

accordance with the North American DSRC allocation (Figure A.2). It can be divided into 20

Mhz, 30Mhz, and 20Mhz, as shown below (ETSI, 2006).

• 20 Mhz between 5.885 GHz and 5.905 GHz was allocated for Inter Vehicle (IVC) and

Roadside to Vehicle (R2V) Communications providing critical road safety applications

including the control channel

• 30 MHz (between 5.875 GHZ and 5.885, and between 5.905 GHZ and 5.925GHZ) was

for IVC and R2V providing road safety and traffic efficiency applications

• 20 Mhz below 5.875 GHz was allocated for IVC and R2V providing non-safety-related

applications

 247

Figure A.2 - DSRC frequency in Europe and North America (edited from Seeberger, 2008)

DSRC has been developing based on the Institute of Electrical and Electronics Engineers (IEEE)

802.11p and IEEE 1609 standards. The former is a standard for Wireless Medium Access

Control (MAC) and Physical Layer (PHY) specifications which include Wireless Access in

Vehicular Environments (WAVE), and the latter was made as the family of standards for

WAVE relying on the IEEE 802.11p including (US Department of Transportation, 2009):

• ASTM E2213-03: Standard Specification for Telecommunications and Information

Exchange Between Roadside and Vehicle Systems - 5 GHz Band Dedicated Short Range

Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY)

Specifications

• IEEE 802.11p: Standard for Information Technology - Telecommunications and

Information Exchange Between Systems - Local and Metropolitan Area Networks -

Specific Requirements - Part II: Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) Specification

• IEEE 1609.4-2006: Standard for Wireless Access in Vehicular Environments (WAVE) -

Multi-Channel Operation

• IEEE 1609.3: Standard for Wireless Access in Vehicular Environments (WAVE) -

Networking Services

• IEEE 1609.2-2006: Standard for Wireless Access in Vehicular Environments (WAVE) -

Security Services for Applications and Management Messages

• IEEE 1609.1-2006: Standard for Wireless Access in Vehicular Environments (WAVE) -

Resource Manager

 248

• IEEE P1609.0: Standard for Wireless Access in Vehicular Environments (WAVE) -

Architecture

In Europe, the 5.795 – 5.815 GHz band has been used for DSRC, which is in the 5.725 GHz to

5.875 GHz Industrial, Scientific and Medical (ISM) band. The European Committee for

Standardization (CEN) developed the following European DSRC standards in co-operation with

the International Organisation for Standardization (ISO) (Fremont, 2004):

• EN 12253:2004 DSRC Physical layer using microwave at 5.8 GHz

• EN 12795:2003 DSRC Data link layer: Medium Access and Logical Link Control

• EN 12834:2003 DSRC Application layer

• EN 13372:2004 DSRC profiles for Road Transport and Traffic Telematics (RTTT)

applications

• EN ISO 15628: DSRC application layer

• EN ISO 14906:2004 Electronic Fee Collection - Application interface

As we have seen so far, the 5.855 GHz to 5.925 GHz frequency band is considered for ITS

application in North America and Europe, and this DSRC band can be a conventional and

global frequency allocation. Even though this frequency is not allocated entirely yet in Europe,

the DSRC band’s capabilities (data rate, latency, range, mobility, etc.) have shown DSRC’s

potential to be a reliable communication technology for safety-related ITS applications.

A.3 DSRC in Vehicle Infrastructure Integration (VII) and ITS programs

The research to examine the potential of DSRC has been started in 2001 under the Vehicle

Infrastructure Integration (VII) program to improve road safety, and current ITS program in the

United States builds on top of research results of VII. Since 2009 ITS program focused on

initial deployment considering all relevant communication technologies (Table A.3). Initially,

VII program started only for road safety applications, but current ITS program needs to cover

various ITS applications. Therefore, in the perspective of deployment and implementation there

are many open questions about not only safety applications using DSRC but also mobility or

environmental applications that may use other communication technologies like listed below

(Sill et al., 2011).

 249

• Are the safety benefits of near-term ITS applications sufficient to support National

Highway Transportation Safety Administration (NHTSA) rules requiring DSRC-based

safety devices in light and/or heavy vehicles?

• What additional non-safety (mobility or environmental) applications might encourage

faster adoption of DSRC-based or other communications systems?

• How much and what type of roadside infrastructure is necessary to support safety and

mobility applications?

Despite these critical questions, DSRC is the only viable technology for low-latency safety

applications currently (Sill et al., 2011).

Table A.3 - Changes from VII to today’s ITS program in the United States (Sill et al., 2011)

Attribute VII Engineering Research ITS Program Focused
Toward Deployment

Communications
technologies DSRC only Best technology for intended

application (DSRC for safety)
In-vehicle

devices OEM production units only Aftermarket and retrofit opportunities

Vehicle
Focus Light vehicles All vehicle types

Stakeholder
involvement Limited Broad engagement

International
focus Limited Significant international

harmonization effort

Program
cohesion Loosely coupled research programs

Strong, collective U.S. Department of
Transportation (USDOT) support,

coordination, and leadership
Deployment

focus
Limited – oriented toward

prototyping and proof of concept Strong deployment focus

Figure A.3 demonstrates possible standards (information exchange protocols and message

definitions) and applications for various communication modes. When there is an emergency

situation such as a car accident, a transport management centre may get the information about

the accident from roadside infrastructure through centre-to-field communication. Then the

transport manage centre will communicate with an emergency control centre (e.g. an ambulance

command and control centre) to send the closest usable ambulance to the accident scene to

provide aid. For vehicle-to-vehicle and vehicle-to-infrastructure communication modes,

standards such as ASTM E2213, IEEE 802.11P, IEEE 1609.x, and SAE J2735 are presented in

Figure A.3. First three standards are information exchange protocols, and fourth one is a

standard for DSRC message definitions. These two communication modes are dealing with

 250

rapidly moving vehicles and most applications of these modes are related to safety-critical

issues.

Figure A.3 - Promising ITS communication standards and applications (Sill et al., 2011)

 251

Appendix B – Context modelling/representation techniques

Strang and Linnhoff-Popien (2004) and Perera et al. (2014) compared existing context

modelling techniques (i.e. are key-value modelling, mark-up scheme modelling, graphical

modelling, object oriented modelling, logic based modelling, and ontology based modelling) at

a general level (Table A.4).

Table A.4 – Comparison of context modelling/representation techniques (Perera et al., 2014)

Technique Pros Cons

Key-Value

• Simple
• Flexible
• Easy to manage when small in size
• Can be used for user preference, application
configurations, limited data transferring

• Strongly coupled with
applications

• Not scalable
• No structure or schema
• Hard to retrieve information
• No way to represent
relationships

• No validation support
• No standard processing tools
are available

Markup
Scheme/
Tagged

Encoding
(e.g. XML,

JSON)

• Flexible
• More structured
• Validation possible through schemas
• Processing tools are available
• Can be used for data description and transferring (e.g.
XML, JSON)

• Application depended as there
are no standards for structures

• Can be complex when many
levels of information are
involved

• Moderately difficult to retrieve
information

Graphical
(e.g.

RDBMS,
noSQL)

• Allows relationships modelling
• Information retrieval is moderately easier
• Different standards and implementations are available.
• Validation possible through constraints
• Can be used for long-term and large volume of
permanent data archival in Relational DBMS
• Structure alternation issue is no longer a problem in
noSQL, and historic context can be stored in noSQL

• Querying can be complex
• Configuration may be required
• Interoperability among different
implementation is difficult

• No standards but governed by
design principles

Object
Based

• Allows relationships modelling
• Can be well integrated using programming languages
• Processing tools are available
• Can be used to represent context in programming code
level in computer memory

• Hard to retrieve information
• No standards but govern by
design principles

• Lack of validation

Logic
Based

• Allows to generate high-level context using low-level
context
• Simple to model and use
• Support logical reasoning
• Processing tools are available
• Can be used to generate high-level context using low-
level context, model events and actions (i.e. event
detection), and define constrains and restrictions

• No standards
• Lack of validation
• Strongly coupled with
applications

 252

Ontology
Based

• Support semantic reasoning
• Allows more expressive representation of context and
strong validation
• Application independent and allows sharing
• Strong support by standardisations
• Fairly sophisticated tools available
• Can be used to model domain knowledge and structure
context based on the relationships defined by the
ontology
• Rather than storing data on ontologies, data can be
stored in native triplestore, RDBMS-based triplestore,
and NoSQL triplestore while structure is provided by
ontologies

• Representation can be complex
• Information retrieval can be
complex and resource intensive

 253

Appendix C - ANOVA to decide the number of simulation runs

Single factor ANOVA (a.k.a. one-factor ANOVA, one-way ANOVA) is used to compare four

groups, which have statistics from different simulation runs. From the simulations, different

variables (e.g. the number of vehicles affected by ambulance, the total affected time of vehicles

by ambulance, and ambulance’s travel time) are measured and used as a single independent

variable for the analysis separately. Four different groups represent four different sizes of

simulation runs (i.e. 100 simulation runs, 200 simulation runs, 400 simulation runs and 1100

simulation runs), and their average and variance are compared.

Summary and ANOVA results for the number of vehicles affected by ambulance, the total

affected time of vehicles by ambulance, and ambulance’s travel time are shown in Appendix

B.1, Appendix B.2, and Appendix B.3, respectively. For each analysis, the null hypothesis (H0)

is that means of the chosen variable from each group are similar, and 95% confidence level

(significance level a = 0.05) is used. From analysis of three different variables, the hypothesis of

each analysis is accepted based on the condition shown in Table A.5. Therefore, the minimum

number of simulation runs (i.e. 100 simulation runs) is chosen among four different groups

based on the ANOVA results that present the statistics of three different variables measured by

four different simulation runs are similar.

Table A.5 - Condition to accept or reject for single factor ANOVA
If Then

test statistic > critical value (i.e. F > F crit) Reject the null hypothesis
test statistic < critical value (i.e. F < F crit) Accept the null hypothesis

p value < a Reject the null hypothesis
p value > a Accept the null hypothesis

C.1 Single Factor ANOVA: the number of vehicles affected by ambulance

The null hypothesis for this ANOVA is that the average of the number of vehicles affected by

ambulance is the same for all four groups. The statistical summaries are shown in Table A.6 and

Figure A.4. The F-statistics in Table A.7 shows that the p value (0.526) is greater than the

significance level a (0.05) and the F calculated value (0.744) is smaller than the F critical value

(2.610), so that the null hypothesis is accepted.

 254

Table A.6 - Summary of four groups with the number of vehicles affected by ambulance
Group Count Sum Average Variance

G100 100 17230 172.3 690.535
G200 200 34076 170.4 809.001
G400 400 67313 168.3 708.243

G1100 1100 185917 169.0 715.651

Figure A.4 - Boxplot of four groups with the number of affected vehicles

Table A.7 - F-statistics of the four groups with the number of vehicles affected by ambulance
Source of Variation SS df MS F P-value F crit

Between Groups 1613.345 3 537.782 0.744 0.526 2.610
Within Groups 1298443.935 1796 722.964

Total 1300057.280 1799

C.2 Single Factor ANOVA: the total affected time of vehicles by ambulance

The null hypothesis for this ANOVA is that the average of the total affected time of vehicles by

ambulance is the same for all four groups. The statistical summaries are shown in Table A.8 and

Figure A.5. The F-statistics in Table A.9 shows that the p value (0.614) is greater than the

significance level a (0.05) and the F calculated value (0.602) is smaller than the F critical value

(2.610), so that the null hypothesis is accepted.

 255

Table A.8 - Summary of four groups with the total affected time of vehicles by ambulance
Group Count Sum (sec) Average (sec) Variance

G100 100 57664.3	 576.643	 7854.844	
G200 200 114027.6	 570.138	 9192.815	
G400 400 225599.9	 563.9998	 8117.914	

G1100 1100 623646.3	 566.9512	 8080.502	

Figure A.5 - Boxplot of four groups with the total affected time of vehicles by ambulance

Table A.9 - F-statistics of the four groups with the total affected time of vehicles by ambulance
Source of Variation SS df MS F P-value F crit

Between Groups 14807.869 3 4935.956 0.602 0.614 2.610
Within Groups 14726518.755 1796 8199.621

Total 14741326.624 1799

C.3 Single Factor ANOVA: ambulance's travel time

The null hypothesis for this ANOVA is that the average of ambulance’s travel time is the same

for all four groups. The statistical summaries are shown in Table A.10 and Figure A.6. The F-

statistics in Table A.11 shows that the p value (0.567) is greater than the significance level a

(0.05) and the F calculated value (0.676) is smaller than the F critical value (2.610), so that the

null hypothesis is accepted.

 256

Table A.10 - Summary of four groups with ambulance’s travel time
Group Count Sum (sec) Average (sec) Variance

G100 100 29487.7 294.877 313.063
G200 200 58710.5 293.553 325.408
G400 400 116925.5 292.314 304.779

G1100 1100 322023.9 292.749 314.766

Figure A.6 - Boxplot of four groups with ambulance’s travel time

Table A.11 - F-statistics of the four groups with ambulance’s travel time
Source of Variation SS df MS F P-value F crit

Between Groups 635.649 3 211.883 0.676 0.567 2.610
Within Groups 563284.379 1796 313.633

Total 563920.028 1799

 257

Appendix D – Simulation source code

D.1 Parameters and simulation initialisation

D.1.1 GlobalVariables.java

public class GlobalVariables {

 public static String ROADS_SHAPEFILE;
 public static int iCase;

 public static final double TRAVEL_SPEED_MPH = 30.0; //dummy value
 public static final double TRAVEL_PER_TURN
 = TRAVEL_SPEED_MPH * 1609.344 / 3600.0;
 public static final double ConversionCoefficient4MeterPerSec = 1609.344 / 3600.0;
 public static final boolean bVehicleInteraction = false;
 public static double commrange = 60.96; //200feet

 public static double defaultBreakdownResponseRange = 192.00; //4 seconds
 public static double extendedBreakdownResponseRange = 768.00; //16 seconds
 public static double searchRange4IDM = 576.00; //12 seconds

 public static int numVehicle;
 public static int numEmergencyVehicle;
 public static double MININUM_ROUTE_DISTANCE = 3000;
 public static double COVERAGE_DISTANCE_FROM_HOSPITAL = 6000.0;
 public static int iPercentUsingComm;
 public static final double XXXX_BUFFER = 0.1; // Used in InfraContext.getRoadAtCoords()
 public static int iRondomSeed;
 public static double endAt;

 public static int memorySizeForGabageColl = 6000;
 public static int printNum = 9;

 public static void setCase(int nCase) {
 iCase = nCase;

 if (nCase == 1) {
 ROADS_SHAPEFILE
 = "repast_vein_data/shape/roadLinks_PrincessRoyalUniversityHospitalSimple5.shp";
 } else if (nCase == 2) {
 ROADS_SHAPEFILE
 = "repast_vein_data/shape/roadLinks_UniversityCollegeHospitalSimple5.shp";
 } else if (nCase == 3) {
 ROADS_SHAPEFILE
 = "repast_vein_data/shape/roadLinks_KingstonHospitalSimple5.shp";
 } else if (nCase == 4) {
 ROADS_SHAPEFILE
 = "repast_vein_data/shape/Polyline_MandAroad26.shp";
 MININUM_ROUTE_DISTANCE = 5000.0;
 }
 }

 258

 public static void StopScrolling (String str) {
 StopScrolling (true, str);
 }

 public static void StopScrolling (Boolean bCheck, String str) {
 System.out.println(str);
 if (!bCheck) return;
 System.out.print("Please, give me an int and press enter to continue:");
 BufferedReader consoleIn = new BufferedReader(new InputStreamReader(System.in));

 try {
 consoleIn.readLine();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 public static void myPrint (String str) {
 myPrint(9, true, str);
 }

 public static void myPrint (int num, String str) {
 myPrint(num, true, str);
 }

 public static void myPrint (boolean bln, String str) {
 myPrint(9, bln, str);
 }

 public static void myPrint (int num, boolean bln, String str) {
 if (num <= printNum) {
 if (bln)
 System.out.println (str);
 else
 System.out.print(str);
 }
 }

 public static void GarbageCollector (String str, Boolean bStr) {
 long time = -1;
 long memTotal = -1;
 long memFree = -1;
 memTotal = Runtime.getRuntime().totalMemory() / 1024 / 1024 ;
 memFree = Runtime.getRuntime().freeMemory() / 1024 / 1024;
 if (memTotal > memorySizeForGabageColl) {
 time = System.currentTimeMillis();
 System.gc();
 if (bStr) {
 System.out.println(str + "Garbage Collection - total memory: "

 + memTotal + "Mb, free memory: " + memFree + "Mb");
 System.out.println(str + "It took "

 + (System.currentTimeMillis()-time) + " ms");
 }
 }
 if (memTotal > 7000) {
 RunEnvironment.getInstance().endRun();
 }

 259

 }
}

D.1.2 VeinContextCreator.java

public class VeinContextCreator implements ContextBuilder<Object> {

 private static int agentID; // Used to generate unique agent ids
 public static final boolean debug = false; // Turn debugging info on or off.
 private static double startTime;

 public Context<Object> build(Context<Object> context) {
 try {

 GlobalVariables.setCase(4);
 Parameters p = RunEnvironment.getInstance().getParameters();

 // Schedule simulation to stop at a certain time and also record the runtime.
 if (!VeinContextCreator.debug) {
 GlobalVariables.myPrint("Set Global Variables");
 GlobalVariables.numVehicle

= (Integer) p.getValue("initialnumberofvehicles");
 GlobalVariables.numEmergencyVehicle

= (Integer) p.getValue("initialnumberofambulances");
 GlobalVariables.commrange = (Double) p.getValue("communicationrange");
 GlobalVariables.iPercentUsingComm

= (Integer) p.getValue("percentUsingOnt");
 GlobalVariables.endAt = (Double) p.getValue("runlength");
 RunEnvironment.getInstance().endAt(GlobalVariables.endAt);
 GlobalVariables.iRondomSeed = (Integer) p.getValue("randomSeed");
 RandomHelper.setSeed(GlobalVariables.iRondomSeed);
 }

 ContextOne context1 = new ContextOne();
 context.addSubContext(context1);

 GlobalVariables.myPrint("new Infra before");
 Infra infra = new Infra(context, "ContextOne", "RoadGeography", "RoadNetwork");
 infra.BuldingRoadNetwork();
 GlobalVariables.myPrint("new Infra after");
 GlobalVariables.myPrint("CreateEmergencyVehicles before");

 if (GlobalVariables.iCase == 4) {
 infra.CreateBrokenCar(GlobalVariables.numEmergencyVehicle);
 } else infra.CreateAmbulance(GlobalVariables.numEmergencyVehicle);

 PrivateVehicle.resetStaticVariables();
 GlobalVariables.myPrint("resetStaticVariables after");

 GlobalVariables.myPrint("CreatePrivateVehicles before");
 infra.CreatePrivateVehicles(GlobalVariables.numVehicle);
 GlobalVariables.myPrint("CreatePrivateVehicles after");

 260

 ISchedule schedule = RunEnvironment.getInstance().getCurrentSchedule();
 ScheduleParameters endParams

= ScheduleParameters.createAtEnd(ScheduleParameters.LAST_PRIORITY);
 schedule.schedule(endParams, this, "end");
 ScheduleParameters startParams = ScheduleParameters.createOneTime(1);
 schedule.schedule(startParams, this, "start");
 ScheduleParameters agentParams = ScheduleParameters.createRepeating(1, 1, 0);

 Iterable<Object> vehicleIt = context.getObjects(Vehicle.class);
 for (Object v:vehicleIt) {
 schedule.schedule(agentParams, v, "step");
 Vehicle ve = (Vehicle) v;
 ve.initialstep();
 }
 return context;

 } catch (Exception e) {
 GlobalVariables.StopScrolling("VeinContextCreator build before:" + "\n"

+ this.toString());
 e.printStackTrace();
 GlobalVariables.StopScrolling("VeinContextCreator build after:" + "\n"

+ this.toString());
 }
 return context;
 }

 public static void end() {
 GlobalVariables.myPrint(0, "Finished sim: "+(System.currentTimeMillis()-startTime));
 }
 public static void start() {
 System.setProperty("org.geotools.referencing.forceXY", "true");
 startTime = System.currentTimeMillis();
 }

 public static int generateAgentID() {
 return VeinContextCreator.agentID++;
 }
}

D.1.3 Infra.java

public class Infra {

 protected Context<Object> maincontext;
 private Geography roadGeography;
 private Network roadNetwork;
 protected String subcontextString, geographyString, networkString;
 private Network commNetwork;
 private DecimalFormat myFormatter;
 private int iVNum;
 private Junction fixedDestJunc;

 public String formatStr(double value) {

 261

 return myFormatter.format(value);
 }
 public static String formatStr2(double value) {
 return new DecimalFormat("###000.000").format(value);
 }
 public Infra(Context<Object> mainContext, String subcontextString, String geograpyString,
 String networkString) {
 myFormatter = new DecimalFormat("###000.000");
 this.maincontext = mainContext;
 this.subcontextString = subcontextString;
 this.geographyString = geograpyString;
 this.networkString = networkString;
 this.iVNum = 0;
 this.fixedDestJunc = null;
 if (VeinContextCreator.debug)
 GlobalVariables.myPrint("InfraContext: Building infra context");

 GeographyParameters geoParams = new GeographyParameters();
 geoParams.setCrs("EPSG:27700"); //http://spatialreference.org/ref/epsg/27700/
 roadGeography = GeographyFactoryFinder.createGeographyFactory(null)
 .createGeography(geograpyString, this.getRoadContext(), geoParams);
 }
 public void removeBrokenCar() {
 String name = "BrokenCar";
 Iterable<Object> emergencyVehicleIt

= this.getRoadContext().getObjects(EmergencyVehicle.class);
 for (Object o : emergencyVehicleIt) {
 EmergencyVehicle emergencyVehicle = (EmergencyVehicle) o;
 if (emergencyVehicle.getVehicleType().equals(name)) {
 this.getRoadContext().remove(emergencyVehicle);
 }
 emergencyVehicle = null;
 }
 }
 public void CreateBrokenCar (int nBrokenCar) {
 Route refRoute = null;
 for (int i = 0; i < nBrokenCar; i++) {
 EmergencyVehicle brokenCar

= new EmergencyVehicle(this, "BrokenCar", true);
 brokenCar.setId(i);
 brokenCar.setName("E_B" + i);
 double dspeed = 69.0; //dummy value
 brokenCar.setSpeed(dspeed);
 this.getRoadContext().add(brokenCar);
 brokenCar.setOriginJuncRandomlyFromRandomHelper(4);
 brokenCar.setDestJunc(null);

 brokenCar.initializeRouteFromOriginFromRandomHelper(brokenCar
 .getOriginJunc(), 4, GlobalVariables.MININUM_ROUTE_DISTANCE);

 brokenCar.updateRelativeLocation();
 brokenCar.setBroken(true);
 brokenCar.setPreferedLane(1);
 brokenCar.setEndTick(10*60*20);
 refRoute = brokenCar.route;
 double directDistance = brokenCar.getOriginJunc().getCoordinate().distance(

 brokenCar.getDestJunc().getCoordinate());
 GlobalVariables.COVERAGE_DISTANCE_FROM_HOSPITAL

= directDistance * 1.2;

 262

 }
 MinimiseMotorway(refRoute, 1.0);
 EmergencyVehicle brokenCar = this.getAnEmergencyVehicle("BrokenCar");
 Vehicle bCar = (Vehicle) brokenCar;
 Coordinate myCoord = bCar.initialstep();
 MinimiseMotorway (myCoord, 2000.0); //2000.0
 brokenCar.setOriginJuncRandomlyFromRandomHelper(4);
 brokenCar.initializeRouteFromOriginFromRandomHelper(

brokenCar.getOriginJunc(), 4, 4000);
 brokenCar.updateRelativeLocation();
 }

 public void BuldingRoadNetwork() {
 System.out.println("LoadRoadElement before");
 LoadRoadElement();
 System.out.println("CreateRoadNetwork before");
 CreateRoadNetwork(this.networkString);
 System.out.println("BuildRoadNetwork before");
 BuildRoadNetwork();
 GlobalVariables.myPrint("BuildRoadNetwork after");
 }

 public void CreateAmbulance (int nAmbulance) {
 Route refRoute = null;
 for (int i = 0; i < nAmbulance; i++) {
 EmergencyVehicle ambulance

 = new EmergencyVehicle(this, "Ambulance", true);
 ambulance.setId(i);
 ambulance.setName("E_A" + i);
 double dspeed = GlobalVariables.TRAVEL_SPEED_MPH * 5.0 / 3.0;
 double speed = dspeed; // random(ispeed);
 ambulance.setSpeed(speed);
 ambulance.setPreferedLane(1);
 this.getRoadContext().add(ambulance);

 ambulance.setDestJunc(this.getFixedDestJunc());
 ambulance.setBroken(false);
 ambulance.setEndTick((int) GlobalVariables.endAt);
 ambulance.initializeRoute(null, ambulance.getDestJunc(), null, 0);
 ambulance.updateRelativeLocation();
 refRoute = ambulance.route;

 double directDistance = ambulance.getOriginJunc().getCoordinate().distance(

ambulance.getDestJunc().getCoordinate());
 GlobalVariables.COVERAGE_DISTANCE_FROM_HOSPITAL

= directDistance * 1.2;
 }
 if (GlobalVariables.iCase >= 1 && GlobalVariables.iCase <= 3) {
 MinimiseRoadNetwork (refRoute);
 }
 }

 public void RemoveRoadNetwork () {
 int junctionSize = this.getRoadContext().getObjects(Junction.class).size();
 Iterable<Object> junctionIt1 = this.getRoadContext().getObjects(Junction.class);
 if (junctionIt1 != null) {
 for (Object o : junctionIt1) {

 263

 Junction j = (Junction) o;
 this.getRoadContext().remove(o);
 j = null;
 }
 }

 Iterable<Object> roadElementIt1

= this.getRoadContext().getObjects(RoadElement.class);
 if (roadElementIt1 != null) {
 for (Object o : roadElementIt1) {
 RoadElement r = (RoadElement) o;
 this.getRoadContext().remove(r);
 r = null;
 }
 }
 Iterable<Object> edgeIt1 = this.roadNetwork.getEdges();
 for (Object o : edgeIt1) {
 if (o instanceof RepastEdge) {
 RepastEdge edge = (RepastEdge) o;
 this.roadNetwork.removeEdge(edge);
 }
 }
 this.roadNetwork = null;
 this.commNetwork = null;
 }

 public void MinimiseRoadNetwork (Route refRoute) {
 Iterable<Object> roadElementIt

= this.getRoadContext().getObjects(RoadElement.class);
 List roadElements = new ArrayList();
 for (Object o : roadElementIt) {

 if (o instanceof RoadElement) {
 RoadElement r = (RoadElement) o;
 roadElements.add(r);
 }
 }
 Coordinate[] routeCoordinates

= (Coordinate []) refRoute.getRouteCoords().toArray(new Coordinate[0]);
 LineString routeLine = new GeometryFactory().createLineString(routeCoordinates);
 Geometry routeBuffer = null;
 routeBuffer = routeLine.buffer(GlobalVariables.commrange * 5);

 for (Object o : roadElements) {
 if (o instanceof RoadElement) {
 RoadElement r = (RoadElement) o;
 Geometry roadGeom = roadGeography.getGeometry(r);
 if (!routeBuffer.covers(roadGeom)) {
 Junction fromJ = r.getFromJunc();
 Junction toJ = r.getToJunc();
 MyRepastEdge myEdge

 = (MyRepastEdge) this.getRoadNetwork().getEdge(fromJ, toJ);
 if (myEdge != null) {
 this.roadNetwork.removeEdge(myEdge);
 }
 myEdge = (MyRepastEdge) this.getRoadNetwork()

.getEdge(toJ, fromJ);

 264

 if (myEdge != null) {
 this.roadNetwork.removeEdge(myEdge);
 }

 fromJ.getConnectedRoads().remove(r);
 if (fromJ.getConnectedRoads().size() == 0)
 this.getRoadContext().remove(fromJ);
 toJ.getConnectedRoads().remove(r);
 if (toJ.getConnectedRoads().size() == 0)
 this.getRoadContext().remove(toJ);
 this.getRoadContext().remove(r);
 }
 }
 }

 Iterable<Object> roadEdgeIt = this.roadNetwork.getEdges();
 double totalNetworkLength = 0.0;
 for (Object o : roadEdgeIt) {
 MyRepastEdge myEdge = (MyRepastEdge) o;
 RoadElement road = getRoadElementWithID (myEdge.getRoadID());
 totalNetworkLength += road.getShape_Leng(); //myEdge.getWeight();
 }
 GlobalVariables.myPrint("roadnetwork buffering end " + totalNetworkLength);
 GlobalVariables.numVehicle

= getNumOfVehiclesFromTotalNetworkLength(totalNetworkLength);
 }

 public int getNumOfVehiclesFromTotalNetworkLength(double totalNetworkLength) {
 //23 meters can be seen as six car lengths
 //so here, uses seven car lengths by 23 / 6 * 7.
 //since the road network for the simulation is buffered by the ambulance's route+commrange*5,
 //the network has a very long shape, and most vehicles come to the ambulance's route.
 //So, reduce the density of the main road, multiply 0.25 as experimental calculation
 int numVehicle = 0;
 if (GlobalVariables.iCase < 4)

numVehicle = (int) (totalNetworkLength / (23.0 / 6.0 * 7.0 * 4.0)); //30mph
 else if (GlobalVariables.iCase == 4) numVehicle =

 (int) (totalNetworkLength / (96.0 / 24.0 * 25.0 * 4.0) * 3.0); //70mph, three lanes
 return numVehicle;
 }

 public void MinimiseMotorway (Route refRoute, double dist) {
 Iterable<Object> roadElementIt

= this.getRoadContext().getObjects(RoadElement.class);
 List roadElements = new ArrayList();
 for (Object o : roadElementIt) {
 if (o instanceof RoadElement) {
 RoadElement r = (RoadElement) o;
 roadElements.add(r);
 }
 }
 Coordinate[] routeCoordinates

= (Coordinate []) refRoute.getRouteCoords().toArray(new Coordinate[0]);
 LineString routeLine = new GeometryFactory().createLineString(routeCoordinates);
 Geometry routeBuffer = null;
 routeBuffer = routeLine.buffer(dist); //(1.0);

 265

 boolean bOutOfRoute;
 for (Object o : roadElements) {
 if (o instanceof RoadElement) {
 RoadElement r = (RoadElement) o;
 Geometry roadGeom = roadGeography.getGeometry(r);
 bOutOfRoute = false;
 if (routeBuffer.distance(roadGeom) <= dist) {

if (refRoute.getRouteJunctions().contains(r.getFromJunc()) ||
 refRoute.getRouteJunctions().contains(r.getToJunc()))

 bOutOfRoute = false;
 else bOutOfRoute = true;
 } else if (routeBuffer.distance(roadGeom) > dist) {
 bOutOfRoute = true;
 }
 if (bOutOfRoute) {
 Junction fromJ = r.getFromJunc();
 Junction toJ = r.getToJunc();
 MyRepastEdge myEdge = (MyRepastEdge)
 this.getRoadNetwork().getEdge(fromJ, toJ);
 if (myEdge != null) {
 this.roadNetwork.removeEdge(myEdge);
 }
 myEdge = (MyRepastEdge)
 this.getRoadNetwork().getEdge(toJ, fromJ);
 if (myEdge != null) {
 this.roadNetwork.removeEdge(myEdge);
 }
 fromJ.getConnectedRoads().remove(r);
 if (fromJ.getConnectedRoads().size() == 0)
 this.getRoadContext().remove(fromJ);
 toJ.getConnectedRoads().remove(r);
 if (toJ.getConnectedRoads().size() == 0)
 this.getRoadContext().remove(toJ);
 this.getRoadContext().remove(r);
 }
 }
 }
 Iterable<Object> roadEdgeIt = this.roadNetwork.getEdges();
 double totalNetworkLength = 0.0;
 for (Object o : roadEdgeIt) {
 MyRepastEdge myEdge = (MyRepastEdge) o;
 RoadElement road = getRoadElementWithID (myEdge.getRoadID());
 totalNetworkLength += road.getShape_Leng(); //myEdge.getWeight();
 }
 GlobalVariables.numVehicle

= getNumOfVehiclesFromTotalNetworkLength(totalNetworkLength);
 }

 public void MinimiseMotorway (Coordinate centerCoord, double refDistance) {
 Iterable<Object> roadElementIt

= this.getRoadContext().getObjects(RoadElement.class);
 List roadElements = new ArrayList();
 for (Object o : roadElementIt) {
 if (o instanceof RoadElement) {
 RoadElement r = (RoadElement) o;
 roadElements.add(r);
 }

 266

 }
 Point originPoint = new GeometryFactory().createPoint(centerCoord);
 for (Object o : roadElements) {
 if (o instanceof RoadElement) {
 RoadElement r = (RoadElement) o;
 Geometry roadGeom = roadGeography.getGeometry(r);
 if (originPoint.distance(roadGeom) > refDistance) {
 Junction fromJ = r.getFromJunc();
 Junction toJ = r.getToJunc();
 MyRepastEdge myEdge = (MyRepastEdge)
 this.getRoadNetwork().getEdge(fromJ, toJ);
 if (myEdge != null) {
 this.roadNetwork.removeEdge(myEdge);
 }
 myEdge = (MyRepastEdge)
 this.getRoadNetwork().getEdge(toJ, fromJ);
 if (myEdge != null) {
 this.roadNetwork.removeEdge(myEdge);
 }

 fromJ.getConnectedRoads().remove(r);
 if (fromJ.getConnectedRoads().size() == 0)
 this.getRoadContext().remove(fromJ);
 toJ.getConnectedRoads().remove(r);
 if (toJ.getConnectedRoads().size() == 0)
 this.getRoadContext().remove(toJ);
 this.getRoadContext().remove(r);
 }
 }
 }
 Iterable<Object> roadEdgeIt = this.roadNetwork.getEdges();
 double totalNetworkLength = 0.0;
 for (Object o : roadEdgeIt) {
 MyRepastEdge myEdge = (MyRepastEdge) o;
 RoadElement road = getRoadElementWithID (myEdge.getRoadID());
 totalNetworkLength += road.getShape_Leng(); //myEdge.getWeight();
 }
 GlobalVariables.myPrint("roadnetwork buffering end " + totalNetworkLength);
 GlobalVariables.totalNetworkLength = totalNetworkLength;
 GlobalVariables.numVehicle

= getNumOfVehiclesFromTotalNetworkLength(totalNetworkLength);
 }

 public void CreatePrivateVehicles(int nPrivate) {
 /* add agents to the context and geography */
 for (int i = 0; i < nPrivate; i++) {

 boolean bUseOnt = false;
 int iUseOnt = random(0, 100, false); //true

 if (iUseOnt < GlobalVariables.iPercentUsingComm) bUseOnt = true;
 else if (iUseOnt == 100 && GlobalVariables.iPercentUsingComm == 100)
 bUseOnt = true;
 PrivateVehicle pVehicle

= new PrivateVehicle(this, "PrivateVehicle", bUseOnt);
 pVehicle.setId(this.getNextVehicleNumber());
 pVehicle.setName("V_" + pVehicle.getId());

 267

 int iSpeedRandom = random(0, 100, false);
 pVehicle.setSpeedAndPreferedLane(iSpeedRandom);
 this.getRoadContext().add(pVehicle);
 if (GlobalVariables.iCase == 4)
 pVehicle.initializeRouteFromRandomHelper(null, null, null, 4);
 else pVehicle.initializeRoute(null, null, null);
 pVehicle.updateRelativeLocation();
 }
 }

 public void CreateAmbulanceAndPrivateVehicles(int nPrivate, int nAmbulance) {
 Route refRoute = null;
 for (int i = 0; i < nAmbulance; i++) {
 EmergencyVehicle ambulance

 = new EmergencyVehicle(this, "Ambulance", true);
 ambulance.setId(i);
 ambulance.setName("E_A" + i);
 double dspeed = GlobalVariables.TRAVEL_SPEED_MPH * 1.5; // 3.5;
 double speed = dspeed; // random(ispeed);
 ambulance.setSpeed(speed);
 this.getRoadContext().add(ambulance);
 ambulance.setDestJunc(this.getFixedDestJunc());
 ambulance.initializeRoute(null, ambulance.getDestJunc(), null);
 ambulance.updateRelativeLocation();
 refRoute = ambulance.route;

 double directDistance = ambulance.getOriginJunc().getCoordinate()

.distance(ambulance.getDestJunc().getCoordinate()
);

 GlobalVariables.COVERAGE_DISTANCE_FROM_HOSPITAL
= directDistance * 1.2;

 }

 for (int i = 0; i < nPrivate; i++) {
 boolean bUseOnt = false;
 int iUseComm = random (0, 100, false); //true
 if (iUseComm < GlobalVariables.iPercentUsingComm) bUseOnt = true;
 else if (iUseComm == 100 && GlobalVariables.iPercentUsingComm == 100)
 bUseOnt = true
 PrivateVehicle pVehicle

= new PrivateVehicle(this, "PrivateVehicle", bUseOnt);
 pVehicle.setId(i);
 pVehicle.setName("V_" + i);
 double dspeed = GlobalVariables.TRAVEL_SPEED_MPH ; // 3.5;
 int add = random (-30, 30, false);
 double speed = dspeed + dspeed * add / 100.0;
 pVehicle.setSpeed(speed);
 this.getRoadContext().add(pVehicle);
 pVehicle.setOriginJuncRandomly();
 pVehicle.initializeRoute(pVehicle.getOriginJunc(), null, refRoute);
 pVehicle.updateRelativeLocation();
 }
 }

 public void CreateRoadNetwork(String networkString) {
 NetworkFactory netFac = NetworkFactoryFinder
 .createNetworkFactory(new HashMap<String, Object>());

 268

 roadNetwork = netFac.createNetwork(networkString, this.getRoadContext(), true);
 NetworkBuilder builder

= new NetworkBuilder("CommNetwork", this.getRoadContext(), true);
 commNetwork = builder.buildNetwork();
 }

 /*
 * Runs through all the junctions in the context. If it finds one with
 * coordinates which are the same as the Junction passed to this functions
 * it returns true.
 */
 public boolean existsInContext(Junction j) {
 Iterable<Object> junctionIt = this.getRoadContext().getObjects(Junction.class);
 for (Object o : junctionIt) {
 if (o instanceof Junction) {
 Junction oj = (Junction) o;
 if (oj.equals(j)) {// o instanceof Junction &&
 return true;
 }
 }
 }
 return false;
 }

 public Junction getJunctionWithCoordinates(Coordinate c) {
 Iterable<Object> junctionIt = this.getRoadContext().getObjects(Junction.class);
 for (Object o : junctionIt) {
 if (o instanceof Junction) {
 Junction j = (Junction) o;
 if (j.getCoordinate().equals(c)) {
 return j;
 }
 }
 }
 System.err.print("Context1: getJunctionWithCoordinates: error, junction not found. ");
 System.err.println("Coordinates: " + c.toString());
 return null;
 }

 public void LoadRoadElement() {
 LoadRoadElement(null);
 }
 public void LoadRoadElement(String filename) {

 if (VeinContextCreator.debug)
 GlobalVariables.myPrint("Infra: building road context and projections");

 File roadFile = null;
 ShapefileLoader<RoadElement> roadLoader = null;

 try {
 if (filename == null)

roadFile = new File(GlobalVariables.ROADS_SHAPEFILE);
 else roadFile = new File(filename);
 roadLoader = new ShapefileLoader<RoadElement>(RoadElement.class,
 roadFile.toURL(), roadGeography, this.getRoadContext());
 while (roadLoader.hasNext()) {

 269

 RoadElement road = (RoadElement) roadLoader.next();
 }
 boolean bFilter = false;
 if (bFilter) {

 Iterable<Object> roadElementIt
= this.getRoadContext().getObjects(RoadElement.class);

 List roadElements = new ArrayList();
 for (Object o : roadElementIt) {
 if (o instanceof RoadElement) {
 RoadElement r = (RoadElement) o;
 roadElements.add(r);
 }
 }
 for (Object o : roadElements) {
 RoadElement road = (RoadElement) o;
 GlobalVariables.myPrint(road.toString2());
 //for s2 only motorway and A-Road
 if (road.getDescTerm().equals("Pedestrianised Street") ||
 road.getDescTerm().equals("Alley") ||
 road.getDescTerm().equals("Local Street") ||
 road.getDescTerm().equals("B Road") ||
 road.getDescTerm().equals("Minor Road") ||
 road.getDescTerm().equals(

"Private Road - Publicly Accessible") ||
 road.getDescTerm().equals(

"Private Road - Restricted Access")) {
 GlobalVariables.myPrint(

"remove road element: " + road.getFID());
 this.getRoadContext().remove(road);
 }
 }
 }
 } catch (java.net.MalformedURLException e) {
 System.out.println("ContextCreator: malformed URL exception when reading
 roadshapefile. Check the 'roadLoc' parameter is correct");
 e.printStackTrace();
 }
 }

 public boolean onRoad(Coordinate c) {
 return false; //coordCache.containsKey(c);
 }

 public void BuildRoadNetwork() {
 if (VeinContextCreator.debug)
 GlobalVariables.myPrint("InfraContext: building road network");
 GeometryFactory geomFac = new GeometryFactory();
 int iLine = 0;
 Iterable<Object> roadElementIt

= this.getRoadContext().getObjects(RoadElement.class);
 for (Object o : roadElementIt) {
 RoadElement road = (RoadElement) o;
 Geometry roadGeom = roadGeography.getGeometry(road);
 Coordinate c1 = roadGeom.getCoordinates()[0];
 Coordinate c2 = roadGeom.getCoordinates()[roadGeom.getNumPoints() - 1];
 Junction fromJunc = new Junction(c1, null);
 fromJunc.setName("Junction" + fromJunc.getID());

 270

 Junction toJunc = new Junction(c2, null);
 toJunc.setName("Junction" + toJunc.getID());
 boolean bPlus = false, bMinus = false;
 if (existsInContext(fromJunc)) {
 fromJunc = getJunctionWithCoordinates(c1);
 } else { // Junction does not exit
 this.getRoadContext().add(fromJunc);
 Point p1 = geomFac.createPoint(c1);
 roadGeography.move(fromJunc, p1);
 }
 if (existsInContext(toJunc)) {
 toJunc = getJunctionWithCoordinates(c2);
 } else {
 this.getRoadContext().add(toJunc);
 Point p2 = geomFac.createPoint(c2);
 roadGeography.move(toJunc, p2);
 }
 if (road.getOneWay().equals("+")) {
 bPlus = true;
 } else if (road.getOneWay().equals("-")) {
 bMinus = true;
 } else if (road.getOneWay().equals("N")) {
 bPlus = true;
 bMinus = true;
 } else {
 bPlus = true;
 bMinus = true;
 }
 road.setFromJunc(fromJunc);
 road.setToJunc(toJunc);
 fromJunc.addConnectedRoad(road);
 toJunc.addConnectedRoad(road);
 if (bPlus) {
 MyRepastEdge edge1 = new MyRepastEdge(

 fromJunc, toJunc, true, roadGeom.getLength(), road.getFID()+ "+");
 if (!roadNetwork.containsEdge(edge1)) {
 roadNetwork.addEdge(edge1);
 } else {
 System.err.println("InfraContext: buildRoadNetwork: for
 some reason this edge that has just been created
 already exists in the RoadNetwork!");
 }
 }
 if (bMinus) {
 MyRepastEdge edge2 = new MyRepastEdge(

 toJunc, fromJunc, true, roadGeom.getLength(), road.getFID()+ "-");
 if (!roadNetwork.containsEdge(edge2)) {
 roadNetwork.addEdge(edge2);
 } else {
 System.err.println("InfraContext: buildRoadNetwork: for
 some reason this edge that has just been created
 already exists in the RoadNetwork!");
 }
 }
 iLine++;
 if ((iLine % 1000) == 1) GlobalVariables.myPrint(false, road.getFID() + " ");
 if ((iLine % 10000) == 1) GlobalVariables.myPrint("");

 271

 } // for road:
 }

 public RoadElement getRoadElementWithID(String id) {
 Iterable<Object> roadElementIt

= this.getRoadContext().getObjects(RoadElement.class);
 for (Object o : roadElementIt) {
 RoadElement road = (RoadElement) o;
 if (road.getFID().equals(id)) {
 return road;
 }
 }
 System.err.println("InfraContext: getRoadElementWithID:

Error, couldn't find a road woth id: " + id);
 return null;
 }

 public RoadEdge getRoadEdgeWithID(String id, boolean flip) {

 Iterable<Object> roadElementIt

= this.getRoadContext().getObjects(RoadElement.class);
 for (Object o : roadElementIt) {
 RoadElement road = (RoadElement) o;
 if (road.getFID().equals(id)) {
 RoadEdge roadEdge = new RoadEdge (road);
 if (flip) roadEdge.setFlip(true);
 return roadEdge;
 }
 }
 System.err.println("InfraContext: getRoadEdgeWithID: Error,

couldn't find a road woth id: "+ id);
 return null;
 }

 public int getNumOfEndingJunctions () {
 Iterable<Object> juncIt = this.getRoadContext().getObjects(Junction.class);
 int num = 0;

 for (Object o : juncIt) {
 Junction junc = (Junction) o;
 if (junc.getConnectedRoads().size() == 1) num++;
 }
 return num;
 }

 public int getNumOfJunctions (Junction ajunc, double distRange, boolean inside) {
 Iterable<Object> juncIt = this.getRoadContext().getObjects(Junction.class);
 int num = 0;
 double directDistance = 0;

 for (Object o : juncIt) {
 Junction myjunc = (Junction) o;
 directDistance = myjunc.getCoordinate().distance(ajunc.getCoordinate());
 if (inside && directDistance <= distRange) num++;
 else if (!inside && directDistance > distRange) num++;
 }

 272

 return num;
 }

 public BrokenVehicle getABrokenVehicle(String name) {
 Iterable<Object> brokenVehicleIt

= this.getRoadContext().getObjects(BrokenVehicle.class);
 for (Object o : brokenVehicleIt) {
 BrokenVehicle brokenVehicle = (BrokenVehicle) o;
 if (brokenVehicle.getVehicleType().equals(name)) { //"Ambulance")) {
 return brokenVehicle;
 }
 }
 return null;
 }

 public EmergencyVehicle getAnEmergencyVehicle(String name) {
 Iterable<Object> emergencyVehicleIt

= this.getRoadContext().getObjects(EmergencyVehicle.class);
 for (Object o : emergencyVehicleIt) {
 EmergencyVehicle emergencyVehicle = (EmergencyVehicle) o;
 if (emergencyVehicle.getVehicleType().equals(name)) {
 return emergencyVehicle;
 }
 }
 return null;
 }

 public int getNumberOfPrivateVehicles(int preferredLane, boolean onlyDSRC) {
 Iterable<Object> pVehicleIt = this.getRoadContext().getObjects(PrivateVehicle.class);
 int num = 0;
 for (Object o : pVehicleIt) {
 PrivateVehicle pVehicle = (PrivateVehicle) o;
 if (pVehicle.getPreferedLane() == preferredLane) {
 if (onlyDSRC) {
 if (pVehicle.isBUseComm()) num++;
 } else num++;
 } else if (preferredLane == 0) {
 if (onlyDSRC) {
 if (pVehicle.isBUseComm()) num++;
 } else num++;
 }
 }
 return num;
 }

 public Context getRoadContext() {
 return this.maincontext.getSubContext(subcontextString);
 }

 public Geography getRoadGeography() {
 return (Geography) getRoadContext().getProjection(geographyString);
 } //"RoadGeography"

 public Network getRoadNetwork() {
 return (Network) getRoadContext().getProjection(Network.class, networkString);
 }

 273

 public Network getCommNetwork() {
 return (Network) getRoadContext().getProjection(Network.class, "CommNetwork");
 }

 public RoadElement findRoadAtCoordinates(Coordinate coord)
 throws NullPointerException {
 if (coord == null) {
 throw new NullPointerException(
 "InfraContext: findRoadAtCoordinates: ERROR: the input coordinate is null");
 }
 GeometryFactory geomFac = new GeometryFactory();

 // Use a buffer for efficiency
 Point point = geomFac.createPoint(coord);
 Geometry buffer = point.buffer(GlobalVariables.XXXX_BUFFER);
 double minDist = Double.MAX_VALUE;
 RoadElement nearestRoad = null;

 Iterable<Object> roadElementIt = roadGeography.getObjectsWithin(buffer
 .getEnvelopeInternal(), RoadElement.class);
 for (Object o : roadElementIt) {
 RoadElement road = (RoadElement) o;
 DistanceOp distOp = new DistanceOp(point, roadGeography
 .getGeometry(road));
 double thisDist = distOp.distance();
 if (thisDist < minDist) {
 minDist = thisDist;
 nearestRoad = road;
 } // if thisDist < minDist
 } // for nearRoads
 if (nearestRoad == null) {
 System.err.println("InfraContext: findRoadAtCoordinates: ERROR:

couldn't find a road at these coordinates:\n\t" + coord.toString());
 }
 return nearestRoad;
 }

 public Junction getFixedDestJunc () {
 if (this.fixedDestJunc != null) return fixedDestJunc;

 int x1=0, y1=0;
 if (GlobalVariables.iCase == 1) {
 //Nearest junction from PrincessRoyalUniversityHospital
 x1 = 543585;
 y1 = 165031;
 } else if (GlobalVariables.iCase == 2) {
 //Nearest junction from University College Hospital
 x1 = 529417;
 y1 = 182374;
 } else if (GlobalVariables.iCase == 3) {
 //Nearest junction from Kingston Hospital
 x1 = 519651;
 y1 = 169856;
 }

 Coordinate coord = new Coordinate(x1, y1);
 Point point = new GeometryFactory().createPoint(coord);

 274

 Geometry buffer = point.buffer(1.0);//GlobalVariables.XXXX_BUFFER);
 double minDist = Double.MAX_VALUE;
 Junction nearestJunc = null;

 Iterable<Object> junctionIt = this.roadGeography.getObjectsWithin(buffer
 .getEnvelopeInternal(), Junction.class);
 if (junctionIt == null) GlobalVariables.myPrint("getFixedDestJunc3-2: ");
 for (Object o : junctionIt) {
 Junction junc = (Junction) o;
 DistanceOp distOp

= new DistanceOp(point, this.getRoadGeography().getGeometry(junc));
 double thisDist = distOp.distance();
 if (thisDist < minDist) {
 minDist = thisDist;
 nearestJunc = junc;
 } // if thisDist < minDist
 } // for nearRoads
 this.fixedDestJunc = nearestJunc;
 return this.fixedDestJunc;
 }

 public List<Object> findObjectsOnTheRoad(RoadElement currentRoad, Class type)
 throws NullPointerException {
 if (currentRoad == null) {
 throw new NullPointerException("InfraContext: findRoadAtCoordinates:
 ERROR: the input coordinate is null");
 }
 Coordinate[] roadCoords = roadGeography.getGeometry(currentRoad)

 .getCoordinates();
 GeometryFactory geomFac = new GeometryFactory();

 // Use a buffer for efficiency
 LineString line = geomFac.createLineString(roadCoords);
 Geometry buffer = line.buffer(GlobalVariables.XXXX_BUFFER);
 double minDist = Double.MAX_VALUE;
 RoadElement nearestRoad = null;

 List<Object> objectList = new ArrayList<Object>();
 Iterable<Object> objectIt = roadGeography.getObjectsWithin(line
 .getEnvelopeInternal(), type);
 for (Object o : objectIt) {
 GlobalVariables.myPrint(o.toString() + " is in the boundary of the road");
 Geometry geo = roadGeography.getGeometry(o);
 if (line.crosses(geo))
 GlobalVariables.myPrint(o.toString() + " crosses");
 if (line.covers(geo))
 GlobalVariables.myPrint(o.toString() + " covers");
 DecimalFormat df = new DecimalFormat("#.###############");
 Double dist1 = line.distance(geo);
 Double dist2 = 999.0;

 Coordinate oCoord = roadGeography.getGeometry(o).getCoordinate();
 RoadElement oRoad = this.findRoadAtCoordinates(oCoord);

 if (currentRoad.getFID().equals(oRoad.getFID())) {
 GlobalVariables.myPrint(o.toString() + " same road");
 objectList.add(o);

 275

 }
 }
 return objectList;
 }

 public static int random(int n, boolean bMath) {
 return random(1, n, bMath);
 }

 public static int random(int a, int b, boolean bMath) {
 if (bMath) return a + (int) (Math.random() * (b - a + 1));
 else return (int) RandomHelper.nextDoubleFromTo(a, b);
 }

 public int getNextVehicleNumber() {
 this.iVNum ++;
 return this.iVNum;
 }
}

 276

D.2 Road geography and network

D.2.1 RoadElement.java

public class RoadElement {

 private String identifier;
 private String RoadLinkTO;
 private String desc;
 private String DescTerm;
 private String Nature;
 private String OneWay;
 private String NoEntry;
 private String HasTraffic; // this can be used when implementing traffic signals and controllers
 private double Shape_Leng;
 protected Junction fromJunc, toJunc;

 public RoadElement(String identifier, String desc) {
 this.identifier = identifier;
 this.desc = desc;
 }

 public RoadElement() {
 this.desc = "road";
 }

 public String toString() {
 return "road fid: " + identifier + ", description: "+ desc + "-" + DescTerm;
 }

 public String toString2() {
 return identifier + ", "
 + RoadLinkTO + ", "
 + desc + ", "
 + DescTerm + ", "
 + OneWay + ", "
 + NoEntry + ", "
 + Shape_Leng;
 }

 public String getIdentifier() {
 if (identifier.equals("") || identifier == null) {
 System.err.println("Road: the identifier field for this road has not been initialised.");
 }
 return identifier;
 }

 public void setIdentifier(String identifier) {
 this.identifier = identifier;
 }

 public double getShape_Leng() {
 return Shape_Leng;
 }

 277

 public void setShape_Leng(double shape_Leng) {
 Shape_Leng = shape_Leng;
 }

 public String getFID() {
 return identifier;
 }

 public String getRoadLinkTO() {
 if (RoadLinkTO.equals("") || RoadLinkTO == null) {
 System.err.println("Road: the identifier field for this road has not been initialised."");
 }
 return RoadLinkTO;
 }

 public void setRoadLinkTO(String toid) {
 this.RoadLinkTO = toid;
 }

 public ArrayList<Junction> getJunctions() {
 ArrayList<Junction> junctions; // The junctions at either end of the road
 junctions = new ArrayList<Junction>();
 junctions.add(fromJunc);
 junctions.add(toJunc);
 return junctions;
 }

 public Junction getFromJunc() {
 return fromJunc;
 }

 public void setFromJunc(Junction fromJunc) {
 this.fromJunc = fromJunc;
 }

 public Junction getToJunc() {
 return toJunc;
 }

 public void setToJunc(Junction toJunc) {
 this.toJunc = toJunc;
 }

 public String getOneWay() {
 return OneWay;
 }

 public void setOneWay(String oneWay) {
 OneWay = oneWay;
 }

 public String getNoEntry() {
 return NoEntry;
 }

 public void setNoEntry(String noEntry) {

 278

 NoEntry = noEntry;
 }

 public String getDescTerm() {
 return DescTerm;
 }

 public void setDescTerm(String descTerm) {
 DescTerm = descTerm;
 }

 public String getNature() {
 return Nature;
 }

 public void setNature(String nature) {
 Nature = nature;
 }

 public String getHasTraffic() {
 return HasTraffic;
 }

 public void setHasTraffic(String hasTraffic) {
 HasTraffic = hasTraffic;
 }
}

D.2.2 RoadEdge.java

public class RoadEdge {

 private boolean flip = false;
 private RoadElement roadElement;

 public RoadElement getRoadElement() {
 return roadElement;
 }

 public void setRoad(RoadElement road) {
 this.roadElement = road;
 }

 public RoadEdge(RoadElement road) {
 this.roadElement = road;
 }

 public boolean isFlipped() {
 return flip;
 }

 public void setFlip(boolean flip) {
 this.flip = flip;

 279

 }

 public String getName (){
 String direction;
 if (this.flip)direction = "-";
 else direction = "+";
 return this.roadElement.getFID() + direction;
 }

 public String getRoadElementName (){
 return this.roadElement.getFID();
 }

 public String getFullName () {
 return this.roadElement.fromJunc.getID() + "~" + this.getName() + "~"

+ this.roadElement.toJunc.getID();
 }

 public boolean equals(RoadEdge r) {

 if (this.getName().equals(r.getName()))
 return true;
 else
 return false;
 }
}

D.2.3 MyRepastEdge.java

public class MyRepastEdge<T> extends RepastEdge<T> {

 private String edgeID;

 public MyRepastEdge(T source, T target, boolean directed, String edgeID) {
 this(source, target, directed, 1, edgeID);
 }

 public MyRepastEdge(T source, T target, boolean directed, double weight, String edgeID) {
 super (source, target, directed, weight);
 this.edgeID = edgeID;
 }

 public String getRoadID() {
 return edgeID.substring(0, edgeID.length()-1);
 }
 public String getEdgeID() {
 return edgeID;
 }
}

 280

D.2.4 Junction.java

public class Junction {

 private int ID;
 protected String name;
 private Coordinate coord;

// The Roads connected to this Junction
 private ArrayList<RoadElement> connectedRoads = new ArrayList<RoadElement>();

 public Junction() {
 this.ID = VeinContextCreator.generateAgentID();
 }

 public Junction(Coordinate coord, RoadElement road) {
 this.ID = VeinContextCreator.generateAgentID();
 this.coord = coord;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String toString() {
 return name + " at: " + this.coord.toString();
 }

 public int getID() {
 return ID;
 }
 public void setID(int id) {
 this.ID = id;
 }

 public Coordinate getCoordinate() {
 return this.coord;
 }

 public void setCoordinate(Coordinate coord) {
 this.coord = coord;
 }

 public boolean equals(Junction j) {
 if (this.coord.equals(j.getCoordinate())) {
 if (this.getID() == j.getID()) return true;
 else return false;
 }
 else
 return false;
 }

 public ArrayList<RoadElement> getConnectedRoads() {

 281

 return this.connectedRoads;
 }
 public void addConnectedRoad(RoadElement road) {
 this.connectedRoads.add(road);
 }

}

D.3 Vehicle and route

D.3.1 Vehicle.java

public class Vehicle {

 protected int id;
 private String name;
 private Junction originJunc;
 private Junction destJunc;
 protected boolean bSuddenDeceleration = false;

 protected double v0;
 protected double v;
 public static double T = 1.0;
 public static double S0 = 2.0;
 public static double delta = 4.0;
 public static double a = 1.0;
 public static double b = 1.5;
 public static double vlength = 5.0;
 public static double v0maxLane1 = 60.0;
 public static double v0maxLane2 = 70.0;
 public static double v0maxLane3 = 80.0;
 public static double conversionMph2Kmh = 1.609344;//mph to kmh
 public static double conversionMph2Ms = conversionMph2Kmh / 3.6;
 public static double conversionMs2Mph = 3.6 / conversionMph2Kmh;

 protected double speed;
 protected Route route;
 protected boolean bStopped;
 protected boolean bArrived;
 protected double dTravelTime;
 protected double dCountInfluence;
 protected Infra infra;
 protected CommunicationMessage veinOnt;
 protected boolean bRequested;
 protected double dStopInterval = 0;
 protected String vehicleType;
 private int preferedLane;

 public Vehicle(Infra veinInfra, String vehicleType, boolean bUseOnt) {
 this.infra = veinInfra;
 this.bStopped = false;
 this.bArrived = false;
 this.dTravelTime = 0.0;

 282

 this.dCountInfluence = 0.0;
 this.dStopInterval = 0.0;
 this.bRequested = false;
 this.vehicleType = vehicleType;
 this.veinOnt = new CommunicationMessage();
 }

 public Junction getRandomJunctionFromRandomHelper () {
 Junction aJunc;
 int irandom = RandomHelper.nextIntFromTo(0,this.infra.getRoadContext()

.getObjects(Junction.class).size() -1);
 aJunc = (Junction) this.infra.getRoadContext().getObjects(Junction.class).get(irandom);
 return aJunc;
 }

 public Junction getRandomJunction (boolean bMathRandom) {
 Junction aJunc;
 if (bMathRandom) {
 int irandom = Infra.random(0, this.infra.getRoadContext().

getObjects(Junction.class).size() -1, bMathRandom);
 aJunc = (Junction) this.infra.getRoadContext().

getObjects(Junction.class).get(irandom);
 } else aJunc = (Junction) this.infra.getRoadContext()

.getRandomObjects(Junction.class, 1).iterator().next();
 return aJunc;
 }

 public Junction getRandomJunction () {
 boolean bMathRandom = false;
 Junction aJunc;
 if (bMathRandom) {
 int irandom = Infra.random(0, this.infra.getRoadContext()

.getObjects(Junction.class).size() -1, bMathRandom);
 aJunc = (Junction) this.infra.getRoadContext()

.getObjects(Junction.class).get(irandom);
 } else aJunc = (Junction) this.infra.getRoadContext()

.getRandomObjects(Junction.class, 1).iterator().next();
 return aJunc;
 }

 public void initializeRoute(Junction originationJunc, Junction destinationJunc, Route refRoute){
 this.initializeRoute(originationJunc, destinationJunc, refRoute, 0) ;
 }

 public void initializeRoute(Junction originationJunc, Junction destinationJunc,

Route refRoute, int nCase) {
 double minimumRouteDistance;
 if (this.vehicleType.equals("PrivateVehicle") ||
 this.vehicleType.equals("PrivateVehicle2")) minimumRouteDistance = 1000.0;
 else minimumRouteDistance = GlobalVariables.MININUM_ROUTE_DISTANCE;
 if (originationJunc == null && destinationJunc == null) {
 this.setOriginJuncRandomly();
 this.setDestJuncRandomly(this.originJunc, minimumRouteDistance);
 }
 else if (originationJunc != null && destinationJunc == null) {
 this.route = null;
 this.setDestJunc(null);

 283

 this.setOriginJunc(originationJunc);
 this.setDestJuncRandomly(this.originJunc, minimumRouteDistance, nCase);
 }
 else if (originationJunc == null && destinationJunc != null) {
 this.route = null;
 this.setOriginJunc(null);
 this.setDestJunc(destinationJunc);
 this.setOriginJuncRandomly(this.destJunc, minimumRouteDistance, nCase);
 } else {
 this.route = null;
 this.setOriginJunc(originationJunc);
 this.setDestJunc(destinationJunc);
 }
 boolean bGetARoute = false;
 int iWhile = 0;
 do {
 bGetARoute = this.setRoute(this.originJunc, this.destJunc, refRoute);
 if (!bGetARoute) {
 if (originationJunc != null && destinationJunc == null) {
 if (iWhile < 10) {
 this.route = null;
 this.setOriginJuncRandomly(nCase);
 this.setDestJuncRandomly(this.originJunc,

 minimumRouteDistance, nCase);
 } else {
 this.setOriginJuncRandomly(nCase);
 this.setDestJunc(this.getOriginJunc());
 this.setOriginJunc(null);
 this.setOriginJuncRandomly(this.destJunc,
 minimumRouteDistance, nCase);
 iWhile = 0;
 }
 }
 else if (originationJunc == null && destinationJunc != null){
 this.setOriginJuncRandomly(this.destJunc,

minimumRouteDistance, nCase);
 } else {
 this.setOriginJuncRandomly(nCase);
 this.setDestJuncRandomly(this.originJunc,
 minimumRouteDistance, nCase);
 }
 }
 iWhile ++;
 } while (!bGetARoute);
 }

 public void initializeRouteFromRandomHelper(Junction originationJunc,

Junction destinationJunc, Route refRoute, int nCase) {
 double minimumRouteDistance;
 if (this.vehicleType.equals("PrivateVehicle") ||
 this.vehicleType.equals("PrivateVehicle2")) {
 minimumRouteDistance = 1000.0;
 }
 else if (GlobalVariables.iCase == 4) {
 minimumRouteDistance = 1000.0;
 }
 else minimumRouteDistance = GlobalVariables.MININUM_ROUTE_DISTANCE;

 284

 if (originationJunc == null && destinationJunc == null) {
 this.setOriginJuncRandomlyFromRandomHelper(nCase);
 this.setDestJuncRandomlyFromRandomHelper(this.originJunc,
 minimumRouteDistance, nCase);
 }
 else if (originationJunc != null && destinationJunc == null) {
 this.route = null;
 this.setDestJunc(null);
 this.setOriginJunc(originationJunc);
 this.setDestJuncRandomlyFromRandomHelper(this.originJunc,
 minimumRouteDistance, nCase);
 }
 else if (originationJunc == null && destinationJunc != null) {
 this.route = null;
 this.setOriginJunc(null);
 this.setDestJunc(destinationJunc);
 this.setOriginJuncRandomlyFromRandomHelper(this.destJunc,
 minimumRouteDistance, nCase);
 } else {
 this.route = null;
 this.setOriginJunc(originationJunc);
 this.setDestJunc(destinationJunc);
 }

 boolean bGetARoute = false;
 int iWhile = 0;

 do {
 bGetARoute = this.setRoute(this.originJunc, this.destJunc, refRoute);
 if (!bGetARoute) {
 if (originationJunc != null && destinationJunc == null) {
 if (iWhile < this.infra.getRoadContext()

.getObjects(Junction.class).size()) {
 this.route = null;

 this.setDestJuncRandomlyFromRandomHelper(
 this.originJunc, minimumRouteDistance, nCase);

 } else {
 this.setDestJuncRandomlyFromRandomHelper(nCase);
 this.setOriginJuncRandomlyFromRandomHelper(
 this.destJunc, minimumRouteDistance, nCase);
 iWhile = 0;
 }
 }
 else if (originationJunc == null && destinationJunc != null){
 if (iWhile < this.infra.getRoadContext().

getObjects(Junction.class).size()) {
 this.route = null;
 this.setOriginJuncRandomlyFromRandomHelper(

 this.destJunc, minimumRouteDistance, nCase);
 } else {
 this.setOriginJuncRandomlyFromRandomHelper(nCase);
 this.setDestJuncRandomlyFromRandomHelper(
 this.originJunc, minimumRouteDistance, nCase);
 iWhile = 0;
 }
 } else {

 285

 if (iWhile <= this.infra.getNumOfEndingJunctions()) {
 this.setDestJuncRandomlyFromRandomHelper(nCase);
 } else {
 this.setOriginJuncRandomlyFromRandomHelper(nCase);
 this.setDestJuncRandomlyFromRandomHelper(

this.originJunc, minimumRouteDistance, nCase);
 iWhile = 0;
 }
 }
 }
 iWhile ++;
 } while (!bGetARoute);
 }

 public void initializeRouteFromOriginFromRandomHelper(Junction originationJunc,

 int nCase, double minimumRouteDistance) {
 this.route = null;
 this.setDestJunc(null);
 if (originationJunc == null) {
 this.setOriginJuncRandomlyFromRandomHelper(nCase);
 }
 this.setDestJuncRandomlyFromRandomHelper(this.originJunc,
 minimumRouteDistance, nCase);

 boolean bGetARoute = false;
 int iWhile = 0;
 int numEndingJunctions = 0;
 numEndingJunctions = this.infra.getNumOfEndingJunctions();

 do {
 double directDistance = this.getOriginJunc().getCoordinate()

.distance(this.getDestJunc().getCoordinate());
 bGetARoute = this.setRoute(this.originJunc, this.destJunc, null);
 if (!bGetARoute) {
 if (originationJunc != null) {
 if (iWhile <= numEndingJunctions) {
 this.route = null;
 this.setDestJuncRandomlyFromRandomHelper(

 this.originJunc, minimumRouteDistance, nCase);
 } else {
 this.setOriginJuncRandomlyFromRandomHelper(nCase);
 this.setDestJuncRandomlyFromRandomHelper(

this.originJunc, minimumRouteDistance, nCase);
 iWhile = 0;
 }
 }
 }
 iWhile ++;
 } while (!bGetARoute);
 }
 public boolean updateRelativeLocation() {
 return this.veinOnt.updateRelativeLocation(this);
 }

 public String getVehicleType() {
 return vehicleType;
 }

 286

 public void setVehicleType(String vehicleType) {
 this.vehicleType = vehicleType;
 }

 public Junction getOriginJunc() {
 return this.originJunc;
 }

 public void setOriginJunc(Junction originJunc) {
 this.originJunc = originJunc;
 }

 public void setOriginJuncRandomly() {
 this.setOriginJuncRandomly(0);
 }

 public void setOriginJuncRandomly(int nCase) {
 Junction j = this.getRandomJunction();
 if (nCase == 4) {
 while (j.getConnectedRoads().size() != 1) {
 j = this.getRandomJunction();
 }
 }
 this.setOriginJunc(j);
 }

 public void setOriginJuncRandomlyFromRandomHelper(int nCase) {
 Junction j = this.getRandomJunctionFromRandomHelper();
 if (nCase == 4) {
 boolean bGetIt = false;
 do {
 if (j.getConnectedRoads().size() == 1) {
 if (j.equals(j.getConnectedRoads().get(0).getFromJunc())) {
 this.setOriginJunc(j);
 bGetIt = true;
 }
 }
 j = this.getRandomJunctionFromRandomHelper();
 } while (!bGetIt);
 }
 this.setOriginJunc(j);
 }

 public void setOriginJuncRandomly(Junction destJunc, double distance) {
 this.setOriginJuncRandomly(destJunc, distance, 0);
 }

 public void setOriginJuncRandomly(Junction destJunc, double distance, int nCase) {
 Junction aJunc;
 Coordinate originCoord, destCoord;
 do {
 aJunc = this.getRandomJunction();
 if (nCase == 4) {
 while (aJunc.getConnectedRoads().size() != 1) {
 aJunc = this.getRandomJunction();
 }

 287

 }
 if (nCase == 41) {
 boolean isJuncConnectedToDualCarriageway = false;
 while (!isJuncConnectedToDualCarriageway) {
 Iterator<RoadElement> i;
 i = aJunc.getConnectedRoads().iterator();
 while (i.hasNext()) {
 RoadElement aRoad = (RoadElement) i.next();
 if(aRoad.getNature().equals("Dual Carriageway")){
 isJuncConnectedToDualCarriageway = true;
 break;
 }
 }
 if (!isJuncConnectedToDualCarriageway)

aJunc = this.getRandomJunction();
 }
 }
 originCoord = aJunc.getCoordinate();
 destCoord = destJunc.getCoordinate();
 } while (originCoord.distance(destCoord)== 0 ||

originCoord.distance(destCoord) < distance);

 if (this.originJunc != null) {
 if (this.originJunc.equals(aJunc)) {
 do {
 aJunc = this.getRandomJunction(true);
 if (nCase == 4) {
 while (aJunc.getConnectedRoads().size() != 1) {
 aJunc = this.getRandomJunction();
 }
 }
 if (nCase == 41) {
 boolean isJuncConnectedToDualCarriageway = false;
 while (!isJuncConnectedToDualCarriageway) {
 Iterator<RoadElement> i;
 i = aJunc.getConnectedRoads().iterator();
 while (i.hasNext()) {
 RoadElement aRoad = (RoadElement) i.next();
 if(aRoad.getNature().equals("Dual Carriageway")){
 isJuncConnectedToDualCarriageway = true;
 break;
 }
 }
 if (!isJuncConnectedToDualCarriageway)

aJunc = this.getRandomJunction();
 }
 }
 originCoord = aJunc.getCoordinate();
 destCoord = destJunc.getCoordinate();

 } while (originCoord.distance(destCoord)== 0 ||
 originCoord.distance(destCoord) < distance);
 }
 }
 this.originJunc = aJunc;
 }

 288

 public void setOriginJuncRandomlyFromRandomHelper(Junction destJunc,
double distance, int nCase) {

 Junction aJunc;
 int iwhile = 0;
 Coordinate originCoord, destCoord;
 do {
 aJunc = this.getRandomJunctionFromRandomHelper();
 if (nCase == 4) {
 boolean bGetIt = false;
 do {
 if (aJunc.getConnectedRoads().size() == 1) {
 if (aJunc.equals(aJunc.getConnectedRoads()

.get(0).getFromJunc())) {
 this.setOriginJunc(aJunc);
 bGetIt = true;
 }
 }
 aJunc = this.getRandomJunctionFromRandomHelper();
 } while (!bGetIt);
 }
 originCoord = aJunc.getCoordinate();
 destCoord = destJunc.getCoordinate();
 iwhile++;
 } while (originCoord.distance(destCoord)== 0

|| originCoord.distance(destCoord) < distance);
 if (this.originJunc != null) {
 if (this.originJunc.equals(aJunc)) {
 do {
 aJunc = this.getRandomJunctionFromRandomHelper();
 if (nCase == 4) {
 boolean bGetIt = false;
 do {
 if (aJunc.getConnectedRoads().size() == 1) {
 if (aJunc.equals(aJunc.getConnectedRoads()

.get(0).getFromJunc())) {
 this.setOriginJunc(aJunc);
 bGetIt = true;
 }
 }
 aJunc = this.getRandomJunctionFromRandomHelper();
 } while (!bGetIt);
 }
 originCoord = aJunc.getCoordinate();
 destCoord = destJunc.getCoordinate();
 } while (originCoord.distance(destCoord)== 0 ||
 originCoord.distance(destCoord) < distance);
 }
 }
 this.originJunc = aJunc;
 }

 public Junction getDestJunc() {
 return destJunc;
 }

 public void setDestJunc(Junction destJunc) {
 this.destJunc = destJunc;

 289

 }

 public void setDestJuncRandomly(int nCase) {
 Junction j = this.getRandomJunction();
 if (nCase == 4) {
 while (j.getConnectedRoads().size() != 1) {
 j = this.getRandomJunction();
 }
 }
 this.setDestJunc(j);
 }

 public void setDestJuncRandomlyFromRandomHelper(int nCase) {
 Junction j = this.getRandomJunctionFromRandomHelper();
 if (nCase == 4) {
 boolean bGetIt = false;
 do {
 if (j.getConnectedRoads().size() == 1) {
 if (j.equals(j.getConnectedRoads().get(0).getToJunc())) {
 this.setDestJunc(j);
 bGetIt = true;
 }
 }
 j = this.getRandomJunctionFromRandomHelper();
 } while (!bGetIt);
 }
 this.setDestJunc(j);
 }

 public void setDestJuncRandomly(Junction originJunc, double distance) {
 this.setDestJuncRandomly(originJunc, distance, 0);
 }

 public void setDestJuncRandomlyFromRandomHelper(Junction originJunc, double distance,

int nCase) {
 Junction aJunc;
 int iwhile = 0;
 Coordinate originCoord, destCoord;
 do {
 aJunc = this.getRandomJunctionFromRandomHelper();
 if (nCase == 4) {
 boolean bGetIt = false;
 do {
 if (aJunc.getConnectedRoads().size() == 1) {
 if (aJunc.equals(aJunc.getConnectedRoads()

.get(0).getToJunc())) {
 this.setDestJunc(aJunc);
 bGetIt = true;
 }
 }
 aJunc = this.getRandomJunctionFromRandomHelper();
 } while (!bGetIt);
 }
 destCoord = aJunc.getCoordinate();
 originCoord = originJunc.getCoordinate();
 iwhile++;
 } while (originCoord.distance(destCoord)== 0

 290

|| originCoord.distance(destCoord) < distance);
 if (this.destJunc != null) {
 if (this.destJunc.equals(aJunc)) {
 do {
 aJunc = this.getRandomJunctionFromRandomHelper();
 if (nCase == 4) {
 boolean bGetIt = false;
 do {
 if (aJunc.getConnectedRoads().size() == 1) {
 if (aJunc.equals(aJunc.getConnectedRoads()

.get(0).getToJunc())) {
 this.setDestJunc(aJunc);
 bGetIt = true;
 }
 }
 aJunc = this.getRandomJunctionFromRandomHelper();
 } while (!bGetIt);
 }
 destCoord = aJunc.getCoordinate();
 originCoord = originJunc.getCoordinate();

 } while (originCoord.distance(destCoord)== 0 ||
 originCoord.distance(destCoord) < distance);
 }
 }
 this.destJunc = aJunc;
 }

 public void setDestJuncRandomly(Junction originJunc, double distance, int nCase) {
 Junction aJunc;
 Coordinate originCoord, destCoord;
 do {
 aJunc = this.getRandomJunction();
 if (nCase == 4) {
 while (aJunc.getConnectedRoads().size() != 1) {
 aJunc = this.getRandomJunction();
 }
 }
 destCoord = aJunc.getCoordinate();
 originCoord = originJunc.getCoordinate();

 } while (originCoord.distance(destCoord)== 0

 || originCoord.distance(destCoord) < distance);

 if (this.destJunc != null) {
 if (this.destJunc.equals(aJunc)) {
 do {
 aJunc = this.getRandomJunction(true);
 if (nCase == 4) {
 while (aJunc.getConnectedRoads().size() != 1) {
 aJunc = this.getRandomJunction(true);
 }
 }
 destCoord = aJunc.getCoordinate();
 originCoord = originJunc.getCoordinate();
 } while (originCoord.distance(destCoord)== 0

|| originCoord.distance(destCoord) < distance);

 291

 }
 }
 this.destJunc = aJunc;
 }

 public boolean setRoute (Junction originJunc, Junction destJunc, Route refRoute) {
 boolean bCheck = false;
 boolean bRefCheck = false;
 if (originJunc.equals(destJunc)) {
 return false;
 }
 try {
 if (this.route != null) {
 this.route.kill();
 }
 this.route = new Route(infra, this, originJunc, destJunc);
 bCheck = this.route.checkRouteCoords();
 if(refRoute != null) {
 for (int i =0; i < this.route.getRouteJunctions().size()-1; i++) {
 if (refRoute.getRouteJunctions()

.contains(this.route.getRouteJunctions().get(i))) {
 bRefCheck = true;
 break;
 }
 }
 if (!bRefCheck) {
 this.route = null;
 return bRefCheck;
 }
 }
 if (!bCheck) this.route = null;
 return bCheck;
 } catch (Exception e) {
 e.printStackTrace();
 RunEnvironment.getInstance().pauseRun();
 }
 return false;
 }

 public boolean isStopped() {
 if (bStopped) return true;
 else return false;
 }

 public void setStopped(boolean stopped) {
 this.bStopped = stopped;
 this.veinOnt.setStopped(stopped);
 }

 public void stop() {
 this.setStopped(true);
 }

 public boolean isArrived() {
 return bArrived;
 }

 292

 public void moveOverToTheRightLane() {
 this.setPreferedLane(2);
 this.veinOnt.setPreferedLane(2);
 if (this.v0 < this.v0maxLane2) {
 this.v0 = this.v0maxLane2; //(int) (this.v0 + this.v0maxLane2) / 2;
 double s = v0;
 if (this.speed == 0) s = 0;
 this.bSuddenDeceleration = false;
 this.setSpeed(s);
 this.veinOnt.setSpeed(s);
 }
 }

 public void die(){
 if (infra.getRoadContext().size() > 1)
 infra.getRoadContext().remove(this);
 else
 RunEnvironment.getInstance().endRun();
 }

 public void removeFromTheContext() {
 try {
 // Get the context in which the agent resides.
 Context context = this.infra.getRoadContext();
 // Remove the agent from the context if the context is not empty
 if (context.size() > 1)
 context.remove(this);
 // Otherwise if the context is empty, end the simulation
 else
 RunEnvironment.getInstance().endRun();
 } catch (Exception e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

 public void setArrived(boolean arrived) {
 bArrived = arrived;
 GlobalVariables.myPrint(this.toString() + " is arrived at its destination");
 }

 public double getDTravelTime() {
 return dTravelTime;
 }

 public void setDTravelTime(double travelTime) {
 dTravelTime = travelTime;
 }

 public void addTravelTime(double add) {
 dTravelTime = dTravelTime + add;
 }

 public void addStopInterval (double add) {
 dStopInterval = dStopInterval + add;
 PrivateVehicle.totalStoppedInterval = PrivateVehicle.totalStoppedInterval + add;
 }

 293

 public void setStopInterval (double time) {
 dStopInterval = time;
 }

 public void resetStopVariables () {
 dStopInterval = 0.0;
 }

 public double getStopInterval () {
 return dStopInterval;
 }

 public double getDCountInfluence() {
 return dCountInfluence;
 }

 public void setDInfluenceTime(double influenceTime) {
 dCountInfluence = influenceTime;
 }

 public void addInfluenceTime(double add) {
 dCountInfluence = dCountInfluence + add;
 PrivateVehicle.totalCountInfluence = PrivateVehicle.totalCountInfluence + add;
 }

 public double getSpeed() {
 return speed;
 }

 public void setSpeed(double speed) {
 this.speed = speed;
 }

 public void setSpeedAndPreferedLane(int nRandom) {
 double speed = 0;
 if (GlobalVariables.iCase < 4) {
 /*
 Under 20 mph 5:5
 20-29 mph 49:54
 30-34 mph 30:84
 35-39 mph 12:96
 40-44 mph 3:99
 45-49 mph 1:100
 50 mph and over 0

 Percentage over 35 mph 16
 Average speed (mph) 30
 */

 speed = 30.0;
 if (nRandom <= 5) speed = 20;
 else if (nRandom > 5 && nRandom <= 54) speed = this.infra.random (20, 29, false);
 else if (nRandom > 54 && nRandom <= 84) speed = this.infra.random (30, 34, false);
 else if (nRandom > 84 && nRandom <= 96) speed = this.infra.random (35, 39, false);
 else if (nRandom > 96 && nRandom <= 99) speed = this.infra.random (40, 44, false);
 else if (nRandom == 100) speed = this.infra.random (45, 49, false);

 294

 this.setSpeed(speed);
 this.setPreferedLane(1);
 } else if (GlobalVariables.iCase == 4) {
 /*
 Under 50 mph 4 % :04
 50-59 mph 14 %:18
 60-64 mph 14 %:32
 65-69 mph 19 %:51
 70-74 mph 21 %:72
 75-79 mph 15 %:87
 80-89 mph 12 %:99
 90 mph and over 2 % -> 1% :100

 More than 10 mph over limit 14 %
 Average speed (mph) 69 mph
 */
 speed = 69.0;
 if (nRandom <= 4) speed = this.infra.random (49, 50, false);
 else if (nRandom > 4 && nRandom <= 18) speed = this.infra.random (50, 59, false);
 else if (nRandom > 18 && nRandom <= 32) speed = this.infra.random (60, 64, false);
 else if (nRandom > 32 && nRandom <= 51) speed = this.infra.random (65, 69, false);
 else if (nRandom > 51 && nRandom <= 72) speed = this.infra.random (70, 74, false);
 else if (nRandom > 72 && nRandom <= 87) speed = this.infra.random (75, 79, false);
 else if (nRandom > 87 && nRandom <= 99) speed = this.infra.random (80, 89, false);
 else if (nRandom == 100) speed = this.infra.random (90, 91, false);

 //In the simulation, it is regarded that Motorways have three lanes
 //the left-hand lane, the middle lane and the outer lane.
 //lane number 1, 2, 3 represents the left-hand lane, the middle lane, and the outer lane
 this.setSpeed(speed);
 if(speed < 65) this.setPreferedLane(1); //18% + 14 = 32 %
 else if(speed < 75) this.setPreferedLane(2); //54% - 14% = 40%
 else this.setPreferedLane(3); //29%-1% = 28%
 }
 this.v0 = speed;
 this.v = speed;
 }

 public int getPreferedLane() {
 return preferedLane;
 }

 public void setPreferedLane(int preferedLane) {
 this.preferedLane = preferedLane;
 }

 public void accerlate () {
 accerlate (10.0);
 }

 public void accerlate (double a) {
 setSpeed(getSpeed() + a);
 if (this.speed > 0) this.bStopped = false;
 }

 public void suddenDeceleration () {

 295

 this.bSuddenDeceleration = true;
 this.decelerate(5);
 }

 public void decelerationIDM (double speed1, double s1, double timeUnit1) {
 double v1 = speed1 * Vehicle.conversionMph2Ms;
 double deacc1 = Math.pow((v1*v1)/(2.0*s1), 2) / this.b;
 this.decelerate (deacc1 * Vehicle.conversionMs2Mph * timeUnit1); // /10 or not
 }

 public void decelerate () {
 this.decelerate(5);
 }

 public void decelerate (double d) {
 if(this.speed > d) this.speed = this.speed -d;
 else {
 this.speed = 0;
 }
 }

 public boolean equals(Vehicle v) {
 if (this.name.equals(v.name))
 return true;
 else
 return false;
 }

 public Coordinate initialstep() {
 double totalLength = this.route.getTotalLenghtOfTheRoute();
 double travelPerTurn = this.getSpeed()

 * GlobalVariables.TRAVEL_PER_TURN/GlobalVariables.TRAVEL_SPEED_MPH;
 travelPerTurn = travelPerTurn / 10.0; // 1 tick = 0.1 sec
 int totalTick = (int) (totalLength / travelPerTurn);
 int min = (int) (totalTick * 0.01);
 int max = (int) (totalTick * 0.99);
 int loop = this.infra.random(min, max, false);

 if (this.getVehicleType().equals("BrokenCar")) {
 loop = (int) (totalTick / 2);
 for (int i = 0; i < loop; i++) this.route.travelA(true);
 } else if (this.getVehicleType().equals("PrivateVehicle")) {
 for (int i = 0; i < loop; i++) this.route.travelA(true);
 }
 return this.getCurrentCoordinate();
 }

 public void step() {
 double time = System.currentTimeMillis();
 try {
 if (this.route == null) {
 }
 else {
 if (this.route.atDestination() && !this.isStopped()) {
 this.setStopped(true);
 }
 }

 296

 }
 catch (Exception e) {
 e.printStackTrace();
 RunEnvironment.getInstance().pauseRun();
 }
 }

 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public String toString() {
 return name + ", " + this.dTravelTime + ": " ;
 }

 public void setName(String name) {
 this.name = name;
 }

 public Geometry getCurrentGeometry () {
 return infra.getRoadGeography().getGeometry(this);
 }

 public Coordinate getCurrentCoordinate () {
 return infra.getRoadGeography().getGeometry(this).getCoordinate();
 }

 public String getCurrentCoorinatesString () {
 double x = infra.getRoadGeography().getGeometry(this).getCoordinate().x;
 double y = infra.getRoadGeography().getGeometry(this).getCoordinate().y;
 return x + "," + y;
 }

 public double getCurrentCoordinateX () {
 return infra.getRoadGeography().getGeometry(this).getCoordinate().x;
 }

 public double getCurrentCoordinateY () {
 return infra.getRoadGeography().getGeometry(this).getCoordinate().y;
 }

 public String getCurrentRoadFID () {

 if (this.veinOnt !=null && this.veinOnt.getCurrentRoadEdge() != null)
 return this.veinOnt.getCurrentRoadEdge().getRoadElement().getFID();
 else return "-1";
 }

 public int getNextJunctionID () {

 297

 if (this.veinOnt !=null && this.veinOnt.getNextJunction() != null)
 return this.veinOnt.getNextJunction().getID();
 else return -1;
 }

 public double getRemainDistanceToNextJunction () {
 if (this.veinOnt != null)
 return this.veinOnt.getRemainingDistanceToNextJunction();
 else return -1.0;
 }

 public RoadElement getCurrentRoadOn() {
 Coordinate currentCoord

= infra.getRoadGeography().getGeometry(this).getCoordinate();
 return infra.findRoadAtCoordinates(currentCoord);
 }

 public <X> Iterable<X> getObjects (Envelope env, Class<X> type) {
 return (Iterable<X>) infra.getRoadGeography().getObjectsWithin(env, type);
 }

 public boolean getRequest() {
 return true;
 }

 public boolean answerback() {
 return true;
 }

 public CommunicationMessage getVeinOnt() {
 return veinOnt;
 }

 public static boolean IsInsideTheCircle (double x, double y, double centre_x, double centre_y,
 double radius) {
 //including on the circle
 if (Math.pow(x - centre_x, 2) + Math.pow(y - centre_y, 2) <= Math.pow(radius, 2))
 return true;
 //only inside of the circle
 else return false;
 }

 public static double getDistance (double x, double y, double centre_x, double centre_y) {
 double distance = Math.pow(x - centre_x, 2) + Math.pow(y - centre_y, 2);
 distance = Math.pow(distance, 0.5);
 return distance;
 }
}

D.3.2 EmergencyVehicle.java

public class EmergencyVehicle extends Vehicle {

 298

 private int numRequest;
 private int numRequestOut;
 private boolean bBroken;
 private int endTick;
 private ArrayList<String> lstDSRCVehicleRequested;
 private ArrayList<String> lstNonDSRCVehicleRequested;

 public EmergencyVehicle(Infra veinInfra, String vehicleType, boolean bUseOnt) {
 super(veinInfra, vehicleType, bUseOnt);
 numRequest = 0;
 numRequestOut = 0;
 this.lstDSRCVehicleRequested = null;
 this.lstNonDSRCVehicleRequested = null;
 this.lstDSRCVehicleRequested = new ArrayList<String>();
 this.lstNonDSRCVehicleRequested = new ArrayList<String>();
 }

 public String getEVOutputter() {
 return this.getName()+ ","
 + this.getSpeed() + ","
 + this.infra.formatStr(this.getCurrentCoordinateX()) + ","
 + this.infra.formatStr(this.getCurrentCoordinateY()) + ","
 + this.getCurrentRoadFID() + ","
 + this.getNextJunctionID() + ","
 + this.infra.formatStr(this.getRemainDistanceToNextJunction()) + ","
 + this.getNumRequest() + ","
 + this.getNumRequestOut() + ","
 + this.getNumStoppedPrivateVehiclePerTick() + ","
 + this.getDTravelTime()+ ","
 + this.isArrived()+ ","
 + GlobalVariables.iRondomSeed+ ","
 + GlobalVariables.iPercentUsingComm + ","
 + GlobalVariables.numVehicle + ","
 + GlobalVariables.numEmergencyVehicle + ","
 + GlobalVariables.commrange + ","
 + this.getNumOfVehicleRequested() + ","
 + this.getNumOfDSRCVehicleRequested() + ","
 + this.getNumOfNonDSRCVehicleRequested() + ","
 + this.getNumPassedByPrivateVehicle() + ","
 + this.getNumPassedByWithDSRCPrivateVehicle() + ","
 + this.getNumPassedByWithoutDSRCPrivateVehicle() + ","
 + this.getNumOfVehicleStopped() + ","
 + this.getNumOfDSRCVehicleStopped() + ","
 + this.getNumOfNonDSRCVehicleStopped() + ","
 + this.getNumOfVehiclePassedBy() + ","
 + this.getNumOfDSRCVehiclePassedBy() + ","
 + this.getNumOfNonDSRCVehiclePassedBy() + ","
 + PrivateVehicle.totalNumStopped + ","
 + PrivateVehicle.totalStoppedInterval + ","
 + PrivateVehicle.totalCountInfluence + ","
 + this.getCurrentCoorinatesString() + ","
 + "||," + this.infra.getNumberOfPrivateVehicles(1, true) + "," //about 32% * ont%
 + this.infra.getNumberOfPrivateVehicles(1, false) + "," //about 32%
 + this.infra.getNumberOfPrivateVehicles(0, true) + "," // ont %
 + GlobalVariables.numVehicle +", "
 + GlobalVariables.totalNetworkLength + ","
 + "ori," + this.getOriginJunc().getCoordinate().x + ","+

 299

 this.getOriginJunc().getCoordinate().y + ","
 + "des," + this.getDestJunc().getCoordinate().x + ","

+ this.getDestJunc().getCoordinate().y;
 }

 public String getEVOutputter2() {
 return this.getName()+ ","
 + this.getSpeed() + ","
 + this.getDTravelTime()+ ","
 + this.isArrived()+ ","
 + GlobalVariables.iRondomSeed+ ","
 + GlobalVariables.iPercentUsingComm + ","
 + GlobalVariables.numVehicle + ","
 + GlobalVariables.commrange + ","
 + this.getNumOfVehicleRequested() + ","
 + this.getNumOfDSRCVehicleRequested() + ","
 + this.getNumOfNonDSRCVehicleRequested() + ","
 + this.getNumOfVehicleStopped() + ","
 + this.getNumOfDSRCVehicleStopped() + ","
 + this.getNumOfNonDSRCVehicleStopped();
 }

 @Override
 public void step() {
 try {
 GlobalVariables.GarbageCollector("!!" + this.toString(), true);
 if (this.veinOnt.getCurrentRoadEdge() == null)
 this.updateRelativeLocation();
 if (!this.isStopped() || !this.isArrived()) {
 this.request();
 }
 if (this.dTravelTime >= this.endTick) {
 RunEnvironment.getInstance().endRun();
 }
 if (!this.isArrived()) {
 if (this.route.atDestination()) {
 this.setArrived(true);
 this.route = null;
 this.setStopped(true);
 RunEnvironment.getInstance().endRun();
 }
 }
 if (this.route != null && !this.isStopped()) {
 if (!this.bBroken) this.route.travelA(true);
 this.addTravelTime(1.0);
 this.updateRelativeLocation();
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 public void request() {
 if (GlobalVariables.iCase < 4) requestOfAmbulance();
 }

 public void requestOfAmbulance() {
 this.numRequest = 0;

 300

 this.numRequestOut = 0;
 PrivateVehicle.resetTotalNumStoppedPerTick();
 double a_x, a_y, centre_x, centre_y;
 centre_x = this.getCurrentCoordinateX();
 centre_y = this.getCurrentCoordinateY();

 Envelope env = (Envelope)this.getCurrentGeometry().buffer

(GlobalVariables.commrange * 1.5).getEnvelopeInternal();
 Iterable<PrivateVehicle> vehicleIt = this.getObjects(env, PrivateVehicle.class);
 for (PrivateVehicle v:vehicleIt) {
 if (PrivateVehicle.inTheVehiclePassedByList(v)) {
 continue;
 }
 a_x = v.getCurrentCoordinateX();
 a_y = v.getCurrentCoordinateY();
 double distance = getDistance(a_x, a_y, centre_x, centre_y);
 if (distance <= GlobalVariables.commrange) {
 v.getRequest(this.getVeinOnt(), this.getCurrentCoordinate());
 this.numRequest ++;
 addRequestedVehicleToTheList(v);
 }
 else if (v.isStopped()) {
 v.getRequest(this.getVeinOnt(), this.getCurrentCoordinate());
 this.numRequestOut ++;
 }
 }
 }

 public int getNumRequest() {
 return numRequest;
 }

 public int getNumRequestOut() {
 return numRequestOut;
 }

 public int getNumStoppedPrivateVehiclePerTick() {
 return PrivateVehicle.getTotalNumStoppedPerTick();
 }

 public int getNumPassedByPrivateVehicle () {
 return PrivateVehicle.getTotalNumPassedBy();
 }

 public int getNumPassedByWithDSRCPrivateVehicle () {
 return PrivateVehicle.getTotalNumPassedByWithDSRC();
 }

 public int getNumPassedByWithoutDSRCPrivateVehicle () {
 return PrivateVehicle.getTotalNumPassedByWithoutDSRC();
 }

 public int getNumOfVehicleStopped() {
 return PrivateVehicle.getNumOfVehicleStopped();
 }

 public int getNumOfDSRCVehicleStopped() {

 301

 return PrivateVehicle.getNumOfDSRCVehicleStopped();
 }
 public int getNumOfNonDSRCVehicleStopped() {
 return PrivateVehicle.getNumOfNonDSRCVehicleStopped();
 }

 public int getNumOfVehiclePassedBy() {
 return PrivateVehicle.getNumOfVehiclePassedBy();
 }

 public int getNumOfDSRCVehiclePassedBy() {
 return PrivateVehicle.getNumOfDSRCVehiclePassedBy();
 }
 public int getNumOfNonDSRCVehiclePassedBy() {
 return PrivateVehicle.getNumOfNonDSRCVehiclePassedBy();
 }

 public int getNumOfVehicleRequested() {
 return lstDSRCVehicleRequested.size() + lstNonDSRCVehicleRequested.size();
 }

 public int getNumOfDSRCVehicleRequested() {
 return lstDSRCVehicleRequested.size();
 }

 public int getNumOfNonDSRCVehicleRequested() {
 return lstNonDSRCVehicleRequested.size();
 }

 public void addRequestedVehicleToTheList(PrivateVehicle pv) {
 String vehicleName = pv.getName();
 if (pv.isBUseComm()) {
 if (!lstDSRCVehicleRequested.contains(vehicleName))
 lstDSRCVehicleRequested.add(vehicleName);
 } else {
 if (!lstNonDSRCVehicleRequested.contains(vehicleName))
 lstNonDSRCVehicleRequested.add(vehicleName);
 }
 }

 public boolean isBroken() {
 return bBroken;
 }

 public void setBroken(boolean broken) {
 this.bBroken = broken;
 }

 public int getEndTick() {
 return endTick;
 }

 public void setEndTick(int endTick) {
 this.endTick = endTick;
 }
}

 302

D.3.3 BrokenVehicle.java

public class BrokenVehicle extends Vehicle {

 private int numRequest;
 private int numRequestOut;
 private boolean bBroken;
 private int endTick;
 private ArrayList<String> lstDSRCVehicleRequested;
 private ArrayList<String> lstNonDSRCVehicleRequested;

 public BrokenVehicle(Infra veinInfra, String vehicleType, boolean bUseOnt) {
 super(veinInfra, vehicleType, bUseOnt);
 numRequest = 0;
 numRequestOut = 0;
 this.lstDSRCVehicleRequested = null;
 this.lstNonDSRCVehicleRequested = null;
 this.lstDSRCVehicleRequested = new ArrayList<String>();
 this.lstNonDSRCVehicleRequested = new ArrayList<String>();
 }

 public String getEVOutputter() {
 return this.getName()+ ","
 + this.getSpeed() + ","
 + this.infra.formatStr(this.getCurrentCoordinateX()) + ","
 + this.infra.formatStr(this.getCurrentCoordinateY()) + ","
 + this.getCurrentRoadFID() + ","
 + this.getNextJunctionID() + ","
 + this.infra.formatStr(this.getRemainDistanceToNextJunction()) + ","
 + this.getNumRequest() + ","
 + this.getNumRequestOut() + ","
 + this.getNumStoppedPrivateVehiclePerTick() + ","
 + this.getDTravelTime()+ ","
 + this.isArrived()+ ","
 + GlobalVariables.iRondomSeed+ ","
 + GlobalVariables.iPercentUsingComm + ","
 + GlobalVariables.numVehicle + ","
 + GlobalVariables.numEmergencyVehicle + ","
 + GlobalVariables.commrange + ","
 + this.getNumOfVehicleRequested() + ","
 + this.getNumOfDSRCVehicleRequested() + ","
 + this.getNumOfNonDSRCVehicleRequested() + ","
 + this.getNumPassedByPrivateVehicle() + ","
 + this.getNumPassedByWithDSRCPrivateVehicle() + ","
 + this.getNumPassedByWithoutDSRCPrivateVehicle() + ","
 + this.getNumOfVehicleStopped() + ","
 + this.getNumOfDSRCVehicleStopped() + ","
 + this.getNumOfNonDSRCVehicleStopped() + ","
 + this.getNumOfVehiclePassedBy() + ","
 + this.getNumOfDSRCVehiclePassedBy() + ","
 + this.getNumOfNonDSRCVehiclePassedBy() + ","
 + PrivateVehicle.totalNumStopped + ","
 + PrivateVehicle.totalStoppedInterval + ","
 + PrivateVehicle.totalCountInfluence + ","
 + this.getCurrentCoorinatesString() + ","

 303

 + "||," + this.infra.getNumberOfPrivateVehicles(1, true) + "," //about 32% * ont%
 + this.infra.getNumberOfPrivateVehicles(1, false) + "," //about 32%
 + this.infra.getNumberOfPrivateVehicles(0, true) + "," // ont %
 + GlobalVariables.numVehicle +", "
 + GlobalVariables.totalNetworkLength + ","
 + "ori," + this.getOriginJunc().getCoordinate().x + ","

+ this.getOriginJunc().getCoordinate().y + ","
 + "des," + this.getDestJunc().getCoordinate().x + ","

+ this.getDestJunc().getCoordinate().y;
 }

 public String getEVOutputter2() {
 return this.getName()+ ","
 + this.getSpeed() + ","
 + this.getDTravelTime()+ ","
 + this.isArrived()+ ","
 + GlobalVariables.iRondomSeed+ ","
 + GlobalVariables.iPercentUsingComm + ","
 + GlobalVariables.numVehicle + ","
 + GlobalVariables.commrange + ","
 + this.getNumOfVehicleRequested() + ","
 + this.getNumOfDSRCVehicleRequested() + ","
 + this.getNumOfNonDSRCVehicleRequested() + ","
 + this.getNumOfVehicleStopped() + ","
 + this.getNumOfDSRCVehicleStopped() + ","
 + this.getNumOfNonDSRCVehicleStopped();
 }

 @Override
 public void step() {
 try {
 GlobalVariables.GarbageCollector("!!" + this.toString(), true);
 if (this.veinOnt.getCurrentRoadEdge() == null)
 this.updateRelativeLocation();
 if (!this.isStopped() || !this.isArrived()) {
 this.request();
 }
 if (this.dTravelTime >= this.endTick) {
 RunEnvironment.getInstance().endRun();
 }
 if (!this.isArrived()) {
 if (this.route.atDestination()) {
 this.setArrived(true);
 this.route = null;
 this.setStopped(true);
 RunEnvironment.getInstance().endRun();
 }
 }
 if (this.route != null && !this.isStopped()) {

 if (!this.bBroken) this.route.travelA(true);
 this.addTravelTime(1.0);
 this.updateRelativeLocation();
 }
 } catch (Exception e) {
 e.printStackTrace();
 }

 304

 }

 public void request() {
 requestOfBrokenCar(GlobalVariables.defaultBreakdownResponseRange,
 GlobalVariables.extendedBreakdownResponseRange);
 }

 public void requestOfBrokenCar(double defaultBreakdownResponseRange,

double extendedBreakdownResponseRange) {
 this.numRequest = 0;
 this.numRequestOut = 0;
 PrivateVehicle.resetTotalNumStoppedPerTick();
 double a_x, a_y, centre_x, centre_y;
 centre_x = this.getCurrentCoordinateX();
 centre_y = this.getCurrentCoordinateY();
 Envelope env = (Envelope)this.getCurrentGeometry().buffer(

extendedBreakdownResponseRange * 1.5).getEnvelopeInternal();
 Iterable<PrivateVehicle> vehicleIt = this.getObjects(env, PrivateVehicle.class);
 for (PrivateVehicle v:vehicleIt) {
 if (v.getPreferedLane() != 1) continue;
 if (PrivateVehicle.inTheVehiclePassedByList(v)) {
 continue;
 }
 a_x = v.getCurrentCoordinateX();
 a_y = v.getCurrentCoordinateY();
 double distance = getDistance(a_x, a_y, centre_x, centre_y);
 if (v.veinOnt.getCurrentRoadEdge() == null) v.updateRelativeLocation();
 if (!v.isBUseComm() && distance <= defaultBreakdownResponseRange) {

 if (v.veinOnt.isInTheSituationOfVehicleStationary(this.veinOnt,
 defaultBreakdownResponseRange)) {
 v.getRequest(this.getVeinOnt(), this.getCurrentCoordinate());
 this.numRequest ++;
 addRequestedVehicleToTheList(v);
 }
 } else if (v.isBUseComm() &&

distance <= extendedBreakdownResponseRange) {
 if (v.veinOnt.isInTheSituationOfVehicleStationary(

this.veinOnt, extendedBreakdownResponseRange)) {
 v.getRequest(this.getVeinOnt(), this.getCurrentCoordinate());
 this.numRequest ++;
 addRequestedVehicleToTheList(v);
 }
 }
 }
 System.out.println(this.getName() +" => Requested "
 + this.getNumOfVehicleRequested() + ","
 + this.getNumOfDSRCVehicleRequested() + ","
 + this.getNumOfNonDSRCVehicleRequested() + "||PassBy "
 + this.getNumPassedByPrivateVehicle() + ","
 + this.getNumPassedByWithDSRCPrivateVehicle() + ","
 + this.getNumPassedByWithoutDSRCPrivateVehicle() + "||Stopped "
 + this.getNumOfVehicleStopped() + ","
 + this.getNumOfDSRCVehicleStopped() + ","
 + this.getNumOfNonDSRCVehicleStopped() + "||PassBy2 "
 + this.getNumOfVehiclePassedBy() + ","
 + this.getNumOfDSRCVehiclePassedBy() + ","

 305

 + this.getNumOfNonDSRCVehiclePassedBy() + "|| Stopped2 "
 + PrivateVehicle.totalNumStopped + ","
 + PrivateVehicle.totalStoppedInterval + ","
 + PrivateVehicle.totalCountInfluence + " || Breakdown "
 + this.getCurrentCoorinatesString()
);
 }

 public int getNumRequest() {
 return numRequest;
 }

 public int getNumRequestOut() {
 return numRequestOut;
 }

 public int getNumStoppedPrivateVehiclePerTick() {
 return PrivateVehicle.getTotalNumStoppedPerTick();
 }

 public int getNumPassedByPrivateVehicle () {
 return PrivateVehicle.getTotalNumPassedBy();
 }

 public int getNumPassedByWithDSRCPrivateVehicle () {
 return PrivateVehicle.getTotalNumPassedByWithDSRC();
 }

 public int getNumPassedByWithoutDSRCPrivateVehicle () {
 return PrivateVehicle.getTotalNumPassedByWithoutDSRC();
 }

 public int getNumOfVehicleStopped() {
 return PrivateVehicle.getNumOfVehicleStopped();
 }

 public int getNumOfDSRCVehicleStopped() {
 return PrivateVehicle.getNumOfDSRCVehicleStopped();
 }
 public int getNumOfNonDSRCVehicleStopped() {
 return PrivateVehicle.getNumOfNonDSRCVehicleStopped();
 }

 public int getNumOfVehiclePassedBy() {
 return PrivateVehicle.getNumOfVehiclePassedBy();
 }

 public int getNumOfDSRCVehiclePassedBy() {
 return PrivateVehicle.getNumOfDSRCVehiclePassedBy();
 }
 public int getNumOfNonDSRCVehiclePassedBy() {
 return PrivateVehicle.getNumOfNonDSRCVehiclePassedBy();
 }

 public int getNumOfVehicleRequested() {
 return lstDSRCVehicleRequested.size() + lstNonDSRCVehicleRequested.size();
 }

 306

 public int getNumOfDSRCVehicleRequested() {
 return lstDSRCVehicleRequested.size();
 }
 public int getNumOfNonDSRCVehicleRequested() {
 return lstNonDSRCVehicleRequested.size();
 }

 public void addRequestedVehicleToTheList(PrivateVehicle pv) {
 String vehicleName = pv.getName();
 if (pv.isBUseComm()) {
 if (!lstDSRCVehicleRequested.contains(vehicleName))
 lstDSRCVehicleRequested.add(vehicleName);
 } else {
 if (!lstNonDSRCVehicleRequested.contains(vehicleName))
 lstNonDSRCVehicleRequested.add(vehicleName);
 }
 }

 public boolean isBroken() {
 return bBroken;
 }

 public void setBroken(boolean broken) {
 this.bBroken = broken;
 }

 public int getEndTick() {
 return endTick;
 }

 public void setEndTick(int endTick) {
 this.endTick = endTick;
 }
}

D.3.4 PrivateVehicle.java

public class PrivateVehicle extends Vehicle {

 private static int totalNumStoppedPerTick = 0;
 protected static int totalNumStopped = 0;
 protected static double totalCountInfluence = 0;
 protected static double totalStoppedInterval = 0.0;
 private static ArrayList<String> lstDSRCVehiclePassedBy;
 private static ArrayList<String> lstNonDSRCVehiclePassedBy;
 private static ArrayList<String> lstDSRCVehicleStopped;
 private static ArrayList<String> lstNonDSRCVehicleStopped;
 private static int totalNumPassedBy = 0;
 private static int totalNumPassedByWithDSRC = 0;
 private static int totalNumPassedByWithoutDSRC = 0;
 private int numRerouted;
 private boolean bUseComm;

 307

 private boolean bGetRequested;
 private boolean bIgnoreTheSituationSignOn;
 double refDistance1, refDistance2, refDistance3;
 CommunicationMessage emergencyVehicleVeinOnt;
 Coordinate emergencyVehicleCoord;

 public PrivateVehicle(Infra veinInfra, String vehicleType, boolean bUseComm) {
 super(veinInfra, vehicleType, bUseComm);
 this.numRerouted = 0;
 this.bUseComm = bUseComm;
 this.bIgnoreTheSituationSignOn = false;
 this.emergencyVehicleVeinOnt = null;
 this.refDistance1 = 0;
 this.refDistance2 = 0;
 this.refDistance3 = 0;
 this.emergencyVehicleCoord = null;
 }

 public static void resetStaticVariables() {
 lstDSRCVehiclePassedBy = null;
 lstNonDSRCVehiclePassedBy = null;
 lstDSRCVehicleStopped = null;
 lstNonDSRCVehicleStopped = null;
 lstDSRCVehiclePassedBy = new ArrayList<String>();
 lstNonDSRCVehiclePassedBy = new ArrayList<String>();
 lstDSRCVehicleStopped = new ArrayList<String>();
 lstNonDSRCVehicleStopped = new ArrayList<String>();
 totalNumStoppedPerTick = 0;
 totalNumStopped = 0;
 totalCountInfluence = 0.0;
 totalStoppedInterval = 0.0;
 totalNumPassedBy = 0;
 totalNumPassedByWithDSRC = 0;
 totalNumPassedByWithoutDSRC = 0;
 }

 public int getNumRerouted() {
 return numRerouted;
 }

 public static int getTotalNumStoppedPerTick() {
 return totalNumStoppedPerTick;
 }

 public static void resetTotalNumStoppedPerTick() {
 totalNumStoppedPerTick = 0;
 }

 public static int getTotalNumPassedBy() {
 return totalNumPassedBy;
 }

 public static int getTotalNumPassedByWithDSRC() {
 return totalNumPassedByWithDSRC;
 }

 public static int getTotalNumPassedByWithoutDSRC() {

 308

 return totalNumPassedByWithoutDSRC;
 }

 public static void addTotalNumPassedBy(boolean bUseOnt) {
 if (bUseOnt) totalNumPassedByWithDSRC ++;
 else totalNumPassedByWithoutDSRC ++;
 totalNumPassedBy ++;
 }

 public boolean isBIgnoreTheSituationSignOn() {
 return bIgnoreTheSituationSignOn;
 }

 public void setBIgnoreTheSituation(boolean ignoreTheSituation) {
 bIgnoreTheSituationSignOn = ignoreTheSituation;
 }

 public boolean isBUseComm() {
 return bUseComm;
 }

 public String getOutputter() {
 return this.getName()+ ","
 + this.getSpeed() + ","
 + this.infra.formatStr(this.getCurrentCoordinateX()) + ","
 + this.infra.formatStr(this.getCurrentCoordinateY()) + ","
 + this.getCurrentRoadFID() + ","
 + this.getNextJunctionID() + ","
 + this.infra.formatStr(this.getRemainDistanceToNextJunction()) + ","
 + this.bUseComm + ","
 + this.getDCountInfluence() + ","
 + this.dStopInterval + ","
 + bGetRequested + ","
 + this.isStopped() + ","
 + this.getDTravelTime(); // + "," + "x";
 }

@Override
public void step() {

 try {
 if (this.route != null) {
 if (this.route.atDestination()) {
 this.route = null;
 this.resetPrivateVehicle();
 }
 }
 if (this.veinOnt.getCurrentRoadEdge() == null)
 this.updateRelativeLocation();
 if (this.bRequested) {
 bGetRequested = true;
 if (this.answerback(this.emergencyVehicleVeinOnt,
 this.emergencyVehicleCoord)) {
 this.addStopInterval(1.0);

 totalNumStoppedPerTick++;
 totalNumStopped++;
 addStoppedVehicleToTheList(this);

 309

 }
 this.emergencyVehicleVeinOnt = null;
 this.emergencyVehicleCoord = null;
 this.bRequested = false;
 } else if (this.isStopped()) {
 bGetRequested = false;
 this.setStopped(false);

 this.resetStopVariables();
 } else bGetRequested = false;
 if (this.isStopped()) {}
 else {
 this.changeVelocityIDM(0.1);
 this.route.travelA(true);
 this.addTravelTime(1.0);
 this.updateRelativeLocation();

 }
 } catch (Exception e) {
 e.printStackTrace();
 }

}

public void initialMove() {

 try {
 if (this.route != null) {
 if (this.route.atDestination()) {
 this.route = null;
 this.resetPrivateVehicle();
 }
 }

 if (this.veinOnt.getCurrentRoadEdge() == null)
 this.route.travelA(true); // This will move the vehicle towards their destination
 } catch (Exception e) {
 e.printStackTrace();
 }

}

 public void resetStopVariables () {
 this.bIgnoreTheSituationSignOn = false;
 refDistance1 = 0.0;
 refDistance2 = 0.0;
 refDistance3 = 0.0;
 }

 public void getRequest(CommunicationMessage emergencyVehicleVeinOnt,

Coordinate emergencyVehicleCoord) {
 this.emergencyVehicleVeinOnt = emergencyVehicleVeinOnt;
 this.emergencyVehicleCoord = emergencyVehicleCoord;
 this.bRequested = true;
 }

 public boolean answerback(CommunicationMessage emergencyVehicleVeinOnt,

Coordinate emergencyVehicleCoord) {
 if (GlobalVariables.iCase < 4)

 return answerback2Ambulance(emergencyVehicleVeinOnt, emergencyVehicleCoord);
 else if (GlobalVariables.iCase == 4)

 return answerback2Breakdown(emergencyVehicleVeinOnt, emergencyVehicleCoord);
 return true;

 310

 }

 public boolean answerback2Breakdown(CommunicationMessage breakdownOnt,

Coordinate breakdownVehicleCoord) {
 boolean flag = false;
 if (this.getPreferedLane() != 1) return flag;
 double remainingDistanceToTheBreakdown

= this.veinOnt.getRemainingDistanceToBreakdown(breakdownOnt);
 double remainingTimeToTheBreakdown

= this.veinOnt.getRemainingTimeToBreakdown(breakdownOnt);
 double remainingTimeToTheBreakdownV0 = remainingDistanceToTheBreakdown

 / (this.v0 * GlobalVariables.ConversionCoefficient4MeterPerSec);
 if (this.speed > 10 && remainingDistanceToTheBreakdown > this.v0maxLane1

 * this.conversionMph2Ms * 2.0) { //60mph * 2sec
 if(this.fnIsSafeToOverTakeTheBreakdown(4.0)) {
 this.moveOverToTheRightLane();
 addTotalNumPassedBy(this.bUseComm);
 addPassedByVehicleToTheList(this);
 }
 } else {
 this.bSuddenDeceleration = true;
 PrivateVehicle vlist[];
 Double s = -100.0;
 try {
 vlist = this.fnSearchFrontAndBehindVehicles(

GlobalVariables.searchRange4IDM, this.getPreferedLane(), false);
 } catch (Exception e) {
 vlist = null;
 }

 if(vlist[0]!=null) {
 s = this.veinOnt.getRemainingDistanceToTheVehicleAhead(

vlist[0].veinOnt); //m
 }
 if (s > 0 && s < remainingDistanceToTheBreakdown) {
 this.decelerationIDM (this.speed, s, 0.1);
 if (s < Vehicle.vlength/2.0) this.decelerate();
 } else {
 this.decelerationIDM (this.speed,
 remainingDistanceToTheBreakdown, 0.1);
 if (remainingDistanceToTheBreakdown < 3*Vehicle.vlength)
 this.decelerate();
 }
 if(s < 0 && this.fnIsSafeToOverTakeTheBreakdown(2.0 + 4.0)) {
 this.moveOverToTheRightLane();
 } else {
 if ((s < 0 || (s > Vehicle.vlength/2.0)) && this.speed < 10
 && remainingDistanceToTheBreakdown > 3*Vehicle.vlength)
 this.speed = 10;
 this.addInfluenceTime(1.0);
 flag = true;
 }
 }
 return flag;
 }

 public boolean answerback2Ambulance(CommunicationMessage emergencyVehicleVeinOnt,

 311

 Coordinate emergencyVehicleCoord) {
 boolean flag = false;
 if (this.bUseComm) {
 if (emergencyVehicleVeinOnt == null) return false;
 if (this.getVeinOnt().isInTheSituationOfEmergencyVehicle(

emergencyVehicleVeinOnt)) {
 this.bIgnoreTheSituationSignOn = false;
 if (this.isStopped()) {
 } else {
 this.setStopped(true);
 this.addInfluenceTime(1.0);
 }
 flag = true;
 } else {
 this.bIgnoreTheSituationSignOn = true;
 if (this.isStopped()) {
 this.setStopped(false);
 addTotalNumPassedBy(this.bUseComm);
 addPassedByVehicleToTheList(this);
 }
 }
 } else {
 if (this.emergencyVehicleCoord == null) return false;
 Coordinate thisCoord

= infra.getRoadGeography().getGeometry(this).getCoordinate();
 if (this.getVeinOnt().IsInTheAmbulanceSituationWithSirenRange2(

emergencyVehicleVeinOnt, emergencyVehicleCoord, thisCoord)) {
 if (this.isStopped()) {}
 else {
 this.setStopped(true);
 this.addInfluenceTime(1.0);
 }
 flag = true;
 } else {
 if (this.isStopped()) {
 this.setStopped(false);
 addTotalNumPassedBy(this.bUseComm);
 addPassedByVehicleToTheList(this);
 }
 }
 }
 return flag;
 }

 public int changeVelocityIDM(double unitsec) {
 try {
 if(this.bSuddenDeceleration) return 0;
 if (this.route.getRouteCoords().size() < 2) return 1;
 if (this.route.atDestination()) return 2;
 double v0 = this.v0 * conversionMph2Ms; //m/s
 double v = this.getSpeed() * conversionMph2Ms; //m/s
 double dv;
 double s = 0; //m
 double sFront, sBehind;
 double sstar;
 double s1;
 double va;

 312

 double vafree;
 double vaint;
 PrivateVehicle vlist[];
 try {
 vlist = this.fnSearchFrontAndBehindVehicles(

 GlobalVariables.searchRange4IDM, this.getPreferedLane(), false);
 } catch (Exception e) {
 vlist = null;
 return 3;
 }
 if(vlist[1]!=null) {
 sBehind = vlist[1].veinOnt

 .getRemainingDistanceToTheVehicleAhead(this.veinOnt); //m
 if(sBehind > 0 && sBehind < (this.T + 0.5) * v0) {
 if (this.getPreferedLane() == 1

 && v0 < this.v0maxLane1 * conversionMph2Ms)
 v0 = this.v0maxLane1 * conversionMph2Ms;//(v0 +
 this.v0maxLane1 * conversionMph2Ms) / 2.0;

 else if (this.getPreferedLane() == 2
 && v0 < this.v0maxLane2 * conversionMph2Ms)

 v0 = this.v0maxLane2 * conversionMph2Ms;
 else if (this.getPreferedLane() == 3

&& v0 < this.v0maxLane3 * conversionMph2Ms)
 v0 = this.v0maxLane3 * conversionMph2Ms;

 }
 }
 vafree = this.a * (1.0 - Math.pow(v/v0, this.delta)) ;
 if(vlist[0]==null) va = vafree;
 else {
 s = this.veinOnt

 .getRemainingDistanceToTheVehicleAhead(vlist[0].veinOnt); //m
 dv = v - vlist[0].veinOnt.getSpeed()*conversionMph2Ms;
 s1 = v*this.T + v*dv / (2.0*Math.sqrt(this.a + this.b));
 if (s1 > 0) sstar = this.S0 + s1;
 else sstar = this.S0;
 vaint = -1.0 * this.a * Math.pow(sstar/s,2);
 va = vafree + vaint * unitsec ;
 }
 v = (v + va) * conversionMs2Mph; // va 1m/s=3.6kmh, kmh to mph
 if (v < 0) v = 0;
 this.setSpeed(v);
 if(vlist[0]!=null && s < this.speed *
 GlobalVariables.ConversionCoefficient4MeterPerSec * this.T{
 this.decelerate(1);
 }
 vlist = null;
 return (int) v;

 } catch (Exception e) {
 e.printStackTrace();
 }
 return 5;
 }

 public PrivateVehicle[] fnSearchFrontAndBehindVehicles(double searchDistanceRange, int lane,
 boolean bStr) {
 PrivateVehicle vlist[] = new PrivateVehicle[2];

 313

 vlist[0] = null;
 vlist[1] = null;
 try {
 double relativeDistance;
 double absoluteFrontSearchDistance;
 double absoluteBehindSearchDistance;
 double frontDist;
 double behindDist;
 double a_x, a_y, centre_x, centre_y;
 centre_x = this.getCurrentCoordinateX();
 centre_y = this.getCurrentCoordinateY();
 Envelope env = (Envelope)this.getCurrentGeometry().buffer(

searchDistanceRange * 1.5).getEnvelopeInternal();
 Iterable<PrivateVehicle> vehicleIt = this.getObjects(env, PrivateVehicle.class);
 absoluteFrontSearchDistance = searchDistanceRange;
 absoluteBehindSearchDistance = searchDistanceRange;
 double distance;
 int i=0;
 for (PrivateVehicle v:vehicleIt) {
 i++;
 if (this.getName().compareTo(v.getName()) == 0) continue;
 if (v.getPreferedLane() != lane) continue;
 a_x = v.getCurrentCoordinateX();
 a_y = v.getCurrentCoordinateY();
 distance = getDistance(a_x, a_y, centre_x, centre_y);
 if (v.veinOnt.getCurrentRoadEdge() == null) v.updateRelativeLocation();
 relativeDistance

 = v.veinOnt.getRemainingDistanceToTheVehicleAhead(this.veinOnt);
 if (relativeDistance > 0.0) {
 if (relativeDistance < absoluteBehindSearchDistance) {
 vlist[1] = v;
 absoluteBehindSearchDistance = relativeDistance;
 continue;
 }
 } else {
 relativeDistance = this.veinOnt

.getRemainingDistanceToTheVehicleAhead(v.veinOnt);
 if (relativeDistance > 0.0) {
 if (relativeDistance < absoluteFrontSearchDistance) {
 vlist[0] = v;
 absoluteFrontSearchDistance = relativeDistance;

 continue;
 }
 }
 }
 }
 if (vlist[0]!=null && this.veinOnt.getRemainingDistanceToTheVehicleAhead(

 vlist[0].veinOnt) > 0 && this.veinOnt.getRemainingDistanceToTheVehicleAhead(
 vlist[0].veinOnt) <= Vehicle.vlength) {

 this.decelerate(1);
 }
 return vlist;
 } catch (Exception e) {
 e.printStackTrace();
 }
 return vlist;
 }

 314

 public boolean fnIsSafeToOverTakeTheBreakdown(double safeTimeRange) { //four seconds
 boolean flag;
 double aRelativeDistance = -1;
 double absoluteSafeDistance = -1;
 double aRelativeDistance4frontVehicle = -1;
 double absoluteSafeDistance4frontVehicle = -1;
 double myRelativeDistance;
 double myRelativeDistance4frontVehicle;

 flag = true;
 myRelativeDistance = 3000;
 myRelativeDistance4frontVehicle = 3000;
 double a_x, a_y, centre_x, centre_y;
 centre_x = this.getCurrentCoordinateX();
 centre_y = this.getCurrentCoordinateY();
 Envelope env = (Envelope)this.getCurrentGeometry().buffer(

 GlobalVariables.defaultBreakdownResponseRange * 1.5).getEnvelopeInternal();
 Iterable<PrivateVehicle> vehicleIt = this.getObjects(env, PrivateVehicle.class);

 for (PrivateVehicle v:vehicleIt) {
 if (v.getPreferedLane() != 2) continue;
 a_x = v.getCurrentCoordinateX();
 a_y = v.getCurrentCoordinateY();
 double distance = getDistance(a_x, a_y, centre_x, centre_y);
 if (v.veinOnt.getCurrentRoadEdge() == null) v.updateRelativeLocation();
 absoluteSafeDistance4frontVehicle = Vehicle.T * v.speed *
 GlobalVariables.ConversionCoefficient4MeterPerSec + this.vlength;
 aRelativeDistance4frontVehicle

= this.veinOnt.getRemainingDistanceToFrontVehicle(v.veinOnt);
 if (aRelativeDistance4frontVehicle > 0.0 &&

 aRelativeDistance4frontVehicle < myRelativeDistance4frontVehicle &&
 aRelativeDistance4frontVehicle < absoluteSafeDistance4frontVehicle) {

 myRelativeDistance4frontVehicle = aRelativeDistance4frontVehicle;
 flag = false;
 return flag;
 } else if (Math.abs(aRelativeDistance4frontVehicle) < this.vlength) {
 flag = false;
 return flag;
 }
 absoluteSafeDistance = safeTimeRange * v.speed

* GlobalVariables.ConversionCoefficient4MeterPerSec - this.vlength;
 aRelativeDistance

 = this.veinOnt.getRemainingDistanceToTheVehicleBehind(v.veinOnt);
 if (aRelativeDistance > 0.0 && aRelativeDistance < myRelativeDistance

&& aRelativeDistance < absoluteSafeDistance) {
 myRelativeDistance = aRelativeDistance;
 flag = false;
 return flag;
 } else if (Math.abs(aRelativeDistance) < this.vlength) {
 flag = false;
 return flag;
 }
 }
 return flag;
 }

 315

 public static int getNumOfVehiclePassedBy() {
 return lstDSRCVehiclePassedBy.size() + lstNonDSRCVehiclePassedBy.size();
 }

 public static int getNumOfDSRCVehiclePassedBy() {
 return lstDSRCVehiclePassedBy.size();
 }
 public static int getNumOfNonDSRCVehiclePassedBy() {
 return lstNonDSRCVehiclePassedBy.size();
 }

 public static void addPassedByVehicleToTheList(PrivateVehicle pv) {
 String vehicleName = pv.getName();
 if (pv.isBUseComm()) {
 if (!lstDSRCVehiclePassedBy.contains(vehicleName))
 lstDSRCVehiclePassedBy.add(vehicleName);
 } else {
 if (!lstNonDSRCVehiclePassedBy.contains(vehicleName))
 lstNonDSRCVehiclePassedBy.add(vehicleName);
 }
 }

 public static boolean inTheVehiclePassedByList (PrivateVehicle pv) {
 String vehicleName = pv.getName();
 boolean myReturn = false;
 if (pv.isBUseComm()) {
 if (lstDSRCVehiclePassedBy.contains(vehicleName)) myReturn = true;
 } else {
 if (lstNonDSRCVehiclePassedBy.contains(vehicleName)) myReturn = true;
 }
 return myReturn;
 }

 public static int getNumOfVehicleStopped() {
 return lstDSRCVehicleStopped.size() + lstNonDSRCVehicleStopped.size();
 }

 public static int getNumOfDSRCVehicleStopped() {
 return lstDSRCVehicleStopped.size();
 }
 public static int getNumOfNonDSRCVehicleStopped() {
 return lstNonDSRCVehicleStopped.size();
 }

 public static void addStoppedVehicleToTheList(PrivateVehicle pv) {
 String vehicleName = pv.getName();
 if (pv.isBUseComm()) {
 if (!lstDSRCVehicleStopped.contains(vehicleName))
 lstDSRCVehicleStopped.add(vehicleName);
 } else {
 if (!lstNonDSRCVehicleStopped.contains(vehicleName))
 lstNonDSRCVehicleStopped.add(vehicleName);
 }
 }

 public void createNewPrivateVehicle () {
 boolean bUseOnt = false;

 316

 int iUseOnt = this.infra.random(0, 100, false); //true
 if (iUseOnt < GlobalVariables.iPercentUsingComm) bUseOnt = true;
 else if (iUseOnt == 100 && GlobalVariables.iPercentUsingComm == 100)
 bUseOnt = true
 PrivateVehicle pVehicle = new PrivateVehicle(

this.infra, "PrivateVehicle", bUseOnt);
 pVehicle.setId(this.infra.getNextVehicleNumber());
 pVehicle.setName("V_" + pVehicle.getId());
 double dspeed = GlobalVariables.TRAVEL_SPEED_MPH ; // 3.5;
 int add = this.infra.random (-30, 30, false);
 double speed = dspeed + dspeed * add / 100.0;
 pVehicle.setSpeed(speed);
 this.infra.getRoadContext().add(pVehicle);
 pVehicle.setOriginJuncRandomly();
 pVehicle.initializeRoute(pVehicle.getOriginJunc(), null, null);
 pVehicle.updateRelativeLocation();
 ISchedule schedule = RunEnvironment.getInstance().getCurrentSchedule();
 ScheduleParameters endParams

 = ScheduleParameters.createAtEnd(ScheduleParameters.LAST_PRIORITY);
 schedule.schedule(endParams, this, "end");
 ScheduleParameters startParams = ScheduleParameters.createOneTime(1);
 schedule.schedule(startParams, this, "start");
 ScheduleParameters agentParams = ScheduleParameters.createRepeating(

1, 1, 0);
 schedule.schedule(agentParams, pVehicle, "step");
 }

 public void resetPrivateVehicle () {
 boolean bUseOnt = false;
 int iUseOnt = this.infra.random(0, 100, false); //true
 if (iUseOnt < GlobalVariables.iPercentUsingComm) bUseOnt = true;
 else if (iUseOnt == 100 && GlobalVariables.iPercentUsingComm == 100)

bUseOnt = true;
 this.bStopped = false;
 this.bArrived = false;
 this.dTravelTime = 0.0;
 this.dCountInfluence = 0.0;
 this.dStopInterval = 0.0;
 this.bRequested = false;
 this.numRerouted = 0;
 this.bUseComm = bUseOnt;
 this.bIgnoreTheSituationSignOn = false;
 this.emergencyVehicleVeinOnt = null;
 this.refDistance1 = 0;
 this.refDistance2 = 0;
 this.refDistance3 = 0;
 this.emergencyVehicleCoord = null;
 this.setId(this.infra.getNextVehicleNumber());
 this.setName("V_" + this.getId());
 int iSpeedRandom = this.infra.random(0, 100, false);
 this.setSpeedAndPreferedLane(iSpeedRandom);
 if (GlobalVariables.iCase == 4) {
 this.setOriginJuncRandomlyFromRandomHelper(4);
 this.initializeRouteFromRandomHelper(null, null, null, 4);
 }
 else {
 this.initializeRoute(null, null, null);

 317

 }
 this.updateRelativeLocation();
 }

 public String toString() {
 return this.getName() + ", " + this.getDTravelTime() + ", " + this.bUseComm + ": " ;
 }
}

D.3.5 Route.java

public class Route {

 private Vehicle vehicle;
 private Network roadNetwork;
 private Geography roadGeography;
 private Infra infra;
 private Junction originJunc;
 private Junction destJunc;
 private List<Coordinate> routeCoords;
 private ArrayList<RoadEdge> routeEdges;
 private ArrayList<Junction> routeJunctions;
 private GeometryFactory geomFac;
 private double travelPerTurn;
 private double little_buffer_distance;
 private double big_buffer_distance;

 public Route(Infra mainInfra, Vehicle vehicle, Junction originJunction, Junction destJunction)
 throws Exception {
 this.vehicle = vehicle;
 this.originJunc = originJunction;
 this.destJunc = destJunction;
 if (this.vehicle==null || this.originJunc==null || this.destJunc==null) {
 throw new NullPointerException("Route() error: one of the input parameters is null");
 }
 this.infra = mainInfra;
 this.roadNetwork = infra.getRoadNetwork();
 this.roadGeography = infra.getRoadGeography();
 this.routeCoords = new ArrayList<Coordinate>();
 this.routeEdges = new ArrayList<RoadEdge>();
 this.routeJunctions = new ArrayList<Junction>();
 this.geomFac = new GeometryFactory();
 this.travelPerTurn = GlobalVariables.TRAVEL_PER_TURN;
 this.little_buffer_distance = 0.0001;
 this.big_buffer_distance = 100;
 Coordinate c = this.originJunc.getCoordinate();
 Point p = new GeometryFactory().createPoint(c);
 this.roadGeography.move(vehicle, p);
 double time;
 time = System.currentTimeMillis();
 routeCoords.addAll(getRouteBetweenJunctions(originJunc, destJunc));
 removeDuplicateCoords();
 }

 318

 public void kill() {
 this.vehicle = null;
 this.originJunc = null;
 this.destJunc = null;
 this.infra = null;
 this.roadNetwork = null;
 this.roadGeography = null;
 this.routeCoords.clear();
 this.routeCoords = null;
 this.routeEdges.clear();
 this.routeEdges = null;
 this.routeJunctions.clear();
 this.routeJunctions = null;
 this.geomFac = null;
 }

 public boolean travelA(boolean smoothMoving) {
 if (this.vehicle.getSpeed()==0) return false;
 this.travelPerTurn = this.vehicle.getSpeed() *
 GlobalVariables.TRAVEL_PER_TURN/GlobalVariables.TRAVEL_SPEED_MPH;
 this.travelPerTurn = this.travelPerTurn / 10.0; //1 tick = 0.1 sec
 if (atDestination()) {
 return false;
 }
 double time; // used for debugging
 double distTravelled = 0; // The distance travelled so far
 Coordinate currentCoord = null; // Current location
 Coordinate target = null; // Target coordinate we're heading for (in route list)
 boolean travelledMaxDist = false; // True when travelled maximum dist this iteration
 DecimalFormat df = new DecimalFormat("#.########");
 int i = 0;
 while (!travelledMaxDist && !atDestination()) {
 i++;
 currentCoord = roadGeography.getGeometry(this.vehicle).getCoordinate();
 target = routeCoords.get(0);
 Geometry currentGeom = geomFac.createPoint(currentCoord);
 Geometry targetGeom = geomFac.createPoint(target);
 double distToTarget = DistanceOp.distance(currentGeom, targetGeom);
 double angle;
 double distToTravel;
 double regdist, dx, dy;
 angle = angle(target, currentCoord)+Math.PI;
 regdist = this.travelPerTurn / 10.0;
 if (distTravelled+distToTarget < travelPerTurn) {
 distTravelled += distToTarget;
 if (smoothMoving) roadGeography.move(vehicle, targetGeom);
 routeCoords.remove(0);
 } // if
 else {
 angle = angle(target, currentCoord)+Math.PI;
 distToTravel = travelPerTurn-distTravelled;
 dx = distToTravel * Math.cos(angle);
 dy = distToTravel * Math.sin(angle);
 roadGeography.moveByDisplacement(vehicle, dx, dy);
 travelledMaxDist = true;
 } // else

 319

 } // while
 return true;
 }

 public boolean travelA(int lane, boolean smoothMoving) {
 double dShift = 0.0;
 dShift= (double) (lane - 3);
 this.travelPerTurn = this.vehicle.getSpeed()

 * GlobalVariables.TRAVEL_PER_TURN/GlobalVariables.TRAVEL_SPEED_MPH;
 this.travelPerTurn = this.travelPerTurn / 10.0; ///08 1 tick = 0.1 sec
 if (atDestination()) {
 return false;
 }
 double time; // used for debugging
 double distTravelled = 0; // The distance travelled so far
 Coordinate currentCoord = null; // Current location
 Coordinate target = null; // Target coordinate we're heading for (in route list)
 boolean travelledMaxDist = false; // True when travelled maximum dist this iteration
 DecimalFormat df = new DecimalFormat("#.########");
 int i = 0;
 while (!travelledMaxDist && !atDestination()) {
 i++;
 currentCoord = roadGeography.getGeometry(this.vehicle).getCoordinate();
 target = routeCoords.get(0);
 Geometry currentGeom = geomFac.createPoint(currentCoord);
 Geometry targetGeom = geomFac.createPoint(target);
 double distToTarget = DistanceOp.distance(currentGeom, targetGeom);
 double angle;
 double distToTravel;
 double regdist, dx, dy;
 angle = angle(target, currentCoord)+Math.PI;
 regdist = this.travelPerTurn / 10.0;
 if (distTravelled+distToTarget < travelPerTurn) {
 distTravelled += distToTarget;
 if (smoothMoving) roadGeography.move(vehicle, targetGeom);
 routeCoords.remove(0);
 } // if
 else {
 angle = angle(target, currentCoord)+Math.PI;
 distToTravel = travelPerTurn-distTravelled;
 dx = distToTravel * Math.cos(angle);
 dy = distToTravel * Math.sin(angle);
 roadGeography.moveByDisplacement(vehicle, dx, dy);
 travelledMaxDist = true;
 } // else
 } // while
 return true;
 }

 private ArrayList<Coordinate> getCoordsAlongRoad(Coordinate currentCoord,

 Coordinate destinationCoord, RoadElement road, boolean toJunction) throws Exception {
 double time = System.currentTimeMillis();
 Coordinate[] roadCoords = this.roadGeography.getGeometry(road).getCoordinates();
 ArrayList<Coordinate> routeCoords = new ArrayList<Coordinate>();
 boolean currentCorrect = false, destinationCorrect= false;;
 for (int i=0; i<roadCoords.length; i++) {
 if (toJunction && roadCoords[i].equals(destinationCoord)) {

 320

 destinationCorrect = true;
 break;
 }
 else if (!toJunction && roadCoords[i].equals(currentCoord)) {
 currentCorrect = true;
 break;
 }
 } // for
 if (!(destinationCorrect || currentCorrect)) {
 throw new Exception("Route: getCoordsAlongRoad: Error");
 }
 // Might need to reverse the order of the road coordinates
 if (toJunction && !roadCoords[roadCoords.length-1].equals(destinationCoord)) {
 ArrayUtils.reverse(roadCoords);
 }
 else if (!toJunction && !roadCoords[0].equals(currentCoord)){
 ArrayUtils.reverse(roadCoords);
 }
 Point destinationPointGeom = geomFac.createPoint(destinationCoord);
 Point currentPointGeom = geomFac.createPoint(currentCoord);
 for (int i=0; i<roadCoords.length-1; i++) {
 Coordinate[] segmentCoords = new Coordinate[]{

roadCoords[i], roadCoords[i+1]};
 LineString segment = geomFac.createLineString(segmentCoords);
 Geometry buffer = segment.buffer(little_buffer_distance);
 if (!toJunction) {
 routeCoords.add(roadCoords[i]);
 if (destinationPointGeom.within(buffer)) {
 routeCoords.add(destinationCoord);
 return routeCoords;
 }
 }
 else if (toJunction) {
 // coords which make up the road segment
 if (currentPointGeom.within(buffer)) {
 routeCoords.add(destinationCoord);
 for (int j=i+1; j<roadCoords.length; j++) {
 routeCoords.add(roadCoords[j]);
 }
 return routeCoords;
 }
 }
 } // for
 // If we get here then the route hasn't been created
 return null;
 }

 private ArrayList<Coordinate> getRouteBetweenJunctions (

Junction fromJunc, Junction toJunc) {
 double time = System.currentTimeMillis();
 List<RepastEdge<Junction>> shortestPath

= new MyShortestPath<Junction>(roadNetwork).getPath(fromJunc, toJunc);
 if (shortestPath == null) return null;
 boolean bFlip = false;
 routeJunctions.add(fromJunc);
 for (RepastEdge<Junction> edge:shortestPath) {
 MyRepastEdge myEdge = (MyRepastEdge) edge;

 321

 String edgeID = myEdge.getEdgeID();
 if (edgeID.endsWith("-")) bFlip = true;
 else bFlip = false;
 String roadID = edgeID.substring(0, edgeID.length()-1);
 RoadEdge roadEdge = infra.getRoadEdgeWithID(roadID, bFlip);
 Junction roadJunction;
 if (bFlip) roadJunction = roadEdge.getRoadElement().getFromJunc();
 else roadJunction = roadEdge.getRoadElement().getToJunc();
 routeEdges.add(roadEdge);
 routeJunctions.add(roadJunction);
 }

 ArrayList<Coordinate> coordPath = new ArrayList<Coordinate>();
 for (RoadEdge roadEdge:routeEdges) {
 RoadElement road = roadEdge.getRoadElement();
 Coordinate[] coords = roadGeography.getGeometry(road).getCoordinates();
 if (roadEdge.isFlipped()) {
 ArrayUtils.reverse(coords);
 }
 for (Coordinate coord:coords) {
 coordPath.add(coord);
 } // for coord:coords
 } // for road:roadPath
 return coordPath;
 }

 public Coordinate getRandomRoadCoordinate() {
 RoadElement road

 = (RoadElement) infra.getRoadContext().getRandomObjects(RoadElement.class, 1);
 Geometry roadGeom = roadGeography.getGeometry(road);
 Coordinate[] coords = roadGeom.getCoordinates();
 return coords[RandomHelper.nextIntFromTo(0,coords.length-1)];
 }

 public boolean atDestination() {
 double time = System.currentTimeMillis();
 if (this.roadGeography.getGeometry(this.vehicle).getCoordinate()

.equals(this.destJunc.getCoordinate())) {
 return true;
 }
 return false;
 }

 private boolean onRoad(Coordinate coord) {
 return infra.onRoad(coord);
 }

 private void removeDuplicateCoords() {
 LinkedHashSet<Coordinate> set = new LinkedHashSet<Coordinate>();
 for (Coordinate coord:routeCoords)
 set.add(coord);
 this.routeCoords = new Vector<Coordinate>();
 for (Coordinate coord:set) {
 this.routeCoords.add(coord);
 }
 }

 322

 public static double convertToMeters(double dist) {
 double distInMeters

= NonSI.NAUTICAL_MILE.getConverterTo(SI.METER).convert(dist*60);
 return distInMeters;
 }

 public static double convertFromMeters(double dist) {
 double distInDegrees

= SI.METER.getConverterTo(NonSI.NAUTICAL_MILE).convert(dist)/(60.0);
 return distInDegrees;
 }

 public static double distanceM (Coordinate c1, Coordinate c2) {
 return 0;
 }

 public static double angle(Coordinate p0, Coordinate p1) {
 double dx = p1.x - p0.x;
 double dy = p1.y - p0.y;
 return Math.atan2(dy, dx);
 }

 public Coordinate getDestination() {
 return this.destJunc.getCoordinate();
 }

 public List<Coordinate> getRouteCoords() {
 return routeCoords;
 }

 public double getTotalLenghtOfTheRoute() {
 int loop = routeCoords.size();
 double dist;
 double totalDist = 0.0;
 Coordinate c1 = routeCoords.get(0);
 Coordinate c2;
 Point p1, p2;
 p1 = new GeometryFactory().createPoint(c1);
 for (int i = 1; i < loop; i++) {
 c2 = routeCoords.get(i);
 p2 = new GeometryFactory().createPoint(c2);
 dist = p1.distance(p2);
 totalDist += dist;
 p1 = null;
 p2 = null;
 c1 = routeCoords.get(i);
 p1 = new GeometryFactory().createPoint(c1);
 }
 p1 = null;
 p2 = null;
 return totalDist;
 }

 public boolean checkRouteCoords() {
 boolean bCheck = false;
 Coordinate destCoord1 = this.destJunc.getCoordinate();
 Coordinate destCoord2; // = null;

 323

 if (routeCoords.size() > 0) destCoord2 = routeCoords.get(routeCoords.size() - 1);
 else return false;
 if (destCoord1.equals(destCoord2)) bCheck = true;
 else {
 bCheck = false;
 }
 return bCheck;
 }

 public ArrayList<RoadEdge> getRouteEdges() {
 return routeEdges;
 }

 public ArrayList<Junction> getRouteJunctions() {
 return routeJunctions;
 }
}

D.3.6 MyShortestPath.java

public class MyShortestPath<T> implements ProjectionListener<T> {

 private Network<T> net;
 private boolean calc = true;
 private T source;
 private JungEdgeTransformer transformer;
 private DijkstraShortestPath<T,RepastEdge<T>> dsp;

 public MyShortestPath(Network<T> net){
 init(net);
 }

 @Deprecated
 public MyShortestPath(Network<T> net, T source) {
 this.source = source;
 init(net);
 }

 private void init(Network<T> net){
 this.net = net;
 transformer = new JungEdgeTransformer<T>();
 net.addProjectionListener(this);
 }

 public List<RepastEdge<T>> getPath(T source, T target){
 if (calc){
 calcPaths();
 calc = false;
 }
 return dsp.getPath(source, target);
 }

 public double getPathLength(T source, T target){

 324

 if (calc){
 calcPaths();
 calc = false;
 }
 Number n = dsp.getDistance(source, target);
 if (n != null)
 return n.doubleValue();
 else
 return Double.POSITIVE_INFINITY;
 }

 @Deprecated
 public double getPathLength(T target){
 return getPathLength(this.source, target);
 }

 private void calcPaths(){
 Graph<T, RepastEdge<T>> graph = null;
 if (net instanceof JungNetwork)
 graph = ((JungNetwork)net).getGraph();
 else if (net instanceof ContextJungNetwork)
 graph = ((ContextJungNetwork)net).getGraph();
 RepastEdge myEdge = graph.getEdges().iterator().next();
 dsp = new DijkstraShortestPath<T,RepastEdge<T>>(graph, transformer);
 }

 public void projectionEventOccurred(ProjectionEvent<T> evt) {
 if (evt.getType() != ProjectionEvent.OBJECT_MOVED) {
 calc = true;
 }
 }

 public void finalize() {
 if (net != null)
 net.removeProjectionListener(this);
 }
}

D.4 Vehicular communication

D.4.1 CommunicationMessage.java

public class CommunicationMessage {

 private double x;
 private double y;
 private String name;
 private String vehicleType;
 private double speed;
 private boolean stopped;
 private Junction previousJunction;
 private Junction nextJunction;
 private ArrayList<Junction> comingJunctions;

 325

 private RoadEdge currentRoadEdge;
 private RoadEdge nextRoadEdge;
 private double remainingDistanceToNextJunction;
 private double remainingTimeToNextJunction;
 private boolean bCloserToEmergencyVehicleInRange;
 private double prevDistanceToEmergencyVehicleInRange;
 private double closestDistnaceToEmergencyVehicleInRange;
 private int preferedLane;

 public CommunicationMessage() {
 this.previousJunction = null;
 this.nextJunction = null;
 this.comingJunctions = new ArrayList<Junction> ();
 this.currentRoadEdge = null;
 this.nextRoadEdge = null;
 this.speed = 0.0;
 this.remainingDistanceToNextJunction = 0.0;
 this.remainingTimeToNextJunction = 0.0;
 this.x = 0.0;
 this.y = 0.0;
 }

 public double getX() {
 return x;
 }
 public void setX(double x) {
 this.x = x;
 }
 public double getY() {
 return y;
 }
 public void setY(double y) {
 this.y = y;
 }
 public boolean isAlreadyUpdated(double myx, double myy) {
 boolean result = false;
 if (Double.compare(this.x, myx) == 0 && Double.compare(this.y, myy) == 0)

result = true;
 else result = false;
 return result;
 }

 public boolean isStopped() {
 return stopped;
 }

 public void setStopped(boolean stopped) {
 this.stopped = stopped;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 326

 public String getVehicleType() {
 return vehicleType;
 }

 public void setVehicleType(String vehicleType) {
 this.vehicleType = vehicleType;
 }

 public double getDiffSpeed(double distanceDiff) {
 if(distanceDiff < 0 && this.stopped) return 0.0;
 else if (distanceDiff < -20.1168 && !this.stopped) return 0.0;
 else return speed;
 }

 public double getSpeed() {
 return speed;
 }

 public void setSpeed(double speed) {
 this.speed = speed;
 }

 public int getPreferedLane() {
 return preferedLane;
 }

 public void setPreferedLane(int preferedLane) {
 this.preferedLane = preferedLane;
 }

 public Junction getPreviousJunction() {
 return previousJunction;
 }

 public void setPreviousJunction(Junction previousJunction) {
 this.previousJunction = previousJunction;
 }

 public Junction getNextJunction() {
 return nextJunction;
 }

 public void setNextJunction(Junction nextJunction) {
 this.nextJunction = nextJunction;
 }

 public ArrayList<Junction> getComingJunctions() {
 return comingJunctions;
 }

 public void setComingJunctions(ArrayList<Junction> comingJunctions) {
 this.comingJunctions = comingJunctions;
 }

 public void addComingJunction(Junction comingJunction) {
 this.comingJunctions.add(comingJunction);

 327

 }

 public void clearComingJunctions () {
 this.comingJunctions.clear();
 }

 public RoadEdge getCurrentRoadEdge() {
 return currentRoadEdge;
 }

 public void setCurrentRoadEdge(RoadEdge currentRoadEdge) {
 this.currentRoadEdge = currentRoadEdge;
 }

 public RoadEdge getNextRoadEdge() {
 return nextRoadEdge;
 }

 public void setNextRoadEdge(RoadEdge nextRoadEdge) {
 this.nextRoadEdge = nextRoadEdge;
 }

 public double getRemainingDistanceToNextJunction() {
 return remainingDistanceToNextJunction;
 }

 public void setRemainingDistanceToNextJunction(
 double remainingDistanceToNextJunction) {
 this.remainingDistanceToNextJunction = remainingDistanceToNextJunction;
 }

 public double getRemainingTimeToNextJunction() {
 return remainingTimeToNextJunction;
 }

 public void setRemainingTimeToNextJunction(double remainingTimeToNextJunction) {
 this.remainingTimeToNextJunction = remainingTimeToNextJunction;
 }

 public double getRemainingTimeToBreakdown(CommunicationMessage breakdownOnt) {
 double remainingDistance = this.getRemainingDistanceToBreakdown(breakdownOnt);
 double remainingTime = remainingDistance / (this.getSpeed()

* GlobalVariables.ConversionCoefficient4MeterPerSec);
 return remainingTime; //sec
 }

 public double getRemainingDistanceToTheVehicleBehind(

CommunicationMessage behindVehicleOnt) {
 return behindVehicleOnt.getRemainingDistanceToTheVehicleAhead(this);
 }

 public double getRemainingDistanceToBreakdown(CommunicationMessage breakdownOnt) {
 return this.getRemainingDistanceToFrontVehicle(breakdownOnt);
 }

 public double getRemainingDistanceToTheVehicleAhead(

CommunicationMessage frontVehicleOnt) {

 328

 return this.getRemainingDistanceToFrontVehicle(frontVehicleOnt);
 }

 public double getRemainingDistanceToFrontVehicle(

CommunicationMessage frontVehicleOnt) {
 boolean bOnTheSameRoad = false;
 boolean bComingToTheRoad = false;
 double distance = -1.0;
 if (this.getCurrentRoadEdge().getName().equals(

frontVehicleOnt.getCurrentRoadEdge().getName())) bOnTheSameRoad = true;
 if (this.nextRoadEdge != null && this.getNextRoadEdge().getName()

.equals(frontVehicleOnt.getCurrentRoadEdge().getName()) &&
this.getNextJunction().getName().equals(frontVehicleOnt

.getPreviousJunction().getName())) bComingToTheRoad = true;
 if (bOnTheSameRoad) {
 distance = this.getRemainingDistanceToNextJunction()

- frontVehicleOnt.getRemainingDistanceToNextJunction();
 } else if (bComingToTheRoad) {
 distance = this.getRemainingDistanceToNextJunction()

+ (frontVehicleOnt.currentRoadEdge.getRoadElement().getShape_Leng()
- frontVehicleOnt.getRemainingDistanceToNextJunction());

 }
 if (distance > Vehicle.vlength) return distance - Vehicle.vlength;
 else if (distance > 0 && distance <= Vehicle.vlength) return Vehicle.vlength / 2.0;
 return distance;
 }

 public boolean isInTheSituationOfVehicleStationary(

CommunicationMessage breakdownOnt, double givenDistanceRange) {
 boolean bCase1, bCase2;
 bCase1 = false;
 bCase2 = false;
 boolean bOnTheSameRoad = false;
 boolean bComingToTheRoad = false;
 double distance = givenDistanceRange * 2;
 try {
 if (this.getCurrentRoadEdge().equals(breakdownOnt.getCurrentRoadEdge()))
 bOnTheSameRoad = true;
 if (this.nextRoadEdge != null &&

this.getNextRoadEdge().equals(breakdownOnt.getCurrentRoadEdge()) &&
this.getNextJunction().equals(breakdownOnt.getPreviousJunction()))

bComingToTheRoad = true;
 if (bOnTheSameRoad) {
 distance = this.getRemainingDistanceToNextJunction()

- breakdownOnt.getRemainingDistanceToNextJunction();
 if (distance > 0 && distance < givenDistanceRange) bCase1 = true;
 } else if (bComingToTheRoad) {
 distance = this.getRemainingDistanceToNextJunction()

+ (breakdownOnt.currentRoadEdge.getRoadElement().getShape_Leng()
- breakdownOnt.getRemainingDistanceToNextJunction());

 if (distance < givenDistanceRange) bCase2 = true;
 }
 } catch (Exception e) {

 e.printStackTrace();
 return false;
 }

 329

 return bCase1 || bCase2;
 }

 public boolean updateRelativeLocation(Vehicle thisV) {
 try {
 Coordinate currentCoord

= thisV.infra.getRoadGeography().getGeometry(thisV).getCoordinate();
 Point currentPoint = new GeometryFactory().createPoint(currentCoord);
 double minDist = Double.MAX_VALUE;
 RoadEdge nearestRoadEdge = null;
 if (this.getName() == null) {
 this.setName(thisV.getName());
 this.setVehicleType(thisV.getVehicleType());
 }
 this.setX(currentPoint.getX());
 this.setY(currentPoint.getY());
 this.setSpeed(thisV.speed);
 this.setPreferedLane(thisV.getPreferedLane());
 boolean flag = false;
 RoadEdge roadEdge = null;
 RoadElement roadElement = null;
 double thisDist = minDist;
 for (int i =0; i < thisV.route.getRouteEdges().size(); i++) {
 roadEdge = thisV.route.getRouteEdges().get(i);
 roadElement = roadEdge.getRoadElement();
 thisDist = currentPoint.distance(thisV.infra

.getRoadGeography().getGeometry(roadElement));
 if (thisDist < minDist) {
 minDist = thisDist;
 nearestRoadEdge = roadEdge;
 } // if thisDist < minDist
 }
 if (nearestRoadEdge == null)
 this.setCurrentRoadEdge(nearestRoadEdge);
 int currentIndex = thisV.route.getRouteEdges().indexOf(nearestRoadEdge);
 if (currentIndex < thisV.route.getRouteEdges().size() - 1)
 this.setNextRoadEdge(thisV.route.getRouteEdges().get(currentIndex + 1));
 else this.setNextRoadEdge(null);
 if (this.getCurrentRoadEdge() == null) return flag;
 if (this.getCurrentRoadEdge().isFlipped()) {
 this.setPreviousJunction(nearestRoadEdge.getRoadElement().toJunc);
 this.setNextJunction(nearestRoadEdge.getRoadElement().fromJunc);
 } else {

 this.setPreviousJunction(nearestRoadEdge.getRoadElement().fromJunc);
 this.setNextJunction(nearestRoadEdge.getRoadElement().toJunc);
 }
 flag = true;
 Coordinate fromCoord = currentCoord;
 Coordinate toCoord;
 double eachDistance, remainDistance = 0, remainTime;
 for (int i=0; i < thisV.route.getRouteCoords().size(); i++) {
 if (i > 0) fromCoord = thisV.route.getRouteCoords().get(i-1);
 toCoord = thisV.route.getRouteCoords().get(i);
 eachDistance = fromCoord.distance(toCoord);
 remainDistance += eachDistance;
 if(toCoord.equals(this.getNextJunction().getCoordinate())) break;
 }

 330

 this.setRemainingDistanceToNextJunction(remainDistance);
 remainTime = remainDistance / (thisV.getSpeed() * 1609.344 / 3600.0);
 this.setRemainingTimeToNextJunction(remainTime);
 return flag;
 } catch (Exception e) {
 e.printStackTrace();
 }
 return false;
 }

 public boolean isInTheSituationOfEmergencyVehicle (CommunicationMessage ambulOnt) {
 double givenDistanceRange = GlobalVariables.commrange; //200.0;
 double givenTimeRange = givenDistanceRange

/ (GlobalVariables.TRAVEL_SPEED_MPH * 1.5 * 1609.344 / 3600.0);
 double givenTimeDiff = -1.0;
 double givenDistDiff = givenTimeDiff

* (GlobalVariables.TRAVEL_SPEED_MPH * 1.5 * 1609.344 / 3600.0);
 boolean bCase1= false, bCase2 = false, bCase3 = false;
 if (this.currentRoadEdge == null) return false;
 try {
 double distanceDiff = -100.0, timeDiff = -10.0;
 //case1 on the same road
 if (this.currentRoadEdge.getName().equals(

ambulOnt.getCurrentRoadEdge().getName())) {
 distanceDiff = ambulOnt.getRemainingDistanceToNextJunction()

- this.getRemainingDistanceToNextJunction();
 timeDiff = distanceDiff / ((ambulOnt.getSpeed()

- this.getDiffSpeed(distanceDiff)) * 1609.344 / 3600.0);
 if ((distanceDiff < givenDistanceRange && distanceDiff > givenDistDiff) ||
 (timeDiff < givenTimeRange && timeDiff > givenTimeDiff)) {
 bCase1 = true;
 }
 }
 //case1 on the same road, but opposite lane
 else if (this.currentRoadEdge.getRoadElementName().equals(

ambulOnt.getCurrentRoadEdge().getRoadElementName())) {
 distanceDiff = ambulOnt.getRemainingDistanceToNextJunction()

+ this.getRemainingDistanceToNextJunction()
- this.currentRoadEdge.getRoadElement().getShape_Leng();

 timeDiff = distanceDiff / ((ambulOnt.getSpeed()
+ this.getDiffSpeed(distanceDiff)) * 1609.344 / 3600.0);

 if ((distanceDiff < givenDistanceRange && distanceDiff > givenDistDiff)
|| (timeDiff < givenTimeRange && timeDiff > givenTimeDiff)) {

 bCase1 = true;
 }
 }
 //case 2 not on the same road, v1 is not on the road that a1 is heading to,

//but they are heading to the same junction
 else if (ambulOnt.getNextRoadEdge() != null && this.getNextJunction() !=null

&& ambulOnt.getNextJunction() != null
&& !this.currentRoadEdge.getRoadElementName().equals(

ambulOnt.getNextRoadEdge().getRoadElementName())
&& this.getNextJunction().equals(ambulOnt.getNextJunction())) {

 distanceDiff = this.remainingDistanceToNextJunction
+ ambulOnt.getRemainingDistanceToNextJunction();

 timeDiff = distanceDiff / ((ambulOnt.getSpeed()
+ this.getDiffSpeed(distanceDiff)) * 1609.344 / 3600.0);

 331

 if ((distanceDiff < givenDistanceRange && distanceDiff > givenDistDiff)
|| (timeDiff < givenTimeRange && timeDiff > givenTimeDiff)) {

 bCase2 = true;
 }
 }
 //case 3 v1 is on the road that a1 is heading to
 else if (ambulOnt.getNextRoadEdge() != null &&

 this.currentRoadEdge.getName().equals(ambulOnt.getNextRoadEdge().getName())){
 distanceDiff = this.currentRoadEdge.getRoadElement().getShape_Leng()

- this.getRemainingDistanceToNextJunction()
 + ambulOnt.getRemainingDistanceToNextJunction(); ;
 timeDiff = distanceDiff / ((ambulOnt.getSpeed()

- this.getDiffSpeed(distanceDiff)) * 1609.344 / 3600.0);
 if ((distanceDiff < givenDistanceRange && distanceDiff > givenDistDiff) ||
 (timeDiff < givenTimeRange && timeDiff > givenTimeDiff)) {
 bCase3 = true;
 }
 }
 //case 3 v1 is on the road that a1 is heading to, opposite lane
 else if (ambulOnt.getNextRoadEdge() != null && this.currentRoadEdge

 .getRoadElementName().equals(ambulOnt.getNextRoadEdge().getRoadElementName())) {
 distanceDiff = this.getRemainingDistanceToNextJunction()

+ ambulOnt.getRemainingDistanceToNextJunction();
 timeDiff = distanceDiff / ((ambulOnt.getSpeed()

+ this.getDiffSpeed(distanceDiff)) * 1609.344 / 3600.0);
 if ((distanceDiff < givenDistanceRange && distanceDiff > givenDistDiff) ||
 (timeDiff < givenTimeRange && timeDiff > givenTimeDiff)) {
 bCase3 = true;
 }
 }
 //case 4 a1 is already passed the v1 and a1 is on the road that v1 is heading to,

//but their distance is closer than the given range
 else if (this.nextRoadEdge != null && this.stopped && ambulOnt.currentRoadEdge
 .getName().equals(this.nextRoadEdge.getName())){
 distanceDiff = -1.0

* (ambulOnt.currentRoadEdge.getRoadElement().getShape_Leng()
- ambulOnt.getRemainingDistanceToNextJunction()

 + this.getRemainingDistanceToNextJunction());
 timeDiff = distanceDiff / ((ambulOnt.getSpeed()

- this.getDiffSpeed(distanceDiff)) * 1609.344 / 3600.0);
if ((distanceDiff < givenDistanceRange && distanceDiff > givenDistDiff) ||

 (timeDiff < givenTimeRange && timeDiff > givenTimeDiff)) {
 bCase3 = true;
 }
 }
 //case 4 a1 is already passed the v1 and a1 is on the road that v1 is heading to,

//but their distance is closer than the given range
 //opposite lane
 else if (ambulOnt.getNextRoadEdge() != null && this.stopped

&& this.previousJunction.equals(ambulOnt.getPreviousJunction())
&& !this.currentRoadEdge.getRoadElementName().equals(

ambulOnt.getNextRoadEdge().getRoadElementName())) {
 distanceDiff = -1.0

* (this.currentRoadEdge.getRoadElement().getShape_Leng()
- this.getRemainingDistanceToNextJunction()
+ ambulOnt.currentRoadEdge.getRoadElement().getShape_Leng()
- ambulOnt.getRemainingDistanceToNextJunction());

 332

 timeDiff = distanceDiff / ((ambulOnt.getSpeed()
+ this.getDiffSpeed(distanceDiff)) * 1609.344 / 3600.0);

 if ((distanceDiff < givenDistanceRange && distanceDiff > givenDistDiff)
|| (timeDiff < givenTimeRange && timeDiff > givenTimeDiff)) {

 bCase3 = true;
 }
 }
 else {
 distanceDiff = this.getRemainingDistanceToNextJunction()

+ ambulOnt.getRemainingDistanceToNextJunction();
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 return bCase1 || bCase2 || bCase3;
 }

 public String toString () {
 String str = "name: " + this.name + "\n" + "";
 str = str + this.name + "-" + "previousJunction: " + this.previousJunction.getName() + "\n" + "";
 str = str + this.name + "-" +"nextJunction: " + this.nextJunction.getName() + "\n" + "";
 str = str + this.name + "-" +"currentRoadEdge: "

+ this.currentRoadEdge.getRoadElement().getFID() + "\n" + "";
 str = str + this.name + "-" +"nextRoadEdge: "

+ this.nextRoadEdge.getRoadElement().getFID() + "\n" + "";
 str = str + this.name + "-" +"remainingDistanceToNextJunction: "

+ this.remainingDistanceToNextJunction + "\n" + "";
 str = str + this.name + "-" +"remainingTimeToNextJunction: "

+ this.remainingTimeToNextJunction + "\n" + "";
 return str;
 }
}

