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Abstract 

 

In an Intelligent Transport System (ITS) environment, the communication component is of high 

significance as it supports interactions between vehicles and the roadside infrastructure. 

Existing studies focus on the physical capability and capacity of the communication 

technologies, but the equally important development of suitable and efficient semantic content 

for transmission has received notably less attention. Using an ontology is one promising 

approach for context modelling in ubiquitous computing environments. In the transport domain, 

an ontology can be used both for context modelling and semantic contents for vehicular 

communications. This research explores the development of an ontological framework 

implementing a geosemantic messaging model to support vehicle-to-vehicle communications.  

To develop an ontology model, two scenarios (an ambulance situation and a breakdown on the 

motorway) are constructed to describe specific situations using short-range communication in 

an ITS environment. In the scenarios, spatiotemporal relations and semantic relations among 

vehicles and road facilities are extracted and defined as classes, objects, and properties/relations 

in the ontology model. For the ontology model, some functions and query templates are also 

developed to update vehicles’ movements and to provide some logical procedures that vehicles 

need to follow in emergency situations. To measure the effects of the vehicular communication 

based on the ontology model, an agent-based approach is adopted to dynamically simulate the 

moving vehicles and their communications following the scenarios.  

The simulation results demonstrate that the ontology model can support vehicular 

communications to update each vehicle’s context model and assist its decision-making process 

to resolve the emergency situations. The results also show the effect of vehicular 

communications on the efficiency trends of traffic in emergency situations, where some vehicles 

have a communication device, and others do not. The efficiency trends, based on the percentage 

of vehicles having a communication device, can be useful to set a transition period plan for 

implanting communication devices onto vehicles and the infrastructure.  

The geospatial ontological framework and agent simulation may contribute to increase the 

intelligence of ITS by supporting data-level and application-level implementation of 

autonomous vehicle agents to share knowledge in local contexts. This work can be easily 

extended to support more complex interactions amongst vehicles and the infrastructure.  
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Glossary 

  

Agent-
Based 
Modelling 
and 
Simulation 
(ABMS) 

An Agent-Based Modelling and Simulation (ABMS) is a computational 
model for simulating the actions and interactions of autonomous agents 
(individual or collective entities such as organizations or groups) with a view 
to assessing their effects on the system as a whole. It combines elements of 
game theory, complex systems, emergence, computational sociology, multi-
agent systems, and evolutionary programming. 

Beliefs, 
Desires, and 
Intentions 
(BDI) 

Beliefs, Desires, and Intentions (BDI) architectures are widely used to reflect 
agents’ goals, and the resulting plans and actions. Beliefs, desires, and 
intentions are agents’ abstract (external) characteristics, and can be 
transposed into agents’ internal characteristics. Beliefs (what they know and 
what they know how to do) represent an agent’s knowledge-base, while 
desires (what goals they would like to achieve) represent an agent’s goals 
(objectives) and intentions (the goals they are currently committed to 
achieving) are mapped to plans. 

Descriptive 
Ontology 
for 
Linguistic 
and 
Cognitive 
Engineering 
(DOLCE) 

The Descriptive Ontology for Linguistic and Cognitive Engineering 
(DOLCE) is a top-level ontology that has a clear cognitive bias and aims at 
capturing the ontological categories underlying natural language and human 
common sense. DOLCE, however, does not commit to a strictly ‘referentialist 
metaphysics’ related to the intrinsic nature of the world. Rather, the 
categories it introduces are thought of as cognitive artefacts, which are 
ultimately depending on human perception, cultural imprints and social 
conventions. In this sense, they intend to be just descriptive notions, which 
assist in making already formed conceptualisations explicit. DOLCE is an 
ontology of particulars (also known as things), in the sense that its domain of 
discourse is restricted to them. 

Intelligent 
Transport 
Systems 
(ITS) 

Intelligent Transport Systems (ITS) are advanced applications which aim to 
provide innovative services relating to road transport, in which information 
and communication technologies are applied. It enables infrastructure, 
vehicles and users to be better informed and make safer, more coordinated, 
and ‘smarter’ use of transport networks. 

Multi-Agent 
System 
(MAS) 

A multi-agent system (MAS) is a system composed of multiple interacting 
intelligent agents within an environment. Multi-agent systems can be used to 
solve problems that are difficult or impossible for an individual agent or a 
monolithic system to solve. Intelligence may include some methodical, 
functional, procedural or algorithmic search, find and processing approach. 
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Ontology An ontology is ‘a model of (some aspect of) the world (domain)’ that 
introduces a vocabulary (of concepts) relevant to that domain, and also 
specifies the meaning (semantics) of the terms contained in this vocabulary 
using properties/relations (e.g. is a, is part of) based on a suitable logic. 

Resource 
Description 
Framework 
(RDF)  

The RDF model is used as a fundamental conceptual description or modelling 
of information for the Semantic Web. It is similar to classic conceptual 
modelling approaches such as entity-relationship or class diagrams, as it is 
based upon the idea of making statements about resources (in particular Web 
resources) in the form of subject-predicate-object expressions. 

Semantic 
Web 

The Semantic Web is an advanced version of the current Web where 
intelligent software agents can retrieve and manipulate information by 
encouraging the inclusion of semantic content in Web pages. The Semantic 
Web aims at converting the current Web of unstructured documents into a 
Web of data using formal semantic descriptions such as RDF and OWL. 

SPARQL 
Protocol 
and       
RDF Query 
Language 
(SPARQL) 

SPARQL (a recursive acronym) is an official RDF query language, which is a 
query language for ontology models, able to retrieve and manipulate data 
stored in RDF or OWL. SPARQL allows four kinds of query form that are 
SELECT, CONSTRUCT, DESCRIBE, and ASK. SELECT statements return 
results of matching variables from a query, and CONSTRUCT statements 
return a RDF graph which is a result of matching variables from a set of triple 
templates. DESCRIBE forms return an RDF graph to describe resources, and 
ASK statements return a boolean which is true or false from the matching 
pattern. 

SPARQL 
Inference 
Notation 
(SPIN) 
 

SPIN is a SPARQL-based rule and constraint language that can provide 
reusable query templates and functions with a SPARQL-friendly syntax. 
SPIN was designed by combining concepts from object-oriented languages, 
query languages, and rule-base systems so that it can define a kind of 
behaviours of ontology classes and instances in the SPARQL-like syntax that 
can be stored and represented in RDF or OWL. SPIN can define rules and 
query templates easily using familiar SPARQL expressions. SPIN also 
provides user-defined functions, which are composed of an argument and a 
nested SPARQL query. 

Tick Time within an agent simulation environment is regarded as a discrete event 
whose quantum unit of time is known as a ‘tick’. If event x and y are 
scheduled at tick one and two respectively, event y will execute after x. 

Top-level 
ontology 

In information science, a top-level ontology (also known as foundation 
ontology) is an ontology that describes very general concepts that are the 
same across all knowledge domains. It supports very broad semantic 
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interoperability for ontologies under this top-level ontology. It is usually a 
hierarchy of entities and associated rules (both theorems and regulations) that 
attempts to describe those general entities that do not belong to a specific 
domain or application. 

Web 
Ontology 
Language 
(OWL) 

OWL is another ontological specification for conceptual description or 
modelling of information of the Semantic Web. It was built on top of RDF 
and RDF schema to cover their limitations and extend the vocabulary for 
cardinality constraints, richer property characteristics, etc. OWL can express 
complex semantics as a vocabulary extension of RDF and RDFS using 
classes, properties, relations, cardinality, etc. 
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Abbreviations 

 

ALC Attributive Language with Complements 

ABMS Agent-Based Modelling and Simulation 

ANOVA Analysis of Variance 

BDI Beliefs, Desires, and Intentions 

BFO Basic Formal Ontology 

CA Cellular Automata  

CVIS Co-operative Vehicles-Infrastructure Systems 

DL Description Logic  

DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering 

DSRC Dedicated Short-Range Communication 

GIS Geographic Information Systems 

GPS Global Positioning System 

ITN Integrated Transport Network 

ITS Intelligent Transport Systems  

MAS Multi-Agent Systems 

OBE On-Board Equipment of DSRC 

OWL Web Ontology Language 

OWL QL OWL Query Language 

RACER Reasoner for A-boxes and Concept Expressions Renamed  

RDF Resource Description Framework  

RDQL RDF Data Query Language 

RSE Road-Side Equipment of DSRC 

SWRL Semantic Web Rule Language 

SPARQL SPARQL Protocol and RDF Query Language 

SUMO Suggested Upper Merged Ontology 

UML Unified Modelling Language 

URIs Universal Resource Identifiers 
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VANET Vehicular Ad-hoc Network 

XML eXtensible Markup Language 

W3C World Wide Web Consortium 
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1. Introduction  

1.1 Challenges in transport systems 

 

Transport is a system that includes activities and a set of facilities consisting of the means and 

equipment necessary for the movement of passengers or goods from one place to another 

(Ipfelkofer et al., 2006). There are various transport modes, such as air, rail, road, water, space, 

etc. Among these transport modes, road transport currently takes the lion’s share of the traffic, 

with 90% of passengers and 82% of lifted goods travelling by road in Great Britain in 2012 and 

2010, respectively (Department for Transport, 2013). In addition, it is forecasted that road 

traffic volume in 2040 will be 43 percent higher than in 2010 (Department for Transport, 2013). 

This means that, in the long term, the volume of road traffic in the UK will continue to grow. 

The constant growth of road transport is caused by the combined factors of people, travel, goods 

lifted, and vehicles on roadways. In this context, safety, mobility, and productivity challenges 

are significant issues in road transport (Maccubbin et al., 2008). 

To address these challenges and improve the performance of the transport system, there are 

many regulations, such as congestion charges, road tax, pollution tax, and so on. In addition, 

many technologies have been applied to enhance the performance of road networks. For 

example, inductive loops in a roadbed, video cameras, and bus detectors at traffic lights have all 

been used to create efficient traffic flows. Geographic Information Systems (GIS) have also 

been used within this context.  

Geographic information describes features and phenomena on the Earth’s surface by using their 

location in geographic space (x, y, z) and time (Goodchild et al., 1999). It is therefore not 

surprising that GIS have been applied widely in the area of road transport in order to represent 

transport activities, as they lend themselves to such descriptions (Goodchild, 2000). A road 

network and its facilities such as traffic signs, traffic lights, and bus stops can be conceptualised 

with objects1 (or geoobjects) in GIS and then can be better managed.  

Recently, with the advances made in real-time communications, what were previously just 

Information Technologies (IT) including GIS, which were applied in the field of road transport, 
                                                        
1 Objects (or geoobjects) and fields (or geofields) are widely accepted terms for geographic information. 
They are used to describe discrete entities and continuous processes, respectively (Goodchild et al., 2007). 
Objects treat identifiable and relevant entities with points, lines, and areas while fields deal with spatial 
distribution such as elevation, rainfall, and temperature (Worboys and Duckham, 2004). 
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have started evolving towards Information and Communication Technologies (ICT)2 under the 

label of Intelligent Transport Systems (ITS). ITS are advanced applications that aim to provide 

innovative services and enable various road users to be better informed and make safer use of 

transport networks (European Parliament and Council of the European Union, 2010). From the 

perspective of the use of ICT in ITS, this research explores how real-time geographic 

information can be used to support safety and mobility in an ITS environment in the near future.  

In the following section (Section 1.2), the definition of intelligence in the context of this 

research is presented. The importance of the communication component for advanced transport 

systems is discussed in Section 1.3. Section 1.4 gives an overview of context modelling and 

simulation-based approaches for vehicular communications. Then, Section 1.5 addresses the 

research aim, the research questions, and the research objectives, while the procedural 

framework and methodology are introduced in Section 1.6. Finally, the structure of this thesis is 

described in Section 1.7.  

 

1.2 Intelligent infrastructure and vehicles 

 

As this research studies the role of geographic information and communication technologies in 

an ITS environment, it is important to describe what is meant by an ITS environment. An ITS 

environment means an advanced form of a road environment, in which each element may play 

intelligent roles to enhance the road environment itself. Accordingly, this section outlines the 

intelligence aspect of three elements of road transport. 

Intelligence can be defined literally as the capacity to understand semantics in order to reason, 

make decisions, and solve problems using knowledge and experience (Gottfredson, 1997). 

Since road transport comprises three elements (i.e. infrastructure, vehicles, and operation), each 

element has to be considered separately in order to build an intelligent road transport system. 

Specifically, infrastructure refers to fixed structures, such as roadways and road facilities, while 

vehicles are conveyances to move people and lifted goods on roadways. The infrastructure and 

vehicles are operated by humans (e.g. vehicle owners/drivers or members of operating 

organisations). If the vehicles and infrastructure are intelligent, mutual interaction among 

vehicles, infrastructure, and humans can occur, which can improve traffic environments. The 

                                                        
2 Information and Communication Technologies (ICT) have been often used as an extended concept of 
Information Technology to emphasise on the role of real-time communications (Stevenson et al., 1997). 



 23 

term ‘intelligent’ for intelligent vehicles and infrastructure can be explained from two aspects: 

artificial intelligence and ambient intelligence.  

On the one hand, intelligent vehicles and infrastructure are instances of artificial intelligence (or 

intelligent agents) in the road transport domain. An intelligent agent is a flexible and 

autonomous computational entity that can communicate with other agents in a dynamic and 

unpredictable environment (Luck et al., 2005). There are many computational entities and 

sensors which can be referred to as finite state machines or finite state automata. They have 

input, output, storage, and control units, but they are limited by the fact that their control unit 

can only change their internal states with already-fixed logics (Linz, 2001). Intelligent agents 

differ from these computational entities as they are autonomous and have social ability. 

Intelligent agents can communicate and collaborate with each other to share some information 

and knowledge, so potentially, they can resolve undetermined situations.  

On the other hand, an ITS setting can be seen as an instance of ambient intelligence, since 

ambient intelligence can be characterised by context-awareness, ad hoc networks, and smart 

sensors (Strang and Linnhoff-Popien, 2004). An ITS setting is composed of intelligent vehicles 

and roadside facilities which share their traffic situations based on a vehicular network and 

location sensors such as Global Positioning System (GPS). An ITS setting, as an instance of 

ambient intelligence, can make the traffic environment responsive, proactive, and sensible by 

bringing situational information into traffic scenes so that it deals with the needs and desires of 

intelligent vehicles and the road infrastructure. By connecting vehicles and road facilities, a 

transport environment can be a rich network in which sensing, computing, and processing 

powers are embedded.  

Therefore, intelligent vehicles and infrastructure can be described as instances of intelligent 

agents in an ambient intelligence for the road transport domain. At present, drivers gather traffic 

information mostly from their senses and depend on their audio-visual interpretation of the 

information. They can also get some general traffic information from the radio or a traffic route 

map with voice assistance from a navigation system. Traditionally, the infrastructure has been 

regarded simply as the traffic environment for moving vehicles, which are just carrying people 

and goods. However, currently, intelligent vehicles and infrastructure already started to assist 

drivers by acting as intelligent agents with full or partial powers of computing, sensing, and 

communicating to improve the safety, mobility, and productivity of transport (Maccubbin et al., 

2008; Ohmori et al., 2000). 
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As we have seen so far, intelligent vehicles and infrastructure may provide information and 

knowledge beyond drivers’ visibility so that the efficiency and safety of the whole transport 

system can be improved. Recently, the automotive industry, including traditional automakers 

and suppliers and high-tech companies such as Google, is developing sensor-based solutions to 

enable intelligent vehicles to monitor their surroundings and to identify appropriate navigation 

paths as well as obstacles and relevant signage in real-time (Silberg et al., 2012; Howard and 

Dai, 2014). Self-driving car3 technology represents these sensor-based solutions. As of 2013, 

four U.S. states (Nevada, Florida, California, and Michigan) and the District of Columbia have 

passed laws finitely permitting self-driving cars (Smith and Weiner, 2013). In parallel, 

connectivity-based solutions are also being developed to implement connected vehicles via 

vehicular communications (Silberg et al., 2012; Howard and Dai, 2014). However, as vehicular 

communications are based on the responses of neighbouring vehicles and road infrastructure, 

this is relatively expensive and will take time to implement.  

Yet, both solutions and their convergence will be required to ‘facilitate adequate mimicking of 

human senses’, and enable intelligent vehicles to compensate for human error and slow reaction 

times (Silberg et al., 2012). In particular, for intelligent vehicle agents’ social ability to share 

traffic information and knowledge in real-time, the power of communication is essential. The 

next section outlines how advances in communication technologies influence the applications in 

transport systems. 

 

1.3 Vehicular communication technologies 

 

When data is processed, organised, structured or presented to answer a specific question in a 

given context, it is called information. Until recently, the usages of information have been 

limited to providing services and applications only for human agents (e.g. public usage of public 

officers and individual usage of individual drivers). However, in an ITS environment, 

geographic information can assist intelligent vehicles and infrastructure directly. The usage of 

information (e.g. geographic information, traffic information) can be extended further by 

supporting the situation awareness of intelligent vehicles and infrastructure. 

                                                        
3 It is also known as a robotic car, a driverless car, an intelligent car, or an autonomous car. 
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One approach that can improve the complex interactions of road transport systems is to 

intervene in transport systems directly by implementing situation-aware vehicles and 

infrastructure that contain advanced information, communication, and sensing technologies. In 

this way, vehicles and infrastructure are ‘keeping track of what is going on around’ them, are 

‘tightly coupled to the dynamics of the environment’, and are enabled to understand and resolve 

various traffic situations autonomously as participants in a complex, dynamic transport system 

(Moray, 2004, p.4).  

From this perspective (i.e. intelligent usage of intelligent vehicles and infrastructure), 

communication and information are tightly coupled to support the interactions of vehicles and 

roadside facilities. According to the U.S. Intelligent Transport Systems Joint Program Office 

(Sill et al., 2011), the ITS architecture of the United States can be categorised into four classes: 

traveller, centre, vehicles, and infrastructure (Figure 1.1). Europe also has a similar ITS 

architecture with four classes: handheld system, central system, vehicle system, and roadside 

system (Figure 1.2).  

 

 
Figure 1.1 - The national ITS architecture of the United States (taken from www.its.dot.gov/arch/) 
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Figure 1.2 - Top-level architecture of Co-operative Vehicles-Infrastructure Systems (Kompfner, 

2010) 

 

Theoretically, when complete knowledge of a road network’s status is gained, we can find 

optimal solutions for our purposes (Winter and Nittel, 2006). However, it is impossible to get 

complete knowledge because a transport system is dynamic and changeable in real time. 

Therefore, the central communications of transport centres just provide general information to 

vehicles on a road network. Traffic control centres broadcast car accidents and congestions on 

main roads using radio and digital signboards, but still, general information is not enough to 

resolve local traffic situations containing urgent vehicle movements. If there is a local problem 

that needs to be solved, local ad hoc communications among vehicles and infrastructure can be 

a useful and efficient solution.  

As mentioned in Figure 1.1 and Figure 1.2, in an ITS setting, there are four main classes: 

Vehicle class (VE), Infrastructure class (IN), Centre class (CE), and Traveller class (TR). 

Among these classes, 16 types of interactions (10 types of two-way interactions) can be 

provided (Table 1.1) For vehicles (i.e. motorised road users, mainly cars) as the main users of 

the road transport, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications 

(shaded parts of Table 1.1) can be of great importance in local situations.   
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Table 1.1 - Interaction types among four main classes of ITS architecture  

Interactions among 
the four classes VEa INa CEa TRa 

VEb VEa$VEb INa!VEb CEa!VEb TRa!VEb 

INb VEa!INb INa $INb CEa!INb TRa!INb 

CEb VEa!CEb INa!CEb CEa $CEb TRa!CEb 

TRb VEa!TRb INa!TRb CEa!TRb TRa $TRb 

 

There are comfort/entertainment applications, but mostly applications of V2V and V2I 

communication are related to traffic safety and efficiency, such as intersection collision 

avoidance, approaching emergency vehicle warning, emergency vehicle signal pre-emption, 

work zone warning, etc. (Al-Sultan et al., 2014). These Vehicular Ad-hoc Network (VANET) 

applications can be categorised by communication types and purposes (Table 1.2). 

 

Table 1.2 – Applications of V2V and V2I communications (Gáspár et al., 2014) 

Purpose V2V use cases V2I use cases 

Traffic 
safety 

• Warnings on entering intersections 
• Hazardous location warning: obstacle 

discovery, reporting accidents 
• Sudden stop warnings: forward collision 

warning, pre-crash sensing or warning 
• Lane change/keeping warnings/assistance 
• Privileging ambulances, fire trucks, and 

police cars 

• Warning for hazardous situations (e.g. 
congestions, accidents, obstacles etc.) 

• Merging assistance 
• Intersection safety 
• Speed management 
• Rail crossing operations 
• Priority assignment for emergency 

vehicles 

Traffic 
efficiency 

• Enhanced route guidance and navigation 
• Intelligent intersections: adaptable traffic 

lights, automated traffic intersection 
control, green light optimal speed advisory 

• Merging assistance: enters an on-ramp to a 
limited access roadway (it is also a safety 
application) 

• Variable speed limits 

• Traffic jam notification 
• Prior recognition of potential traffic 

jams 
• Dynamic traffic light control 
• Dynamic traffic control 
• Connected navigation 

 

The Dedicated Short Range Communication (DSRC) is a standard that is designed specifically 

to support short-range V2V and V2I communications between fast moving vehicles and the 

infrastructure (Fernandes and Nunes, 2007). Of course, other wireless communications such as 

Long Term Evolution (LTE) can be considered as an additional physical layer to implement an 

ITS environment, but DSRC is a necessary and not replaceable physical layer of VANET for 
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time-sensitive and safety-critical applications (Mlinarsky and Onishi, 2012; Pinyon Labs/Noblis, 

Inc., 2010). A more detailed description of DSRC can be found in Appendix A. 

This section has demonstrated the importance of communication technologies in an ITS 

environment. The four main classes of ITS architecture are interconnected with various 

communication technologies, which allow subsystems of each class to exchange information 

with each other. Therefore, the use of geographic information in an ITS environment requires 

also the use of communication technologies, and the contents and data formats of 

spatiotemporal information can be dependent on communication technologies. The next two 

sections cover new context models and simulation-based approaches that have originated with 

the advent of ad hoc vehicular communication technology.  

 

1.4 Context modelling and simulation for vehicular communications 

 

Previous DSRC-related research has emphasised the physical capability and capacity of DSRC 

by focusing on the improvement of the lower layers4 of the communication (Jiang et al., 2006; 

Xu et al., 2004; Yin et al., 2004), but the equally important development of suitable and 

efficient semantic contents for vehicular communications has received notably less attention 

(Eigner and Lutz, 2008). Recently, in the VANET research community, there are emerging 

trends of Internet of vehicles (Bonomi et al., 2012; Gerla et al., 2014; Yang et al., 2014) and 

vehicular cloud computing (Hussain et al., 2012, 2015, Olariu et al., 2011, 2013). With these 

advanced concepts, vehicles are not only communication resources but also computing 

resources.  

An ITS setting can also be seen as the vehicular version of a ubiquitous computing 5 

environment because it is composed of intelligent vehicles and roadside facilities which share 

                                                        
4 The Open Systems Interconnection (OSI) Reference Model represents the flow of data in a network, 
from the physical connections (physical layer) up to the user’s applications (application layer) (Computer 
Desktop Encyclopedia, 2011). When two computing devices communicate on a network, the software at 
each layer on one device assumes it is communicating with the same layer on the other device. The OSI 
Reference Model includes seven layers: 1) physical layer, 2) data-link layer, 3) network layer, 4) transport 
layer, 5) session layer, 6) presentation layer, and 7) application layer. The upper layers (Layers 7 through 
to 4) are more geared to the type of application than the lower layers (Layers 3 through to 1), which are 
designed to move packets from the sending station to the receiving station. 
5 Ubiquitous computing, which is also called ambient intelligence or pervasive computing, is a trend to 
make an environment responsive, proactive and sensible by bringing information into our physical world 
so that it deals with the needs and desires of users (The European Commission’s Information Society 
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their traffic situations based on vehicular communications and location sensors. For the 

productive use of these resources, vehicles’ context-awareness (i.e. context acquisition, context 

modelling, context reasoning, and context dissemination) is essential to adjust dynamically to 

the current context (Nassar et al., 2012). A semantic message model is needed for intelligent 

vehicles to share situational information, understand the context of the messages, and take 

action in a way that resolves a situation. It is because contexts are mainly related to spatial 

relations, such as where you are, who you are with, and which object or resource you can use 

(Dey, 2001). For implementing vehicles’ context-awareness, an ontological context model is 

one relevant candidate that is compatible with ad hoc networks and smart sensors.  

Strang and Linnhoff-Popien (2004) and Perera et al. (2014) compared existing context 

modelling techniques (i.e. key-value modelling, mark-up scheme modelling, graphical 

modelling, object oriented modelling, logic based modelling, and ontology based modelling) at 

a general level. Then, they evaluated that the ontology-based context model is the most efficient 

format to manage context, as ontologies ‘offer an expressive language to represent the 

relationships and context’, ‘share a common understanding of the structure of information 

among people or software agents’. Ontologies also ‘provide comprehensive reasoning 

mechanisms’, ‘allow knowledge sharing by decoupling the knowledge from the application and 

program code’, and ‘integrate the knowledge on different domains into applications, which are 

not even known at the design time’ (Appendix B).  

In the VANET research community, Nassar et al. (2012) preferred ontology-based models for 

the context representation and exchange between vehicles. Ebers et al. (2013) and Nundloll et al. 

(2011) also adopted ontological approaches to provide effective ‘on-the-fly’ interoperability by 

bridging (classifying, matching, and mapping) semantic differences of the VANET protocols. 

There have been some studies using ontologies for traffic context models that are compatible 

with vehicular communications (Eigner and Lutz, 2008; Eigner and Mair, 2009; Barrachina et 

al., 2012; Section 2.4.2.3). However, they have not addressed how an ontology model can 

support vehicles’ processing and reactions through ontology querying and reasoning. 

Apart from the context/messaging model of vehicular communication, the performance 

evaluation of vehicular communications is another crucial part of implementing ITS 

                                                                                                                                                                  
Technologies Advisory Group, 2005). The Ubiquitous computing paradigm can be characterised by 
context-awareness, ad hoc networks, and smart sensors (Strang and Linnhoff-Popien, 2004). Through the 
connecting of objects, our environment can be a rich network in which sensing, computing, and 
processing power are embedded (Sharpe and Hodgson, 2006).  
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environments. Simulation-based approaches have been used because they take advantage of 

field operational tests (i.e. high degree of realism) and analytical evaluation (closed analytic 

description for broad conclusions) while avoiding potential dangers/costs of field operational 

tests and oversimplification of analytical evaluation (Dressler and Sommer, 2015). There are 

various levels of vehicular mobility modelling in traffic simulation, but in VANET simulation, 

each vehicle can be seen as a communication subject and a vehicle node at the same time. 

Therefore, the mobility model of a VANET simulation is designed to provide a general mobility 

pattern of vehicular nodes rather than a traffic analysis (Härri et al., 2007; Khairnar and 

Pradhan, 2010), and the level of detail of the mobility model depends on the purpose of the 

simulation (Section 3.4).  

 

1.5 Research aim, research questions, and objectives 

 

To support vehicles’ interaction in local situations, this research adopts DSRC as the physical 

foundation of vehicular communication. To fill the gap of knowledge in ontology querying and 

reasoning in such an environment, this research aims to propose a geosemantic ontology model 

representing communication contents and examine whether it supports vehicles’ action/reaction 

process in local situations. In order to narrow the aspects of the ontology model and its 

examination, four partial questions were formulated, and the research objectives pursued in 

order to answer the questions, which are as listed below: 

• Which area of ITS applications will benefit most from intelligent vehicles and their 

short-range communications? Which traffic situations should be modelled to generate 

this benefit?  

There are many well-defined subareas (e.g. traffic management, transportation management, 

emergency management, vehicle safety systems, etc.) and their subservices already in ITS. 

Accordingly, there is a need to estimate in which area spatiotemporal information can 

support vehicles’ communications and collaborations better. For a geosemantic message 

model for intelligent vehicles, this research explores service areas of ITS applications to 

find appropriate subservice area, and based on that traffic situations emphasising the 

benefits of vehicular communications are described. 
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• What are the core contents of the vehicular communications in the traffic situations? 

If there is a local situation and a communicative vehicle (or infrastructure) is responsible 

for or deeply involved with the situation, the vehicle can generate and send a message to 

neighbour vehicles for individual and overall safety and efficiency. In this case, the 

communication message may reflect the perspective of the communication sender (i.e. 

communicative vehicle or infrastructure). Even though individualised information cannot 

describe all aspects of a situation as it just delivers partial information about the situation, it 

can be accepted on condition that the neighbour vehicles can understand what to take 

immediate action. This research formulates a set of such descriptions of a situation as 

communication contents. 

• How can the contents of the vehicular communications be linked effectively with 

intelligent vehicles’ actions? 

Communication contents can be inputs that provide a basis for intelligent vehicles to 

understand a situation, so that communication contents can be tightly coupled to the 

vehicles’ internal states (e.g. current location, speed, etc.). Communication contents and 

vehicles’ states and behaviours represent the data layer and the application layer of 

intelligent vehicles, respectively. To support vehicles’ behaviours and decision-making 

process, this research needs to develop a vehicle agent model showing the conceptual links 

between communication contents and vehicles’ internal states and behaviours.  

• If communicative6 vehicles have an influence over the whole system, how can the 

impact be measured?  

Even though this research deals with communicative vehicles, hybrid situations, whereby 

communicative vehicles and non-communicative vehicles coexist, have to be considered. 

This is because these situations are inevitable during the transition towards an ITS 

environment. With various hybrid situations that have different numbers of intelligent 

vehicles, the degree of vehicular intelligence and associated benefits can be measured. To 

provide such situations, this research needs to develop a simulation platform to examine 

vehicular communications in various hybrid situations.  

                                                        
6 A communicative vehicle is a car that has a vehicular communication device, so that it can communicate 
with other communicative vehicles and road facilities to send and receive information about a traffic 
situation. 
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To answer the research questions and achieve the research objectives, this research used 

ontological and agent-based approaches for its overall methodological framework. The next 

section will describe the research procedure and methodology.  

 

1.6 Methodology 

 

As mentioned, the overall aim of this research is ‘to propose a geosemantic ontology model 

representing communication contents and examine whether it supports vehicles’ action/reaction 

process in local situations’. If vehicles (and road facilities) share situational information in 

advance through ad hoc short-range communications, this may facilitate a better understanding 

and autonomous conflict resolution of various traffic situations. In particular, from the 

perspective of the convergence of ICT in road transport, the emphasis is on geosemantic 

contexts and communication contents for vehicles and road facilities.  

The research methodology was designed to achieve this research aim by answering the research 

questions. The three stages of the methodological framework of the thesis, namely, constructing 

scenarios (Chapter 4), ontology modelling (Chapter 5), and agent simulation (Chapter 6), are 

shown in Figure 1.3. 

 

 
Figure 1.3 - Methodological framework of this research  
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Stage 1: Selecting a target application area and constructing scenarios that represent the 

target application area 

 

Generally, an overall system can be seen as multiple suborganisations in agent development, 

and each agent plays several roles autonomously to achieve the subgoals of the overall system 

(Zambonelli et al., 2003). So, organisational structures and rules are used to capture and 

categorise agents’ roles/subgoals and their interactions. In this thesis, the organisational concept 

is adopted to specify the scope of the implementation of this research by choosing a 

suborganisation, in which short-range communication technology may be useful to resolve a 

situation. In an emergency, each agent may accept that the most important temporary goal is to 

assist and resolve the emergency. Therefore, during the emergency situation, each agent’s goal 

can be simplified, and every participant vehicle in the situation can be considered as an agent in 

a suborganisation. In this way, organisational rules can represent each agent’s goals in the 

situation. A list of ITS user services is used to find a target application area (suborganisation), 

and after the target service is selected two scenarios are developed to extract basic declarations 

and rules for the situations. The scenarios show a detailed depiction of reasonable situations, 

objects and their relations/interactions, which could be used for the development and 

implementation in the next stages. Detailed descriptions about choosing a target application area 

and constructing scenarios can be found in Chapter 4.  

 

Stage 2: Development of an ontology model to assist vehicles’ context awareness 

 

This research suggests a geospatial ontology to share geosemantic data/information effectively. 

Generally in top-level ontologies, time-dependent entities are described as events or processes 

rather than as objects. Moving vehicles in a road network can be modelled as dynamic 

geoobjects (Goodchild et al., 2007), or dynamic collectives that can also be seen as dual-aspect 

phenomena that may be presented as either objects or events depending on different viewpoints 

(Galton, 2005). In this research, vehicles (and road facilities) themselves are seen as objects (i.e. 

individual elements) as the main bodies of communications and interactions. Consequently, 

short-range communications and interactions among vehicles (and road facilities) are treated as 

major events (i.e. the collective actions of groups of individual elements).  

Based on several scenarios of communicative vehicles in local situations, an ontology model is 

developed to support semantic contents for vehicular communications and vehicles’ context 

awareness. Vehicles, a road network, road facilities, and their spatiotemporal relations as 
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described in the scenarios are transformed into the classes and objects of an ontology model, 

along with their properties and relations. Organisational rules are also expressed as ontology 

rules in the model. In this way, such a geospatial ontology helps make the vehicles and road 

infrastructure more context-aware and collaborative. It is fair to say that a geospatial ontology 

supports a suborganisation if several scenarios of the suborganisation can be redescribed using 

the ontology model. In an ontology model, any component of a scenario can be expressed in 

another way using a subset (vehicle instances, road facility instances, and their relations) of the 

ontology model.  

Since this research deals with short-range vehicular communications in an ITS setting, a domain 

ontology for ITS and a task ontology for vehicular communications were developed. Both 

ontologies follow the general concepts of the Descriptive Ontology for Linguistic and Cognitive 

Engineering (DOLCE), which was chosen as the top-level ontology, even though some 

conceptual amendments are necessary for intelligent vehicle agents, as is further explained in 

Section 2.4.3. Then, an application ontology is developed to describe the concepts in the 

scenarios, and some classes of the domain ontology and the task ontology are merged and 

simplified. To build ontologies, Web Ontology Language (OWL) is used as the ontological 

language, SPARQL Protocol and RDF Query Language (SPARQL) is used as the query 

language, and SPARQL Inference Notation (SPIN) is used as the ontology rule language. The 

application ontology is validated by instantiating vehicles and their semantic relations to fulfil 

given tasks. Chapter 5 presents the process of the ontology modelling, from developing a 

domain ontology and a task ontology to developing and validating an application ontology.  

 

Stage 3: Agent modelling and simulation to examine the effects of communicative vehicles 

 

An ontology model developed in the second stage contains classes, objects, and properties 

(including object properties, otherwise known as binary relations) to describe local emergency 

situations. It also includes ontology functions and rules that may be useful to resolve the 

situations. In this stage, an agent-based modelling and simulation framework is implemented to 

support vehicular communication sharing context information and their spatiotemporal relations 

to support knowledge sharing among intelligent vehicles and road infrastructure. In this research, 

the ontology-based messaging model is not tightly integrated to the simulation framework. 

Instead, a vehicular communication class is provided as a replication of the ontology model to 

be linked with intelligent vehicle agents’ internal states and behaviours, because agents are 

simulated, not physically implemented.  
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An agent model is developed to describe the dynamic situations of two scenarios, and then 

communications and interactions among vehicle agents in local situations are simulated. The 

agent simulations are performed to check if there are any positive effects of the DSRC-equipped 

vehicles in several hybrid situations, where each simulation has a different percentage of 

DSRC-equipped vehicles. In contrast with the fact that altering existing vehicles and 

infrastructure to provide such situations in a physical way is prohibitively expensive and 

difficult to achieve, a simulation platform that can provide a virtual experiment environment to 

test futuristic road situations is preferred. 

To build the agent model, some important variables related to vehicle agents in the road 

environment are presented. Road network geometry and route information are used to build the 

virtual road environment, and some traffic statistics are used to set individual vehicles’ internal 

states randomly. Action rules for intelligent vehicles in emergency situations are also 

formulated as vehicles’ behaviours. Then, a number of simulations are carried out with different 

portions of communicative vehicles for each scenario to examine the effects of communicative 

vehicles in the situations. This research skips the need for the analysis of parameter sensitivity 

because the simulations will be executed with only one variable parameter, which is the portion 

of the communicative vehicles. Chapter 6 describes the whole process of the agent modelling 

and simulation to examine the ontology model in situations of the two scenarios. 

 

1.7 Thesis structure 

 

This chapter introduced the challenges of communication-based spatiotemporal information of 

ITS in order to resolve local traffic situations. Focusing on the semantic contents of short-range 

vehicular communication technology, the research questions and the methodological framework 

have also been presented. To answer the research question and cover the research objectives, the 

rest of the thesis is structured as follows.  

Chapter 2 covers ontology standards and ontological research in related domains. It gives a 

comprehensive description of ontology and introduces the extant ontology languages to 

investigate the potential of ontology for sharing information and knowledge. Then, it presents 

an overview of existing top-level ontologies and three ITS-related domain ontologies.  

Chapter 3 reviews the methodologies and platforms used to develop agent systems as well as 

agent-oriented research in ITS-related domains. From a computer science perspective, it reviews 
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agent-oriented methodologies and agent modelling and simulation platforms for implementing 

intelligent vehicles and their communications. It also reviews existing agent-oriented research in 

three different perspectives of ITS-related domains and mobility models for VANET 

simulations. 

In Chapter 4, a target application area is selected from the ITS services, and two motivating 

scenarios are developed to describe some situations of the target application area. It also 

outlines spatiotemporal relations and linear referencing to support effective traffic interactions 

in the situations of the scenarios.  

Chapter 5 proposes a geospatial ontological framework with a domain ontology, a task ontology, 

and an application ontology to support the aforementioned scenarios. For the evaluation of the 

application ontology, sequential tasks representing the scenarios are instantiated by using the 

application ontology to show how the ontology can provide support to resolve the situational 

issues of the scenarios. 

Chapter 6 describes agent simulations to provide dynamic environments of the scenarios. Since 

the spatiotemporal relationships of vehicles and the road infrastructure depend on the location of 

the vehicles at a particular time, they may change when vehicles move from one place to 

another. Agent simulations provide dynamic environments, which represent the emergency 

situations of the scenarios with different parameters. In the simulation environment, the effects 

of vehicular communications on the traffic flow in an emergency situation are measured. 

Chapter 7 provides a general discussion about the research results, namely, the scenarios, the 

ontology model, and the simulation results. It discusses organisational concepts for the scenario 

development, ontology modelling for sharing spatiotemporally dynamic situations, and the 

suitability of the agent simulation for examining the local vehicular communication and its 

contents. 

Finally, Chapter 8 concludes this thesis by reconsidering the research questions and outcomes. 

The research contributions and the limitations of the research outcomes are discussed, and the 

suggestions for further research are provided.  
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2. Ontology in Information Science  

2.1 Introduction  

 

This research explores how vehicles and road facilities can collaborate with each other to 

resolve local situations by acting as intelligent agents. Communication, interaction, and 

collaboration between intelligent actors thus sit at the core of the research problem. To 

implement intelligent vehicles and their communications, the vehicles need to have three layers 

in terms of implementation. The first layer is the physical layer of the vehicular communication, 

as outlined in Section 1.4, which is outside the scope of this research. Here, the focus will be on 

the development of an ontology model to describe the spatiotemporal data framework as the 

data layer of vehicular communication to support local traffic situations, especially for safety-

critical applications. 

In this chapter, ontological approaches are explored to provide a context/data model for the 

semantic communication contents of intelligent vehicles. Section 2.2 emphasises the value of an 

ontological model comparing to other data models. Section 2.3 describes the definition of 

ontology in information science and reviews ontology standards. Section 2.4 reviews top-level 

ontologies and ontological research in ITS-related domains. Top-level ontologies and domain 

ontologies are reviewed to provide a foundation for the modelling basis and semantic 

possibilities of this research.  

 

2.2 Why ontology?  

 

Section 1.3 dealt with the physical layer of vehicular communication and described how short-

range communication standards for the vehicular environment make local communications 

possible in various traffic situations. As emphasised in Section 1.4, another important facet that 

facilitates the use of intelligent vehicles and infrastructure is context awareness. Ontology-based 

modelling is preferred for context modelling in an ITS environment, which is a vehicular 

version of a ubiquitous computing environment. Vehicular communications provide media for 

context sharing (i.e. context acquisition, context modelling, context reasoning, and context 

dissemination). This section particularly draws a comparison between ontological models and 

other data transfer/storage models. 
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On the one hand, there are popular data transfer/exchange formats such as Extensible Markup 

Language (XML) and JavaScript Object Notation (JSON). With a normal programming 

language, an XML/JSON document could be processed efficiently for an application. However, 

in this approach, the data exchange format should be application-dependent, and there is no 

standard for structures. An ITS environment, in which various traffic subsystems and 

communication protocols exist, may involve many levels of information. Data in XML can be 

represented in different ways so that an application needs the document type definition (DTD) 

or the schema to understand the data. However, when there is a need to extend an XML/JSON 

document that is defined by a DTD or schema, all the applications using the DTD or schema 

have to be changed, so it is not extensible (Sequeda, 2012). By contrast, in ontology, using 

triples (subjects-predicates-objects) is the only standardised way to represent data, and a triple 

already includes schema itself.  

On the other hand, there has been a huge change in data storage and management with the 

advent of the cloud, mobile, social media, and Internet of Things (IoT) applications. There has 

been a need to develop a new mechanism for storage and retrieval of the non-relational (semi- 

and unstructured) and hybrid datasets to support a large number of globally distributed 

concurrent users in real-time and to rapidly adapt to changing requirements. Under these 

circumstances, leading Internet companies including Google, Amazon, Facebook, Twitter, and 

Linkedin have established a very flexible database technology called ‘NoSQL’ to overcome the 

limitations of the tabular relations used in Relational DataBase Management Systems (RDBMS) 

and support big data and real-time web applications (McCreary and Kelly, 2013). 

There are four types of NoSQL databases, which are key-value store, document store, column 

store, and graph database. A key-value store (e.g. DyanmoDB, BerkeleyDB) is used for storing 

simple schema-less data, while a document database (e.g. MongoDB, CouchDB) stores, 

retrieves, and manages document-oriented data/information in some standard encodings (e.g. 

XML, JSON). A column store (e.g. Cassandra, BigTable) treats sections of columns of data as 

data tables to provide high performance in a highly scalable architecture, while a graph database 

(e.g. Neto4j, InfoGrid) is designed for storing data and their relationships. Social relations, 

public transport links, and road network topologies can be well represented as graphs.  

Triplestore is a type of decentralised directed labelled graph database for the storage and 

retrieval of triples through semantic queries and ontology-based inference, and also known as 

Resource Description Framework (RDF) database (see Section 2.3.2 for the details). A 

triplestore provides a solid standardised query language (performing filtering on values and 
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grouping as well as graph traversal), ontology-based inference (capturing complex logic), and 

well-defined universal interchange formats, which graph databases are not able to provide 

(Ontotext, 2014). The central concepts of triplestores have the same foundation with the 

Semantic Web, which is an advanced version of the current Web where intelligent software 

agents can retrieve and manipulate information so that computers can deliver the users’ 

requirements more accurately (Berners-Lee et al., 2001). 

To sum up, under an ITS environment, data/information can be considered as a partial 

data/information of the whole situation of the environment, and a distributed and extensible data 

model is necessary to serve as a messaging model as well as a context model. The triple-based 

graph representation of an ontology model has potential to deal with various situations, which 

are beyond the intended design, by providing flexible descriptions, querying, and reasoning. 

 

2.3 Ontology standards  

 

In the transport domain, a data/message model for vehicular communication should be simple 

and small in terms of the communication device and information transmission. It has to express 

relations among vehicles and the road infrastructure to describe a situation. In addition, 

messages transmitted from different vehicles and road infrastructure can be aggregated to 

describe a shared situation. Since participating vehicles are regarded as the nodes of a vehicular 

network, the data/message model has to be compatible with a vehicular network as well. In 

short, the data/message model for vehicular communication needs to express attribute-value 

pairs and structural relationships, but also be compatible with a network structure.  

The transition of the Web environment towards Semantic Web can be a significant reference in 

terms of the data model and network structure even though it is relatively static compared to the 

vehicular environment. Under the concept of the Semantic Web, current Web documents will be 

converted into a web of data/resource in a more descriptive and structured form. Ontologies for 

the Semantic Web are good examples of such data models providing expressiveness and 

simplicity as well as network compatibility and scalability (Bergman, 2009). 

Therefore, this research adopts an ontological approach both for context modelling and semantic 

contents for vehicular communications to deal with communication-based spatiotemporal 

information in an ITS setting. Since an ontology may describe an abstract model or shared 
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knowledge with a machine-readable format, it can express spatiotemporal contexts containing 

vehicles on the road and traffic events, and their spatiotemporal relations. It can also provide 

reasoning power based on the open-world assumption so that it may be useful to handle partial 

information and knowledge of traffic situations.  

To develop an ontology, it is necessary to establish how information and knowledge can be 

modelled in a machine readable format. This section presents the definition of ontology and 

how it can be used for describing concepts in a format. In the following sections, the definition 

and history of ontology are presented. Then, the characteristics and potentials of extant ontology 

languages, ontology query languages, and ontology rule languages for sharing and extracting 

information and knowledge in a domain are explored. Finally, as a conclusion of this survey for 

ontology, specific ontology language and ontology query language are chosen for this research 

to handle situational information in an ITS setting.  

 

2.3.1 Definition of ontology 

 

The ancient Greeks were concerned with the nature of being, existence, or reality as a way of 

understanding the world or some part of it. An ontology is a catalogue of kinds of being and 

their relations of dependency as well as their conditions of existence (Marshall, 1998). Ontology 

was initiated as an explicit part of philosophy and is the study of all things which exist and of 

categories of things that exist or may exist (Sowa, 2000). On the other hand, the ontology of a 

certain domain is about vocabularies, terms, and concepts in that domain, as well as their 

classification, taxonomy, relationships, and domain axioms (Gasevic et al., 2006). 

The term ‘ontology’ was taken from philosophy and began being used by artificial intelligence 

researchers in the 1980s. For terminological clarification of the term ‘ontology’, Guarino and 

Giaretta (1995) proposed using ‘Ontology’ with an upper-case ‘O’ to refer to a branch of 

philosophy and a theory of the nature of being or existence, and using ‘ontology’ with a lower-

case ‘o’ to represent a logical theory relating to the conceptualisation used by researchers in 

computer and information science and its various domains. 

In computer and information science, an ontology is ‘an explicit specification of a 

conceptualisation’ (Gruber, 1993, p.199). Gruber’s definition of an ontology is the most quoted 

and reused by ontology researchers (Table 2.1). Studer et al. (1998, p.184) merged Gruber’s and 

Borst’s definition and proposed a definition of an ontology as ‘a formal, explicit specification of 
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a shared conceptualisation’ of a domain (Gruber, 1993; Borst, 1997; Gómez-Pérez et al., 2004). 

Recently, Horrocks (2008, p.61) defined an ontology as ‘a model of (some aspect of) the world 

(domain)’ that introduces a vocabulary (of concepts) relevant to a domain and specifies the 

meaning (semantics) of the terms contained in this vocabulary using properties/relations (e.g. is 

a, is part of) based on a suitable logic (Baader et al., 2009; Horrocks, 2009).  

 

Table 2.1 - Definitions of an ontology (after Gómez-Pérez et al., 2004) 

Definition of an ontology Defined By 
An ontology defines the basic terms and relations 
comprising the vocabulary of a topic area as well as the 
rules for combining terms and relations to define 
extensions to the vocabulary. 

Neches et al., 1991 

An ontology is an explicit specification of a 
conceptualisation. Gruber, 1993 

An ontology is a logical theory which gives an explicit, 
partial account of a conceptualisation. Guarino & Giaretta, 1995 

An ontology provides the means for describing 
explicitly the conceptualisation behind the knowledge 
represented in a knowledge base. 

Bernaras et al., 1996 

Ontologies are defined as a formal specification of a 
shared conceptualisation. Borst, 1997 

An ontology is a hierarchically structured set of terms 
for describing a domain that can be used as a skeletal 
foundation for a knowledge base. 

Swartout et al., 1997 

An ontology is a set of logical axioms designed to 
account for the intended meaning of a vocabulary. Guarino, 1998 

An ontology is a formal, explicit specification of a 
shared conceptualisation. Studer et al., 1998 

An ontology may take a variety of forms, but it will 
necessarily include a vocabulary of terms and some 
specification of their meaning. 

Jasper and Uschold, 1999 

An ontology as ‘a model of (some aspect of) the world 
(domain)’ that introduces a vocabulary (of concepts) 
relevant to a domain and specifies the meaning 
(semantics) of the terms based on a suitable logic 

Horrocks, 2008 
Baader et al., 2009 
Horrocks, 2009 

 

For concepts, their relations, and constraints in a domain to be accepted by a group or a 

community that includes users and computers, an ontology has to be in a machine-interpretable 

format that is explicitly defined by a specific abstract model of shared and consensual 

knowledge and formal representation (Studer et al., 1998). Therefore, an ontology can refer to 

and identify a certain phenomenon, topic, or subject area in the world through the representation 
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of classes, properties, axioms, and instances, as highlighted in the following list (Agarwal, 2005; 

Genesereth and Nilsson, 1987; Gruber, 2009).  

• Class: A class defines a group of objects that have the same properties. Classes can 

have hierarchical relations as a super class and subclasses. Terms or words can be used 

for the name of the class, since they can represent a concept for the class, e.g. road, 

traffic light, traffic sign. 

• Property: Properties can describe the status or characteristics of a class as well as the 

relationships between classes. A binary relation between two classes represents their 

interactions, e.g. speed limit of a road. 

• Axiom: Axioms are defined as restrictions or characteristics of properties which 

specify the characteristics of classes either partially or fully. So, an axiom is always 

true in a domain, e.g. each traffic light controls vehicles on a road. 

• Instance: Instances refer to the objects of a domain that are individualised from classes, 

e.g. Gower Street. 

 

These four components represent concepts, their hierarchy, and their relations as well as the 

semantics of concepts and relations. In a physical space like a road network, they can be used to 

describe a traffic situation, which includes vehicles, the road itself, and the road’s facilities. A 

traffic situation can be expressed with reference to the four components above. Each element 

can be generated by sharing situational information from each vehicle’s perspective via 

vehicular communications. To share an ontology, the ontology and its components should be 

defined and formalised into a computer file. To find a proper way to store and process an 

ontology for describing traffic situations, we turn in the next section to explore ontology 

languages. 

 

2.3.2 Ontology languages 

 

As mentioned in the previous section, an ontology has to be formal, so the ontology 

specification must be ‘given in a language that comes with a formal syntax and semantics’ in 

order to make the ontology ‘machine executable and machine interpretable’ (Staab and Studer, 

2009, p.viii). With the four components of ontology (class, property, axiom, and instance), 

semantics in a domain can be encoded in an ontology language based on a syntactical form of a 

logic.  
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There are several ontology languages, such as Knowledge Interchange Format (KIF), Resource 

Description Framework (RDF), and Web Ontology Language (OWL) (Table 2.2). These 

ontology languages can be categorised by their base logic, which is either first-order logic or 

description logic. The detailed description about knowledge representation of first-order logic 

and description logic can be found in Appendix B.1. Compared to first-order logic, description 

logic has a low level of complexity, and its concept is similar to object-oriented modelling. In 

addition, an ontology language based on description logic provides well-defined semantics with 

formal properties as well as querying and reasoning algorithms (Horrocks, 2010). An ontology 

language based on such description logic can be a more suitable and convenient basis for 

knowledge representation of vehicular communications in the transport domain. The ontology 

model of this research should also be able to describe vehicles’ movements, relations, and 

decision-making procedure efficiently in order to support their intelligence. Therefore, this 

section focuses on ontology languages based on description logic.  

 

Table 2.2 - Two categories of ontology languages based on its base logic  

Structure Ontology language Description 

first-order logic 
(FOL) 

Knowledge 
Interchange Format 

(KIF) 

KIF was developed for the interchange of 
knowledge among different computer programs 
using declarative semantics. 

description 
logic (DL) 

Resource Description 
Framework (RDF) 
and RDF Schema 

(RDFS) 

RDF allows to exchange machine-understandable 
descriptions of resources on the Web using triple 
patterns. Resources and properties are defined in 
RDF Schema. 

Ontology Language 
(OWL) 

OWL can be used to make an application which can 
process Web contents by itself. It provides various 
vocabulary and formal semantics to develop self-
directed Web contents.  

 

In particular, RDF and OWL are reviewed in the following subsections; they are formal 

ontology languages of the Semantic Web for providing a flexible data model that is suited for 

specifying a schema and executing queries on an ad hoc basis and defining the meaning of data 

within the context of its interrelationships with other data. Even though Extensible Mark-up 

Language (XML) and XML Schema can be used for representing, storing, and querying data, it 

is fair to say that XML is designed for data serialisation rather than informational content. In 

this research, RDF and OWL can be applied to provide semantics for vehicular communications. 
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2.3.2.1 Resource Description Framework (RDF) and RDF Schema (RDFS)  

 

The RDF model is based on a simple graph to express triple relations using a triple statement 

consisting of a subject, a predicate, and an object (Hayes, 2004). To make a triple statement 

(subject-predicate-object), Universal Resource Identifiers7 (URIs), blank nodes, and literals can 

be used. However, a blank node can be a subject in a statement only after it has been mentioned 

as an object (e.g. _:a of Table 2.3), while a literal, such as a string or a number, can only be an 

object. In Table 2.3, this thesis is described using triples as an example, mentioning the author 

and publisher of this thesis. The first statement of this example comprised two URIs and one 

string, and it means that this thesis was created by me.  

 

Table 2.3 - An example of triples 

Subject Predicate Object 
URIref | nodeID URIref URIref | nodeID | literal 

<http://www.my/thesis/> <http://purl.org/dc/elements/1.1/creator> “Seong K. Choi” 
<http://www.my/thesis/> <http://purl.org/dc/elements/1.1/publisher> _:a 
_:a <http://purl.org/dc/elements/1.1/title> “UCL” 
_:a <http://purl.org/dc/elements/1.1/source> <http://www.ucl.ac.uk/> 

 

RDF is a flexible and extendable format to express information using triples (subject-predicate-

object) so that it can integrate distributed information which is expressed with various types 

(Klyne and Carroll, 2004). A set of RDF triples forms a RDF graph, and RDFS semantically 

extends RDF as RDF’s vocabulary description language to specify classes of resources and their 

properties, such as rdfs:Datatype, rdfs:range, rdfs:domain, rdfs:subClassOf, 

etc. (Brickley and Guha, 2004). Even though RDF represents the binary relations between two 

resources (a subject and an object) and RDF Schema (RDFS) can express hierarchy and 

inheritance for classes (rdfs:subClassOf) and properties (rdfs:subPropertyOf), 

there are still limitations to expressing detailed semantics such as equivalence between concepts, 

uniqueness and cardinality of properties, range restrictions, transitive property, etc. (Cardoso, 

2006).  

                                                        
7 The following definition of URIs was written by Connolly (2006) on http://www.w3.org/Addressing/: 
“Uniform Resource Identifiers (URIs) are short strings that identify resources in the Web: documents, 
images, downloadable files, services, electronic mailboxes, and other resources. They make resources 
available under a variety of naming schemes and access methods such as HTTP, FTP, and Internet mail 
addressable in the same simple way.” URIs may not request an actual Web page, whilst Uniform 
Resource Locators (URLs) do. 
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2.3.2.2 Web Ontology Language (OWL) 

 

As mentioned in the previous section, RDF and RDFS provide the basic elements of ontologies 

that can support only simple semantics for describing classes and properties. OWL was built on 

top of RDF/RDFS to cover their limitations and extend the vocabulary for cardinality 

constraints, richer property characteristics, etc. As a vocabulary extension of RDF and RDFS, 

OWL can express complex semantics by using classes, properties, relations, cardinality, etc. 

(Table 2.4).  

 

Table 2.4 - Comparison between RDF/RDFS and OWL (after McGuinness and Harmelen, 2004) 

Ontology RDF/RDFS OWL 

Basic 
Elements 

Resources 
Properties 

Classes 

Based on the basic elements of RDF; add 
more vocabulary for describing properties 
and classes 

Vocabulary 

type 
subClassOf 

subPropertyOf 
range 

domain 
label 

comment 

disjointWith 
complementOf 

sameAs 
equivalentClass 

Symmetric 
Transitive 
inverseOf 

allValuesFrom 
someValuesFrom 

minCardinality 
maxCardinality 

Expressivity 

More flexible (data relationships 
can be explored from all angles) 
More efficient (not linear like a 
traditional database, 
not hierarchical like XML) 

OWL vocabulary allows systems to express 
and make sense of first order logic for 
inferences 

Flavours RDF/RDFS 

• OWL1 Lite 
• OWL1 DL 
 
 
 
• OWL1 Full 

 
• OWL2 DL 

- OWL2 EL 
- OWL2 QL 
- OWL2 RL 

• OWL2 Full 
 

The current version of OWL is OWL 2, and it has three sublanguages (profiles), which are 

OWL 2 EL, OWL 2 QL, and OWL 2 RL (W3C OWL Working Group, 2009). Each 

sublanguage has different aspects of expressive power, which means a different structure of the 

ontologies and reasoning tasks for different application scenarios, like those below (Motik et al., 

2009). 
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• OWL 2 EL is particularly suitable for applications that need very large numbers of 

ontologies (classes and properties). OWL 2 EL provides expressive power for a large 

biomedical ontology. 

• OWL 2 QL is suitable for applications that have very large instance data and need lots 

of conjunctive queries using AND, OR, and NOT connectives. This profile is designed 

to store large data in a standard relational database system, and the database system 

rewrites an ontology query to an SQL query to get query answering. 

• OWL 2 RL is suitable for applications that require scalable reasoning and expressive 

power at the same time. It is compatible with large instance data in the form of RDF 

triples, and a subset of OWL 2 can be implemented using rule-based technologies. 

 

OWL 2 RL can be considered as suitable for this research because it allows RDF forms and 

rule-based technologies. Using OWL 2 RL profile, intelligent vehicles can have relative 

location information in an RDF form as a declarative data model of triples describing a situation. 

In addition, rule-based expressions can be shared to support vehicles’ action plans in specific 

situations. These two benefits of OWL 2 RL may represent a declarative approach and a 

procedural approach respectively, which are necessary to implement intelligent systems.  

 

2.3.3 Ontology query languages 

 

To query and process ontology models such as RDF and OWL, RDF Data Query Language 

(RDQL), SPARQL Protocol and RDF Query Language (SPARQL) are compared in this section.  

RDQL has a similar structure to SQL, so users can easily apply their SQL knowledge to 

ontology querying. There are several systems using RDQL such as Jena, RDFStore, Sesame, 

PHP XML Classes, 3Store, RAP-RDF API for PHP, Joseki RDF Server, etc. (Seaborne, 2004). 

However, RDQL does not support Schema (T-box) query and disjunction (OR) operations, so a 

query can only obtain instance-related results and cannot have OR operators (Table 2.5). 

SPARQL was developed to complement and extend RDQL, and it has also been an official 

recommendation from the World Wide Web Consortium (W3C) since January 2008. In contrast 

to RDQL, SPARQL also provides a bracelet ({}) for using a block of triple patterns (more than 

one triple pattern), and a single dot (.) divides the triple patterns in a bracelet. In this way, more 

complex expression is possible in a triple pattern.  
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Table 2.5 – Comparison between RDQL and SPARQL (Hutt, 2005)  

Advanced features RDQL SPARQL 
Value comparison and data type support yes yes 

Generalized path expressions yes yes 
Closure  

(results of any query operation are also graphs) no yes 

Optional values 
(similar to outer join of SQL) no yes 

Advanced set operations  
(union and disjunction of graph pattern) no yes 

 

SPARQL allows four kinds of query form, namely, SELECT, CONSTRUCT, DESCRIBE, and 

ASK (Harris and Seaborne, 2012). The SELECT statements return the results of matching 

variables from a query, and the CONSTRUCT statements return an RDF graph, which is a result 

of matching variables from a set of triple templates. The DESCRIBE forms return an RDF 

graph to describe resources, and the ASK statements return a boolean, which is true or false 

depending on the matching pattern. 

A SPARQL query is composed of a result specification, a dataset definition, and a restriction 

definition. The result specification specifies the contents of fields from a query result with a 

SELECT clause. In a SELECT clause, fields for the query result have to be provided as 

variables. The dataset definition part indicates paths for the graphs with a FROM clause or FROM 

NAMED clause. The restriction definition part defines matching patterns for resources, literals, 

and properties in triples with the WHERE clause. The basic pattern of a SPARQL query uses 

triple patterns that have the same variable in a WHERE clause.  

The following example represents a SPARQL query and its result from OWL data. In the data 

part, there is a class hierarchy. The Commercial_Vehicle class is a subclass of the 

Vehicle class, and the Vehicle class is a subclass of the Feature class. In addition, the 

data part includes an instance taxi1 of the Commercial_Vehicle class, as well as its 

properties and relations. It has current coordinates (longitude geo:long and latitude 

geo:lat) and is located on roadElement1. The relation between taxi1 and 

roadElement1 was built by an object property SpatialRelations:isLocatedOn. 

Some information and/or knowledge can be extracted from an OWL file. In this example, the 

query asked to find cars on roadElement1, and then the result showed the cars’ ID and 

coordinates.   
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OWL data: 
<rdf:RDF 
    xmlns="http://www.mydomain.com/my03#" 
    xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" 
  <owl:Ontology rdf:about=""> 
    <owl:imports rdf:resource= 
         "http://www.ordnancesurvey.co.uk/…/v0.2/SpatialRelations.owl"/> 
  </owl:Ontology> 
  <owl:Class rdf:about="#VEhicle"> 
    <rdfs:subClassOf rdf:resource="http://www.opengis.net/gml/_Feature"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Commercial_Vehicle"> 
    <rdfs:subClassOf rdf:resource="#VEhicle"/> 
  </owl:Class> 
     … 
  <Commercial_Vehicle rdf:ID="taxi1"> 
      <geo:lat>51.41299</geo:lat> 
      <geo:long>-0.28135</geo:long> 
    <SpatialRelations:isLocatedOn rdf:resource="#roadElement1"/> 
  </Commercial_Vehicle> 
     … 
</rdf:RDF> 
SPARQL query: 
SELECT ?carID ?lat ?long 
WHERE 
  {  ?car SpatialRelations:isLocatedOn ?roadElements . 
     ?roadElements rdfs:label "roadElement1" .  
     ?car rdf:ID ?taxiID . 
     ?car geo:lat ?lat . 
     ?car geo:long ?long . 
  } 
Query result: 
    carID       lat          long 
----------------------------------------- 
    "Taxi1" 51.42199 -0.28135 

 

As vehicles are moving on the road, there is a need to update information related to vehicles’ 

internal states (e.g. coordinates, speed). SPARQL 1.1 contains an update language, which 

provides update, create, and remove operations (Gearon et al., 2012). The following example 

uses the same data as the above example to demonstrate a SPARQL/Update query to update the 

RDF data. If a car is moving and its location can be acquired from a GPS receiver, the current 

location of the car can be updated repeatedly with a SPARQL/Update query as shown below. 

 

SPARQL UPDATE query: 
DELETE { ?s geo:lat 51.41299; 
            geo:long -0.28135} 
INSERT { ?s geo:lat 51.41298; 
            geo:long -0.28134} 
WHERE  { ?s rdfs:label "taxi1"} 
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Moreover, as a spatial extension to SPARQL for geographic information, there is a standard 

called GeoSPARQL to support spatial semantics. GeoSPARQL makes spatial queries possible 

by combining the spatial indexing and computation with ontologies such as RDF and OWL 

(Perry and Herring, 2012). It can represent relationships between spatial objects (e.g. 

distance, disjoint, intersects, touches, overlaps, equals, within, 

contains, etc.) in a two-dimensional space. For example, it is possible to find all features 

(i.e. ?targetPolygon) that the feature my:aPolygon contains, where spatial calculations 

are based on my:hasExactGeometry as shown below. 

 
GeoSPARQL query: 
PREFIX my: <http://example.org/ApplicationSchema#> 
PREFIX geo: <http://www.opengis.net/geosparql#> 
PREFIX geof: <http://www.opengis.net/def/geosparql/function/> 
 
SELECT ?targetPolygon 
WHERE { my:aPolygon my:hasExactGeometry ?aGeom . 
        ?aGeom geo:asWKT ?aWKT . 
        ?targetPolygon my:hasExactGeometry ?tGeom .  
        ?tGeom geo:asWKT ?tWKT . 
        FILTER (geof:sfContains(?aWKT, ?tWKT)  
                && !sameTerm(?aGeom, ?tGeom)) 
} 

 

2.3.4 Ontology rule languages 

 

There is a W3C standard for rules interchange, Rules Interchange Format (RIF), but it was 

created to be an interchange format between rule engines rather than to be a rule language 

(Kifer and Boley, 2010). For this reason, it is limited to general-purpose rules that can be 

executed directly over RDF/OWL stores (Polikoff, 2011). Therefore, this section outlines two 

ontology rule languages, Semantic Web Rule Language (SWRL) and SPARQL Inference 

Notation (SPIN), which are W3C Member Submissions since 2004 and 2011, respectively.  

Firstly, SWRL was proposed as a composite of OWL and Rule Markup Language (RuleML), 

which is a rule language that shares inference rules and that can be stored in an ontology model 

(Horrocks et al., 2004). It includes a complex abstract syntax to express Horn-like rules for 

OWL Lite and OWL DL (http://www.w3.org/Submission/SWRL/swrl.owl). The rules are 

similar to the if-then format exemplified here: if a condition (antecedent) is true, then a 

conclusion (consequent) will be true. For example, if x1 is located on r1 and x1 is in front of 

x2, then x2 is located on r1. 
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Horn-like rule 
locatedOn(?x1,?r1) ∧ inFrontOf(?x1,?x2) ⇒ locatedOn(?x2,?r1)  
 
Abstract syntax 
Implies(Antecedent(locatedOn(I-variable(x1) I-variable(r1)) 
              inFrontOf(I-variable(x1) I-variable(x2))) 
    Consequent(locatedOn(I-variable(x2) I-variable(r1)))) 

 

Secondly, SPIN is a SPARQL-based rule and constraint language that can provide reusable 

query templates with a SPARQL-friendly syntax with additional components over the standard 

SPARQL facilities and SWRL, as listed in Table 2.6 (Knublauch et al., 2011; Mamadolimova et 

al., 2011). SPIN was designed by combining concepts from object-oriented languages, query 

languages, and rule-based systems, so it leverages object-oriented principles such as 

encapsulation and object behaviour to make it easier for machines and humans to understand, 

interact and process linked data resources (Knublauch et al., 2011). SPIN was chosen as the 

ontology rule language for this research because it can be tightly coupled within an ontology 

model to represent some logics. The logic of a rule can be tested with a SPARQL query and 

then converted into a SPIN rule or template easily because SPIN is an extension of SPARQL. In 

addition, in a SPIN rule or template, SPIN functions or magic properties (a.k.a. property 

functions) can be used to avoid reasoning.  

 

Table 2.6 – Functionality comparison between SWRL and SPIN (Mamadolimova et al., 2011) 

Functionality SWRL SPIN 
Rule chaining yes yes 

Integration with OWL yes yes 
Built-in/extensible features yes yes 

Executable on SPARQL support graph server no yes 
Class rules and constraints no yes 

Reusable parameterised SPARQL query templates no yes 
User-defined functions no yes 

Update values no yes 
Supports negation no yes 

Remove triple no yes 
 

While each vehicle’s location can be treated as an asserted triple and updated by a 

SPARQL/UPDATE query (see section 2.3.3), spatiotemporal relations among vehicles and road 

facilities might be acquired by reasoning as inferred triples. However, when dealing with traffic 

situations that include dynamically moving vehicles, reasoning is not an option to describe their 

spatiotemporal relations. This is because most inference engines are restricted only to adding 

new inferred triples from existing asserted triples and rules, and updating already inferred triples 
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is not allowed. This is called monotonic reasoning, in which facts believed true will not be 

invalidated. If the asserted triples are static and remain still, this reasoning is reliable. 

However, in cases where asserted triples need to be updated often, the monotonic reasoning 

cannot be a good solution because it has to be reset and inferences be run again in order to keep 

all inferred triples true. There is a way to perform incremental inferences to keep all inferred 

triples up to date and true after each change, but it is an acknowledged difficult problem in 

computer science. It can be efficient only if data changes rarely and if queries are executed often. 

This research deals with moving vehicles, so their locations are changing all the time, and the 

above is not the case. In the case of moving vehicles, using SPIN functions or magic properties 

dynamically can be a better choice than reasoning because they can compute property values 

dynamically on demand (Knublauch, 2011).  

For instance, if there is a function :getDist and a magic property :isInFrontOf to 

compute relative locations among vehicles, the function and the magic property have a nested 

SPARQL query. The examples below show the body of :getDist and :isInFrontOf that 

have logics to find :isInFrontOf relations by calculating their distance using :getDist 

to the coming junction if they are on the same road and moving in the same direction.  

 

spin:body of the function :getDist  
SELECT ?distance 
WHERE { 
    ?arg1 :posx ?x1 . 
    ?arg1 :posy ?y1 . 
    ?arg2 :posx ?x2 . 
    ?arg2 :posy ?y2 . 
    BIND (afn:sqrt((?x1 - ?x2) * (?x1 - ?x2)  
              + (?y1 - ?y2) * (?y1 - ?y2)) as ?distance) . 
} 
spin:body of the magic property :isInFrongOf  
SELECT ?isInFrontOf 
WHERE { 
    ?arg1 :isLocatedOn ?road . 
    ?arg1 :comingJunction ?junc . 
    ?isInFrontOf :isLocatedOn ?road . 
    ?isInFrontOf :comingJunction ?junc . 
    BIND (:getDist(?arg1, ?junc) as ?thisDist) . 
    BIND (:getDist(?isInFrontOf, ?junc) as ?otherDist) . 
    FILTER (?thisDist < ?otherDist) . 
} 

 

In terms of triple statements, a magic property can be used as a predicate while the argument of 

a magic property represents the left-hand side of the statement (the subject). The right-hand side 
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(the object) of the triple is computed by the nested SPARQL query, which is the body of the 

magic property (Knublauch, 2009). When the :isInFrontOf predicate is used in a query, the 

spin body above will get the results with different bindings (one for the variable ?arg1 and the 

other for the variable ?isInFrontOf). The following examples show three different cases of 

bindings. In the first query of the example, the nested SPARQL query is executed with the 

variable ?arg1, which is left blank, and the other variable ?isInFrontOf, which is pre-

bounded with Vehicle1. The second query shows the case where the argument ?arg1 is pre-

bounded with Ambulance1, and ?isInFrontOf is left blank. Both sides of the predicate 

can be blank, and the results will return all existing :isInFrontOf relations in the whole 

model.  

 

SPARQL query using a magic property with blank subject: 
SELECT * 
WHERE { 
 ?ambulance :isInFrontOf :Vehicle1 . 
} 
 
SPARQL query using a magic property with blank object: 
SELECT * 
WHERE { 
 :Ambulance1 :isInFrontOf ?vehicle . 
} 
 
SPARQL query using a magic property with blank subject and blank object: 
SELECT * 
WHERE { 
 ?ambulance :isInFrontOf ?vehicle . 
} 

 

2.4. Ontological research in related domains 

 

The previous section discussed how to describe information in an ontology and how to extract 

further information by reasoning throughout ontology languages and ontology query languages. 

RDF and OWL are commonly accepted ontology languages while SPARQL and 

SPARQL/Update are the latest ontology query languages and provide additional functions.  

An ontology helps to describe shared information and knowledge formally and precisely with 

logical constants and a set of statements. In an ITS setting, an ontology can depict a traffic 

situation that involves vehicles and road facilities, so it can be used by intelligent vehicles and 

infrastructure not only to identify one another but also to interact with each other. Consequently, 
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it can be used by intelligent vehicles and infrastructure to be more responsive and to increase 

the safety and mobility of the transport system.  

The semantic contents of communication (i.e. vehicles’ current location and the current road 

status) expressed in an ontology model (OWL) may be updated in real time using SPARQL and 

SPIN. In terms of semantics and interoperability, an ontology can be useful for shared and 

consensual knowledge of traffic situations so that it can be a fundamental base for contents of 

interactions among intelligent geoobjects. 

According to Guarino (1998), ontologies can be classified into three levels in accordance with 

their domain dependence: top-level ontologies are domain independent while domain ontologies, 

task ontologies, and application ontologies are domain dependent. 

 

• Top-level ontologies describe general concepts of the world as a whole and relations 

between the ontologies that are independent across all domains, such as space, time, 

matter, objects, events, actions, etc. 

• Domain ontologies and task ontologies describe the vocabulary related to a specific 

domain or a specific task or activity respectively, with the particular meaning of the 

terms introduced in the top-level ontology. 

• Application ontologies describe concepts that rely on a particular domain and task at the 

same time by specializing in related ontologies. There is a close connection between the 

application ontologies and the roles played by domain entities for a particular activity.  

 

This section examines existing domain-independent ontologies and domain-dependent 

ontologies. Even though top-level ontologies are domain-dependent and there are no direct 

relations between top-level ontologies and ITS-related ontologies, top-level ontologies are 

important because they deal with a part of the theoretical foundation for all domains. Therefore, 

in the following sections, top-level ontologies are surveyed before reviewing ITS-related 

domain ontologies. After that, ITS-related ontological research is reviewed from three different 

perspectives.  
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2.4.1 Top-level ontologies 

 

A top-level ontology provides a framework of common knowledge and broad concepts that are 

general and universal, so domain-dependant ontologies can be composed by importing or 

extending from a top-level ontology (Semy et al., 2004). If a domain ontology adopts a top-level 

ontology, the domain ontology can be built based on the theoretical structure and the semantic 

richness of the top-level ontology.  

As the foundation of the domain, the top-level ontology cannot only provide a modelling basis 

and design patterns, but also can affect the semantic possibilities of the domain ontology with 

its relevant concepts and logics (Oberle et al., 2007; Semy et al., 2004). Since there are several 

top-level ontologies, it is necessary to identify which top-level ontology is suitable for the 

domain ontology of the research.  

To find a suitable top-level ontology, Table 2.7 reviews four well-known top-level ontologies, 

which are Cyc ontology, Descriptive Ontology for Linguistic and Cognitive Engineering 

(DOLCE), Suggested Upper Merged Ontology (SUMO), and Basic Formal Ontology (BFO).  

 

Table 2.7 – Four different top-level ontologies 

Top-level 
ontology 

Description 

Cyc 
ontology 

• A comprehensive knowledge-base to support AI applications from common-sense 
background knowledge (Matuszek et al., 2006) 

• Provides context reasoning and problem-solving for various domains, and it can be 
divided into upper ontology, middle ontology, and lower ontology 

• The upper Cyc ontology (i.e. top-level Cyc ontology) has three top classes: 
Individual, PartiallyIntangible, and 
MathmaticalOrComputationalThing (Cycorp, 2002b) 

DOLCE 

• The foundational ontologies library for the WonderWeb project by the Laboratory for 
Applied Ontology (LOA) (Gangemi et al., 2003)  

• DOLCE is an ontology of particulars (i.e. things) based on the fundamental 
distinction between endurants and perdurants  

• Top level categories in DOLCE can be split into four classes: Endurant (spatial 
thing), Perdurant (temporal thing), Quality (entity that is observed or measured, 
such as shape, sound, smell, colour, and length), and Abstract (time interval and 
space region can be subclasses of this class) 

SUMO 

• A formal language mapping to all the WordNet (http://wordnet.princeton.edu) words, 
which consist of nouns, verbs, adjectives, and adverbs following different grammatical 
rules and is widely used by artificial intelligence researchers 

• It is composed of SUMO itself, the Mid-Level Ontology (MILO), and a broad range of 
domain areas, such as communication, countries and regions, distributed computing, 
transportation, viruses, etc. (Pease et al., 2002) 

• In SUMO, things can be split into two classes, which are the Abstract and 
Physical classes. The Object and Process classes are subclasses of the 
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Physical class, and they are conceptually similar to the endurant and 
perdurant classes of DOLCE, respectively.  

BFO 

• Developed to support the scientific research domain (e.g. medical domain, 
geographical domain, disaster relief domain, etc.)  

• Provides a single framework for three-dimensional (SNAP) and four-dimensional 
(SPAN) perspectives, which are continuants (i.e. endurants, static/spatial features) and 
occurants (i.e. perdurants, dynamic/temporal processes) 

• Continuant is a three-dimensional enduring objects, and occurant is a four-
dimensional event or process that exists only temporarily in between their initial and 
terminal boundaries (Grenon and Smith, 2004) 

 

2.4.2 Ontologies in ITS-related domains 

 

ITS can be defined as combinations of computers, databases, maps, and sensors for vehicles and 

infrastructure (Department for Transport, 2004). Traditionally, GIS covers computers, databases, 

and maps in the above definition while pervasive computing8 covers wireless computers and 

sensors. In terms of the convergence of advanced Information and Communication, we focus on 

specific traffic situations, in which the definitions of the three domains (i.e. GIS, pervasive 

computing, and ITS) are compatible (Figure 2.1). This section explores ontological approaches 

in these three domains. 

 

 
Figure 2.1 - Convergence of some fields based on ICT 

 

The geosensor concept is an example of the convergence of GIS, pervasive computing, and ITS. 

A geosensor network is a decentralised ad hoc wireless network that senses location-related or 
                                                        
8 Pervasive computing, which is also called ambient intelligence or ubiquitous computing, is a new trend 
towards ubiquitous appliances that you can access when and where you need it. Hansmann et al. (2003) 
described pervasive computing through four characteristics, which are decentralization, diversification, 
connectivity, and simplicity. In Section 1.2, the term ‘ambient intelligence’ was used instead of pervasive 
computing in order to emphasise the importance of intelligent vehicles and infrastructure. 
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geospatial phenomena in a ubiquitous computing environment (Nittel et al., 2004a; Winter and 

Nittel, 2006). Geosensor networks have been used to support dynamic phenomena with 

monitoring and interaction based on a Mobile Ad hoc Network (MANET) in real time (Nittel et 

al., 2004b). There are studies about ad hoc shared-ride trip planning using geosensor networks, 

which can provide ‘instantaneous transportation supply and demand’ for local clients who have 

a mobile device connected to a geosensor network without service pre-notification by hosts or 

pre-booking by clients (Raubal et al., 2007, p.366). The ad hoc shared-ride system was 

described as follows by Raubal et al. (2007, p.366-367): 

“Advances in technology allow envisioning of an ad hoc, peer-to-peer shared-ride 

system. This decentralised system will be based on a mobile geosensor network (Winter 

and Nittel, 2006). In this mobile geosensor network each node is represented by a 

software agent on a mobile device, either attached to a client or to a host. Clients and 

hosts have positioning sensors on board, are moving, and can communicate with each 

other via radio within a limited range. Clients can negotiate directly with nearby hosts 

for rides.”  

The above description shows that GIS, pervasive computing, and ITS, are inter-disciplinary and 

multi-disciplinary technologies. Likewise, ontologies in these three domains can be seen as a 

convergence in terms of geographic representation and context modelling. Firstly, for the 

geospatial domain, ontologies can provide a supplemental framework and domain knowledge to 

represent dynamic geographic information in space and in space-time. Secondly, in pervasive 

computing, ontologies can provide context models not only for computational entities, such as 

intelligent agents and sensor networks, but also for various and diverse types of situations. 

Lastly, ontologies in the transport domain support the geographical representation of vehicles 

and road infrastructure, traffic contexts, and vehicular communications. Therefore, in the next 

three sub-sections, a comprehensive review of the relevant work related to ontologies in these 

three domains is presented from the three different points of view: the geospatial domain, the 

pervasive computing domain, and the transport domain.  

 

2.4.2.1 Geospatial ontologies 

 

In geographic space, human activities, physical phenomena, and their interactions can be 

represented as spatiotemporal information with objects, events, and processes. A geographic 

ontology can be considered as the ontology of geographic space and of the objects and 
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phenomena in geographic space simultaneously (Smith and Mark, 1998). There are two 

additional points for the ontology of geographic space: not only can it be used to supplement the 

weaknesses of GIS in representing dynamics phenomena, but it can also function as a formal 

format for sharing spatiotemporal information and knowledge. Thus, the usage of geospatial 

ontologies can be classified into three categories: a supplemental framework of dynamic 

concepts in GIS, a domain ontology of geographic space, and an ontology of the objects and 

phenomena in geographic space.  

Firstly, geospatial ontologies can be used to enrich and expand current GIS concepts. Grenon 

and Smith (2004) presented a framework for the geographical representation of objects, events, 

and processes using SNAP-SPAN ontology. There are several research projects designed to 

expand GIS concepts and functions with SNAP-SPAN ontology because SNAP-SPAN ontology 

includes dynamic/temporal features in four-dimensional perspectives. Worboys and Hornsby 

used ontological approaches for geographical objects, events, and processes as well as dynamic 

representations for moving objects (Worboys and Hornsby, 2004; Worboys, 2005). Goodchild 

et al. (2007) also proposed a model of dynamic geoobjects through time using three conditions: 

movement (stationary or moving), shape (elastic or rigid), and internal structure (uniform, 

evolving).  

Secondly, geospatial ontology is a domain ontology for physical space and spatial relations as 

well as abstract spaces, which can be mapped as features (Reuter and Zipf, 2008). The 

International Organisation for Standardization’s Technical Committee (ISO/TC) 211 provides 

specifications and standards for geographic information (ISO 19100), and in addition, 

ontologies for geographic information (ISO 19150) are under development as shown below: 

 

• ISO 191009: Geographic Information/Geomatics (Reference Model/19101, Conceptual 

Schema Language/19103, Spatial Schema/19107, Temporal Schema/19108, Rules for 

Application Schema/19109, Methodology for Feature Cataloguing/19110, Spatial 

Referencing by Coordinates/19111, Spatial Referencing by Geographic Identifier/19112, 

Metadata/19115, Services/19119, and Geography Markup Language (GML)10/19136) 

                                                        
9 The overview and facesheets of the ISO geographic information series of standards can be found at 
http://www.isotc211.org/Outreach/Overview/Overview.htm. 
10  GML (http://www.opengeospatial.org/standards/gml) is also a standard of the Open Geosptial 
Consortium (OGC). GML serves as a modeling language for geographic systems as well as an open 
interchange format for geographic transactions on the Internet. 



 58 

• ISO 1915011: Geographic Information - Ontology (Part 1: Framework/19150-1, Part 2: 

Rules for developing ontologies in the Web Ontology Language (OWL), Part 3: 

Semantic operators/19150-3, Part 4: Service ontology/19150-4, Part 5: Domain 

ontology registry/19150-5, and Part 6: Service ontology registry/19150-6) 

 

For the Semantic Web environment, the W3C Geospatial Incubator Group proposed GeoOWL, 

a simple ontology model of geospatial resource description, to represent the relationship 

between a feature and its geometry (Lieberman et al., 2007). As shown in Figure 2.2, a 

geoobject can be an instance of gml:_Feature class which has a geo:where property. With a 

geo:where property, the location and the shape of a geoobject can be described with a subclass 

of the gml:_Geometry class such as gml:Point, gml:LineString, gml:Polygon, etc.  

 

 
Figure 2.2 - Classes of GeoOWL 

 

Thirdly, geospatial ontology can be used to describe objects, events, and processes in 

geographic space. Yang and Worboys (2011) proposed a navigation ontology to provide 

seamless navigation between indoor space and outdoor space. For pedestrian navigation and 

vehicle navigation, domain ontologies for indoor space and outdoor space and a task ontology 

                                                        
11 ISO 19150 was at the end of the enquiry stage of development on 5 June 2014. It was initiated to 
review the potential and benefit of ontologies and the Semantic Web to achieve the objectives of ISO/TC 
211 for the interoperability of geographic information. 
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for navigation were presented with a well-defined hierarchical taxonomy. For example, the 

domain ontologies for indoor and outdoor space included concepts such as Container, 

Passage, Connector, Surface, Obstacle, Portal, etc. (Figure 2.3 a). Rooms and 

cities can be instances of the Container class as they contain something for indoor space and 

outdoor space, respectively. The Passage class is a subclass of the Container class, and it 

can be defined as a way or channel that vehicles or pedestrians can pass through (e.g. outdoor 

roads, indoor corridors). Outdoor bridges and indoor stairs connect two objects through a barrier, 

so they belong to the Connector class, which is a subclass of the Passage class. While the 

domain ontologies are based on the concept of spaces that contain some physical objects, the 

navigation task ontology is designed to represent agents’ journey on the linear network. The 

navigation task ontology contains subclasses such as NavAgent (i.e. Vehicle and 

Pedestrian), NavStructure (i.e. Link, Node, Path), and NavEvents including 

various turning events (Figure 2.3 b).  

 

 
            (a) Structure ontology of indoor space                                 (b) Navigation task ontology 

Figure 2.3 - A navigation ontology (after Yang and Worboys, 2011) 
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Using three points of view, this section has shown that geospatial ontologies can be used for the 

conceptual expansion of geographic representation, the domain knowledge itself, and modelling 

activities and phenomena in geographic space. The next section will describe how ontologies 

can support context awareness of intelligent agents in pervasive computing environments. 

 

2.4.2.2 Ontologies in pervasive computing 

 

Intelligent vehicles and an ITS environment can be seen as a specific domain of pervasive 

computing, however this section reviews ontological approaches in pervasive computing from a 

broad perspective. An ontology provides a description of the concepts and interrelations for 

modelling contextual information, making high and formal expressiveness possible as well as 

reasoning power (Baldauf et al., 2007). Thus, computational agents in a pervasive computing 

environment, and their goals, plans, actions can be modelled with an ontology to provide 

contextual information of the pervasive computing environment. Practical and conceptual 

ontology models are proposed to support various computing entities and sensors of pervasive 

computing as follows. 

Chen et al. (2004) defined a Standard Ontology for Ubiquitous and Pervasive Applications 

(SOUPA), which has two sets of ontologies - SOUPA Core and SOUPA Extension. SOUPA 

Core ontologies include concepts like agent, belief-desire-intention (BDI), 

action, and policy. With SOUPA ontologies, the knowledge, goals, and policies of 

intelligent agents can be clearly described in the ontologies. SOUPA is a domain ontology for 

developers of applications in the pervasive computing environment to support knowledge 

sharing and interoperability so that system developers may focus on the implementation itself 

rather than building their own ontologies. Furthermore, developers can extend ontologies for 

their specific purpose by referencing SOUPA Extension ontologies. The Context Broker 

Architecture (CoBrA) ontology, which was developed for a context-aware system in a smart 

space, such as an intelligent meeting room, is a good example of an extension from SOUPA 

(Chen et al., 2004, 2005). 

Wang et al. (2004) proposed a context ontology (CONON) for addressing specific issues in 

context modelling and reasoning in pervasive computing environments. CONON is divided into 

an upper ontology and domain-specific ontologies not only to share general classes of basic 

context, but also to provide reusability and flexibility for specific domain knowledge. The upper 
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ontology defines several classes for describing locations, people, activities, computing entities, 

and other concepts, while the domain-specific ontologies describe detailed features, which may 

vary in different domains to bring extensibility.  

Seremeti et al. (2009) proposed the activity sphere based on an ontology model that describes a 

task-based activity relating to available resources to support semantic interoperability in a 

ubiquitous computing environment. Each resource, such as a user, a device, or a service, has a 

local ontology itself, and for the specific activity, a sphere ontology can be made by aligning 

and merging local ontologies related to the activity. If a new device joins the activity, the sphere 

ontology will be updated by the sphere manager and ontology manager. In this way, an ontology 

is used not only to represent resources with local ontologies, but also to represent an activity as 

a sphere ontology. 

For emergency management, Galton and Worboys (2011) pointed out that ontological 

conceptualisation can be useful to handle various and diverse types of information in an 

emergency situation since information events can be collected by trained officials with well-

structured procedures and protocols, crowd-sourced data from the public, and automated 

monitoring devices from sensor networks. According to their information ontology, an 

information event is enacted by an information agent, who creates a new information bearer by 

using an information instrument. The content of an information bearer is the information entity 

that it carries. Their information ontology is composed of several classes, which follow the 

continuants and occurrents concept of BFO. Information events are the occurrents or perdurants 

of BFO, while information agents, information bearers (forms of information), information 

entities (contexts of information), and information instruments (e.g. pens, keyboards, printers, 

and photocopiers) endure through time as continuants or endurants. In order to support crowd-

sourced data and data from sensor networks, the information ontology was expanded to cover 

collections of sensor readings and sensor-reading events based on the object aggregate (i.e. 

collection of continuants) and the process aggregate (i.e. collection of occurrents) of BFO. A 

sensor, which is an information agent, collects information by sensor readings when there are 

sensor-reading events. An ontology of sensors and sensor readings (as an extension of 

information ontology) covers various spatiotemporal events (e.g. a time series of sensor 

readings, a spatial distribution of sensor readings, and a spatiotemporal distribution of sensor 

readings).  

As we have seen so far, ontologies in pervasive computing described situations and events so 

that computational entities could recognise a change of situation and adopt their action to that 
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changing situation. It also showed that ontological modelling has potential when dealing with 

various and diverse types and expressions of information captured by various sources from the 

general public to sensor networks. An ontology model in pervasive computing can be seen as a 

domain ontology, a task ontology, and an application ontology without strict classification. 

Since a pervasive computing environment is composed of implemented services and 

applications, the level of ontologies is relatively unimportant in this domain. However, 

regardless of the level of ontology, it was shown how the ontologies in pervasive computing 

supported context modelling and context awareness. The next section will review how 

ontologies can support the transport domain and traffic situations.  

 

2.4.2.3 Ontologies in road transport systems 

 

Similar to the geospatial ontology, an ontology in road transport systems can be considered as 

the ontology of the road transport domain and of the traffic situations in road transport. There 

are two additional points for the ontology of traffic situations: not only can it be used to 

describe traffic situations, but it can also support the traffic situations directly as an ontology 

model that is tightly linked to vehicular communication. Thus, the usage of ontologies in 

transport systems can be classified into three categories: a domain-level ontology, an ontology 

describing traffic situations, and an ontology model supporting traffic situations directly via 

vehicular communication. 

Firstly, some researchers have focused on developing a domain ontology or a task ontology. 

Lorenz et al. (2005) presented an Ontology of Transportation Networks (OTN) as an encoding 

of Graphic Data Format (GDF), which is a map delivery format and a standard for storing 

geographical data, especially for ITS applications, such as car navigation systems and location-

based services. From the ontological notions of GDF themes, they extended OTN classes with 

timetables for public transport in the Road_and_Ferry_Features class and the 

Meteorology class for weather information. Kuhn (2001) proposed a procedure to derive a 

task ontology for car navigation by analysing the text of the German traffic code. The traffic 

codes provided various descriptions about the car navigation including objects and actions 

relevant to driving, driving instructions containing navigation information, and travel narratives 

explaining observations and decisions during navigation. After selecting suitable actions and 

objects from verbs and nouns in the text, a cross-tabulation of actions and objects was made to 
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extract entailment relations between objects and actions, and a hierarchy of action classes 

described activities for car navigation.  

Secondly, there are ontologies to describe the relative location of a vehicle on the road and the 

situations of a car park or of public transport. Hornsby and King (2008) also adopted an 

ontology using four different motion relations (isBehind, inFrontOf, driveBeside, 

and passBy) in a road environment, based on the assumption that pairs of geosensors are 

implanted to collect information for moving vehicles. Each case of motion relations between 

two vehicles represents conceptually different semantics. For example, if an 

EmergencyRoadVehicle object and an Automobile have an isBehind relation, the 

EmergencyRoadVehicle object can be inhibited on account of the Automobile object. 

The movement of each vehicle at a specific time is possibly stored in a spatiotemporal database, 

and the motion relations are extracted from the database using queries by a structured query 

language (SQL). Lee and Meier (2007) proposed an ontology-based spatial context model 

(Primary-Context Ontology) with object-based traditional context modelling (Primary-Context 

Model) for the semantics of context information relating to a car parking system. The Primary-

Context Model (PCM) provides a uniform storage model for spatial information, and the 

Primary-Context Ontology (PCOnt) represents their association so that PCM and PCOnt may 

deliver the semantic meaning of the information as a smart parking space locater service. Wang 

et al. (2005) proposed an ontology-based public transport query system for Semantic Web and 

wireless device-based intelligent agents. Vehicle, route, station, and organisation were the four 

key classes, and they were established using Protégé and Jena software. To provide its query 

results, the lowest transfer time was used to calculate the shortest path because the lower the 

transfer time, the lower the trip fare in a public transport domain.  

Lastly, there are some studies using ontologies for a traffic context model that is compatible 

with vehicular networks. An ontological context model was proposed to support collision 

avoidance applications based on VANET (Eigner and Lutz, 2008). This vehicle ontology 

provided the necessary data for collision calculation (vehicle ID, current position, current speed, 

current acceleration, etc.). Each vehicle has an instance of the vehicle ontology and uses it as a 

packet format for collision avoidance messages. This research showed that importing additional 

ontologies and modelling environmental aspects or the street network could be useful to avoid 

redundant geometric calculation, although the model itself got progressively complex. Another 

ontology model for a wind-gust warning system was proposed to support context-based 

addressing (Eigner and Mair, 2009). When a warning is triggered, recipient vehicles analyse the 
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message based on the condition of their locations and routes. It shows how an ontology model 

can be compatible with a context model and vehicular communications. Meanwhile, to share 

situational information about the vehicles involved in road accidents, Barrachina et al. (2012) 

proposed the VEhicular ACcident ONtology (VEACON). By using in-vehicle sensors and the 

ontology (i.e. accident class, vehicle class, environment class, occupant class), an accident 

vehicle can build a warning message and send the message to the emergency services to ask 

help for a rescue, and to nearby vehicles in order to prevent additional accidents. The ontology 

was specially designed to provide an interoperable data structure for both alert information 

sharing and accidents' severity prediction via vehicular communications. The aforementioned 

approaches present ontological solutions that are suitable to build traffic context models and 

exchange vehicular information. However, they have not addressed how an ontology model can 

support vehicles’ processing and reactions through querying and reasoning.  

 

2.5 Summary and discussion 

 

This research explores local traffic situations and vehicular communications to resolve the 

situations. As a standard model of a directed graph, an ontology-based model has advantages of 

structuring information using a graph. On top of that, it provides a straightforward and uniform 

data model supporting decentralised and dynamic schemas, a powerful standard query language, 

and standardised and implementation-independent data interchange formats. For an ITS 

environment, in which various subsystems and communication protocols coexist, it has concrete 

advantages of data portability and interoperability as well as partial information processing, 

querying, and reasoning. This chapter reviewed the value of an ontological approach (Section 

2.2), ontology standards (Section 2.3) and ontological research in related domains (Section 2.4) 

to build a data layer for vehicular communications.  

First, Section 2.2 compared ontological model to other data transfer models and data storage 

models. It showed that ontology model provides distributed and extensible standardised 

universal data exchange model and standardised query languages   

Second, Section 2.3 explored ontology-related data formats and standards. To implement the 

ontology model to describe the shared information and knowledge of intelligent vehicles, OWL 

is used as an ontology language, SPARQL as an ontology query language, and SPIN as a syntax 

for SPARQL-based rules and functions. To describe vehicles’ movements, interactions, 
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decision-making procedures, an ontology based on description logic provides well-defined 

semantics with object-oriented properties as well as querying and reasoning algorithms 

compared to an ontology based on first-order logic. OWL is the formal ontology of the 

Semantic Web, and it is applied to describe semantics of traffic situations related to vehicular 

communications in this research. SPARQL supports both A-Box query and T-Box query 

mechanisms and provides powerful expressions. As the aim of this research is to develop an 

ontology model to support communicative vehicles on the road, the spatial relations of 

GeoSPARQL are inappropriate to represent vehicles’ interrelations. For example, the direct 

geometric distance (i.e. Euclidean distance) between two vehicles’ absolute coordinates cannot 

represent their network distance (a.k.a. road distance) properly since they are moving on a road 

network. Therefore, this research focuses on creating its own method to represent vehicles’ 

interrelations. With SPIN, SPARQL’s syntax is extended to describe class rules and functions. 

Topbraid Composer is used as a modelling environment to develop the ontology model. 

Ontology modelling is based on triple patterns, which are very useful for vehicles to describe 

relative location information referring to road elements. By sending and receiving relative 

information, intelligent vehicles can rebuild and re-sketch a situation from their own perspective 

so that inputs for the decision-making process for vehicles to resolve the situations can be 

simplified and minimised. 

Third, Section 2.4 reviewed four top-level ontologies (Cyc, DOLCE, SUMO, and BFO) and 

ontological research in three related domains (the geospatial domain, pervasive computing 

domain, and transport domain). Section 2.4.1 discussed the existing top-level ontologies and 

related ontology research in the ITS-related domain in terms of the convergence of information 

and communication technologies. This research deals with vehicular communications, so the 

ontology model covers a domain/task ontology describing communicative vehicles and an 

application ontology for practical communications among vehicles. DOLCE and its four super-

classes (endurant, perdurant, quality, and abstract) provided a clearer framework 

to describe intelligent vehicles’ movements and communications. An intelligent vehicle can be 

an instance of the endurant class, and its travelling or communication can be described as a 

perdurant (Figure 2.4). In addition, spatiotemporal attributes of vehicles, such as location 

and speed, can be modelled within the quality category while the abstract category can 

be used for mathematical or logical axioms or the measurement basis of the quality category 

(Masolo et al., 2003). Traditionally, vehicles and road infrastructure have been categorised into 

the Non-Agentive Physical Object class. However, in an ITS environment, 

intelligent vehicles (and infrastructure) can be considered as intelligent agents that have 
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communication power as well as sensing, computing, and processing powers. Therefore, they 

also need to have characteristics of the Agentive Physical Object class. 

 

 
Figure 2.4 - Key concepts derived from the top-level ontology, DOLCE  

 

Even though this research focuses on developing suitable ontologies for vehicular 

communications, there is a need to describe general geographic and traffic contexts of vehicles 

and the road environment. Several concepts of the existing domain /task ontologies (e.g. 

GeoOWL, Yang and Worboys’ navigation ontology, OTN) in Section 2.4.2 can be reused to 

build the domain, task, and application ontologies of this research. For the domain ontology, the 

feature class of GeoOWL can be referred to describe vehicles’ location and road shapes, while 

the road furniture and road structure classes of OTN can be used to model the road environment. 

The concept of the subclasses of Yang and Worboys’ navigation task ontology will be useful to 

build the task ontology of this research. In spite of the useful classes and concepts of the 

existing ontologies, it can be said that the ontologies in the related domain are mostly designed 

based on existing standards of geographic information or static road environment, so they still 

have shortcomings in terms of representing vehicles’ dynamic processing and reactions via 

vehicular communications.  

To sum up, it is still necessary to create an ontological model for describing intelligent vehicles’ 

movements and communications for this research, which is the intersection part of the three 

ITS-related domains. To describe intelligent vehicles and infrastructure, some concepts of 

DOLCE need to be expanded. Similarly, classes of the existing ontologies in the related 
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domains can be adopted or used to develop the domain ontology if the concept of classes is 

amended to be suitable to an ITS environment. The task and application ontologies for vehicular 

communications also need to be uniquely created to describe intelligent vehicles’ dynamic 

properties and relations, but still temporal aspects and relative aspects of geographic 

representations can be referred to conceptually from the existing ontologies.   
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3. Agent-oriented approach 

3.1 Introduction 

 

The previous chapters have described vehicular communication technologies and ontology 

modelling, which represent the physical layer and the data layer for implementing ITS. For 

vehicular communication, DSRC was emphasised as the prominent short-range communication 

technology of ITS for local communications. For data modelling and context modelling, 

ontology language standards and ontology-related research in the domain were outlined for the 

semantic contents of vehicular communications.  

This chapter explores intelligent agents as the application layer for implementing intelligent 

vehicles and their communications. Since this research deals with the development of a data 

layer and an application layer for intelligent vehicles and their communications, the application 

layer has to be built on top of the data layer, which is the ontological framework. Therefore, an 

agent-based approach can be used not only to implement communicative vehicles representing 

the application layer, but also to examine the communication model by empirical validation. 

There are two sections in this chapter: agent-based system developments and agent-based 

research in the related domain. Section 3.2 outlines four capabilities of intelligent agents 

(autonomous, reactive, proactive, and social characteristics) and the agent-oriented system 

development process, including the analysis, design, and implementation phases. Agent-based 

methodologies are reviewed to emphasise new agent abstractions and design/development 

issues, such as organisational concepts and the environmental model. For the agent 

implementation phase, agent-based modelling and simulation platforms are reviewed, and one 

platform is chosen to simulate intelligent vehicles. Section 3.3 reviews agent-oriented research 

in three domains (GIS, pervasive computing, and transport system) to highlight road transport’s 

geographically distributed, autonomous, and dynamic characteristics. Section 3.4 reviews 

mobility models that support different macroscopic and microscopic mobility features for 

different purposes. 
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3.2 Agent-oriented system development 

 

In the introduction chapter, the definition of intelligent agents was already described focusing 

on their autonomous and communicative characteristics. To implement intelligent vehicles and 

road infrastructure, there is a need to understand intelligent agents’ essential capabilities and 

investigate what kinds of agent-based approaches exist and which development platforms could 

be used. Therefore, this section first describes the four essential capabilities of intelligent agents 

in more detail, and secondly, reviews agent development processes including 1) methodologies, 

2) development platforms, and 3) modelling and simulation platforms (Figure 3.1). After the 

review of agent-based methodologies, physical development platforms, and modelling and 

simulation platforms, there is a discussion regarding which methodology and platform is most 

suited to the purpose of this research.  

 

 
Figure 3.1 - Analysis, design, and implementation phase of agent development process 

 

3.2.1 Capabilities of intelligent agents 

 

In order to develop intelligent vehicles and infrastructure, several characteristics of agent 

models need to be provided. Wooldridge and Jennings (Wooldridge and Jennings, 1995; 

Wooldridge, 2009) define four essential attributes of intelligent agents, necessary for flexible 

autonomous behaviours in different environments, in order to meet an agent model’s goals.  

• Autonomous: Intelligent agents are able to decide for themselves whether or not to 

perform an action in specific environments in order to achieve their design objectives. 

• Reactive: Intelligent agents are able to perceive their environment and respond in a 

timely fashion to changes that occur in it in order to satisfy their design objectives. 

• Proactive: Intelligent agents are able to exhibit goal-directed behaviours by taking the 

initiative in order to satisfy their design objectives. 
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• Social: Intelligent agents are capable of interacting with other agents (and possibly 

humans) via cooperation (working together as individuals in a team voluntarily to 

achieve a shared goal), coordination (orderly managing/arranging the 

interdependencies between activities of different groups to maintain unity of action by 

a central authority), and negotiation (solving semantic conflicts among parties and 

reaching agreements on matters of common interest) in order to satisfy their design 

objectives.  

 

An ITS environment can be regarded as a dynamic multi-agent environment, and it may have 

multiple applications running concurrently, implying the ability of intelligent vehicles and road 

infrastructure (as agents) to multitask. Therefore, an intelligent vehicle must have the autonomy 

to decide ‘what actions it should take at what time’ (Zambonelli et al., 2003, p.318), in order to 

complete its journey by interacting with other vehicles and the road infrastructure. A traffic 

situation can be described at the aggregate level, but also reflects the decentralised nature of 

road transport (the individual level). Traffic situations vary from signal change at an intersection 

to a traffic jam or a traffic accident on a road segment. To deal with dynamic and unpredictable 

traffic situations, intelligent vehicles need to operate in a flexible way to keep between ‘reactive 

behaviour in response to the environment’ and ‘proactive behaviour towards the achievement of 

their designed objectives’ (Zambonelli et al., 2003, p.318). In addition, vehicles are moving at 

high speed on the road, so their coalitions for interactions do not remain static, but constantly 

change. In this context, agents’ social abilities are of special importance. For an agent’s social 

interaction, coordination and negotiation are as important as cooperation to achieve multi-

purpose goals. However, this research focuses on the development of short-range 

communications among vehicles and the infrastructure to resolve local situations. It means that 

for our purposes, agents’ interactions would be mostly treated as their cooperation rather than 

coordination and negotiation.  

To achieve goals, an agent needs plans and actions. The belief-desire-intention (BDI) 

architecture is widely used to reflect agents’ goals and the resulting plans and actions. Beliefs, 

desires, and intentions are agents’ abstract (external) characteristics, and they can be transposed 

into agents’ internal characteristics (Figure 3.2). Specifically, in terms of agent design and 

implementation, beliefs (what they know and what they know how to do) represent an agent’s 

knowledge-base, while desires (what goals they would like to achieve) represent an agent’s 

goals (objectives) and intentions (the goals they are currently committed to achieving) are 

mapped to plans. For the agent’s actions, each goal has a link to one or more plans. 



 71 

 

 
Figure 3.2 - Concepts used in the BDI architecture (Giorgini and Henderson-Sellers, 2005) 

 

3.2.2 Agent-oriented methodologies 

 

The previous section explored agents’ characteristics and demonstrated the potential of an 

agent-based approach to implement intelligent vehicles and infrastructure. When comparing the 

agent-based approach with the traditional object-oriented view (Booch, 1994), an object is not 

autonomous and proactive since ‘its internal activity can be solicited only by service requests 

coming from an external thread of control’ (Zambonelli et al., 2003, p.321). In addition, an 

object does not have ‘reactive behaviour in response to the environment’ because in the 

environment, it perceives the world only by its internal attributes or other objects (Zambonelli et 

al., 2003, p.318). 

The boundary between the view of objects and agents is getting blurred because of the advent of 

‘today’s distributed and concurrent’ characteristics of systems in various domains (Zambonelli 

et al., 2003, p.318). The Objective C language, for instance, uses Smalltalk-style message 

passing instead of calling an object instance’s method (Apple Inc., 2011), so the sending and 

receiving of messages look similar to agents’ social interaction. However, an object interacts 

with other objects only when accessing external services and data, so their interactions may 

show interdependencies between objects, not agents’ social abilities (cooperation, coordination, 

and negotiation) as described in Section 3.2.1. 
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Therefore, for the implementation of agents, new analysis and design methodologies are 

developed in order to describe new agent abstractions and design/development issues. This 

section will review the agent-based analysis and design methodologies that describe agents’ 

autonomous abstractions and the environment in which agents will be situated and interact with. 

There are three methodologies (Gaia, Tropos, and Prometheus) that are most frequently referred 

to in agent-related research, and the analysis and design phase of these methodologies are 

summarised in Table 3.1.  

 

Table 3.1 – Analysis and design phases of the Gaia, Tropos, and Prometheus methodologies 

Methdology Analysis and design phase 

Gaia methodology 

1. Analysis phase 
• Overall system (global organisation) is subdivided into sub-organisations, 

and an environmental model is made to represent the environment of the 
suborganisations.  

• Organisational rules are captured in accordance with the functionalities 
and competences required by the organisation as well as agents’ 
permissions, responsibilities, interaction patterns. 

2. Architectural design phase 
• Organisational structure and patterns are created taking into account the 

organisational rules as well as the organisational efficiency.  
• Roles and their position in the organisation are captured in a role model.  
• The topology of the interaction patterns and the control regime of the 

organisation’s activities are defined in an interaction model. 
3. Detailed design phase 
• An agent model is made, and an agent class of the agent model can be 

derived from a role or several related roles. 
• A service model is made to identify agents’ interaction with the inputs, 

outputs, pre-conditions, and post-conditions of each service.  

Tropos methdology 

1. Early requirements analysis phase 
• The domain stakeholders (humans) as social actors and their 

dependencies relating to their goals, plans, and resources are identified 
2. Late requirements analysis phase 
• Actors are added to the system, along with their functional and non-

functional dependencies for the environment. 
3. Architecture design phase  
• Subsystems and data/control interconnections are defined as actors and 

dependencies, respectively. 
4. Detailed design phase  
• Agent capabilities, Interactions and the implementation platform are 

specified.. 

Prometheus 

1. System specification phase 
• Functionalities with inputs (percepts) and output (actions) from the 

environment are described. 
2. Architectural design phase 
• Functionalities are assigned to agents, and agents are grouped regarding 

their interactions when agents share the same data. 
3. Detailed design phase 
• Agents have a more detailed internal structure to achieve the objectives 

of targeting an implementing platform.  
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First, the analysis and design process of the Gaia12 methodology can be divided into analysis, 

architectural design, and detailed design phases. This methodology differs from conventional 

object-oriented methodologies by identifying the importance of the concept of organisational 

abstractions and environmental models (Wooldridge et al., 2000; Jennings, 2001; and 

Zambonelli et al., 2003). Agents or individuals can be grouped as an agent organisation or a 

human organisation by their roles, responsibilities, and interactions. Each agent or individual in 

the organisation plays one or more roles autonomously to achieve its responsibilities or 

subgoals for the overall system. Interactions among agents/individuals do not imply their 

data/control interdependencies, but can be regarded as means (e.g. cooperation, coordination, 

and negotiation) of realising agents’ roles in the system. Therefore, organisational abstractions 

(organisational rules and organisational structures) offer a realistic perspective to see an overall 

system as multiple organisations, making possible the capture and appropriate categorisation of 

an agent’s roles/subgoals and their interactions during the analysis and design phases. Figure 3.3 

shows an example of an agent system that can be divided into different suborganisations, in 

which agents can act and interact with other agents and the environment to achieve their 

different objectives.  

 

 
Figure 3.3 - An example of suborganisations (Zambonelli et al., 2003) 

 

                                                        
12 Gaia means ‘the mother Earth’ in Greek mythology, and in Gaia theory, all the living organisms on the 
Earth and the Earth's environment form a single complex system.  
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Second, the analysis and design process of the Tropos13 methodology can be divided into four 

phases: early requirement analysis, late requirement analysis, architecture design, and detailed 

design. This methodology supports the conceptual modelling of agent-oriented systems with a 

set of Unified Modelling Language (UML) class diagrams (Bresciani et al., 2001; Bresciani et 

al., 2004). Throughout analysis and design phases of this methodology, actors, their goals and 

their plans, as well as their capabilities and their dependencies, are modelled. An actor 

represents a physical, social, or software agent that has a role or position, and its strategic 

interests can be described as a goal. There are two kinds of goals, namely, hard goals and soft 

goals. Hard goals have a clear definition and/or criteria to measure whether they have been 

achieved or not, while soft goals have not. Actors can execute plans or deliver resources 

(physical entities or information) to achieve some goals, and their ability to define, choose, and 

execute a plan in specific conditions or events are described as their capabilities. If there is a 

dependency between two actors, it indicates that one actor depends on the other to achieve some 

goals. Various UML diagrams are used to represent these modelling activities graphically: actor 

diagrams and goal diagrams (for the analysis phase), capability and plan diagrams (for the 

design phase), and agent interaction diagrams (for the implementation phase). Figure 3.4 shows 

an example of an actor diagram showing the stakeholders (actors) of an e-culture system. 

Citizens have a strong intention (hard goal) to get cultural information from the local council 

since they have paid their taxes, and they expect the taxes will be well spent (soft goal) to 

provide cultural information and services through the Internet. Figure 3.5 exemplifies an agent 

interaction diagram to describe interactions between a user and three system agents of the e-

cultural system. When the user asks for information, the user interface asks the user for the 

query specification, and then the user interface queries the directory facilitator to get the address 

of a free query handler agent that can provide the requested service. 

 

                                                        
13 The name of the methodology originates from the Greek word ‘trope’, which means easily changeable 
or easily adaptable. 



 75 

 
Figure 3.4 – An example of actor diagram model (Bresciani et al., 2004) 

 
Figure 3.5 - An example of agent interaction diagram (Bresciani et al., 2004) 

 
Third, the analysis and design process of the Prometheus14 methodology can be divided into 

system specification, architectural design, and detailed design phases. This methodology draws 

from and integrates the practical experiences of agent implementations with industry 

practitioners and undergraduate students (Padgham and Winikoff, 2003). It also uses various 

diagrams including UML (e.g. interaction diagrams, interaction protocols) throughout the 

phases. 

The analysis and design process of aforementioned methodologies demonstrated not only the 

concepts (organisational abstraction, the environment model) and notations (agent interaction 

diagram), but also the processes and techniques of agent-based analysis and design 

                                                        
14 In Greek mythology, Prometheus was the wisest Titan, and his name means ‘fore-thinker’ because he 
could foretell the future. He inspired humans by giving useful tools (including fire) to them.  
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methodologies. These concepts, notations, and processes make possible the development of 

agent roles (capabilities) and interactions from preliminary models to complete models during 

the analysis and design process. The next section will review various platforms that can be 

chosen for the implementation of agents.  

 

3.2.3 Agent-oriented platforms for modelling and simulation 

 

Two methods exist for the implementation of agents: implementing independent agents 

physically as subsystems that have agent capabilities, or building a virtual environment in a 

computer in which agents can communicate with each other and perceive the environment. 

Generally, the former is called Multi-Agent Systems (MAS) while the latter is called Agent-

Based Modelling and Simulation (ABMS). Conte et al. (1998, p.3) differentiate between MAS 

and ABMS by describing the former as ‘societies of artificial autonomous agents’ and the later 

as ‘artificial societies of autonomous agents’, respectively. 

There are several Multi-Agent Systems (MAS) platforms (i.e. JASON, JADE, JADEX, and 

JACK) to implement multiple intelligent agents (i.e. intelligent vehicles and infrastructure) 

within a physical environment (i.e. an ITS environment). Each platform provides at least two 

components in order to implement multi-agent systems as shown below (Winikoff, 2005):  

 

• an agent-oriented programming language that allows the agent to be written directly 

using agent concepts (e.g. plans, goals, beliefs) rather than it being encoded in non-

agent-oriented languages. 

• a set of libraries or frameworks providing facilities for inter-agent communication, 

including facilities for transmitting and receiving messages, and for locating agents.  

 

Apart from that, Agent-Based Modelling and Simulation (ABMS) can be another option to 

examine intelligent vehicle agents. Experiments based on the physical implementation of 

intelligent vehicles can be ‘costly and restricted to a small number of conditions and repetitions’ 

(Helbing and Balietti, 2012). Therefore, this section focuses on ABMS platforms that can 

simulate vehicle agents’ movements and communications in a virtual road environment on a 

computer system. 
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Before the development of ABMS, a social system used to be modelled using a set of 

rules/equations representing the global behaviours of the aggregate system’s individual 

elements. However, with rules/differential equations, it is almost impossible to model individual 

interactions, which can be a crucial element of representing a dynamic and complex system. 

The agent-based simulations have improved the potential of computer simulation as a tool for 

dealing with social science issues (Conte et al., 1998). In addition, the agent modelling 

paradigm provides a way to understand the effects of interactions of individuals as a bottom-up 

approach to the whole system (Crooks, 2010a). 

An agent simulation platform provides an artificial environment (space and time) for agents in a 

computer. A space, as an environment in which agents behave and interact, may be discrete, 

continuous, or characterised by networks. In general, there are five types of model space: 

Cellular Automata (CA) model, Euclidean space model, GIS topology model, network topology 

model, and aspatial (non-spatial) model (Macal and North, 2010). A CA model represents a 

discrete space while a Euclidean space model and GIS topology model describe continuous 

spaces. In the CA model, an agent moves from cell to cell on a grid and interacts with its 

neighbours (4-cell von Neumann neighbourhood or 8-cell Moore neighbourhood). Agents travel 

in two-dimensional or three-dimensional spaces in the Euclidean space model, while links 

between agents are defined more generally in the network model. In the GIS model, agents 

move in a realistic geospatial landscape, and in the aspatial model, the locations of agents are 

not important and a link between two agents is made randomly.  

Time within an agent simulation environment is regarded as a discrete event whose quantum 

unit of time is known as a ‘tick’ (Crooks, 2007). If event x and event y are scheduled at tick 

one and two respectively, event y will execute after x. During the time interval, agents are 

dynamic in either state (i.e. change) or space (i.e. movement), and they affect other agents’ 

dynamic characteristics (Brown et al., 2005). To represent agents’ dynamic characteristics 

(movements, behaviours and events) in a time step, agent simulation platforms provide 

scheduled events in three ways (Brown et al., 2005). 

• Events may be sequenced in a synchronous step-wise fashion. For example, each agent, 

set of agents, or non-agent object is signalled to perform its tasks once at each time 

step or once every n time steps. 

• An event may be scheduled to occur only once at some time step n. Any number of 

different events may be scheduled to occur in this fashion providing a predetermined 

history of events to take place. 
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• The model may encapsulate ‘event-driven’ processes whereby model agents may 

trigger events to occur or may add events to the schedule or queue of events to take 

place. 

 

The agent-based approach has potential for capturing emergent 15  phenomena, in which 

individual behaviours can be characterised by if-then rules, or agent interactions, which are 

heterogeneous and can generate network effects (Bonabeau, 2002). From a social, political, and 

economic viewpoint, emergent phenomena can be classified into four areas; 1) flows (e.g. 

evacuation, traffic, etc.), 2) markets (e.g. stock market, strategic simulation, etc.), 3) 

organisations (e.g. operational risk, organisational design, etc.), and 4) diffusion of innovation 

and adoption dynamics (Bonabeau, 2002). This research focuses on implementing intelligent 

vehicle agents that have the communication power to resolve emergency situations on the road, 

so it can be categorised into the first area of the above categorisation (i.e. traffic flows). 

There are several agent modelling and simulation platforms providing not only a framework as 

a set of standard concepts for designing and describing agent-based models, but also a library of 

software tools implementing the framework and providing simulation tools (Allan, 2010). The 

following subsections examine four well-known ABMS platforms: Swarm, NetLogo, REcursive 

Porous Agent Simulation Toolkit (REPAST), and Multi-Agent Simulation of Neighbourhoods 

(MASON). These platforms are focused on describing some events and agents’ individual 

interactions, so they are different from agent development platforms (e.g. JASON, JADE, 

JADEX), instead providing agent concepts (e.g. plans, goals, beliefs) and inter-agent 

communication specifications. A modeller can simplify and/or abstract events and agents’ 

interaction in his/her own way. Therefore, the following subsections do not indicate the 

suitability for ontology modelling on each platform.  

 

3.2.3.1 Swarm 

 

Swarm was the first and most mature agent modelling and simulation platform following the 

‘framework and library’ paradigm, which was initially developed at the Santa Fe Institute, USA 

in 1994, and has been maintained by the non-profit Swarm Development Group 

                                                        
15 Emergent is the adjective form of emergence. Emergence is the process of complex pattern formation 
from a multiplicity of relatively simple interactions. Emergence is central to the theories of complex 
systems. 
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(www.swarm.org). Originally, Swarm was written in Objective-C, but now Java Swarm allows 

Swarm’s Objective-C libraries to be called from Java so that users can write their part of a 

Swarm model in Java. In the Swarm platform, a collection of agents is considered as a ‘swarm’ 

with a schedule of events over those agents. There are two kinds of swarm: 1) model swarm for 

the actual model, and 2) observer swarm to observe the model.  

 

3.2.3.2 NetLogo 

 

NetLogo is a multi-platform general purpose complexity modelling and simulation environment 

from the Centre for Connected Learning and Computer-Based Modelling (CCL), Northwestern 

University, USA. It is a descendant of StarLogo, which was a modelling environment for K-12 

students to explore decentralised systems, and is in use in the social and natural sciences. 

NetLogo, contains four types of agents: turtles, patches, links, and the observer (CCL, 2011). 

Turtles are agents moving on patches, which are fixed agents, such as a landscape or a space. A 

turtle can also have links (relationships) with other turtles to form a network. The observer 

watches the NetLogo world of turtles and patches providing overall model management. 

 

3.2.3.3 Repast 

 

Repast was initially developed as a Java implementation of Swarm by researchers at the 

University of Chicago and the Argonne National Laboratory of USA. However, it is a totally 

independent platform now since it has diverged considerably from Swarm to focus on various 

social science applications. Repast has been developed for different platforms: Repast J (based 

on Java language), Repast Py (based on the Python scripting language), and Repast .NET (based 

on Microsoft.Net framework such as C#). These platforms have now reached maturity and are 

no longer being maintained. Two new platforms have been released, namely, Repast Simphony 

in 2007 and Repast for High Performance Computing (Repast HPC) in 2010 (see 

http://repast.sourceforge.net/docs.html for the details).  

Repast Simphony supports a new Graphic User Interface (GUI) for visual model development, 

and a run-time GUI for visual model execution, automated database connectivity, automated 

output logging, and results visualisation. Also, Repast Simphony has strengthened its GIS 

support and differentiated itself from other platforms by using Geotools (an open source java 
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GIS toolkit) and Java Topology Suite (JTS) extensively. For the modelling, there are two new 

concepts, namely, contexts and projections. A context is a bucket to hold a group of agents, 

while a projection allows the definition of relationships of agents in a space model (e.g. CA 

model, Euclidean model, GIS topology model, Network topology model). Agents are added in a 

context when they are created, and they are removed when they die. A context needs a link with 

a projection to provide within it a model space for agents. 

Repast Simphony provides three programming styles based on Java for the users’ different 

tastes and experiences, as follows.  

 

• the ReLogo (the Repast dialect of NetLogo) approach for users with existing NetLogo 

models, users with limited programming backgrounds, or users want rapid prototyping 

• the flowchart approach for users who want visual model construction 

• the Java approach for users who have Java programming experience and want to 

create highly customised simulations  

Repast HPC was designed for users with C++ programming experience and who need to run 

their models on a large-scale parallel computing platform. Repast HPC also provides two 

different programming styles: Logo-style C++ approach and standard C++ approach. 

 

3.2.3.4 Mason 

 

Mason is a Java-based open source platform, which was designed as a smaller and faster 

minimal simulation toolkit for researchers focusing on computationally demanding models by 

the Evolutionary Computation Laboratory and the Centre for Social Complexity in the George 

Mason University, USA (Railsback et al., 2006). It is developed especially for researchers who 

perform many simulation runs, so it was designed to add, remove, and modify features easily 

(Luke et al., 2004). It also provides some extensions that support GIS and social network 

topologies so that it can represent agents on the CA model, Euclidean model, network model, 

and GIS model.  
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3.2.4 Choosing concepts and platforms for ITS simulation 

 

Section 3.2 reviewed agent methodologies (analysis and design phase), physical agent 

development platforms, and agent modelling and simulation platforms. After reviewing these 

methodologies and platforms, this section outlines which concepts and platforms could be 

chosen and applied to this research. The concept of suborganisations and environmental model 

in the Gaia methodology is useful to specify the research scope and develop possible ITS 

scenarios. Also, BDI-related terms and visual notations of Tropos and Prometheus are used to 

describe intelligent vehicles and their communications. To implement vehicle agents and their 

communications, the agent modelling and simulation platforms are reviewed for virtual 

simulation, and Repast is chosen for the agent modelling and simulation platform. 

 

3.2.4.1 Choosing concepts from agent methodologies 

 

By reviewing widely used agent methodologies, it was realised that describing the environment 

and agents’ interactions differentiates agent methodologies from conventional object-oriented 

methodologies (Section 3.2.2). Based on the organisational concepts (e.g. suborganisations, 

organisational rules, and organisational structure) and the environmental model, the Gaia 

methodology provides clear modelling abstractions and techniques to derive agents’ role model 

and interaction model. Meanwhile, Tropos and Prometheus use a similar organisational concept 

(i.e. actor/subsystem in Tropos, agent grouping in Prometheus) to describe agents’ data/control 

dependencies rather than their interactions and cooperations.  

On the other hand, with regard to agent-related terms and notations for modelling, Tropos and 

Prometheus use BDI-related terms (e.g. beliefs, goals, actions, plans) and visual notations (e.g. 

goal diagrams, capability and plan diagram, and interaction diagram) during the analysis and 

design phases in order to specify agent capabilities and interactions. For instance, Tropos and 

Prometheus use visual notations based on the UML sequence diagram to express agents’ 

interactions (e.g. agent interaction diagram and interaction protocols) while Gaia uses tabular 

notations (e.g. role schema, protocol definition) to describe roles and interaction protocols.  

In conclusion, this research adopts the organisational concepts and the environmental model 

from the Gaia methodology to define agents’ roles and interactions, and uses visual notations of 

Tropos and Prometheus to express agent classes and their interactions. An ITS setting has well-
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defined subsystems and applications to support various traffic situations so that using 

organisational abstractions of Gaia would be very useful to develop vehicle agents in an ITS 

setting. In addition, vehicles in an ITS setting also interact with their environment via sensors 

and effectors (see the vehicle to infrastructure interaction in Table 1.1), and the road 

infrastructure can be designed as a part of the environment or as a set of active agents depending 

on situations and applications. Therefore, the environmental model of Gaia is also necessary to 

describe an ITS setting. For the notations for agent classes and their interactions, visual 

notations of Tropos and Prometheus could be used. In particular, an agent interaction diagram 

based on the UML sequence diagram could be very practical to describe several interactions 

among agents with a timeline since the vertical dimension of a sequence diagram represents 

time.  

 

3.2.4.2 Choosing agent simulation platform 

 

This chapter reviewed four agent modelling and simulation platforms in Section 3.2.3, namely, 

Swarm, NetLogo, Repast, and Mason. These platforms provide an integrated environment to aid 

the modelling of agents and their environment as well as to manage running the simulation. 

Even though each platform has a similar structure for modelling, scheduling, monitoring, and 

displaying, they still have different characteristics (Table 3.2).  

 

Table 3.2 – Comparison of ABMS platforms (Kravari and Bassiliades, 2015; Zheng et al., 2013)  

Criteria Simulation platform 
Swarm NetLogo Repast MASON 

Terms for 
Agents model swarm turtle agent, context model 

Terms for 
Environment space patch projection field 

License GPL GPL New BSD Academic Free 
License V3 

Open source yes no yes yes 
Simplicity complicated simple simple complicated 

Learnability average easy easy average 
Scalability average good good average 

Performance average good high good 
Stability average good high good 

Robustness low average high average 
Programing 

language 
Objective-C, 

Java NetLogo Java, Python, 
C++ Java 
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In terms of usability, scalability and extensibility, Repast Simphony was chosen as the agent 

simulation platform for this research because it has been developed in a way that applies the 

virtues of Swarm and NetLogo and provides the most powerful GIS support using Geotools and 

JTS. In addition, logics and code developed based on Repast Simphony can be reusable when 

implementing physical vehicle agents using Java-based agent development platforms. Moreover, 

Repast provides Repast HPC; this is a large-scale simulation platform for high performance 

computing, but was developed by adopting the same architecture as that used in Repast 

Simphony. Therefore, to extend the simulation for larger areas or larger datasets, the 

programming logic and design patterns developed in Repast Simphony can be migrated into 

Repast HPC easily even though they use different programming languages. While it is beyond 

the scope of this research, one of the important future research issues is to extend the simulation 

model with a larger dataset. 

 

3.3 Agent-oriented research in ITS-related domains 

 

As described in Figure 2.1, this research follows the view that GIS, pervasive computing, and 

ITS domains are tightly linked in terms of the convergence of advanced information and 

communication technologies. This convergence may be supported by three characteristics of 

road transport, as summarised by Burmeister et al. (1997): the transport domain is 

geographically and functionally distributed, subsystems have a high degree of autonomy, and 

settings are various and dynamic. This section explores agent-oriented research from two 

different perspectives16: the geospatial domain and the road transport domain. Agent-oriented 

research in these domains demonstrates several ways to simulate agents’ interactions in a model 

space representing a real world geographic environment, to implement intelligent agents to 

allow the space itself to possess intelligence, and to support dynamic traffic situations with 

communication technologies, respectively.   

                                                        
16 Since agent-oriented research in pervasive computing has been mostly focused on indoor applications 
such as smart homes, classrooms, and workplaces (Cook et al., 2003; Cook et al., 2009; Shen et al., 2005), 
agent-oriented research in the pervasive computing domain is not included in this section. 
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3.3.1 Agent-oriented research in the geospatial domain 

 

Agent-based modelling and simulation has various applications in the physical, biological, 

ecological, social, economic, and management sciences, but in many cases, physical 

components of real-world systems are modelled as agents and agents’ environment (Macal and 

North 2010). Schelling (1971) modelled economic segregation patterns from unorganised 

individual behaviours to get collective results, and his model has often been referred to as the 

first social agent-based model, in which agents and agent interactions represent unorganised 

individuals and the social process of segregation (i.e. separation, sorting) of their 

neighbourhoods. However, at that time, there were limitations to developing this kind of model 

because of a lack of computing power and of any applicable programming mechanism.  

Epstein and Axtell (1996) proposed an agent-based social simulation environment called 

‘Sugarscape’ based on a 51 by 51 cellular space, which is considered as the first large-scale 

agent model. In the Sugarscape space, agents move around to perform various behaviours and 

tasks, which can vary from simply collecting and consuming sugar to death, reproduction, 

cultural/informational exchange, combat, trade, disease transmission, and so on. Sugarscape 

also needs a rule to regenerate its environment; for example, sugar could grow back at different 

rates in different regions. They introduced various specific scenarios and variables using 

Sugarscape, so this model has been used as a good introduction to agent modelling and 

simulation (e.g. NetLogo, MASON).  

The majority of agent-based modelling and simulation has been done based on the CA model 

space because it is simple and easy to apply various rules for agents’ states and behaviours. The 

CA model space has been used for various applications in human geography, such as urban 

residential segregation (Benenson et al., 2002; Flache and Hegselmann, 2001; Fossett, 2006), 

urban growth (Batty, 2001), urban sprawl (Rand et al., 2002), the impact of green belts (Brown 

et al., 2004), and land use/cover change (An et al., 2005; Evans and Kelley, 2004; Evans et al., 

2006; Parker and Meretsky, 2004).  

Apart from agent-based urban modelling, there has been another trend to model human 

movement in local areas using GIS data sets (point, line, and polygon features) to represent real-

world geographic features for the simulation environment. Haklay et al. (2001) proposed the 

STREETS model to simulate pedestrian movement in a town centre. In the STREET model, 

building data were used to create a cellular surface representing agents’ walkability, and nodes 

of a street network, building entrances, and gateway locations (e.g. car parks, on-street parking 
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areas, railway stations, and bus stops) were used for agents’ planned routes (i.e. intended 

sequences of waypoints). To define agents’ routes, simple statistical distributions were used to 

set each agent’s socioeconomic group (i.e. shopping preference related to income and gender in 

this context) and behaviours (e.g. speed, visual range, etc.). In addition, Batty et al. (2003) 

simulated relatively large numbers of pedestrians for the Notting Hill Carnival in order to 

predict pedestrian movements in panic situations and evacuation scenarios. A GIS data set (e.g. 

a road network, the parade route, location points of sound systems, and tube stations) and 

network analysis of GIS were used to provide a cellular space for agents’ accessibility and 

shortest routes from the parade route and sound systems to tube stations (entry points). For open 

spaces, Gimblett et al. (2002) applied an agent-based approach to develop a recreational 

behaviour simulator to support the decision making of environment protection and to evaluate 

the recreational use of national park environments. Original and alternative trail paths for hikers, 

bikers, and off-road vehicles of Broken Arrow Canyon, Arizona, USA, are mapped and 

extracted using a GIS and are used for the simulations.  

Even though the aforementioned simulations using CA model spaces showed the potential of 

agent-based approaches and GIS data sets describing urban phenomena and human behaviours, 

CA model spaces (a series of discrete cells) still have limitations when presenting geometric 

details of various geographic features that have different sizes (e.g. buildings and houses) and 

patterns (e.g. linear features, such as roads) (Crooks, 2010b). Since several simulation platforms 

have started to support the GIS topology model space as one of their model spaces making it 

possible to use vector-based GIS data sets (e.g. shapefiles) for the agent environment, it is 

possible to use a more explicit geographical space in the modelling and simulation process 

nowadays. 

Crooks (2010b) presented an agent-based segregation model using vector GIS data to represent 

the urban environment explicitly. He applied the Schelling’s model to simulate residential 

segregation within a hypothetical cityscape, and explored how geographic features (e.g. points, 

lines, and polygons) might be affected during the simulation process. Two vector layers were 

used: a polygon layer representing the model space of urban environment and a point layer 

representing agents. The model was based on the Repast platform and Java Topology Suite 

(JTS), which is a set of Java-based libraries to provide spatial analysis functions. In the 

simulation, a point agent uses the standard overlay operators (e.g. point-in-polygon, buffering, 

and intersection) of JTS to calculate its neighbourhood and boundaries of area taking into 

consideration physical features, such as rivers, motorways, and railways in the urban 
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environment. It showed how geometry and spatial analysis operation can be integrated directly 

into the simulation process on a continuous space.  

Malleson (2010) adopted an agent-based model to represent the process and dynamics behind 

crime, especially for residential burglary. A vector-based GIS data set of Leeds (e.g. UK 

administrative boundaries, roads, buildings), acquired from the Ordnance Survey MasterMap 

Topography layer and the Integrated Transport Network (ITN) layer, was used for the accurate 

representation of the urban environment (i.e. household-level or street-level environment). In 

addition, the Leeds crime dataset (e.g. crime locations, date/time of offence, and/or victim 

information, nominal offender data), deprivation statistics, and Output Area Classification 

(OAC) indicating the social characteristics of local areas, were used to extract spatiotemporal 

patterns of city-wide burglary in Leeds. Household-level factors (i.e. accessibility, visibility, 

occupancy, security, attractiveness, and traffic volume) and community-level factors (i.e. 

community cohesion, community similarity) are considered to simulate residential burglary risk 

in Leeds on the Repast Simphony platform. 

Manley and Cheng (2011) presented multi-agent simulation of drivers’ reactions to replanning 

their route after an unexpected road closure and subsequent delay across urban road networks. 

They simulated individual drivers’ behaviours by defining agents’ personal knowledge and 

experience of the road network in order to predict the movement of non-recurrent congestion in 

response to a road closure. It was implemented using the Java-based Repast Simphony platform, 

and the road network of London was acquired from the Ordnance Survey MasterMap ITN layer. 

Driver agents are categorised into three profiles for different levels of spatial knowledge: taxi 

driver, commuter, or tourist. A taxi driver’s knowledge covers the whole road network while 

commuters know partial information, and tourists know only the key roads. Although the 

simulation used simple abstractions of drivers’ behaviours, it predicted the distribution of 

vehicle flows and the non-recurrent congestions caused by a road closure. 

We have reviewed agent-based approaches that model social agents and their unorganised 

behaviours/interactions in terms of the agents’ movements in the geographic space. CA models 

have been widely used to represent a geographic space, but recently, the use of vector datasets 

for agent simulation is increasing because the geographic features of a vector dataset can 

represent a geographic space with several layers that have different dimensions (e.g. points, 

lines, polygons, and 3D features). Particularly, linear features can provide a better 

representation of roads in a geographic space to simulate in more detail the dynamic movements 

of pedestrians or vehicles because their movements in each time ‘tick’ are not limited and 
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regularised by a cell size. The next section will review in more detail how agent technologies 

can support the transport domain and traffic situations.  

 

3.3.2 Agent-oriented research in transport systems 

 

Similar to the agent-oriented research in the geospatial domain, agent-based modelling and 

simulation has been adopted to analyse and design various applications in road transport 

including traffic management, traffic guidance/control, and capacity/resource management 

(Burmeister et al., 1997). In spite of the potential of an agent-based approach for various 

possible applications, this section focuses on reviewing agent modelling and simulation for real-

time traffic guidance and control based on vehicles’ interactions and communications.  

Hallé and Chaib-draa (2005) simulated a platoon of cars to increase highway traffic density and 

safety. For collaborative driving, they adopted a hierarchical architecture of three layers 

(guidance layer, management layer, and traffic control layer). Each vehicle has a guidance layer 

to control the vehicle actuators (longitudinal control and lateral control), while a management 

layer determines the inter-platoon and intra-platoon communications and a traffic control layer 

supports V2I communications (e.g. sign boards, traffic signals). It showed that the decentralised 

platoons was more flexible than the centralised platoons because each agent could make a 

choice to increase its own safety despite the fact that it exchanged more messages than the 

centralised model.  

Dresner and Stone (2005, 2004) proposed a reservation-based agent system to handle traffic 

congestion at an intersection. They divided an intersection into reservation tiles (cells), and each 

tile could be reserved by one car per time stamp. To improve the coordination protocol, seven 

message types are used. A vehicle sends the intersection a message (request, change-

request, cancel, reservation-completed) containing its expected arrival time and 

speed to the intersection, its maximum and minimum acceleration, its length and width, etc. The 

intersection agent simulates the vehicle’s journey and assigns intersection cells to the vehicle by 

sending a message (confirmation, rejection, acknowledgment) at each time stamp. 

Eichler et al. (2005) presented a simulation environment that combined a network simulator and 

a traffic simulator in order to investigate the benefits of vehicle-to-vehicle communications. 

Vehicles were regarded as moving nodes of a communication network and moving agents on a 

road network at the same time. A scenario was used in which a car broke down and sent a 
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warning message to surrounding cars, and the simulation result showed that, in most cases, 

wireless enabled cars received the warning message from the broken-down car and found a new 

route to avoid getting stuck in congestion. 

Kesting et al. (2008) simulated inter-vehicle communications on freeway traffic to resolve a 

stop-and-go wave situation by store-carry-forward (SCF) strategy using the opposite driving 

direction. A communication message is generated by a communicative vehicle on the occasion 

of a local speed change and sent to a communicative vehicle in the opposite driving direction. 

The message is then sent back to a communicative vehicle in the original driving direction. The 

recipient vehicle can predict the future traffic situation. In this way, two communicative 

vehicles in the same driving direction can communicate with each other beyond the 

communication range by using a communicative vehicle on the opposite driving direction as a 

relay station.  

In the urban setting, the design of broadcast routing protocol and vehicular cooperation can be 

more challenging because of complex road geometry and intersections. Viriyasitavat et al. 

(2010) proposed a new routing protocol for SCF strategy in the urban setting and simulated the 

performance of the protocol. Desai et al. (2013) investigated an agent-based congestion 

avoidance solution by performing cooperative route-allocation decisions at junctions along the 

route. Every vehicle agent exchanges its preferred route, undertaking internal processing of 

successive virtual negotiations to calculate overall utility and individual utility, and then shares 

the final resulting allocations. It showed that the local negotiation strategy is a promising 

strategy for effective traffic route allocation and congestion management.  

We have reviewed agent-based modelling and simulations describing specific traffic situations 

and vehicular communications. The traffic situations represent cars on the motorway, cars at an 

intersection, and a car breakdown. The simulation results show that the safety and mobility of 

transport can be improved if vehicles and/or the road infrastructure are situation-aware and 

autonomous, and the situation awareness of vehicle agents can be acquired by vehicular 

communications. Therefore, it can be said that vehicular communication is a compulsory 

component for both agent simulation and physical agent implementation in the transport domain 

for the transition towards ITS.  
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3.4 Mobility models in VANET simulations 

 

In the simulation of vehicular communications, it is essential to model the road traffic and 

movement patterns of mobile vehicles to evaluate the performance of vehicular communication. 

This section outlines the different usages of the mobility model in traffic simulations and 

VANET simulations and then provides mobility features in various VANET mobility models.  

Road traffic simulations can be classified into three types, which are macroscopic, mesoscopic, 

and microscopic, depending on the level of detail of the model representing vehicle mobility, 

traffic flow and road network topology (Yin-fei et al., 2015). A macroscopic traffic model 

describes traffic flow as a whole continuous flow that can be defined by macroscopic 

parameters such as speed and density, so it does not draw the details of individual vehicles such 

as lane change. A mesoscopic traffic model describes inflow and outflow of vehicles on road 

sections and intersections, so a group of vehicles on a certain road section is treated as a unit to 

be modelled. A microscopic model deals with each vehicle as a basic unit of the traffic flow so 

that it can reflect individual vehicles' microscopic behaviour such as car following, overtaking, 

lane changing, and so forth. Currently, various transport planning authorities, agencies and 

consultants have adopted simulators to model individual vehicles and their behaviour to 

evaluate/predict the impact of planned development or changes of a road infrastructure 

(Papageorgiou and Maimaris, 2012). TRANSIMS, CORSIM, VISSIM, PARAMICS, AIMSUN, 

SimTraffic, and TransModeler are such traffic simulators supporting macroscopic and 

microscopic levels of simulations (Henchey et al., 2013; Khairnar and Pradhan, 2010). 

Meanwhile, in the VANET research community, vehicles are treated as nodes of a network and 

determining the regulation of node movements is the essential part of the simulation (Al-Sultan 

et al., 2014). In addition, when evaluating network routing protocols, it is necessary that a 

mobility model is integrated with generic network simulators such as OPNET, NS-2, NS-3, and 

OMNet++ (Pan, 2008). Aforementioned commercial traffic simulators such as TRANSIMS, 

CORSIM, VISSIM, PARAMICS provide models of exact vehicular mobility and vehicular 

behaviour for traffic analysis, but they require commercial licenses and do not provide an API 

for the integration with a network simulator. For these reasons, commercial traffic simulators 

are not popular in the VANET research community, and open-source vehicular mobility models 

providing global vehicular mobility patterns for VANET simulation are widely accepted 

instead. In a VANET simulation, the mobility model is designed to provide a general mobility 
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pattern of vehicular nodes rather than very detailed vehicular movements for traffic analysis 

(Härri et al., 2007; Khairnar and Pradhan, 2010).  

A vehicular mobility model for the VANET simulation can be developed based on synthetic 

models, survey-based models, trace-based models (Table 3.3); or existing mobility models can 

also be used. The features of the existing major vehicular mobility models that can import GIS 

dataset for the road topology are compared in Table 3.4. Vehicles’ macroscopic mobility 

features (i.e. multi-lane, initial and destination position, trip generation, path computation, and 

velocity) are related to generate an initial traffic flow. The microscopic mobility features (i.e. 

car following model, lane changing model, intersection management model) have to be taken 

into consideration to model vehicles’ general interaction. Nevertheless, all the microscopic 

mobility features are not compulsory for the vehicular mobility model, and the level of detail of 

the mobility model can be simplified depending on the purpose of the simulation.  

 

Table 3.3 – Vehicular mobility models for VANET simulation ( Härri et al., 2007; Yin-fei et al., 

2015) 

Models Description 

Synthetic 
models 

- Mathematical models reflecting a realistic physical effect 
- Five classification (Fiore, 2006) 
• Stochastic models wrapping all models containing purely random motions 
• Traffic stream models looking at vehicular mobility as hydrodynamic 

phenomenon 
• Car Following Models, where the behaviour of each driver is modelled 

according to vehicles ahead 
• Queue Models which models roads as FIFO queues and cars as clients 
• Behavioural Models where each movement is determined by a behavioural 

rules imposed by social influences for instance 

Survey 
based 

models 

- By including large scale surveys and gathered extensive statistics of real traces 
into a mobility model, a generic mobility model is able to reproduce the non 
random behaviour observed in real daily life urban traffic 

 - Surveys and statistics of real traces over commuting time, lunch time, 
traveling distance, preferred lunch politics 

Trace based 
models 

- Extracting generic mobility patterns from movement traces 
 - Extrapolating patterns not observed directly by the traces 
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Table 3.4 – Mobility features of the vehicular mobility models (Härri et al., 2007; Manikandan and 

Dhas, 2012; Yin-fei et al., 2015) 

Models 
Macro-mobility Micro-mobility 

Multi 
lane 

Init/Dest 
position Velocity Multi 

lane 
Init/Dest 
position 

Lane changing 
(overtaking) 

Multi 
lane 

RiceM 
(Saha and Johnson, 

2004) 
no r u no no no no 

MOVE 
(Karnadi et al., 2007) 

SUMO/TraNS 
(Behrisch et al., 2011) 

yes r, ap s, r-d yes yes no no 

STRAW 
(Choffnes and 

Bustamante, 2005) 
no r s yes yes no no 

GrooveSim/ 
GrooveNet 

(Mangharam et al., 
2006, 2005) 

no r u, r-d no no no yes 

SSM/TSM 
(Mahajan et al., 2006) no r u, r-d no yes no no 

VanetMobiSim 
(Härri et al., 2006) no ap u, r-d yes yes yes yes 

r: random, ap: attraction point, u:uniform, s: smooth, r-d: road dependent 
 

3.5 Summary and discussion 

 

This chapter reviewed agent development paradigms (Section 3.2), agent related research in 

related domains (Section 3.3), and mobility models in VANET simulations (Section 3.4). Agent 

methodologies and various simulation platforms are reviewed in Section 3.2. From the 

methodologies, organisational concepts (of Gaia) and visual notations (of Tropos/Prometheus) 

were chosen to design and describe agent’s roles and interactions. Organisational concepts are 

used for categorising a whole ITS domain into subsystems to specify the application area of this 

research. In addition, visual notations are applied to design intelligent vehicles’ interactions and 

communications. Repast Simphony was chosen as an agent modelling and simulation platform. 

Following this decision, Section 3.3 reviewed agent-based approaches in the geospatial domain 

and transport domain to show the potential of vehicle agents’ autonomy and capabilities based 

on context awareness and social interactions. The geospatial domain and transport domain 

showed a pattern for use with agent modelling and simulation approaches focusing on agents’ 

movements, behaviours, and social interactions among people or vehicles in the geographical or 

traffic environment. In the transport domain, some agent-related research has started to simulate 

vehicles’ communications to show the potential of vehicular communications for traffic 
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guidance and control in real-time. Section 3.4 reviewed various mobility models for the 

VANET simulation. The level of detail of the macroscopic mobility features and microscopic 

mobility features can be decided depending on the purpose of the simulation.  

In this research, an agent simulation is constructed to assess the effects of agent 

communications in road transport. For the simulation, there is a need to develop a vehicular 

mobility model to generate a mobility pattern of vehicular nodes. The ontological 

communication message model, which will be developed here, can be used or replicated for the 

simulation.   
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4. Constructing scenarios 

4.1 Introduction 

 

In the previous two chapters, ontological approaches and agent-based approaches were 

reviewed and discussed from the perspective of intelligent vehicle agents. An ontological model 

can support the development of intelligent vehicle agents as a context model as well as the 

message contents of their communications. In addition, an agent model can be used to simulate 

the dynamics in traffic situations related to vehicles’ movements and communications in order 

to measure the effect of vehicular communications, which are based on the ontological 

framework. 

This chapter outlines the first stage of the methodological framework (Figure 1.3), choosing a 

target application area and specifying possible traffic situations and vehicular communications 

as scenarios. In Section 4.2, ITS user services are regarded as the whole organisation of ITS 

applications, and a user service is chosen to describe emergency traffic situations, in which 

DSRC can provide support to resolve the situations. In Section 4.3, two scenarios are proposed 

to describe an ambulance situation and another situation of a car breakdown on the motorway. 

Section 4.4 describes existing traffic interactions and potential traffic interactions based on 

vehicular communications. A conceptual diagram based on spatiotemporal relations among 

vehicles and road facilities on a road network is presented, and the relative location 

representation of vehicles is described to support intuitive communication contents from the 

perspective of individual vehicle’s and to simplify the decision-making process of vehicles. 

 

4.2 Target application area selected from ITS user services 

 

As a multi-agent system is considered as a computational organisation, organisational concepts 

are increasingly used to analyse and design multi-agent systems as a crucial component of 

agent-oriented methodologies (Zambonelli et al., 2001). The organisational role, as the main 

organisational concept, identifies agents’ roles within the system and the interaction protocols in 

which the different roles are involved (Zambonelli et al., 2001). As discussed in Chapter 3, the 

Gaia methodology provides three additional organisational concepts, namely, organisational 
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rules, organisational structures, and organisational patterns, to support the organisational role 

model. 

 

 
Figure 4.1 - The environment, suborganisations, and interaction media of an ITS environment 

(from Sill et al., 2011) 

 

As shown in Figure 4.1, a multi-agent system can be comprised of several computational 

suborganisations. These suborganisations are implemented as applications and services that 

constitute one big computational organisation/system. An ITS environment can be seen as a 

multi-agent system, ITS applications/services and their communication technologies correspond 

with the suborganisations and interaction media of a multi-agent system. In this section, ITS 

services are considered as suborganisations, so one suborganisation is chosen that is related to 

emergency traffic situations using local vehicular communications. Section 4.2.1 lists the whole 

organisation of ITS applications, and service bundles supporting a vehicle’s situation-aware 

characteristic by communications are highlighted in Section 4.2.2 and Section 4.2.3. Lastly, the 

target application area is chosen in Section 4.2.4. 

 

4.2.1 User services as the whole organisation of ITS applications 

 

To choose a target area, ITS user services representing all the application areas of the ITS 

domain are listed in Table 4.1 in terms of the organisational concept of intelligent agent 
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development. ITS user services are derived from the view of various users (e.g. the travelling 

public, different system operators) to show what kinds of services and applications should be 

developed in ITS. Each user-service bundle can be considered as a suborganisation, and each 

user service within it represents more detailed suborganisations within a suborganisation. There 

are 33 user services in Table 4.1, and each service is grouped into one of eight bundles as 

possible service areas/composites: Travel and Traffic Management, Public Transportation 

Management, Electronic Payment, Commercial Vehicle Operations, Emergency Management, 

Advanced Vehicle Safety Systems, Information Management, and Maintenance and 

Construction Operations.  

 

Table 4.1 - ITS User Services (Architecture Development Team, 2005) 

User-Service Bundle User Service 

1. Travel And Traffic Management 

1.1  Pre-trip Travel Information 
1.2  En-route Driver Information 
1.3  Route Guidance 
1.4  Ride Matching And Reservation 
1.5  Traveller Services Information 
1.6  Traffic Control 
1.7  Incident Management 
1.8  Travel Demand Management 
1.9  Emissions Testing And Mitigation 
1.10  Highway Rail Intersection 

2. Public Transportation 
     Management 

2.1  Public Transportation Management 
2.2  En-route Transit Information 
2.3  Personalised Public Transit 
2.4  Public Travel Security 

3. Electronic Payment 3.1  Electronic Payment Services 

4. Commercial Vehicle Operations 

4.1  Commercial Vehicle Electronic Clearance 
4.2  Automated Roadside Safety Inspection 
4.3  On-board Safety And Security Monitoring 
4.4  Commercial Vehicle Administrative Processes 
4.5  Hazardous Materials Security And Incident Response 
4.6  Freight Mobility 

5. Emergency Management 
5.1  Emergency Notification And Personal Security 
5.2  Emergency Vehicle Management 
5.3  Disaster Response And Evacuation 

6. Advanced Vehicle Safety 
    Systems 

6.1  Longitudinal Collision Avoidance 
6.2  Lateral Collision Avoidance 
6.3  Intersection Collision Avoidance 
6.4  Vision Enhancement For Crash Avoidance 
6.5  Safety Readiness 
6.6  Pre-crash Restraint Deployment 
6.7  Automated Vehicle Operation 

7. Information Management 7.1  Archived Data 
8. Maintenance And Construction 
     Management 

8.1  Maintenance And Construction Operations 
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A range of technologies for information and communications can be considered to implement 

these services. However, since this research aims to support situation awareness and the 

collaboration of intelligent vehicles (and infrastructure) by DSRC, the target application area 

should be related to local vehicular communications. Emergency vehicles, such as police cars, 

fire engines, and ambulances, can be proactive participants of local emergency situations, which 

vary, ranging from traffic incidents to disasters to evacuations. Meanwhile, vehicles in the 

vicinity of an emergency vehicle have to be reactive in order to cooperate to resolve the 

situation or to avoid being another obstacle in the situation. 

Therefore, exploring services related to proactive emergency vehicles and reactive vehicles 

around the emergency situations can be a good starting point to find a target application area. 

Situation-aware (proactive and reactive) characteristics of intelligent vehicle agents in 

emergency traffic situations are well-expressed in the user services in the fifth and sixth user-

service bundles in Table 4.1, which deal with emergency management and advanced vehicle 

safety systems, respectively. Services in these two bundles are examined in the following two 

subsections to find the target application area by checking which services support the situation 

awareness and vehicular communication. 

 

4.2.2 User services in the Emergency Management bundle 

 

In the Emergency Management bundle, there are three user services: Emergency Notification 

and Personal Security; Emergency Vehicle Management; and Disaster Response and 

Evacuation (Architecture Development Team, 2005). This section examines these three user 

services in a time sequence, and then their operational functions, communication contents and 

types are reviewed to find a target application area that is suitable for the purpose of this 

research. 

The three user services in the emergency management can be categorised into two parts based 

on a timeline from the occurrence of an incident or a disaster to the arrival of the response 

service on site as shown in Figure 4.2. The Emergency Notification and Personal Security user 

service belongs to the first part of the time sequence, which focuses on reducing the time from 

the occurrence of an incident or a disaster to the notification of an appropriate response body. 

The Emergency Vehicle Management user service and Disaster Response and Evacuation user 
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service belong to the second part, which minimises the time required to provide the response to 

the site after the notification (Architecture Development Team, 2005).  

 

 
Figure 4.2 - A timeline to provide an appropriate response to an emergency situation 

 

Information for the first part of the time sequence focuses on giving notification of the 

occurrence of an incident or a disaster with its static location/area and type. Meanwhile, services 

in the second part of the time sequence support the response resources (personnel and/or 

vehicles) accessing the scene, so they require more dynamic information when describing a 

situation. In this context, dynamic information means that it contains and supports the dynamic 

movements of response vehicles and personnel. For instance, when an emergency vehicle is 

moving to the scene, its communicating targets and the communication contents (information) 

are also changing. 

To find a user service requiring dynamic information in terms of communication subjects and 

contents in the Emergency Management bundle, each user service’s subservices, operational 

functions, and communication types are described in Table 4.2. The first and third user services, 

which are the Emergency Notification and Personal Security user service and the Disaster 

Response and Evacuation user service, are based on the centre-related communications; the 

former gives notification of an incident or a disaster while the latter provides efficient 

information for safe evacuation from the scene. The second service, the Emergency Vehicle 

Management user service, requires various types of vehicle-related communications to assist 

emergency vehicles and their movements. It has three subservices (i.e. Emergency Vehicle Fleet 

Management, Route Guidance, and Signal Priority), and each subservice has different 

operational functions and communication types.  
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Table 4.2 - Subservices, operational functions, and communication types in the Emergency 

Management bundle (Architecture Development Team, 2005) 

User Service Subservices and operational functions Communication type 

Emergency 
Notification and 

Personal Security 

The Driver and Personal Security subservice and 
the Automated Collision Notification subservice:  
• Notifying the occurrence of an incident with its 

location and type (e.g. mechanical breakdown, 
fire, non-injury accident, or injury accident) 

Vehicle-to-Centre 
Traveller-to-Centre 

The Remote Security and Emergency Monitoring 
subservice, the Wide Area Alert subservice, and  
the Protect Sensitive Traveller Information 
subservice:  
• Broadcasting security-related information (e.g. 

threat alerts, severe weather warnings, natural 
and human-caused disasters, military 
operations, and civil emergencies) with its 
coverage (location/area) 

Centre-to-Centre 
Centre-to-Infrastructure 
Centre-to-Vehicle 
Centre-to-Traveller 

Emergency 
Vehicle 

Management 

The Fleet Management subservice:  
• Providing communication connections between 

a dispatch centre and emergency vehicles 
• The dispatch centre makes real-time localisation 

of emergency vehicles possible 
• The centre can dispatch nearest emergency 

vehicles to an incident site so that response and 
arrival times of emergency service can be 
shortened resulting in improvement of dispatch 
efficiency 

Vehicle-to-Centre 
Centre-to-Vehicle 

The Route Guidance subservice:  
• Assisting dispatcher and emergency vehicle 

driver in determining the optimal (in terms of 
time) route to reach the incident scene, and, if 
required, from the incident scene to a suitable 
hospital 

• Providing route guidance for directing the 
emergency vehicle driver to the destination 

Centre-to-Vehicle 
in-vehicle 

The Signal Pre-emption subservice:  
• Providing the capability to pre-empt traffic 

signals on an emergency vehicle’s route so that 
the emergency vehicle is nearly always 
presented with a green signal and makes it 
possible to minimise its travel time 

• Warning drivers of affected vehicles that an 
emergency vehicle is approaching 

Vehicle-to-Infrastructure 
(or Centre-to-Infrastructure) 
Vehicle-to-Vehicle 

Disaster 
Response and 

Evacuation 

• Providing information for more efficient, safer 
evacuation for the general public in the vicinity 
of the disaster and the response personnel and 
resources accessing to the scene 

Centre-to-Vehicle 
Centre-to-Traveller 

 

In the Emergency Management bundle, communication technologies have primary roles to give 

notification of an incident and to share situational information with emergency vehicles as well 

as with affected vehicles and the road infrastructure. Although all user services in this service 

bundle are aimed at minimising the response time to an incident, the second user service (the 
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Emergency Vehicle Management user service) requires vehicle-related communications, the 

contents of which are directly related to vehicles’ movements. 

 

4.2.3 User services in the Advanced Vehicle Safety Systems bundle 

 

In the service bundle of Advanced Vehicle Safety Systems, there are seven subservices: 

Longitudinal Collision Avoidance, Lateral Collision Avoidance, Intersection Collision 

Avoidance, Vision Enhancement for Crash Avoidance, Safety Readiness, Pre-crash Restraint 

Deployment, and Automated Vehicle Operation (Architecture Development Team, 2005). This 

section reviews these seven user services, which enhance drivers’ perceptions of potential 

incidents with advanced electronics, communications, and processing and control systems.  

User services of the Advanced Vehicle Safety Systems bundle are primarily based on sensors 

(e.g. video sensors, laser sensors, infrared sensors), information processing, and automatic 

vehicle control (vehicle steering, braking, and/or throttle actions) to minimise the number and 

severity of crashes and collisions (Architecture Development Team, 2005). However, as a 

subordinate information transmission, vehicle-to-vehicle and vehicle-to-infrastructure 

communications can support various situations, in which a vehicle is about to change lanes or 

cross an intersection, or a collision is impending. Table 4.3 represents subservices, functional 

operations, and possible subsidiary communication types in the Advanced Vehicle Safety 

Systems bundle. The first three user services allow the driver to perceive approaching vehicles 

to avoid longitudinal, lateral, and intersection collisions using in-vehicle sensors and/or vehicle-

to-vehicle communications. The fourth user service (i.e. the Vision Enhancement for Crash 

Avoidance service) would be implemented by in-vehicle sensors during periods of poor 

visibility, such as night time or foggy conditions. Furthermore, the infrastructure to vehicle 

communication can assist intelligent vehicles (or the drivers) in complying with traffic signals 

and signs. Likewise, vehicle-to-vehicle and vehicle-to-infrastructure communications can assist 

intelligent vehicles (or the drivers) by providing the information about road conditions, 

anticipating an imminent collision, and allowing vehicle check-in to a dedicated highway lane, 

which are for the fifth, sixth, and seventh user services, respectively.   
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Table 4.3 - Subservices, operational functions, and communication types in the Advanced Vehicle 

Safety Systems bundle (Architecture Development Team, 2005)  

User Service Subservices and operational functions Possible 
 communication type 

Longitudinal 
Collision 

Avoidance 

Rear-End Crash Warning and Control, Adaptive 
Cruise Control (ACC), Head-On Crash Warning 
and Control, and Backing Crash Warning and 
Control:  
• Augmenting the driver’s ability to avoid or 

decrease the severity of a two-vehicle collision in 
which vehicles are moving in essentially parallel 
paths prior to the collision, or one in which the 
struck vehicle is stationary 

Vehicle-to-Vehicle 
Infrastructure-to-Vehicle 

Lateral Collision 
Avoidance 

Lane Change/Blind Spot Situation Display, 
Collision Warning and Control, Lane/Road 
Departure Warning and Control:  
• Enhancing the driver’s perception to avoid 

collisions that arise when a vehicle moves out of 
its lane and moves in a forward direction 

Vehicle-to-Vehicle 

Intersection 
Collision 

Avoidance 

Warning of imminent collisions with crossing 
traffic, Warning of stop control (stop sign or traffic 
signal) in the intersection ahead:  
• Augmenting the driver’s ability to avoid or 

decrease the severity of collisions that occur at 
intersections 

Infrastructure-to-Vehicle 
Vehicle-to-Vehicle 

Vision 
Enhancement for 
Crash Avoidance 

• Augmenting visually-acquired information in 
situations where driving visibility is low (such as 
night time or foggy conditions) in order to avoid 
collisions with other vehicles, fences, 
pedestrians, or obstacles 

• Assisting the driver in complying with traffic 
signals and signs 

Vehicle-to-Vehicle 
Infrastructure-to-Vehicle 
(mainly implemented by 
in-vehicle sensors such as 
passive far infrared 
sensor, active radar, laser 
radar, etc.)  

Safety Readiness 

Impaired Driver Warning and Control Override, 
Vehicle Condition Warning, and In-Vehicle 
Infrastructure Condition Warning:  
• Providing drivers with a warning regarding their 

own driving performance, the condition of the 
vehicle, and the condition of the roadway as 
sensed from the vehicle 

Infrastructure-to-Vehicle 
Vehicle-to-Vehicle 

Pre-Crash 
Restraint 

Deployment 

• Anticipating an imminent collision and 
activating passenger safety systems prior to the 
actual impact to reduce injuries and fatalities 
resulting from vehicle accidents 

Vehicle-to-Vehicle 
(mainly implemented by 
sensors capable of 
detecting the rapid 
closing of distance 
between the vehicle itself 
and other vehicles before 
an actual impact occurs) 

Automated 
Vehicle 

Operations (AVO) 

• Improving the safety and efficiency of highway 
travel by moving suitably equipped vehicles 
under fully automated control (i.e. hands-off and 
feet-off operation) as part of the traffic flow by 
vehicle check-in to an AVO designated lane 

Vehicle-to-Infrastructure 
Vehicle-to-Vehicle 
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In the Advanced Vehicle Safety Systems bundle, in-vehicle sensors and processors have 

primary roles to reduce the number and the severity of crashes. Nevertheless, vehicular 

communications still have subsidiary roles in this bundle to transmit situational information 

locally for the (potentially) affected vehicles. Although all the user services in this service 

bundle deal with sudden collisions and obstacles on the roadways or at an intersection, the first, 

second, third, and fifth user services (i.e. the three Collision Avoidance user services, and the 

Safety Readiness user service) are directly related to the information about the vehicle’s 

movements and the road conditions. 

 

4.2.4 The target application area of this research 

 

In Section 4.2.2 and Section 4.2.3, the Emergency Management service bundle and the 

Advanced Vehicle Safety Systems service bundle were examined to find the user services that 

support the situation awareness and vehicular communication. A user service (i.e. the 

Emergency Vehicle Management user service) from the Emergency Management service 

bundle and four user services (i.e. the three Collision Avoidance user services and the Safety 

Readiness user service) from the Advanced Vehicle Safety Systems service bundle were chosen 

to represent user services requiring dynamic situational information (e.g. vehicles’ movements) 

and vehicular communications (vehicle-to-vehicle and vehicle-to-infrastructure 

communications). This section specifies the target application area from the chosen user 

services in these two service bundles. 

First, the Emergency Vehicle Management user service of the Emergency Management service 

bundle is examined. It has three subservices: the Fleet Management subservice, the Route 

Guidance subservice, and the Signal Pre-emption subservice. The Fleet Management subservice 

and the Route Guidance subservice can be implemented based on Centre-to-Vehicle 

communication and/or In-Vehicle communication. For these two subservices, emergency 

vehicles have a fixed communication connection with a dispatch centre to update their locations 

and to be informed regularly so that the communication subjects are static as long as emergency 

vehicles are inside the dispatch centre’s coverage. Meanwhile, the Signal Pre-emption 

subservice can be implemented with ad hoc local communications from an emergency vehicle 

because the communication targets are dynamically changing as the emergency vehicle travels 

to the incident site or to the hospital. Whilst the emergency vehicle is travelling along its route, 
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it interacts with traffic signal controllers and vehicles around it to minimise travel time to the 

scene and avoid potentially dangerous conflicts at the same time. The Signal Pre-emption 

subservice can be realised using vehicle-to-vehicle communication and vehicle-to-infrastructure 

communication, both of which DSRC is designed for. Of course, the dispatch centre can also 

control traffic signals for the emergency vehicle since the dispatch centre monitors the 

emergency vehicle’s movements. However, the emergency vehicle has to communicate with 

vehicles that it is approaching anyway so local and direct communications (vehicle-to-

infrastructure and vehicle-to-vehicle communication) from the emergency vehicle can be more 

effective.  

Second, three Collision Avoidance user services and the Safety Readiness user service from the 

Advanced Vehicle Safety Systems service bundle are examined. For the three Collision 

Avoidance user services, vehicle-to-vehicle communications can be used to enhance vehicle’s 

situation awareness by sharing vehicles’ location and movement. For the Safety Readiness, 

vehicle-to-vehicle and infrastructure-to-vehicle communications can be used to share 

information about the conditions of a vehicle and of a road segment, respectively. Even though 

these user services are mainly implemented by electronics (e.g. sensors, processing and control 

systems), vehicular communications can be used to enhance drivers/vehicle agents’ situation 

awareness. In addition, the situations of these user services are compatible with the situations of 

the Signal Pre-emption subservice of the Emergency Management bundle.  

From two service bundles, subservices relating to the urgent situations containing vehicles’ 

dynamic movements are selected as the target application area (Figure 4.3). In emergency 

situations, vehicular communications can enhance intelligent vehicles’ (or drivers’) situation 

awareness to resolve the situations. The Signal Pre-emption subservice of the Emergency 

Management service bundle represents emergency vehicles’ proactive characteristics based on 

vehicle-to-infrastructure and vehicle-to-vehicle communications. As shown in Figure 4.3, seven 

subservices exist as part of the Advanced Vehicle Safety Systems service bundle, which 

represents the reactive characteristics of intelligent vehicles in emergency situations. These 

subservices are compatible with vehicle-to-vehicle and vehicle-to-infrastructure 

communications. The possible communication contents of the chosen target application area 

may include the vehicle's heartbeat data (e.g. vehicle’s position, speed, direction of travel, and 

size) and the signal phase and timing data of traffic signals.  
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Figure 4.3 - The target application area of this research 

To cover all the ITS services, vehicle agents have to support several services simultaneously, 

and they need to cooperate, coordinate, and negotiate with each other to provide multiple 

services and achieve multiple goals. However, the aim of this research is to show the potential 

of real-time vehicular communications in safety-critical applications. Therefore, the target 

application area is chosen, focusing on vehicle agents’ voluntary cooperation as individuals. 

The individual vehicle agents resolve an emergency situation by communications rather than 

their coordination and negotiation by a managing authority. 

The next section will describe two DSRC scenarios representing situation-aware (proactive and 

reactive) vehicle agents and their local vehicular communications from the chosen target 

application area. 

 

4.3 DSRC Scenarios 

 

By 2004, more than 100 DSRC applications have been suggested, and the list is still expanding 

(Schnacke, 2004). In many cases, applications need several different interactions between 

vehicles and infrastructure in a similar setting. Even though specified applications cannot cover 

all possible situations and events that may occur, the process of describing situations for 

implementing an application is necessary. Scenarios can be the bridge between applications and 
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situations since a scenario is ‘a rich and detailed portrait of a plausible future world’ presenting 

challenges and opportunities (The Futures Group, 1994, p.1). In this section, two scenarios are 

proposed to describe situations representing the target application area.  

In system development, various types of scenarios (e.g. story, situation, simulation, sequence, 

etc.) are used for different purposes. In this research, scenarios are used to describe problematic 

traffic situations and to highlight the potential of DSRC applications that can resolve the 

situations. Therefore, for the discussion here, a scenario means a story-like dynamic situation 

that provides a narrated description of a sequence of events bringing traffic contexts in a 

futuristic situation with imagined snapshots. From the scenarios, a geospatial ontological 

framework is developed in Chapter 5, and then agent modelling and simulation is used to 

examine vehicular communications and the ontological framework in Chapter 6. Therefore, in 

this thesis, the term ‘simulation’ has a different meaning from the term ‘scenario’. 

In a scenario, interactions among vehicles and road facilities are regarded as building blocks to 

describe a part of the situation from the perspective of vehicles and road facilities. Scenarios are 

very useful to find and categorise essential interaction components that can be used to build up a 

semantic framework for describing and resolving various situations.  

For scenarios, the communication environment can be assumed to fulfil one of three conditions: 

first, every vehicle and road facility can communicate with every other; second, some vehicles 

and road facilities can communicate with each other; or third, only limited vehicles and road 

facilities can communicate with each other. Even though this research focuses on the first 

condition dealing with communicative vehicles, hybrid situations wherein communicative 

vehicles and non-communicative vehicles coexist have to be considered. This is because these 

situations are inevitable during the transition period towards an ITS environment. Even after the 

transition, there is a possibility that some communicative vehicles can experience device/system 

failure somehow, and in this case, the communicative vehicles have to be treated as non-

communicative vehicles.  

The following two sections describe two scenarios exploring possible communications and 

communication contents to resolve emergency situations. The first scenario outlines a situation 

of an approaching ambulance that represents the Signal Pre-emption subservice of the 

Emergency Management bundle. The second scenario describes a car breakdown situation 

relating to the Safety Readiness user service from the Advanced Vehicle Safety Systems bundle.  
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4.3.1 A scenario about an ambulance 

 

The Signal Pre-emption subservice of the Emergency Management service bundle represents 

vehicle-to-infrastructure communications and vehicle-to-vehicle communications to provide the 

capability to pre-empt traffic signals and warn the drivers of affected vehicles around an 

emergency vehicle, respectively. The first scenario focuses on the vehicle-to-vehicle 

communications in an emergency situation where an ambulance broadcasts an alert message 

warning of its approaching to ask for priority over the vehicles around it. This scenario is based 

on the assumption that all vehicles have an OBE and can communicate with each other. The 

communication message must include the contents of the ambulance’s movement, such as its 

location, speed, flight path vector (FPV), communication range, etc. (Table 4.4).  

 
Table 4.4 - An example of emergency vehicle alert message (Michaels et al., 2010) 

Item Value 
Lat 51.4115136 
Long -0.3127456 
Speed 22.3 m/s  
Heading in FPV  due east 

Key Phrase “emergency vehicles on roadway” 
Heading Applied east and westbound traffic 
Extent for 50 meters  
Mass 2500 kg  
Response Equip Ambulance 
Responder Type ambulance units 
Response Type ‘01’ = emergency 
Response Details  Complex byte representing 
  SirenInUse ‘10’ = inUse 
  LightbarInUse  ‘10’ = inUse 
  MultiVehicleResponse ‘01’ = singleVehicle 

 

From the example shown in Table 4.4, an ambulance scenario was generated (Figure 4.4). In the 

scenario, an ambulance (A1) and another vehicle (V1) are following separate routes, which 

meet at an intersection (i1). If A1 is in a hurry to get to the hospital and there are cars travelling 

towards the same intersection as A1, subsequently sharing the same road segments, A1 can 

request priority over the other vehicles. Their interactions and movements are described with 

time stamps in Figure 4.5. The ambulance A1 requests priority over cars towards r3. There 

could be vehicles in front of A1 on r1, r2, and r3. In this case, there is one vehicle (V1) on r2, 

and V1 gives priority to the ambulance (A1). Even though the scenario uses only an ambulance 
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and a vehicle to show possible interaction between an emergency vehicle and the vehicles 

around it, the scenario can be extended with other vehicles and traffic signals for its 

implementation.  

 

 
Figure 4.4 - A scenario of an ambulance communicating with the vehicles around it 

 

 
Figure 4.5 - Snapshots of the ambulance scenario 

 

When the roads are not crowded, the ambulance A1 needs to consider only vehicles on the roads 

it is going to. However, if there is a traffic jam on the lane that A1 is in, and the opposite lane is 

not too crowded, A1 may use the opposite lane to move as quickly as possible in an emergency 

situation (Figure 4.6). In this case, A1 has to be aware of vehicles in both directions and 

communication targets can be increased.  
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Figure 4.6 - Ambulance’s expected route depending on the road status 

 

The ambulance scenario is developed based on the assumption that all vehicles have at least a 

communication device and a position sensor, such as GPS, in order to share traffic situations 

based on their locations. However, as mentioned at Section 1.2, an ITS setting is composed of 

intelligent vehicles and roadside facilities, which have context-awareness, ad hoc networks, and 

smart sensors (Strang and Linnhoff-Popien, 2004). If the vehicular communication network 

cannot cover all vehicles and infrastructure, which is the second condition or third condition 

mentioned of the communication environment described in Section 4.3, other sensors, such as 

video camera, LIDAR, or radar sensor, can be used to identify vehicles in the vicinity and to 

supplement the limitation of partial communication.  

Let us suppose a situation of the second condition where only some vehicles can communicate 

with each other at an intersection. In this case, even though A1 and V1 can communicate with 

each other, A1 could not know whether there are other vehicles on r2 and r3 near the 

intersection. However, if V1 has an optical sensor and processing power as well as a 

communication device, it can assist the ambulance partly with three actions (Figure 4.7 a). First, 

it can sense whether there are other vehicles ahead on r2 and r3. Second, it can send 

information back to the vehicles behind by communicating and turning on the emergency lights 

so that it can control the cars behind it to give the ambulance priority. Thirdly, it can inform the 

ambulance that the vehicles behind it are in control and whether there are more cars in front of it 

on r2 and r3. Therefore, the situation can be fully controlled when V1 senses that there is no 

car ahead on r2 and r3.  

On the other hand, if ambulance A1 is in the third condition of the communication environment, 

only limited vehicles and road facilities, such as ambulances and traffic controllers, can 
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communicate with each other. In this case, if there are no traffic lights on the intersection, there 

is no way to assist the ambulance by communication. However, if there are traffic lights and a 

traffic controller on the intersection, the ambulance can request a green signal from the traffic 

controller. Then the traffic controller may present a green signal for the ambulance while it 

presents a red signal to vehicles on r2 and r3 (Figure 4.7 b). If there is a roadside sensor 

monitoring road r3, this can result in a case similar to the above situation in the second 

condition.  

 

 
Figure 4.7 - Sensing technologies assisting in traffic situations 

 

Despite the fact that additional sensors can be used to describe a situation, the research adheres 

to the basic scenario, in which vehicles have only a communication device and a position sensor. 

Vehicles that have these two devices fulfil the minimum conditions to be considered as 

intelligent vehicles, and in this way, the research can focus on developing a reliable 

spatiotemporal data framework for vehicular communications. 

 

4.3.2 Another scenario about a car breakdown on the motorway 

 

As mentioned above, in some cases, communication technology is not enough to resolve a 

situation. In many cases, sensing technologies are essential for gathering information from the 

physical environment. Various sensors can be implanted into vehicles and road facilities in 

order to assist safe traffic flows on the road by capturing situational information from the real 

world environment, as described in Section 4.2.3. After vehicle and infrastructure agents receive 

the information, they can then share the information and cooperate with each other via 
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communications to prepare for the situation and avoid being part of the problem. For example, 

if there is an icy road or an icy bridge ahead and a vehicle gets the information from its sensor 

directly or by communication with other vehicles that have already sensed the icy spot, they 

may change lanes to avoid the ice or slow down to minimise the risks in advance. If there is a 

car accident on the motorway, the accident scene can be a traffic obstacle. An icy road, a foggy 

area, and an accident spot are similar in the way that they can be obstacles to traffic flows on the 

road. The second scenario is developed to represent vehicle/infrastructure condition warning 

subservices, which are part of the Safety Readiness user service in the Advanced Vehicle Safety 

Systems service bundle.  

In the second scenario, a car breakdown situation is depicted as a traffic obstacle on the 

motorway (Figure 4.8). There is a vehicle B1 on the right lane of a two-lane motorway17 for 

each direction, and a sudden problem occurs in vehicle B1’s engine (Figure 4.9a). So, the driver 

of the vehicle B1 turns the emergency lights on and manages to pull the vehicle over into the 

left-hand lane of the motorway since there is no hard shoulder or breakdown lane on this road 

section of the motorway (Figure 4.9b). Then, the driver of the vehicle notifies a breakdown 

service provider of its condition and awaits the response. If the broken-down vehicle B1 can 

broadcast its presence to the vehicles behind, the recipient vehicles (i.e. V2, V3, and V4 of 

Figure 4.9c) can slow down or change lanes. Since the vehicle stops on the second lane, which 

is designed for large and slow-moving vehicles, such as goods vehicles and buses, it is hard for 

coming vehicles to realise the situation if the vehicles (e.g. V4 of Figure 4.8) have an obstructed 

view because of large vehicles in front.  

 

 
Figure 4.8 - A scenario of a broken-down car broadcasting its sudden stop 

 

                                                        
17 Normally, there are more than two lanes (e.g. dual three-lane motorway, dual four-lane motorway), but 
a dual two-lane motorway is considered for a simple description of the vehicle breakdown scenario. 
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Figure 4.9 - Snapshots of the vehicle breakdown scenario 

 

If a recipient vehicle also can communicate with others, it cannot only relay the broadcast 

message of the broken-down car, but can also communicate its sudden braking or sudden lane 

change to the vehicles heading towards it. Using vehicle-to-vehicle communications, vehicles 

can receive the situational information about an obstacle (i.e. the car breakdown in this scenario) 

and have more response time to slow down and change lanes without any sudden reactions. 

Even though this scenario contains the vehicle-to-centre communication to notify a breakdown 

service provider of the car breakdown, it is designed to highlight the vehicle-to-vehicle 

communications to broadcast/give warning of the broken-down car’s presence to vehicles 

approaching the scene.  

 

4.4 Spatiotemporal relations and location representation for the 

scenarios 

 

Two scenarios were described in Section 4.3 representing the use of vehicle-to-vehicle 

communications to resolve emergency situations. The first scenario was about an ambulance, 

which travels much faster than other cars, while the second scenario was about a car breakdown, 

which is a sudden obstacle and danger that blocks rapidly moving vehicles on the motorway. 

Using communications, the ambulance in the first scenario could request priority over cars and 

traffic signals, and in the second scenario, vehicles heading towards the car breakdown spot 

could reduce their speed gently and prepare to stop and/or change lanes. In both cases, vehicles 

are informed about a situation beforehand via vehicular communications so that they have more 

response time to prepare for and take action to deal with the situation. 
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For both scenarios, communications are essential for vehicles and the infrastructure to share 

traffic situations. For the communication contents, vehicles’ dynamic locations and their spatial 

relations (i.e. distance relations and directional relations) are crucial elements because their 

relative locations are key information to decide whether they are in the affected area of the 

emergency. The following two subsections outline spatial relations and linear referencing to 

support effective traffic interactions and location representation, respectively. Section 4.4.1 

outlines how conventional traffic interactions can be extended by vehicular communications 

based on spatiotemporal relations among vehicles and the road infrastructure. Section 4.4.2 

proposes a relative representation of vehicles’ locations and movements for simple and intuitive 

communication contents. From the perspectives of spatial relations and location representation, 

situational information of the scenarios can be extracted as components of the communication 

contents.  

 

4.4.1 Spatiotemporal relations for communication-based traffic interactions 

 

This section describes how vehicular communications can support traffic interactions by 

generating spatiotemporal relations among vehicles and the road infrastructure. It starts with 

describing conventional traffic interactions without communications. Then, it demonstrates how 

traffic interactions can be extended by vehicular communications. Finally, it shows how spatial 

relations can be generated by vehicular communications.  

 

4.4.1.1 Conventional traffic interactions without vehicular communications 

 

Regardless of communication technologies, (drivers of) vehicles and the road infrastructure 

already cooperate, coordinate, and negotiate with each other following traffic situations and 

instructions. When a vehicle reduces its speed or is turning right at an intersection, it interacts 

with the vehicles around it by turning on the brake-lights or the indicator. It also follows traffic 

signals and traffic signs along the road. However, in emergency situations, emergency vehicles 

are exempt from several traffic rules and regulations by law.  
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For example, in the emergency situation of the first scenario, the drivers of the emergency 

vehicles (police car, fire engine, ambulance, etc.) can treat a red traffic light as a give way sign18 

and exceed the statutory speed limit19. Emergency vehicles override general traffic instructions, 

and most road users should allow emergency vehicles’ priority. The problem is that if drivers’ 

perception and response time for an emergency vehicle is not fast enough, the rapidly moving 

emergency vehicle may be involved in exposure to an incident/collision at an intersection or 

blocking by vehicles ahead. Even if an ambulance approaching an intersection is asking for 

priority over other vehicles by using its siren and strobe warning light, the traffic signal 

controller of the intersection is not aware of the ambulance’s presence. The traffic lights at the 

intersection will still function in accordance with the already fixed cycle based on the hourly 

statistics of the traffic volumes of the road. Therefore, potentially affected vehicles heading to 

the intersection may experience a conflict between a green signal and the ambulance’s approach.  

Likewise, in the emergency situation of the second scenario, the broken-down car on the 

motorway can have a negative influence on the traffic flow and so cause a traffic jam. 

Following vehicles could slow down suddenly and become stuck in the traffic jam without 

knowing why. If the following vehicles have an obstructed view because of larger goods 

vehicles and coaches, they can misunderstand the situation and not try to change lanes until they 

get a clear view of the scene, which can exacerbate the situation.  

 

4.4.1.2 Extended spatiotemporal relations via vehicular communications 

 

As described in the scenarios, if vehicles (and road facilities) can send and receive situational 

information via communication technologies, they can request and respond to such information 

to improve the safety and efficiency of the traffic flow in real time and resolve various local 

situations. 

To support traffic interactions based on vehicular communications, information about vehicles’ 

movements, traffic signal’s location, and their spatial relations at a specific time, has to be a part 

of the communication contents. There can be two kinds of spatial relations: static spatial 

relations and dynamic spatial relations. If there is a traffic light controller at an intersection and 

                                                        
18 Regulation 36 of the Traffic Signs Regulations and General Directions 2002,  
     http://www.legislation.gov.uk/uksi/2002/3113/regulation/36/made 
19 Section 19 of the Road Safety Act 2006, http://www.legislation.gov.uk/ukpga/2006/49/section/19 
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four road segments are connected to the intersection, the traffic light controller and the four road 

segments have spatial relations, which are not changing and are temporally static. Meanwhile, if 

there are vehicles on the road segments, spatial relations between the vehicles and the traffic 

light controller can be dynamic as vehicles are moving on the roads and their locations are 

spatially changing continuously. This kind of spatial relation is only valid in a specific time 

period when the vehicles are coming to the intersection that the traffic controller controls, so 

their dynamic spatial relations can be regarded as spatiotemporal relations. 

Figure 4.10 describes binary relations between individuals (instances) of Vehicle, Route, 

RoadElement, Intersection, and TrafficLightController classes on a road network. For example, 

a vehicle has an origin, a destination, a current location, and its own route for a journey, while a 

traffic light controller is located near an intersection and controls the traffic lights for vehicles 

on the road towards the intersection. Basically, a binary relation between two objects means that 

an object has another object as a property so that it is also called as an object property. Since 

this research has focused on emergency situations on the road, most binary relations in Figure 

4.10 represent spatial relations or spatiotemporal relations among vehicles and road facilities 

referring to the road geography and network.  

 

 
Figure 4.1020 - An example of binary relations based on vehicular communications 

 

                                                        
20 It follows the representation (i.e. legend) of OWL ontologies (i.e. individuals, classes, properties) that 
was written by Horridge et al. (2011). 
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There are various possible binary relations (dotted lines in Figure 4.10) between a vehicle and a 

traffic signal controller and between a vehicle and another vehicle. If the ambulance of the first 

scenario is heading towards an intersection at which a traffic signal controller controls the 

traffic lights, the vehicle-to-infrastructure communication link between the ambulance and the 

traffic light controller can be made. The ambulance needs to transmit a warning message to the 

traffic controller to request its signal pre-emption. Likewise, vehicle-to-vehicle communication 

links are necessary for the ambulance of the first scenario and the broken-down vehicle of the 

second scenario to send a warning message to potentially affected vehicles in the vicinity of the 

ambulance or the broken-down vehicle. It is obvious that the location and route information of 

the ambulance or the broken-down vehicle referring to the road geography and network is 

important for the recipient vehicles to find out whether to take action or not. If a vehicle 

receives a message from the ambulance, the vehicle needs to calculate its location relative to the 

ambulance. If the vehicle is in front of the ambulance and they have a shared route, the vehicle 

needs to take action when it is in the affected area. If a vehicle on the motorway receives an 

alert message from the broken-down vehicle, and it is located behind the broken-down vehicle, 

it also needs to take action.  

To sum up, spatiotemporal relations among vehicles and the road infrastructure are essential to 

support vehicular communications. When vehicles share their locations and routes with 

reference to the road geography and network via vehicular communications, their 

spatiotemporal relations can be generated to represent the interrelation of the participant 

vehicles of the situations of the scenarios.  

 

4.4.2 Relative location representation 

 

In Section 4.4.1, the binary relations representing spatiotemporal relations among vehicles and 

road facilities are emphasised because an entire situation can be depicted by describing the 

spatially related participants of the situation. A binary relation between two vehicles can be 

generated when they communicate with each other to share information about their presence 

and compare their locations to decide whether the recipient vehicle is in the affected area of the 

situation and so take action or not. This section proposes a relative location representation to 

simplify the communication contents and split the geometric calculation from the decision-

making process of vehicles. 
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To implement the first scenario, the ambulance needs to broadcast a communication message, 

and the recipient vehicles need to check whether they are in a situation to give way to the 

ambulance or not. For the second scenario, the car involved in the breakdown needs to 

broadcast a communication message about its presence. Of course, another vehicle or a road 

facility that senses the breakdown can broadcast a warning message on behalf of the broken-

down vehicle. The recipient vehicles in both scenarios need to analyse the received message to 

check whether they need to slow down and give way to the ambulance or change lanes to avoid 

the broken-down vehicle. In both cases, the recipient vehicles need to analyse the message to 

check whether they are affected by the situation or not. In the emergency situations (i.e. an 

approaching ambulance in the first scenario and a car breakdown spot ahead in the second 

scenario), the recipient vehicles’ interactions and responses depend on their spatiotemporal 

relations. Their location and route have to be compared with the location and route of the 

ambulance or broken-down vehicle to identify whether they can be affected by the emergency 

situation or not. This decision-making process of vehicles can involve geometric calculations, 

but the direct geometric distance (i.e. Euclidean distance) between two vehicles cannot 

represent their network distance (a.k.a. road distance) properly. Therefore, this research 

proposes a relative representation of geographical locations as an improved way to represent 

vehicles' spatiotemporal interrelation and support their interrelations. 

In a transport network, in order to describe a situation, a location expression is required in 

emergency reporting, highway maintenance, etc. (Noronha and Church, 2002). Coordinates, 

street addresses, or landmarks can be used to express the location of a traffic situation. However, 

communicating parties in the transport domain have used linear referencing, in which a location 

is expressed relatively as a distance from a known reference point along a road centerline. This 

method is useful to dispatch a worker to a linear referenced location (e.g. a tunnel 3 km along a 

road from a reference point, rather than to a pair of coordinates, a street address, or a landmark) 

(Noronha and Church, 2002). In an ITS setting, vehicles and the roadside infrastructure are 

interconnected and form a vehicular network so that they can share each other’s location-related 

messages in real time. Therefore, their relative locations can be used as communication contents 

to implement various DSRC applications, such as intersection collision avoidance, lane change 

warning, forward collision warning, or emergency vehicle warning (Schagrin, 2008).  

The location and speed of the ambulance and vehicles in the first scenario can be represented 

relatively, i.e., in reference to local road segments and junctions. To simplify the scenario and 

focus on vehicles’ longitudinal interrelation, the road network was treated as a one-dimensional 
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linear space, and lane-level positioning and lane-related properties were not considered. The 

ambulance A1’s location (absolute coordinates) and speed (50 mph), (see Figure 4.5 a) can thus 

be referred to as 69.46 metres or 3.1 seconds from the intersection i1; while the vehicle V1’s 

location and speed (30 mph) is 60.72 metres or 4.5 seconds to the intersection. In this example, 

the vehicle V1 needs to decelerate and stop before entering the intersection in order to give way 

to the ambulance because 1.4 seconds is not enough time to avoid a collision. In this way, the 

relative representation of a vehicle’s location in an emergency scene helps each vehicle to 

understand the situation from an individual perspective so that each vehicle’s decision-making 

process can be simplified by comparing the ambulance’s and the vehicle’s relative distance/time 

to a junction, which are scalar values, thus avoiding geometric calculations. It can be 

implemented if the ambulance broadcasts a warning message containing the relative distance 

and speed to a junction, and recipient vehicles around it calculate their own relative position and 

compare their relative location to the ambulance’s relative location in turn. Of course, geometric 

calculations are necessary for each vehicle to generate relative information, but in this way, the 

decision-making process and geometric calculations can be separated.  

 

4.5 Summary and discussion 

 

This chapter described a process to extract the target application area from the ITS user services 

(Section 4.2), two scenarios representing the chosen target application area (Section 4.3), and 

spatiotemporal relations and location representation to decompose scenarios and build 

communication contents (Section 4.4). 

First, Section 4.2 showed how a target application area can be selected from all the ITS user 

services. Two service bundles, which are the Emergency Management service bundle and the 

Advanced Vehicle Safety System service bundle, are extracted to represent intelligent vehicles’ 

proactive and reactive characteristics based on vehicular communications. Then, several 

subservices in the two service bundles are chosen as the target application area of this research. 

The subservices in the chosen target application area deal with the dynamically moving vehicles 

based on vehicle-to-vehicle communications so that the target application area corresponds with 

the purpose of this research. This section also showed the general process used to extract a 

specific area (subsystem) from the whole system so that the process of this section can be used 

to extract different target areas representing the different characteristics of intelligent vehicles 

and infrastructure. 
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Second, in Section 4.3, two scenarios were developed to represent the chosen target application 

area. The first scenario describes a situation related to an ambulance while the second scenario 

depicts a breakdown situation on the motorway. The both scenarios contain dynamically 

moving vehicles and their communications. For the first scenario, the affected area of the 

ambulance is spatially dynamic as the ambulance is rapidly travelling on the road towards the 

incident spot or the hospital. The ambulance can be regarded as an obstacle for other vehicles 

because it disturbs the traffic flow. Similarly, the vehicles in the traffic flow can be regarded as 

obstacles for the ambulance if the ambulance’s journey is delayed because the road is crowded. 

Meanwhile, the broken-down vehicle in the second scenario is spatially stationary. 

Consequently, the affected area of the breakdown can be spatially static; if vehicles are moving 

at free flow speeds and have enough time to respond to the breakdown, the breakdown will not 

cause a traffic jam. In this case, it is obvious that the broken-down vehicle is the obstacle for the 

vehicles approaching the breakdown spot. The two scenarios depict two different traffic 

situations representing the chosen target application area, in which vehicular communications 

may have a positive influence on resolving the situation.  

Third, Section 4.4 showed how traffic interactions can be extended via vehicular 

communications and how spatial information about vehicles’ locations and movements can be 

used as communication contents that describe traffic situations. The traffic situations of the 

scenarios can be decomposed into objects/agents and their properties including binary relations, 

and each component can be a part of the communication contents. In particular, vehicles and 

road facilities refer to the road geography and network to represent their locations and 

movements, so relative location representation (a.k.a. linear referencing) is proposed. The 

relative location representation simplifies the communication contents and separate geometric 

calculations from the decision-making process of the recipient vehicles. 

For the process of constructing scenarios throughout the chapter, the analysis phase of the Gaia 

methodology (Section 3.2.2) was referred. The target application area and two scenarios are 

selected from whole ITS user services based on the sub-organisation concept of the 

methodology. The communication-based interactions and relative location representation are 

demonstrated to support intelligent vehicle’s interactions and decision-making process resolving 

the emergency situations. In the scenario, resolving an emergency situation can be seen as an 

organisational rule. Therefore, in a perspective of the Gaia methodology, it can be said that in 

this chapter two sub-organisations are selected, and organisational rules are captured.  
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The scenarios developed in this chapter will be used for the ontology modelling in Chapter 5 

and the agent modelling and simulation in Chapter 6. An ontological message model for 

vehicular communication is designed to support vehicles’ processing and reactions through 

ontology querying and reasoning in Chapter 5. Chapter 5 will explain how ontology class 

structure and querying/reasoning patterns are created in the message model and a 

communication message can trigger neighbour vehicles’ reaction to resolve the emergency 

situation. Conceptually, the process of Chapter 5 can be seen as the architectural design phase of 

the Gaia methodology. The ontological message model is replicated in a vehicle agent class for 

the simulation in Chapter 6. Building a vehicle agent model for the simulation can be seen as 

the detailed design phase of the Gaia methodology, and then the simulation is done instead of an 

implementation.  
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5. Geospatial ontological framework 

5.1 Introduction 

 

This chapter outlines the second stage of the methodological framework (Figure 1.3), that is, 

developing a geospatial ontology model for intelligent vehicles and infrastructure to share 

geosemantic information in an ITS environment. The ontology model contains a domain 

ontology, a task ontology, and an application ontology. Even though the domain ontology 

covers general concepts of the ITS domain, the task ontology and application ontologies focus 

on specifying the communications among vehicles and road facilities. Since vehicles and 

infrastructure are the most important components of the research, the ontology model is named 

‘VEIN’ in reference to the ‘VEhicle’ and ‘INfrastructure’ classes.  

In the following sections, the development process of the domain ontology, the task ontology, 

and the application ontology of the VEIN ontology model are explained. Then, the application 

ontology of the VEIN model is examined to demonstrate how vehicles and their interactions in 

the scenarios can be modelled. First, Section 5.2 outlines the domain ontology of the VEIN 

ontology model to describe situations in road transport based on the four main classes (vehicle, 

road infrastructure, centre, and traveller) of the ITS architecture and with reference to existing 

ontologies. Second, Section 5.3 deals with the task ontology to describe vehicle-to-vehicle 

communications and vehicle-to-infrastructure communications based on On-Board Equipment 

(OBE) and Road-Side Equipment (RSE), which are DSRC devices for vehicles and road 

facilities, respectively. For the domain ontology and the task ontology, this research provides 

only classes and their hierarchy in order to focus on the application ontology. Third, the 

application ontology of the VEIN model is developed in Section 5.4 to describe two scenarios 

with reference to the domain ontology and the task ontology. To satisfy the scenarios, some 

classes in the application ontologies are simplified and removed whilst properties and relations 

are added to describe the scenarios in more detail. Section 5.5 demonstrates how vehicles and 

their interactions in the two scenarios can be instantiated with the application ontology of the 

VEIN model. Some functions and query templates are made in the application ontology to assist 

vehicles’ action and response in emergency situations. Lastly, Section 5.6 summarises and 

concludes the chapter. 
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5.2 Domain ontology of the ITS domain  

 

In an ITS environment, there can be many applications, for example, arterial management, 

freeway management, crash prevention and safety, road weather management, or emergency 

management (Maccubbin et al., 2008). Even though this research focuses on short-range 

vehicular communication, the domain ontology should contain the general concepts of the ITS 

domain to ensure the opportunity that it can be extended for other ITS applications. Therefore, 

the process of building the domain ontology starts with a review of the four upper classes 

conceptualising the ITS architecture described in Section 1.3. Then, on top of the four upper 

classes, subclasses are captured and categorised from scenarios and existing transport ontologies 

in order to build classes and their hierarchy to describe a general ITS environment.  

 

5.2.1 Four upper classes of the domain ontology 

 

The four upper classes, which are Vehicle, Infrastructure, Centre, and Traveller, 

are derived from the four main classes of the ITS architecture as described in Section 1.3. It 

seems that these four classes are concepts that are compatible with the conventional road 

transport domain since they describe concepts that already exist, but there is a big difference 

between the conventional road transport domain and the ITS domain. In the ITS domain, 

vehicles, infrastructure, traffic centres, and travellers have most of the communication power. 

They can send and receive communication messages to share situational information so that 

they can be aware of situations beforehand and have a longer response time to take action when 

there is an emergency situation.  

The subclasses of the four upper classes can affect each other based on their spatiotemporal 

relations. The possible interactions and relationships among the four upper classes are described 

in Table 1.1 of Section 1.3. A subclass in the VEhicle class and another subclass of the 

INfrastructure class can have a binary relation based on their locations at a particular 

time, and two subclasses belonging to different upper classes can communicate with each other 

to assist each other or to resolve situations. For example, a signal controller may send a stop 

sign violation warning to a vehicle in order to avoid a collision when the vehicle ignores traffic 

signals and tries to cross an intersection rapidly. A public transport vehicle may also request its 
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priority to the traffic signal controller, in which case the traffic signal controller reschedules the 

traffic signals to resolve the situation.  

A domain ontology should provide concepts (i.e. classes, terms) and the specific meaning of the 

concepts to represent a specific domain as a concept or term can have many different meanings. 

For example, the word ‘vehicle’ can be used for any manufactured device that moves people 

and goods, such as bicycles, motorcycles, trains, ships, boats, and aeroplanes. In this thesis, the 

word ‘vehicle’ refers to mobile machines that travel on the road in an ITS environment. So, the 

four upper classes of the domain ontology for the ITS domain are specified with the definition 

as follows.  

• ‘Vehicle’ indicates a mechanical road vehicle that has an engine to carry people or 

goods from place to place. Commuter cars, police cars, ambulances, and black cabs can 

be instances of this class. A vehicle may have an On-Board Equipment (OBE) for 

DSRC as a communication agent. VEhicle is a category and a super-class. 

• ‘Infrastructure’ indicates the fixed installations that allow vehicles to operate by 

providing the road environment. Road segments, intersections, traffic signs, traffic 

signals, and bridges can be instances of this class, and they may have a Road-Side 

Equipment (RSE) for DSRC. INfrastructure is a category and a super-class.  

• ‘Centre’ indicates a traffic centre that can communicate with vehicles, infrastructure, 

and travellers’ mobile devices to transmit traffic information. For example, a dispatch 

centre can dispatch emergency vehicles to an emergency scene via mobile 

communication. A traffic centre can have a wire communication connection with road 

facilities because traffic centres and road facilities are both static and fixed spatially. 

Centre class is a category and a super-class.  

• ‘Traveller’ indicates (potential) road users such as pedestrians, drivers, or 

passengers of a vehicle who may have a mobile device to communicate with vehicles, 

the road infrastructure, and traffic centres. For example, a traveller can notify a traffic 

centre of a car accident to help them to dispatch emergency vehicles and resolve the 

situation. Traveller is a category and a super-class. 

 

Even though this research focuses on the two scenarios described in Section 4.3, four upper 

classes are developed to model general concepts in the ITS domain. Instances of the Vehicle 

class and the Infrastructure class are subjects of communications. They are also 

instances of the road vehicles and the physical environment respectively to provide the road 
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services to the road users that are instances of the Traveller class. The Centre class can be 

seen as a subclass of the Infrastructure class because it is also part of the road 

infrastructure that is providing the road service. However, in this research, the Centre class is 

defined as an upper class because it is the major subject of central communications providing 

general information (e.g. car accidents and congestions) on the road using radio and digital 

signboards. 

Based on the four upper classes (Vehicle, Infrastructure, Centre, and Traveller), 

subclasses are generated. Even though some environmental events may affect the road 

environment and the road service, environmental classes are not considered for this research 

into vehicular communication since the environmental states can be translated as road states (e.g. 

rainfall to wet road condition). Meanwhile, rail transport is another major transport system on 

land, and road transport and rail transport sometimes intersect. So, some classes are added in the 

domain ontology to represent road facilities for the spots on which two transport systems 

intersect (e.g. railway crossing). 

  

5.2.2 Referring existing domain ontologies 

 

Developing an ontology involves following several steps: determining the domain and scope of 

the ontology, defining classes and their class hierarchy, defining the properties of the classes 

and the relations among the classes, creating instances of the classes, and creating rules/axioms 

(Noy and McGuinness, 2001). When defining the classes and their hierarchy for the VEIN 

domain ontology, some existing ontologies and terms were reviewed and used to represent 

situations of the two scenarios. 

The VEIN domain ontology refers to GeoOWL (Lieberman et al., 2007), which describes a 

feature’s location or geometry with simple coordinates. In GeoOWL, where property is used as 

an object property, in which the domain is Feature class and the range is Geometry class. 

Therefore, the four upper classes of the domain ontology described in Section 5.2.1 (i.e. 

Vehicle, Infrastructure, Centre, and Traveller) are defined as subclasses of the 

Feature class, so that they can describe their locations or shapes by using geometry (Figure 

5.1).  
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Figure 5.1 - The feature class and its subclasses in the VEIN domain ontology 

 

Subclasses of the VEhicle class are captured from the ITS architecture of the U.S. 

Department of Transportation to describe their functions (Architecture Development Team, 

2007). Some classes of OTN (Lorenz et al., 2005) are reused for subclasses of the 

INfrastructure class. OTN has many classes and complex relations, but OTN classes such 

as Land Cover and Use class and Railways class are not used, since the scenarios here 

describe on-road situations. In addition, some OTN classes and properties are simplified and 

modified in the VEIN domain ontology.  

Some Ordnance Survey Ontologies containing object properties (i.e. SpatialRelations 

and NetworkRelations) are also referred to in order to describe the road connectivity and 

the relative location of a vehicle or a road facility on the road (Figure 5.2). Object properties can 

have various characteristics; for example, they can be symmetric, transitive, inverse, etc. For 

example, the isConnectedTo property of the NetworkRelations ontology is a 

symmetric property (owl:Symmetric), which means that if X is connected at Y, then Y is 

also connected at X; the SpatialRelations:isLocatedBehind property may be stated 

to be transitive (owl:Transitive), which means if X is located behind Y and Y is located 

behind Z, then X is located behind Z. A property isLocatedInFrontOf can be an inverse 

property (owl:inverseOf) of the SpatialRelations:isLocatedBehind property.  

 

 
Figure 5.2 - Ontology properties (from http://www.ordnancesurvey.co.uk/oswebsite/ontology/) 
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These properties may have restrictions on which values can be used (owl:allValuesFrom, 

owl:someValuesFrom) or how many values can be used (owl:minCardinality, 

owl:maxCardinality, owl:cardinality). For instance, if on the road there are a 

traffic light controller and traffic lights, their relations can be described with a property 

(controls). In this case, the controls property can have restrictions; the domain has to be 

the traffic light controller class (owl:allValuesFrom Traffic_Light_Controller), 

the range has to be the traffic light class (owl:allValuesFrom Traffic_Light), and a 

traffic controller must control at least one traffic light (owl:minCardinality is 1). 

 

5.2.3 Classes and their hierarchy in the domain ontology 

 

The VEIN domain ontology is developed based on the four upper classes and existing 

ontologies/concepts to describe the four main components of the ITS architecture. Classes and 

their hierarchy in the domain ontology are shown in Figure 5.3. The Traveller, Centre, 

Vehicle, and Infrastructure classes are subclasses of the Feature class so that 

points, lines, and polygons can be used to represent the locations or shapes of the instances of 

these classes. The Traveller class is an equivalent class to the RoadUser class that 

contains various road users, such as passenger, pedestrian, cyclist, etc. The Centre class 

describes various traffic operation systems (i.e. administrations, managements, and services) 

including signalling operations, safety managements, and emergency managements. The 

VEhicle class indicates a mechanical road vehicle that has an engine and an OBE, and it is the 

super class for emergency vehicles, private vehicles, public transport vehicles, etc. The 

INfrastructure class refers to road facilities that have an RSE, and it is a category for the 

roads themselves, the road furniture, and the road structures. The domain ontology is for general 

descriptions of a road environment that is based on the four upper classes of the ITS architecture. 

The following two sections will describe the task ontology and the application ontology for the 

vehicular communications and the situations of the two scenarios, respectively. 
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Figure 5.3 – Four classes of the VEIN domain ontology 

 

5.3 Task ontology for DSRC  

 

This section describes the concepts and classes relating to the communication task of vehicular 

communications, namely, DSRC. Two communication agent classes for vehicles and 

infrastructure are the main subjects of possible communications for the developed scenarios. As 

communication nodes, subclasses of the Vehicle class have an OBE as an object property, 

while the subclasses of the INfrastructure classes have an RSE. Their communication 

messages are also categorised into four subclasses. The main classes of the task ontology are 

extracted from DSRC communication flows among OBEs and RSEs, and then some general 
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classes for communication events, communication processes, communication nodes and links 

are also generated as classes in the task ontology.  

 

5.3.1 Communications between vehicles and road infrastructure 

 

In a vehicular environment, there may be dynamic phenomena relating to moving vehicles, such 

as traffic signals, traffic jams, car accidents, etc. Some traffic events, such as traffic signals, are 

necessary to control traffic flows and provide efficient traffic services, while other traffic events, 

such as car accidents, have negative effects on traffic flow. Sections 4.4 already described 

specific situations of the scenarios to demonstrate how vehicular communications can extend 

traffic interactions and have positive effects on traffic flow. Since vehicles and traffic lights 

have different locations and signals at a time respectively, they can share their dynamic 

properties via communications to improve safety in urgent situations.  

Figure 5.4 shows DSRC communications in traffic situations, in which emergency vehicles are 

involved, extracted from the architecture flows of the U.S. ITS architecture (Architecture 

Development Team, 2012). Of course, communications for parking management or toll 

collection are possible, but they are omitted in the figure in order to focus on the 

communications for vehicle safety. In the figure, a dotted line means an interaction between 

vehicles while a line means an interaction between a vehicle and a road facility. To share traffic 

situations, communication messages can contain emergency vehicle alerts, signal pre-emption 

requests, intersection status, etc. (Michaels et al., 2010).  

 

 
Figure 5.4 - Architecture flows for vehicle-to-vehicle communication and vehicle-to-infrastructure 
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From the vehicle-to-vehicle communications and vehicle-to-infrastructure communications 

described in Figure 5.4, some ontology classes for communication agents and communication 

messages are extracted. The Vehicle(OBE) class and the Infrastructure(RSE) class 

are defined for vehicles that have an OBE and road infrastructure that has an RSE, respectively. 

Additionally, communication messages among vehicles and infrastructure are categorised into 

four message types: alert message (i.e. warning message), probe message, request message, and 

safety message (Figure 5.5).  

 

 
Figure 5.5 - Classes extracted for the task ontology 

 

5.3.2 Five upper classes of the task ontology 

 

Based on the communication agents and communication messages developed in the previous 

section, the task ontology is extended to support communications for four communication 

agents, namely, Vehicle, Infrastructure, Centre, and MobileDevice. The first 

three classes are the same as the classes in the domain ontology because each of them is already 

integrated with a communication equipment. Otherwise, the Traveller class of the domain 

ontology cannot be integrated with the MobileDevice class because the Traveller class 

is a class for human agents, and it is impossible to integrate them physically. Instead, a traveller 

can have a handheld device for communications. Therefore, in the task ontology, the 

MobileDevice class is created to represent travellers’ handheld devices. 
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Figure 5.6 - Five upper classes and their subclasses in the task ontology 

 

To describe communications among communication agents, there are four more classes: 

CommunicationMessage, CommunicationEvent, CommunicationProcess, and 

CommunicationStructure (Figure 5.6). Communication agents share situational 

information by using communication messages. Various contents can be included in the 

messages, such as a request, a warning, etc. Based on message types, several subclasses are 

defined in the CommunicationMessage class. When a communication agent, such as a 

vehicle or a road facility, generates information about a traffic situation, it has to share the 

information by sending and receiving messages, which are defined in the 

CommunicationEvent class. If the communication is a type of broadcasting, it is not 

necessary to build a communication network, but the case can arise where two communication 

bodies need to maintain the communication link. For example, the communication links 

between a dispatch centre and emergency vehicles are necessary. Communication node, 

communication link, and communication network are defined as subclasses of the 

communication structure class, while the CommunicationProcess class 
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represents the low-level protocols of the communication. Even though the task ontology is 

designed to cover the general communication tasks in an ITS environment, the low-level 

protocols and processes of the communication are beyond the scope of this research because of 

the focus on the semantic contents of the communication among vehicles and road infrastructure. 

In conclusion, five upper classes were proposed as the task ontology of the VEIN model to 

represent vehicular communications. In the next section, based on the domain ontology and the 

task ontology, the application ontology of the VEIN model is described to implement vehicular 

communications in the situations depicted in the two scenarios. While the domain ontology and 

the task ontology focus on the classes and their hierarchy, the application ontology deals with 

the properties and relations of classes to instantiate intelligent vehicles and their interactions. 

 

5.4 Application ontology of the VEIN model 

 

To describe the aforementioned two scenarios in the application ontology, geographic objects, 

such as road elements, junctions (e.g. intersections, roundabouts), and vehicles, are defined as 

classes of the ontology. The ontology also needs to have properties and relationships 

(hierarchical relations and semantic relations) between classes to provide the context of the 

scenario. In addition, some SPIN functions and templates are used to update instances of the 

application ontology representing traffic situations from the communication messages. This 

section explains classes, properties, relations, SPIN functions, and the SPIN template to 

instantiate the vehicles of the scenarios and to implement their interactions via vehicular 

communications.  

 

5.4.1 Classes and their hierarchy of the application ontology 

 

The Vehicle and Infrastructure classes are subclasses of the Feature class, so the 

instances of these classes have the where property to represent vehicles’ locations and road 

facilities’ geometries (locations and/or shapes). However, as this research follows the relative 

location representation to separate the geometric calculations from the vehicle’s decision-

making process, the application ontology is developed to conceptualise the two main classes 

(VEhicle and INfrastructure) and their properties and relations to describe the vehicles 

in the traffic situations of the scenarios and their communications (Figure 5.7). A partial route of 
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a vehicle, an instance of the VEhicle class, can be represented with a list of upcoming 

junctions (comingJunctions), and the vehicle’s location and direction can be described 

with the current road element (currentRoadElement), the next junction 

(nextJunction), and the distance remaining to the next junction 

(remainingDistanceToNextJunction). The road connectivity can be also described 

with the startsAt, endsAt, and isConnectedTo properties. The controls property 

can be used to describe relations between a traffic light controller and the traffic lights while the 

serves property can describe relations between traffic lights and road elements. This 

application ontology defines the necessary subclasses, properties, and relations for the 

VEhicle and INfrastructure classes only for the two scenarios, but it may be extended 

to support other scenarios in the future. 

 

 
Figure 5.7 - UML-like class diagram of the VEIN application ontology 

 

We have given a description of key classes, properties, and relations for the vehicle and 

infrastructure classes. The defined properties describe the relative locations of vehicles and road 

facilities, and they can also be used for vehicular communications to share information about 

traffic situations and interact with each other. Based on these properties and relations, the next 

section explains how to build a road network topology that is necessary for vehicles’ routes.   



 131 

5.4.2 Road element’s connectivity 

 

The road network is the basic road environment and the essential reference to describe vehicles’ 

locations and route since vehicles are travelling on the road. It can be built from the road 

geometry of all navigable roads that can be extracted from road restriction information. This 

section simply shows how the road connectivity can be made from the road geography in 

general so that road restrictions are not considered.  

To build the road network as a basic road environment for the scenarios, the link-node topology 

of the road network was inserted using startsAt and endsAt properties, in which the 

domain is Road_Element class and the range is Junction class. Since the range of the 

startsAt and endsAt properties is an object (i.e. an instance of Junction class) rather 

than a data type (i.e. int, double, String, etc.), these properties are defined as object properties 

(owl:ObjectProperty). These properties are also defined as functional properties (i.e. 

owl:FunctionalProperty), which can have only one unique value for each instance. So, 

every instance of the Road_Element class has only one starting junction and only one ending 

junction as the value of the startsAt and endsAt properties, respectively. In addition, there 

is a property (isConnectedTo) to represent the link-link topology of the road network. The 

triples using the isConnectedTo property can be generated automatically from the link-node 

topology (i.e. startsAt and endsAt properties). Figure 5.8 shows a SPIN rule in the 

Road_Element class to infer road elements’ connectivity and its results. The SPIN rule is 

basically a SPARQL CONSTRUCT query, in which the system variable ?this, UNION, and 

FILTER were used for the current instance of the class and the OR operation, and to avoid self-

reference, respectively. This research assumes that the road network is static, so this SPIN rule 

was used just once, and inferred triples containing the isConnectedTo property were 

inserted as asserted triples into the ontology model.21 

 

                                                        
21 Ontologies may contain asserted triples, which assert the properties of individuals, as ground facts. A 
SPIN rule is used to generate new triples (i.e. inferred triples) based on information of existing triples (i.e. 
asserted triples) by inferrencing. In the view of inferencing, asserted triples are the input of the 
inferencing process and inferred triples are the output of the inferencing process. The inferred triples 
represent the link-link topology of the road network, and it is part of ground facts in this research, so they 
are treated as asserted triples. 
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(a) an inference rule 

in the Road_Element class 
(b) the (grey-coloured) values 
are generated automatically 

(c) a set of new triples generated 
based on the rule 

Figure 5.8 - A SPIN rule and new triples for road elements’ connectivity 

 

As we have seen so far, the SPIN rule using the isConnectedTo property demonstrates how 

indirect relations (i.e. link-link topology) of the road network can be made from the direct 

information (i.e. link-node topology) automatically. It also shows that SPIN rules can be used 

not only to extract information from the developed dataset, but also to construct further 

information for the dataset itself in the data construction phase. The next section outlines 

vehicles’ properties and relations to represent their dynamic locations with reference to the road 

network.  

 

5.4.3 Vehicles’ location and route information 

 

Vehicles are the main road users that travel fast on the road, and they are the essential 

components of dynamic road situations. From the perspective of geographic information, a 

vehicle’s dynamic movements can be represented by its current location and route information. 

Vehicles’ location and route information can be used to share their presences via vehicular 

communications in order to improve their traffic interactions and resolve traffic situations.  
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In order to store a vehicle’s absolute coordinates, speed, route, and relative information, some 

object properties were designed, and these can be categorised into three parts (Table 5.1). The 

first part is the vehicle’s absolute location and speed. The second part describes the vehicle’s 

route information, referencing road elements and junctions. The property comingJunctions 

can have a junction list (rdf:List), which has five junctions to represent a vehicle’s partial 

route. The third part represents the vehicle’s relative location, which depends on the previous 

two parts.  

 

Table 5.1 - Properties/relations related to each vehicle’s movement 

Purpose Property Domain Range 
Vehicle’s absolute  
location and speed 

geo:where VEhicle gml:_Geometry 
vein:isAtASpeedOf VEhicle xsd:double 

Vehicle’s 
route information 

vein:previousJunction VEhicle Junction 
vein:comingJunctions VEhicle JunctionList 
vein:nextJunction VEhicle Junction 
vein:currentRoadElement VEhicle Road_Element 
vein:nextRoadElement VEhicle Road_Element 

Vehicle’s 
relative location 

vein:remainingDistanceToNextJunction 
 

VEhicle xsd:double 
vein:remainingTimeToNextJunction 
 

VEhicle xsd:double 

 

Table 5.2 shows how a vehicle describes its absolute location and route information in the 

VEIN application ontology. The geo:where property is used as an object property to describe 

its coordinates, and several object properties (e.g. previousJunction, nextJunction, 

currentRoadElement, and nextRoadElement) are used to describe its route 

information. In Table 5.2, the vehicle V1 has object values vein#n97 and vein#i1 for the 

previousJunction and nextJunction properties, respectively. It means that there is a 

URI reference named ‘vein’, and it has fragment resources such as n97 and i1 representing a 

node and an intersection on a road network. The vehicle V1‘s two properties mean that the 

vehicle already passed the node n97 and moves towards the intersection i1.  
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Table 5.2 - A vehicle’s properties and related instances 

Description Source code 

Vehicle V1’s current 
coordinates and route 
information 

<vein:Private_Vehicle rdf:ID="V1"> 
    <geo:where rdf:resource="#P_V1"/> 
    <vein:isAtASpeedOf    
                rdf:datatype="http://www.w3.org/2001/XMLSchema#double"> 
      13.4112e0</vein:isAtASpeedOf> 
    <vein:previousJunction rdf:resource="vein#n97"/> 
    <vein:nextJunction rdf:resource="vein#i1"/> 
    <vein:currentRoadElement rdf:resource="vein#r2"/> 
    <vein:nextRoadElement rdf:resource="vein#r3"/> 
</vein:Private_Vehicle> 
<gml:Point rdf:ID="P_V1"> 
    <gml:pos  
                   rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 
      517426.918 169319.8</gml:pos> 
</gml:Point> 

Intersection i1’s  
location 

<vein:Intersection rdf:about="vein#i1"> 
    <geo:where rdf:resource="vein#P_i1"/> 
</vein:Intersection> 
<gml:Point rdf:about="vein#P_i1"> 
    <gml:pos 
                   rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 
      517479.987 169349.316</gml:pos> 
</gml:Point> 

 

Here, it is assumed that a navigation system is implanted in each vehicle, and each vehicle’s 

VEIN ontology model is integrated with its navigation system, so that partial route and relative 

location information of each vehicle’s ontology model can be updated in the same cycle in 

which its absolute location and the turn indicator information are updated in the navigation 

system. In this circumstance, a vehicle’s relative location can be inferred from existing asserted 

triples (e.g. its absolute location and partial route information) and SPIN rules.  

However, the VEIN application ontology uses SPIN functions and templates rather than SPIN 

rules to generate the vehicle’s relative location as an asserted triple, not as an inferred triple. 

Usually, keeping inferences up to date after each change of assertions will be efficient if the 

asserted data remain static and rarely change, but when dealing with fast-moving vehicles, it is 

more efficient and accurate to compute the values of interest dynamically on demand using 

SPIN functions (Knublauch, 2011). As obtaining relative information is a very repetitive 

process, a SPIN template is defined in the VEIN model to support this cyclic update of relative 

information (Figure 5.9). The SPIN query template uses three arguments (inputs) and two SPIN 
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functions to obtain the vehicle’s information (coming junction, current coordinates, and current 

speed) and to compute its relative information (remaining distance and time to the next 

junction), respectively.  

 

 
Figure 5.9 - A SPIN template to update vehicle’s relative location information 

 

Recently, the stream reasoning approach that integrates data streams and reasoning systems is 

gaining popularity for supporting various traffic applications (e.g. traffic monitoring, traffic 

pattern detection). The applications deal with time-varying data elements, with a one-timestamp 

model (e.g. Continuous-SPARQL, SPARQLstream) or a two-timestamps model (e.g. EP-

SPARQL/Etalis) (Valle et al., 2009; Valle, 2014). For example, in a traffic management system, 

a registered continuous query, which gets streams of answers from input streams, can be used to 

search slow traffic events and automatically modify a speed limit on a certain road section 

(Anicic et al., 2012). Thus, stream reasoning is necessary when dealing with incrementally 

available, multiple, heterogeneous, gigantic data streams ‘to support the decision process of 

extremely large numbers of concurrent users’ in real-time (Stuckenschmidt et al., 2010). 

However, continuous semantics are still challenging, and many relevant reasoning methods are 

not able to deal with high frequency data streams (Stuckenschmidt et al., 2010; Valle, 2014). 

This research deals with an ontology as a vehicular messaging model to support a local data 
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transmission between a rapidly moving ambulance and nearby vehicles on top of DSRC. The 

vehicles can send/receive information to one another at an adjustable information exchange rate, 

in which maximum possible rate is approximately 10 times per second, i.e. about 100 ms. 

Therefore, the contents and the processing of the message have to be designed minimally to 

keep DSRC’s low latency. Even in a real-time streaming processing system, live feeds provide a 

major input of data to maintain the system’s current state by processing them in memory. For 

these reasons, storing or querying streaming data can be an optional process (Mladenić et al., 

2012), and the stream data/reasoning approach is not considered in this research. 

As we have seen so far, SPIN functions and templates can be useful to update a vehicle’s 

relative location and route information. Each vehicle’s relative information depends on the route 

information, which is determined by its origin and destination on the road network, so real-time 

traffic information, such as road restriction or road traffic status, can be crucial in reality. The 

road network information and traffic situation can be shared via vehicular communications, but 

this research deals with the physical road network only, with the assumption that the instances 

of road elements and junctions are simply stored as asserted triples in the VEIN ontology model. 

Consequently, each vehicle obtains the road network information from the VEIN model in order 

to compute the relative information.  

The next section explains how the ambulance of the ambulance scenario and the broken-down 

car of the breakdown scenario can each generate/send a message (partial information) from its 

own ontology model and how recipient vehicles can instantiate the ambulance or broken-down 

car into their ontology model to calculate their relative locations and make decisions.  

 

5.5 Validation of the VEIN application ontology 

 

To demonstrate how the VEIN application ontology can be used in dynamic situations, two 

tasks are developed in a time sequence based on snapshots of the two scenarios (Figure 4.5 and 

Figure 4.9). Following the sequential tasks, vehicles and their movements and interactions are 

instantiated by using the classes, properties, and relations of the application ontology.  

Section 5.5.1 describes vehicles’ interactions in a time sequence as tasks to validate the VEIN 

application ontology. It shows two time sequences for the ambulance scenario and the 

breakdown vehicle scenario. Section 5.5.2 instantiates the ambulance and the vehicles around it 

in order to demonstrate how information about the ambulance’s dynamic movements can be 
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shared with the vehicles in the vicinity of the ambulance by updating their ontology model. 

Section 5.5.3 explains instances of the broken-down vehicle and approaching vehicles to the 

breakdown spot on the motorway. Since the main role of SPIN functions and templates is to 

update vehicles’ ontology model for each snapshot of the scenarios, their logics and return 

values are also presented.  

 

5.5.1 Sequential description of the interactions between vehicles 

 

Since the VEIN application ontology has been developed for an ITS application based on 

scenarios, it can be evaluated by using it for specific tasks from the scenarios. In this section, 

two sequential interaction diagrams are used as tasks for the two scenarios.  

First, sequential tasks of an ambulance and a private vehicle are used to evaluate the application 

ontology for the first scenario (Figure 5.10). The ambulance and the private vehicle obtain their 

absolute coordinates from a GPS receiver iteratively. When they obtain new location 

coordinates, they execute a SPIN query template to obtain relative locations. In the ambulance’s 

communication message, its relative location will be included to share its presence and 

movement. When the ambulance broadcasts a communication message to vehicles around it and 

a private vehicle receives the message, the private vehicle executes a SPIN query template to 

create, update, or delete the ambulance’s instance. When the private vehicle receives the 

message for the first time, the ambulance’ instance is created in its ontology model. Then, 

whenever the private vehicle receives a new message from the ambulance, the ambulance’s 

instance is updated in the private vehicle’s ontology model to keep it up to date.  
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Figure 5.10 - Sequential tasks of an ambulance and a private vehicle 

 

The private vehicle has its own instance and the ambulance’s instance in its ontology model, 

therefore it can obtain the ambulance’s relative location and the emergency rule. The emergency 

rule can be passed from the ambulance, or just some parameters of the emergency rule can be 

included in the communication message if the ambulance’s request is based on the emergency 

rule that is already stored in the VEIN ontology. Normally, the aim of the emergency rule is to 

assist vehicles potentially affected by the ambulance, and the emergency rule is also generated 

in the format of a SPIN template. So, the ambulance’s relative location and the private vehicle’s 

location are used as parameters of the SPIN template, and the logic of the emergency rule is 

stored in the template. If the private vehicle has the same route as the ambulance and they are 

close enough, the emergency rule template will return a value for giving way to the ambulance. 

The communication has to be minimised, but if it is worthwhile the private vehicle answering 

the ambulance to resolve the situation, it is possible to do so.  

Second, the sequential tasks of a broken-down vehicle and a private vehicle are developed from 

the breakdown scenario to evaluate the application ontology (Figure 5.11). These sequential 

tasks are quite similar to the sequential tasks of the ambulance scenario, but there are 

differences. Since the broken-down vehicle is a stationary vehicle, there is no iterative process 
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involved in obtaining its position. The message from the broken-down vehicle is also static, so 

there is no update for the broken-down vehicle instance in the ontology model of the private 

vehicle. In addition, the message from the broken-down vehicle is a warning message, so the 

private vehicle may not answer the broken-down vehicle after it has slowed down and changed 

lanes.  

 

 
Figure 5.11 - Sequential tasks for a broken-down vehicle and a private vehicle 

 

Here, we described the two sequential tasks representing the interactions of the two scenarios to 
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that receives a message from an ambulance or a broken-down vehicle to perform an action (e.g. 
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5.5.2 Instantiating vehicles and their interactions for the ambulance scenario 

 

Interactions between the ambulance and the vehicle, as shown in the ambulance scenario of 

Section 4.3.1 and in Figure 5.10, are implemented based on the VEIN ontology model and 

DSRC messages. Each vehicle’s ontology model inherits the VEIN model for the road network 

information, classes and properties for vehicles, and SPIN functions and templates. As shown in 

Figure 5.12, each vehicle’s ontology model has its own instance to represent its absolute and 

relative location, which can be updated via its navigation system and SPIN templates. When a 

vehicle V1 receives DSRC messages from an ambulance A1, the ontology model of the vehicle 

uses the DSRC messages as inputs of a query template repeatedly to instantiate the ambulance 

in it. Focusing on the ontology model, it is assumed that there is a pseudo DSRC message set 

that broadcasts the relative locations of the ambulance to support the decision-making regarding 

whether the vehicle needs to give way to the ambulance.  

 

 
Figure 5.12 - Interaction between an ambulance and a vehicle based on the ontology model and 

DSRC message 

 

When the vehicle receives a DSRC message from the ambulance, the vehicle can use the DSRC 

message to update its own ontology model by executing an update query from the SPIN update 

template (i.e. vein:updateInformationFromEmergencyVehicleDSRCMessage) 

(Figure 5.13). When the vehicle receives the message from the ambulance, an update query 

based on the query template can be executed to create, update, or delete the instance of the 

ambulance in its own ontology model. To instantiate the ambulance in the vehicle’s ontology 

model, the query template uses several variables, such as oldEVehicleAmbul, 

newEVehicleAmbul, and newEVehicleAmbul2, to check if the ambulance’s instance has 

already been created in its ontology model and, if the vehicle is in the ambulance’ vicinity, to 
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give way to the ambulance. If the oldEVehicle variable’s value is null, the newEVehicle 

variable’s value is not null, and the newEVehicle2 variable’s value is null, the vehicle does 

not have the ambulance’s instance in its ontology model because the vehicle is not yet in the 

effect zone of the ambulance. If the oldEVehicle variable’s value is not null and the 

newEVehicle2 variable’s value is null, the query template deletes the ambulance’s instance 

from the vehicle’s ontology model because the vehicle is no longer in the effect zone of the 

ambulance. Figure 5.14 shows how the SPIN template can use DSRC messages as its arguments 

to execute an update query for the vehicle’s ontology model. The SPIN template uses eight 

arguments based on the DSRC message from the ambulance, such as the ambulance’s unique 

name, its relative location, and the guided distance and time to request its priority (i.e. 200 

meters and 10 seconds in this case). Using these arguments, the SPIN update template compares 

partial routes and relative locations between the ambulance and the vehicle, and supports the 

vehicle’s action to give way to the ambulance. 

 

 
Figure 5.13 - The SPIN template to instantiate the ambulance in each vehicle’s ontology model 
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Figure 5.14 - Argument values22 of the SPIN update template from the ambulance’s DSRC message 

 

The SPIN template also uses two IF functions inside the BIND clauses to set variables based on 

the return value of some logics, as highlighted in the lower rectangle of Figure 5.13. The first IF 

function of the SPIN template checks if an instance of the ambulance exists in the vehicle’s 

ontology model. If an instance of the ambulance already exists in the vehicle’s ontology model, 

the IF function returns ‘true’. The second IF function of the template checks whether the vehicle 

needs to give way to the ambulance based on a decision-making logic (i.e. emergency rules)..  

To develop the decision-making logic, and the emergency rules of the SPIN function 

(fnInTheSituationOfEmergencyVehicle) that contain three different cases are 

explained with pseudo code and descriptions (Table 5.3). The emergency rules are then 
                                                        
22 Note that the second, third, and fourth arguments are regarded as objects for the sake of simplicity. 
However, in a real communication, these objects’ unique identifiers can be used instead to minimise the 
volume of the sender’s DSRC message set. The argument for the given distance range 
(arg7DistanceRange) was set to 60.96 meters by referring to the effect range of the new howler sirens of 
ambulances in Oklahoma, U.S.A. According to the Emergency Medical Services Authority (EMSA, 2009) 
in Oklahoma, the howler sirens emit low-frequency tones that cause objects within 200 feet (i.e. 60.96 
metres) to reverberate, and catch drivers’ attention much more quickly. The argument for the given time 
range was set to 3.0sec (60.96 m / (30mph *1.5)). 
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implemented as a SPIN function (i.e. vein:fnInTheSituationOfEmergencyVehicle 

in Figure 5.15). In the first case, the vehicle and the ambulance are on the same road element, 

the vehicle is in front of the ambulance. Their distance (or time) is shorter than the distance (or 

time) range of the ambulance’s request, which are 7th and 8th arguments of the SPIN update 

template as parts of the ambulance’s DSRC message. It means that if the vehicle is within the 

request zone of the ambulance, it needs to give way to the ambulance. The second case shows 

that the vehicle and the ambulance are not on the same road element, the vehicle is not on the 

road element which the ambulance is heading towards, they are moving towards the same 

junction, and their distance (or time) is shorter than the given distance/time range. Lastly, in the 

third case, the vehicle is on the road element which the ambulance is moving towards, the 

vehicle is in front of the ambulance, and their distance (or time) is shorter than the given range.   
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Table 5.3 - Logics of the function to check whether or not the vehicle needs to give way to the 

ambulance 

Situation Pseudo Code Comments 

Case 1 

If ( V1’s current road == A1’s current road AND 
     V1’s next junction == A1’s next junction AND 
     (A1’s distance to next junction 
         > V1’s distance to next junction) AND  
     (A1’s distance/time to next junction  
       - V1’s distance/time to next junction  
        < given distance/time range) 
) then V1 is in the situation of Case 1 

• V1 and A1 are on the same road  
• They are moving in the same direction 
• V1 is in front of A1  
• Their distance (or time) is shorter than 

given distance range (or time range) 
• Give-way request and Forward collision 

warning 

If ( V1’s current road == A1’s current road AND 
     V1’s next junction != A1’s next junction AND 
     (A1’s distance to next junction  
         > V1’s distance from previous junction) AND 
     (A1’s distance/time to next junction  
         - V1’s distance/time from previous junction 
         < given distance/time) 
) then V1 is in the situation of Case 1 

• V1 and A1 are on the same road  
• They are moving in the opposite direction 
• V1 is in front of A1  
• Their distance (or time) is shorter than 

given distance range (or time range) 
• Give-way request and Head-on collision 

warning 

Case 2 

If ( V1’s current road :isConnectedTo  
                                      A1’s current road AND 
     V1’s current road :isConnectedTo  
                                          A1’s next road AND 
V1’s next junction == A1’s next junction AND 
     ((A1’s distance to next junction  
          < given distance range AND 
       V1’s distance to next junction 
          < given distance range OR  
      (A1’s time to next junction  
          < given time range AND 
       V1’s time to next junction  
          < given time range)) 
) then V1 is in the situation of Case 2 

• V1 and A1 are not on the same road 
• V1 is not on the road that A1 is heading to 
• V1 is on the road that is connected to A1’s 

current road and A1’s next road 
• V1 and A1 are coming to the same junction 
• A1’s distance (or time) to the junction is 

shorter than given distance range (or time 
range) 

• V1’s distance (or time) to the junction is 
shorter than chosen suggested giving-way 
distance range (or time range) 

• Possible suggested giving-way ranges 
- given distance range (or time range)  

         like other cases 
- (2 * A1’ distance (or time) to the junction 

+ given distance range (or time range)) / 3 
- A1’s distance (or time) to the junction 
- Two-second gap to the junction  
• Give-way request and Intersection collision 

warning 

Case 3 

If ( V1’s current road != A1’s current road AND 
     V1’s current road == A1’s next road AND 
     V1’s next junction != A1’s next junction AND  
     (A1’s distance/time to next junction  
        + V1’s distance/time from previous junction  
        < given distance/time range) 
) then V1 is in the situation of Case 3 

• V1 and A1 are not on the same road 
• V1 is on the road that A1 is heading to 
• V1 is in front of A1  
• They are moving in the same direction 
• Their distance (or time) is shorter than 

given distance (or time) 
• Give-way request and Forward collision 

warning 

If ( V1’s current road != A1’s current road AND 
      V1’s current road == A1’s next road AND 
     V1’s next junction == A1’s next junction AND 
     (A1’s distance/time to next junction  
        + V1’s distance/time to next junction  
        < given distance/time range) 
) then V1 is in the situation of Case 3 

• V1 and A1 are not on the same road 
• V1 is on the road that A1 is heading to 
• V1 is in front of A1  
• They are moving in the opposite direction 
• Their distance (or time) is shorter than 

given distance (or time) 
• Give-way request and Head-on collision 

warning 
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Figure 5.15 - The SPIN function to check if a vehicle needs to give way to the ambulance or not 

 
When the vehicle receives a message from the ambulance, the update query for the ambulance’s 

instance is executed, and the function (fnInTheSituationOfEmergencyVehicle) 

inside the update query template returns ‘true’ only if the vehicle is in one of these three cases. 

In the fnInTheSituationOfEmergencyVehicle function, the 

remainingTimeToNextJunction 23  property is used as a subsidiary to the 

remainingDistanceToNextJunction property, so these two properties are used as one 
                                                        
23 The remainingTimeToNextJunction property cannot be used alone as a replacement of the 
remainingDistanceToNextJunction property. There can be a situation in which a vehicle is 
heading towards an ambulance and it is moving extremely fast, so that the defined distance range may not 
give the vehicle enough time to react. With the defined time range, this property is devised to support this 
kind of situation that is beyond the design of the defined distance range. For example, a vehicle is heading 
to an ambulance and it is moving extremely fast, even though the vehicle is outside the defined distance 
range the vehicle will be requested to give way to the ambulance if it is in the defined time range. 
 



 146 

set. Table 5.4 summarises the return values of the functions and the results of the update query 

template for each time stamp of the ambulance scenario, which is described in Figure 4.5. 

 

Table 5.4 - Results of SPIN functions and the SPIN template for each time stamp  

Time 
Stamp 

V1’s 
relative location 

A1’s 
relative location 

Return value of 
the function A* 

Return value of 
the function B** 

Working clause of the 
Update Query Template 

Figure 
4.5 a 

on r2, to i1, 
60 meters, 

4.5 seconds 

on r1, to i1, 
70 meters, 

3.0 seconds 
False True only INSERT clause 

Figure 
4.5 b 

on r2, to i1, 
20 meters, 
3 seconds 

on r1, to i1, 
35 meters, 

1.5 seconds 
True True 

DELETE clause 
 and INSERT clause 

Figure 
4.5 c 

on r3, to n1, 
60 meters, 

4.5 seconds 

on r3, to n1, 
50 meters, 

2.1 seconds 
True False only DELETE clause 

* Function A is the first of the two if functions (red boxed in Figure 5.13). It checks if the ambulance’s 
instance exists already in the vehicle's ontology model. 
** Function B is the second of the two if functions (red boxed in Figure 5.13). It checks if the vehicle is inside 
the effect zone of the ambulance (and needs to give way to the ambulance). 
 

5.5.3 Instantiating vehicles and their interactions for the breakdown 

scenario 

 

Interactions in the breakdown scenario of Section 4.3.2 and sequential tasks in Figure 5.11, 

which is a breakdown situation on the motorway, are also implemented based on the VEIN 

application ontology and DSRC messages. Each vehicle’s VEIN ontology model and the 

updating process is the same as described in Figure 5.12, but the communication subject 

broadcasting an alert message is the broken-down vehicle instead of the ambulance (Figure 

5.16). When a vehicle (V1) in the vicinity of the breakdown spot receives DSRC messages from 

the broken-down vehicle (B1), the ontology model of the approaching vehicle uses the received 

messages as inputs of a query template repeatedly to instantiate the broken-down vehicle in it. 

Focusing on the ontology model, it is assumed that there is a pseudo DSRC message set that 

broadcasts the relative locations of the broken-down vehicle to warn of its presence on the 

motorway and to allow the vehicles approaching the breakdown spot to have a longer response 

time to avoid sudden braking or lane changes.  
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Figure 5.16 - Interaction between a broken-down vehicle and a vehicle approaching the breakdown 

spot based on the ontology model and DSRC message 

 

When the vehicle (V1) receives a DSRC message from the broken-down vehicle (B1), an 

update query can be executed to update the vehicle V1’s ontology model from the SPIN 

template (i.e. vein:updateInformationFromVehicleStationaryDSRCMessage) 

(Figure 5.17). As the broken-down vehicle is a stationary vehicle in the breakdown situation, the 

query template does not update the broken-down vehicle’s location. In this situation, the DSRC 

message is required to inform about the presence of the vehicle breakdown, and the update 

query only creates or deletes the instance of the broken-down vehicle in the vehicle’s ontology 

model based on the approaching vehicle’s relative distance/time to the breakdown scene. The 

query template uses two boolean variables, which are bVehicleStationaryExisted and 

bInTheSituation, to check if the vehicle’s ontology model contains the instance of the 

broken-down vehicle already and if the vehicle is in the effect zone of the vehicle breakdown 

(i.e. 1000 meters and 30 seconds in this case), respectively. If the instance of the breakdown 

already exists in the vehicle’s ontology model, and the vehicle is no longer in the effect zone of 

the vehicle breakdown, the query template deletes the broken-down vehicle’s instance. If the 

vehicle does not have the instance of the broken-down vehicle in its ontology model, and it is in 

the effect zone of the vehicle breakdown, the query template creates the instance of the broken-

down vehicle in its own ontology model to warn about the presence of the vehicle breakdown. 
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Figure 5.17 - The SPIN template to instantiate the broken-down vehicle in the approaching vehicles’ 

ontology model 

 

As shown in the red box of Figure 5.17, this SPIN query template uses a different SPIN 

function (vein:fnInTheSituationOfVehicleStationary) to check the situation of 

the vehicle breakdown ahead. This function only returns ‘true’ when the vehicle is in the two 

cases that can be defined by the vehicles’ relative location with reference to motorway links and 

junctions. Two different cases of the function are described in Figure 5.18 and Table 5.5. In the 

first case, the broken-down vehicle and an approaching vehicle are on the same motorway link, 

and distance and time differences between two vehicles are shorter than the distance/time range 

the broken-down vehicle provides. In the second case, even though the broken-down vehicle 

and the approaching vehicle are not located on the same motorway link, the vehicle is moving 

towards the motorway link that the broken-down vehicle is located on, and their distance and 

time are shorter than the defined distance/time range. If the return value in either case is true, it 
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means that the vehicle is within the guided distance and time to change the lanes to avoid the 

broken-down vehicle ahead.  

 

 
Figure 5.18 - The SPIN function to check if a vehicle is inside the effect zone of the vehicle 

breakdown 

 

Table 5.5 - Logics of the function to check whether or not a vehicle needs to consider the presence 

of the breakdown spot 

Situation Pseudo code Comments 

Case 1 

If ( V1’s current motorway link == B1’s current motorway link AND 
     (V1’s distance to next motorway junction  
          > B1’s distance to next motorway junction) AND 
       (V1’s distance to next motorway junction  
         - B1’s distance to next motorway junction 
            < given distance range OR  
       V1’s travel time to B1’s location < given time range) 
) then V1 is in the situation of Case 1 

• V1 and B1 are on the same 
motorway link  

• B1 is in front of V1  
• Their distance (or time) is 

shorter than given distance 
range (or time range) 

Case 2 

If (V1’s next motorway link == B1’s current motorway link AND 
    (V1’s distance to its next motorway junction  
        + B1’s distance from its previous motorway junction  
             < given distance range OR 
      V1’s time to B1’s location < given time range) 
) then V1 is in the situation of Case 2 

• V1 and B1 are not on the same 
road link, but B1 is located on 
the road link that V1 is 
heading to 

• Their distance (or time) is less 
than given distance (or time) 

 

Figure 4.9 shows a situation of a broken-down vehicle and a vehicle on a motorway link of M25 

heading to Junction 11, the relative positions of the two vehicles are given by the broken-
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vehicle B1 and the vehicle V2. Here, the return values of the two boolean variables 

(bVehicleStationaryExisted and bInTheSituation) and the results of the update 

query template for each time stamp can be gained as shown in Table 5.6. If the vehicle V2 has 

an instance of B1 in its ontology model, it means that the vehicle V2 is inside the effect zone of 

the vehicle breakdown ahead. 

 

Table 5.6 - Results of SPIN functions and the SPIN template for each time stamp  

Time 
stamp 

B1’s 
relative location 

V2’s 
relative location 

Value of the 
bVehicleStationar
-yExisted variable 

Value of the 
bInTheSituation 
variable 

Working clause of the 
Update Query Template 

Figure 
4.9 b 

on M25, to 
Junction 11, 
5500 meters 

on M25, to 
Junction 11,  
6450 meters 

False True only INSERT clause 

Figure 
4.9 c 

on M25, to 
Junction 11, 
5500 meters 

on M25, to 
Junction 11,  
5650 meters 

True True None 

Figure 
4.9 d 

on M25, to 
Junction 11, 
5500 meters 

on M25, to 
Junction 11,  
5450 meters 

True False only DELETE clause 

 

5.6 Extensibility of the VEIN application ontology model 

 

So far, we have followed the development of the VEIN application ontology (i.e. classes, 

properties, and queries) in order to cover the aforementioned scenarios focusing on vehicle-to-

vehicle communications. The application ontology can be easily extended to vehicle-to-

infrastructure communications by adding some classes and properties referring to the 

domain/task ontology. To emphasise the extensibility of the application ontology, this section 

deals with possible situations with traffic lights, a second emergency vehicle, and multi-lane 

roads. 

First, the VEIN application ontology can be extended to vehicle-to-infrastructure 

communications by adding some classes, properties, and queries referring to road facilities, such 

as traffic lights. Classes and properties can be added to describe additional features and their 

relations in a different situation. Based on triple (subject-predicate-object) patterns of ontology, 

a situation can be described in a graph-based network model, in which each node has some links, 

based on triple patterns (subject-predicate-object) of ontology. Nodes represent instances of 
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classes, and links represent their binary relations. The network model describing a situation can 

be extended by using additional triples. For example, if there are traffic lights and a traffic 

controller at an intersection (e.g. intersection i1 is used in the ambulance scenario and is 

illustrated by Figure 4.5), the situation can be described with instances of additional classes (e.g. 

Traffic_Light and Traffic_Light_controller) and their binary relations (e.g. 

serves and controls), as shown in Figure 5.19. 

 

I     

                   (a) Instances                                                (b) Binary relations among instances 

Figure 5.19 - Instances and their binary relations within a scenario 

 

Query logics that extract information related to road facilities (e.g. traffic lights) can also be 

easily implemented as SPARQL queries. The additional queries, which represent additional 

logics, will be compatible with the already developed SPIN functions and templates of the 

VEIN ontology since the logics of the VEIN ontology have been developed from SPARQL 

queries. The Structured Query Language (SQL) is suitable for querying and extracting data 

from tabular and structured representations. Meanwhile, SPARQL is a language for querying 

collections of triples (subject-predicate-object) in a graph-based model, so that it can traverse 

relationships easily and explicitly in RDF/OWL (Melton, 2006). By using binary relations 

between traffic lights and a traffic light controller, between traffic lights and road elements, and 

between vehicles and road elements, context information can be collected from various 

viewpoints (i.e. the ambulance’s point of view and/or the traffic light controller’s point of view).  

For example the queries in Table 5.7 have been developed to support an effective 

communication strategy between an ambulance and a traffic controller in an intersection. The 

first query of Table 5.7 asks whether there are ambulances at the roads towards an intersection 

where the traffic controller TC1 is located. The second query of Table 5.7 asks which signal 

controller the ambulance has to communicate with in order to request a signal pre-emption. In 
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these queries, the ambulance’s nextJunction property represents the ambulance’s direction 

towards the traffic controller TC1. Departing from SELECT statements, an ASK form can be 

used for a similar purpose, but it just returns true or false. Figure 5.20 shows how binary 

relations and a class hierarchy can be used to describe possible relations between emergency 

vehicles and a traffic light controller in an ASK query. If there are any emergency vehicles (i.e. 

ambulance, fire engine, or police car) on the roads that the traffic light controller covers, the 

result of the ASK query will be true. It may be also useful to check whether the traffic controller 

has to take action or not. 

 

Table 5.7 - SPARQL queries to support the ambulance scenario in the third condition 

Purpose SPARQL query Result 

To check whether there 
are ambulances towards 

the traffic controller 

SELECT ?ambulance 
WHERE { 

?trafficController rdfs:label "TC1". 
?trafficController :isLocatedAt ?junction. 

  ?trafficController :controls ?trafficLight. 
  ?trafficLight :serves ?roadElement. 

?ambulance :currentRoadElement ?roadElement. 
?ambulance :nextJunction ?junction. 

  ?ambulance rdf:type :Ambulance.  
} 

A1 

To find a traffic 
controller that the 
ambulance has to 
communicate with 

SELECT ?trafficController 
WHERE { 
  ?ambulance rdfs:label "A1". 

?ambulance :currentRoadElement ?roadElement. 
?ambulance :nextJunction ?junction. 

  ?trafficLight :serves ?roadElement.  
?trafficController :controls ?trafficLight. 
?trafficController :isLocatedAt ?junction. 

} 

TC1 

 

        
                          (a) An ASK query                            (b) Subclasses of the Emergency_Vehicle class 

Figure 5.20 - An ASK query (i.e. ‘is there an ambulance moving towards the traffic controller?’) 

and the result  
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Second, the VEIN application ontology can be extended to deal with a second emergency 

vehicle in a situation. In the ambulance scenario, only one emergency vehicle was considered in 

the situation, and its request zone for asking its priority to neighbour vehicles was set fixed. 

However, in the situation of a second emergency vehicle, if the distance between the first 

emergency vehicle and the second emergency vehicle is close enough, their emergency rule 

(give away request) cannot be treated separately. The two emergency vehicles may provide one 

merged emergency rule to the neighbour vehicles to minimise the possible confusion caused by 

multiple emergency vehicles near each other.  

An emergency vehicle sends its ‘give way’ request to the neighbour vehicles only when the 

vehicles are inside its request zone to minimise its negative impact on the traffic flow. However, 

emergency vehicles can communicate amongst themselves to share their presences and 

movements in preparation for a possible collaboration. If an emergency vehicle checks a second 

emergency vehicle’s presence nearby, it needs to expand its request zone temporarily to 

consider the second emergency vehicle’s presence. In the VEIN application ontology, it is 

possible by changing the ‘distance range’ argument of the SPIN update template (e.g. 

vein:updateInformationFromEmergencyVehicleDSRCMessage) (Figure 5.13).  

Table 5.8 provides an example of how an emergency vehicle can check for a second emergency 

vehicle’s presence, and expand its request zone for asking priority to the neighbour vehicles 

temporarily.  

 

Table 5.8 - Possible SPARQL queries to support the situation of a second emergency vehicle 

Purpose SPARQL query 

To check the presence of a second 
emergency vehicle and s and their 

distance 

SELECT Distinct ?ev2 ?ev2dist 

WHERE { 
    ?emergencyVehicle rdfs:subClassOf :Emergency_Vehicle . 
    ?ev1 rdf:type ?emergencyVehicle .     
    ?ev1 :myself true . 
    ?ev2 rdf:type ?emergencyVehicle .     
    FILTER (?ev1 != ?ev2). 
    ?ev1 :currentRoadElement ?currentRoadElement . 
    ?currentRoadElement :isConnectedTo ?connectedRoadElement . 
    {?ev2 :currentRoadElement ?currentRoadElement}   
    UNION {?ev2 :currentRoadElement ?connectedRoadElement . 
    }. 
    BIND(:getDist(?ev1, ?ev2) as ?ev2dist).   
} 

To change the ambulance’s  
request range temporarily considering 

the second emergency vehicle 

BIND (smf:if(?ev2dist <= ?distanceRangeToAskPriority * 2), 
    ?distanceRangeToAskPriority * 2, ?distanceRangeToAskPriority))  
as ? distanceRangeToAskPriority). 
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Third, even though the VEIN application ontology emphasised vehicles’ longitudinal 

interrelation rather than vehicles’ lateral interrelation, it can be extended to deal with a multi-

lane situation. The application ontology was developed as a vehicular communication message 

model for the ambulance scenario and the breakdown scenario on top of a one-dimensional 

linear road network. An ambulance’s goal is to bypass traffic at the highest possible speed to 

save a life, and it can be done safely and efficiently when the nearby vehicles give the 

ambulance a clear lane to pass (or give the ambulance more room to travel by stopping or 

pulling over if the roads are crowded). Accordingly, it is fair to say that the emphasis on the 

vehicles’ longitudinal interrelation was appropriate. Even though two-dimensional or three-

dimensional descriptions such as roadway width and multi-lane properties were not considered, 

the VEIN application ontology model can be extended easily to support vehicles’ lateral 

interrelations. For example, with a new property vein:lane and a new 

variable ?onTheSameLane, the SPIN functions and the SPIN templates of the VEIN 

application ontology can be amended (Table 5.9).  

In the breakdown scenario, it was assumed that the broken car pulled into the left lane and 

stopped as far to the left as possible to minimise its adverse effect on the traffic flow. A warning 

of the broken vehicle was received by drivers in the inside lane approaching the breakdown. 

They were then required to change lanes as far away as possible from the breakdown if the 

traffic flow allows. Even though the VEIN application ontology for the breakdown scenario was 

focused on their longitudinal distance, for a clearer description of the breakdown case, the 

‘vein:lane’ property can be used. 

 
Table 5.9 - Possible lane property and variable for a multi-lane situation 

Description Source code 
Vehicle V1’s 

road information 

?myVehicle vein:currentRoadElement ?myCurrentRoad . 

?myVehicle vein:lane ?myLane . 

Ambulance A1’s 

road information 
?ambulVehicle vein:currentRoadElement ?ambulCurrentRoad . 

?ambul vein:lane ?ambulLane . 

New variable 

?onTheSameLane 

BIND (smf:if((?myCurrendRoad = ?ambulCurrentRoad)  
   &&(?myLane = ?ambuLLane),  true,  false))  
as ?onTheSameLane). 

 

It has been demonstrated how classes, properties/relations, and query logics in the ontology 

model can be extended for vehicle-to-infrastructure communications, a second emergency 

vehicle, and a multi-lane situation. Based on the additional classes and their semantic relations, 
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a situation can be described in more detail, and additional information and knowledge can be 

extracted from the ontology model by using SPIN functions and templates as well as SPARQL 

queries.  

 

5.7 Summary and discussion 

 

This chapter outlined the VEIN ontology model from three different perspectives, that is, for the 

domain ontology, the task ontology, and the application ontology, which were described in 

Section 5.2, Section 5.3, and Section 5.4, respectively. It also demonstrated how vehicles and 

their interactions can be instantiated using the VEIN application ontology in Section 5.5. 

First, Section 5.2 showed a domain ontology for an ITS environment. The four upper classes of 

the domain ontology represented the four main classes of the ITS architecture. Even though this 

domain ontology provides classes only for the general road users, such as pedestrians, 

cyclists/bicycles, motorcyclists/motorcycles, and vehicles, it can be extended to other road users 

(e.g. powered wheelchairs, mobility scooters, horse riders) for a specific purpose. The domain 

ontology contains a class for level crossings (railroad crossing) where a road intersects a railway 

line without recourse to a bridge, but it does not consider transferring between transport modes. 

To use this domain ontology for intermodal passenger transport, which involves other transport 

modes (e.g. airways, railways, waterways), transferring facilities, such as train stations, airports, 

and piers, can be added.  

Second, in Section 5.3, the task ontology was developed to model communications among the 

four upper classes (i.e. vehicles, infrastructure, travellers, and centres) of the domain ontology. 

The CommunicationAgent class and the CommunicationMessage class are extracted 

from the data flows representing the actual information exchanged across subsystems of the 

Vehicle class and the Infrastructure class. Then, classes for communication event and 

communication network are added to represent the communication itself and communication 

connection, respectively. The task ontology can be seen as a conceptual bridge between the 

domain ontology and the application ontology representing vehicular communications. 

Third, Section 5.4 showed the application ontology of the VEIN model to support the situations 

of the two scenarios. It focused on properties and relations rather than classes and their 

hierarchy to describe a vehicle’s route and relative location. It also provides SPIN functions and 

templates to update a vehicle’s route and location and keep them as asserted information. When 
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a situation is described with the instances of classes and their properties, a set of triples 

(declarative sentences) may represent the situation. Similarly, a vehicle’s states in the situation 

can be seen with the directly related triples. In addition, each triple can be used for further 

knowledge and reasoning for the vehicle to take action, especially in partially observable 

environments.  

Fourth, Section 5.5 demonstrated how the interactions between vehicles for each snapshot of the 

scenarios can be implemented by DSRC messages and the VEIN application ontology. Each 

vehicle has its own ontology model, which inherits classes, properties, SPIN functions, and 

SPIN templates from the VEIN ontology model. Each vehicle itself is instantiated in its own 

ontology model while it can instantiate other vehicles in its model when it receives a DSRC 

message from them. It also shows that the ontology model can be updated if DSRC messages 

deliver arguments of a query template. Additionally, it may deliver a whole query or partial 

ontology to update the ontology model depending on the applications. 

Fifth, Section 5.6 highlighted the extensibility of the ontology model for the OBE-to-RSE 

communications and the situations of a second emergency vehicle and a multi-lane road. The 

graph-based representation made the ontology model flexible and extensible so that instances of 

road facilities and their properties/relations are easily added, and new information can be 

extracted by additional queries. Apart from that, new properties for road elements can be added. 

Currently, there is no property for the road element’s directional information in the current 

ontology model, while a vehicle’s direction on a road element can be acquired with its 

previousJunction and nextJunction properties. Each vehicle’s ontology model was 

intended to keep minimum ground facts for the vehicle’s current state. However, road elements’ 

directional information is compulsory to assign a vehicle’s route. The ontology model can be 

extended to support a situation that a vehicle changes its route to avoid a traffic congestion 

(Desai et al., 2013) by defining additional properties (e.g. directional information, restriction 

information) to the road element class. Properties, which are not even known at the design time, 

can be easily added, and this flexible extensibility is a benefit of using an ontology model. 

In summary, this chapter proposed the VEIN ontology model that consists of classes, instances, 

and object properties to describe vehicles’ movements in the road environment. For the VEIN 

application ontology, SPIN functions and templates are built in order to implement the 

information update from the communications among vehicles via OBE. Consequently, the 

VEIN model provides a single ontological framework from the domain ontology and task 

ontology supporting general ITS environments to the application ontology to cover the 
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ambulance scenario and the vehicle breakdown scenario. The VEIN ontology model also uses a 

relative description for the vehicle’s locations in order to simplify the decision-making logic (to 

check whether a vehicle needs to take action in an emergency situation or not) by splitting the 

geometric calculation from the decision-making process. Even though the VEIN ontology 

model has focused on the interaction between the vehicles of the two scenarios, it covers both a 

declarative approach that describes vehicles’ movements and a procedural approach that 

describes the rules of a system or desired behaviours of a vehicle in emergency situations. 

Therefore, it can be easily extended for more complex interactions among vehicles and the 

infrastructure. 

This chapter highlighted sharing vehicles’ presence (i.e. partial route and relative location) by 

sending/receiving their partial ontology as the contents of DSRC message. However, it did not 

deal with the volume issues of the ontology model and the DSRC message set. The large 

volumes of the ontology model and the DSRC message set may delay vehicles’ processing and 

communication respectively, and they can have a negative effect on vehicles’ situation 

awareness. Thus, it is better for each vehicle to maintain minimum volumes of the ontology 

model and the DSRC message set. To keep minimum ground facts in each vehicle’s ontology 

model to maintain the vehicle’s current state, the ontology model can keep minimal road 

information. The road information consists of only its own route, connected roads, and their 

link–link topology, in memory in real-time. To minimise the volume of DSRC message set, 

vehicles can share their partial route by using unique identifiers (i.e. URIs) of road elements and 

junctions. There is no need for all vehicles to use the same map database in order to use road 

features’ identifiers, but it is necessary that each road/junction element on the map databases 

can be referred with its own identifier. Under the assumption that vehicles can refer same road 

features with same identifiers, vehicles can share their relative location throughout vehicular 

communications properly. 
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6. Agent modelling and simulation 

6.1 Introduction 

 

The previous chapter proposed the VEIN ontology model as a messaging model emphasising 

the information exchanges by DSRC, and the static snapshots of the scenarios were used to 

validate the messaging model. This chapter outlines vehicles’ movement and communication 

events in a dynamic virtual road environment that is modelled by Agent-Based Modelling and 

Simulation (ABMS). This chapter presents the third stage of the methodological framework 

(Figure 1.3), that is, modelling and simulating intelligent vehicles and their communications in a 

virtual road environment. 

The rest of this chapter comprises six sections. Section 6.2 provides information that is essential 

for modelling vehicle agents’ characteristics and their movements in the road environment. 

Section 6.3 describes the modelling process for the virtual road environment, in which vehicle 

agents move and interact with each other by sharing communication messages. Focusing on two 

scenarios, this section outlines the purpose of the simulation, the virtual road environment as a 

modelling space, the model’s assumptions, and the vehicle agent’s attributes and behaviours. 

Following this, Section 6.4 considers the development of the simulation environment using 

Repast Simphony from its context, projection, and class hierarchy to setup the procedure, 

dynamic procedure, and the output data of the simulations. Section 6.4 also includes a 

description of the logic for the vehicles’ communications based on their locations and 

movements following predefined routes on the road network. Section 6.5 describes the 

preliminary simulations in order to verify the algorithms for vehicles’ movements and 

communications and to decide the number of simulation runs. Section 6.6 presents the 

simulation results and statistics using different initial parameters (e.g. different portions of 

OBE-implanted vehicles in situations). The simulation results are analysed to identify the effect 

of vehicular communications on the efficiency pattern of traffic in different simulation settings 

(i.e. different portions of OBE-implanted vehicles and non-OBE vehicles) in the two scenarios. 

Finally, Section 6.7 summarises the chapter and concludes with an overview of the main issues 

discussed in this chapter. 
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6.2 Vehicle agents and the road environment 

 

There are two kinds of emergency events in terms of vehicular movement in the road 

environment. The first refers to ‘static events’, which have a fixed location or coverage (e.g. a 

car breakdown, road work ahead, or foggy area), and the second refers to ‘dynamic and spatially 

moving events’, such as an emergency vehicle that requires the area to be clear around it. When 

a vehicle is heading towards a static event, or when a dynamic event is coming towards a 

vehicle, the vehicle should take action to resolve the situation. If beforehand, the vehicle 

receives, through vehicular communication, information with respect to an event, then it will 

have more time to respond to this specific event.  

These two different kinds of emergency events were described as two scenarios in Section 4.3. 

In the scenarios, it is assumed that vehicles can communicate with each other to share 

information about their presence and traffic events. The agent simulation is designed to provide 

a virtual environment of these emergency events, in which vehicle agents can reduce their 

speeds safely to be ready in advance, having been alerted via vehicular communication, and so 

avoid conflict with the events or pass through the events safely. 

This section discusses the modelling process of intelligent vehicles and their environment. 

Specifically, it explains intelligent vehicles’ characteristics including their movements and 

communications based on their relative location and route. Then, the road environment, where 

vehicles are moving, is outlined, focusing on how it can be created, using geographic 

information such as road network and facilities locations (e.g. hospitals for the ambulance 

scenario), for the simulation purposes.  

 

6.2.1 Vehicles as intelligent agents 

 

Vehicles move and interact with each other as agents in the road environment, while during the 

simulation, the individual behaviours of each vehicle can be measured. A benefit of agent-based 

modelling is that a whole traffic system can be explained and analysed based on vehicles’ 

individual behaviours (i.e. movements and interactions). Using vehicular communications, 

vehicles are informed beforehand about a situation, so they have a longer response time to 

prepare and take action to deal with the situation. The effects of these communications amongst 

vehicles in an emergency situation can be measured only at the individual level because in this 
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research, short-range vehicular communication (i.e. DSRC) has been used for a vehicle to share 

information about its presence and situation with neighbouring vehicles. In addition, the 

coalition of vehicles for the communication constantly changes as vehicles move while 

following their routes, and vehicles in the vicinity of the emergency situation participate in the 

communication only to resolve the situation.  

The focus here is on a vehicle agent’s internal states and several road traffic statistics. The 

vehicle agent’s internal states represent the driver’s mental states, which are related to his/her 

next action/behaviour. The road traffic statistics includes national speed limits, recommended 

minimum stopping distance, and free-flow24 speeds in order to model vehicles’ speed and inter-

vehicle distance. 

 

6.2.1.1 Vehicle’s internal states 

 

As mentioned in Section 3.2.1, an agent’s characteristics can be described using a BDI 

architecture, and an agent’s beliefs, desires, and intentions can be mapped onto its knowledge-

base, goals, and plans for action, respectively. Building a vehicle agent’s BDI model that 

represents the driver’s knowledge, goals, and intentions in a general situation would be a 

complicated and challenging process, and indeed, building such a model is beyond the scope of 

this research. This research deals only with vehicular interactions by communication in 

emergency situations, and in an emergency situation, most vehicles will take action in order to 

resolve the situation by following the emergency rules. Therefore, resolving the emergency 

situation is regarded as the most important goal temporarily, so a driver’s BDI model can be 

simplified. 

Since the simulation focuses on the vehicles’ communications and movements during the 

emergency situation, the vehicle agent’s behaviours before the emergency situation are not 

measured. Instead, throughout the simulation and before the emergency situation, it is assumed 

that the different speed and location of each vehicle are represented by the driver’s behaviours.  

Generally, an agent will act based on the intention to achieve a goal from its priority list of goals, 

while these goals and intentions change over time according to the agent’s internal states and 

                                                        
24 Free-flow speed is the term used to describe the average speed that a driver would travel if there were 
no congestion or other adverse conditions (e.g. bad weather). 
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external variables (i.e. the environment’s external variables and neighbour agents’ internal 

states). So, an agent will define a goal and form a plan for achieving this goal based on its 

current internal states and the external variables. However, when a vehicle agent encounters an 

emergency event, this becomes the most important short-term goal for the vehicle to achieve 

irrespective of its individual objectives, and it will take action to resolve the emergency 

situation. In this context, an agent can sense an emergency situation, and its intentions can be 

reactions, such as stop, slow down, move again, or change lanes. Therefore, when considering 

emergency situations, an agent’s BDI architecture could be simplified by using the agent’s 

memory, policy, and performance (Table 6.1).  

 

Table 6.1 - A vehicle agent’s BDI in an emergency situation 

BDI General content Possible content in an emergency Simplified term 

Beliefs Internal knowledge 
of the world 

The vehicle’s and neighbour 
vehicles’ location/ speed/ route on 
the road network in an emergency 

situation 

Memory 
to understand  

current traffic situation 

Desires Goals to achieve 
Generally accepted reactions to 
resolve the emergency situation 

without any conflict over the event 

Policy to act  
without the conflict  

over the emergency rule 

Intentions 
Most important 

goals, 
most doable plans 

Resolving the emergency situation 
= the most important goal 

(temporarily) 

Performance (behaviour) 
 to resolve the situation 

 

In agent-based modelling, perception, performance (behaviour), memory, and policy are the 

agents’ four important characteristics (Abdou et al., 2012), so vehicles that communicate with 

each other in an emergency situation can be considered and modelled as agents. Even though 

vehicles are following static emergency rules in an emergency situation, each vehicle’s 

behaviours will differ depending on its internal states, such as its relative location, speed, and 

route. 

As was noted earlier, vehicle agents’ behaviours are limited and simplified only for actions to 

resolve an emergency situation, which is the most important temporary goal for vehicle agents 

to achieve. So, the vehicle agents are designed to measure the effect of vehicular 

communications in an emergency situation by sharing the information related to their presence 

and current traffic events. Even though all general aspects of drivers’ behaviours are not 
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considered, the limited behaviours of vehicle agents are enough to build a simulation 

environment for different proportions of communicative25 vehicles in an emergency situation. 

 

6.2.1.2 Vehicle’s speed and inter-vehicle distance 

 

To simulate proper vehicle density on the road, it is crucial to set a specific number of vehicles 

because the coverage of the road network will be fixed. Since vehicles are moving at high speed 

on the road network, their speed and inter-vehicle distance are also important variables. As road 

environments have been designed for road users, mainly cars, there are traffic instructions and 

recommendations for a vehicle’s speed and braking distance based on roads’ type, geometry, 

circumstance, etc. The speed of vehicles and the recommended stopping distances can be 

referred to in order to simulate an ideal road environment that has a proper vehicle population 

and that is close to the road’s designed capacity.  

On the one hand, speed limits play ‘a fundamental role’ as ‘an indicator of the nature and risks 

posed by that road’ to motorised and non-motorised road users (Department for Transport, 2006, 

p.2). If there are no congestion or other adverse conditions, the average speed of vehicles on 

roads is closely related to the speed limits of the roads (Table 6.2). In the simulation, measured 

free-flow car speed ranges in Table 6.2a and Table 6.2d are used to randomise vehicles’ initial 

speeds for the simulation of the ambulance scenario and the breakdown scenario, respectively. 

Even though vehicles’ speed in the simulation can be set at greater than the national speed limits, 

it is important to note that the speed limit is not a target speed for all circumstances. In reality, 

for safety reasons, drivers need to slow down when they approach a bend in the road, a 

roundabout/junction, roadworks, and so on. They also need to reduce their speed not only when 

they share the road with other road users (e.g. pedestrians, motorcyclists, etc.), but also when 

they drive at night or in bad weather.  

On the other hand, each vehicle needs to leave enough space from the vehicle in front, in order 

to be prepared for a sudden change in the front vehicle’s behaviours (e.g. when the front vehicle 

slows down or stops). There are recommended stopping distances based on vehicles’ speed, and 

even in faster-moving traffic flows. A vehicle needs to allow at least a two-second gap from the 

                                                        
25  A communicative vehicle is a car that has a vehicular communication device, so that it can 
communicate with other communicative vehicles and road facilities to send and receive information about 
a traffic situation. 
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front vehicle for its own safety (Driving Standards Agency, 2007). If the vehicle travels at the 

speed of 30 mph, its ideal stopping distance from the front vehicle is 23 metres (Figure 6.1). On 

a one-way single-track road with a 2300 metres length and where 100 vehicles with the speed of 

30 mph are randomly located, it can be said that their average distance may be similar to the 

typical stopping distance of 23 metres. Meanwhile, the road network of a local area in reality is 

composed of a number of linear features, and the road environment can be treated as a two-

dimensional space, so the average distance between vehicles should be different from the above 

case of the long single-track road. Therefore, after vehicles are simulated, the average inter-

vehicle distance needs to be checked, and then the number of vehicles can be adjusted to get a 

rational average inter-vehicle distance by a process of trial and error. 

 

Table 6.2 – Free-flow car speed ranges in 2010 (Department for Transport, 2011a; Department for 

Transport, 2011c) 

Vehicle speed of cars Percentage  Vehicle speed of cars Percentage 
Under 20 mph 5 %  Under 20 mph 1 % 

20-29 mph 49 %  20-29 mph 3 % 
30-34 mph 30 %  30-39 mph 17 % 
35-39 mph 12 %  40-49 mph 44 % 
40-44 mph 3 %  50-59 mph 28 % 
45-49 mph 1 %  60-64 mph 5 % 

50 mph and over 0 %  65-69 mph 2 % 
More than 5 mph over limit 16 %  70 mph and over 1 % 

Average speed (mph) 30 mph  More than 10 mph over limit 1 % 
Number observed (thousands) 54,544  Average speed (mph) 47 mph 

(a) on Built-up roads (30 mph limit)  Number observed (thousands) 42,251 

  (b) on Single carriageways (60 mph limit) 
 

Vehicle speed of cars Percentage  Vehicle speed of cars Percentage 
Under 30 mph 0 %  Under 50 mph 4 % 

30-39 mph 0 %  50-59 mph 14 % 
40-49 mph 3 %  60-64 mph 14 % 
50-59 mph 17 %  65-69 mph 19 % 
60-64 mph 17 %  70-74 mph 21 % 
65-69 mph 21 %  75-79 mph 15 % 
70-79 mph 32 %  80-89 mph 12 % 

80 mph and over 10 %  90 mph and over 2 % 
More than 10 mph over limit 10 %  More than 10 mph over limit 14 % 

Average speed (mph) 68 mph  Average speed (mph) 69 mph 
Number observed (thousands) 43,847  Number observed (thousands) 385,917 

(c) on Dual carriageways (70 mph limit) 
  

(d) on Motorways (70 mph limit) 
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Figure 6.1 - Recommended minimum safe stopping distance (Driving Standards Agency, 2007)  

 

In our daily lives, the majority of vehicles exceed the speed limits and occasionally do not 

maintain the necessary stopping distances (Brake, 2010; Department for Transport, 2011b; 

Department for Transport, 2011d). In the simulation, an ideal road environment, in which 

vehicles travel at a desired speed if they can and maintain a safe stopping distance from the 

front vehicle, is considered, and the free-flow vehicle population for each simulation is set 

mathematically. A vehicle travels at a desired speed if there is no vehicle in front, but the 

vehicle needs to slow down to keep a safe distance from the lead vehicle. There are several car-

following models (e.g. Krauss Model, Nagel and Schreckenberg Model, Wiedeman Psycho-

Physical Model, General Motors Model, Gipps Model, Intelligent Driver Model) to define 

acceleration/deceleration function of a vehicle’s dynamic behaviour when approaching the lead 

vehicle (Härri et al., 2007). In this research, the time-continuous Intelligent Driver Model (IDM) 

is adapted to produce realistic acceleration profiles and reactions of vehicles in a single lane 

traffic situation, and its mathematical description is presented in Table 6.3 (Treiber and Kesting, 

2013). 

To model vehicles approaching a stationary vehicle (for the broken car in the second scenario) 

or a junction (for the first scenario), a traffic light model or an junction/intersection management 

model is necessary. A simple non-signalised junction management model is implemented based 

on the dynamic term 𝑣∆𝑣/(2 𝑎𝑏) of the IDM and the first-in-first-out (FIFO) principle. The 

dynamic term can be simplified and seen as the kinematic deceleration of a vehicle when 

approaching to a stationary vehicle or a junction.  
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Table 6.3 – Mathematical description of IDM  

Equation 

𝑣 = 𝑎 1 −
𝑣
𝑣!

δ
−

𝑠∗ 𝑣,∆𝑣
𝑠

2

 

𝑠∗ 𝑣,∆𝑣 = 𝑠! +𝑚𝑎𝑥 0, 𝑣𝑇 +
𝑣∆𝑣
2 𝑎𝑏

 

 s: the current distance, s*: the desired distance  
Parameters Road Motorway 

Desired Speed v0 at free flow 
(When followed by other vehicles) 

See Table 6.2a See Table 6.2d 
30 mph 60/70/80 mph 

Time gap T 1.0 s 
Minimum gap S0 2 m 

Acceleration exponent δ  4 
Acceleration a 1.0 m/s2 

Comfortable deceleration b 1.5 m/s2 
Vehicle length 5 m 

 

Meanwhile, in a general situation, vehicles travel according to their own goals and plans as long 

as their movements are not strongly against traffic instructions. It is possible to model 

individual-level behaviours according to statistics and surveys about drivers’ behaviours and 

attitudes. However, this is still one of the most difficult aspects of agent-based modelling and 

simulation, and as stated earlier, it is beyond the scope of this research, since it is a separate 

research question that deals with general traffic analysis and requires the implementation of a 

different simulation approach.  

Our focus here is on vehicles’ actions through vehicular communications in emergency 

situations, in which emergency rules can be generally accepted to resolve the situations. 

Therefore, the simulation itself is intended to provide a virtual road environment, in which 

vehicles send/receive traffic information and have more time to prepare for an emergency 

situation. To measure the effect of vehicular communications in an emergency situation, the 

simulation has to be executed based on the assumption that there is proper number of vehicles 

and no other traffic obstacles, such as a traffic jam, except the emergency event itself. In 

addition, the simulations focus on communications from an emergency vehicle or a broken-

down vehicle to the vehicles in the vicinity, rather than communications amongst neighbouring 

vehicles.  

Here we have presented some statistics and measurements that can be used to set the vehicles’ 

properties (e.g. speed, inter-vehicle distance) in the simulation. The next section outlines the 

road environment and its initial dataset in more detail. 
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6.2.2 The road environment 

 

As a model space, the geometric information of a virtual road environment is necessary for 

locating the vehicle agents on it and simulating their movements and interactions. The geometry 

of a road network and routing information within the M25 area were acquired from the OS 

MasterMap Integrated Transport Network (ITN) layer. ArcGIS 10 and Productivity Suite 2.1 

were used to get a feature dataset and a network dataset from the OS MasterMap ITN data. The 

ITN layer contains Great Britain’s road network, and there are three main elements: Road 

Network, Road Routing Information (RRI), and Urban Paths (Ordnance Survey, 2011).  

First, the Road Network theme represents the geometry of Great Britain’s road network from 

motorways, A-roads, and B-roads to local streets, pedestrianised streets, and alleys. Road 

network analysis supports various kinds of network analysis, for example, routing for a shortest 

path, servicing a set of orders, finding a closest facility, identifying a service area, and finding 

the allocation of facilities. For the purposes of the previously noted analyses, there are two ways 

of calculating the vehicles’ accessibility: a) using travel distance and b) using travel time. To 

use travel time for the network analysis, it is necessary to use general speeds for the roads when 

building the road network, as shown in Figure 6.2. 

 

 
Figure 6.2 - The default speed data for roads to calculate the travel time attribute in the road 

network 
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Second, RRI includes routing information for drivers on mandatory and banned turns and other 

restrictions. The routing information of RRI is also categorised into three qualifiers: 

environmental qualifiers, vehicular qualifiers, and date/time qualifiers. Environmental qualifiers 

contain information with respect to one-way streets, level crossings (railroad crossing), bridge 

heights, traffic calming measures, etc. Vehicular qualifiers describe the types of vehicles 

affected by the routing information, such as a section of road (e.g. bus use only). Date/time 

qualifiers show periodic information like seasonal road closures or bus lanes operating at certain 

times of the day only. 

Some environmental qualifiers of routing information are also used to obtain information about 

one-way and no-entry restrictions. This information is acquired by joining the road links feature 

class (RDLK) and the two tables (RRIDL, ENVQ) described in Table 6.4. When the feature class 

and two tables are joined, the Qualifier field and the DirectedLinkOrientation 

field illustrate the restriction attribute and its direction, respectively (Table 6.5). The ‘+’ value 

of the OneWay field shows an one-way flow from the beginning to the end of the road link 

while the ‘–’ value of the field indicates an one-way flow in the opposite way. These Join 

operations consider only road links where the whole road link has the restriction, so partial road 

link restrictions such as bus lanes in conjunction with date/time qualifier data are not considered 

in the simulation. 

 

Table 6.4 - Key fields for join operations to get one way and no entry restrictions (ESRI UK, 2006) 

Source Table / FC Join Field Target Table / FC Join Field 
RRIDL TOID ENVQ TOID 
RDLK TOID RRIDL_ENVQ RRIDL.DIRECTEDLINKTOID 

 

Table 6.5 - Field names to get one way and no entry restrictions (ESRI UK, 2006) 

Attribute Source Fieldnames  Description 

OneWay RRIDL.DirectedLinkOrientation 
where ENVQ.Qualifier = ‘One Way’ 

One way and direction  
“+” : Permitted flow is in the direction 
of the digitisation of the line 
“-” : Permitted flow is against the 
direction of digitisation of the line 
“N” : There is no one-way restriction, 
flow can occur in either direction 

  
NoEntry 

RRIDL.DirectedLinkOrientation 
where ENVQ.Qualifier = ‘No Entry’ 

Indicates that the link is no entry 
“+” : No entry at the start of the line as 
digitised 
“-” : No entry at the end of the line as 
digitised 
“N” : The link does not have a no-entry 
restriction 
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Third, Urban Paths is a new theme for man-made footpaths, subways, steps, footbridges and 

cycle paths in urban areas. It was made to join up path and road centrelines by adding the links 

and nodes of urban paths to the ITN network in order to encourage multi-modal travel in towns 

and built-up areas. However, as we focus on the movement of vehicles, the Urban Paths theme 

is not relevant to the proposed simulation.  

Even though vehicles can move on most types of roads in the road network - except 

pedestrianised streets and alleys - in this simulation, three types of major (motorway, A-road, B-

road) and minor roads are used as an environment in which vehicle agents can travel (Table 6.6). 

A-roads, B-roads, and minor roads are used for the ambulance scenario, while motorways and 

some dual carriageway A-roads are utilised for the breakdown scenario.  

 

Table 6.6 - Road types used in the simulation 

ITN road type (DescTerm) Vehicle access Used in the simulation 
Motorway P P 
A-road P P 
B-road P P 
Minor road P P 
Local Street P  
Private Road - Publicly Accessible P  
Private Road - Restricted Access P  
Pedestrianised Street   
Alley   

 

Section 6.2 presented the traffic statistics that can be used to model vehicles’ properties (e.g. 

speed and inter-vehicle distance). Even though roads are designed for vehicles to keep within 

speed limits and to maintain the recommended minimum safe stopping distance, it is assumed 

that using traffic statistics of vehicle speed and inter-vehicle distance is more realistic than using 

traffic regulations and recommendations for modelling moving vehicles on the road. We have 

also outlined the process of building a virtual road environment and explained how a directed 

road network was extracted and simplified for vehicle agents.  
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6.3 Agent modelling 

 

This section attempts to bridge the communication massage model that was developed from the 

scenarios and the agent simulation by presenting the dataset used to build the virtual road 

environment as well as the vehicle agents’ attributes and behaviours. It begins by clarifying the 

purpose of the agent simulation, which is to examine the model for vehicular communications in 

dynamic situations (Section 6.3.1). Then, Section 6.3.2 describes the virtual road environment 

for the ambulance scenario and the vehicle breakdown scenario. Section 6.3.3 presents the 

modelling assumptions, while Section 6.3.4 outlines the vehicle agents’ attributes and 

behaviours. 

 

6.3.1 The purpose of the simulation and expected results 

 

This simulation is designed to provide a dynamic road environment where an ambulance or a 

broken vehicle communicate with its neighbour vehicles to share its presence and elicit their 

reactions/behaviours to resolve an emergency situation (i.e. the ambulance scenario and the 

breakdown scenario in Chapter 4). The concepts of the VEIN application model are reused to 

develop the vehicle agents’ communication behaviour, but the simulation itself does not provide 

a dynamic validation of the VEIN application ontology. As a dynamic validation of the 

vehicular communications, the simulation just provides a virtual environment of the dynamic 

situations that may examine vehicles’ possible proactive/reactive behaviour based on the 

vehicular communications.  

Vehicles’ communications and interactions can be simulated repeatedly with different 

parameters, and the results can be used to show the effect of vehicular communications in 

different situations. We assume that hybrid environments, in which different portions of OBE-

implanted vehicles and non-OBE vehicles, are simulated to assess the effect of vehicular 

communications on the traffic efficiency in emergency situations and to support the transition to 

the ITS environment for the OBE-implanted vehicles. To achieve this, five types of hybrid 

environments are simulated for situations of the two scenarios, and each environment represents 

from 0% of OBE-implanted vehicles to 100 % of OBE-implanted vehicles (Figure 6.3).  
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Figure 6.3 - Hybrid environments depending on the percentage of the OBE-implanted vehicles 

 

One benefit of agent modelling and simulation is that it shows macro-level regularities from 

micro-level individual interactions (Abdou et al., 2012). During the simulations of the scenarios, 

the total number of affected vehicles will be logged to represent the relationships between the 

vehicular communications and the effects of the emergency situation to the traffic flow. In this 

context, the vehicular communications represent micro-level individual interactions, while the 

effects of the vehicular communications on the traffic flow represent the macro-level regularity.  

Therefore, the agent simulations in the five hybrid environments that represent the transition of 

the percentage from 0% of OBE-implanted vehicles to 100 % of OBE-implanted vehicles are 

useful to check if there are any positive effects of the vehicular communications to the whole 

traffic flow. In addition, as mentioned in the introduction, altering existing vehicles and 

infrastructure to provide such environments in a physical way is prohibitively expensive and 

difficult to achieve, so futuristic road situations are better to be simulated before any physical 

implementation actually takes place.  

 

6.3.2 The virtual road environment as modelling space  

 

The virtual road environment has to be sufficiently large to permit enough heterogeneity and 

opportunities for vehicular interactions, and at the same time, it has to describe the road 

environment for the situations of two scenarios. The scenarios represent sudden traffic obstacles 

on the road; the former represents a spatially dynamic obstacle with the example of the sudden 

appearance of a rapidly moving vehicle from behind or from other directions, and the latter 
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depicts a spatially static but temporally sudden obstacle, such as a sudden vehicle breakdown in 

front.  

Even though there are other kinds of traffic obstacles (spatiotemporally static obstacles, like 

roadworks), this research focuses on spatially dynamic obstacles and spatially static obstacles 

on the road, as described in the scenarios (Section 4.3). In the simulation, as the vehicles move 

and communicate with each other on the road, the virtual road environment is necessary to 

simulate the vehicles’ movements and communications. The following two sections outline the 

virtual road environments for modelling the ambulance scenario and the vehicle breakdown 

scenario. 

 

6.3.2.1 The road environment for the ambulance scenario 

 

For the ambulance scenario, the geometric part for the road environment consists of the road 

network and hospital points. The road network of Greater London was generated from 

Ordnance Survey MasterMap ITN layer, and using data from the NHS website a point layer was 

created to represent hospitals in London that have an accident and emergency (A&E) 

department (Figure 6.4). Three hospitals were chosen from the hospital layer to extract local 

road networks for each hospital in order to simplify and localise the road environment. Each 

road network for a hospital represents a different road geometry in urban and suburban areas 

(Figure 6.5).  

 

 
Figure 6.4 - Hospital locations and the road network within the M25  
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a) University College Hospital 

 

   
                         (b) Kingston Hospital                                      (c) Princess Royal University Hospital 

Figure 6.5 - Road networks around three hospitals 

 

According to the national standards for red calls, an emergency response should reach 75 

percent of calls within eight minutes for an immediately life threatening condition, such as 

cardiac arrest (Table 6.7). However, ideally, help by trained ambulance personnel should be 

provided within five minutes of a cardiac arrest (Pell et al., 2001; Torp-Pedersen et al., 1989). 

Consequently, service area analysis is carried out to extract local road networks that are 

accessible to each hospital within five minutes (the shaded areas26 of Figure 6.5).   

                                                        
26 Only shaded areas of the road networks are used for the simulations. To create a simpler simulation 
environment as designed in Table 6.6, local streets are also removed from the road networks.  
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Table 6.7 - National standards for red calls (NHS Information Centre, 2008) 

Red call Category Condition National target for 
emergency response 

Red 8 Category A Immediately life threatening condition  
(e.g. cardiac arrest, respiratory arrest) 75% in 8 minutes 

Red 19 Category B Serious but not immediately life threatening 
condition (e.g. traumatic injuries or fractures) 95% in 19 minutes 

 

6.3.2.2 The road environment for the vehicle breakdown scenario 

 

For the vehicle breakdown scenario on the motorway, the M25 motorway carriageways are 

extracted from the Ordnance Survey’s MasterMap ITN layer. Some dual carriageway A-roads 

that are directly connected to M25 and/or around motorway junctions are also considered 

(Figure 6.6). As dual carriageways are used for the road environment of the breakdown scenario, 

vehicles on one carriageway have no influence on the traffic flow on the other carriageway.  

 

 
Figure 6.6 - Dual carriageways around London 

 

When importing OS MasterMap ITN data into a feature dataset and a network dataset in a 

geodatabase, ArcCatalog and Productivity Suite were used. A network dataset in a geodatabase 

is a virtual feature dataset, which only exists logically for the network analysis in ArcGIS. 

However, for the simulation in the Repast Simphony, a road network has to be loaded within a 

shape file format. In the original shapefile, road features around interchanging motorways are 

split into smaller pieces and a road feature does not represent a motorway segment/junction 
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properly. Thus, road features are edited to express the road connectivity of motorway segments 

and junctions around two interchanging motorways, as shown in Figure 6.7. 

 

            
(a) Before editing                                                  (b) After editing 

Figure 6.7 - An example of road feature editing for the road direction and connectivity 

 

6.3.3 Model assumptions 

 

Generally, when modelling emergent 27  phenomena, existing theories and information are 

required to support and justify the model, but the simulation in this research is not a case of 

emergent phenomena. The simulation was designed to supplement the static validation of the 

communication messaging model, which described the vehicles’ movements and 

communications with static snapshots in the previous chapter. Through the simulation, a 

dynamic virtual road environment is built to examine the effect of the vehicular communication 

to support vehicles’ interactions by sharing their locations and movements in advance. 

It is assumed that vehicles are the only agents for the simulations. In order to simplify the 

simulations, road facilities, such as traffic signals, are not considered as agents. In addition, to 

compare the effect of the OBE-implanted vehicles in emergency situations, the portion of OBE- 

implanted vehicles is treated as the only different parameter for simulations. Other parameters, 

such as the number of vehicles, and each vehicle’s preferred speed, origin, destination, and 

route, are fixed and remain static.  
                                                        
27 Emergent is the adjective form of emergence. Emergence is the process of complex pattern formation 
from a multiplicity of relatively simple interactions. Emergence is central to the theories of complex 
systems. 



 175 

Of course, an emergency situation on the road is still in the boundary of the complex transport 

systems and patterns, which arises from the multiplicity of relatively simple interactions among 

vehicles and the road infrastructure, so it could be considered as an emergent phenomenon. 

However, in the simulations many variables are simplified and fixed to examine the potential of 

the vehicular communication. Thus, this research demonstrates that local interaction amongst 

vehicles can be supported by information and communication technologies, especially in 

emergency situations.  

 

6.3.4 Vehicle agents’ attributes and behaviours 

 

Vehicle agents share their relative locations via communications, so their attributes and 

behaviours are related to spatiotemporal information and vehicular communications. Thus, 

vehicle agents’ attributes and behaviours are designed based on the classes and properties of the 

VEIN application ontology (Table 6.8). Every vehicle agent has general attributes (e.g. current 

coordinates, current speed, current road element, next junction element, etc.) for travelling. The 

emergency vehicle and broken-down vehicle have proactive methods for sending messages, 

while the others have reactive methods to respond by reducing speed, giving way to the 

ambulance or changing lanes to avoid the broken-down vehicle.  

For vehicles that are travelling, each vehicle’s initial route is calculated from its origin to its 

destination. For the ambulance scenario, the destination of the emergency vehicle (i.e. 

ambulance) is fixed to the hospital’s location. For other vehicles, the nodes and vertices of road 

features are used both for an origin and a destination to build their route. Then, in every time 

‘tick’,28 each vehicle agent updates its location information and checks whether there is a 

request/warning from an emergency vehicle or a broken-down vehicle. If there is an emergency 

situation, a vehicle proceeds to a decision-making process based on its own location and the 

information transmitted from an emergency vehicle to allow its driver to take action appropriate 

to the occasion.  

                                                        
28 Time within an agent simulation environment is regarded as a discrete event whose quantum unit of 
time is known as a ‘tick’ (Crooks, 2007). If event x and y are scheduled at tick one and two respectively, 
event y will execute after x. 
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Table 6.8 - Vehicle agent’s attributes and behaviours  

Vehicle class Attributes Behaviours Remarks 

Vehicle 
(all vehicles) 

origin, destination,  
current coordinates, 

current speed, 
currentRoad, nextRoad 

prevJunction, nextJunction, 
distanceToNextJunction, 

timeToNextJunction, 
routeSegments, 
routeJunctions 

travel() 

Common 
attributes 

and 
behaviours 

Private vehicle  

getRequested(), 
answerBack(), 

changeVelocityIDM(), 
changeVelocityJunctionManagement(), 

stop(), 
moveOverToTheRightLane() 

Reactive 
behaviours 

Emergency vehicle, 
Broken-down vehicle 

distanceRange, 
timeRange request(), warning() Proactive 

behaviours 

 

6.4 Agent simulation29 

 

The previous two sections described vehicle agents’ attributes and behaviours as well as their 

virtual road environment to cover dynamic interactions, mainly communications, among 

vehicles to share their geospatial information to resolve the emergency situations in the 

scenarios.  

This section outlines several important points that are used to develop agent models and to test 

them using simulations. Repast Simphony was chosen as the agent modelling and simulation 

platform. Thus, explanations and descriptions about agent implementation are closely related to 

Repast Simphony. Amazon Elastic Compute Cloud (for a Windows platform) and a Mac OS X 

platform are used as the simulation servers. 

Section 6.4.1 explains the context and projection, which are agents’ container and model space, 

respectively. Then, Section 6.4.2 outlines descriptions about agent classes and their hierarchy. It 

covers the setup procedure, which outlines initial parameters and variables for agents and the 

environment, and the dynamic procedure, which covers the agents’ states including their speed 

and route as well as the agents’ behaviours, such as their movements and giving way to an 

                                                        
29For the simulation, Repast Simphony 1.2.0 was used, and the workspace (for source code and data) is 
obtainable at https://goo.gl/aaOxhA. Major parts of the source code are also provided in Appendix D. 
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ambulance. Finally, Section 6.4.3 shows what kinds of data can be extracted and logged during 

the simulations.  

 

6.4.1 Agent, context, and projection 

 

In Repast Simphony, contexts and projections are used to organise agents and their space. As 

described in Section 3.2.3.3, a context acts as a container for agents while a projection 

represents agents’ location and their spatial relations in the context. In the simulation, a context 

and two projections are used (Table 6.9). Vehicle agents, road elements, and junctions are added 

into the context. Road elements and junctions are the basic elements used to build the geometry 

of the road environment. A road environment can be represented as a geographic space and as a 

network. Therefore, two projections, a GIS topology model space (i.e. roadGeography) and a 

network topology model space (i.e. roadNetwork), are used in the simulation. 

 

Table 6.9 - Context and projection used in the simulation  

Type Elements 

Context 

• vein.Vehicle 
o vein.EmergencyVehicle 
o vein.BrokenVehicle 
o vein.PrivateVehicle 

• vein.RoadElement 
• vein.Junction 

Projection 
• GIS topology model space: roadGeography 
• Network topology model space: roadNetwork 

 

The GIS space is needed to allocate vehicle agents’ location on the road, and the network space 

is used to calculate vehicles’ shortest route based on the weights (e.g. lengths) of the edges. 

With the two model spaces (projections), vehicles’ movements and their spatial/social relations 

can be represented. Since each projection offers various methods to query, calculate, and 

analyse features and objects in the model space, various geographic (spatial) analyses can be 

performed, for example, spatial overlay and buffer analysis for the geographic projection, and 

network analysis for the network projection.  
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6.4.2 Classes and their hierarchy 

 

For the agent simulation, several Java classes are built on top of the Repast Simphony platform. 

Some Java classes are made to represent vehicle agents and road network, and other classes are 

designed to initialise parameters, build the context, and set the projection for the agents’ 

environment. These classes can be categorised into four groups, namely, the parameters and 

simulation initialisation group, the road geography and road network group, the vehicle and 

route group, and the vehicular communication group (Table 6.10). The first group is composed 

of the classes that initialise the simulation environments and set the parameters, which can 

affect the simulation results. The second group contains the classes that generate the road 

environment for the vehicles to move on. The third group contains the classes for vehicle agents 

and their route. Last, in the fourth group, there is a communication message class duplicating 

functionality from the VEIN application ontology. Its properties and methods are logically 

mapped from properties and query functions/templates of the VEIN application ontology (Table 

6.11). Even though the class is not directly integrated with the VEIN application ontology, it 

reproduces vehicular communications to trigger the vehicle agents’ reactive behaviours during 

the simulations.  

 

Table 6.10 - Class groups and class hierarchy for the agent simulation 

Class group Class and class hierarchy 

Parameters and 
simulation 

initialisation 

• vein.GlobalVariables 
• vein.VeinContextCreator  
       (implements repast.simphony.dataLoader.ContextBuilder<T>)  

• repast.simphony.context.DefaultContext<T> 
o vein.ContextOne 

• vein.Infra 

Road 
geography and 

network 

• vein.RoadElement 
• vein.RoadEdge   
• repast.simphony.space.graph.RepastEdge<T> 

o vein.MyRepastEdge<T> 
• vein.Junction 

Vehicle and  
Route 

• vein.Vehicle 
o vein.EmergencyVehicle 
o vein.BrokenVehicle 
o vein. PrivateVehicle 

• vein.Route 
• vein.MyShortestPath<T> 

       (implements repast.simphony.space.projection.ProjectionListener<T>) 
Vehicular 

Communication • vein.CommunicationMessage  
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Table 6.11 – The CommunicationMessage Class extracted from the VEIN application ontology 

VEIN application ontology The CommunicationMessage class 

geo:where 

vein:isAtASpeedOf 

double x, y; 

double speed; 

vein:previousJunction 

vein:comingJunctions 

vein:nextJunction 

vein:currentRoadElement 

vein:nextRoadElement 

Junction previousJunction; 

ArrayList<Junction> comingJunctions; 

Junction nextJunction; 

RoadEdge currentRoadEdge; 

RoadEdge nextRoadEdge; 

vein:remainingDistanceToNextJunction 

vein:remainingTimeToNextJunction 

double remainingDistanceToNextJunction; 

double remainingTimeToNextJunction; 

vein:updateRelativeLocation 

vein:fnInTheSituationOfEmergencyVehicle 

vein:fnInTheSituationOfVehicleStationary 

boolean updateRelativeLocation() 

boolean isInTheSituationOfEmergencyVehicle() 

boolean isInTheSituationOfVehicleStationary() 

 

Meanwhile, each class in Table 6.10 can be seen as a part of the modelling procedures (i.e. 

setup procedure and dynamic procedure). The next two sections describe the classes in the setup 

procedure to initialise the virtual road environment and vehicle agents’ properties, and the 

dynamic procedure to update vehicles’ states (e.g. movement, communication, and reaction), 

respectively.  

 

6.4.2.1 Setup procedure (initialisation procedure) 

 

In the setup procedure, the variables for vehicle agents and the road environment are initialised. 

Then, the virtual road environment is built, and vehicle agents are instantiated with their 

properties such as speed, route, etc.  

The GlobalVariables class is composed of global parameters that can affect the initial 

settings of vehicle agents and the road environment. Assigned values of global parameters are 

set when the simulation is executed from a parameter file in the XML format. The batch mode 

is used with a parameter file to obtain simulation results from different percentages of 

communicative vehicles. A parameter file sets the initial values for the vehicle population, the 

percentage of DSRC vehicles, the DSRC vehicles’ communication range, the number of 

ambulances or broken-down cars, a shape file name for the road environment, etc.  

The VeinContextCreator class implements the ContextBuilder interface to build a 

context as a container of agents and a projection to set a space for the context. It has a 
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build(Context<Object> context)method that plays a role similar to a main() 

function in C or Java programming. This function uses some methods of the Infra class to 

generate a road environment from a shape file and instances of vehicle agents. The European 

Petroleum Survey Group (EPSG) Projection 27700 (i.e. British National Grid) was used as the 

projection for the context. The British National Grid is a projected coordinate system, which 

makes it easier to deal with distance-based calculations for vehicles’ movements during the 

simulation.  

All instances for the road environment and vehicle agents are built in the Infra class. This 

class generates road elements, a road network, and vehicle agents, and sets the vehicles’ 

properties, such as their origin, destination, and route. The Infra class has methods to create 

and set instances of the road element, the road network, and the vehicles. It also has some 

methods to get/find agents from the context. To represent the road geometry, each instance of 

the RoadElement class is generated from each feature (polyline) of the road shapefile, which 

is extracted from the ITN layer. After loading the shapefile, the route of an ambulance or a 

broken vehicle is defined, and then the road elements that are located away from the route are 

removed by buffering analysis to simplify the virtual road environment. Instances of the 

RoadElement class have properties for one-way roads and some restrictions, and these 

properties are used to generate a road network, which has realistic routes and road access. The 

road network is composed of edges (instances of the MyRepastEdge class) and junctions 

(instances of the Junction class). A feature (polyline) of a road element has two nodes and 

additional vertices to express the road element’s geometry information. Junctions are generated 

from nodes (two end points) of road element features, and each edge of the network is created 

by using two junctions and the length of a road element. To represent a one-way street, directed 

edges are used for the road network, so a two-way street has two road edges to allow vehicles to 

travel in both directions.  

The Vehicle class defines the properties and methods for vehicles, and it is the super class of 

the EmergencyVehicle class, the BrokenVehicle class, and the PrivateVehicle 

class. A vehicle’s origin, destination, speed, and route are initialised in the setup procedure. The 

Route class generates a vehicle’s moving track on the road with reference to the road 

geography and road network to set and update the vehicle’s movement and journey during the 

simulation. For a vehicle’s route, its origin junction and destination junction are chosen 

randomly, and then the MyShortestPath class examines whether there is a possible 

shortest path between the origin and the destination. Dijkstra’s algorithm (Dijkstra, 1959) is 



 181 

used for the shortest path, which is provided by the Java Universal Network/Graph Framework 

(JUNG) library, as a part of Repast Simphony. If a vehicle’s origin and destination are given too 

close to each other and their Euclidean distance is less than 1 km, either the origin or the 

destination will be reassigned until the vehicle gets a proper path. The RoadEdge class is 

designed for a vehicle’s route, which is a list of directed road elements from the origin to the 

destination.  

 

6.4.2.2 Dynamic procedure  

 

During the simulation, there are three dynamic methods for vehicles’ movements, 

communications, and reactions. These methods are included in the step() method of the 

Vehicle class, and they are checked and executed in each ‘tick’ for vehicles to take action 

based on their current location. First, the travel() method of the Vehicle class represents 

the vehicles’ movements. A vehicle’s travel distance per unit time is dependent on the vehicle’s 

speed and the duration of the unit time, and a global variable TRAVEL_PER_TURN is used for 

vehicles to convert their speed to distance in every time ‘tick’ in order to update the vehicle’s 

location during the simulation. To obtain a vehicle’s next location in each ‘tick’, the vehicle 

needs to have a list of vertices of road edges in the route, and its next location can be a vertex, a 

node, or somewhere between them. Second, the EmergencyVehicle class and 

BrokenVehicle class, which inherit the Vehicle class, have additional properties and 

methods to send and receive communication messages. There are two methods; request()is 

used to make requests and getAnswerback()is used to obtain responses from affected 

vehicles. Third, vehicles in the vicinity of an emergency vehicle or a broken-down vehicle need 

to react properly. There are two methods; these are stop()to give way to the ambulance and 

moveOverToTheRightLane()to  avoid the broken-down vehicle. 

Each vehicle has its own instance of the CommunicationMessage class, and its 

updateRelativeLocation() method is used to update the vehicle’s current relative 

location. When a vehicle get a request from an emergency vehicle or a broken-down vehicle, 

either of the InTheSituationOfEmergencyVehicle() method or the 

isInTheSituationOfVehicleStationary() method is used to check if the vehicle 

needs to take an action or not. This class is also a container to share a vehicle’s partial route and 

its relative location based on their remaining distance and remaining time to a junction or a 
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road’s node. To describe a partial route, some properties for the previous and next junctions, 

current and next road edges, and upcoming junctions are defined. In addition, there are some 

methods to obtain the remaining distance and time to the next junction from a vehicle’s current 

location to calculate a vehicle’s relative location.  

The getRemainingDistanceToNextJunction()method translates a vehicle’s absolute 

location (two-dimensional coordinates) into a numeric value, which represents the distance from 

the vehicle’s location to the next junction to simplify the communication contents and the 

decision-making process. Vehicles have a different speed and different remaining time to the 

junction even if two vehicles have the same remaining distance to the same next junction. So, 

there is the getRemainingTimeToNextJunction()method to allow a vehicle to obtain 

the relative time to its next junction. In this way, a vehicle’s absolute location can be 

represented relatively with reference to a junction. If several vehicles are heading towards the 

same junction, the vehicle’s location can be represented relatively.  

 

6.4.3 Simulation outputs  

 

Based on initial parameters and randomised variables, the simulation runs may give different 

results. To obtain and analyse the data and statistics of the simulation results, some data are 

extracted and logged as outputs. Repast Simphony contains a package called 

repast.simphony.data.logging.outputter for data logging in various formats 

and time durations. For the simulation results of the ambulance scenario and the breakdown 

scenario, the ambulance and the broken-down vehicle collect some data related to themselves 

and to the vehicles around them per every time ‘tick’.   

Figure 6.8 shows an example of the ambulance scenario where a rapidly moving ambulance is 

heading towards a hospital. In each time ‘tick’ (0.1 sec), the locations of the ambulance and the 

other vehicles are updated, and the ambulance’s communication targets change constantly 

during the journey towards the hospital. The ambulance is shown as a big red point, while the 

vehicles around it are shown as smaller blue points. The ambulance shares its location and 

partial route information in real-time, and the effect of vehicular communications on the traffic 

efficiency in an emergency situation is measured during the simulation to support the transition 

towards ITS.  
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 (a) Initial allocation of vehicle agents 

      
 

(b) After 1000 ticks                                             (c) After 2000 ticks 

      
 (d) After 2500 ticks                                              (e) After 3000 ticks 

Figure 6.8 - An example of simulation for the ambulance scenario around University College 

Hospital30 

 

Figure 6.9 shows an example of the breakdown scenario where rapidly moving vehicles are 

heading towards a breakdown spot. In each time ‘tick’, the locations of the vehicles are updated, 

and the broken-down vehicle’s communication targets change constantly. The broken-down 

vehicle is shown as a red point, while vehicles that need to change lanes because of the 

breakdown are described as sky-blue points with labels (i.e. v01, v02, v03, etc.). The broken-
                                                        
30A dynamic example of the ambulance simulation is obtainable at https://youtu.be/-vgDR77Rels. 
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down vehicle shares its location and partial route information via vehicular communication, and 

the effect of vehicular communications on the traffic efficiency in the breakdown situation is 

measured during the simulation. 

 

 
(a) After 100 ticks           (b) After 200 ticks           (c) After 300 ticks           (d) After 400 ticks 

 
(e) After 500 ticks           (f) After 600 ticks           (g) After 700 ticks           (h) After 800 ticks 

Figure 6.9 - An example of simulation for the breakdown scenario on a motorway31 

 

Table 6.12 shows the list of the data logged in every time ‘tick’ in the simulation runs. The log 

file can be split into three parts. The first part stores the emergency vehicle’s travelling in every 

‘tick’, the second part saves the parameter values of the simulation, and the third part keeps the 

history of the number of vehicles that receive the request from the emergency vehicle (i.e. the 

ambulance or the broken-down vehicle) as well as the number of vehicles that are 

affected/unaffected by the ambulance or the broken-down vehicle. In the ambulance situation, 

the vehicles that slowed down, stopped and gave way to the ambulance are considered as the 

                                                        
31A dynamic example of the breakdown simulation is obtainable at https://youtu.be/PK8H_OELnSI. 
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affected vehicle. In the breakdown situation, the affected vehicles mean the vehicles that could 

not change lanes because of through traffic on the right lane they wish to enter so that they are 

slowed down and stopped behind the breakdown until they find an opportunity to change lanes. 

During the simulation, the effect of the communications (sharing an emergency vehicle’s 

presence, relative location, partial route, and emergency rules) on the traffic flow is measured. If 

a vehicle is not disturbed by the emergency vehicle (i.e. the ambulance or the broken-down 

vehicle) even though it is inside the effect zone of the emergency vehicle, the vehicle is counted 

as an unaffected vehicle. In the PrivateVehicle class, static variables are used to obtain the 

number of affected vehicles and unaffected vehicles by the emergency vehicle’s presence. 

 

Table 6.12 - The list of variables in the log file during the simulation  

Variable Description 
Tick() Accumulated time (number) 
this.getName() The message sender vehicle’s name 
this.getSpeed() The message sender vehicle’s speed 
this.getCurrentCoordinateX() The vehicle’s current x coordinate 
this.getCurrentCoordinateY() The vehicle’s current y coordinate 
this.getCurrentRoadFID() Current road ID that the vehicle is on 
this.getNextJunctionID() Next road ID of the vehicle will be on 
this.getRemainDistanceToNextJunction() The vehicle’s remained distance to the next junction 
this.getDTravelTime() The vehicle’s accumulated travel time (sec) 
this.isArrived() True when the vehicle arrives at the destination 
GlobalVariables.iRondomSeed Random seed value for random number generator 
GlobalVariables.iPercentUsingOnt Percentage of the vehicles that have an OBE 
GlobalVariables.numVehicle  Total number of vehicles except the message sender 
GlobalVariables.numEmergencyVehicle  The number of message sender 
GlobalVariables.commrange  Communication coverage distance (metre) 
this.getNumOfVehicleRequested() The total number of vehicles that receive the message 
this.getNumOfDSRCVehicleRequested The number of DSRC vehicles that receive the message 
this.getNumOfNonDSRCVehicleRequested() The number of non-DSRC vehicles  
this.getNumOfVehicleAffected() The total number of affected recipient vehicles  
this.getNumOfDSRCVehicleAffected() The number of affected DSRC vehicles  
this.getNumOfNonDSRCVehicleAffected() The number of affected non-DSRC vehicles  
this.getNumOfVehicleUnaffected() The total number of unaffected recipient vehicles  
this.getNumOfDSRCVehicleUnaffected() The number of unaffected DSRC vehicles  
this.getNumOfNonDSRCVehicleUnaffected() The number of unaffected non-DSRC vehicles  

 

This section demonstrated the classes and their hierarchy and showed how this information is 

used to implement the simulation based on the Repast Simphony platform. Each class is 

illustrated with its methods in the setup procedure and the dynamic procedure, which initialise 
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the simulation environment and update the vehicle agents’ attributes and states in every ‘tick’. It 

also outlined which variables are extracted and logged during the simulations as simulate 

outputs. 

The next section explains the process used to verify and validate the simulation logic and 

justifies the sample size of the simulation (i.e. the number of simulation runs) to get statistical 

results. This process is a preliminary process to check the simulation logic and model, so it has 

to be done before the execution of the simulation. 

 

6.5 Pilot simulation 

 

Before the main simulation is run, the simulation logic and model have to be justified to check 

whether they represent the situations of the scenarios. In addition, a statistical explanation is 

required to decide how many simulations are required. Section 6.5.1 describes the simulation 

verification and validation process, and Section 6.5.2 explains how the number of simulation 

runs is decided in order to statistically analyse the results.  

 

6.5.1 Verification and Validation  

 

The verification process is concerned with the simulation logic and whether it is working as 

expected, while the validation process is concerned with whether the simulation models the real 

system properly (Abdou et al., 2012). Since vehicles travel on a road, vehicle agents’ 

movements and reactions are verified by visual display. To verify the vehicle agents’ reactions 

in accordance with the emergency rules in the vicinity of an ambulance and a breakdown, a set 

of test cases is used in a similar way to the ontology validation described in Section 5.5. The test 

set is made with a small size road network and small number of vehicles to verify the 

behavioural rules, which are described in the ontology model, and to check whether vehicles 

move and react as designed. The test set represents an extreme situation (i.e. a much smaller 

number of vehicles and a smaller road network), so that the vehicles’ movements and 

interactions in the simulation can be easily predicted for the verification.  

For modelling and simulations, there is a common validation pattern, which is to compare the 

output of the simulation with real data collected about the targeted ‘real system’ (Abdou et al., 
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2012). The main objective of this research is to explain possible interactions among vehicles 

based on vehicular communications. For the vehicular mobility model of the simulation, 

synthetic models such as a car-following model (IDM) and a simple FIFO-based junction 

management model, and a communication-based behaviour model are adopted and implemented. 

Even though the mobility model in this simulation is not based on real surveys or traces, most of 

the VANET simulations use a synthetic mobility model, which is based on mathematical 

equations, to produce a realistic vehicular mobility (Al-Sultan et al., 2014). The mobility model 

of this simulation is acceptable in this regard. So, the verification of the vehicle agents’ 

reactions can be seen as a predictive validation without any replication of an existing situation 

in a specific region, and the model is acceptable in this regard. However, this simulation model 

can be extended to replicate existing traffic situations with real data in the future.  

 

6.5.2 How many simulation runs? 

 

To analyse the simulation results, it is necessary to have statistical distributions over many 

simulations runs. According to Helbing and Balietti (2012), at least 100 simulation runs are 

required for statistical analysis. In order to decide the size of simulation runs, traditional 

statistical approaches for determining sample size, and various precision levels are considered 

(Table 6.13).  

Basically, three parameters (i.e. precision, confidence level, and variability) are needed to yield 

a proper sample size from large populations that follow a normal distribution (Israel, 2012; 

Miaoulis and Michener, 1976). Table 6.13 presents approaches for determining sample size with 

a 95% confidence level and the maximum degree of variability based on the assumption that the 

measured attributes of the sampling are dichotomous (Israel, 2012). Since there are several 

random parameters such as vehicles’ initial locations and their routes in the simulations, there 

could be a countless number of simulation cases. So, in this calculation, it is considered that N 

is bigger than 100,000. The confidence level can be set at 90%, 95%, or 99%, but a 95% 

confidence level is used for determining the number of simulating runs since it has been 

generally stated in applied practice (Millner et al., 2006; Assessment Operation Group, 2012).  
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Table 6.13 - Different approaches for determining sample size 

Approach 
Description 
or equation 

Precision 
level (e) 

Confidence 
level (Z) 

Degree of 
variability (P) 

Sample 
size (n) 

Using 
a published table 
(Yamane, 1967) 

𝑛 =  
𝑁

1 + 𝑁 𝑒 ! 

(size of population N 
> 100,000) 

±10% (0.1) 

95% (1.96) 
Maximum 

(0.5) 

100 
±7% (0.07) 204 
±5% (0.05) 400 
±3% (0.03) 1,111 

Formula 
for proportions 

(Cochran, 1963) 
𝑛 =  

𝑍!𝑝 1 − 𝑝
𝑒!

 

±10% (0.1) 

95% (1.96) 
Maximum 

(0.5) 

96.04 
±7% (0.07) 196.00 
±5% (0.05) 384.16 
±3% (0.03) 1067.11 

 

Even though the measured attributes (e.g. delayed time of vehicles around an ambulance or a 

broken-down vehicle) of the simulations are continuous and cannot be grouped into two 

categories, the approaches based on proportions with the maximum variability, described in 

Table 6.13, are adopted for determining the sample size of the simulation runs. Yamane’s table 

produces more conservative (larger) sample sizes than does Cochran’s formula, so sample sizes 

from Yamane’s table are used here. 

When assuming a 95% confidence level and maximum variability, the sample size is dependent 

upon the precision level. To choose a proper sample size of the simulation runs, sample sizes 

from four different precisions (i.e. ±3%, ±5%, ±7%, and ±10%) are considered. Preliminary 

simulations are executed with four different runs for the ambulance scenario, and their results 

are analysed. The number of vehicles affected by the ambulance, and the ambulance’s travel 

time are reviewed separately by the analysis of variance (ANOVA) for a single factor. The null 

hypothesis was that the means and variances of the four groups are similar, and a 95% 

confidence level (significance level a = 0.05) was assumed. The results of ANOVA show that 

the p value is bigger than the significance level a (0.05), and the F calculated value is smaller 

than the F critical value for each simulation, so the null hypothesis is accepted (Table 6.14). It 

justifies that four different groups, which represent four different numbers of simulation runs, 

have similar means and variances. Therefore, 100 simulation runs are executed and analysed for 

each situation. All the statistical summaries of variance analysis for these four groups are 

presented in Appendix C.  
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Table 6.14 - ANOVA of the four groups to decide the number of simulation runs  
Single factor P-value a F F crit Comparison Result 

The number of vehicles 
affected by ambulance 0.526 0.05 0.744 2.610 P value > a, 

F < F crit 
Accept Null 
Hypothesis 

The total affected time of 
vehicles by ambulance 0.614 0.05 0.602 2.610 P value > a, 

F < F crit 
Accept Null 
Hypothesis 

Ambulance’ travel time 0.567 0.05 0.676 2.610 P value > a, 
F < F crit 

Accept Null 
Hypothesis 

 

6.6 Simulation results  

 

This section presents the simulation results of two scenarios, namely, the ambulance scenario 

and the breakdown scenario. As mentioned in Sections 6.3.1 and 6.5.2, the simulations are 

designed to provide 100 result sets of 5 different communication environments. Each set uses 

the same settings except for a different portion of OBE-implanted vehicles (DSRC-equipped 

vehicle) from 0% to 100% (Table 6.15). A situation that has 0% of OBE-implanted vehicles 

represents the ‘conventional’32  approach, while a situation with 100% of OBE-implanted 

vehicles represents the ‘vehicular communication’ approach. In the simulation, an OBE-

implanted ambulance or broken-down vehicle only sends the communication messages, and the 

OBE-implanted vehicles around it receive the messages and take actions to resolve the situation. 

Therefore, it is implied that the effect of DSRC-equipped vehicles represents the effect of the 

communication messages on the traffic flow in emergency situations. 

For each of the three different cases of the ambulance scenario, as well as for the breakdown 

scenario on the motorway, 100 sets of simulation results are generated as described in the 

simulation output section (i.e. Section 6.4.3). Each set has randomised initial states (e.g. 

vehicles’ routes and a road network). The number of vehicles and the size of the road network 

can have an influence on the simulation results, so these are kept consistent for each set of 

simulations. The road network for each set of simulations is generated in a small area along the 

ambulance’s route or the breakdown spot by using buffering, and the number of vehicles is 

calculated based on the length of a road network of each simulation. In the simulation, vehicles’ 

                                                        
32 By conventional approach we mean traditional transport interactions on the road without vehicular 
communications, e.g. an ambulance’s siren, drivers’ visual scanning behaviour, etc.  
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preferred speed are set based the free-flow speed33, but they could not travel at free-flow speed 

when approaching the lead vehicle or road junctions. 

 

Table 6.15 - Simulation summary 

Scenario Road network The number of 
Vehicles 

Hybrid Environment for 
Vehicular Communications 

Ambulance Scenario 
(three different 

hospital locations) 

Buffered and 
minimised 
based on 

ambulance’s route 
or breakdown spot 

Constant traffic 
flow34 

based on 
the total length of 

a road network 

Set of five different 
communication 
environments 

(from 0% of OBE-implanted  
vehicles to 100% by 25%) 

Breakdown Scenario 
on the Motorway 

 

We now turn to outline the simulation results for the ambulance scenario and the breakdown 

scenario. Each section presents the simulation results of each scenario, and it contains a simple 

description of the simulation and the specific meaning of the efficiency in the simulation. It also 

provides the effect of vehicular communications on the efficiency trends of traffic in emergency 

situations, and statistical analysis of the efficiency trends. 

 

6.6.1 Simulation results of the ambulance scenario 

 

The simulation for the ambulance scenario is designed to provide an environment in which an 

ambulance shares information about its presence and its movements via its siren or vehicular 

communication. In the scenario, vehicular communications are used to state an ambulance’s 

priority to neighbouring vehicles. An ambulance’s siren as well as vehicular communication is 

used to help the ambulance to reach the hospital as quickly as possible. In either case (i.e. the 

use of siren or vehicular communications), the ambulance can travel without slowing down if all 

cars from all directions pull over at once. Therefore, to compare the conventional approach (i.e. 

ambulance’s siren) and the vehicular communication approach in the situation of the ambulance 

scenario, a simple comparison, such as an ambulance’s travel time to the hospital, is inadequate. 

Nevertheless, it is fair to say that the ambulance can share more detailed information about its 

presence and movement beforehand via vehicular communications. The communication 

provides neighbouring vehicles with enough time to respond and give way to the ambulance. 

                                                        
33 Each vehicle’s preferred speed is randomly set by using the free-flow car speed range in Table 6.2a for 
the ambulance scenario and Table 6.2d for the breakdown scenario. 
34 A quarter of the maximum number of free-flow vehicles on a road network is used for each simulation. 
The maximum number of free-flow vehicles is calculated based on the assumption that vehicles travel at 
the speed limit and keep the two-second rule. 
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Even though an ambulance’s request zone is designed to be the same35 during the simulation, 

there is a difference in the ambulance’s effect zone between the 0% DSRC-equipped vehicle 

group and the 100% DSRC-equipped vehicle group (Figure 6.10). The 0% DSRC-equipped 

vehicle group represents the conventional method for an ambulance to request priority by using 

its siren, and the effect zone of the ambulance’s siren (i.e. the patterned area of Figure 6.10a) is 

almost the same as its request zone. When the drivers of vehicles hear the ambulance’s siren, on 

most occasions, they will be affected by the ambulance to give it a clear lane to pass (or give it 

more room to travel by stopping or pulling over if the roads are crowded). An ambulance’s goal 

is to bypass traffic at the highest possible speed to save a life, and it can be done safely and 

efficiently when the nearby vehicles make way for the ambulance. Meanwhile, in the 100% 

DSRC-equipped vehicle group, the ambulance broadcasts its own location and route via 

communication messages, so its effect zone (i.e. the patterned area of Figure 6.10b) can vary 

depending on its route. If a recipient vehicle is informed that its route is not overlapping with 

the ambulance’s route, the recipient vehicle will not need to give way to the ambulance and may 

not be affected by the ambulance’s presence even though it is in the ambulance’s broadcast 

range. 

With this simulation environment, it is expected that the total number of affected vehicles may 

decrease with the numerical increment of DSRC-equipped vehicles because the effect zone of 

an ambulance’s DSRC is relatively smaller than its siren’s effect zone. In other words, the total 

number of unaffected vehicles (i.e. the total number of requested vehicles – the total number of 

affected vehicles) will increase with the increase in the number of DSRC-equipped vehicles, so 

that undesirable delays of neighbouring vehicles will be minimised. Therefore, in the 

                                                        
35 The effective distance of siren penetration through closed windows of moving vehicles can be 
dramatically short. To remedy this shortcoming, low-frequency siren has been developed. According to 
the Emergency Medical Services Authority (EMSA, 2009) in Oklahoma, the howler sirens emit low-
frequency tones that cause objects within 200 feet (i.e. 60.96 metres) to reverberate, and catch drivers’ 
attention much more quickly. The low-frequency sound waves penetrating solid materials allowing 
vehicle operators to feel the sound waves. The Howler is not a replacement to the vehicle's primary siren. 
Howler low frequency tone siren is an effective added layer of warning for intersections and high risk 
areas. So, in the simulation, an ambulance’s request zone was set to 60.96 meters by referring to the effect 
range of the new howler sirens of ambulances. For the DSRC-equipped vehicles, they may get the 
message from an ambulance in advance and take more time to be ready for the situation, but they cannot 
give way for the ambulance in advance if they are too far from each other. A DSRC-equipped vehicle’s 
time window for making way for an ambulance will be similar with a non-DSRC vehicles if the non-
DSRC vehicle already noticed the coming ambulance. The ambulance scenario was focused to measure 
the effects of the communication sharing precise info including its partial route (Figure 6.10), minimising 
the disturbances by the ambulance. So, the effect zone was set to 60.96 m both for the siren and the 
DSRC. 
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simulations of the ambulance scenario, this tendency may become more pronounced as the 

number of DSRC-equipped vehicles increases, and it can be considered that the efficiency of the 

whole system (i.e. the efficiency of traffic in an ambulance situation) is increased.  

 

 
(a) Effect zone of the ambulance A1’s siren (the 0% DSRC-equipped vehicle group) 

 
(b) Maximum effect zone of the ambulance A1’s communication messages  

(the 100% DSRC-equipped vehicle group) 

Figure 6.10 - Different effect zones of an ambulance 

 

The simulation results reveal an increasing trend of unaffected vehicles corresponding to the 

increase in the number of DSRC-equipped vehicles (Figure 6.11). In the simulations, vehicular 

communications play a positive role in minimising the number of vehicles that are affected by 

the ambulance’s presence. In other words, the vehicular communications (replicating the VEIN 

application ontology) are more efficient than an ambulance’s siren when it comes to reducing 

the undesirable delays of neighbouring vehicles.  

However, as demonstrated by the visual patterns in Figure 6.11, there are variations in the 

degree of the increasing trends of unaffected vehicles. Some cases show strongly increasing 

trends of unaffected vehicles. In other cases, the increasing trends of unaffected vehicles are 

relatively weaker. The various degrees of the increasing tendency in the efficiency trends may 

depend on the road geography and vehicles’ relative locations and routes, which were randomly 

set for each simulation. In most cases, the outliers, which are beyond the upper quartile in the 
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boxplots of Figure 6.11, are appeared when the ambulance’s route in a simulation contains 

roads with reservation (i.e. dual carriageways). Further research is required to study whether 

road geography affects the degree of the increasing trend of the percentage of unaffected 

vehicles in an emergency situation, but it is beyond the scope of this research. 

 

 
(a) University College Hospital 

                         
                           (b) Kingston Hospital                                     (c) Princess Royal University Hospital 

Figure 6.11 - Trends of the percentages of unaffected vehicles in eleven vehicle groups 

 

6.6.2 Simulation results of the breakdown scenario 

 

The previous section discussed the simulation results of the ambulance scenario, which showed 

the effect of vehicular communications on traffic efficiency in an emergency situation by 

focusing on minimising the effect zone of an ambulance. This section outlines the simulation 

results of the breakdown scenario on the motorway. It presents the effect of vehicular 

communications in a breakdown situation by focusing on extending the request range for a 
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breakdown spot. Consequently, the simulation for the breakdown scenario is designed to 

provide an environment in which a broken-down car broadcasts its presence and warning 

messages far beyond other drivers’ visual scanning range. These broadcasts give (the drivers of) 

the vehicles heading towards the breakdown spot more time to reduce speed or change lanes 

safely.  

Even though the drivers’ response times for a sudden traffic event/accident may vary, the effect 

of the traffic event can be minimised if the drivers of the vehicles heading towards the 

breakdown spot are informed about the situation beforehand and have enough time to react. 

Therefore, a breakdown’s request zone is designed to be different from that of an ambulance. In 

the 0% DSRC-equipped vehicle group, a four-second gap36 at the speed of 70 mph (i.e. 192 

metres, 210 yards) is regarded as drivers’ average response range (Figure 6.12). In contrast, in 

the 100% DSRC-equipped vehicle group, a breakdown’s request zone is extended to a 16-

second gap (i.e. 768 metres, 840 yards, twelve-second gap + four-second gap) via vehicular 

communications (Figure 6.13). The safe time gaps for overtaking the breakdown spot for 

moving vehicles and vehicles that have stopped are set as four seconds and six seconds, 

respectively. 

 

 
(a) If safe, V1 moves over to the right lane 

 
(b) If not safe, V1 slows down or stops, and then finds a chance to move over 

Figure 6.12 - Request zone of a breakdown in the 0% DSRC-equipped vehicle group  

                                                        
36 The Automobile Association (AA) recommends that a driver on a motorway needs to anticipate what is 
coming next by sweeping the road ahead visually (look two seconds ahead, four seconds ahead, and 
twelve seconds ahead). So, a two-second gap, four-second gap, and twelve-second gap can be considered 
as a short-range, mid-range, and long-range visual scanning distance, respectively. In this simulation, it is 
considered that four seconds will give drivers time to react easily in a relaxed way. Meanwhile, a 16-
second gap is regarded as far long-range distance, which is beyond drivers’ visual scanning range. 
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(a) If safe, recipient vehicles move over to the right lane 

 
(b) Even though V2 cannot move over now, it has more time to find a chance to move over 

Figure 6.13 - Request zone of a breakdown in the 100% DSRC-equipped vehicle group 

 

With this simulation environment, it is expected that the total number of vehicles that overtake a 

broken-down car safely without slowing down may increase with the numerical increment of 

DSRC-equipped vehicles. This is because the request range of the broken-down car in the 100% 

DSRC-equipped vehicle group is relatively longer than that in the 0% DSRC-equipped vehicle 

group. A longer request range means that drivers of the vehicles heading towards the breakdown 

will be warned in advance and so will have more time to move over to the right-hand lanes 

without slowing down and stopping. Therefore, in the simulations of the breakdown scenario, 

the effect of the breakdown will decrease as the number of DSRC-equipped vehicles increases. 

The simulation results show an increasing trend of unaffected vehicles corresponding to the 

increase in the number of DSRC-equipped vehicles (Figure 6.14). 

 

 
Figure 6.14 - Trends of the percentage of unaffected vehicles in five vehicle groups  
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The Cullen and Frey graph (Figure 6.15) and the Chi-squared p-value (i.e. 0.18 > 0.05) from the 

probability distribution, which is created by fitting the normal distribution to the observations 

(i.e. the percentages of unaffected vehicles), indicate that the observations are from a normal 

distribution.  

 

 
Figure 6.15 - Cullen and Frey graph of the observations (i.e. the percentages of unaffected vehicles) 

 

The proportional relations between the number of unaffected vehicles and the number of 

requested vehicles are examined in detail. In order to test the proportional relations between the 

number of unaffected vehicles and the number of requested vehicles, the vehicles are divided 

into two groups, namely, the DSRC-equipped vehicle group and the Non-DSRC vehicle group. 

For each vehicle group, a linear regression analysis is performed. The linear regression results 

show that the increase of unaffected vehicles occurs due to the effect of the DSRC vehicles 

(Figure 6.16 and Table 6.16). The regression equation of the DSRC-equipped vehicle group has 

a higher coefficient (i.e. 0.80) and R-squared value (i.e. 0.98). It indicates that the regression 

model of the DSRC-equipped vehicle group is more significant statistically, and for every 

additional requested vehicle, you can expect the number of unaffected vehicles to increase by an 

average of 0.80. 
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                   (a) DSRC-equipped vehicles only                                   (b) Non-DSRC vehicles only 

Figure 6.16 - Scatterplots and regressions between the number of requested vehicles and the 

number of unaffected vehicles 

 

Table 6.16 - Coefficients of linear regressions of unaffected vehicles from the breakdown  

Vehicle 
Group 

Coefficients 

 Estimate Std. Error t value Pr(>|t|) 

DSRC-
equipped 
Vehicles 

only 

intercept 0.9096 0.3860 2.356 0.0189 
x-variable 0.8024 0.0061 131.300 < 2e-16 

    Residual standard error: 3.213 on 398 degrees of freedom 
    Multiple R-squared:  0.9774, Adjusted R-squared:  0.9774 
    F-statistic: 1.724e+04 on 1 and 398 DF, p-value: < 2.2e-16 

Non-DSRC 
Vehicles 

only 
Hospital 

intercept -4.2522 0.5218 -8.149 4.79e-15 
x-variable 0.705515 0.008467 83.328 < 2e-16 

    Residual standard error: 4.364 on 398 degrees of freedom 
    Multiple R-squared:  0.9458, Adjusted R-squared:  0.9457 
    F-statistic: 6944 on 1 and 398 DF, p-value: < 2.2e-16 

 

In a DSRC-only environment, additional simulation with two different DSRC ranges (768m 

range versus 1152m range) is also performed to test the impact of DSRC-range changes. For the 

further extended DSRC range (1152m), two times of the long-range visual scanning distance 

(two times of twelve-second gap) is used. With the additional extended DSRC range (1152m), 

vehicles approaching the breakdown could change lanes as farther away as possible, so the 

simulation result shows a higher number of unaffected vehicles with 1152m communication 

range than with 768m range (Figure 6.17).  
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                                    (a) Designed traffic density            (b) Two times of designed traffic density 

Figure 6.17 - The percentage of unaffected vehicles in two different DSRC ranges 

 

6.7 Summary and discussion 

 

This chapter outlined the process of the design and implementation of vehicle agents and their 

road environments based on the Repast Simphony platform. Section 6.2 summarised the traffic 

statistics and the GIS dataset that can describe vehicle agents’ movements and the road 

environment, respectively. Section 6.3 outlined the conceptual modelling for the simulation, and 

Section 6.4 explained the implementation of the simulation. The preliminary simulation and the 

statistical analysis of the simulation results were presented in Section 6.5 and Section 6.6, 

respectively. 

First, Section 6.2 showed which information could be used to represent vehicle agents’ internal 

states and road geometry and network. A vehicle agent’s belief-desire-intention (BDI) 

architecture could be simplified into the vehicle’s attributes and methods in the simulation, so 

the object-oriented approach of the agent in the Repast Simphony was adopted without 

extension to represent vehicle’s characteristics. For the vehicles’ movements, it seems that using 

traffic measurements leads to a more realistic simulation because drivers in a free traffic flow 

often break the regulations and ignore recommendations. For the road environment, route 

information for public transport (e.g. bus lane and their operating time) and Urban Paths for 

pedestrians are not considered because considering multi-modal travel is beyond the scope of 
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this research. Thus, the Road Network theme and limited RRI of the ITN layer are used to build 

a simple directed network describing one-way streets and turning restrictions.  

Second, in Section 6.3, the purpose of the simulation and expected results were presented to 

clarify the reason for the modelling process. Then, two different datasets of road network were 

extracted from the ITN layer and stored as shapefiles. Vehicle agents’ general properties and 

methods are also designed during this process. In order to focus on vehicular communications, 

the model assumed that vehicle agents are the only agents, and it differs from other agent 

simulations of emergent phenomena. The shapefiles and the conceptual model of vehicle agents 

are independent of the Repast Simphony platform, so they can be used for other agent 

modelling and simulation platform.   

Third, Section 6.4 showed the implementation of the agent simulation on the Repast Simphony 

platform. It focused on describing the class hierarchy in the setup procedure and the dynamic 

procedure. When considering a simulation environment with these two procedures, the 

properties and methods of each class could be easily designed and built. Variables representing 

the simulation outputs are also collected in every ‘tick’ for the statistical analysis. 

Fourth, Section 6.5 demonstrated a preliminary simulation with two different processes. First, 

the simulation logic of vehicles’ movements and interactions were verified with a small dataset. 

Second, in order to determine the sample size of the simulation runs, two different approaches 

(Cochran, 1963; Yamane, 1967) were used. Four different precision levels (i.e. group sizes) 

were compared based on the analysis of variance (ANOVA). The analysis results showed that 

outputs from the four different numbers of simulation runs had similar means and variances. So, 

a ±10% precision level was chosen to obtain the size of the simulation runs (i.e. 100 simulation 

runs). It also matched with the minimum size of simulation runs proposed by Helbing and 

Balietti (2012).  

Fifth, in Section 6.6, simulation results were presented and discussed for the ambulance 

scenario and the breakdown scenario. First, the simulation results of the ambulance scenario 

showed that the communication messages sharing an ambulance’s precise geographic 

information had a positive influence on minimising the effect of an ambulance’s presence on the 

whole system. Second, the simulation results of the breakdown scenario demonstrated that by 

broadcasting the breakdown warning to an extended range in advance, recipient vehicles had 

more time to change lanes without slowing down. In both scenarios, the vehicular 

communications contributed to minimising the effect of the emergency situation on the whole 
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traffic flow. The simulation results also showed that the effect of vehicular communications on 

the traffic efficiency in emergency situations might vary depending on situational variables (e.g. 

road geometry, vehicles’ interrelation, etc.).  

In conclusion, this chapter gave an explanation of the agent modelling and simulation process, 

which was designed to supplement the static validation of the VEIN application ontology by 

providing dynamic situations of vehicular communications. In the simulation, realistic road 

geography is used to model vehicle agents’ movements and reactions in emergency situations. 

After the ambulance’s or the broken-down vehicle’s route is defined, its route is used to execute 

a buffer analysis to remove unnecessary parts of the road network and minimise memory usage 

during the simulations. For vehicle agents’ characteristics in emergency situations, the VEIN 

application ontology was replicated onto vehicle agent’s attributes and methods, mainly in the 

CommunicationMessage class. Consequently, the communication message class can be 

easily replaced with another class to support the physical communication if necessary.   
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7. General discussion 

7.1 Introduction 

 

The previous three chapters described the three main stages of the methodological framework, 

which was summarised in Section 1.6. In Chapter 4, the target application area of the thesis was 

extracted from a list of all ITS services, and two scenarios were developed. Chapter 5 outlined 

the geospatial ontological framework, which aimed to assist vehicles’ context awareness and 

communications at the domain level, task level, and application level. Chapter 6 presented the 

agent modelling and simulation, which provided a dynamic virtual road environment and 

different proportions of communicative vehicles, to examine the situations that are described in 

the scenarios. Each chapter also included the corresponding results, i.e. the spatiotemporal 

relations and the relative representation for vehicular communications of the scenarios discussed 

in Chapter 4, the validation of the ontology model by instantiating vehicles in Chapter 5, and the 

statistical results of the agent simulations in Chapter 6.  

This chapter reviews and evaluates the results of these three chapters, and goes on to discuss the 

research findings in a broader perspective. Specifically, Section 7.2 discusses the relative 

location representation, emergency rules, and the SPIN-based approach of the VEIN ontology. 

Section 7.3 examines whether the agent simulation, which is discussed in Chapter 6, is 

appropriate to examine the effect of the vehicular communications. Section 7.4 describes 

general traffic situations and high traffic density to discuss pros and cons and extensibility of 

the research outcomes. Finally, Section 7.5 reflects upon logical resemblances between the 

scenarios (Chapter 4), the ontology model (Chapter 5), and the simulations (Chapter 6), and 

discusses the whole methodological approach from a wider perspective.  

 

7.2 Ontology modelling for sharing spatiotemporally dynamic situations 

 

This section discusses the application ontology of the VEIN ontology model, which was 

described in Chapter 5. The VEIN ontology model includes a domain ontology, a task ontology, 

and an application ontology, and these ontologies are developed to support the scenarios at 

different levels. The VEIN application ontology, which contains classes, instances, and 

properties, as well as SPIN functions and SPARQL query templates, was produced as the 

application layer of the intelligent vehicle implementation. Consequently, this section mainly 
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examines the application ontology, as it provides the fundamental ontology of the intelligent 

vehicle implementation. The following sections compares the VEIN application ontology with 

other ontology models, discusses SPIN-based approach and ontology evaluation of this research.  

 

7.2.1 Comparisons with other ontology models 

 

This section compares the VEIN ontology model with existing top-level ontology (i.e. DOLCE) 

and other ontological research related to vehicles’ interrelations and communications, which are 

mostly reviewed in Chapter 2. 

DOLCE and its four super-classes (i.e. Endurant, Perdurant, Quality, and Abstract) 

were referred in the process of building the VEIN ontology model. An emergency vehicle and 

neighbour vehicles are seen as instances of the Vehicle class, which is categorised into the 

Endurant class of DOLCE. Vehicles’ movements and communications are categorised into 

the Perdurant class. The relative location representation and emergency rules are used to 

trigger neighbour vehicles’ reaction in the vicinity of an emergency vehicle. A vehicle’s 

spatiotemporal properties (e.g. remained distance to a junction) belong to the Quality 

category, while the relative location representation and emergency rules are categorised as a 

measurement basis and mathematical/logical axioms of the Abstract class, respectively. 

DOLCE provides classes and their hierarchy, but the concepts of the VEIN ontology are 

represented as properties, SPIN functions and templates. Therefore, it is unable to have one-to-

one matches between DOLCE classes and VEIN classes/properties/functions/templates. Still, 

DOLCE provids a good conceptual foundation to build an application ontology supporting a 

dynamic traffic situation. 

In terms of defining semantic interrelation between vehicles, the relative location representation 

and emergency rules of this research can be seen similar to the concept of the motion relations 

(isBehind, inFrontOf, driveBeside, and passBy), which Hornsby and King (2008) 

proposed. They also provided SQL queries to compute the motion relations. They also assumed 

that an underlying sensor network captures positional data about moving objects in real-time. In 

this environment, each vehicle’s driver can extract specific ‘motion relation’ information by 

querying and reasoning from the spatiotemporal sensor database that is linked with an ontology 

of vehicle classes. However, as described in Section 5.4.3, continuous semantics dealing with 

high frequency data streams and storing/querying streaming data are still challenging (Mladenić 
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et al., 2012; Stuckenschmidt et al., 2010; Valle, 2014). To overcome this limitation and avoid 

overloads of reasoning, the ontology model of this research uses SPIN functions and templates 

that can be processed in memory to keep each vehicle’s ontology model up to date.  

Eigner and his colleagues (2008, 2009) adopted ontological context model compatible with 

vehicular communications. However, relationships between ontology classes and specific 

queries were not represented. Michaels et al., (2010) and Barrachina et al. (2012) proposed 

communication message models for an emergency vehicle and a vehicle involved in an accident, 

respectively. In the message, absolute coordinates are main source for the location of the 

message sender. In contrast, the VEIN application ontology adapted relative location 

representation as main location source, and the request (i.e. emergency rules) of a message 

sender (i.e. an emergency vehicle, broken car) could be made based on the relative locations of 

the message sender and potential message receiver (i.e. a neighbour vehicle). One benefit of 

using relative location representation is that a local event detection can be done based on a 

simple triple-based information extraction without geometric calculations. Based on the relative 

location representation and the triple-based information extraction, a request message from the 

message sender can be set easily, and a network distance (a.k.a road distance) will be applied 

automatically for the request range. 

To sum up, the VEIN application ontology uses the relative location representation and 

emergency rules. This approach can extract triple-based information simply without geometric 

calculation, and it can be utilised for traffic situation detection.  

 

7.2.2 SPIN-based ontological messaging model 

 

A communication message has to contain partial information of a traffic situation, which might 

change as vehicles move, as traffic variables are dynamic in real time. Consequently, up-to-date 

information about the situation is necessary for vehicles at each point, and each vehicle’s 

spatiotemporal properties are updated by SPIN functions and SPIN templates in the VEIN 

application ontology. 

The combination of SPIN functions and SPIN templates was useful for the instantiation of a 

vehicle in the VEIN ontology model. In the model dealing with moving vehicles, assertions are 

mostly related to their locations, which constantly change. If the model were to use data-driven 

inferences to calculate and compare vehicles’ geometries, increases in the number of inferred 
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triples would be observed. Thus, two SPIN templates are presented to avoid overloads of 

inferences.  

The first template obtains assertions of a vehicle’s relative location (distance/time) dynamically 

on demand from two-dimensional coordinates by referencing road elements and junctions in 

SPIN functions. These SPIN functions act in a similar manner to a scalar-valued 

function/method of a programming language that accesses data and returns a single value, such 

as a string, number, or bit value. The first SPIN template can be seen as a registered continuous 

query, which gets streams of answers from input streams. Anicic et al. (2012) used a registered 

continuous query to search slow traffic events and automatically modify a speed limit on a 

certain road section for the central management. However, in this research, it is used as an 

internal process to keep a vehicle’s location-related properties up to date avoiding the burden of 

reasoning processes.  

In the second template, a DSRC message, providing the relative location information of the 

ambulance or the broken-down vehicle, is used as input in the SPIN template and the SPIN 

function of a vehicle’s ontology model in order to insert, update, and delete the instance of the 

ambulance or the broken-down vehicle. For a semantic application in the vehicular environment 

dealing with moving vehicles, it seems that SPIN offers a good alternative solution, that is, a 

query-driven backward reasoning, to avoid overloads of inferred data and to integrate with other 

technologies (e.g. DSRC in this case). 

We can conclude that the relative location representation a SPIN-based approach can make a 

vehicle’s decision-making process simple and avoid resource-intensive information extraction. 

The next section discusses the evaluation approach of the VEIN application ontology and 

introduces additional evaluation approaches that access an ontology by examining different 

levels of contents.  

 

7.2.3 Ontology evaluation 

 

The thesis demonstrated in Section 5.5 how the interactions and communications amongst 

vehicles in the scenarios can be implemented by DSRC messages that instantiate vehicles and 

their spatiotemporal properties/relations based on the VEIN application ontology. This section 

discusses the approach to evaluate the VEIN application ontology in comparison to other 

approaches.  
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An ontology can be evaluated using various approaches, which can be classified into the 

following four categories (Brank et al., 2005): comparing the ontology with a ‘golden standard’ 

(which may itself be an ontology), comparing the ontology with a source of data (e.g. a 

collection of documents) by checking whether the ontology covers the concepts of a domain 

(Brewster et al., 2004), using the ontology in an application and evaluating the results (Porzel 

and Malaka, 2004), and evaluating the ontology by assessing how well the ontology meets a set 

of predefined criteria, standards, requirements, etc. The aforementioned evaluation methods can 

be recategorised based on the different content levels of ontology to examine whether particular 

ontology contents fit a specific domain, as shown in Table 7.1. 

Since the VEIN ontology model has been developed for a specific application area, that is, 

short-range vehicular communications in emergency situations for an ITS environment, the 

evaluation of the VEIN application ontology has been limited to the application-level contents. 

Therefore, the application-level contents of the VEIN ontology model were evaluated by the 

query results (Sections 5.5.2 and 5.5.3) of the given sequential tasks (Section 5.5.1). The 

instance examples of the given sequential tasks (Figure 5.10 and Figure 5.11) and the return 

values of the SPIN query templates (Table 5.4 and Table 5.6) of the ontology model were seen 

as potential applications implementing the two scenarios, so that the approach used here could 

be classified into the third category (i.e. using the ontology in an application and evaluating the 

results) above.  

 
Table 7.1 - Different content levels of an ontology for evaluations (Brank et al., 2005) 

Level Evaluation targets 

Lexical, vocabulary, or data layer Concepts, instances, facts, etc. 

Hierarchy or taxonomy Hierarchical is-a relations between concepts 

Other semantic relations Non-taxonomic relations besides is-a relations 

Context or applications level 
How the results of the application are affected 

by the use of the ontology 

Syntactic 
Syntactic requirements and considerations 
(e.g. avoiding a loop between definitions) 

Structure, architecture, design 
Pre-defined design principles 
or criteria; structural concerns 

 

However, the instantiation of vehicles and their interactions based on specific sequential tasks 

was undertaken statically and conceptually and not within the context of a real application. 

Therefore, it might be controversial whether the instantiation of the VEIN application ontology 



 206 

can be considered as outputs of an application. To supplement this weakness, agent simulations 

are executed to represent vehicle instances in dynamic situations, and the discussion about agent 

simulations is explored next. 

 

7.3 Suitability of the agent simulation for vehicular communication 

 

The simulation results were summarised and analysed in Section 6.6 to assess how much 

vehicles’ individual communications would affect a whole traffic situation, especially in 

emergency situations. Even though vehicular communication can be described as one vehicular 

network, actual communications can be realised only by individual vehicles (and road facilities) 

that have a communication device to send and receive situational information to each other. 

The concept of the VEIN ontology model is replicated in a communication message class for 

the simulation, and each vehicle’s movements and communications are simulated. The 

following two subsections discuss the vehicular mobility model and vehicles’ communication-

based interactions applied in the simulation.  

 

7.3.1 Vehicular mobility model 

 

To examine vehicular communication, a road environment and a traffic flow have to be 

generated first. For the simulation of this research, a mobility model was implemented to model 

each vehicle’s dynamics relating to its location, velocity, and the distance/time to the lead 

vehicle or a junction. A microscopic vehicular mobility may consist of car-following model, 

overtaking model, and junction/intersection model (Härri et al., 2007). This section discusses 

these three components implemented in the simulation of this research.  

First, for each vehicle’s microscopic mobility, the Intelligent Driver Model (IDM) was adapted 

as a car following model. Since IDM is a mathematical model, it cannot fully explain drivers’ 

perception and decision-making process, but it is practical to model mobility patterns of a 

following vehicle to avoid collision with the lead vehicle (Treiber and Kesting, 2013). 

According to Kerner (1999), there can be three phases of traffic, which are free flow, 

synchronized flow, and wide moving jams. In the simulation, a low traffic density was applied 

and each vehicle’s preferred speed was set in the initialisation procedure based on the statistics 
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of free-flow speed ranges. Throughout the simulations, vehicles approaching the lead vehicle or 

a junction slowed down, and synchronised flows with no significant stoppage were observed.  

Second, an overtaking model is partly implemented for the breakdown simulation. As described 

in Section 5.6, this research emphasised the vehicles’ longitudinal interrelation, and the 

ontology model and the simulation was designed in that way. Therefore, multi-lane roads and an 

overtaking model are not implemented in this simulation even though the breakdown simulation 

allowed restricted lane changes to avoid the breakdown.  

Third, a simple non-signalised junction management model was implemented based on the 

kinematic deceleration of the IDM and the first-in-first-out (FIFO) principle. The FIFO 

principle is violated in real traffic, and there are non-strictly FIFO diverging rule models for 

signalised urban intersections in the domain of traffic flow modelling. However, the focus on 

this simulation was not analysing the traffic flow at an intersection, but providing a realistic 

synchronised traffic forming near roundabouts and intersections. In this regard, the FIFO model 

was appropriate.  

To sum up, the car-following model and the simple FIFO model applied to the simulation was 

appropriate to reproduce synchronised flows, and the overtaking model was not considered 

because a low traffic density was assumed.  

 

7.3.2 Vehicular communications as triggers of vehicles’ proactive and 

reactive interactions 

 

This section explores the appropriateness of the agent simulation environment in terms of 

examining the effect of vehicular communications. From this perspective, the simulation results 

and agent’s communication messaging model are reviewed separately. 

First, the simulation results showed the cause-and-effect relationship between vehicles’ 

individual communications and traffic flow efficiency in an emergency situation. According to 

Epstein (2008), a modelling/simulation approach can be applied for various reasons (i.e. to 

predict or explain a phenomenon, guide data collection, illuminate core dynamics, suggest 

dynamical analogies, raise new questions, etc.) if its results provide stationary distributions and 

regularities of interest. The agent simulation delivered statistical distributions and macroscopic 

regularities, which emerged from individual vehicles’ local interactions, over many simulation 
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runs. In the simulation, vehicles’ dynamic and complex interactions were simplified in order to 

focus on the effect of communicative vehicles, which share situational information and 

behavioural rules in emergency situations. Accordingly, during the simulation, vehicular 

interactions in predefined emergency situations were captured not only to explain the effect of 

vehicular communications, but also to illuminate the core dynamics of vehicular 

communications.  

Second, during the simulation of emergency situations, vehicle agents’ proactive and reactive 

interactions occurred based on their communication-based behaviours, which was tightly linked 

with vehicular communications. For the ambulance scenario, the ambulance stated its priority to 

the vehicles in its immediate vicinity and the neighbouring vehicles gave way to the ambulance. 

For the breakdown scenario, the broken-down car warned the vehicles heading towards the 

scene of its presence, and the recipient vehicles moved over to the right-hand lane. The 

proactive behaviour of the message sender vehicle and the recipient vehicles’ reactive behaviour 

were both triggered by emergency rules, which were part of their own messaging model. 

Vehicle agents shared information about their presence (i.e. location and route) and traffic 

situations by sending/receiving vehicular communication messages. These communication 

messages were then used to update the vehicles’ declarative memory37, which was stored as 

instances and properties/relations in their own messaging model. During the updating process of 

their messaging model, each vehicle updated its relative location and the emergency vehicle’s 

request. Then, each vehicle checked its emergency rules based on its own procedural memory38 

to make sure whether it needed to perform particular types of action. This circular process 

enabled each vehicle to keep up-to-date with its messaging model and to use its instances and 

properties as parameters of the emergency rules.  

In summary, the vehicles’ movements and communication-based interactions were measured as 

the simulation results. In addition, we have discussed how vehicle agents’ communication 

messaging model could link vehicle agents’ behaviours. The next section discusses general 

traffic situations whether the agent simulation can support the transition towards intelligent 

communicative vehicles. 

 

                                                        
37 Declarative memory stores specific personal experiences and factual information (e.g. vehicle’s 
location and partial route in the communication messaging model replicating the VEIN ontology model). 
38 Procedural memory is for the performance of particular types of action. A vehicle agents’ procedural 
memory logically corresponds to SPARQL functions and query templates of the VEIN ontology model. 



 209 

7.4 From limited situations to general situations 

 

This research was focused on the limited emergency situations (i.e. the ambulance scenario and 

the breakdown scenario), that has relatively low traffic volume and an emergency vehicle sends 

a message to neighbour vehicles (i.e. one-way communication). However, there can be various 

communication types to support different situations. In high traffic volume, vehicle agents’ 

behaviour can also be different. This section explores different traffic situations to discuss pros 

and cons and extensibility of the scenario, the ontology model, and the simulation of this 

research.  

 

7.4.1. Different communication types for different situations 

 

By message delivery schemes, broadcasting types can be divided into five ways: anycast (one to 

any), broadcast (one to all), multicast (one to a group), unicast (one to one), geocast (one to a 

specific area). The communication in the ambulance scenario can be seen as geocast, and one-

way communication is preferred as a time-critical solution. It is because the ambulance may 

expect answerbacks from the neighbour vehicles by their instant give-way reactions rather than 

sending messages back.  

However, there are other situations that two-way communication is necessary. Payment-related 

applications such as toll payment and parking slot reservation contain a financial transaction 

during the process, and two-way communication (i.e. unicast) is required. For these kind of 

application, DSRC is not necessary. Radio Frequency IDentification (RFID), Near-Field 

Communication (NFC) and mobile communication can be applied instead.  

In a situation dealing with fast moving vehicles but not time-critical, two-way DSRC can be 

used. The reservation-based control at an intersection (Dresner and Stone, 2004, 2005) or the 

cooperative route-allocation to avoid congestion (Desai et al., 2013) can be a good example of 

two-way V2I communication (i.e. geocast) and two-way V2V communication (i.e. geocast or 

multicast), respectively. The case of freeway traffic to resolve a stop-and-go wave (Kesting et 

al., 2008) can be seen as a multi-hop communication (i.e. anycast). 

To sum up, this research chose a one-way single-hop V2V communication (i.e. DSRC, geocast), 

but there can be various communication types suitable for different situations. The 

communication types categorised by direction of communication (one-way, two-way), 
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forwarding of message (single-hop, multi-hop), and message delivery schemes (anycast, 

broadcast, multicast, unicast, geocast) (Daraghmi et al., 2013; Kargl et al., 2006). 

 

7.4.2. Vehicle agents’ behaviour in heavy traffic 

 

The ontology model and the simulation framework are developed based on two emergency 

situations on the assumption that there is no heavy traffic. Based on this assumption, intelligent 

vehicles’ BDI model was simplified and their cooperation resolving an emergency situation is 

modelled and simulated. However, in heavy traffic, even not in an emergency situation, 

communicative vehicles and infrastructure should elicit their coordination and negotiation to 

improve road safety and efficiency.  

The simple FIFO-based road junction management model cannot be applied in the situation of 

traffic congestion. A traditional traffic control operation (i.e. traffic lights) or intelligent 

intersection control based on V2I and V2V communications should be applied to model a 

realistic traffic flow. If there is a communicative intersection controller, vehicles approaching 

the intersection can follow its coordination, which is based on real-time analytics of traffic 

conditions. Vehicles can pass through the intersection smoothly without the danger of collision 

or becoming entangled at the intersection (Yang et al., 2014). The intelligent intersection 

controller can also interact with neighbour intersection controller or an emergency vehicle to 

coordinate a green light wave to allow continuous traffic flow in one main direction (Bonomi et 

al., 2012).  

The breakdown situation can be extended to a lane closure situation, in which traffic merges 

into a reduced number of lanes (e.g. from three lanes to two lanes). In the breakdown situation 

with low traffic density, the emergency rule of the ontology model was designed to trigger the 

early merging phenomena between two lanes (i.e. the lane of the breakdown and the right lane). 

Consequently, the simulation was designed such that merging traffic on the lane of the 

breakdown changes lanes as early as possible after the detection of the breakdown, but yields to 

through traffic on the right lane they wish to enter. However, traffic congestion may occur when 

dealing with high traffic volume on multiple lanes, and the merging pattern could be more 

complex. In this situation, many authorities encourage drivers to use the late merge (zipper 

merge) method to reduce speed differences between lanes and increase safety. So, a zipper 

merge model needs to be added to the ontology model and the simulation framework, and an 
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event-driven process is also required to notice traffic congestion and activate the zipper merge 

model to change the vehicles’ reactions. Besides, to minimise complex zipper effects on 

multiple lanes (e.g. two zippers from three lanes to two lanes or three zippers from four lanes to 

three lanes) in traffic congestion, a coordinate rule/logic can be designed to make vehicles on all 

lanes equally disadvantaged to reduce queue backups. A roadside beacon broadcasting a 

coordination rule can be implanted on the signboard of the lane closure. For the coordination, 

vehicles (or vehicle platoons) can be asked to do different behaviours (keep the lane or change 

to the right lane) based on which lane they are on and how far from the lane closure. 

When modelling complex situations of high volume traffic, the detailed traffic models 

explaining traffic control and drivers’ behaviours have to be implemented into the ontology 

model and the simulation framework. In general situations, Vehicle agents’ BDI model cannot 

be simplified anymore because vehicles have long-term goals and plans that can conflict with 

each other. Vehicles’ desires and intentions can be shared for a negotiation via communications. 

Desai et al. (2013) suggested a cooperative route allocation to avoid congestions, and each 

vehicle communicates with each other to share its initial route and compute individual welfare 

and overall welfare to decide its revised route at every junction. This kind of situation can be a 

practical scenario to extend the BDI model of the ontology model and the simulation framework. 

The concepts (i.e. BDI, action, policy) of SOUPA (Chen et al., 2004, 2005) can also be applied 

to link the BDI model and a negotiation rule/behaviour.  

To sum up, additional coordination/negotiation rules can be made and shared as parts of 

communication messages among intelligent vehicles and infrastructure to manage/control these 

complex situations safely and efficiently. If a communication sender (e.g. intersection controller, 

roadside beacon) has higher authority than communication receiver (e.g. vehicles nearby), its 

controlling rule triggering different behaviours from vehicles nearby can be seen as a 

coordination rule. In a situation of large-scale, long-lasting congestion over a wide area, central 

management authority can intervene directly in the operation of traffic control or via Center-to-

Infrastructure communication (i.e. hierarchical coordination). Meanwhile, if communication 

messages are sent and received between vehicles, controlling rules need to contain conditions to 

reach agreements on the situation so that the rules can be considered as negotiations between 

autonomous vehicles. Of course, there can be a situation that traffic flow is affected by the 

interplay between hierarchical coordination and autonomous negotiation. 
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7.5 Methodological discussion 

 

The previous three sections discussed the results of the three main stages of the methodological 

framework. We now turn to the whole methodological approach. To provide an insight into the 

further development of geo-ontologies and simulations for future scenarios and applications, the 

methodological approach is reviewed and reflected upon.  

The use of a list of ITS user services, which was considered as an entire logical organisation of 

ITS applications, proved to be an important tool for extracting a specific target application. 

Though the use of user services and scenarios is common, the conceptual link of a logical 

organisation and a spatiotemporal organisation as an integral part of the scenario development is 

an interesting aspect of this research. This research demonstrates that such an approach can help 

in understanding the technological perspective (i.e. logical organisation) and situational 

perspective of an application (i.e. spatiotemporal organisation) when developing a futuristic 

scenario (Figure 7.1). A holistic perspectives of the ITS environment can facilitate the 

modelling of intelligent vehicles as individual organisations and members of an organisation 

simultaneously.  

 

 
Figure 7.1 - Relations between organisation concepts39 in the thesis 

 

Since the concepts of the scenarios and spatiotemporal organisations are compatible, the 

conceptual relations of organisations that are shown in Figure 7.1 can be explained in a simple 
                                                        
39 According to Krikorian (1935, p.122-124), an organisation can be defined as ‘a collection of different 
elements in a set of relations forming a whole’, and it can be classified into five different types depending 
on the character of elements, relations, and the whole, i.e., logical organisation, spatiotemporal 
organisation, substantial organisation, causal organisation, and purposive organisation. 
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way using the scenarios throughout this thesis. Chapter 4 states that the meaning of the term 

‘scenario’ has been limited to represent story-like static snapshots of dynamic situations, which 

are the two DSRC scenarios. However, in general, a sequence/structure or a simulation can also 

be considered as a type of scenario from a broader perspective (Alexander, 2004). Therefore, all 

three main outcomes can be regarded as scenario-based approaches to describe traffic situations 

in different perspectives (Table 7.2).  

 
Table 7.2 - Scenario-based approaches to describe traffic situations 

Type Description Contents Perspective 

Scenario 
Narrative description of 

a traffic situation 
Vehicles’ location, 

their spatiotemporal relations 
Overall  

snapshot 

Ontology 
Computational description of  

vehicle objects, their properties  
and relations 

Properties and relations, 
SPARQL templates 

Object-
oriented, 

sequential 

Agent 
Computational description of interactions 

 between intelligent vehicle agents  
in the dynamic processes of traffic flow 

Entities, 
behavioural rules 

Dynamic, 
interactional 

 

From the ITS user services representing logical organisations and two scenarios representing 

spatiotemporal organisations in Chapter 4, a geospatial ontological framework was developed in 

Chapter 5, and the ontology model was examined with time sequences of vehicular interactions. 

Then, in Chapter 6, simulations of vehicular communications were carried out to model 

dynamic situations and measure the effect of vehicular communications. The ontology model 

and the agent simulation were developed as a data layer and an application layer that support the 

vehicular communications to resolve emergency situations, which can be seen as organisational 

rules in emergency. In the data level, some ontology properties, SPIN functions and templates 

of the VEIN ontology were used for a vehicle to recognise the situations and then decide 

whether it has to take action or not, while these properties, query functions and templates are 

replicated for vehicle agents’ behaviours in the simulation. 

The VEIN ontology model was designed to support vehicle agents’ cooperation, communication, 

and decision-making in limited emergency situations. However, the ambulance scenario can be 

used for a variety of emergency vehicles, and the breakdown scenario can be used for road 

traffic accidents, road maintenance, and road repair. In general, if a situation can be described 

using spatiotemporal relations between the proactive participants of the situation and some 

temporal organisational norms can be used to resolve the situation, the ontology model can be 

extended to support the situation. Temporal organisational norms and their effects on the whole 

vehicle agent society in the situation can be measured in the agent simulations.  
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It should be noted that the idea of the modelling and simulation methodologies was borrowed 

from computer science. In many cases in computer science, a model is described by a formal 

language to specify particular kinds of systems, or it is embedded in a computer program that 

simulates the particular behaviours of a system. Since this research has dealt with the messaging 

model for vehicular communication, these two options are not mutually exclusive; thus, both 

options were chosen as main parts of the methodology. A geo-ontology model was developed 

from the scenarios, and then a communication messaging model representing the concept of the 

ontology model was replicated onto the vehicle agents’ behaviours for the simulations.  

As a whole, the research has demonstrated that the scenario-based approach is useful as a 

development scheme for building an ontological framework. It also showed that an agent-based 

simulation environment is useful to examine the effect of vehicular communications on the 

traffic flow in a situation of the scenarios. Even though agents’ communication-based 

interactions are simulated in this research, there is an on-going research toward vehicular 

computing and information-centric networking that proposes a common virtual platform (i.e. 

inter-networked resources) consisting of vehicles’ data storage, sensors, and computing 

resources (Gerla et al., 2014). In addition, JENA reasoning engine (http://jena.apache.org) and 

SPIN API (http://topbraid.org/spin/api/) have to be implemented to activate an ontology model 

in a vehicular computing platform. It can be one further step towards vehicular context-

awareness.  

 

7.6 Chapter summary 

 

This chapter discussed the ontology model, the agent simulation, and the methodological 

approach of this research to support vehicle agents’ communication in the road environment to 

resolve emergency situations. Section 7.2 compared the VEIN ontology with other ontology 

models and then focused on the relative location representation and emergency rule to simplify 

vehicle’s decision-making process. Benefits of a SPIN-based approach were justified. It also 

explained how two sequential tasks (Figure 5.10 and Figure 5.11) and query outcomes (i.e. the 

return values of the SPIN query templates in Table 5.4 and Table 5.6) were used for the 

evaluation. Section 7.3 discussed the suitability of the agent simulation focused on the vehicular 

mobility model and vehicles’ communication-based behaviour. 7.4 explained how the ontology 

model and the simulation could be extended to support general traffic situations. Section 7.5 
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highlighted the conceptual links between the logical and spatiotemporal organisations to 

consider technological and situational aspects of building a futuristic scenario. The concept of 

the scenarios (i.e. spatiotemporal organisations), the ontology model, and the agent simulation 

was discussed from a broader perspective to outline the similarities of the traffic situations that 

were described in Chapters 4, 5, and 6. It also described how the scenarios and the ontology 

model could be extended and how the organisational norms of the emergency situations could 

be measured.  
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8. Conclusion  
 

The area of intelligent vehicle applications can be charted along two dimensions: the degree of 

autonomy and the degree of cooperation (Silberg et al., 2012). Recently, there has been fast-

growing attention and technical progress for the development of autonomous cars40. The 

automotive industry has mainly focused on the design and development of sensor techniques 

(e.g. radar, lidar, GPS, computer vision, etc.) for an autonomous car to increase the degree of 

autonomy and ultimately, to navigate without human input. Even though vehicular 

communication technologies for vehicular cooperation receive less attention than sensor 

technologies for autonomous cars, the high degree of vehicle autonomy creates the need also for 

a higher degree of vehicular cooperation in many ITS applications (Silberg et al., 2012). In 

addition, physical communication technologies (e.g. DSRC) are becoming mature and are 

becoming the basic cornerstones for V2V and V2I environments. For the dimension of 

vehicular cooperation, this research has explored the development of appropriate 

communication contents among vehicles on top of physical communication technologies. 

Considering the importance of a vehicular communication network and its contents, this 

research has attempted to build a vehicular version of a Semantic Web by developing a 

geospatial ontology model that could be used as a vehicle’s context model as well as 

communication contents. This research also examined vehicles’ communications using both 

static and dynamic instantiations of vehicles and their interactions. For the dynamic 

instantiations, a virtual road environment and vehicle agents were simulated focusing on the 

short-range vehicular communications of specific traffic situations (i.e. local emergency 

situations). The following sections revisit the research questions and then outline the research 

outcomes, the research contributions, the research limitations, and suggestions for future work.  

 

  

                                                        
40 It is also known as a robotic car, a driverless car, or a self-driving car. However,  throughout this thesis, 
the term ‘autonomous’ has been used to refer specifically to vehicle agents’ flexible autonomous 
behaviours based on their social abilities (i.e. cooperation, coordination, and negotiation) to resolve 
emergency situations by providing information/warning to assist drivers. 



 217 

8.1 Reflecting on the research questions  

 

The main aim of this research was ‘to explore how geosemantic data/information can be used to 

make a transport system more intelligent’ based on the vehicular communication in an ITS 

environment. This thesis was intended to achieve this research aim by answering the research 

questions, which were described in Section 1.5. This section summarises and discusses how 

these research questions were addressed throughout the research undertaken.  

 

• Which area of ITS applications will benefit most from intelligent vehicles and their 

short-range communications? Which traffic situations should be modelled to generate 

this benefit? 

This research question was formulated to find time-sensitive dynamic traffic situations, in 

which geographic information has a significant role to resolve the situations. In order to 

assist vehicles in these kinds of situations, spatiotemporal information representing moving 

vehicles’ location, route, and interrelation had to be the main parts of the description of 

traffic situations.  

To answer this research question, the two scenarios that represented vehicular 

communications in emergency traffic situations were developed, through following a two-

step process. In the first step, from a well-defined list of the ITS user services (Section 

4.2.1), two ITS service bundles (Sections 4.2.2 and 4.2.3) were highlighted to represent 

immediate vehicular communications in emergency traffic situations. In the second step, 

the target application area (Section 4.2.4) was specified on the basis of whether real-time 

communication (sending and receiving real-time spatiotemporal information) plays an 

indispensable role to cause vehicles’ instantaneous interactions. Finally, two scenarios (i.e. 

the ambulance scenario in Section 4.3.1 and the vehicle breakdown scenario in Section 

4.3.2) were developed to describe vehicular communication in local traffic situations 

representing the target application. The scenarios represented proactive vehicles (i.e. an 

ambulance and a broken-down vehicle) and reactive neighbouring vehicles in the vicinity 

of the emergency situations.  
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• What are the core contents of the vehicular communications in the traffic situations? 

The second research question was asked to specify what kind of information could 

comprise communication messages in the specific traffic situations, which were already 

defined from the first research question. 

In Section 4.4, dynamic inter-vehicle relations and relative location representation were 

emphasised as potential parts of communication contents. Subsequently, In Chapter 5, a 

geospatial ontological framework (i.e. VEIN ontology) was proposed as a network-centric 

communication contents model to describe vehicles’ dynamic locations and relations. In 

the ontological messaging model, relative location information of an emergency vehicle 

was the one part of the core contents and an emergency rule that describes the emergency 

vehicle’s request was the other. With relative location representation, two vehicles’ relative 

distance/time could be acquired by simple comparison between two scalar values. It 

enables to make the emergency rule without geometric calculations. The emergency rules 

were defined as query templates, so vehicles could cooperate with the emergency vehicle 

by performing an action based on a query result. 

 

• How can the contents of the vehicular communications be linked effectively with 

intelligent vehicles’ actions? 

An intelligent vehicle agent takes action based on its internal states and external 

environment. A vehicle’s internal states can be represented by its beliefs (i.e. knowledge-

base), desires (i.e. goals), and intentions (i.e. plans for actions). Furthermore, for a vehicle 

in a traffic flow, its neighbouring vehicles can be considered as parts of its external 

environment. Thus, descriptions of vehicles’ presences and routes were the main part of the 

vehicular communication contents to share/resolve traffic situations. However, even though 

vehicles could send and receive situational information that was closely linked to vehicles’ 

internal states via vehicular communications, communication messages themselves were 

not the main body of action. There was a need for a linkage between the communication 

message model (i.e. VEIN application ontology) and the vehicle agents’ properties and 

methods that trigger their reactions.  

The development of the agent-based simulation platform, which modelled vehicles’ 

movements, communications, and interactions in emergency situations, was described in 

Sections 6.2 to 6.4, as the process to link the vehicular communication messages (i.e. a 
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replication of the VEIN ontology model) and the agent’s properties and methods. As this 

research deals only with emergency traffic situations, a vehicle agent’s beliefs, desires, and 

intentions (BDI) could be easily simplified as a vehicle agent’s properties and methods to 

take action in a way that resolves an emergency situation (Section 6.2). A virtual road 

environment was built to simulate vehicle agents’ movements and communications 

(Section 6.3). For virtual communications to trigger vehicle agents’ reactions, a Java class 

(i.e. CommunicationMessage) was developed on top of the Repast Simphony platform 

as a replication class of the VEIN application ontology (Section 6.4). 

 

• If communicative vehicles have an influence over the whole system, how can the impact 

be measured?  

This research focused on the communications between an emergency vehicle and its 

neighbouring vehicles (i.e. an emergency vehicle’s proactive requests/warnings and its 

neighbour vehicles’ reactions). To model vehicles’ microscopic mobility, a car-following 

model and a FIFO-based junction management model are implemented in the agent 

simulation framework (Section 6.2). During the simulation, movements and 

communication between an emergency vehicle and the neighbouring vehicles are modelled, 

and the number of vehicles that are not disturbed by an emergency vehicle is counted 

(Section 6.4). Even though direct communications among neighbouring vehicles were not 

considered, the simulation results showed increasing trends of traffic efficiency with the 

increase of DSRC-equipped vehicles and their communications (Section 6.6). 

We have revisited the research questions and seen how the research framework was built to 

answer the research questions. Even though this research focused on local emergency situations, 

each component of this framework can be easily extended and modified for the design and 

development of intelligent vehicle agents in other traffic situations. The next section describes 

the research outcomes (i.e. the scenarios, the ontology model, and the agent simulation), which 

have been developed and discussed throughout this thesis.  

 

8.2 Research outcomes: scenarios, the ontology, and the agent simulation 

 

After the literature review of the ontological and agent-based approaches in the intersection area 

of the ITS-related domains, a three-level (i.e. description level, data level, and application level) 
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research procedure was undertaken for the implementation of intelligent vehicles throughout 

Chapters 4, 5, and 6.  

The main outcomes of this research consist of three components: futuristic scenarios, a 

geospatial geosemantic messaging model, and an agent simulation environment. These three 

components represent a description level (i.e. two scenarios in local emergency situations), a 

data level (i.e. a geospatial ontological framework to support vehicular communication 

messages), and an application level (i.e. an agent simulation to model vehicle agents and their 

interactions) for the implementation of intelligent vehicles. This section outlines these main 

outcomes and examines their characteristics.  

 

• Scenarios: an ambulance case and a broken-down car case 

This thesis provided two specific scenarios (i.e. the ambulance scenario and the breakdown 

scenario), which were described in Chapter 4. The two scenarios illustrated two different 

traffic situations: a spatially dynamic influence based on an ambulance’s movements and a 

spatially static influence because of a broken-down vehicle’s presence, in which vehicular 

communications might have a positive effect on resolving the situations.  

Along with the scenarios, this thesis provided two additional ancillary outcomes. First, 

based on a logical organisational concept, the target application area was extracted to 

specify the situations, which focused on intelligent vehicles’ proactive and reactive 

characteristics based on vehicular communications. This process for extracting the target 

application area presented a general process to extract an application area from the whole 

ITS system. Second, vehicles’ locations in the scenarios are represented based on scalar 

value properties and binary relations with local road segments and junctions rather than 

their coordinates, focusing on the vehicles’ longitudinal interrelations. By simplifying the 

geosemantic descriptions for vehicles’ interrelations and the decision-making processes, 

the relative descriptions (i.e. vehicles’ spatiotemporal relations and relative location 

representation) set up a base for the ontological modelling of vehicles’ communication 

messages. 

 

• Geospatial ontological framework: the VEIN ontology 

To support intelligent vehicles’ movements and communications in an ITS environment, 

the VEIN ontology was developed as a hierarchical ontological framework, which was 
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composed of a domain ontology, a task ontology, and an application ontology. Based on 

the VEIN domain ontology that provided the four main classes (i.e. vehicles, infrastructure, 

travellers, and centres) of the ITS architecture, the VEIN task ontology and the VEIN 

application ontology were developed.  

As a network-centric messaging model of AI (i.e. intelligent vehicles), the VEIN 

application ontology was designed to store declarative (i.e. bottom-up) statements and 

procedural (i.e. top-down) statements. The declarative statements were used to describe 

vehicles’ relative locations in a specific time, whist the procedural statements defined 

emergency rules to support vehicles’ autonomous interactions to resolve emergency 

situations. These statements were all written in the triple patterns so that the VEIN 

application ontology could be seen as a single ontological framework.  

 

• Agent simulation to model vehicles’ movements and communications 

To supplement the static validation of the VEIN application ontology, the agent simulation 

environment was developed to provide a dynamic virtual road environment, in which 

vehicle agents were moving and interacting with each other. For the road geography of the 

two scenarios, two different road datasets were extracted from the ITN layer and then 

stored as shapefiles. To represent a vehicle agent’s internal states in emergency situations, 

the vehicle agent’s beliefs, desires, and intentions (BDI) architecture was simplified onto 

the vehicle’s attributes and methods. The agent simulation environment was implemented 

using Repast Simphony, and simulation outputs were collected in every ‘tick’ during the 

simulations. 

A simulation normally includes a proper validation concerning whether the simulation is a 

good model of the real system. Since this research deals with a futuristic situation, the 

verification of the emergency rules in a test set was used as the predictive validation of the 

futuristic situation. The main simulations were executed with different proportions of 

OBE-implanted vehicles for each scenario, and the result of the regression analysis showed 

that the effect of vehicular communication in an emergency situation increases linearly 

when there are more OBE-implanted vehicles in the situation.  

In summary, as this research deals with vehicular communication network on a road network, it 

provides a unique theme for the modelling and simulation of vehicular interrelations. The next 

section describes the research contributions to the domain of intelligent transport systems. 
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8.3 Research contributions 

 

This research uses triples of ontology to describe vehicles’ spatiotemporal interactions in order 

to emphasise the network-centric characteristics of a vehicular communication network on a 

road network. The novel contributions of this research can be described in four aspects: 1) 

articulating the need of relative location representation and emergency rules as core contents of 

the communication message to trigger neighbour vehicles’ reaction effectively; 2) proposing a 

SPIN-based ontological messaging model that provides a query-driven backward reasoning to 

avoid overload of inferred data; and 3) presenting a simulation framework that can evaluate the 

communications in the emergency situations.  

First, this research proposed an ontological approach, which has been used to support the 

developments of the vehicles’ context model and communication messaging model. For a 

vehicle in a traffic situation, its VEIN ontology model represented its relative location and 

spatiotemporal relations with other vehicles and/or road elements. With the network-centric 

descriptions of the ontology model, partial information (i.e. partial ontology) of an individual 

vehicle could be easily extracted from its whole context model and then merged with another 

vehicle’s partial ontology. By sending and receiving its ontology-based messages (e.g. an 

emergency vehicle’s relative location and the emergency rule), the recipient vehicles could 

understand the surrounding situation, and then take action to resolve and/or avoid the situation.  

Second, a SPIN-based ontological messaging model (i.e. VEIN ontology) was developed to 

apply the relative location representation and emergency rules in a practical way. In the VEIN 

application ontology, the relative location of a vehicle was represented by its properties (e.g. 

remained distance to a node) and relations (e.g. which road it is located on, which node it is 

heading to). A vehicle’s relative location could be easily translated into a distance/time towards 

a junction or another vehicle so that the vehicle’s decision process to resolve a situation could 

be simplified. In the ontology model, several SPIN functions and query templates were also 

developed to assist vehicles/drivers by dealing with emergency rules (e.g. giving way or 

changing lanes). To avoid overloads of reasoning, but still keep the benefits of ontology, this 

research adopted SPIN functions and templates. Using SPIN functions and templates, it is 

possible to represent context in programming code level in computer memory, which is a 
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benefit of the object-based context model, and detect emergency situations (i.e. event detection), 

which is a benefit of the logic-based context model.  

Third, this research has validated vehicular communications in a dynamic traffic environment 

by using an agent-based simulation, which supplemented the static validation of the VEIN 

application ontology. To replicate the concept of the ontological context/messaging model, a 

communication message class was developed. Two emergency traffic situations were simulated 

in order to examine the advantage of sharing situational information via the communication 

technology on the road. Even though the scope of this research was limited to the predefined 

emergency situations, the agent simulation environment could be extended for modelling other 

traffic agents (e.g. traffic signal controller). An agent simulation framework has also provided 

that could measure the effect of vehicular communications on the traffic efficiency in specific 

situations. With the agent simulation framework, various situational environments (e.g. different 

communication ranges, traffic density, emergency rules) can be generated and compared to each 

other or expected theoretical results. 

Yet, as this research has focused on very specific emergency traffic situations, there are research 

limitations. The next section discusses the research limitations from two different perspectives: 

research outcomes and research method.  

 

8.4 Research limitations 

 

The previous two sections (Sections 8.2 and 8.3) outlined the main research outcomes and 

research contributions. Even though this thesis has addressed the research aim, there are 

limitations that need to be considered. This section describes the limitations of the three main 

outcomes (i.e. the scenarios, the ontology model, and the agent simulation) as well as the 

methodological limitations.  

 

• Scenarios: locality of each scenario and cooperation-focused description 

The scenarios were focused on building a vehicular communication message model to 

support vehicular cooperation in specific emergency situations, in which vehicles share 

geospatial information to resolve a shared traffic situation. Therefore, the scenarios were 

built on top of the subservices of the ITS user services, and reflected only parts of reality. 

In a real traffic situation, the locality and independency of each scenario cannot be assumed 
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any more. There would be cases where two or more events might happen in proximity and 

a vehicle on a road may be in the impact zone of several events, but these multiple traffic 

situations have not been discussed. When dealing with several concurrent traffic situations, 

vehicular coordination and negotiation have to be considered in order to prioritise and 

allocate resources to resolve several situations in sequence. 

 

• The VEIN ontology: restricted availability for emergency situations that contain point 

events on a linear network 

The VEIN ontology was developed as a communication message model on the conceptual 

basis of an ad hoc vehicular network (i.e. DSRC) and ontology-based context modelling. 

As a network-centric message model on top of restricted scenarios, vehicles’ locations 

were described with relative distance and time from/to a road element. Even though 

relative geographic representation of the VEIN ontology enabled SPARQL queries to be 

made without spatial indices, it is limited to point features/events on a linear road network. 

The linear road network model (i.e. one-dimensional linear space) provided a simplified 

and abstracted description of the real world road network, but it was focused on describing 

vehicles’ longitudinal interrelation, rather than vehicles’ lateral interrelation. Consequently, 

two-dimensional or three-dimensional descriptions, such as roadway width and multi-lane 

properties, were not considered. 

 

• The agent simulation: strict adherence to the predefined emergency rules without 

learning and updating vehicles’ behaviours 

The agent simulations focused on examining the effect of the vehicular communication to 

share vehicles’ geospatial information in emergency situations, so vehicle agents’ 

adaptation or learning was beyond the scope of this research. Consequently, despite the fact 

that vehicles were modelled in an agent-based way, vehicles were quite limited to ‘learn 

and update their behaviours’ from a decision-making perspective (Johnston et al., 2013). 

Drivers’ different behaviours could also affect the traffic flow, but were not considered 

since this research deals with emergency situations that drivers needed to follow 

emergency rules, which were compulsory for their own safety. 

 

Apart from limitations of the research outcomes, there is another limitation caused by the 

methodological framework. The research questions were developed like a parallel circuit rather 
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than a series circuit so that each research outcome can be treated as an individual solution of 

each research question. The VEIN application ontology was developed as a communication 

messaging model, and the agent simulation was just designed to demonstrate the effects of 

vehicular communications by linking the communication message to the vehicle agents’ 

behaviours. Even though the communication message class for the simulation was built based 

on the concept of the VEIN application model by replicating its properties and functions in a 

Java class, the VEIN application ontology was not physically coupled with the simulation. 

Therefore, the agent simulation has fundamental limitations and cannot be treated as an 

independent solution for providing dynamic validation of the VEIN application ontology. 

 

• Restricted simulation environment: limited to vehicle-to-vehicle communications and 

static road-related information 

During the simulation, it was assumed that each vehicle had its own storage for its 

ontology model not only to keep the whole static road network, but also to update vehicles’ 

presence via OBE-to-OBE communications. Vehicle-to-infrastructure communication (i.e. 

OBE-to-RSE communication) and vehicle-to-centre communication, which could expand 

the ontology model for vehicle agents to receive/update dynamic road-related information 

in realistic traffic situations, were not considered in the simulation. Consequently, ontology 

storage options for the aforementioned communication types (i.e. road-segment based 

partitioning for RSE, traffic analysis zone based partitioning for traffic centre) were not 

considered in the simulation.  

 

Based on the aforementioned research limitations, the next section will recommend directions 

for future research.  

 

8.5 Future work 

 

The previous section (Section 8.5) provided detailed descriptions of the research limitations, 

and they can be considered as guidelines to refine the research outcomes and research method. 

This section outlines recommendations for future research to improve the VEIN ontology and 

the agent simulation, which can be regarded as the two main columns that support the research 

framework. Providing more scenarios can extend the VEIN application ontology, and the 

implementation of vehicle agents can be extended by providing an Application Programming 
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Interface (API) that reads/writes the VEIN ontology model as well as providing a more 

sophisticated decision-making framework. The simulation framework can be improved by 

providing more detailed vehicle mobility models and realistic traffic volumes.  

 

• Providing more scenarios to extend the VEIN application ontology 

The VEIN domain ontology and the VEIN task ontology were developed by analysing 

transport features/elements and vehicular communication devices/elements, respectively. 

Then, the VEIN application ontology was developed as a limited set of subclasses, 

properties, and relations as well as SPIN rules and SPARQL templates. The same 

procedure can be done with other scenarios in order to extend the VEIN application 

ontology. Additional scenarios can describe vehicle-to-infrastructure communication, other 

vehicular sensors (e.g. LIDAR, ultrasonic, optic sensors, etc.), and concurrent situations in 

which vehicles need to coordinate and negotiate. 

 

• Providing an API to access the VEIN ontology  

Since the vehicular communications were simulated in a virtual road environment, the 

VEIN ontology model was logically mapped onto vehicle agents’ properties (i.e. internal 

states) and methods (i.e. behaviours). It was enough to examine whether the ontology 

model could be regarded as having reliable communication contents to resolve the 

emergency situations. However, to become an independent messaging model and to be 

integrated with the simulation, the VEIN ontology model needs to provide an API for 

accessing its own ontology storage to get/set asserted triples, SPIN functions, and 

SPARQL templates. In addition, building an ontology API would be the first important 

step for the physical implementation of intelligent vehicles.  

 

• Developing advanced decision-making process for intelligent vehicles  

The VEIN ontology contains SPARQL templates, which represent vehicle agents’ current 

decision-making process. These templates only check if a vehicle meets a predefined 

situation by measuring the vehicle’s relative distance/time from an emergency 

location/zone. This kind of predefined routines can be powerful when dealing with a 

simple situation, but an advanced decision-making process for vehicles is essential to deal 

with various complex situations. With the integration of vehicles’ predefined cooperation 

rules (i.e. emergency rules) and additional coordination and negotiation rules, a stage-by-
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stage decision-making framework (e.g. situation - options – choose – act – evaluate) needs 

to be developed. 

 

• Replicating more realistic traffic situation for the simulation 

For the microscopic vehicle mobility, the simulation framework only provides a car-

following model (IDM) and an unsignalised FIFO-based junction/intersection management. 

Multi-lane roads, vehicles’ overtaking, and traffic controls (e.g. traffic lights at 

junctions/intersections) can be implemented to reproduce realistic vehicles’ movements. 

For realistic traffic volume at a given moment in a particular area, it is also required to use 

additional surveys and statistics of real traces of vehicles in real daily life urban traffic over 

commuting time, lunchtime, weekdays, weekends. 

 

8.6 Concluding remarks 

 

The advancement of Information and Communication Technologies (ICT) has led to the 

transition of transport systems towards Intelligent Transport Systems (ITS). This research chose 

emergency situations in an ITS environment as the target application area to illustrate the 

actuality of a geospatial ontology that could support communications of vehicles to resolve the 

situations locally and autonomously. The approach outlined in this thesis can be applied to build 

other ontological models that accentuate spatiotemporal relations. For example, based on 

spatiotemporal relations among road users and road facilities, a flexible public transportation 

routing/scheduling model, a speed enforcement model, a traffic signal enforcement model, or a 

road-geometry warning model can be developed as an application ontology. However, since this 

research has adopted the agent simulation instead of the physical implementation of multi 

vehicle agents, several ontological issues (i.e. speed issues, inference issues, storing issues, etc.) 

need to be considered when contemplating a physical implementation of an ontology model 

and/or a multi-agent system. 

Meanwhile, the ontology-based messaging model demonstrates the potential of vehicle agents 

that communicate with each other in emergency situations, which can be categorised as special 

cases. Therefore, to support general cases in various situations in ITS and other domains, the 

context model for the vehicle agents (and the road infrastructure agents) has to be extended to 

represent their beliefs, desires, and intentions (BDI). In addition, for the physical 
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implementation of autonomous vehicle agents, it has to be interconnected and compatible with 

other sensors (i.e. LIDAR, ultrasonic, and optic sensors) and techniques (i.e. information 

extraction, machine-learning, etc.) to recognise the traffic and road environment.  

In conclusion, in order to support communication and sensor technologies, it is necessary to 

explore a new way for intelligent agents to capture, store, and share geographic information and 

knowledge on a distributed network without a central geodatabase. In the way of this 

exploration, the current concept and functionality of geographic information, which is based on 

the geovisualisation-oriented and geodatabase-oriented framework, would be extended both for 

human and intelligent agents. 
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Appendices 

Appendix A - Dedicated Short-Range Communication (DSRC) 

 

This research chooses DSRC as the physical layer of vehicular communication to describe 

specific traffic situations. On top of DSRC, this research focused on the data layer (i.e. context 

modelling and semantic contents for vehicular communications) and the application layer (i.e. 

implementation of intelligent and communicative vehicle agents) of vehicular communication. 

Even though this research was designed based on DSRC technology, the contents of this thesis 

were not tightly related to DSRC technology itself. Therefore, detailed explanations of DSRC 

were not included in the main contents.  

This appendix describes DSRC capacity, possible contents, radio frequency allocation, related 

standards, and application-level support to complement the physical capability and capacity of 

DSRC. The capability and possible contents of DSRC are covered in Appendix A.1. Appendix 

A.2 outlines DSRC radio frequency and information exchange protocols, while Appendix A.3 

describes possible applications of ITS via various communication modes, and the role of DSRC 

in safety-critical applications.  

 

A.1 DSRC capability and its possible contents 

 

Various wireless communication technologies can be applied to interconnect moving vehicles in 

order to create a Vehicular Ad-hoc Network (VANET) (Architecture Development Team, 2007; 

Kompfner, 2010). In this wireless ad hoc network, every participating vehicle is treated as a 

wireless router or node transmitting messages. To avoid traffic collisions for example, it is 

paramount that warning messages are sent using low-latency communication standards. 

Dedicated Short-Range Communication (DSRC) is one such standard, designed as a short to 

medium range (up to 1 km) wireless protocol in the 5.9 GHz band for fast moving vehicles 

(over 60 miles per hour) in order to support vehicle-to-infrastructure communication and 

vehicle-to-vehicle communication (Fernandes and Nunes, 2007).  

There are various wireless communication technologies such as 3rd Generation of mobile 

communication (3G), Worldwide Interoperability for Microwave Access (WiMAX), Wireless 

Fidelity (WiFi), Infrared and, Dedicated Short Range Communication (DSRC) (Kompfner, 
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2010). Different types of communication can be appropriate to implement interactions among 

vehicles and infrastructure depending on situations. DSRC has better capabilities (low latency, 

high data transfer rate, and high mobility communications) compared to other wireless 

technologies in order to support communications of high-speed vehicles on the road (Table A.1).  

 

Table A.1 - Comparison of DSRC to various wireless technologies (Dulmage et al., 2006) 

 DSRC Cellular Wi-Fi WiMAX 

Data rate 3-27Mbps < 2 Mbps 6-54Mbps 30 to 40 Mbps 

Latency < 50ms Seconds Seconds Second 

Range < 1km < 10km < 100m < 15km 

Mobility > 60 mph > 60 mph < 5mph > 60 mph 
Nominal 

Bandwidth 10MHz < 3MHz 20MHz 3.5 Mhz -
10MHz 

Operating 
Band 

5.86 - 5.92GHz 
(ITS-RS) 

800 - 
900MHz, 

1.8 - 1.9GHz 

2.4GHz, 
5.2GHz 
(ISM) 

2.5GHz 

IEEE standard 802.11p (DSRC), 
1609 (WAVE) N/A 802.11a 802.16e 

 

DSRC is the most appropriate physical layer of communications for vehicles and infrastructure 

in an ITS environment, especially for safety-critical applications (Appendix A.2). The DSRC 

technology allows vehicles - via On-Board Equipment (OBE) - and roadside facilities - via 

Road-Side Equipment (RSE) - to send and receive messages to resolve potential problematic 

situations. For example, DSRC is used for warning a possible traffic collision or giving way to 

an emergency vehicle. If there is a traffic situation, the vehicles in the vicinity and the road 

infrastructure communicate with each other to understand the current situation in advance and 

subsequently perform an action that will resolve this situation.  

Table A.2 summarises some possible DSRC communication content types (for vehicle-to-

infrastructure, infrastructure-to-vehicle, and vehicle-to-vehicle), which guide the further 

development of relevant DSRC’s semantic contents. For example, an ambulance driving to an 

emergency site could ask a traffic controller to turn traffic lights green to avoid hold-ups at red 

lights or intersections (vehicle-to-infrastructure communication). A signal controller with an 

RSE can send a stop sign violation warning to a specific vehicle which is in danger of running a 

red light (infrastructure-to-vehicle communication) (Holfelder, 2004). Additionally, vehicle-to-

vehicle communications can be used to resolve other traffic situations. If there is an accident on 

the motorway and some vehicles that have an OBE are either involved in the accident or coming 

to the accident spot, the vehicles can send information back to other vehicles toward the scene 
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by communication and turning on emergency lights. Recipient vehicles can relay the 

information back to other vehicles again. Therefore, vehicles towards the accident spot can 

reduce their speeds more safely and get ready for the accident spot in advance (Holfelder, 2004).  

 

Table A.2 - Possible contents for DSRC (Schagrin, 2008) 

Communication type Collection, Distribution and Exchange of Data 

Vehicle to 
Infrastructure 

• Probe Data 
• Trip Path Data (opt-in) 
• Transaction Data (e.g. E-Payment) 

Infrastructure to 
Vehicle 

• Advisory Message Data (e.g. travel times, incident information, local 
signage) 

• Localised Map Data (e.g. detailed roadway geometry for signalised 
intersections, non-signalised intersections, road curve segments) 

• Signal Phase & Timing Data 
• Position Corrections 
• Transaction Data (e.g. E-Payment) 

Vehicle to Vehicle • Heartbeat Data (e.g. vehicle’s position, speed, direction of travel, and 
size) 

 

A.2 DSRC radio frequency and information exchange protocols 

 

In the USA, the DSRC band (5.850 - 5.925 GHz) was allocated with seven 10 MHz channels 

which consist of one control channel (Ch 178) and six service channels (US Federal 

Communications Commission, 2006, 2003, 1999). As Figure A.1 shows, for the US DSRC 

allocation, Ch 172 is assigned for vehicle-to-vehicle communications, Ch 174 and Ch 176 are 

for middle-range services, Ch 180 and Ch 182 are for short-range services, and Ch 184 is for 

intersections services (US Federal Communications Commission, 2003; US Federal 

Communications Commission, 2006). Additionally, Ch 174/176 and Ch 180/182 may be 

combined to create two 20 MHz channels (Ch 175 and Ch 181). As the US DSRC allocation is 

compatible with Canadian DSRC allocation and Mexican DSRC allocation, it provides a single 

North-America-wide frequency band. 

 

 
Figure A.1 - North American DSRC frequency allocation 
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Since 2008, European DSRC frequency has changed rapidly. The European Commission (EC) 

decided to allocate 30 MHz of the 5.875 – 5.905 GHz spectrum for DSRC to provide a single 

EU-wide frequency band (European Commission, 2008). Furthermore, the Electronic 

Communications Committee (ECC, 2008) of the European Conference of Postal and 

Telecommunications Administrations (CEPT) decided to use the 5.875 – 5.925 GHz band and 

recommended to use the 5.855 – 5.875 GHz band for ‘the harmonised implementation of ITS’. 

For the harmonised European standard for ITS, the European Telecommunications Standards 

Institute (ETSI, 2008) is working under the Radio and Telecommunications Terminal 

Equipment (R&TTE) Directive Article 3.2, which is about effective use of the radio 

spectrum/orbital resource so as to avoid harmful interference.   

 

• ETSI EN 302 571 Candidate Harmonised Standard - Radiocommunications equipment 

operating in the 5.855 GHz to 5.925 GHz frequency band  

 

Consequently, the requested European frequency spectrum for DSRC was proposed in 

accordance with the North American DSRC allocation (Figure A.2). It can be divided into 20 

Mhz, 30Mhz, and 20Mhz, as shown below (ETSI, 2006).  

 

• 20 Mhz between 5.885 GHz and 5.905 GHz was allocated for Inter Vehicle (IVC) and 

Roadside to Vehicle (R2V) Communications providing critical road safety applications 

including the control channel 

• 30 MHz (between 5.875 GHZ and 5.885, and between 5.905 GHZ and 5.925GHZ) was 

for IVC and R2V providing road safety and traffic efficiency applications 

• 20 Mhz below 5.875 GHz was allocated for IVC and R2V providing non-safety-related 

applications 
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Figure A.2 - DSRC frequency in Europe and North America (edited from Seeberger, 2008) 

 

DSRC has been developing based on the Institute of Electrical and Electronics Engineers (IEEE) 

802.11p and IEEE 1609 standards. The former is a standard for Wireless Medium Access 

Control (MAC) and Physical Layer (PHY) specifications which include Wireless Access in 

Vehicular Environments (WAVE), and the latter was made as the family of standards for 

WAVE relying on the IEEE 802.11p including (US Department of Transportation, 2009):   

 

• ASTM E2213-03: Standard Specification for Telecommunications and Information 

Exchange Between Roadside and Vehicle Systems - 5 GHz Band Dedicated Short Range 

Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) 

Specifications 

• IEEE 802.11p: Standard for Information Technology - Telecommunications and 

Information Exchange Between Systems - Local and Metropolitan Area Networks - 

Specific Requirements - Part II: Wireless LAN Medium Access Control (MAC) and 

Physical Layer (PHY) Specification 

• IEEE 1609.4-2006: Standard for Wireless Access in Vehicular Environments (WAVE) - 

Multi-Channel Operation 

• IEEE 1609.3: Standard for Wireless Access in Vehicular Environments (WAVE) - 

Networking Services 

• IEEE 1609.2-2006: Standard for Wireless Access in Vehicular Environments (WAVE) - 

Security Services for Applications and Management Messages 

• IEEE 1609.1-2006: Standard for Wireless Access in Vehicular Environments (WAVE) - 

Resource Manager 



 248 

• IEEE P1609.0: Standard for Wireless Access in Vehicular Environments (WAVE) - 

Architecture 

 

In Europe, the 5.795 – 5.815 GHz band has been used for DSRC, which is in the 5.725 GHz to 

5.875 GHz Industrial, Scientific and Medical (ISM) band. The European Committee for 

Standardization (CEN) developed the following European DSRC standards in co-operation with 

the International Organisation for Standardization (ISO) (Fremont, 2004): 

 

• EN 12253:2004 DSRC Physical layer using microwave at 5.8 GHz  

• EN 12795:2003 DSRC Data link layer: Medium Access and Logical Link Control  

• EN 12834:2003 DSRC Application layer  

• EN 13372:2004 DSRC profiles for Road Transport and Traffic Telematics (RTTT) 

applications  

• EN ISO 15628: DSRC application layer 

• EN ISO 14906:2004 Electronic Fee Collection - Application interface 

 

As we have seen so far, the 5.855 GHz to 5.925 GHz frequency band is considered for ITS 

application in North America and Europe, and this DSRC band can be a conventional and 

global frequency allocation. Even though this frequency is not allocated entirely yet in Europe, 

the DSRC band’s capabilities (data rate, latency, range, mobility, etc.) have shown DSRC’s 

potential to be a reliable communication technology for safety-related ITS applications. 

 

A.3 DSRC in Vehicle Infrastructure Integration (VII) and ITS programs 

 

The research to examine the potential of DSRC has been started in 2001 under the Vehicle 

Infrastructure Integration (VII) program to improve road safety, and current ITS program in the 

United States builds on top of research results of VII. Since 2009 ITS program focused on 

initial deployment considering all relevant communication technologies (Table A.3). Initially, 

VII program started only for road safety applications, but current ITS program needs to cover 

various ITS applications. Therefore, in the perspective of deployment and implementation there 

are many open questions about not only safety applications using DSRC but also mobility or 

environmental applications that may use other communication technologies like listed below 

(Sill et al., 2011).  
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• Are the safety benefits of near-term ITS applications sufficient to support National 

Highway Transportation Safety Administration (NHTSA) rules requiring DSRC-based 

safety devices in light and/or heavy vehicles? 

• What additional non-safety (mobility or environmental) applications might encourage 

faster adoption of DSRC-based or other communications systems? 

• How much and what type of roadside infrastructure is necessary to support safety and 

mobility applications? 
 

Despite these critical questions, DSRC is the only viable technology for low-latency safety 

applications currently (Sill et al., 2011).  

 

Table A.3 - Changes from VII to today’s ITS program in the United States (Sill et al., 2011) 

Attribute VII Engineering Research ITS Program Focused 
Toward Deployment 

Communications 
technologies DSRC only Best technology for intended 

application (DSRC for safety) 
In-vehicle 

devices OEM production units only Aftermarket and retrofit opportunities 

Vehicle 
Focus Light vehicles All vehicle types 

Stakeholder 
involvement Limited Broad engagement 

International 
focus Limited Significant international 

harmonization effort 

Program 
cohesion Loosely coupled research programs 

Strong, collective U.S. Department of 
Transportation (USDOT) support, 

coordination, and leadership 
Deployment 

focus 
Limited – oriented toward 

prototyping and proof of concept Strong deployment focus 

 

Figure A.3 demonstrates possible standards (information exchange protocols and message 

definitions) and applications for various communication modes. When there is an emergency 

situation such as a car accident, a transport management centre may get the information about 

the accident from roadside infrastructure through centre-to-field communication. Then the 

transport manage centre will communicate with an emergency control centre (e.g. an ambulance 

command and control centre) to send the closest usable ambulance to the accident scene to 

provide aid. For vehicle-to-vehicle and vehicle-to-infrastructure communication modes, 

standards such as ASTM E2213, IEEE 802.11P, IEEE 1609.x, and SAE J2735 are presented in 

Figure A.3. First three standards are information exchange protocols, and fourth one is a 

standard for DSRC message definitions. These two communication modes are dealing with 
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rapidly moving vehicles and most applications of these modes are related to safety-critical 

issues.  

 

 
Figure A.3 - Promising ITS communication standards and applications (Sill et al., 2011) 
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Appendix B – Context modelling/representation techniques 

 

Strang and Linnhoff-Popien (2004) and Perera et al. (2014) compared existing context 

modelling techniques (i.e. are key-value modelling, mark-up scheme modelling, graphical 

modelling, object oriented modelling, logic based modelling, and ontology based modelling) at 

a general level (Table A.4). 

 

Table A.4 – Comparison of context modelling/representation techniques (Perera et al., 2014) 

Technique Pros Cons 

Key-Value  

• Simple 
• Flexible  
• Easy to manage when small in size  
• Can be used for user preference, application 
configurations, limited data transferring 

• Strongly coupled with 
applications  

• Not scalable  
• No structure or schema  
• Hard to retrieve information  
• No way to represent 
relationships  

• No validation support  
• No standard processing tools 
are available 

Markup 
Scheme/ 
Tagged 

Encoding  
(e.g. XML, 

JSON) 

• Flexible  
• More structured  
• Validation possible through schemas  
• Processing tools are available 
• Can be used for data description and transferring (e.g. 
XML, JSON) 

• Application depended as there 
are no standards for structures  

• Can be complex when many 
levels of information are 
involved  

• Moderately difficult to retrieve 
information 

Graphical  
(e.g. 

RDBMS, 
noSQL) 

• Allows relationships modelling  
• Information retrieval is moderately easier  
• Different standards and implementations are available.  
• Validation possible through constraints 
• Can be used for long-term and large volume of 
permanent data archival in Relational DBMS 
• Structure alternation issue is no longer a problem in 
noSQL, and historic context can be stored in noSQL 

• Querying can be complex  
• Configuration may be required  
• Interoperability among different 
implementation is difficult  

• No standards but governed by 
design principles 

Object 
Based 

• Allows relationships modelling  
• Can be well integrated using programming languages  
• Processing tools are available 
• Can be used to represent context in programming code 
level in computer memory 

• Hard to retrieve information  
• No standards but govern by 
design principles  

• Lack of validation 

Logic 
Based 

• Allows to generate high-level context using low-level 
context  
• Simple to model and use  
• Support logical reasoning  
• Processing tools are available 
• Can be used to generate high-level context using low-
level context, model events and actions (i.e. event 
detection), and define constrains and restrictions 

• No standards  
• Lack of validation  
• Strongly coupled with 
applications 
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Ontology 
Based 

• Support semantic reasoning  
• Allows more expressive representation of context and 
strong validation  
• Application independent and allows sharing  
• Strong support by standardisations  
• Fairly sophisticated tools available 
• Can be used to model domain knowledge and structure 
context based on the relationships defined by the 
ontology 
• Rather than storing data on ontologies, data can be 
stored in native triplestore, RDBMS-based triplestore, 
and NoSQL triplestore while structure is provided by 
ontologies 

• Representation can be complex  
• Information retrieval can be 
complex and resource intensive 
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Appendix C - ANOVA to decide the number of simulation runs 

 

Single factor ANOVA (a.k.a. one-factor ANOVA, one-way ANOVA) is used to compare four 

groups, which have statistics from different simulation runs. From the simulations, different 

variables (e.g. the number of vehicles affected by ambulance, the total affected time of vehicles 

by ambulance, and ambulance’s travel time) are measured and used as a single independent 

variable for the analysis separately.  Four different groups represent four different sizes of 

simulation runs (i.e. 100 simulation runs, 200 simulation runs, 400 simulation runs and 1100 

simulation runs), and their average and variance are compared.  

Summary and ANOVA results for the number of vehicles affected by ambulance, the total 

affected time of vehicles by ambulance, and ambulance’s travel time are shown in Appendix 

B.1, Appendix B.2, and Appendix B.3, respectively. For each analysis, the null hypothesis (H0) 

is that means of the chosen variable from each group are similar, and 95% confidence level 

(significance level a = 0.05) is used. From analysis of three different variables, the hypothesis of 

each analysis is accepted based on the condition shown in Table A.5. Therefore, the minimum 

number of simulation runs (i.e. 100 simulation runs) is chosen among four different groups 

based on the ANOVA results that present the statistics of three different variables measured by 

four different simulation runs are similar.  

 

Table A.5 - Condition to accept or reject for single factor ANOVA 
If Then 

test statistic > critical value (i.e. F > F crit) Reject the null hypothesis 
test statistic < critical value (i.e. F < F crit) Accept the null hypothesis 

p value < a Reject the null hypothesis 
p value > a Accept the null hypothesis 

 

C.1 Single Factor ANOVA: the number of vehicles affected by ambulance 

 

The null hypothesis for this ANOVA is that the average of the number of vehicles affected by 

ambulance is the same for all four groups. The statistical summaries are shown in Table A.6 and 

Figure A.4. The F-statistics in Table A.7 shows that the p value (0.526) is greater than the 

significance level a (0.05) and the F calculated value (0.744) is smaller than the F critical value 

(2.610), so that the null hypothesis is accepted.  
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Table A.6 - Summary of four groups with the number of vehicles affected by ambulance 
Group Count Sum Average Variance 

G100 100 17230 172.3 690.535 
G200 200 34076 170.4 809.001 
G400 400 67313 168.3 708.243 

G1100 1100 185917 169.0 715.651 

 

 
Figure A.4 - Boxplot of four groups with the number of affected vehicles 

 

Table A.7 - F-statistics of the four groups with the number of vehicles affected by ambulance 
Source of Variation SS df MS F P-value F crit 

Between Groups 1613.345 3 537.782 0.744 0.526 2.610 
Within Groups 1298443.935 1796 722.964    

Total 1300057.280 1799     

 

C.2 Single Factor ANOVA: the total affected time of vehicles by ambulance 

 

The null hypothesis for this ANOVA is that the average of the total affected time of vehicles by 

ambulance is the same for all four groups. The statistical summaries are shown in Table A.8 and 

Figure A.5. The F-statistics in Table A.9 shows that the p value (0.614) is greater than the 

significance level a (0.05) and the F calculated value (0.602) is smaller than the F critical value 

(2.610), so that the null hypothesis is accepted.  
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Table A.8 - Summary of four groups with the total affected time of vehicles by ambulance 
Group Count Sum (sec) Average (sec) Variance 

G100 100 57664.3	 576.643	 7854.844	
G200 200 114027.6	 570.138	 9192.815	
G400 400 225599.9	 563.9998	 8117.914	

G1100 1100 623646.3	 566.9512	 8080.502	
 

 
Figure A.5 - Boxplot of four groups with the total affected time of vehicles by ambulance 

 

Table A.9 - F-statistics of the four groups with the total affected time of vehicles by ambulance 
Source of Variation SS df MS F P-value F crit 

Between Groups 14807.869 3 4935.956 0.602 0.614 2.610 
Within Groups 14726518.755 1796 8199.621    

Total 14741326.624 1799     

 

C.3 Single Factor ANOVA: ambulance's travel time 

 

The null hypothesis for this ANOVA is that the average of ambulance’s travel time is the same 

for all four groups. The statistical summaries are shown in Table A.10 and Figure A.6. The F-

statistics in Table A.11 shows that the p value (0.567) is greater than the significance level a 

(0.05) and the F calculated value (0.676) is smaller than the F critical value (2.610), so that the 

null hypothesis is accepted.  
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Table A.10 - Summary of four groups with ambulance’s travel time 
Group Count Sum (sec) Average (sec) Variance 

G100 100 29487.7 294.877 313.063 
G200 200 58710.5 293.553 325.408 
G400 400 116925.5 292.314 304.779 

G1100 1100 322023.9 292.749 314.766 

 

 
Figure A.6 - Boxplot of four groups with ambulance’s travel time 

 

Table A.11 - F-statistics of the four groups with ambulance’s travel time 
Source of Variation SS df MS F P-value F crit 

Between Groups 635.649 3 211.883 0.676 0.567 2.610 
Within Groups 563284.379 1796 313.633    

Total 563920.028 1799     
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Appendix D – Simulation source code 

D.1 Parameters and simulation initialisation 

D.1.1 GlobalVariables.java 

 
public class GlobalVariables { 
  
 public static String ROADS_SHAPEFILE; 
 public static int iCase; 
 
 public static final double TRAVEL_SPEED_MPH = 30.0; //dummy value 
 public static final double TRAVEL_PER_TURN  
                                                                                           = TRAVEL_SPEED_MPH * 1609.344 / 3600.0;  
 public static final double ConversionCoefficient4MeterPerSec = 1609.344 / 3600.0; 
 public static final boolean bVehicleInteraction = false; 
 public static double commrange = 60.96; //200feet  
  
 public static double defaultBreakdownResponseRange = 192.00; //4 seconds 
 public static double extendedBreakdownResponseRange = 768.00; //16 seconds 
 public static double searchRange4IDM = 576.00; //12 seconds 
  
 public static int numVehicle; 
 public static int numEmergencyVehicle; 
 public static double MININUM_ROUTE_DISTANCE  = 3000; 
 public static double COVERAGE_DISTANCE_FROM_HOSPITAL = 6000.0;  
 public static int iPercentUsingComm; 
 public static final double XXXX_BUFFER = 0.1; // Used in InfraContext.getRoadAtCoords() 
 public static int  iRondomSeed; 
 public static double endAt; 
  
 public static int memorySizeForGabageColl = 6000; 
 public static int printNum = 9;  
  
 public static void setCase(int nCase) { 
  iCase = nCase; 
   
  if (nCase == 1) {  
   ROADS_SHAPEFILE  
                                 = "repast_vein_data/shape/roadLinks_PrincessRoyalUniversityHospitalSimple5.shp"; 
  } else if (nCase == 2) {  
   ROADS_SHAPEFILE 
                                            = "repast_vein_data/shape/roadLinks_UniversityCollegeHospitalSimple5.shp"; 
  } else if (nCase == 3) { 
   ROADS_SHAPEFILE  
                                                          = "repast_vein_data/shape/roadLinks_KingstonHospitalSimple5.shp"; 
  } else if (nCase == 4) {  
   ROADS_SHAPEFILE  
                                                                               = "repast_vein_data/shape/Polyline_MandAroad26.shp";  
   MININUM_ROUTE_DISTANCE  = 5000.0; 
  } 
 } 
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 public static void StopScrolling (String str) { 
  StopScrolling (true, str); 
 }  
  
 public static void StopScrolling (Boolean bCheck, String str) { 
  System.out.println(str); 
  if (!bCheck) return; 
  System.out.print("Please, give me an int and press enter to continue:");   
  BufferedReader consoleIn = new BufferedReader(new InputStreamReader(System.in)); 
         
  try { 
   consoleIn.readLine(); 
  } catch (IOException e) { 
   e.printStackTrace(); 
  } 
 } 
  
 public static void myPrint (String str) { 
  myPrint(9, true, str); 
 } 
  
 public static void myPrint (int num, String str) { 
  myPrint(num, true, str); 
 } 
  
 public static void myPrint (boolean bln, String str) { 
  myPrint(9, bln, str); 
 } 
  
 public static void myPrint (int num, boolean bln, String str) {  
  if (num <= printNum) { 
   if (bln) 
    System.out.println (str); 
   else  
    System.out.print(str); 
  } 
 } 
  
 public static void GarbageCollector (String str, Boolean bStr) { 
  long time = -1; 
  long memTotal = -1; 
  long memFree = -1; 
  memTotal = Runtime.getRuntime().totalMemory() / 1024 / 1024 ; 
  memFree = Runtime.getRuntime().freeMemory() / 1024 / 1024; 
  if (memTotal > memorySizeForGabageColl) { 
   time = System.currentTimeMillis(); 
   System.gc(); 
   if (bStr) { 
    System.out.println(str + "Garbage Collection - total memory: "  

      + memTotal + "Mb, free memory: " + memFree + "Mb"); 
    System.out.println(str + "It took " 

            + (System.currentTimeMillis()-time) + " ms"); 
   } 
  } 
  if (memTotal > 7000) {  
     RunEnvironment.getInstance().endRun(); 
  } 
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 } 
} 
 

D.1.2 VeinContextCreator.java 

 

public class VeinContextCreator implements ContextBuilder<Object> { 
 
 private static int agentID; // Used to generate unique agent ids 
 public static final boolean debug = false; // Turn debugging info on or off. 
 private static double startTime; 
 
 public Context<Object> build(Context<Object> context) { 
  try { 
 
  GlobalVariables.setCase(4);  
  Parameters p = RunEnvironment.getInstance().getParameters(); 
    
  // Schedule simulation to stop at a certain time and also record the runtime. 
  if (!VeinContextCreator.debug) { 
   GlobalVariables.myPrint("Set Global Variables"); 
   GlobalVariables.numVehicle  

= (Integer) p.getValue("initialnumberofvehicles"); 
   GlobalVariables.numEmergencyVehicle  

= (Integer) p.getValue("initialnumberofambulances"); 
   GlobalVariables.commrange = (Double) p.getValue("communicationrange"); 
   GlobalVariables.iPercentUsingComm  

= (Integer) p.getValue("percentUsingOnt"); 
   GlobalVariables.endAt = (Double) p.getValue("runlength"); 
   RunEnvironment.getInstance().endAt(GlobalVariables.endAt);  
   GlobalVariables.iRondomSeed = (Integer) p.getValue("randomSeed"); 
   RandomHelper.setSeed(GlobalVariables.iRondomSeed);  
  } 
   
  ContextOne context1 = new ContextOne(); 
  context.addSubContext(context1); 
   
  GlobalVariables.myPrint("new Infra before"); 
  Infra infra = new Infra(context, "ContextOne", "RoadGeography", "RoadNetwork"); 
  infra.BuldingRoadNetwork(); 
  GlobalVariables.myPrint("new Infra after"); 
  GlobalVariables.myPrint("CreateEmergencyVehicles before"); 
   
  if (GlobalVariables.iCase == 4) { 
   infra.CreateBrokenCar(GlobalVariables.numEmergencyVehicle); 
  } else infra.CreateAmbulance(GlobalVariables.numEmergencyVehicle); 
   
  PrivateVehicle.resetStaticVariables(); 
  GlobalVariables.myPrint("resetStaticVariables after"); 
 
  GlobalVariables.myPrint("CreatePrivateVehicles before"); 
  infra.CreatePrivateVehicles(GlobalVariables.numVehicle); 
  GlobalVariables.myPrint("CreatePrivateVehicles after"); 
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  ISchedule schedule = RunEnvironment.getInstance().getCurrentSchedule(); 
  ScheduleParameters endParams  

= ScheduleParameters.createAtEnd(ScheduleParameters.LAST_PRIORITY);  
  schedule.schedule(endParams, this, "end"); 
  ScheduleParameters startParams = ScheduleParameters.createOneTime(1); 
  schedule.schedule(startParams, this, "start"); 
  ScheduleParameters agentParams = ScheduleParameters.createRepeating(1, 1, 0); 
   
  Iterable<Object> vehicleIt = context.getObjects(Vehicle.class);  
  for (Object v:vehicleIt) { 
   schedule.schedule(agentParams, v, "step"); 
    Vehicle ve = (Vehicle) v; 
    ve.initialstep(); 
  } 
  return context;   
   
  } catch (Exception e) { 
   GlobalVariables.StopScrolling("VeinContextCreator build before:" +  "\n"  

+ this.toString()); 
   e.printStackTrace(); 
   GlobalVariables.StopScrolling("VeinContextCreator build after:" +  "\n"  

+ this.toString()); 
  } 
  return context;   
 } 
  
 public static void end() { 
  GlobalVariables.myPrint(0, "Finished sim: "+(System.currentTimeMillis()-startTime)); 
 } 
 public static void start() { 
  System.setProperty("org.geotools.referencing.forceXY", "true"); 
  startTime = System.currentTimeMillis(); 
 } 
 
 public static int generateAgentID() { 
  return VeinContextCreator.agentID++; 
 } 
} 
 

D.1.3 Infra.java 

 

public class Infra { 
 
 protected Context<Object> maincontext; 
 private Geography roadGeography; 
 private Network roadNetwork; 
 protected String subcontextString, geographyString, networkString; 
 private Network commNetwork; 
 private DecimalFormat myFormatter; 
 private int iVNum; 
 private Junction fixedDestJunc; 
 
 public String formatStr(double value) { 
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  return myFormatter.format(value); 
 } 
 public static String formatStr2(double value) { 
  return new DecimalFormat("###000.000").format(value); 
 } 
 public Infra(Context<Object> mainContext, String subcontextString, String geograpyString,  
         String networkString) { 
  myFormatter = new DecimalFormat("###000.000"); 
  this.maincontext = mainContext; 
  this.subcontextString = subcontextString;  
  this.geographyString = geograpyString; 
  this.networkString = networkString; 
  this.iVNum = 0; 
  this.fixedDestJunc = null; 
  if (VeinContextCreator.debug) 
   GlobalVariables.myPrint("InfraContext: Building infra context"); 
   
  GeographyParameters geoParams = new GeographyParameters(); 
  geoParams.setCrs("EPSG:27700"); //http://spatialreference.org/ref/epsg/27700/ 
  roadGeography = GeographyFactoryFinder.createGeographyFactory(null) 
   .createGeography(geograpyString, this.getRoadContext(), geoParams); 
 } 
 public void removeBrokenCar() { 
  String name = "BrokenCar"; 
  Iterable<Object> emergencyVehicleIt  

= this.getRoadContext().getObjects(EmergencyVehicle.class); 
  for (Object o : emergencyVehicleIt) { 
   EmergencyVehicle emergencyVehicle = (EmergencyVehicle) o; 
   if (emergencyVehicle.getVehicleType().equals(name)) {  
    this.getRoadContext().remove(emergencyVehicle); 
   } 
   emergencyVehicle = null; 
  } 
 } 
 public void CreateBrokenCar (int nBrokenCar) { 
  Route refRoute = null; 
  for (int i = 0; i < nBrokenCar; i++) { 
   EmergencyVehicle brokenCar  

= new EmergencyVehicle(this, "BrokenCar", true); 
   brokenCar.setId(i); 
   brokenCar.setName("E_B" + i); 
   double dspeed = 69.0; //dummy value 
   brokenCar.setSpeed(dspeed); 
   this.getRoadContext().add(brokenCar); 
   brokenCar.setOriginJuncRandomlyFromRandomHelper(4); 
   brokenCar.setDestJunc(null); 

  brokenCar.initializeRouteFromOriginFromRandomHelper(brokenCar 
    .getOriginJunc(), 4, GlobalVariables.MININUM_ROUTE_DISTANCE); 

   brokenCar.updateRelativeLocation(); 
   brokenCar.setBroken(true); 
   brokenCar.setPreferedLane(1); 
   brokenCar.setEndTick(10*60*20); 
   refRoute = brokenCar.route; 
   double directDistance = brokenCar.getOriginJunc().getCoordinate().distance( 

 brokenCar.getDestJunc().getCoordinate()); 
   GlobalVariables.COVERAGE_DISTANCE_FROM_HOSPITAL  

= directDistance * 1.2; 
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  } 
  MinimiseMotorway(refRoute, 1.0); 
  EmergencyVehicle brokenCar = this.getAnEmergencyVehicle("BrokenCar"); 
  Vehicle bCar = (Vehicle) brokenCar; 
  Coordinate myCoord = bCar.initialstep(); 
  MinimiseMotorway (myCoord, 2000.0); //2000.0 
  brokenCar.setOriginJuncRandomlyFromRandomHelper(4); 
  brokenCar.initializeRouteFromOriginFromRandomHelper( 

brokenCar.getOriginJunc(), 4, 4000); 
  brokenCar.updateRelativeLocation(); 
 } 
 
 public void BuldingRoadNetwork() { 
  System.out.println("LoadRoadElement before"); 
  LoadRoadElement(); 
  System.out.println("CreateRoadNetwork before"); 
  CreateRoadNetwork(this.networkString); 
  System.out.println("BuildRoadNetwork before"); 
  BuildRoadNetwork(); 
  GlobalVariables.myPrint("BuildRoadNetwork after"); 
 } 
  
 public void CreateAmbulance (int nAmbulance) { 
  Route refRoute = null; 
  for (int i = 0; i < nAmbulance; i++) { 
   EmergencyVehicle ambulance 

 = new EmergencyVehicle(this, "Ambulance", true); 
   ambulance.setId(i); 
   ambulance.setName("E_A" + i); 
   double dspeed = GlobalVariables.TRAVEL_SPEED_MPH * 5.0 / 3.0;  
   double speed = dspeed; // random(ispeed); 
   ambulance.setSpeed(speed); 
   ambulance.setPreferedLane(1); 
   this.getRoadContext().add(ambulance); 
    
   ambulance.setDestJunc(this.getFixedDestJunc()); 
   ambulance.setBroken(false); 
   ambulance.setEndTick((int) GlobalVariables.endAt);  
   ambulance.initializeRoute(null, ambulance.getDestJunc(), null, 0); 
   ambulance.updateRelativeLocation(); 
   refRoute = ambulance.route; 
    
   double directDistance = ambulance.getOriginJunc().getCoordinate().distance( 

ambulance.getDestJunc().getCoordinate()); 
   GlobalVariables.COVERAGE_DISTANCE_FROM_HOSPITAL  

= directDistance * 1.2; 
  } 
  if (GlobalVariables.iCase >= 1 && GlobalVariables.iCase <= 3) { 
   MinimiseRoadNetwork (refRoute); 
  } 
 } 
  
 public void RemoveRoadNetwork () { 
  int junctionSize = this.getRoadContext().getObjects(Junction.class).size(); 
  Iterable<Object> junctionIt1 = this.getRoadContext().getObjects(Junction.class); 
  if (junctionIt1 != null) { 
   for (Object o : junctionIt1) { 
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    Junction j = (Junction) o; 
    this.getRoadContext().remove(o); 
    j = null; 
   } 
  } 
   
  Iterable<Object> roadElementIt1  

= this.getRoadContext().getObjects(RoadElement.class); 
  if (roadElementIt1 != null) { 
   for (Object o : roadElementIt1) { 
    RoadElement r = (RoadElement) o; 
    this.getRoadContext().remove(r); 
    r = null; 
   } 
  } 
  Iterable<Object> edgeIt1 = this.roadNetwork.getEdges(); 
  for (Object o : edgeIt1) { 
   if (o instanceof RepastEdge) { 
    RepastEdge edge = (RepastEdge) o; 
    this.roadNetwork.removeEdge(edge); 
   } 
  } 
  this.roadNetwork = null; 
  this.commNetwork = null; 
 }  
  
 public void MinimiseRoadNetwork (Route refRoute) { 
  Iterable<Object> roadElementIt  

= this.getRoadContext().getObjects(RoadElement.class); 
  List roadElements = new ArrayList(); 
  for (Object o : roadElementIt) { 
    
   if (o instanceof RoadElement) { 
    RoadElement r = (RoadElement) o; 
    roadElements.add(r); 
   } 
  } 
  Coordinate[] routeCoordinates  

= (Coordinate []) refRoute.getRouteCoords().toArray(new Coordinate[0]); 
  LineString routeLine = new GeometryFactory().createLineString(routeCoordinates); 
  Geometry routeBuffer = null; 
  routeBuffer = routeLine.buffer(GlobalVariables.commrange * 5);  
   
  for (Object o : roadElements) { 
   if (o instanceof RoadElement) { 
    RoadElement r = (RoadElement) o; 
    Geometry roadGeom = roadGeography.getGeometry(r); 
    if (!routeBuffer.covers(roadGeom)) { 
     Junction fromJ = r.getFromJunc(); 
     Junction toJ = r.getToJunc(); 
    MyRepastEdge myEdge  

   = (MyRepastEdge) this.getRoadNetwork().getEdge(fromJ, toJ); 
     if (myEdge != null) { 
      this.roadNetwork.removeEdge(myEdge); 
     } 
     myEdge = (MyRepastEdge) this.getRoadNetwork() 

.getEdge(toJ, fromJ); 
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     if (myEdge != null) { 
      this.roadNetwork.removeEdge(myEdge); 
     } 
      
     fromJ.getConnectedRoads().remove(r); 
     if (fromJ.getConnectedRoads().size() == 0)  
      this.getRoadContext().remove(fromJ);  
     toJ.getConnectedRoads().remove(r); 
     if (toJ.getConnectedRoads().size() == 0)  
      this.getRoadContext().remove(toJ); 
     this.getRoadContext().remove(r); 
    }  
   } 
  } 
   
  Iterable<Object> roadEdgeIt = this.roadNetwork.getEdges(); 
  double totalNetworkLength = 0.0; 
  for (Object o : roadEdgeIt) { 
   MyRepastEdge myEdge = (MyRepastEdge) o; 
   RoadElement road = getRoadElementWithID (myEdge.getRoadID()); 
   totalNetworkLength += road.getShape_Leng(); //myEdge.getWeight(); 
  } 
  GlobalVariables.myPrint("roadnetwork buffering end " + totalNetworkLength); 
  GlobalVariables.numVehicle  

= getNumOfVehiclesFromTotalNetworkLength(totalNetworkLength);  
 } 
  
 public int getNumOfVehiclesFromTotalNetworkLength(double totalNetworkLength) { 
 //23 meters can be seen as six car lengths 
 //so here, uses seven car lengths by 23 / 6 * 7. 
 //since the road network for the simulation is buffered by the ambulance's route+commrange*5,  
 //the network has a very long shape, and most vehicles come to the ambulance's route. 
 //So, reduce the density of the main road, multiply 0.25 as experimental calculation 
  int numVehicle = 0; 
  if (GlobalVariables.iCase < 4)  

numVehicle = (int) (totalNetworkLength / (23.0 / 6.0 * 7.0 * 4.0)); //30mph 
  else if (GlobalVariables.iCase == 4) numVehicle = 

      (int) (totalNetworkLength / (96.0 / 24.0 * 25.0 * 4.0) * 3.0); //70mph, three lanes 
  return numVehicle; 
 } 
  
 public void MinimiseMotorway (Route refRoute, double dist) { 
  Iterable<Object> roadElementIt  

= this.getRoadContext().getObjects(RoadElement.class); 
  List roadElements = new ArrayList(); 
  for (Object o : roadElementIt) { 
   if (o instanceof RoadElement) { 
    RoadElement r = (RoadElement) o; 
    roadElements.add(r); 
   } 
  } 
  Coordinate[] routeCoordinates  

= (Coordinate []) refRoute.getRouteCoords().toArray(new Coordinate[0]); 
  LineString routeLine = new GeometryFactory().createLineString(routeCoordinates); 
  Geometry routeBuffer = null; 
  routeBuffer = routeLine.buffer(dist); //(1.0); 
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  boolean bOutOfRoute; 
  for (Object o : roadElements) { 
   if (o instanceof RoadElement) { 
    RoadElement r = (RoadElement) o; 
    Geometry roadGeom = roadGeography.getGeometry(r); 
    bOutOfRoute = false; 
    if (routeBuffer.distance(roadGeom) <= dist) { 

if (refRoute.getRouteJunctions().contains(r.getFromJunc()) ||  
                refRoute.getRouteJunctions().contains(r.getToJunc()) )  

      bOutOfRoute = false; 
     else bOutOfRoute = true; 
    } else if (routeBuffer.distance(roadGeom) > dist) { 
     bOutOfRoute = true; 
    } 
    if (bOutOfRoute) { 
     Junction fromJ = r.getFromJunc(); 
     Junction toJ = r.getToJunc(); 
     MyRepastEdge myEdge = (MyRepastEdge)  
      this.getRoadNetwork().getEdge(fromJ, toJ); 
     if (myEdge != null) { 
      this.roadNetwork.removeEdge(myEdge); 
     } 
     myEdge = (MyRepastEdge)  
      this.getRoadNetwork().getEdge(toJ, fromJ); 
     if (myEdge != null) { 
      this.roadNetwork.removeEdge(myEdge); 
     } 
     fromJ.getConnectedRoads().remove(r); 
     if (fromJ.getConnectedRoads().size() == 0)  
       this.getRoadContext().remove(fromJ);  
     toJ.getConnectedRoads().remove(r); 
     if (toJ.getConnectedRoads().size() == 0)  
      this.getRoadContext().remove(toJ); 
     this.getRoadContext().remove(r); 
    }  
   } 
  } 
  Iterable<Object> roadEdgeIt = this.roadNetwork.getEdges(); 
  double totalNetworkLength = 0.0; 
  for (Object o : roadEdgeIt) { 
   MyRepastEdge myEdge = (MyRepastEdge) o; 
   RoadElement road = getRoadElementWithID (myEdge.getRoadID()); 
   totalNetworkLength += road.getShape_Leng(); //myEdge.getWeight(); 
  } 
  GlobalVariables.numVehicle  

= getNumOfVehiclesFromTotalNetworkLength(totalNetworkLength); 
 } 
  
 public void MinimiseMotorway (Coordinate centerCoord, double refDistance) { 
  Iterable<Object> roadElementIt  

= this.getRoadContext().getObjects(RoadElement.class); 
  List roadElements = new ArrayList(); 
  for (Object o : roadElementIt) { 
   if (o instanceof RoadElement) { 
    RoadElement r = (RoadElement) o; 
    roadElements.add(r); 
   } 
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  } 
  Point originPoint = new GeometryFactory().createPoint(centerCoord); 
  for (Object o : roadElements) { 
   if (o instanceof RoadElement) { 
    RoadElement r = (RoadElement) o; 
    Geometry roadGeom = roadGeography.getGeometry(r); 
    if (originPoint.distance(roadGeom) > refDistance) { 
     Junction fromJ = r.getFromJunc(); 
     Junction toJ = r.getToJunc(); 
     MyRepastEdge myEdge = (MyRepastEdge)  
      this.getRoadNetwork().getEdge(fromJ, toJ); 
     if (myEdge != null) { 
      this.roadNetwork.removeEdge(myEdge); 
     } 
     myEdge = (MyRepastEdge)  
      this.getRoadNetwork().getEdge(toJ, fromJ); 
     if (myEdge != null) { 
      this.roadNetwork.removeEdge(myEdge); 
     } 
      
     fromJ.getConnectedRoads().remove(r); 
     if (fromJ.getConnectedRoads().size() == 0)  
      this.getRoadContext().remove(fromJ);  
     toJ.getConnectedRoads().remove(r); 
     if (toJ.getConnectedRoads().size() == 0)  
      this.getRoadContext().remove(toJ); 
     this.getRoadContext().remove(r); 
    }  
   } 
  } 
  Iterable<Object> roadEdgeIt = this.roadNetwork.getEdges(); 
  double totalNetworkLength = 0.0; 
  for (Object o : roadEdgeIt) { 
   MyRepastEdge myEdge = (MyRepastEdge) o; 
   RoadElement road = getRoadElementWithID (myEdge.getRoadID()); 
   totalNetworkLength += road.getShape_Leng(); //myEdge.getWeight(); 
  } 
  GlobalVariables.myPrint("roadnetwork buffering end " + totalNetworkLength); 
  GlobalVariables.totalNetworkLength = totalNetworkLength; 
  GlobalVariables.numVehicle  

= getNumOfVehiclesFromTotalNetworkLength(totalNetworkLength); 
 } 
  
 public void CreatePrivateVehicles(int nPrivate) { 
  /* add agents to the context and geography */ 
  for (int i = 0; i < nPrivate; i++) { 
 
   boolean  bUseOnt = false; 
   int iUseOnt = random(0, 100, false); //true 
    
   if (iUseOnt < GlobalVariables.iPercentUsingComm) bUseOnt = true; 
   else if (iUseOnt == 100 && GlobalVariables.iPercentUsingComm == 100)  
          bUseOnt = true; 
   PrivateVehicle pVehicle  

= new PrivateVehicle(this, "PrivateVehicle", bUseOnt); 
   pVehicle.setId(this.getNextVehicleNumber()); 
   pVehicle.setName("V_" + pVehicle.getId()); 
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   int iSpeedRandom = random(0, 100, false); 
   pVehicle.setSpeedAndPreferedLane(iSpeedRandom); 
   this.getRoadContext().add(pVehicle); 
   if (GlobalVariables.iCase == 4)  
    pVehicle.initializeRouteFromRandomHelper(null, null, null, 4); 
   else pVehicle.initializeRoute(null, null, null); 
   pVehicle.updateRelativeLocation(); 
  } 
 } 
 
 public void CreateAmbulanceAndPrivateVehicles(int nPrivate, int nAmbulance) { 
  Route refRoute = null; 
  for (int i = 0; i < nAmbulance; i++) { 
   EmergencyVehicle ambulance 

 = new EmergencyVehicle(this, "Ambulance", true); 
   ambulance.setId(i); 
   ambulance.setName("E_A" + i); 
   double dspeed = GlobalVariables.TRAVEL_SPEED_MPH * 1.5; // 3.5; 
   double speed = dspeed; // random(ispeed); 
   ambulance.setSpeed(speed); 
   this.getRoadContext().add(ambulance); 
   ambulance.setDestJunc(this.getFixedDestJunc()); 
   ambulance.initializeRoute(null, ambulance.getDestJunc(), null); 
   ambulance.updateRelativeLocation(); 
   refRoute = ambulance.route; 
    
   double directDistance = ambulance.getOriginJunc().getCoordinate() 

.distance(ambulance.getDestJunc().getCoordinate()
); 

   GlobalVariables.COVERAGE_DISTANCE_FROM_HOSPITAL  
= directDistance * 1.2; 

  } 
   
  for (int i = 0; i < nPrivate; i++) { 
   boolean  bUseOnt = false; 
   int iUseComm = random (0, 100, false); //true 
   if (iUseComm < GlobalVariables.iPercentUsingComm) bUseOnt = true; 
   else if (iUseComm == 100 && GlobalVariables.iPercentUsingComm == 100)  
          bUseOnt = true 
   PrivateVehicle pVehicle  

= new PrivateVehicle(this, "PrivateVehicle", bUseOnt); 
   pVehicle.setId(i); 
   pVehicle.setName("V_" + i); 
   double dspeed = GlobalVariables.TRAVEL_SPEED_MPH ; // 3.5; 
   int add = random (-30, 30, false); 
   double speed = dspeed  + dspeed * add / 100.0; 
   pVehicle.setSpeed(speed); 
   this.getRoadContext().add(pVehicle); 
   pVehicle.setOriginJuncRandomly(); 
   pVehicle.initializeRoute(pVehicle.getOriginJunc(), null, refRoute); 
   pVehicle.updateRelativeLocation(); 
  } 
 } 
 
 public void CreateRoadNetwork(String networkString) { 
  NetworkFactory netFac = NetworkFactoryFinder 
    .createNetworkFactory(new HashMap<String, Object>()); 
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  roadNetwork = netFac.createNetwork(networkString, this.getRoadContext(), true); 
  NetworkBuilder builder  

= new NetworkBuilder("CommNetwork", this.getRoadContext(), true); 
  commNetwork = builder.buildNetwork(); 
 } 
 
 /* 
  * Runs through all the junctions in the context. If it finds one with 
  * coordinates which are the same as the Junction passed to this functions 
  * it returns true. 
  */ 
 public boolean existsInContext(Junction j) { 
  Iterable<Object> junctionIt = this.getRoadContext().getObjects(Junction.class); 
  for (Object o : junctionIt) { 
   if (o instanceof Junction) { 
    Junction oj = (Junction) o; 
    if (oj.equals(j)) {// o instanceof Junction && 
     return true; 
    } 
   } 
  } 
  return false; 
 } 
 
 public Junction getJunctionWithCoordinates(Coordinate c) { 
  Iterable<Object> junctionIt = this.getRoadContext().getObjects(Junction.class); 
  for (Object o : junctionIt) { 
   if (o instanceof Junction) { 
    Junction j = (Junction) o; 
    if (j.getCoordinate().equals(c)) { 
     return j; 
    } 
   } 
  } 
  System.err.print("Context1: getJunctionWithCoordinates: error, junction not found. "); 
  System.err.println("Coordinates: " + c.toString()); 
  return null; 
 } 
 
 public void LoadRoadElement() { 
  LoadRoadElement(null); 
 } 
 public void LoadRoadElement(String filename) { 
 
  if (VeinContextCreator.debug) 
   GlobalVariables.myPrint("Infra: building road context and projections"); 
 
  File roadFile = null; 
  ShapefileLoader<RoadElement> roadLoader = null; 
 
  try { 
   if (filename == null)  

roadFile = new File(GlobalVariables.ROADS_SHAPEFILE); 
   else roadFile = new File(filename); 
   roadLoader = new ShapefileLoader<RoadElement>(RoadElement.class, 
     roadFile.toURL(), roadGeography, this.getRoadContext()); 
   while (roadLoader.hasNext()) { 
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    RoadElement road = (RoadElement) roadLoader.next(); 
   } 
   boolean bFilter = false; 
   if (bFilter) { 

   Iterable<Object> roadElementIt  
= this.getRoadContext().getObjects(RoadElement.class); 

   List roadElements = new ArrayList(); 
   for (Object o : roadElementIt) { 
    if (o instanceof RoadElement) { 
     RoadElement r = (RoadElement) o; 
     roadElements.add(r); 
    } 
   } 
   for (Object o : roadElements) { 
    RoadElement road = (RoadElement) o; 
    GlobalVariables.myPrint(road.toString2()); 
    //for s2 only motorway and A-Road 
    if (road.getDescTerm().equals("Pedestrianised Street") ||  
     road.getDescTerm().equals("Alley") ||  
     road.getDescTerm().equals("Local Street") || 
     road.getDescTerm().equals("B Road") || 
     road.getDescTerm().equals("Minor Road") || 
     road.getDescTerm().equals( 

"Private Road - Publicly Accessible") || 
     road.getDescTerm().equals( 

"Private Road - Restricted Access")) { 
      GlobalVariables.myPrint( 

"remove road element: " + road.getFID()); 
      this.getRoadContext().remove(road); 
     } 
    } 
   } 
  } catch (java.net.MalformedURLException e) { 
   System.out.println("ContextCreator: malformed URL exception when reading  
     roadshapefile. Check the 'roadLoc' parameter is correct"); 
   e.printStackTrace(); 
  } 
 } 
 
 public boolean onRoad(Coordinate c) { 
  return false; //coordCache.containsKey(c); 
 } 
 
 public void BuildRoadNetwork() { 
  if (VeinContextCreator.debug) 
   GlobalVariables.myPrint("InfraContext: building road network"); 
  GeometryFactory geomFac = new GeometryFactory(); 
  int iLine = 0; 
  Iterable<Object> roadElementIt  

= this.getRoadContext().getObjects(RoadElement.class); 
  for (Object o : roadElementIt) { 
   RoadElement road = (RoadElement) o; 
   Geometry roadGeom = roadGeography.getGeometry(road); 
   Coordinate c1 = roadGeom.getCoordinates()[0];  
   Coordinate c2 = roadGeom.getCoordinates()[roadGeom.getNumPoints() - 1];  
   Junction fromJunc = new Junction(c1, null); 
   fromJunc.setName( "Junction" + fromJunc.getID()); 
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   Junction toJunc = new Junction(c2, null); 
   toJunc.setName( "Junction" + toJunc.getID()); 
   boolean bPlus = false, bMinus = false; 
   if (existsInContext(fromJunc)) { 
    fromJunc = getJunctionWithCoordinates(c1); 
   } else { // Junction does not exit 
    this.getRoadContext().add(fromJunc); 
    Point p1 = geomFac.createPoint(c1); 
    roadGeography.move(fromJunc, p1); 
   } 
   if (existsInContext(toJunc)) { 
    toJunc = getJunctionWithCoordinates(c2); 
   } else { 
    this.getRoadContext().add(toJunc); 
    Point p2 = geomFac.createPoint(c2); 
    roadGeography.move(toJunc, p2); 
   } 
   if (road.getOneWay().equals("+")) { 
    bPlus = true; 
   } else if (road.getOneWay().equals("-")) { 
    bMinus = true; 
   } else if (road.getOneWay().equals("N")) { 
    bPlus = true; 
    bMinus = true; 
   } else { 
    bPlus = true; 
    bMinus = true; 
   } 
   road.setFromJunc(fromJunc); 
   road.setToJunc(toJunc); 
   fromJunc.addConnectedRoad(road); 
   toJunc.addConnectedRoad(road); 
   if (bPlus) { 
    MyRepastEdge edge1 = new MyRepastEdge( 

   fromJunc, toJunc, true, roadGeom.getLength(), road.getFID()+ "+"); 
    if (!roadNetwork.containsEdge(edge1)) { 
     roadNetwork.addEdge(edge1); 
    } else { 
     System.err.println("InfraContext: buildRoadNetwork: for  
      some reason this edge that has just been created  
       already exists in the RoadNetwork!"); 
    } 
   } 
   if (bMinus) { 
    MyRepastEdge edge2 = new MyRepastEdge( 

    toJunc, fromJunc, true, roadGeom.getLength(), road.getFID()+ "-"); 
    if (!roadNetwork.containsEdge(edge2)) { 
     roadNetwork.addEdge(edge2); 
    } else { 
     System.err.println("InfraContext: buildRoadNetwork: for  
      some reason this edge that has just been created  
       already exists in the RoadNetwork!"); 
    } 
   } 
   iLine++; 
   if ((iLine % 1000) == 1) GlobalVariables.myPrint(false, road.getFID() + " "); 
   if ((iLine % 10000) == 1) GlobalVariables.myPrint(""); 
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  } // for road: 
 } 
 
 public RoadElement getRoadElementWithID(String id) { 
  Iterable<Object> roadElementIt  

= this.getRoadContext().getObjects(RoadElement.class); 
  for (Object o : roadElementIt) { 
   RoadElement road = (RoadElement) o; 
   if (road.getFID().equals(id)) { 
    return road; 
   } 
  } 
  System.err.println("InfraContext: getRoadElementWithID:  

Error, couldn't find a road woth id: " + id); 
  return null; 
 } 
  
 public RoadEdge getRoadEdgeWithID(String id, boolean flip) { 
   
  Iterable<Object> roadElementIt  

= this.getRoadContext().getObjects(RoadElement.class); 
  for (Object o : roadElementIt) { 
   RoadElement road = (RoadElement) o; 
   if (road.getFID().equals(id)) { 
    RoadEdge roadEdge = new RoadEdge (road); 
    if (flip) roadEdge.setFlip(true); 
    return roadEdge; 
   } 
  } 
  System.err.println("InfraContext: getRoadEdgeWithID: Error,  

couldn't find a road woth id: "+ id); 
  return null; 
 } 
  
 public int getNumOfEndingJunctions () { 
  Iterable<Object> juncIt = this.getRoadContext().getObjects(Junction.class); 
  int num = 0; 
   
  for (Object o : juncIt) { 
   Junction junc = (Junction) o; 
   if (junc.getConnectedRoads().size() == 1) num++; 
  } 
  return num; 
 } 
  
 public int getNumOfJunctions (Junction ajunc, double distRange, boolean inside) { 
  Iterable<Object> juncIt = this.getRoadContext().getObjects(Junction.class); 
  int num = 0; 
  double directDistance = 0; 
   
  for (Object o : juncIt) { 
   Junction myjunc = (Junction) o; 
   directDistance = myjunc.getCoordinate().distance(ajunc.getCoordinate()); 
   if (inside && directDistance <= distRange) num++; 
   else if (!inside && directDistance > distRange) num++; 
  } 
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  return num; 
 } 
  
 public BrokenVehicle getABrokenVehicle(String name) { 
  Iterable<Object> brokenVehicleIt  

= this.getRoadContext().getObjects(BrokenVehicle.class); 
  for (Object o : brokenVehicleIt) { 
   BrokenVehicle brokenVehicle = (BrokenVehicle) o; 
   if (brokenVehicle.getVehicleType().equals(name)) { //"Ambulance")) { 
    return brokenVehicle; 
   } 
  } 
  return null; 
 } 
  
 public EmergencyVehicle getAnEmergencyVehicle(String name) { 
  Iterable<Object> emergencyVehicleIt  

= this.getRoadContext().getObjects(EmergencyVehicle.class); 
  for (Object o : emergencyVehicleIt) { 
   EmergencyVehicle emergencyVehicle = (EmergencyVehicle) o; 
   if (emergencyVehicle.getVehicleType().equals(name)) {  
    return emergencyVehicle; 
   } 
  } 
  return null; 
 } 
  
 public int getNumberOfPrivateVehicles(int preferredLane, boolean onlyDSRC) { 
  Iterable<Object> pVehicleIt = this.getRoadContext().getObjects(PrivateVehicle.class); 
  int num = 0; 
  for (Object o : pVehicleIt) { 
   PrivateVehicle pVehicle = (PrivateVehicle) o; 
   if (pVehicle.getPreferedLane() == preferredLane) {  
    if (onlyDSRC) { 
     if (pVehicle.isBUseComm()) num++; 
    } else num++; 
   } else if (preferredLane == 0) { 
    if (onlyDSRC) { 
     if (pVehicle.isBUseComm()) num++; 
    } else num++; 
   } 
  } 
  return num; 
 } 
 
 public Context getRoadContext() { 
  return this.maincontext.getSubContext(subcontextString); 
 } 
 
 public Geography getRoadGeography() { 
  return (Geography) getRoadContext().getProjection(geographyString); 
 } //"RoadGeography" 
 
 public Network getRoadNetwork() { 
  return (Network) getRoadContext().getProjection(Network.class, networkString); 
 } 
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 public Network getCommNetwork() { 
  return (Network) getRoadContext().getProjection(Network.class, "CommNetwork"); 
 } 
  
 public RoadElement findRoadAtCoordinates(Coordinate coord) 
      throws NullPointerException { 
  if (coord == null) { 
   throw new NullPointerException( 
   "InfraContext: findRoadAtCoordinates: ERROR: the input coordinate is null"); 
  } 
  GeometryFactory geomFac = new GeometryFactory(); 
 
  // Use a buffer for efficiency 
  Point point = geomFac.createPoint(coord); 
  Geometry buffer = point.buffer(GlobalVariables.XXXX_BUFFER); 
  double minDist = Double.MAX_VALUE; 
  RoadElement nearestRoad = null; 
 
  Iterable<Object> roadElementIt = roadGeography.getObjectsWithin(buffer 
    .getEnvelopeInternal(), RoadElement.class); 
  for (Object o : roadElementIt) { 
   RoadElement road = (RoadElement) o; 
   DistanceOp distOp = new DistanceOp(point, roadGeography 
     .getGeometry(road)); 
   double thisDist = distOp.distance(); 
   if (thisDist < minDist) { 
    minDist = thisDist; 
    nearestRoad = road; 
   } // if thisDist < minDist 
  } // for nearRoads 
  if (nearestRoad == null) { 
   System.err.println("InfraContext: findRoadAtCoordinates: ERROR:  

couldn't find a road at these coordinates:\n\t" + coord.toString()); 
  } 
  return nearestRoad; 
 } 
  
 public Junction getFixedDestJunc () { 
  if (this.fixedDestJunc != null) return fixedDestJunc; 
   
  int x1=0, y1=0; 
  if (GlobalVariables.iCase == 1) { 
   //Nearest junction from PrincessRoyalUniversityHospital 
   x1 = 543585; 
   y1 = 165031; 
  } else if (GlobalVariables.iCase == 2) { 
   //Nearest junction from University College Hospital 
   x1 = 529417; 
   y1 = 182374; 
  } else if (GlobalVariables.iCase == 3) { 
   //Nearest junction from Kingston Hospital 
   x1 = 519651; 
   y1 = 169856; 
  }  
   
  Coordinate coord = new Coordinate( x1, y1); 
  Point point = new GeometryFactory().createPoint(coord); 
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  Geometry buffer = point.buffer(1.0);//GlobalVariables.XXXX_BUFFER); 
  double minDist = Double.MAX_VALUE; 
  Junction nearestJunc = null; 
   
  Iterable<Object> junctionIt = this.roadGeography.getObjectsWithin(buffer 
    .getEnvelopeInternal(), Junction.class); 
  if (junctionIt == null) GlobalVariables.myPrint("getFixedDestJunc3-2: "); 
  for (Object o : junctionIt) { 
   Junction junc = (Junction) o; 
   DistanceOp distOp  

= new DistanceOp(point, this.getRoadGeography().getGeometry(junc)); 
   double thisDist = distOp.distance(); 
   if (thisDist < minDist) { 
    minDist = thisDist; 
    nearestJunc = junc; 
   } // if thisDist < minDist 
  } // for nearRoads 
  this.fixedDestJunc = nearestJunc; 
  return this.fixedDestJunc;  
 } 
 
 public List<Object> findObjectsOnTheRoad(RoadElement currentRoad, Class type) 
   throws NullPointerException { 
  if (currentRoad == null) { 
   throw new NullPointerException("InfraContext: findRoadAtCoordinates:  
    ERROR: the input coordinate is null"); 
  } 
  Coordinate[] roadCoords = roadGeography.getGeometry(currentRoad) 

 .getCoordinates(); 
  GeometryFactory geomFac = new GeometryFactory(); 
 
  // Use a buffer for efficiency 
  LineString line = geomFac.createLineString(roadCoords); 
  Geometry buffer = line.buffer(GlobalVariables.XXXX_BUFFER); 
  double minDist = Double.MAX_VALUE; 
  RoadElement nearestRoad = null; 
 
  List<Object> objectList = new ArrayList<Object>(); 
  Iterable<Object> objectIt = roadGeography.getObjectsWithin(line 
    .getEnvelopeInternal(), type); 
  for (Object o : objectIt) { 
   GlobalVariables.myPrint(o.toString() + " is in the boundary of the road"); 
   Geometry geo = roadGeography.getGeometry(o); 
   if (line.crosses(geo)) 
    GlobalVariables.myPrint(o.toString() + " crosses"); 
   if (line.covers(geo)) 
    GlobalVariables.myPrint(o.toString() + " covers"); 
   DecimalFormat df = new DecimalFormat("#.###############"); 
   Double dist1 = line.distance(geo); 
   Double dist2 = 999.0;  
 
   Coordinate oCoord = roadGeography.getGeometry(o).getCoordinate(); 
   RoadElement oRoad = this.findRoadAtCoordinates(oCoord); 
 
   if (currentRoad.getFID().equals(oRoad.getFID())) { 
    GlobalVariables.myPrint(o.toString() + " same road"); 
    objectList.add(o); 
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   } 
  } 
  return objectList; 
 } 
 
 public static int random(int n, boolean bMath) { 
  return random(1, n, bMath); 
 } 
 
 public static int random(int a, int b, boolean bMath) { 
  if (bMath) return a + (int) (Math.random() * (b - a + 1)); 
  else return (int) RandomHelper.nextDoubleFromTo(a, b); 
 } 
  
 public int getNextVehicleNumber() { 
  this.iVNum ++; 
  return this.iVNum; 
 } 
} 
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D.2 Road geography and network 

D.2.1 RoadElement.java 

 

public class RoadElement { 
 
 private String identifier;   
 private String RoadLinkTO;  
 private String desc; 
 private String DescTerm; 
 private String Nature; 
 private String OneWay; 
 private String NoEntry; 
 private String HasTraffic; // this can be used when implementing traffic signals and controllers 
 private double Shape_Leng; 
 protected Junction fromJunc, toJunc; 
 
 public RoadElement(String identifier, String desc) { 
  this.identifier = identifier; 
  this.desc = desc; 
 } 
 
 public RoadElement() { 
  this.desc = "road"; 
 } 
  
 public String toString() { 
  return "road fid: " + identifier + ",  description: "+ desc + "-" + DescTerm; 
 } 
  
 public String toString2() { 
  return identifier + ", "  
       + RoadLinkTO + ", "  
       + desc + ", "  
       + DescTerm + ", "  
       + OneWay + ", "  
       + NoEntry + ", "  
       + Shape_Leng;  
 } 
 
 public String getIdentifier()  { 
  if (identifier.equals("") || identifier == null) { 
       System.err.println("Road: the identifier field for this road has not been initialised."); 
  } 
  return identifier; 
 } 
 
 public void setIdentifier(String identifier) { 
  this.identifier = identifier; 
 } 
  
 public double getShape_Leng() { 
  return Shape_Leng; 
 } 
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 public void setShape_Leng(double shape_Leng) { 
  Shape_Leng = shape_Leng; 
 } 
 
 public String getFID() { 
  return identifier;  
 } 
 
 public String getRoadLinkTO()  { 
  if (RoadLinkTO.equals("") || RoadLinkTO == null) { 
       System.err.println("Road: the identifier field for this road has not been initialised.""); 
  } 
  return RoadLinkTO; 
 } 
 
 public void setRoadLinkTO(String toid) { 
  this.RoadLinkTO = toid; 
 } 
  
 public ArrayList<Junction> getJunctions() { 
  ArrayList<Junction> junctions;  // The junctions at either end of the road 
  junctions = new ArrayList<Junction>(); 
  junctions.add(fromJunc); 
  junctions.add(toJunc); 
  return junctions; 
 } 
  
 public Junction getFromJunc() { 
  return fromJunc; 
 } 
 
 public void setFromJunc(Junction fromJunc) { 
  this.fromJunc = fromJunc; 
 } 
 
 public Junction getToJunc() { 
  return toJunc; 
 } 
 
 public void setToJunc(Junction toJunc) { 
  this.toJunc = toJunc; 
 } 
 
 public String getOneWay() { 
  return OneWay; 
 } 
 
 public void setOneWay(String oneWay) { 
  OneWay = oneWay; 
 } 
 
 public String getNoEntry() { 
  return NoEntry; 
 } 
 
 public void setNoEntry(String noEntry) { 
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  NoEntry = noEntry; 
 } 
 
 public String getDescTerm() { 
  return DescTerm; 
 } 
 
 public void setDescTerm(String descTerm) { 
  DescTerm = descTerm; 
 } 
  
 public String getNature() { 
  return Nature; 
 } 
 
 public void setNature(String nature) { 
  Nature = nature; 
 } 
 
 public String getHasTraffic() { 
  return HasTraffic; 
 } 
 
 public void setHasTraffic(String hasTraffic) { 
  HasTraffic = hasTraffic; 
 } 
} 
 

D.2.2 RoadEdge.java 

 

public class RoadEdge { 
  
 private boolean flip = false; 
 private RoadElement roadElement; 
  
 public RoadElement getRoadElement() { 
  return roadElement; 
 } 
 
 public void setRoad(RoadElement road) { 
  this.roadElement = road; 
 } 
 
 public RoadEdge(RoadElement road) { 
  this.roadElement = road; 
 } 
   
 public boolean isFlipped() { 
  return flip; 
 } 
 
 public void setFlip(boolean flip) { 
  this.flip = flip; 
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 } 
  
 public String getName (){ 
  String direction; 
  if (this.flip)direction = "-"; 
  else direction = "+"; 
  return this.roadElement.getFID() + direction; 
 } 
  
 public String getRoadElementName (){ 
  return this.roadElement.getFID(); 
 } 
  
 public String getFullName () { 
  return this.roadElement.fromJunc.getID() + "~" + this.getName() + "~"  

+ this.roadElement.toJunc.getID();  
 } 
  
 public boolean equals(RoadEdge r) { 
   
  if (this.getName().equals(r.getName())) 
   return true; 
  else 
   return false; 
 } 
} 
 

D.2.3 MyRepastEdge.java 

 

public class MyRepastEdge<T> extends RepastEdge<T> { 
 
 private String edgeID; 
 
 public MyRepastEdge(T source, T target, boolean directed, String edgeID) { 
  this(source, target, directed, 1, edgeID); 
 } 
 
 public MyRepastEdge(T source, T target, boolean directed, double weight, String edgeID) { 
  super (source, target, directed, weight); 
  this.edgeID = edgeID; 
 } 
 
 public String getRoadID() { 
  return edgeID.substring(0, edgeID.length()-1); 
 } 
 public String getEdgeID() { 
  return edgeID; 
 } 
} 
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D.2.4 Junction.java 

 
public class Junction { 
 
 private int ID; 
 protected String name; 
 private Coordinate coord; 

// The Roads connected to this Junction 
 private ArrayList<RoadElement> connectedRoads = new ArrayList<RoadElement>(); 
 
 public Junction() { 
  this.ID = VeinContextCreator.generateAgentID(); 
 } 
  
 public Junction(Coordinate coord, RoadElement road) { 
  this.ID = VeinContextCreator.generateAgentID(); 
  this.coord = coord; 
 } 
  
 public String getName() { 
  return name; 
 } 
 
 public void setName(String name) { 
  this.name = name; 
 } 
  
 public String toString() { 
  return name + " at: " + this.coord.toString();  
 } 
 
 public int getID() { 
  return ID; 
 } 
 public void setID(int id) { 
  this.ID = id; 
 } 
  
 public Coordinate getCoordinate() { 
  return this.coord; 
 } 
  
 public void setCoordinate(Coordinate coord) { 
  this.coord = coord; 
 } 
  
 public boolean equals(Junction j) { 
  if (this.coord.equals(j.getCoordinate())) { 
   if (this.getID() == j.getID()) return true; 
   else return false; 
  } 
  else 
   return false; 
 } 
 
 public ArrayList<RoadElement> getConnectedRoads() { 



 281 

  return this.connectedRoads; 
 } 
 public void addConnectedRoad(RoadElement road) { 
  this.connectedRoads.add(road); 
 }  
  
} 
 

D.3 Vehicle and route 

D.3.1 Vehicle.java 

 

public class Vehicle { 
  
 protected int id; 
 private String name; 
 private Junction originJunc; 
 private Junction destJunc; 
 protected boolean bSuddenDeceleration = false; 
  
 protected double v0; 
 protected double v; 
 public static double T = 1.0; 
 public static double S0 = 2.0; 
 public static double delta = 4.0; 
 public static double a = 1.0; 
 public static double b = 1.5; 
 public static double vlength = 5.0; 
 public static double v0maxLane1 = 60.0; 
 public static double v0maxLane2 = 70.0; 
 public static double v0maxLane3 = 80.0; 
 public static double conversionMph2Kmh = 1.609344;//mph to kmh 
 public static double conversionMph2Ms = conversionMph2Kmh / 3.6; 
 public static double conversionMs2Mph = 3.6 / conversionMph2Kmh; 
  
 protected double speed; 
 protected Route route;  
 protected boolean bStopped; 
 protected boolean bArrived; 
 protected double dTravelTime; 
 protected double dCountInfluence; 
 protected Infra infra; 
 protected CommunicationMessage veinOnt; 
 protected boolean bRequested; 
 protected double dStopInterval = 0; 
 protected String vehicleType; 
 private int preferedLane; 
  
 public Vehicle(Infra veinInfra, String vehicleType, boolean bUseOnt) { 
  this.infra = veinInfra; 
  this.bStopped = false; 
  this.bArrived = false; 
  this.dTravelTime = 0.0; 
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  this.dCountInfluence = 0.0; 
  this.dStopInterval = 0.0; 
  this.bRequested = false; 
  this.vehicleType = vehicleType; 
  this.veinOnt = new CommunicationMessage(); 
 } 
  
 public Junction getRandomJunctionFromRandomHelper () { 
  Junction aJunc; 
  int irandom = RandomHelper.nextIntFromTo(0,this.infra.getRoadContext() 

.getObjects(Junction.class).size() -1); 
  aJunc = (Junction) this.infra.getRoadContext().getObjects(Junction.class).get(irandom); 
  return aJunc;  
 } 
  
 public Junction getRandomJunction (boolean bMathRandom) { 
  Junction aJunc; 
  if (bMathRandom) { 
   int irandom = Infra.random(0, this.infra.getRoadContext(). 

getObjects(Junction.class).size() -1, bMathRandom); 
   aJunc = (Junction) this.infra.getRoadContext(). 

getObjects(Junction.class).get(irandom); 
  } else aJunc = (Junction) this.infra.getRoadContext() 

.getRandomObjects(Junction.class, 1).iterator().next(); 
  return aJunc;  
 } 
  
 public Junction getRandomJunction () { 
  boolean bMathRandom = false; 
  Junction aJunc; 
   if (bMathRandom) { 
    int irandom = Infra.random(0, this.infra.getRoadContext() 

.getObjects(Junction.class).size() -1, bMathRandom); 
    aJunc = (Junction) this.infra.getRoadContext() 

.getObjects(Junction.class).get(irandom); 
   } else aJunc = (Junction) this.infra.getRoadContext() 

.getRandomObjects(Junction.class, 1).iterator().next(); 
  return aJunc; 
 } 
  
 public void initializeRoute(Junction originationJunc, Junction destinationJunc, Route refRoute){ 
  this.initializeRoute( originationJunc,  destinationJunc,  refRoute, 0 ) ; 
 } 
 
 public void initializeRoute(Junction originationJunc, Junction destinationJunc,  

Route refRoute, int nCase ) { 
  double minimumRouteDistance; 
  if (this.vehicleType.equals("PrivateVehicle") ||  
   this.vehicleType.equals("PrivateVehicle2")) minimumRouteDistance = 1000.0;  
  else minimumRouteDistance = GlobalVariables.MININUM_ROUTE_DISTANCE;  
  if ( originationJunc == null &&  destinationJunc == null) { 
   this.setOriginJuncRandomly(); 
   this.setDestJuncRandomly(this.originJunc, minimumRouteDistance);  
  } 
  else if (originationJunc != null && destinationJunc == null) { 
   this.route = null; 
   this.setDestJunc(null); 
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   this.setOriginJunc(originationJunc); 
   this.setDestJuncRandomly(this.originJunc, minimumRouteDistance, nCase);  
  } 
  else if (originationJunc == null && destinationJunc != null) { 
   this.route = null; 
   this.setOriginJunc(null); 
   this.setDestJunc(destinationJunc); 
   this.setOriginJuncRandomly(this.destJunc, minimumRouteDistance, nCase);  
  } else { 
   this.route = null; 
   this.setOriginJunc(originationJunc); 
   this.setDestJunc(destinationJunc); 
  } 
  boolean bGetARoute = false; 
  int iWhile = 0; 
  do { 
   bGetARoute = this.setRoute(this.originJunc, this.destJunc, refRoute); 
   if (!bGetARoute) { 
    if (originationJunc != null && destinationJunc == null) { 
     if (iWhile < 10) { 
      this.route = null; 
      this.setOriginJuncRandomly(nCase); 
      this.setDestJuncRandomly(this.originJunc,  

   minimumRouteDistance, nCase); 
     } else { 
      this.setOriginJuncRandomly(nCase); 
      this.setDestJunc(this.getOriginJunc()); 
      this.setOriginJunc(null); 
      this.setOriginJuncRandomly(this.destJunc,  
        minimumRouteDistance, nCase); 
      iWhile = 0; 
     } 
    } 
    else if (originationJunc == null && destinationJunc != null){ 
     this.setOriginJuncRandomly(this.destJunc,  

minimumRouteDistance, nCase); 
    } else { 
     this.setOriginJuncRandomly(nCase); 
     this.setDestJuncRandomly(this.originJunc,  
        minimumRouteDistance, nCase);  
    } 
   } 
   iWhile ++; 
  } while (!bGetARoute); 
 } 
  
 public void initializeRouteFromRandomHelper(Junction originationJunc,  

Junction destinationJunc, Route refRoute, int nCase ) { 
  double minimumRouteDistance; 
  if (this.vehicleType.equals("PrivateVehicle") ||  
      this.vehicleType.equals("PrivateVehicle2")) { 
   minimumRouteDistance = 1000.0;  
  } 
  else if (GlobalVariables.iCase == 4 ) { 
   minimumRouteDistance = 1000.0;  
  } 
  else minimumRouteDistance = GlobalVariables.MININUM_ROUTE_DISTANCE;  
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  if ( originationJunc == null &&  destinationJunc == null) { 
   this.setOriginJuncRandomlyFromRandomHelper(nCase); 
   this.setDestJuncRandomlyFromRandomHelper(this.originJunc,  
       minimumRouteDistance, nCase);  
  } 
  else if (originationJunc != null && destinationJunc == null) { 
   this.route = null; 
   this.setDestJunc(null); 
   this.setOriginJunc(originationJunc); 
   this.setDestJuncRandomlyFromRandomHelper(this.originJunc,  
       minimumRouteDistance, nCase);  
  } 
  else if (originationJunc == null && destinationJunc != null) { 
   this.route = null; 
   this.setOriginJunc(null); 
   this.setDestJunc(destinationJunc); 
   this.setOriginJuncRandomlyFromRandomHelper(this.destJunc,  
       minimumRouteDistance, nCase);  
  } else { 
   this.route = null; 
   this.setOriginJunc(originationJunc); 
   this.setDestJunc(destinationJunc); 
  } 
 
  boolean bGetARoute = false; 
  int iWhile = 0; 
  
  do { 
   bGetARoute = this.setRoute(this.originJunc, this.destJunc, refRoute); 
   if (!bGetARoute) { 
    if (originationJunc != null && destinationJunc == null) { 
     if (iWhile < this.infra.getRoadContext() 

.getObjects(Junction.class).size()) { 
      this.route = null; 

     this.setDestJuncRandomlyFromRandomHelper( 
         this.originJunc,  minimumRouteDistance, nCase); 
       
     } else { 
          this.setDestJuncRandomlyFromRandomHelper(nCase); 
          this.setOriginJuncRandomlyFromRandomHelper( 
      this.destJunc, minimumRouteDistance, nCase); 
          iWhile = 0; 
     } 
    } 
    else if (originationJunc == null && destinationJunc != null){ 
     if (iWhile < this.infra.getRoadContext(). 

getObjects(Junction.class).size()) { 
      this.route = null; 
      this.setOriginJuncRandomlyFromRandomHelper( 

     this.destJunc, minimumRouteDistance, nCase); 
     } else { 
          this.setOriginJuncRandomlyFromRandomHelper(nCase); 
          this.setDestJuncRandomlyFromRandomHelper( 
      this.originJunc, minimumRouteDistance, nCase); 
          iWhile = 0; 
     } 
    } else { 
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     if (iWhile <= this.infra.getNumOfEndingJunctions()) { 
          this.setDestJuncRandomlyFromRandomHelper(nCase); 
     } else { 
          this.setOriginJuncRandomlyFromRandomHelper(nCase); 
          this.setDestJuncRandomlyFromRandomHelper( 

this.originJunc, minimumRouteDistance, nCase);  
          iWhile = 0; 
     } 
    } 
   } 
   iWhile ++; 
  } while (!bGetARoute); 
 } 
  
 public void initializeRouteFromOriginFromRandomHelper(Junction originationJunc, 

 int nCase, double minimumRouteDistance ) { 
     this.route = null; 
  this.setDestJunc(null); 
  if (originationJunc == null) { 
   this.setOriginJuncRandomlyFromRandomHelper(nCase); 
  } 
  this.setDestJuncRandomlyFromRandomHelper(this.originJunc,  
       minimumRouteDistance, nCase);  
   
  boolean bGetARoute = false; 
  int iWhile = 0; 
  int numEndingJunctions = 0; 
  numEndingJunctions = this.infra.getNumOfEndingJunctions(); 
  
  do { 
   double directDistance = this.getOriginJunc().getCoordinate() 

.distance(this.getDestJunc().getCoordinate()); 
   bGetARoute = this.setRoute(this.originJunc, this.destJunc, null); 
   if (!bGetARoute) { 
    if (originationJunc != null ) { 
     if (iWhile <= numEndingJunctions) { 
      this.route = null; 
      this.setDestJuncRandomlyFromRandomHelper( 

   this.originJunc, minimumRouteDistance, nCase); 
     } else { 
          this.setOriginJuncRandomlyFromRandomHelper(nCase); 
          this.setDestJuncRandomlyFromRandomHelper( 

this.originJunc, minimumRouteDistance, nCase); 
          iWhile = 0; 
     } 
    } 
   } 
   iWhile ++; 
  } while (!bGetARoute); 
 } 
 public boolean updateRelativeLocation() { 
  return this.veinOnt.updateRelativeLocation(this); 
 } 
 
 public String getVehicleType() { 
  return vehicleType; 
 } 
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 public void setVehicleType(String vehicleType) { 
  this.vehicleType = vehicleType; 
 } 
 
 public Junction getOriginJunc() { 
  return this.originJunc; 
 } 
 
 public void setOriginJunc(Junction originJunc) { 
  this.originJunc = originJunc; 
 } 
  
 public void setOriginJuncRandomly() { 
  this.setOriginJuncRandomly(0); 
 } 
  
 public void setOriginJuncRandomly(int nCase) { 
  Junction j = this.getRandomJunction();  
  if (nCase == 4) { 
   while (j.getConnectedRoads().size() != 1) { 
    j = this.getRandomJunction(); 
   } 
  } 
  this.setOriginJunc(j); 
 } 
  
 public void setOriginJuncRandomlyFromRandomHelper(int nCase) { 
  Junction j = this.getRandomJunctionFromRandomHelper();  
  if (nCase == 4) { 
   boolean bGetIt = false; 
   do { 
    if (j.getConnectedRoads().size() == 1) { 
     if (j.equals(j.getConnectedRoads().get(0).getFromJunc())) { 
      this.setOriginJunc(j); 
      bGetIt = true; 
     } 
    } 
    j = this.getRandomJunctionFromRandomHelper(); 
   } while (!bGetIt); 
  } 
  this.setOriginJunc(j); 
 } 
  
 public void setOriginJuncRandomly(Junction destJunc, double distance) { 
  this.setOriginJuncRandomly(destJunc, distance, 0); 
 } 
 
 public void setOriginJuncRandomly(Junction destJunc, double distance, int nCase) { 
  Junction aJunc; 
  Coordinate originCoord, destCoord; 
  do { 
   aJunc = this.getRandomJunction(); 
   if (nCase == 4) { 
    while (aJunc.getConnectedRoads().size() != 1) { 
     aJunc = this.getRandomJunction(); 
    } 
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   } 
   if (nCase == 41) { 
    boolean isJuncConnectedToDualCarriageway = false; 
    while (!isJuncConnectedToDualCarriageway) { 
     Iterator<RoadElement> i; 
     i = aJunc.getConnectedRoads().iterator(); 
     while (i.hasNext()) { 
      RoadElement aRoad = (RoadElement) i.next(); 
      if(aRoad.getNature().equals("Dual Carriageway")){ 
           isJuncConnectedToDualCarriageway = true; 
           break; 
      } 
     } 
     if (!isJuncConnectedToDualCarriageway)  

aJunc = this.getRandomJunction(); 
    } 
   } 
   originCoord = aJunc.getCoordinate(); 
   destCoord = destJunc.getCoordinate(); 
  } while (originCoord.distance(destCoord)== 0 ||  

originCoord.distance(destCoord) < distance); 
   
  if (this.originJunc != null) { 
   if (this.originJunc.equals(aJunc)) { 
    do { 
     aJunc = this.getRandomJunction(true); 
     if (nCase == 4) { 
      while (aJunc.getConnectedRoads().size() != 1) { 
       aJunc = this.getRandomJunction(); 
      } 
     } 
     if (nCase == 41) { 
          boolean isJuncConnectedToDualCarriageway = false; 
          while (!isJuncConnectedToDualCarriageway) { 
      Iterator<RoadElement> i; 
      i = aJunc.getConnectedRoads().iterator(); 
      while (i.hasNext()) { 
      RoadElement aRoad = (RoadElement) i.next(); 
      if(aRoad.getNature().equals("Dual Carriageway")){ 
           isJuncConnectedToDualCarriageway = true; 
           break; 
       } 
      } 
      if (!isJuncConnectedToDualCarriageway)  

aJunc = this.getRandomJunction(); 
      } 
     } 
     originCoord = aJunc.getCoordinate(); 
     destCoord = destJunc.getCoordinate(); 
      
    } while (originCoord.distance(destCoord)== 0 ||  
     originCoord.distance(destCoord) < distance); 
   } 
  } 
  this.originJunc = aJunc; 
 } 
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 public void setOriginJuncRandomlyFromRandomHelper(Junction destJunc,  
double distance, int nCase) { 

  Junction aJunc; 
  int iwhile = 0; 
  Coordinate originCoord, destCoord; 
  do { 
   aJunc = this.getRandomJunctionFromRandomHelper(); 
   if (nCase == 4) { 
    boolean bGetIt = false; 
    do { 
     if (aJunc.getConnectedRoads().size() == 1) { 
      if (aJunc.equals(aJunc.getConnectedRoads() 

.get(0).getFromJunc())) { 
       this.setOriginJunc(aJunc); 
       bGetIt = true; 
      } 
     } 
     aJunc = this.getRandomJunctionFromRandomHelper(); 
    } while (!bGetIt); 
   } 
   originCoord = aJunc.getCoordinate(); 
   destCoord = destJunc.getCoordinate(); 
   iwhile++; 
  } while (originCoord.distance(destCoord)== 0  

|| originCoord.distance(destCoord) < distance); 
  if (this.originJunc != null) { 
   if (this.originJunc.equals(aJunc)) { 
    do { 
     aJunc = this.getRandomJunctionFromRandomHelper(); 
       if (nCase == 4) { 
         boolean bGetIt = false; 
         do { 
           if (aJunc.getConnectedRoads().size() == 1) { 
             if (aJunc.equals(aJunc.getConnectedRoads() 

.get(0).getFromJunc())) { 
     this.setOriginJunc(aJunc); 
     bGetIt = true; 
             } 
           } 
           aJunc = this.getRandomJunctionFromRandomHelper(); 
         } while (!bGetIt); 
        } 
        originCoord = aJunc.getCoordinate(); 
        destCoord = destJunc.getCoordinate(); 
    } while (originCoord.distance(destCoord)== 0 ||  
      originCoord.distance(destCoord) < distance); 
   } 
  } 
  this.originJunc = aJunc; 
 } 
  
 public Junction getDestJunc() { 
  return destJunc; 
 } 
 
 public void setDestJunc(Junction destJunc) { 
  this.destJunc = destJunc; 
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 } 
  
 public void setDestJuncRandomly(int nCase) { 
  Junction j = this.getRandomJunction();  
  if (nCase == 4) { 
   while (j.getConnectedRoads().size() != 1) { 
    j = this.getRandomJunction(); 
   } 
  } 
  this.setDestJunc(j); 
 }   
  
 public void setDestJuncRandomlyFromRandomHelper(int nCase) { 
  Junction j = this.getRandomJunctionFromRandomHelper();  
  if (nCase == 4) { 
   boolean bGetIt = false; 
   do { 
    if (j.getConnectedRoads().size() == 1) { 
     if (j.equals(j.getConnectedRoads().get(0).getToJunc())) { 
      this.setDestJunc(j); 
      bGetIt = true; 
     } 
    } 
    j = this.getRandomJunctionFromRandomHelper(); 
   } while (!bGetIt); 
  } 
  this.setDestJunc(j); 
 }  
  
 public void setDestJuncRandomly(Junction originJunc, double distance) { 
  this.setDestJuncRandomly(originJunc, distance, 0); 
 } 
  
 public void setDestJuncRandomlyFromRandomHelper(Junction originJunc, double distance,  

int nCase) { 
  Junction aJunc; 
  int iwhile = 0; 
  Coordinate originCoord, destCoord; 
  do { 
   aJunc = this.getRandomJunctionFromRandomHelper(); 
   if (nCase == 4) { 
    boolean bGetIt = false; 
    do { 
     if (aJunc.getConnectedRoads().size() == 1) { 
      if (aJunc.equals(aJunc.getConnectedRoads() 

.get(0).getToJunc())) { 
       this.setDestJunc(aJunc); 
       bGetIt = true; 
      } 
     } 
     aJunc = this.getRandomJunctionFromRandomHelper(); 
    } while (!bGetIt); 
   } 
   destCoord = aJunc.getCoordinate(); 
   originCoord = originJunc.getCoordinate(); 
   iwhile++; 
  } while (originCoord.distance(destCoord)== 0  
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|| originCoord.distance(destCoord) < distance); 
  if (this.destJunc != null) { 
   if (this.destJunc.equals(aJunc)) { 
    do { 
     aJunc = this.getRandomJunctionFromRandomHelper(); 
     if (nCase == 4) { 
      boolean bGetIt = false; 
      do { 
        if (aJunc.getConnectedRoads().size() == 1) { 
          if (aJunc.equals(aJunc.getConnectedRoads() 

.get(0).getToJunc())) { 
            this.setDestJunc(aJunc); 
            bGetIt = true; 
          } 
        } 
               aJunc = this.getRandomJunctionFromRandomHelper(); 
      } while (!bGetIt); 
     } 
     destCoord = aJunc.getCoordinate(); 
     originCoord = originJunc.getCoordinate(); 
      
    } while (originCoord.distance(destCoord)== 0 ||  
     originCoord.distance(destCoord) < distance); 
   } 
  } 
  this.destJunc = aJunc; 
 } 
 
 public void setDestJuncRandomly(Junction originJunc, double distance, int nCase) { 
  Junction aJunc; 
  Coordinate originCoord, destCoord; 
  do { 
   aJunc = this.getRandomJunction(); 
   if (nCase == 4) { 
    while (aJunc.getConnectedRoads().size() != 1) { 
     aJunc = this.getRandomJunction(); 
    } 
   } 
   destCoord = aJunc.getCoordinate(); 
   originCoord = originJunc.getCoordinate(); 
    
  } while (originCoord.distance(destCoord)== 0 

 || originCoord.distance(destCoord) < distance); 
   
  if (this.destJunc != null) { 
   if (this.destJunc.equals(aJunc)) { 
    do { 
     aJunc = this.getRandomJunction(true); 
     if (nCase == 4) { 
      while (aJunc.getConnectedRoads().size() != 1) { 
       aJunc = this.getRandomJunction(true); 
      } 
     } 
     destCoord = aJunc.getCoordinate(); 
     originCoord = originJunc.getCoordinate(); 
    } while (originCoord.distance(destCoord)== 0  

|| originCoord.distance(destCoord) < distance); 
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   } 
  } 
  this.destJunc = aJunc; 
 } 
 
 public boolean setRoute (Junction originJunc, Junction destJunc, Route refRoute) { 
  boolean bCheck = false; 
  boolean bRefCheck = false; 
  if (originJunc.equals(destJunc)) { 
   return false; 
  } 
  try { 
   if (this.route != null) { 
    this.route.kill(); 
   } 
   this.route = new Route(infra, this, originJunc, destJunc); 
   bCheck = this.route.checkRouteCoords(); 
   if(refRoute != null) { 
    for (int i =0; i < this.route.getRouteJunctions().size()-1; i++) { 
     if (refRoute.getRouteJunctions() 

.contains(this.route.getRouteJunctions().get(i))) { 
      bRefCheck = true;  
      break; 
     } 
    } 
    if (!bRefCheck) { 
     this.route = null; 
     return bRefCheck; 
    } 
   } 
   if (!bCheck) this.route = null; 
   return bCheck; 
  } catch (Exception e) { 
   e.printStackTrace(); 
   RunEnvironment.getInstance().pauseRun(); 
  } 
  return false; 
 } 
   
 public boolean isStopped() { 
  if (bStopped ) return true; 
  else return false; 
 } 
 
 public void setStopped(boolean stopped) { 
  this.bStopped = stopped; 
  this.veinOnt.setStopped(stopped); 
 } 
  
 public void stop() { 
  this.setStopped(true); 
 } 
 
 public boolean isArrived() { 
  return bArrived; 
 } 
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 public void moveOverToTheRightLane() { 
  this.setPreferedLane(2); 
  this.veinOnt.setPreferedLane(2); 
  if (this.v0 < this.v0maxLane2) { 
   this.v0 = this.v0maxLane2; //(int) (this.v0 + this.v0maxLane2) / 2; 
   double s = v0; 
   if (this.speed == 0) s = 0; 
   this.bSuddenDeceleration = false; 
   this.setSpeed(s); 
   this.veinOnt.setSpeed(s); 
  } 
 } 
  
 public void die(){ 
  if (infra.getRoadContext().size() > 1) 
   infra.getRoadContext().remove(this);  
  else 
   RunEnvironment.getInstance().endRun(); 
 } 
  
 public void removeFromTheContext() { 
  try { 
  // Get the context in which the agent resides. 
  Context context = this.infra.getRoadContext(); 
  //  Remove the agent from the context if the context is not empty 
  if (context.size() > 1) 
   context.remove(this);  
  // Otherwise if the context is empty, end the simulation 
  else 
   RunEnvironment.getInstance().endRun(); 
  } catch (Exception e) { 
   // TODO Auto-generated catch block 
   e.printStackTrace(); 
  } 
 } 
 
 public void setArrived(boolean arrived) { 
  bArrived = arrived; 
  GlobalVariables.myPrint(this.toString() +  " is arrived at its destination"); 
 } 
  
 public double getDTravelTime() { 
  return dTravelTime; 
 } 
 
 public void setDTravelTime(double travelTime) { 
  dTravelTime = travelTime; 
 } 
 
 public void addTravelTime(double add) { 
  dTravelTime = dTravelTime + add; 
 } 
  
 public void addStopInterval (double add) { 
  dStopInterval = dStopInterval + add; 
  PrivateVehicle.totalStoppedInterval = PrivateVehicle.totalStoppedInterval + add; 
 } 
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 public void setStopInterval (double time) { 
  dStopInterval = time; 
 } 
  
 public void resetStopVariables () { 
  dStopInterval = 0.0; 
 } 
  
 public double getStopInterval () { 
  return dStopInterval; 
 } 
  
 public double getDCountInfluence() { 
  return dCountInfluence; 
 } 
 
 public void setDInfluenceTime(double influenceTime) { 
  dCountInfluence = influenceTime; 
 } 
 
 public void addInfluenceTime(double add) { 
  dCountInfluence = dCountInfluence + add; 
  PrivateVehicle.totalCountInfluence = PrivateVehicle.totalCountInfluence + add; 
 } 
  
 public double getSpeed() { 
  return speed; 
 } 
 
 public void setSpeed(double speed) { 
  this.speed = speed; 
 } 
  
 public void setSpeedAndPreferedLane(int nRandom) { 
  double speed = 0; 
  if (GlobalVariables.iCase < 4)  { 
  /* 
  Under 20 mph 5:5 
  20-29 mph  49:54 
  30-34 mph  30:84 
  35-39 mph  12:96 
  40-44 mph  3:99 
  45-49 mph  1:100 
  50 mph and over  0 
  ---------------------------- 
  Percentage over 35 mph 16 
  Average speed (mph) 30 
  */ 
   
  speed = 30.0; 
  if (nRandom <= 5) speed = 20; 
  else if (nRandom > 5 && nRandom <= 54 ) speed = this.infra.random (20, 29, false); 
  else if (nRandom > 54 && nRandom <= 84 ) speed = this.infra.random (30, 34, false); 
  else if (nRandom > 84 && nRandom <= 96 ) speed = this.infra.random (35, 39, false); 
  else if (nRandom > 96 && nRandom <= 99 ) speed = this.infra.random (40, 44, false); 
  else if (nRandom == 100) speed = this.infra.random (45, 49, false); 



 294 

   
  this.setSpeed(speed); 
  this.setPreferedLane(1); 
  } else if (GlobalVariables.iCase == 4) { 
  /*  
  Under 50 mph 4 % :04 
  50-59 mph  14 %:18 
  60-64 mph  14 %:32 
  65-69 mph  19 %:51 
  70-74 mph  21 %:72 
  75-79 mph  15 %:87 
  80-89 mph  12 %:99 
  90 mph and over 2 % -> 1% :100 
  -------------------------------- 
  More than 10 mph over limit 14 % 
  Average speed (mph) 69 mph 
  */ 
  speed = 69.0; 
  if (nRandom <= 4) speed = this.infra.random (49, 50, false); 
  else if (nRandom > 4 && nRandom <= 18 ) speed = this.infra.random (50, 59, false); 
  else if (nRandom > 18 && nRandom <= 32 ) speed = this.infra.random (60, 64, false); 
  else if (nRandom > 32 && nRandom <= 51 ) speed = this.infra.random (65, 69, false); 
  else if (nRandom > 51 && nRandom <= 72 ) speed = this.infra.random (70, 74, false); 
  else if (nRandom > 72 && nRandom <= 87 ) speed = this.infra.random (75, 79, false); 
  else if (nRandom > 87 && nRandom <= 99 ) speed = this.infra.random (80, 89, false); 
  else if (nRandom == 100) speed = this.infra.random (90, 91, false); 
   
  //In the simulation, it is regarded that Motorways have three lanes  
  //the left-hand lane, the middle lane and the outer lane. 
  //lane number 1, 2, 3 represents the left-hand lane, the middle lane, and the outer lane 
  this.setSpeed(speed); 
  if(speed < 65) this.setPreferedLane(1); //18% + 14 = 32 % 
  else if(speed < 75) this.setPreferedLane(2); //54% - 14% = 40% 
  else this.setPreferedLane(3); //29%-1% = 28% 
  } 
  this.v0 = speed; 
  this.v = speed; 
 } 
  
 public int getPreferedLane() { 
  return preferedLane; 
 } 
 
 public void setPreferedLane(int preferedLane) { 
  this.preferedLane = preferedLane; 
 } 
 
 public void accerlate () { 
  accerlate (10.0); 
 } 
 
 public void accerlate (double a) { 
  setSpeed(getSpeed() + a); 
  if (this.speed > 0) this.bStopped = false; 
 }  
  
 public void suddenDeceleration () { 
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  this.bSuddenDeceleration = true; 
  this.decelerate(5); 
 } 
  
 public void decelerationIDM (double speed1, double s1, double timeUnit1) { 
  double v1 = speed1 * Vehicle.conversionMph2Ms; 
  double deacc1 = Math.pow((v1*v1)/(2.0*s1), 2) / this.b;  
  this.decelerate (deacc1 * Vehicle.conversionMs2Mph * timeUnit1); // /10 or not 
 } 
 
 public void decelerate () { 
  this.decelerate(5); 
 } 
 
 public void decelerate (double d) { 
  if(this.speed > d) this.speed = this.speed -d; 
   else { 
   this.speed = 0; 
  } 
 } 
  
 public boolean equals(Vehicle v) { 
  if (this.name.equals(v.name)) 
   return true; 
  else 
   return false; 
 } 
 
 public Coordinate initialstep() { 
  double totalLength = this.route.getTotalLenghtOfTheRoute(); 
  double travelPerTurn = this.getSpeed()  

   * GlobalVariables.TRAVEL_PER_TURN/GlobalVariables.TRAVEL_SPEED_MPH; 
  travelPerTurn = travelPerTurn / 10.0;  // 1 tick = 0.1 sec 
  int totalTick = (int) (totalLength / travelPerTurn); 
  int min = (int) (totalTick * 0.01); 
  int max = (int) (totalTick * 0.99); 
  int loop = this.infra.random(min, max, false);  
 
  if (this.getVehicleType().equals("BrokenCar")) { 
   loop = (int) (totalTick / 2); 
   for (int i = 0; i < loop; i++) this.route.travelA(true); 
  } else if (this.getVehicleType().equals("PrivateVehicle")) { 
   for (int i = 0; i < loop; i++) this.route.travelA(true); 
  } 
  return this.getCurrentCoordinate(); 
 } 
 
 public void step() { 
  double time = System.currentTimeMillis(); 
  try { 
   if (this.route == null)  { 
   } 
   else {  
    if (this.route.atDestination() && !this.isStopped()) { 
     this.setStopped(true); 
    } 
   } 
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  } 
  catch (Exception e) { 
    e.printStackTrace(); 
    RunEnvironment.getInstance().pauseRun(); 
  } 
 } 
  
 public int getId() { 
  return id; 
 } 
 
 public void setId(int id) { 
  this.id = id; 
 } 
 
 public String getName() { 
  return name; 
 } 
  
 public String toString() { 
  return name + ", " + this.dTravelTime + ": " ; 
 } 
  
 public void setName(String name) { 
  this.name = name; 
 } 
  
 public Geometry getCurrentGeometry () { 
  return infra.getRoadGeography().getGeometry(this); 
 } 
  
 public Coordinate getCurrentCoordinate () { 
  return infra.getRoadGeography().getGeometry(this).getCoordinate(); 
 } 
  
 public String getCurrentCoorinatesString () { 
  double x = infra.getRoadGeography().getGeometry(this).getCoordinate().x; 
  double y = infra.getRoadGeography().getGeometry(this).getCoordinate().y; 
  return x + "," + y; 
 } 
  
 public double getCurrentCoordinateX () { 
  return infra.getRoadGeography().getGeometry(this).getCoordinate().x; 
 } 
  
 public double getCurrentCoordinateY () { 
  return infra.getRoadGeography().getGeometry(this).getCoordinate().y; 
 } 
  
 public String getCurrentRoadFID () { 
   
  if (this.veinOnt !=null && this.veinOnt.getCurrentRoadEdge() != null) 
   return this.veinOnt.getCurrentRoadEdge().getRoadElement().getFID(); 
  else return "-1"; 
 } 
  
 public int getNextJunctionID () { 
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  if (this.veinOnt !=null && this.veinOnt.getNextJunction() != null) 
   return this.veinOnt.getNextJunction().getID(); 
  else return -1; 
 } 
  
 public double getRemainDistanceToNextJunction () { 
  if (this.veinOnt != null) 
   return this.veinOnt.getRemainingDistanceToNextJunction(); 
  else return -1.0; 
 } 
  
 public RoadElement getCurrentRoadOn() { 
  Coordinate currentCoord  

= infra.getRoadGeography().getGeometry(this).getCoordinate(); 
  return  infra.findRoadAtCoordinates(currentCoord); 
 } 
  
 public <X> Iterable<X> getObjects (Envelope env, Class<X> type) { 
  return (Iterable<X>) infra.getRoadGeography().getObjectsWithin(env, type); 
 } 
  
 public boolean getRequest() { 
  return true; 
 } 
  
 public boolean answerback() { 
  return true; 
 } 
 
 public CommunicationMessage getVeinOnt() { 
  return veinOnt; 
 } 
  
 public static boolean IsInsideTheCircle (double x, double y, double centre_x, double centre_y,  
          double radius) { 
  //including on the circle 
  if (Math.pow(x - centre_x, 2) + Math.pow(y - centre_y, 2) <= Math.pow(radius, 2))  
   return true; 
  //only inside of the circle 
  else return false; 
 } 
  
 public static double getDistance (double x, double y, double centre_x, double centre_y) { 
  double distance = Math.pow(x - centre_x, 2) + Math.pow(y - centre_y, 2); 
  distance = Math.pow(distance, 0.5); 
  return distance; 
 } 
} 
 

D.3.2 EmergencyVehicle.java 

 

public class EmergencyVehicle extends Vehicle { 
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 private int numRequest; 
 private int numRequestOut; 
 private boolean bBroken; 
 private int endTick; 
 private ArrayList<String> lstDSRCVehicleRequested; 
 private ArrayList<String> lstNonDSRCVehicleRequested; 
 
 public EmergencyVehicle(Infra veinInfra, String vehicleType, boolean bUseOnt) { 
  super(veinInfra, vehicleType, bUseOnt); 
  numRequest = 0; 
  numRequestOut = 0; 
  this.lstDSRCVehicleRequested = null; 
  this.lstNonDSRCVehicleRequested = null; 
  this.lstDSRCVehicleRequested = new ArrayList<String>(); 
  this.lstNonDSRCVehicleRequested = new ArrayList<String>(); 
 } 
  
 public String getEVOutputter() { 
  return this.getName()+ ","  
  + this.getSpeed() + "," 
  + this.infra.formatStr( this.getCurrentCoordinateX()) + ","  
  + this.infra.formatStr( this.getCurrentCoordinateY()) + ","  
  + this.getCurrentRoadFID() + ","  
  + this.getNextJunctionID() + ","  
  + this.infra.formatStr( this.getRemainDistanceToNextJunction()) + ","  
  + this.getNumRequest() + ","  
  + this.getNumRequestOut() + "," 
  + this.getNumStoppedPrivateVehiclePerTick() + "," 
  + this.getDTravelTime()+ "," 
  + this.isArrived()+ "," 
  + GlobalVariables.iRondomSeed+ "," 
  + GlobalVariables.iPercentUsingComm + "," 
  + GlobalVariables.numVehicle + "," 
  + GlobalVariables.numEmergencyVehicle + "," 
  + GlobalVariables.commrange + "," 
  + this.getNumOfVehicleRequested() + ","  
  + this.getNumOfDSRCVehicleRequested() + ","  
  + this.getNumOfNonDSRCVehicleRequested() + "," 
   + this.getNumPassedByPrivateVehicle() + ","  
  + this.getNumPassedByWithDSRCPrivateVehicle() + "," 
  + this.getNumPassedByWithoutDSRCPrivateVehicle() + "," 
  + this.getNumOfVehicleStopped() + "," 
  + this.getNumOfDSRCVehicleStopped() + "," 
  + this.getNumOfNonDSRCVehicleStopped() + "," 
  + this.getNumOfVehiclePassedBy() + "," 
  + this.getNumOfDSRCVehiclePassedBy() + "," 
  + this.getNumOfNonDSRCVehiclePassedBy() + "," 
  + PrivateVehicle.totalNumStopped + "," 
  + PrivateVehicle.totalStoppedInterval  + "," 
  + PrivateVehicle.totalCountInfluence + "," 
  + this.getCurrentCoorinatesString() + "," 
  + "||," + this.infra.getNumberOfPrivateVehicles(1, true)  + "," //about 32% * ont% 
  + this.infra.getNumberOfPrivateVehicles(1, false)  + "," //about 32% 
  + this.infra.getNumberOfPrivateVehicles(0, true) + "," // ont % 
  + GlobalVariables.numVehicle +", " 
  +  GlobalVariables.totalNetworkLength + "," 
  + "ori," + this.getOriginJunc().getCoordinate().x + ","+  



 299 

   this.getOriginJunc().getCoordinate().y + "," 
  + "des," + this.getDestJunc().getCoordinate().x + ","  

+ this.getDestJunc().getCoordinate().y; 
 } 
 
 public String getEVOutputter2() { 
  return this.getName()+ ","  
  + this.getSpeed() + "," 
  + this.getDTravelTime()+ "," 
  + this.isArrived()+ "," 
  + GlobalVariables.iRondomSeed+ "," 
  + GlobalVariables.iPercentUsingComm + "," 
  + GlobalVariables.numVehicle + "," 
  + GlobalVariables.commrange + "," 
  + this.getNumOfVehicleRequested() + ","  
  + this.getNumOfDSRCVehicleRequested() + ","  
  + this.getNumOfNonDSRCVehicleRequested() + "," 
  + this.getNumOfVehicleStopped() + "," 
  + this.getNumOfDSRCVehicleStopped() + "," 
  + this.getNumOfNonDSRCVehicleStopped();   
 } 
  
 @Override 
 public void step() { 
  try { 
  GlobalVariables.GarbageCollector("!!" + this.toString(), true); 
  if (this.veinOnt.getCurrentRoadEdge() == null) 
   this.updateRelativeLocation(); 
  if (!this.isStopped() || !this.isArrived()) { 
   this.request(); 
  } 
  if (this.dTravelTime >= this.endTick) { 
   RunEnvironment.getInstance().endRun(); 
  } 
  if (!this.isArrived()) {  
   if (this.route.atDestination()) { 
    this.setArrived(true); 
    this.route = null; 
    this.setStopped(true); 
    RunEnvironment.getInstance().endRun(); 
   } 
  } 
  if (this.route != null && !this.isStopped()) { 
   if (!this.bBroken) this.route.travelA(true); 
   this.addTravelTime(1.0); 
   this.updateRelativeLocation(); 
  } 
  } catch (Exception e) { 
   e.printStackTrace(); 
  }  
 } 
 public void request() { 
  if (GlobalVariables.iCase < 4) requestOfAmbulance(); 
 } 
  
 public void requestOfAmbulance() { 
  this.numRequest = 0; 
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  this.numRequestOut = 0; 
  PrivateVehicle.resetTotalNumStoppedPerTick(); 
  double a_x, a_y, centre_x, centre_y; 
  centre_x = this.getCurrentCoordinateX();  
  centre_y = this.getCurrentCoordinateY(); 
 
  Envelope env  = (Envelope)this.getCurrentGeometry().buffer 

(GlobalVariables.commrange * 1.5).getEnvelopeInternal(); 
  Iterable<PrivateVehicle> vehicleIt = this.getObjects(env, PrivateVehicle.class); 
  for (PrivateVehicle v:vehicleIt) { 
   if (PrivateVehicle.inTheVehiclePassedByList(v)) { 
    continue;  
   } 
   a_x = v.getCurrentCoordinateX();  
   a_y = v.getCurrentCoordinateY(); 
   double distance = getDistance(a_x, a_y, centre_x, centre_y);  
   if (distance <= GlobalVariables.commrange) {    
    v.getRequest(this.getVeinOnt(), this.getCurrentCoordinate());  
    this.numRequest ++; 
    addRequestedVehicleToTheList(v); 
   }  
   else if (v.isStopped()) { 
    v.getRequest(this.getVeinOnt(), this.getCurrentCoordinate());  
    this.numRequestOut ++; 
   } 
  } 
 } 
   
 public int getNumRequest() { 
  return numRequest; 
 } 
  
 public int getNumRequestOut() { 
  return numRequestOut; 
 } 
  
 public int getNumStoppedPrivateVehiclePerTick() { 
  return PrivateVehicle.getTotalNumStoppedPerTick(); 
 } 
  
 public int getNumPassedByPrivateVehicle () { 
  return PrivateVehicle.getTotalNumPassedBy();  
 } 
 
 public int getNumPassedByWithDSRCPrivateVehicle () { 
  return PrivateVehicle.getTotalNumPassedByWithDSRC();  
 } 
 
 public int getNumPassedByWithoutDSRCPrivateVehicle () { 
  return PrivateVehicle.getTotalNumPassedByWithoutDSRC();  
 } 
  
 public int getNumOfVehicleStopped() { 
  return  PrivateVehicle.getNumOfVehicleStopped(); 
 } 
  
 public int getNumOfDSRCVehicleStopped() { 
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  return PrivateVehicle.getNumOfDSRCVehicleStopped(); 
 } 
 public int getNumOfNonDSRCVehicleStopped() { 
  return PrivateVehicle.getNumOfNonDSRCVehicleStopped(); 
 } 
 
 public int getNumOfVehiclePassedBy() { 
  return PrivateVehicle.getNumOfVehiclePassedBy(); 
 } 
  
 public int getNumOfDSRCVehiclePassedBy() { 
  return PrivateVehicle.getNumOfDSRCVehiclePassedBy(); 
 } 
 public int getNumOfNonDSRCVehiclePassedBy() { 
  return PrivateVehicle.getNumOfNonDSRCVehiclePassedBy(); 
 } 
 
 public int getNumOfVehicleRequested() { 
  return lstDSRCVehicleRequested.size() + lstNonDSRCVehicleRequested.size(); 
 } 
  
 public int getNumOfDSRCVehicleRequested() { 
  return lstDSRCVehicleRequested.size(); 
 } 
 
 public int getNumOfNonDSRCVehicleRequested() { 
  return lstNonDSRCVehicleRequested.size(); 
 } 
 
 public void addRequestedVehicleToTheList(PrivateVehicle pv) { 
  String vehicleName = pv.getName(); 
  if (pv.isBUseComm()) { 
   if (!lstDSRCVehicleRequested.contains(vehicleName)) 
    lstDSRCVehicleRequested.add(vehicleName); 
  } else { 
   if (!lstNonDSRCVehicleRequested.contains(vehicleName)) 
    lstNonDSRCVehicleRequested.add(vehicleName); 
  } 
 } 
 
 public boolean isBroken() { 
  return bBroken; 
 } 
 
 public void setBroken(boolean broken) { 
  this.bBroken = broken; 
 } 
 
 public int getEndTick() { 
  return endTick; 
 } 
 
 public void setEndTick(int endTick) { 
  this.endTick = endTick; 
 } 
} 
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D.3.3 BrokenVehicle.java 

 

public class BrokenVehicle extends Vehicle { 
  
 private int numRequest; 
 private int numRequestOut; 
 private boolean bBroken; 
 private int endTick; 
 private ArrayList<String> lstDSRCVehicleRequested; 
 private ArrayList<String> lstNonDSRCVehicleRequested; 
 
 public BrokenVehicle(Infra veinInfra, String vehicleType, boolean bUseOnt) { 
  super(veinInfra, vehicleType, bUseOnt); 
  numRequest = 0; 
  numRequestOut = 0; 
  this.lstDSRCVehicleRequested = null; 
  this.lstNonDSRCVehicleRequested = null; 
  this.lstDSRCVehicleRequested = new ArrayList<String>(); 
  this.lstNonDSRCVehicleRequested = new ArrayList<String>(); 
 } 
  
 public String getEVOutputter() { 
  return this.getName()+ ","  
   + this.getSpeed() + "," 
   + this.infra.formatStr( this.getCurrentCoordinateX()) + ","  
   + this.infra.formatStr( this.getCurrentCoordinateY()) + ","  
   + this.getCurrentRoadFID() + ","  
   + this.getNextJunctionID() + ","  
   + this.infra.formatStr( this.getRemainDistanceToNextJunction()) + ","  
   + this.getNumRequest() + ","  
   + this.getNumRequestOut() + "," 
   + this.getNumStoppedPrivateVehiclePerTick() + "," 
   + this.getDTravelTime()+ "," 
   + this.isArrived()+ "," 
   + GlobalVariables.iRondomSeed+ "," 
   + GlobalVariables.iPercentUsingComm + "," 
   + GlobalVariables.numVehicle + "," 
   + GlobalVariables.numEmergencyVehicle + "," 
   + GlobalVariables.commrange + "," 
   + this.getNumOfVehicleRequested() + ","  
   + this.getNumOfDSRCVehicleRequested() + ","  
   + this.getNumOfNonDSRCVehicleRequested() + "," 
   + this.getNumPassedByPrivateVehicle() + ","  
   + this.getNumPassedByWithDSRCPrivateVehicle() + "," 
   + this.getNumPassedByWithoutDSRCPrivateVehicle() + "," 
   + this.getNumOfVehicleStopped() + "," 
   + this.getNumOfDSRCVehicleStopped() + "," 
   + this.getNumOfNonDSRCVehicleStopped() + "," 
   + this.getNumOfVehiclePassedBy() + "," 
   + this.getNumOfDSRCVehiclePassedBy() + "," 
   + this.getNumOfNonDSRCVehiclePassedBy() + "," 
   + PrivateVehicle.totalNumStopped + "," 
   + PrivateVehicle.totalStoppedInterval  + "," 
   + PrivateVehicle.totalCountInfluence + "," 
   + this.getCurrentCoorinatesString() + "," 
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   + "||," + this.infra.getNumberOfPrivateVehicles(1, true)  + "," //about 32% * ont% 
   + this.infra.getNumberOfPrivateVehicles(1, false)  + "," //about 32% 
   + this.infra.getNumberOfPrivateVehicles(0, true) + "," // ont % 
   + GlobalVariables.numVehicle +", " 
   +  GlobalVariables.totalNetworkLength + "," 
   + "ori," + this.getOriginJunc().getCoordinate().x + "," 

+ this.getOriginJunc().getCoordinate().y + "," 
   + "des," + this.getDestJunc().getCoordinate().x + ","  

+ this.getDestJunc().getCoordinate().y;   
 } 
  
 public String getEVOutputter2() { 
  return this.getName()+ ","  
   + this.getSpeed() + "," 
   + this.getDTravelTime()+ "," 
   + this.isArrived()+ "," 
   + GlobalVariables.iRondomSeed+ "," 
   + GlobalVariables.iPercentUsingComm + "," 
   + GlobalVariables.numVehicle + "," 
   + GlobalVariables.commrange + "," 
   + this.getNumOfVehicleRequested() + ","  
   + this.getNumOfDSRCVehicleRequested() + ","  
   + this.getNumOfNonDSRCVehicleRequested() + "," 
   + this.getNumOfVehicleStopped() + "," 
   + this.getNumOfDSRCVehicleStopped() + "," 
   + this.getNumOfNonDSRCVehicleStopped();   
 } 
  
 @Override 
 public void step() { 
      try { 
  GlobalVariables.GarbageCollector("!!" + this.toString(), true); 
  if (this.veinOnt.getCurrentRoadEdge() == null) 
   this.updateRelativeLocation(); 
  if (!this.isStopped() || !this.isArrived()) { 
   this.request(); 
  } 
  if (this.dTravelTime >= this.endTick) { 
   RunEnvironment.getInstance().endRun(); 
  } 
  if (!this.isArrived()) {  
   if (this.route.atDestination()) { 
    this.setArrived(true); 
    this.route = null; 
    this.setStopped(true); 
    RunEnvironment.getInstance().endRun(); 
   } 
  } 
  if (this.route != null && !this.isStopped()) { 
    
   if (!this.bBroken) this.route.travelA(true); 
   this.addTravelTime(1.0); 
   this.updateRelativeLocation(); 
  } 
      } catch (Exception e) { 
  e.printStackTrace(); 
      }  
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 } 
  
 public void request() { 
  requestOfBrokenCar(GlobalVariables.defaultBreakdownResponseRange,  
     GlobalVariables.extendedBreakdownResponseRange); 
 } 
  
 public void requestOfBrokenCar(double defaultBreakdownResponseRange,  

double extendedBreakdownResponseRange) { 
  this.numRequest = 0; 
  this.numRequestOut = 0; 
  PrivateVehicle.resetTotalNumStoppedPerTick(); 
  double a_x, a_y, centre_x, centre_y; 
  centre_x = this.getCurrentCoordinateX();  
  centre_y = this.getCurrentCoordinateY(); 
  Envelope env = (Envelope)this.getCurrentGeometry().buffer( 

extendedBreakdownResponseRange * 1.5).getEnvelopeInternal(); 
  Iterable<PrivateVehicle> vehicleIt = this.getObjects(env, PrivateVehicle.class); 
  for (PrivateVehicle v:vehicleIt) { 
   if (v.getPreferedLane() != 1) continue; 
   if (PrivateVehicle.inTheVehiclePassedByList(v)) { 
    continue;  
   } 
   a_x = v.getCurrentCoordinateX();  
   a_y = v.getCurrentCoordinateY(); 
   double distance = getDistance(a_x, a_y, centre_x, centre_y);  
   if (v.veinOnt.getCurrentRoadEdge() == null) v.updateRelativeLocation(); 
   if (!v.isBUseComm() && distance <= defaultBreakdownResponseRange) {
     
    if (v.veinOnt.isInTheSituationOfVehicleStationary(this.veinOnt,  
       defaultBreakdownResponseRange)) { 
     v.getRequest(this.getVeinOnt(), this.getCurrentCoordinate());  
     this.numRequest ++;     
     addRequestedVehicleToTheList(v); 
    } 
   } else if (v.isBUseComm() &&  

distance <= extendedBreakdownResponseRange) {   
    if (v.veinOnt.isInTheSituationOfVehicleStationary( 

this.veinOnt, extendedBreakdownResponseRange)) { 
     v.getRequest(this.getVeinOnt(), this.getCurrentCoordinate());  
     this.numRequest ++;     
     addRequestedVehicleToTheList(v); 
    } 
   } 
  } 
  System.out.println(this.getName() +" => Requested  "  
   + this.getNumOfVehicleRequested() + ","  
   + this.getNumOfDSRCVehicleRequested() + ","  
    + this.getNumOfNonDSRCVehicleRequested() + "||PassBy " 
    + this.getNumPassedByPrivateVehicle() + ","  
   + this.getNumPassedByWithDSRCPrivateVehicle() + "," 
   + this.getNumPassedByWithoutDSRCPrivateVehicle() + "||Stopped " 
   + this.getNumOfVehicleStopped() + "," 
   + this.getNumOfDSRCVehicleStopped() + "," 
   + this.getNumOfNonDSRCVehicleStopped() + "||PassBy2 " 
   + this.getNumOfVehiclePassedBy() + "," 
   + this.getNumOfDSRCVehiclePassedBy() + "," 
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   + this.getNumOfNonDSRCVehiclePassedBy() + "|| Stopped2 "  
   + PrivateVehicle.totalNumStopped + "," 
   + PrivateVehicle.totalStoppedInterval  + "," 
   + PrivateVehicle.totalCountInfluence + " || Breakdown " 
   + this.getCurrentCoorinatesString() 
   ); 
 } 
   
 public int getNumRequest() { 
  return numRequest; 
 } 
  
 public int getNumRequestOut() { 
  return numRequestOut; 
 } 
  
 public int getNumStoppedPrivateVehiclePerTick() { 
  return PrivateVehicle.getTotalNumStoppedPerTick(); 
 } 
  
 public int getNumPassedByPrivateVehicle () { 
  return PrivateVehicle.getTotalNumPassedBy();  
 } 
 
 public int getNumPassedByWithDSRCPrivateVehicle () { 
  return PrivateVehicle.getTotalNumPassedByWithDSRC();  
 } 
 
 public int getNumPassedByWithoutDSRCPrivateVehicle () { 
  return PrivateVehicle.getTotalNumPassedByWithoutDSRC();  
 } 
  
 public int getNumOfVehicleStopped() { 
  return  PrivateVehicle.getNumOfVehicleStopped(); 
 } 
  
 public int getNumOfDSRCVehicleStopped() { 
  return PrivateVehicle.getNumOfDSRCVehicleStopped(); 
 } 
 public int getNumOfNonDSRCVehicleStopped() { 
  return PrivateVehicle.getNumOfNonDSRCVehicleStopped(); 
 } 
 
 public int getNumOfVehiclePassedBy() { 
  return PrivateVehicle.getNumOfVehiclePassedBy(); 
 } 
  
 public int getNumOfDSRCVehiclePassedBy() { 
  return PrivateVehicle.getNumOfDSRCVehiclePassedBy(); 
 } 
 public int getNumOfNonDSRCVehiclePassedBy() { 
  return PrivateVehicle.getNumOfNonDSRCVehiclePassedBy(); 
 } 
 
 public int getNumOfVehicleRequested() { 
  return lstDSRCVehicleRequested.size() + lstNonDSRCVehicleRequested.size(); 
 } 
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 public int getNumOfDSRCVehicleRequested() { 
  return lstDSRCVehicleRequested.size(); 
 } 
 public int getNumOfNonDSRCVehicleRequested() { 
  return lstNonDSRCVehicleRequested.size(); 
 } 
 
 public void addRequestedVehicleToTheList(PrivateVehicle pv) { 
  String vehicleName = pv.getName(); 
  if (pv.isBUseComm()) { 
   if (!lstDSRCVehicleRequested.contains(vehicleName)) 
    lstDSRCVehicleRequested.add(vehicleName); 
  } else { 
   if (!lstNonDSRCVehicleRequested.contains(vehicleName)) 
    lstNonDSRCVehicleRequested.add(vehicleName); 
  } 
 } 
 
 public boolean isBroken() { 
  return bBroken; 
 } 
 
 public void setBroken(boolean broken) { 
  this.bBroken = broken; 
 } 
 
 public int getEndTick() { 
  return endTick; 
 } 
 
 public void setEndTick(int endTick) { 
  this.endTick = endTick; 
 } 
} 
 

D.3.4 PrivateVehicle.java 

 

public class PrivateVehicle extends Vehicle { 
 
 private static int totalNumStoppedPerTick = 0; 
 protected static int totalNumStopped = 0; 
 protected static double totalCountInfluence = 0; 
 protected static double totalStoppedInterval = 0.0; 
 private static ArrayList<String> lstDSRCVehiclePassedBy; 
 private static ArrayList<String> lstNonDSRCVehiclePassedBy; 
 private static ArrayList<String> lstDSRCVehicleStopped;  
 private static ArrayList<String> lstNonDSRCVehicleStopped; 
 private static int totalNumPassedBy = 0; 
 private static int totalNumPassedByWithDSRC = 0; 
 private static int totalNumPassedByWithoutDSRC = 0; 
 private int numRerouted; 
 private boolean bUseComm; 
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 private boolean bGetRequested; 
 private boolean bIgnoreTheSituationSignOn; 
 double refDistance1, refDistance2, refDistance3; 
 CommunicationMessage emergencyVehicleVeinOnt; 
 Coordinate emergencyVehicleCoord; 
  
 public PrivateVehicle(Infra veinInfra, String vehicleType, boolean bUseComm) { 
  super(veinInfra, vehicleType, bUseComm); 
  this.numRerouted = 0; 
  this.bUseComm = bUseComm; 
  this.bIgnoreTheSituationSignOn = false;   
  this.emergencyVehicleVeinOnt = null; 
  this.refDistance1 = 0; 
  this.refDistance2 = 0; 
  this.refDistance3 = 0; 
  this.emergencyVehicleCoord = null; 
 } 
  
 public static void resetStaticVariables() { 
  lstDSRCVehiclePassedBy = null; 
  lstNonDSRCVehiclePassedBy = null; 
  lstDSRCVehicleStopped = null; 
  lstNonDSRCVehicleStopped = null; 
  lstDSRCVehiclePassedBy = new ArrayList<String>(); 
  lstNonDSRCVehiclePassedBy = new ArrayList<String>(); 
  lstDSRCVehicleStopped = new ArrayList<String>(); 
  lstNonDSRCVehicleStopped = new ArrayList<String>(); 
  totalNumStoppedPerTick = 0; 
  totalNumStopped = 0; 
  totalCountInfluence = 0.0; 
  totalStoppedInterval = 0.0; 
  totalNumPassedBy = 0; 
  totalNumPassedByWithDSRC = 0; 
  totalNumPassedByWithoutDSRC = 0; 
 } 
  
 public int getNumRerouted() { 
  return numRerouted; 
 } 
  
 public static int getTotalNumStoppedPerTick() { 
  return totalNumStoppedPerTick; 
 } 
 
 public static void resetTotalNumStoppedPerTick() { 
  totalNumStoppedPerTick = 0; 
 } 
 
 public static int getTotalNumPassedBy() { 
  return totalNumPassedBy; 
 } 
  
 public static int getTotalNumPassedByWithDSRC() { 
  return totalNumPassedByWithDSRC; 
 } 
  
 public static int getTotalNumPassedByWithoutDSRC() { 
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  return totalNumPassedByWithoutDSRC; 
 } 
  
 public static void addTotalNumPassedBy(boolean bUseOnt) { 
  if (bUseOnt) totalNumPassedByWithDSRC ++; 
  else totalNumPassedByWithoutDSRC ++; 
  totalNumPassedBy ++; 
 } 
 
 public boolean isBIgnoreTheSituationSignOn() { 
  return bIgnoreTheSituationSignOn; 
 } 
 
 public void setBIgnoreTheSituation(boolean ignoreTheSituation) { 
  bIgnoreTheSituationSignOn = ignoreTheSituation; 
 } 
  
 public boolean isBUseComm() { 
  return bUseComm; 
 } 
  
 public String getOutputter() { 
  return this.getName()+ ","  
    + this.getSpeed() + "," 
    + this.infra.formatStr( this.getCurrentCoordinateX()) + ","  
    + this.infra.formatStr( this.getCurrentCoordinateY()) + ","  
    + this.getCurrentRoadFID() + ","  
    + this.getNextJunctionID() + ","  
    + this.infra.formatStr(this.getRemainDistanceToNextJunction()) + ","  
   + this.bUseComm + ","  
   + this.getDCountInfluence() + "," 
   + this.dStopInterval + ","  
   + bGetRequested + ","  
   + this.isStopped() + ","  
   + this.getDTravelTime(); // + ","     + "x"; 
 } 
 

@Override 
public void step() { 

     try { 
 if (this.route != null) { 
  if (this.route.atDestination()) { 
   this.route = null; 
   this.resetPrivateVehicle(); 
  } 
 } 
 if (this.veinOnt.getCurrentRoadEdge() == null) 
  this.updateRelativeLocation(); 
 if (this.bRequested) { 
  bGetRequested = true; 
  if (this.answerback(this.emergencyVehicleVeinOnt,  
       this.emergencyVehicleCoord)) { 
   this.addStopInterval(1.0); 

    totalNumStoppedPerTick++; 
    totalNumStopped++; 
    addStoppedVehicleToTheList(this); 
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  } 
  this.emergencyVehicleVeinOnt = null; 
  this.emergencyVehicleCoord = null; 
  this.bRequested = false; 
 } else if (this.isStopped()) { 
  bGetRequested = false; 
  this.setStopped(false); 

   this.resetStopVariables(); 
  } else bGetRequested = false;  
   if (this.isStopped()) {} 
   else { 
    this.changeVelocityIDM(0.1); 
    this.route.travelA(true);  
    this.addTravelTime(1.0); 
    this.updateRelativeLocation(); 

 } 
    } catch (Exception e) { 
  e.printStackTrace(); 
    } 

}   
 
public void initialMove() { 

    try { 
 if (this.route != null) { 
  if (this.route.atDestination()) { 
   this.route = null; 
   this.resetPrivateVehicle(); 
  } 
 } 

  if (this.veinOnt.getCurrentRoadEdge() == null) 
   this.route.travelA(true); // This will move the vehicle towards their destination 
    } catch (Exception e) { 
   e.printStackTrace(); 
    } 

}   
 
 public void resetStopVariables () { 
  this.bIgnoreTheSituationSignOn = false; 
  refDistance1 = 0.0; 
  refDistance2 = 0.0; 
  refDistance3 = 0.0; 
 } 
  
 public void getRequest(CommunicationMessage emergencyVehicleVeinOnt,  

Coordinate emergencyVehicleCoord ) { 
  this.emergencyVehicleVeinOnt = emergencyVehicleVeinOnt; 
  this.emergencyVehicleCoord = emergencyVehicleCoord; 
  this.bRequested = true; 
 } 
  
 public boolean answerback(CommunicationMessage emergencyVehicleVeinOnt,  

Coordinate emergencyVehicleCoord) { 
  if (GlobalVariables.iCase < 4)  

  return answerback2Ambulance(emergencyVehicleVeinOnt, emergencyVehicleCoord); 
  else if (GlobalVariables.iCase == 4)  

  return answerback2Breakdown(emergencyVehicleVeinOnt, emergencyVehicleCoord); 
  return true; 
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 } 
  
 public boolean answerback2Breakdown(CommunicationMessage breakdownOnt,  

Coordinate breakdownVehicleCoord) { 
  boolean flag = false; 
  if (this.getPreferedLane() != 1) return flag; 
  double remainingDistanceToTheBreakdown  

= this.veinOnt.getRemainingDistanceToBreakdown(breakdownOnt); 
  double remainingTimeToTheBreakdown  

= this.veinOnt.getRemainingTimeToBreakdown(breakdownOnt); 
  double remainingTimeToTheBreakdownV0 = remainingDistanceToTheBreakdown  

   / (this.v0 * GlobalVariables.ConversionCoefficient4MeterPerSec); 
  if (this.speed > 10 && remainingDistanceToTheBreakdown > this.v0maxLane1  

  * this.conversionMph2Ms * 2.0) { //60mph * 2sec 
   if(this.fnIsSafeToOverTakeTheBreakdown(4.0)) { 
    this.moveOverToTheRightLane(); 
    addTotalNumPassedBy(this.bUseComm); 
    addPassedByVehicleToTheList(this); 
   } 
  } else { 
   this.bSuddenDeceleration = true; 
   PrivateVehicle vlist[]; 
   Double s = -100.0; 
   try { 
    vlist = this.fnSearchFrontAndBehindVehicles( 

GlobalVariables.searchRange4IDM, this.getPreferedLane(), false); 
   } catch (Exception e) { 
    vlist = null; 
   } 
    
   if(vlist[0]!=null) { 
    s = this.veinOnt.getRemainingDistanceToTheVehicleAhead( 

vlist[0].veinOnt); //m 
   } 
   if (s > 0 && s < remainingDistanceToTheBreakdown) { 
    this.decelerationIDM (this.speed, s, 0.1); 
    if (s < Vehicle.vlength/2.0) this.decelerate();  
   } else { 
    this.decelerationIDM (this.speed,  
       remainingDistanceToTheBreakdown, 0.1); 
    if (remainingDistanceToTheBreakdown < 3*Vehicle.vlength)  
          this.decelerate(); 
   } 
    if(s < 0 && this.fnIsSafeToOverTakeTheBreakdown(2.0 + 4.0)) { 
      this.moveOverToTheRightLane(); 
    } else { 
      if ((s < 0 || (s > Vehicle.vlength/2.0)) && this.speed < 10  
     && remainingDistanceToTheBreakdown >  3*Vehicle.vlength)  
          this.speed = 10; 
      this.addInfluenceTime(1.0); 
      flag = true; 
    } 
  } 
  return flag; 
 } 
 
 public boolean answerback2Ambulance(CommunicationMessage emergencyVehicleVeinOnt,  
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       Coordinate emergencyVehicleCoord) { 
  boolean flag = false; 
  if (this.bUseComm) { 
   if (emergencyVehicleVeinOnt == null) return false; 
   if (this.getVeinOnt().isInTheSituationOfEmergencyVehicle( 

emergencyVehicleVeinOnt)) { 
    this.bIgnoreTheSituationSignOn = false; 
    if (this.isStopped()) { 
    } else { 
     this.setStopped(true); 
     this.addInfluenceTime(1.0); 
    } 
    flag = true; 
   } else { 
    this.bIgnoreTheSituationSignOn = true; 
    if (this.isStopped()) { 
     this.setStopped(false); 
     addTotalNumPassedBy(this.bUseComm); 
     addPassedByVehicleToTheList(this); 
    }  
   } 
  } else { 
   if (this.emergencyVehicleCoord == null) return false; 
   Coordinate thisCoord  

= infra.getRoadGeography().getGeometry(this).getCoordinate(); 
   if (this.getVeinOnt().IsInTheAmbulanceSituationWithSirenRange2( 

emergencyVehicleVeinOnt, emergencyVehicleCoord, thisCoord)) { 
    if (this.isStopped()) {}  
    else { 
     this.setStopped(true); 
     this.addInfluenceTime(1.0); 
    } 
    flag = true; 
   } else { 
    if (this.isStopped()) { 
     this.setStopped(false); 
     addTotalNumPassedBy(this.bUseComm); 
     addPassedByVehicleToTheList(this); 
    } 
   } 
  } 
  return flag; 
 } 
 
 public int changeVelocityIDM(double unitsec) { 
  try { 
   if(this.bSuddenDeceleration) return 0; 
   if (this.route.getRouteCoords().size() < 2) return 1; 
   if (this.route.atDestination()) return 2; 
   double v0 = this.v0 * conversionMph2Ms; //m/s 
   double v = this.getSpeed() * conversionMph2Ms; //m/s  
   double dv; 
   double s = 0; //m 
   double sFront, sBehind; 
   double sstar; 
   double s1; 
   double va; 
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   double vafree; 
   double vaint; 
   PrivateVehicle vlist[]; 
   try { 
    vlist = this.fnSearchFrontAndBehindVehicles( 

   GlobalVariables.searchRange4IDM, this.getPreferedLane(), false); 
   } catch (Exception e) { 
    vlist = null; 
    return 3; 
   } 
   if(vlist[1]!=null) { 
    sBehind = vlist[1].veinOnt 

     .getRemainingDistanceToTheVehicleAhead(this.veinOnt); //m 
    if(sBehind > 0 && sBehind < (this.T + 0.5) * v0) { 
     if (this.getPreferedLane() == 1  

  && v0 < this.v0maxLane1 * conversionMph2Ms)  
     v0 = this.v0maxLane1 * conversionMph2Ms;//(v0 +  
  this.v0maxLane1 * conversionMph2Ms) / 2.0; 

     else if (this.getPreferedLane() == 2  
  && v0 < this.v0maxLane2 * conversionMph2Ms)  

     v0 = this.v0maxLane2 * conversionMph2Ms; 
     else if (this.getPreferedLane() == 3  

&& v0 < this.v0maxLane3 * conversionMph2Ms)  
     v0 = this.v0maxLane3 * conversionMph2Ms; 

    } 
   }    
   vafree = this.a * (1.0 - Math.pow(v/v0, this.delta)) ; 
   if(vlist[0]==null) va = vafree; 
   else { 
    s = this.veinOnt 

   .getRemainingDistanceToTheVehicleAhead(vlist[0].veinOnt); //m 
    dv = v - vlist[0].veinOnt.getSpeed()*conversionMph2Ms; 
    s1 = v*this.T + v*dv / (2.0*Math.sqrt(this.a + this.b)); 
    if (s1 > 0) sstar = this.S0 + s1; 
    else sstar = this.S0; 
    vaint = -1.0 * this.a * Math.pow(sstar/s,2); 
    va = vafree + vaint * unitsec ; 
   } 
   v = (v + va) * conversionMs2Mph; // va 1m/s=3.6kmh, kmh to mph 
   if (v < 0) v = 0; 
   this.setSpeed(v); 
   if(vlist[0]!=null &&  s < this.speed *  
    GlobalVariables.ConversionCoefficient4MeterPerSec * this.T{ 
    this.decelerate(1); 
   } 
   vlist = null; 
   return (int) v; 
    
   } catch (Exception e) { 
    e.printStackTrace(); 
   } 
   return 5; 
 } 
  
 public PrivateVehicle[] fnSearchFrontAndBehindVehicles(double searchDistanceRange, int lane,  
          boolean bStr) {   
  PrivateVehicle vlist[] = new PrivateVehicle[2]; 
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  vlist[0] = null; 
  vlist[1] = null; 
  try { 
  double relativeDistance; 
  double absoluteFrontSearchDistance; 
  double absoluteBehindSearchDistance; 
  double frontDist; 
  double behindDist; 
  double a_x, a_y, centre_x, centre_y; 
  centre_x = this.getCurrentCoordinateX();  
  centre_y = this.getCurrentCoordinateY(); 
  Envelope env = (Envelope)this.getCurrentGeometry().buffer( 

searchDistanceRange * 1.5).getEnvelopeInternal(); 
  Iterable<PrivateVehicle> vehicleIt = this.getObjects(env, PrivateVehicle.class); 
  absoluteFrontSearchDistance = searchDistanceRange;  
  absoluteBehindSearchDistance = searchDistanceRange;  
  double distance; 
  int i=0; 
  for (PrivateVehicle v:vehicleIt) { 
   i++; 
   if (this.getName().compareTo(v.getName()) == 0) continue; 
   if (v.getPreferedLane() != lane) continue; 
    a_x = v.getCurrentCoordinateX();  
   a_y = v.getCurrentCoordinateY(); 
   distance = getDistance(a_x, a_y, centre_x, centre_y);  
   if (v.veinOnt.getCurrentRoadEdge() == null) v.updateRelativeLocation(); 
   relativeDistance  

     = v.veinOnt.getRemainingDistanceToTheVehicleAhead(this.veinOnt); 
   if (relativeDistance > 0.0) { 
    if (relativeDistance < absoluteBehindSearchDistance) { 
     vlist[1] = v; 
     absoluteBehindSearchDistance = relativeDistance; 
     continue; 
    } 
   } else { 
    relativeDistance = this.veinOnt 

.getRemainingDistanceToTheVehicleAhead(v.veinOnt); 
    if (relativeDistance > 0.0) { 
     if (relativeDistance < absoluteFrontSearchDistance) { 
          vlist[0] = v; 
          absoluteFrontSearchDistance = relativeDistance; 

       continue; 
     } 
    }   
   } 
  } 
  if (vlist[0]!=null && this.veinOnt.getRemainingDistanceToTheVehicleAhead( 

     vlist[0].veinOnt) > 0 && this.veinOnt.getRemainingDistanceToTheVehicleAhead( 
     vlist[0].veinOnt) <= Vehicle.vlength) { 

   this.decelerate(1); 
  } 
  return vlist; 
  } catch (Exception e) { 
   e.printStackTrace(); 
  } 
  return vlist; 
 } 
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 public boolean fnIsSafeToOverTakeTheBreakdown(double safeTimeRange) {  //four seconds 
  boolean flag; 
  double aRelativeDistance = -1; 
  double absoluteSafeDistance = -1; 
  double aRelativeDistance4frontVehicle = -1; 
  double absoluteSafeDistance4frontVehicle = -1; 
  double myRelativeDistance; 
  double myRelativeDistance4frontVehicle; 
   
  flag = true; 
  myRelativeDistance = 3000; 
  myRelativeDistance4frontVehicle = 3000; 
  double a_x, a_y, centre_x, centre_y; 
  centre_x = this.getCurrentCoordinateX();  
  centre_y = this.getCurrentCoordinateY(); 
  Envelope env = (Envelope)this.getCurrentGeometry().buffer( 

     GlobalVariables.defaultBreakdownResponseRange * 1.5).getEnvelopeInternal(); 
  Iterable<PrivateVehicle> vehicleIt = this.getObjects(env, PrivateVehicle.class); 
     
  for (PrivateVehicle v:vehicleIt) { 
   if (v.getPreferedLane() != 2) continue; 
    a_x = v.getCurrentCoordinateX();  
   a_y = v.getCurrentCoordinateY(); 
   double distance = getDistance(a_x, a_y, centre_x, centre_y);  
   if (v.veinOnt.getCurrentRoadEdge() == null) v.updateRelativeLocation(); 
   absoluteSafeDistance4frontVehicle = Vehicle.T  * v.speed *  
    GlobalVariables.ConversionCoefficient4MeterPerSec + this.vlength; 
   aRelativeDistance4frontVehicle  

= this.veinOnt.getRemainingDistanceToFrontVehicle(v.veinOnt); 
   if (aRelativeDistance4frontVehicle > 0.0 &&  

     aRelativeDistance4frontVehicle < myRelativeDistance4frontVehicle &&  
     aRelativeDistance4frontVehicle <  absoluteSafeDistance4frontVehicle) { 

    myRelativeDistance4frontVehicle = aRelativeDistance4frontVehicle; 
    flag = false; 
    return flag; 
   } else if (Math.abs(aRelativeDistance4frontVehicle) < this.vlength )  { 
    flag = false; 
    return flag; 
   } 
   absoluteSafeDistance = safeTimeRange * v.speed  

* GlobalVariables.ConversionCoefficient4MeterPerSec - this.vlength; 
   aRelativeDistance  

     = this.veinOnt.getRemainingDistanceToTheVehicleBehind(v.veinOnt); 
   if (aRelativeDistance > 0.0 && aRelativeDistance < myRelativeDistance  

&& aRelativeDistance < absoluteSafeDistance ) { 
    myRelativeDistance = aRelativeDistance; 
    flag = false; 
    return flag; 
   } else if (Math.abs(aRelativeDistance) < this.vlength )  { 
    flag = false; 
    return flag; 
   } 
  } 
  return flag; 
 } 
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 public static int getNumOfVehiclePassedBy() { 
  return lstDSRCVehiclePassedBy.size() + lstNonDSRCVehiclePassedBy.size(); 
 } 
  
 public static int getNumOfDSRCVehiclePassedBy() { 
  return lstDSRCVehiclePassedBy.size(); 
 } 
 public static int getNumOfNonDSRCVehiclePassedBy() { 
  return lstNonDSRCVehiclePassedBy.size(); 
 } 
  
 public static void addPassedByVehicleToTheList(PrivateVehicle pv) { 
  String vehicleName = pv.getName(); 
  if (pv.isBUseComm()) { 
   if (!lstDSRCVehiclePassedBy.contains(vehicleName)) 
    lstDSRCVehiclePassedBy.add(vehicleName); 
  } else { 
   if (!lstNonDSRCVehiclePassedBy.contains(vehicleName)) 
    lstNonDSRCVehiclePassedBy.add(vehicleName); 
  } 
 } 
  
 public static boolean inTheVehiclePassedByList (PrivateVehicle pv) { 
  String vehicleName = pv.getName(); 
  boolean myReturn = false; 
  if (pv.isBUseComm()) { 
   if (lstDSRCVehiclePassedBy.contains(vehicleName)) myReturn = true; 
  } else { 
   if (lstNonDSRCVehiclePassedBy.contains(vehicleName)) myReturn = true; 
  } 
  return myReturn; 
 } 
  
 public static int getNumOfVehicleStopped() { 
  return lstDSRCVehicleStopped.size() + lstNonDSRCVehicleStopped.size(); 
 } 
  
 public static int getNumOfDSRCVehicleStopped() { 
  return lstDSRCVehicleStopped.size(); 
 } 
 public static int getNumOfNonDSRCVehicleStopped() { 
  return lstNonDSRCVehicleStopped.size(); 
 } 
 
 public static void addStoppedVehicleToTheList(PrivateVehicle pv) { 
  String vehicleName = pv.getName(); 
  if (pv.isBUseComm()) { 
   if (!lstDSRCVehicleStopped.contains(vehicleName)) 
    lstDSRCVehicleStopped.add(vehicleName); 
  } else { 
   if (!lstNonDSRCVehicleStopped.contains(vehicleName)) 
    lstNonDSRCVehicleStopped.add(vehicleName); 
  } 
 } 
 
 public void createNewPrivateVehicle () { 
   boolean  bUseOnt = false; 
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   int iUseOnt = this.infra.random(0, 100, false); //true 
   if (iUseOnt < GlobalVariables.iPercentUsingComm) bUseOnt = true; 
   else if (iUseOnt == 100 && GlobalVariables.iPercentUsingComm == 100)  
          bUseOnt = true 
   PrivateVehicle pVehicle = new PrivateVehicle( 

this.infra, "PrivateVehicle", bUseOnt); 
   pVehicle.setId(this.infra.getNextVehicleNumber()); 
   pVehicle.setName("V_" + pVehicle.getId()); 
   double dspeed = GlobalVariables.TRAVEL_SPEED_MPH ; // 3.5; 
   int add = this.infra.random (-30, 30, false); 
   double speed = dspeed  + dspeed * add / 100.0; 
   pVehicle.setSpeed(speed); 
   this.infra.getRoadContext().add(pVehicle); 
   pVehicle.setOriginJuncRandomly(); 
   pVehicle.initializeRoute(pVehicle.getOriginJunc(), null, null); 
   pVehicle.updateRelativeLocation(); 
   ISchedule schedule = RunEnvironment.getInstance().getCurrentSchedule(); 
   ScheduleParameters endParams  

   = ScheduleParameters.createAtEnd(ScheduleParameters.LAST_PRIORITY);  
   schedule.schedule(endParams, this, "end"); 
   ScheduleParameters startParams = ScheduleParameters.createOneTime(1); 
   schedule.schedule(startParams, this, "start"); 
   ScheduleParameters agentParams = ScheduleParameters.createRepeating( 

1, 1, 0); 
   schedule.schedule(agentParams, pVehicle, "step"); 
 } 
  
 public void resetPrivateVehicle () { 
  boolean  bUseOnt = false; 
  int iUseOnt = this.infra.random(0, 100, false); //true 
  if (iUseOnt < GlobalVariables.iPercentUsingComm) bUseOnt = true; 
  else if (iUseOnt == 100 && GlobalVariables.iPercentUsingComm == 100)  

bUseOnt = true; 
  this.bStopped = false; 
  this.bArrived = false; 
  this.dTravelTime = 0.0; 
  this.dCountInfluence = 0.0; 
  this.dStopInterval = 0.0; 
  this.bRequested = false; 
  this.numRerouted = 0; 
  this.bUseComm = bUseOnt; 
  this.bIgnoreTheSituationSignOn = false;   
  this.emergencyVehicleVeinOnt = null; 
  this.refDistance1 = 0; 
  this.refDistance2 = 0; 
  this.refDistance3 = 0; 
  this.emergencyVehicleCoord = null; 
  this.setId(this.infra.getNextVehicleNumber()); 
  this.setName("V_" + this.getId()); 
  int iSpeedRandom = this.infra.random(0, 100, false); 
  this.setSpeedAndPreferedLane(iSpeedRandom); 
  if (GlobalVariables.iCase == 4) { 
   this.setOriginJuncRandomlyFromRandomHelper(4); 
   this.initializeRouteFromRandomHelper(null, null, null, 4); 
  } 
  else { 
   this.initializeRoute(null, null, null); 
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  } 
  this.updateRelativeLocation(); 
 } 
 
 public String toString() { 
  return this.getName() + ", " + this.getDTravelTime() + ", " + this.bUseComm + ": " ; 
 } 
} 
 

D.3.5 Route.java 

 

public class Route { 
  
 private Vehicle vehicle; 
 private Network roadNetwork; 
 private Geography roadGeography; 
 private Infra infra; 
 private Junction originJunc; 
 private Junction destJunc;  
 private List<Coordinate> routeCoords;  
 private ArrayList<RoadEdge> routeEdges; 
 private ArrayList<Junction> routeJunctions; 
 private GeometryFactory geomFac;  
 private double travelPerTurn; 
 private double little_buffer_distance;  
 private double big_buffer_distance;  
 
 public Route(Infra mainInfra, Vehicle vehicle, Junction originJunction, Junction destJunction)  
                 throws Exception {  
  this.vehicle = vehicle; 
  this.originJunc = originJunction; 
  this.destJunc = destJunction; 
  if (this.vehicle==null || this.originJunc==null  || this.destJunc==null) { 
      throw new NullPointerException("Route() error: one of the input parameters is null"); 
  } 
  this.infra = mainInfra; 
  this.roadNetwork = infra.getRoadNetwork(); 
  this.roadGeography = infra.getRoadGeography();  
  this.routeCoords = new ArrayList<Coordinate>(); 
  this.routeEdges = new ArrayList<RoadEdge>(); 
  this.routeJunctions = new ArrayList<Junction>(); 
  this.geomFac = new GeometryFactory(); 
  this.travelPerTurn = GlobalVariables.TRAVEL_PER_TURN; 
  this.little_buffer_distance = 0.0001; 
  this.big_buffer_distance = 100; 
  Coordinate c = this.originJunc.getCoordinate(); 
  Point p = new GeometryFactory().createPoint(c); 
  this.roadGeography.move(vehicle, p); 
  double time;  
  time = System.currentTimeMillis(); 
  routeCoords.addAll(getRouteBetweenJunctions(originJunc, destJunc)); 
  removeDuplicateCoords();  
 } 
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 public void kill() { 
  this.vehicle = null; 
  this.originJunc = null; 
  this.destJunc = null; 
  this.infra = null; 
  this.roadNetwork = null; 
  this.roadGeography = null; 
  this.routeCoords.clear(); 
  this.routeCoords = null; 
  this.routeEdges.clear(); 
  this.routeEdges = null; 
  this.routeJunctions.clear(); 
  this.routeJunctions = null; 
  this.geomFac = null; 
 } 
  
 public boolean travelA(boolean smoothMoving) { 
  if (this.vehicle.getSpeed()==0) return false; 
  this.travelPerTurn = this.vehicle.getSpeed() *  
       GlobalVariables.TRAVEL_PER_TURN/GlobalVariables.TRAVEL_SPEED_MPH; 
  this.travelPerTurn = this.travelPerTurn / 10.0;  //1 tick = 0.1 sec 
  if (atDestination()) { 
   return false; 
  } 
  double time; // used for debugging 
  double distTravelled = 0; // The distance travelled so far 
  Coordinate currentCoord = null; // Current location 
  Coordinate target = null;   // Target coordinate we're heading for (in route list) 
  boolean travelledMaxDist = false; // True when travelled maximum dist this iteration 
  DecimalFormat df = new DecimalFormat("#.########"); 
  int i = 0; 
  while (!travelledMaxDist && !atDestination() ) { 
   i++; 
   currentCoord = roadGeography.getGeometry(this.vehicle).getCoordinate();  
   target = routeCoords.get(0); 
   Geometry currentGeom = geomFac.createPoint(currentCoord); 
   Geometry targetGeom = geomFac.createPoint(target); 
   double distToTarget = DistanceOp.distance(currentGeom, targetGeom); 
   double angle; 
   double distToTravel; 
   double regdist, dx, dy; 
   angle = angle(target, currentCoord)+Math.PI; 
   regdist = this.travelPerTurn / 10.0; 
   if (distTravelled+distToTarget < travelPerTurn) { 
    distTravelled += distToTarget; 
    if (smoothMoving) roadGeography.move(vehicle, targetGeom); 
    routeCoords.remove(0); 
   } // if 
   else { 
    angle = angle(target, currentCoord)+Math.PI; 
    distToTravel = travelPerTurn-distTravelled; 
    dx = distToTravel *  Math.cos(angle); 
    dy = distToTravel *  Math.sin(angle); 
    roadGeography.moveByDisplacement(vehicle, dx, dy); 
    travelledMaxDist = true; 
   } // else  
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  } // while 
  return true; 
 }  
  
 public boolean travelA(int lane, boolean smoothMoving) { 
  double dShift = 0.0; 
  dShift= (double) (lane - 3); 
  this.travelPerTurn = this.vehicle.getSpeed()  

   * GlobalVariables.TRAVEL_PER_TURN/GlobalVariables.TRAVEL_SPEED_MPH; 
  this.travelPerTurn = this.travelPerTurn / 10.0;  ///08 1 tick = 0.1 sec 
  if (atDestination()) { 
   return false; 
  } 
  double time; // used for debugging 
  double distTravelled = 0; // The distance travelled so far 
  Coordinate currentCoord = null; // Current location 
  Coordinate target = null;   // Target coordinate we're heading for (in route list) 
  boolean travelledMaxDist = false; // True when travelled maximum dist this iteration 
  DecimalFormat df = new DecimalFormat("#.########"); 
  int i = 0; 
  while (!travelledMaxDist && !atDestination() ) { 
   i++; 
   currentCoord = roadGeography.getGeometry(this.vehicle).getCoordinate();  
   target = routeCoords.get(0); 
   Geometry currentGeom = geomFac.createPoint(currentCoord); 
   Geometry targetGeom = geomFac.createPoint(target); 
   double distToTarget = DistanceOp.distance(currentGeom, targetGeom); 
   double angle; 
   double distToTravel; 
   double regdist, dx, dy; 
   angle = angle(target, currentCoord)+Math.PI;  
   regdist = this.travelPerTurn / 10.0; 
   if (distTravelled+distToTarget < travelPerTurn) { 
    distTravelled += distToTarget; 
    if (smoothMoving) roadGeography.move(vehicle, targetGeom); 
    routeCoords.remove(0); 
   } // if 
   else {  
    angle = angle(target, currentCoord)+Math.PI; 
    distToTravel = travelPerTurn-distTravelled; 
    dx = distToTravel *  Math.cos(angle); 
    dy = distToTravel *  Math.sin(angle); 
    roadGeography.moveByDisplacement(vehicle, dx, dy); 
    travelledMaxDist = true; 
   } // else  
  } // while 
  return true; 
 }  
 
 private ArrayList<Coordinate> getCoordsAlongRoad(Coordinate currentCoord, 

 Coordinate destinationCoord, RoadElement road, boolean toJunction) throws Exception { 
  double time = System.currentTimeMillis(); 
  Coordinate[] roadCoords = this.roadGeography.getGeometry(road).getCoordinates(); 
  ArrayList<Coordinate> routeCoords = new ArrayList<Coordinate>(); 
  boolean currentCorrect = false, destinationCorrect= false;; 
  for (int i=0; i<roadCoords.length; i++) { 
   if (toJunction && roadCoords[i].equals(destinationCoord)) { 
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    destinationCorrect = true; 
    break; 
   } 
   else if (!toJunction  && roadCoords[i].equals(currentCoord)) { 
    currentCorrect = true; 
    break;     
   } 
  } // for 
  if (!(destinationCorrect || currentCorrect)) { 
   throw new Exception("Route: getCoordsAlongRoad: Error" ); 
  } 
  // Might need to reverse the order of the road coordinates 
  if (toJunction && !roadCoords[roadCoords.length-1].equals(destinationCoord)) { 
   ArrayUtils.reverse(roadCoords);  
  } 
  else if (!toJunction && !roadCoords[0].equals(currentCoord)){ 
   ArrayUtils.reverse(roadCoords);  
  } 
  Point destinationPointGeom = geomFac.createPoint(destinationCoord); 
  Point currentPointGeom = geomFac.createPoint(currentCoord); 
  for (int i=0; i<roadCoords.length-1; i++ ) { 
   Coordinate[] segmentCoords = new Coordinate[]{ 

roadCoords[i], roadCoords[i+1]}; 
   LineString segment = geomFac.createLineString(segmentCoords); 
   Geometry buffer = segment.buffer(little_buffer_distance); 
   if (!toJunction) { 
    routeCoords.add(roadCoords[i]); 
    if (destinationPointGeom.within(buffer)) { 
     routeCoords.add(destinationCoord); 
     return routeCoords; 
    } 
   } 
   else if (toJunction) { 
    // coords which make up the road segment 
    if (currentPointGeom.within(buffer)) { 
     routeCoords.add(destinationCoord); 
     for (int j=i+1; j<roadCoords.length; j++) { 
      routeCoords.add(roadCoords[j]); 
     } 
     return routeCoords;     
    } 
   } 
  } // for 
  // If we get here then the route hasn't been created 
  return null; 
 } 
  
 private ArrayList<Coordinate> getRouteBetweenJunctions ( 

Junction fromJunc, Junction toJunc) { 
  double time = System.currentTimeMillis(); 
  List<RepastEdge<Junction>> shortestPath  

= new MyShortestPath<Junction>(roadNetwork).getPath(fromJunc, toJunc); 
  if (shortestPath == null) return null; 
  boolean bFlip = false; 
  routeJunctions.add(fromJunc); 
  for (RepastEdge<Junction> edge:shortestPath) { 
   MyRepastEdge myEdge = (MyRepastEdge) edge; 
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   String edgeID = myEdge.getEdgeID(); 
   if (edgeID.endsWith("-")) bFlip = true; 
   else bFlip = false; 
   String roadID = edgeID.substring(0, edgeID.length()-1); 
   RoadEdge roadEdge = infra.getRoadEdgeWithID(roadID, bFlip); 
   Junction roadJunction; 
   if (bFlip) roadJunction = roadEdge.getRoadElement().getFromJunc(); 
   else roadJunction = roadEdge.getRoadElement().getToJunc(); 
   routeEdges.add(roadEdge); 
   routeJunctions.add(roadJunction); 
  } 
 
  ArrayList<Coordinate> coordPath = new ArrayList<Coordinate>(); 
  for (RoadEdge roadEdge:routeEdges) { 
   RoadElement road = roadEdge.getRoadElement(); 
   Coordinate[] coords = roadGeography.getGeometry(road).getCoordinates(); 
   if (roadEdge.isFlipped()) { 
    ArrayUtils.reverse(coords); 
   }  
   for (Coordinate coord:coords) { 
    coordPath.add(coord); 
   } // for coord:coords 
  } // for road:roadPath 
  return coordPath; 
 } 
 
 public Coordinate getRandomRoadCoordinate() { 
  RoadElement road  

     = (RoadElement) infra.getRoadContext().getRandomObjects(RoadElement.class, 1); 
  Geometry roadGeom = roadGeography.getGeometry(road); 
  Coordinate[] coords = roadGeom.getCoordinates(); 
  return coords[RandomHelper.nextIntFromTo(0,coords.length-1)]; 
 } 
  
 public boolean atDestination() { 
  double time = System.currentTimeMillis(); 
  if (this.roadGeography.getGeometry(this.vehicle).getCoordinate() 

.equals(this.destJunc.getCoordinate())) { 
   return true; 
  } 
  return false; 
 } 
  
 private boolean onRoad(Coordinate coord) { 
  return infra.onRoad(coord); 
 } 
  
 private void removeDuplicateCoords() { 
  LinkedHashSet<Coordinate> set = new LinkedHashSet<Coordinate>(); 
  for (Coordinate coord:routeCoords) 
   set.add(coord); 
  this.routeCoords = new Vector<Coordinate>(); 
  for (Coordinate coord:set) { 
   this.routeCoords.add(coord); 
  } 
 } 
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 public static double convertToMeters(double dist) { 
  double distInMeters  

= NonSI.NAUTICAL_MILE.getConverterTo(SI.METER).convert(dist*60); 
  return distInMeters; 
 } 
  
 public static double convertFromMeters(double dist) { 
  double distInDegrees  

= SI.METER.getConverterTo(NonSI.NAUTICAL_MILE).convert(dist)/(60.0); 
  return distInDegrees; 
 } 
  
 public static double distanceM (Coordinate c1, Coordinate c2) { 
  return 0; 
 }  
  
 public static double angle(Coordinate p0, Coordinate p1) { 
       double dx = p1.x - p0.x; 
       double dy = p1.y - p0.y; 
       return Math.atan2(dy, dx); 
 } 
 
 public Coordinate getDestination() { 
  return this.destJunc.getCoordinate(); 
 } 
  
 public List<Coordinate> getRouteCoords() { 
  return routeCoords; 
 } 
  
 public double getTotalLenghtOfTheRoute() { 
  int loop = routeCoords.size(); 
  double dist; 
  double totalDist = 0.0; 
  Coordinate c1 = routeCoords.get(0); 
  Coordinate c2; 
  Point p1, p2; 
  p1 = new GeometryFactory().createPoint(c1);   
  for (int i = 1; i < loop; i++) { 
   c2 = routeCoords.get(i); 
   p2 = new GeometryFactory().createPoint(c2);  
   dist = p1.distance(p2); 
   totalDist += dist; 
   p1 = null; 
   p2 = null; 
   c1 = routeCoords.get(i); 
   p1 = new GeometryFactory().createPoint(c1);  
  } 
  p1 = null; 
  p2 = null; 
  return totalDist; 
 } 
  
 public boolean checkRouteCoords() { 
  boolean bCheck = false; 
  Coordinate destCoord1 = this.destJunc.getCoordinate(); 
  Coordinate destCoord2;  // = null; 
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  if (routeCoords.size() > 0) destCoord2 = routeCoords.get(routeCoords.size() - 1); 
  else return false; 
  if (destCoord1.equals(destCoord2))  bCheck = true; 
  else { 
   bCheck = false; 
  } 
  return bCheck; 
 } 
 
 public ArrayList<RoadEdge> getRouteEdges() { 
  return routeEdges; 
 } 
 
 public ArrayList<Junction> getRouteJunctions() { 
  return routeJunctions; 
 } 
} 
 

D.3.6 MyShortestPath.java 

 

public class MyShortestPath<T> implements ProjectionListener<T> { 
 
 private Network<T> net; 
 private boolean calc = true; 
 private T source; 
 private JungEdgeTransformer transformer; 
 private DijkstraShortestPath<T,RepastEdge<T>> dsp; 
 
 public MyShortestPath(Network<T> net){ 
  init(net); 
 } 
  
 @Deprecated 
 public MyShortestPath(Network<T> net, T source) { 
  this.source = source; 
   init(net);  
 } 
  
 private void init(Network<T> net){ 
  this.net = net; 
  transformer = new JungEdgeTransformer<T>(); 
  net.addProjectionListener(this); 
 } 
 
 public List<RepastEdge<T>> getPath(T source, T target){ 
  if (calc){ 
   calcPaths(); 
   calc = false; 
  } 
  return dsp.getPath(source, target);  
 } 
  
 public double getPathLength(T source, T target){ 



 324 

  if (calc){ 
   calcPaths(); 
   calc = false; 
  } 
  Number n = dsp.getDistance(source, target); 
  if (n != null) 
   return n.doubleValue(); 
  else 
   return Double.POSITIVE_INFINITY; 
 } 
  
 @Deprecated 
 public double getPathLength(T target){ 
  return getPathLength(this.source, target); 
 } 
  
 private void calcPaths(){ 
  Graph<T, RepastEdge<T>> graph = null; 
  if (net instanceof JungNetwork) 
   graph = ((JungNetwork)net).getGraph(); 
  else if (net instanceof ContextJungNetwork) 
   graph = ((ContextJungNetwork)net).getGraph(); 
  RepastEdge myEdge = graph.getEdges().iterator().next(); 
  dsp = new DijkstraShortestPath<T,RepastEdge<T>>(graph, transformer); 
 } 
 
 public void projectionEventOccurred(ProjectionEvent<T> evt) { 
  if (evt.getType() != ProjectionEvent.OBJECT_MOVED) { 
   calc = true; 
  } 
 } 
  
 public void finalize() { 
  if (net != null) 
   net.removeProjectionListener(this); 
 }  
} 
 

D.4 Vehicular communication 

D.4.1 CommunicationMessage.java 

 

public class CommunicationMessage { 
 
 private double x; 
 private double y; 
 private String name; 
 private String vehicleType; 
 private double speed; 
 private boolean stopped; 
 private Junction previousJunction; 
 private Junction nextJunction; 
 private ArrayList<Junction> comingJunctions; 
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 private RoadEdge currentRoadEdge; 
 private RoadEdge nextRoadEdge; 
 private double remainingDistanceToNextJunction; 
 private double remainingTimeToNextJunction; 
 private boolean bCloserToEmergencyVehicleInRange; 
 private double prevDistanceToEmergencyVehicleInRange; 
 private double closestDistnaceToEmergencyVehicleInRange; 
 private int preferedLane; 
  
 public CommunicationMessage() { 
  this.previousJunction = null; 
  this.nextJunction = null; 
  this.comingJunctions = new ArrayList<Junction> (); 
  this.currentRoadEdge = null;  
  this.nextRoadEdge = null; 
  this.speed = 0.0; 
  this.remainingDistanceToNextJunction = 0.0; 
  this.remainingTimeToNextJunction = 0.0; 
  this.x = 0.0; 
  this.y = 0.0; 
 } 
  
 public double getX() { 
  return x; 
 } 
 public void setX(double x) { 
  this.x = x; 
 } 
 public double getY() { 
  return y; 
 } 
 public void setY(double y) { 
  this.y = y; 
 } 
 public boolean isAlreadyUpdated(double myx, double myy) { 
  boolean result = false; 
  if (Double.compare(this.x, myx) == 0 && Double.compare(this.y, myy) == 0 )  

result = true; 
  else result =  false; 
  return result; 
 } 
 
 public boolean isStopped() { 
  return stopped; 
 } 
 
 public void setStopped(boolean stopped) { 
  this.stopped = stopped; 
 } 
 
 public String getName() { 
  return name; 
 } 
 
 public void setName(String name) { 
  this.name = name; 
 } 
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 public String getVehicleType() { 
  return vehicleType; 
 } 
 
 public void setVehicleType(String vehicleType) { 
  this.vehicleType = vehicleType; 
 } 
 
 public double getDiffSpeed(double distanceDiff) { 
  if(distanceDiff < 0 && this.stopped) return 0.0; 
  else if (distanceDiff < -20.1168 && !this.stopped) return 0.0; 
  else return speed; 
 } 
  
 public double getSpeed() { 
  return speed; 
 } 
 
 public void setSpeed(double speed) { 
  this.speed = speed; 
 } 
 
 public int getPreferedLane() { 
  return preferedLane; 
 } 
 
 public void setPreferedLane(int preferedLane) { 
  this.preferedLane = preferedLane; 
 } 
 
 public Junction getPreviousJunction() { 
  return previousJunction; 
 } 
 
 public void setPreviousJunction(Junction previousJunction) { 
  this.previousJunction = previousJunction; 
 } 
 
 public Junction getNextJunction() { 
  return nextJunction; 
 } 
 
 public void setNextJunction(Junction nextJunction) { 
  this.nextJunction = nextJunction; 
 } 
 
 public ArrayList<Junction> getComingJunctions() { 
  return comingJunctions; 
 } 
 
 public void setComingJunctions(ArrayList<Junction> comingJunctions) { 
  this.comingJunctions = comingJunctions; 
 } 
 
 public void addComingJunction(Junction comingJunction) { 
  this.comingJunctions.add(comingJunction); 



 327 

 } 
  
 public void clearComingJunctions () { 
  this.comingJunctions.clear(); 
 } 
 
 public RoadEdge getCurrentRoadEdge() { 
  return currentRoadEdge; 
 } 
 
 public void setCurrentRoadEdge(RoadEdge currentRoadEdge) { 
  this.currentRoadEdge = currentRoadEdge; 
 } 
 
 public RoadEdge getNextRoadEdge() { 
  return nextRoadEdge; 
 } 
 
 public void setNextRoadEdge(RoadEdge nextRoadEdge) { 
  this.nextRoadEdge = nextRoadEdge; 
 } 
 
 public double getRemainingDistanceToNextJunction() { 
  return remainingDistanceToNextJunction; 
 } 
 
 public void setRemainingDistanceToNextJunction( 
   double remainingDistanceToNextJunction) { 
  this.remainingDistanceToNextJunction = remainingDistanceToNextJunction; 
 } 
 
 public double getRemainingTimeToNextJunction() { 
  return remainingTimeToNextJunction; 
 } 
 
 public void setRemainingTimeToNextJunction(double remainingTimeToNextJunction) { 
  this.remainingTimeToNextJunction = remainingTimeToNextJunction; 
 } 
  
 public double getRemainingTimeToBreakdown(CommunicationMessage breakdownOnt) { 
  double remainingDistance = this.getRemainingDistanceToBreakdown(breakdownOnt); 
  double remainingTime = remainingDistance / (this.getSpeed()  

* GlobalVariables.ConversionCoefficient4MeterPerSec); 
  return remainingTime; //sec 
 } 
  
 public double getRemainingDistanceToTheVehicleBehind( 

CommunicationMessage behindVehicleOnt) { 
  return behindVehicleOnt.getRemainingDistanceToTheVehicleAhead(this); 
 } 
  
 public double getRemainingDistanceToBreakdown(CommunicationMessage breakdownOnt) { 
  return this.getRemainingDistanceToFrontVehicle(breakdownOnt); 
 } 
  
 public double getRemainingDistanceToTheVehicleAhead( 

CommunicationMessage frontVehicleOnt) { 
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  return this.getRemainingDistanceToFrontVehicle(frontVehicleOnt); 
 } 
  
 public double getRemainingDistanceToFrontVehicle( 

CommunicationMessage frontVehicleOnt) { 
  boolean bOnTheSameRoad = false; 
  boolean bComingToTheRoad = false; 
  double distance = -1.0; 
  if (this.getCurrentRoadEdge().getName().equals( 

frontVehicleOnt.getCurrentRoadEdge().getName())) bOnTheSameRoad = true; 
  if (this.nextRoadEdge != null && this.getNextRoadEdge().getName() 

.equals(frontVehicleOnt.getCurrentRoadEdge().getName()) &&  
this.getNextJunction().getName().equals(frontVehicleOnt 

.getPreviousJunction().getName())) bComingToTheRoad = true; 
  if (bOnTheSameRoad) { 
   distance =  this.getRemainingDistanceToNextJunction()  

- frontVehicleOnt.getRemainingDistanceToNextJunction(); 
  } else if (bComingToTheRoad) { 
   distance = this.getRemainingDistanceToNextJunction()  

+ (frontVehicleOnt.currentRoadEdge.getRoadElement().getShape_Leng()  
- frontVehicleOnt.getRemainingDistanceToNextJunction()); 

  } 
  if (distance > Vehicle.vlength) return distance - Vehicle.vlength; 
  else if (distance > 0 && distance <= Vehicle.vlength) return Vehicle.vlength / 2.0; 
  return distance; 
 } 
  
 public boolean isInTheSituationOfVehicleStationary( 

CommunicationMessage breakdownOnt, double givenDistanceRange) { 
  boolean bCase1, bCase2; 
  bCase1 = false; 
  bCase2 = false; 
  boolean bOnTheSameRoad = false; 
  boolean bComingToTheRoad = false; 
  double distance = givenDistanceRange * 2; 
 try { 
  if (this.getCurrentRoadEdge().equals(breakdownOnt.getCurrentRoadEdge()))  
        bOnTheSameRoad = true; 
  if (this.nextRoadEdge != null &&  

this.getNextRoadEdge().equals(breakdownOnt.getCurrentRoadEdge()) &&  
this.getNextJunction().equals(breakdownOnt.getPreviousJunction()))  

bComingToTheRoad = true; 
  if (bOnTheSameRoad) { 
   distance =  this.getRemainingDistanceToNextJunction()  

- breakdownOnt.getRemainingDistanceToNextJunction(); 
   if (distance > 0 && distance < givenDistanceRange) bCase1 = true; 
  } else if (bComingToTheRoad) { 
   distance = this.getRemainingDistanceToNextJunction()  

+ (breakdownOnt.currentRoadEdge.getRoadElement().getShape_Leng()  
- breakdownOnt.getRemainingDistanceToNextJunction()); 

   if (distance < givenDistanceRange) bCase2 = true; 
  } 
 } catch (Exception e) { 
   
  e.printStackTrace(); 
  return false; 
 } 
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  return bCase1 || bCase2; 
 } 
  
 public boolean updateRelativeLocation(Vehicle thisV) { 
  try { 
   Coordinate currentCoord  

= thisV.infra.getRoadGeography().getGeometry(thisV).getCoordinate(); 
   Point currentPoint = new GeometryFactory().createPoint(currentCoord); 
   double minDist = Double.MAX_VALUE; 
   RoadEdge nearestRoadEdge = null; 
   if (this.getName() == null) { 
    this.setName(thisV.getName()); 
    this.setVehicleType(thisV.getVehicleType()); 
   } 
   this.setX(currentPoint.getX()); 
   this.setY(currentPoint.getY()); 
   this.setSpeed(thisV.speed); 
   this.setPreferedLane(thisV.getPreferedLane()); 
   boolean flag = false; 
   RoadEdge roadEdge = null; 
   RoadElement roadElement = null; 
   double thisDist = minDist; 
   for (int i =0; i < thisV.route.getRouteEdges().size(); i++) { 
    roadEdge = thisV.route.getRouteEdges().get(i); 
    roadElement = roadEdge.getRoadElement(); 
    thisDist = currentPoint.distance(thisV.infra 

.getRoadGeography().getGeometry(roadElement)); 
    if (thisDist < minDist) { 
     minDist = thisDist; 
     nearestRoadEdge = roadEdge; 
    } // if thisDist < minDist 
   } 
   if (nearestRoadEdge == null) 
   this.setCurrentRoadEdge(nearestRoadEdge); 
   int currentIndex = thisV.route.getRouteEdges().indexOf(nearestRoadEdge); 
   if (currentIndex < thisV.route.getRouteEdges().size() - 1)  
        this.setNextRoadEdge(thisV.route.getRouteEdges().get(currentIndex + 1)); 
   else this.setNextRoadEdge(null); 
   if (this.getCurrentRoadEdge() == null) return flag; 
   if (this.getCurrentRoadEdge().isFlipped()) { 
        this.setPreviousJunction(nearestRoadEdge.getRoadElement().toJunc); 
        this.setNextJunction(nearestRoadEdge.getRoadElement().fromJunc); 
   } else { 

     this.setPreviousJunction(nearestRoadEdge.getRoadElement().fromJunc); 
        this.setNextJunction(nearestRoadEdge.getRoadElement().toJunc); 
   } 
   flag = true; 
   Coordinate fromCoord = currentCoord; 
   Coordinate toCoord; 
   double eachDistance, remainDistance = 0, remainTime; 
   for (int i=0; i < thisV.route.getRouteCoords().size(); i++) { 
    if (i > 0) fromCoord = thisV.route.getRouteCoords().get(i-1); 
    toCoord = thisV.route.getRouteCoords().get(i); 
    eachDistance = fromCoord.distance(toCoord); 
    remainDistance += eachDistance; 
    if(toCoord.equals(this.getNextJunction().getCoordinate())) break; 
   } 
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   this.setRemainingDistanceToNextJunction(remainDistance); 
   remainTime = remainDistance / (thisV.getSpeed() * 1609.344 / 3600.0);  
   this.setRemainingTimeToNextJunction(remainTime); 
   return flag; 
  } catch (Exception e) { 
   e.printStackTrace(); 
  } 
  return false; 
 } 
  
 public boolean isInTheSituationOfEmergencyVehicle (CommunicationMessage ambulOnt) { 
  double givenDistanceRange = GlobalVariables.commrange; //200.0; 
  double givenTimeRange = givenDistanceRange  

/ (GlobalVariables.TRAVEL_SPEED_MPH * 1.5 * 1609.344 / 3600.0);  
  double givenTimeDiff = -1.0; 
  double givenDistDiff = givenTimeDiff  

* (GlobalVariables.TRAVEL_SPEED_MPH * 1.5 * 1609.344 / 3600.0); 
  boolean bCase1= false, bCase2 = false, bCase3 = false; 
  if (this.currentRoadEdge == null) return false; 
      try { 
  double distanceDiff = -100.0, timeDiff = -10.0; 
  //case1 on the same road 
  if (this.currentRoadEdge.getName().equals( 

ambulOnt.getCurrentRoadEdge().getName())) { 
   distanceDiff = ambulOnt.getRemainingDistanceToNextJunction()  

- this.getRemainingDistanceToNextJunction();  
   timeDiff = distanceDiff / ((ambulOnt.getSpeed()  

- this.getDiffSpeed(distanceDiff) ) * 1609.344 / 3600.0); 
   if ( (distanceDiff < givenDistanceRange && distanceDiff > givenDistDiff)   ||  
      (timeDiff < givenTimeRange && timeDiff > givenTimeDiff)) { 
    bCase1 = true; 
   } 
  }  
  //case1 on the same road, but opposite lane 
  else if (this.currentRoadEdge.getRoadElementName().equals( 

ambulOnt.getCurrentRoadEdge().getRoadElementName())) { 
   distanceDiff = ambulOnt.getRemainingDistanceToNextJunction()   

+ this.getRemainingDistanceToNextJunction()  
- this.currentRoadEdge.getRoadElement().getShape_Leng();  

   timeDiff = distanceDiff / ((ambulOnt.getSpeed()  
+ this.getDiffSpeed(distanceDiff)) * 1609.344 / 3600.0); 

   if ( (distanceDiff < givenDistanceRange && distanceDiff > givenDistDiff)  
|| (timeDiff < givenTimeRange && timeDiff > givenTimeDiff)) { 

      bCase1 = true; 
     } 
  } 
  //case 2 not on the same road, v1 is not on the road that a1 is heading to,  

//but they are heading to the same junction 
  else if (ambulOnt.getNextRoadEdge() != null && this.getNextJunction() !=null  

&& ambulOnt.getNextJunction() != null  
&& !this.currentRoadEdge.getRoadElementName().equals( 

ambulOnt.getNextRoadEdge().getRoadElementName())  
&& this.getNextJunction().equals(ambulOnt.getNextJunction())) { 

   distanceDiff = this.remainingDistanceToNextJunction  
+ ambulOnt.getRemainingDistanceToNextJunction(); 

   timeDiff = distanceDiff / ((ambulOnt.getSpeed()  
+ this.getDiffSpeed(distanceDiff)) * 1609.344 / 3600.0); 
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   if ( (distanceDiff < givenDistanceRange && distanceDiff > givenDistDiff)    
|| (timeDiff < givenTimeRange && timeDiff > givenTimeDiff)) { 

    bCase2 = true; 
   } 
  } 
  //case 3 v1 is on the road that a1 is heading to 
  else if (ambulOnt.getNextRoadEdge() != null && 

    this.currentRoadEdge.getName().equals(ambulOnt.getNextRoadEdge().getName())){ 
   distanceDiff = this.currentRoadEdge.getRoadElement().getShape_Leng()  

- this.getRemainingDistanceToNextJunction() 
     + ambulOnt.getRemainingDistanceToNextJunction(); ;  
   timeDiff = distanceDiff / ((ambulOnt.getSpeed()  

- this.getDiffSpeed(distanceDiff)) * 1609.344 / 3600.0);   
   if ( (distanceDiff < givenDistanceRange && distanceDiff > givenDistDiff)   ||  
       (timeDiff < givenTimeRange && timeDiff > givenTimeDiff)) { 
    bCase3 = true; 
   } 
  } 
  //case 3 v1 is on the road that a1 is heading to, opposite lane 
  else if (ambulOnt.getNextRoadEdge() != null && this.currentRoadEdge 

        .getRoadElementName().equals(ambulOnt.getNextRoadEdge().getRoadElementName())) { 
   distanceDiff = this.getRemainingDistanceToNextJunction()  

+ ambulOnt.getRemainingDistanceToNextJunction(); 
   timeDiff =  distanceDiff / ((ambulOnt.getSpeed()  

+ this.getDiffSpeed(distanceDiff)) * 1609.344 / 3600.0); 
   if ( (distanceDiff < givenDistanceRange && distanceDiff > givenDistDiff)   ||  
       (timeDiff < givenTimeRange && timeDiff > givenTimeDiff)) { 
    bCase3 = true; 
   } 
  } 
  //case 4 a1 is already passed the v1 and a1 is on the road that v1 is heading to,  

//but their distance is closer than the given range 
  else if (this.nextRoadEdge != null && this.stopped && ambulOnt.currentRoadEdge 
               .getName().equals(this.nextRoadEdge.getName())){ 
   distanceDiff = -1.0 

* (ambulOnt.currentRoadEdge.getRoadElement().getShape_Leng()  
- ambulOnt.getRemainingDistanceToNextJunction() 

    + this.getRemainingDistanceToNextJunction());  
   timeDiff = distanceDiff / ((ambulOnt.getSpeed()  

- this.getDiffSpeed(distanceDiff)) * 1609.344 / 3600.0);   
if ( (distanceDiff < givenDistanceRange && distanceDiff > givenDistDiff)   ||  

    (timeDiff < givenTimeRange && timeDiff > givenTimeDiff)) { 
    bCase3 = true; 
   } 
  } 
  //case 4 a1 is already passed the v1 and a1 is on the road that v1 is heading to,  

//but their distance is closer than the given range 
  //opposite lane 
  else if (ambulOnt.getNextRoadEdge() != null && this.stopped  

&&  this.previousJunction.equals(ambulOnt.getPreviousJunction())  
&& !this.currentRoadEdge.getRoadElementName().equals( 

ambulOnt.getNextRoadEdge().getRoadElementName())) { 
   distanceDiff = -1.0  

* (this.currentRoadEdge.getRoadElement().getShape_Leng()   
- this.getRemainingDistanceToNextJunction()  
+ ambulOnt.currentRoadEdge.getRoadElement().getShape_Leng()  
- ambulOnt.getRemainingDistanceToNextJunction()); 
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   timeDiff =  distanceDiff / ((ambulOnt.getSpeed()  
+ this.getDiffSpeed(distanceDiff)) * 1609.344 / 3600.0); 

   if ( (distanceDiff < givenDistanceRange && distanceDiff > givenDistDiff)    
|| (timeDiff < givenTimeRange && timeDiff > givenTimeDiff)) { 

    bCase3 = true; 
   } 
  }  
  else { 
   distanceDiff = this.getRemainingDistanceToNextJunction()  

+ ambulOnt.getRemainingDistanceToNextJunction(); 
  } 
      } catch (Exception e) { 
  e.printStackTrace(); 
      } 
  return bCase1 || bCase2 || bCase3; 
 } 
 
 public String toString () { 
    String str = "name: " + this.name + "\n" + ""; 
    str = str + this.name + "-" + "previousJunction: " + this.previousJunction.getName() + "\n" + ""; 
    str = str + this.name + "-" +"nextJunction: " + this.nextJunction.getName() + "\n" + ""; 
    str = str + this.name + "-" +"currentRoadEdge: "  

+ this.currentRoadEdge.getRoadElement().getFID() + "\n" + ""; 
    str = str + this.name + "-" +"nextRoadEdge: "  

+ this.nextRoadEdge.getRoadElement().getFID() + "\n" + ""; 
    str = str + this.name + "-" +"remainingDistanceToNextJunction: "  

+ this.remainingDistanceToNextJunction + "\n" + ""; 
    str = str + this.name + "-" +"remainingTimeToNextJunction: "  

+ this.remainingTimeToNextJunction +  "\n" + ""; 
    return str; 
 } 
} 
 

 

 

 

 

 

 


