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Abstract

Multiple sclerosis (MS) is an inflammatory, demyelinating disease that can cause

various neurological symptoms. The first episode of this disease is called a clinically

isolated syndrome (CIS) and leads to the diagnosis of MS in the majority of patients

in the long-term. Fast conversion from CIS to MS is associated with higher disability

and more severe disease progression so that it is of high clinical interest to identify

risk patients that will convert to MS within a short time. Several risk factors for con-

version have been identified but they can only be applied on cohort levels.

In this thesis we provide an overview of supervised machine learning approaches

that can be used to distinguish individual CIS-stable patients from those who will

experience a second attack within one to five years and consequently will be diag-

nosed with clinically definite MS. This classification is based on information available

at baseline derived from routine MRI scans and complemented by clinical informa-

tion such as lesion masks, age, gender, disability and CIS type of onset.

We introduce the classification landscape, an overview of supervised classification

studies with respect to their method and task complexity, and show that our exper-

iments cover a large range of feature complexities in this landscape for the rather

complex task of outcome prediction in CIS patients.

We show that low-level voxel-based information such as tissue density of grey and

white matter are not informative and lead to inconclusive results, whereas the intro-

duction of high-level features such as lesion load, age, gender or disability improves

accuracies to 71.4 % and 68 % at one- and three-year follow-up respectively in a

single-centre data set. Finally, we propose a recursive feature elimination method

that is able to identify specific regions that are relevant with respect to disease pro-

gression in MS and achieves accuracies of 73.9 % and 74.3 % at one- and three-year

follow-up respectively even in a multi-centre setting.
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Part I

G E N E R A L I N T R O D U C T I O N



1
M OT I VAT I O N

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous sys-

tem (CNS) characterised by brain and spinal cord lesions which can cause a broad

range of neurological symptoms depending on their location in the brain. The major-

ity of MS patients has an onset with a clinically isolated syndrome (CIS) which is the

diagnosis given after a single neurological episode that is caused by demyelination

or inflammation and lasts for at least 24 hours. After a second attack (or relapse) the

patient is diagnosed with clinically definite multiple sclerosis (CDMS), which is MS

diagnosed using purely clinical evidence.

Most patients convert from CIS to CDMS over time and there are different risk

factors associated with faster progression, which are described in chapter 2. Of par-

ticular interest for this work is that patients have an increased risk of poor prognosis

when the time between CIS onset and relapse is short. The identified risk factors

are only valid on a cohort level and cannot be applied to individual patients with high

confidence.

Machine learning, or more specifically supervised classification, has shown promis-

ing results in several neurological disorders in the last decade. Healthy subjects have

been successfully distinguished from patients with high accuracy and also the prog-

nosis of outcome e.g. in patients with mild cognitive impairment has been demon-

strated with results well above chance level. There have only been few studies using

classification in relation to multiple sclerosis, however, and none of them considered

the challenging task of predicting outcome in CIS patients.

9
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1.1 P R O B L E M S TAT E M E N T

Given a data set consisting of information from a standard neurological examination,

which supervised classification approach is suited to predict clinical outcome in pa-

tients with clinically isolated syndrome? In this context, we are not only interested in

the highest possible accuracy but we want to explore the classification landscape us-

ing different types of features and classification approaches and compare the insight

these methods provide.

1.2 A I M S

1. to develop multivariable models to predict conversion from CIS to CDMS at

different follow-up ranges and assess the model performances.

2. to identify features relevant for disease progression in CIS.

1.3 S U M M A RY O F C O N T R I B U T I O N S

1. Introduction of the classification landscape: an overview of machine learn-

ing studies based on the complexity of the applied methods and classification

tasks as shown in section 1.4.

2. Comprehensive set of machine learning studies on the prediction of second

relapse in CIS patients: we place our studies in the proposed landscape and

compare the classification performance of the different approaches. We show

in chapter 4 that low-level voxel-based features are not able do discriminate

between CIS-stable patients and CIS-converters. High-level features are ex-

pensive to obtain because they depend on human input and clinical expertise.

However, they significantly improve the classification performance as shown in

chapters 5 and 6. Medium-level features such as regions of interest containing

information derived from Magnetic resonance Imaging (MRI) provide only little

insight due to the lack of sensitivity and specificity in the prediction as shown
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in chapter 7. Our final model combines medium- and high-level features and is

able to identify features known to be relevant for progression in MS, in partic-

ular atrophy-related measures in deep grey matter and insula, and uses local

information to provide future diagnosis in individual patients with an accuracy

of 73.9 % and 74.3 % at one- and three-year follow-up respectively in a multi-

centre setting using 296 patients.

1.4 C L A S S I F I C AT I O N L A N D S C A P E

The application of machine learning classifiers on neuroimaging data to solve neuro-

logical problems has become increasingly popular over the last years. One of the first

applications was the automated diagnosis of Alzheimer’s disease (AD) in a cohort

of cognitively normal subjects (CN) and AD patients [64]. Most publications focus

on dementia and only few publications are exploring classifications tasks related to

other diseases such as Huntington’s disease or multiple sclerosis.

The models in these studies can be roughly divided by complexity of the applied

methods and by complexity of the classification task. In this case, methods covers

the classifier complexity as well as the applied type of feature. Using voxel informa-

tion from MR intensities or derived measures such as grey matter density can be

considered low-level features as they are directly available from the imaging data.

Region-based measures rely on atlases and are considered to have mid-level com-

plexity, and finally we define high-level features as measures that need a person

(usually an expert clinician) to obtain them such as clinical scores or manually out-

lined lesion masks. Defining classification task complexity is slightly more ambigu-

ous but it is generally easier to distinguish patients from healthy controls based on

brain pathology than it is to differentiate different sub-types of a certain condition

where changes are often more subtle. The most complex task in this context it the

prediction of future outcome from baseline data.

In the following paragraphs we will describe a selection of studies in MS and AD

that have used supervised classification and we attempt to place them in the pro-

posed classification landscape.
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M U LT I P L E S C L E R O S I S C L A S S I F I C AT I O N TA S K S Only few publications are

available on classification tasks related to MS which might be due to the lack of

publicly available data sets. This also makes it challenging to compare different

studies with each other as they generally use different cohorts where sample size,

age, gender ratio and disease stage vary.

The first paper using Support Vector Machines (SVM) to perform binary classi-

fication in MS was published by Bendfeldt et al. [7] who looked at three different

classification tasks: 1. patients with short disease duration (<5 y) vs long disease

duration (>10 y), 2. low T2 lesion load (<1 ml) vs high T2 lesion load (>10 ml), and

3. benign MS ((Expanded Disability Status Scale (EDSS) 6 3) vs non-benign MS

(EDSS > 3).

The classes in each classification task were balanced in size but rather small ranging

from 13 to 20 patients per group. Grey matter segmentations were obtained from T1

scans and used as features in a linear SVM with leave-one-out cross-validation. The

results for the three classification tasks were:

1. early vs late MS: 85 % accuracy, 82.3 % sensitivity, 88.2 % specificity,

2. low vs high lesion load: 83 % accuracy, 85 % sensitivity, 80 % specificity,

3. benign vs non-benign MS: 77 % accuracy, 76.9 % sensitivity, 76.9 % specificity.

The SVM kernel was used to highlight brain areas which are relevant with respect

to the individual classification tasks and relate these findings to previously published

studies. Both the classification tasks and the feature type (i.e. GM density) in this

study can be considered of low complexity in the classification landscape as indi-

cated by study (a) in Figure 1.

Weygandt et al. [129] presented a method to distinguish 44 relapsing-remitting

MS (RRMS) patients (mean disease duration 80 months ± 76.3) from 26 healthy

controls (HCs) using linear SVMs. Different areas of the brain were examined us-

ing a searchlight approach where neighbourhoods around a voxel of interest are

explored. Masks were created for normal appearing WM (NAWM), normal appear-

ing GM (NAGM), normal appearing brain tissue (NABT) and lesion tissue (LT) to be

applied to T2 MRI scans after registration to MNI space. The highest accuracy of

95 % was obtained using lesion areas of the brain, which is expected as healthy sub-
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jects generally do not have lesions and hence the presence of lesions can be used

to correctly classify a large proportion of subjects. However, also the NAGM and

NAWM maps provided very high accuracies leading to 84 % and 91 % respectively

with a p-value of at 10−7 or lower. The searchlight approach using the whole NABT

did not lead to a statistically significant finding. Particularly informative areas have

been reported to be deep GM nuclei and the cerebellum; in the WM areas of dirty

white matter were found to be of interest. Although the high accuracies are very

encouraging, it must be noted that this classification task is not very sophisticated

as MS patients show substantial changes in brain MRI compared to healthy controls.

Lesions are much more frequent in MS patients than in healthy controls and also

normal appearing tissue can be affected by microstructural changes [109]. The clas-

sification task in this study is considered to be of low complexity but the searchlight

approach, even though using MRI intensities, is more sophisticated (see study (b) in

Figure 1).

Another study tested the performance of the different classifiers VDC (voxel-wise

displacement classifier; a classifier based on Fisher’s linear discriminant analysis),

SVM, Random Forest (RF) and Adaboost when using displacement fields as features

[19]. Twenty-nine RRMS, 8 secondary-progressive MS (SPMS), 4 CIS, 1 primary-

progressive (PPMS) patients and 36 healthy controls were registered to a study-

specific template. The resulting transformation functions or displacement fields de-

scribe how much every voxel was morphed to match the template image. This infor-

mation is downsampled to reduce the dimensionality of features and then applied to

the classifiers in order to distinguish young from old subjects (5/11 youngest vs 5/11

oldest) and MS patients (SPMS/RRMS/all) from healthy controls. The proposed VD

classifier consistently outperformed the other methods reaching up to 100 % in the 5

vs 5 age classification. The performance was particularly good in the small cohorts

for age and SPMS classification (88-100 %) but also reached 76 % in the case of

all MS vs HC. It should be noted that the study has a clear focus on promoting the

novel VD classifier. The rather low sample sizes, however, do not allow for generali-

sation of the results. This study is placed as study (c) in Figure 1 due to the medium
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Figure 1: Classification landscape. Overview of existing work and contributions made in this
thesis. Letters in yellow squares and circles refer to studies described in this sec-
tion. Numbers in green circles refer to chapters of this thesis.

complexity of the displacement-voxel-based features and the low complexity of the

classification task.

D E M E N T I A - R E L AT E D C L A S S I F I C AT I O N TA S K S By far the most neuroimag-

ing classification publications focus on Alzheimer’s disease. This has partially to

do with the increasing amount of funding for AD research as it is becoming more

and more common in ageing societies. Another important factor is the ADNI (AD

neuroimaging initiative) dataset, which is publicly available since 2003 and includes

imaging (i.e. MRI, PET) and clinical data (i.e. genetic markers, cognitive test scores)

of over 1000 subjects which are clinically diagnosed as HC (or CN), mild cognitive

impairment (MCI) or AD. The data was obtained at different centres but standard-

ised protocols have been put in place to reduce data heterogeneity. Follow-up data

exists in irregular intervals for the majority of the subjects [86]. Early work in AD

classification focused on the differentiation between HC and AD (and sometimes

MCI). Modern research in this fields targets more predictive tasks using diagnoses

from follow-up examinations. In the context of AD, there is particular interest in the

transition from MCI to AD so that researchers try to differentiate between MCI-stable

patients and MCI-converters. We describe only a few studies here to provide an

overview of the methods and how the approaches are distributed in the classification

landscape.

Klöppel et al. [64] were one of the first groups to perform SVM classification on

structural MRI data. The group used a linear SVM to distinguish AD patients from
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HC and AD patients from patients with frontotemporal lobar degeneration (FTLD). In

total they performed 7 classification experiments on different data sets in order to

show generality of their approach:

1. 20 AD patients vs 20 HC, patients’ diagnosis was histopathologically confirmed

2. 14 AD patients vs 14 HC, different centre from 1, patients’ diagnosis was

histopathologically confirmed

3. 1. and 2. combined

4. train classifier on 1 and test on 2

5. train classifier on 2 and test on 1

6. 33 AD patients vs 57 HC, clinical diagnosis of probable early AD for all patients

7. 18 AD patients vs 19 FTLD patients, AD patients are from same cohort as 2

and FTLD were diagnosed clinically based on consensus criteria.

T1-weighted MRI was obtained for all subjects and segmented into WM, GM and

CSF using SPM5. The images were then registered to a study-specific template

created from groups 1 and 2. Only the grey matter areas of the brain were used for

classification and a leave-one-out cross-validation was used. The obtained accura-

cies from task 1 and 2 are 95 % and 92.9 % with sensitivity/specificity of 95/95 % and

100/85.7 % respectively. A combination of data sets yielded an accuracy of 95.6 %

and the centre exchange in task 4 and 5 resulted in accuracies of 96.4 % and 87.5 %

respectively. The classification of mild AD and controls correctly assigned 81.1 %

of the subjects to the correct group when using the whole brain’s white matter. A

restriction to medial temporal lobe improved the result to 85.6 %/. Finally, 89.2 % of

the cases in task 7 were correctly classified. The method is completely automated

and does not need any manual intervention except for quality control after registra-

tion and segmentation steps. The authors report that the obtained accuracies are

better than the diagnostic accuracy of clinicians using standardised criteria. This

study uses rather simple features (i.e. GM density) and only compares patients and
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controls leading to a low complexity on both axes of our proposed classification land-

scape (see study (d) in Figure 1).

Cuingnet et al. [28] offer a review that compares a large variety of approaches

to different classification tasks using structural information from the ADNI data set.

This is of particular interest because even though most studies use ADNI data, they

usually only use a subset of it which then differs between studies. The review, how-

ever, repeats all experiments as explained in the respective papers using the same

set of patients. All patients with available preprocessed MRI scans were included in

the review study leading to a cohort of 509 subjects from 41 centres with 162 cogni-

tively normal subjetcs, 137 AD patients, 76 MCI patients who convert to AD within 18

months (MCI converter or MCIc), and 134 MCI patients who did not convert within

18 months (MCI stable or MCIs). The presented methods include whole-brain voxel-

based approaches, parcellation and selection of ROIs, different registration methods,

cortical thickness measures, and hippocampal features. All tested algorithms were

tested on three classification tasks:

1. AD vs HC, 2. MCI vs HC, and 3. MCI stable vs MCI converter.

All methods perform very well on task 1 reaching balanced accuracies (= mean of

sensitivity and specificity) between 74 and 88 %. The comparison shows that rather

simple features such as GM probabilities (whole brain or mean over ROIs) perform

significantly better than more sophisticated features like measures of hippocampal

volume or shape. Accuracies for task 2 are noticeably lower ranging between 72.5

and 81.5 % as the differences between the two groups are smaller. Task 3 is known

to be the most challenging because patients from both classes have the same di-

agnosis at the time of the MRI scan and the classification aims to predict future

outcome. In line with this, the obtained accuracies again are lower and, in multiple

approaches, even assign all patients in to one single group (i.e. sensitivity = 0 %,

specificity = 100 %) leading to a balanced accuracy of 50 % which is equivalent to a

random assignment. The other methods’ accuracies range between 56.6 and 67.5 %.

This review article also attempts to group the different approaches by their feature

types but does not follow the same order as the proposed classification landscape.

In our overview where the classification tasks cover low (AD vs HC), medium (MCI
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vs AD), and high complexity (MCI stable vs MSI converter). However, the features

are only of low and medium complexity due to the fact that no expert knowledge was

needed to obtain any of them. It must be noted, though, that results from clinical and

cognitive tests such as the mini-mental state examination (MMSE), which would be

considered of high complexity, cannot be included as features using the ADNI cohort

because they were already used to diagnose the subjects. Due to the large num-

ber of compared approaches, we place this study multiple times in the classification

landscape in Figure 1 indicated by (e) at the appropriate positions.

S U M M A RY It can be seen from Figure 1 that the classification landscape is well

covered by literature regarding classification tasks in dementia and especially AD.

The main exception is the usage of high-level features, which is due to the fact that

clinical examinations and cognitive test scores are important factors for antemortem

diagnosis and therefore cannot be used again to predict said diagnosis as it would

create a circular argument. With regard to MS there is an obvious lack of classifica-

tion studies leading to only few data points with low task complexity and covering only

low- and medium-complexity features. In this thesis we present a set of experiments

exploring a high-complexity task and a large range of method complexities.



Part II

B AC K G R O U N D



2
M U LT I P L E S C L E R O S I S

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central ner-

vous system (CNS) with a strong neurodegenerative component [23]. The cause

of the disease is unknown but it appears predominantly in genetically susceptible

patients and is triggered by combinations of environmental factors [70].

2.1 E P I D E M I O L O G Y

The global prevalence of MS is estimated to be around 30 per 100,000 people but

the rates show strong variations between different regions with strong gradients from

equatorial regions towards the northern and southern hemispheres [81, 132]. The

average incidence rate in Europe is 80 per 100,000 [132] but can go up to 200 per

100,000 in northern European populations [81]. Generally, the prevalence increases

with increasing latitude so that the highest rates are observed in northern Europe

(65 ◦ to 45 ◦ north), the northern United States of America, southern Canada, New

Zealand and southern Australia. Areas in southern Europe, northern Australia and

South America have an intermediate prevalence, and the disease rate in Africa and

Asia is comparably low [72].

The disease onset is usually in peoples’ late twenties or early thirties but can

be observed in children and people over 50 as well. Due to its early onset, MS is

considered the most common cause of disability of young adults in the developed

world [23]. It affects women twice as often as men [132] and this ratio has increased

in the past decades alongside a general increase of the incidence rate of MS [5, 68,

69, 74, 90].

19
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2.2 E N V I R O N M E N TA L I N F L U E N C E S O N C AU S E O F D I S E A S E

The correlation between latitude and MS prevalence suggests an environmental con-

tribution to the cause of MS. This correlation has been shown for both the northern

and the southern hemisphere [77, 100, 126] and it was also observed that migration

from high to low latitudes reduces the risk [46]. A possible cause of this correlation

might be vitamin D, which is produced in the skin after exposure to sunlight. A higher

exposure to sun in the populations closer to the equator would then increase vita-

min D production and reduce the risk of MS. This theory is supported by the fact

that populations with vitamin-D-rich diets were shown to have a reduced risk of MS

compared to other populations in similar latitudes [1]. However, clinical trials using

vitamin D interventions lacked statistical power and results have been inconclusive

or even negative [60, 113, 131]. Other possible causes are viral infections from e.g.

the Epstein Barr virus (EBV), which has a seropositivity of 100 % in MS patients

compared to 90 % in reference groups [10, 88, 127]. Tobacco smoking is associated

with a higher risk of conversion from clinically isolated syndrome to clinically definite

MS [33], higher EDSS, higher lesions count and load in T2 and T1 weighted MRI, a

faster transition from RRMS to SPMS [52, 66] and an accelerated decline in cognitive

functions [94].

2.3 G E N E T I C I N F L U E N C E S O N C AU S E O F D I S E A S E

Several studies have examined patients’ genetic susceptibility to MS by comparing

familial cohorts to the non-related population. It was consistently shown that first

degree relatives have an increased risk of 3-5 % of developing MS [16, 35, 85, 105].

In cases with monozygotic twins, the risk is approximately 30 % [36, 106], whilst

dizygotic twins have show the same rates as other first degree relatives [57, 61, 87].

The strong difference between monozygotic twins and other first degree relatives

strongly suggests that there is a polygenetic component to the disease. Various

studies found gene loci and antigens that contribute to MS susceptibility, however,
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these contributions are generally very small and populations in different areas of the

world are affected by different areas of the genome [12, 45, 107, 108].

2.4 PAT H O L O G Y A N D C L I N I C A L C O U R S E

As explained before, the cause of MS is not yet understood but it is believed to be

influenced a combination of genetic and environmental factors that contribute to an

immune attack of the nervous system [22, 23].

In MS the myelin sheaths around the axons are damaged due to a reduction of

oligodendrocytes, which are cells that create this myelin. These myelin sheaths

are electrical insulators that support the propagation of action potentials through the

axons. A reduction of this myelin leads to a reduced signal transmission between

grey matter areas and eventually to a breakdown of information flow [22, 23]. Scar-

like lesions occur after repeated attacks when the body’s remyelination attempts

become less effective [18] (see Figure 2). These lesions and the associated immune

responses are responsible for the symptoms arising from an attack. MR imaging

can be used to visualise lesions as they appear as hyperintense (e.g. in T2 and PD

weighting) or iso/hypointense (e.g. in T1 weighting) spots (see Figure 3).

Myelin staining (proteolipid protein immunohistochemistry)

Grey 
matter

Grey 
matter
lesion

White matter lesion

Normal appearing white 
matter

Normal appearing white 
matter

Figure 2: Histological image of human spinal cord tissue with MS lesions. The myelin stain-
ing clearly shows reduced myelin content in lesion areas. Image courtesy of F.
Grussu.
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(a) (b) (c)

Figure 3: MS patient’s brain MRI scan with (a) T1 weighting, (b) T1 weighting overlaid with
binary lesion mask in red, and (c) PD weighting. Note the hypo- and hypterintense
lesions in (a) and (c) respectively.

T cells usually have an important function in the body’s defence system but a

failure in their regulation can cause inflammation. Attacks which occur after a viral

or bacterial infection weakened the blood-brain barrier and made it permeable for

T cells [22]. Inflammatory processes are then triggered so that other immune cells,

cytokines and antibodies are released and the transmission of information in neurons

is significantly reduced [23]. This inflammation causes transections of the axons and

leads to acute axonal loss from Wallerian degeneration within 18 months. Additional

axonal loss is seen in chronically demyelinated axons due to the lack of trophic

support of the myelin [22].

In summary, acute lesions cause acute symptoms of relapses, whereas axonal

loss is assumed to be responsible for progressive accumulation of disability.

There are three main phenotypes of MS as described by the National Multiple

Sclerosis Society of the United States [73]: relapsing-remitting (RRMS), secondary-

progressive (SPMS) and primary-progressive (PPMS). These phenotypes are used

to describe the most common patterns of progression and have been defined empir-

ically based on the past course of the disease (see Figure 4). Approximately 80 %

of MS patients have an initial course described by RRMS [23]: attacks occur at un-

predictable times and locations of the CNS. The deficits suffered from the attacks

become permanent in about 40 % of the cases and even more likely with increas-

ing disease duration [23, 120]. RRMS courses with only non-permanent deficits are

referred to as benign MS [97]. Most patients with a RRMS disease course will even-

tually convert to SPMS after an average of 19 years [102]. SPMS is characterised



2.5 D I S A B I L I T Y I N M S 23

by a RRMS onset that converts to a continuous increase of disability without definite

periods of remission [23, 73]. 10-20 % of MS patients suffer from the PPMS subtype

which is characterised by a continuous neurologic decline with none (or rare and

minor) remissions and also show fewer attacks [73, 79]. PPMS onset is usually at

approximately 40 years, which is a similar age as the mean age for conversion from

RRMS to SPMS [23].

Figure 4: Illustration of progression in the three main phenotypes of MS. Image adapted from
[130].

2.5 D I S A B I L I T Y I N M S

Patients with MS can suffer from a wide range of neurological conditions and the

symptoms of these conditions are related to the location of lesions, inflammatory

processes and especially axonal loss within the central nervous system. Common

problems are loss of sensitivity, numbness, muscle weakness or spasms, difficulties

with moving, coordination and balance, tiredness, pain, and visual problems. Cog-

nitive and emotional problems (i.e. depression) can increase throughout the course

of the disease [23]. Approximately 75 % of all MS patients are still able to walk inde-

pendently 15 years after disease onset but the majority is wheelchair-bound by the

time of death. The average life expectancy is about 30 years from disease onset and
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almost 70 % of deaths can be directly related to the disease (i.e. infections in weaker,

non-ambulatory patients) [75].

The expanded disability status scale (EDSS) is the most common measure to de-

scribe disability of patients with MS [71]. The score ranges from 0 to 10 in steps of 0.5

with a higher score indicating higher disability (see Table 1). Especially the first steps

of the score are determined by the degree of dysfunction in eight functional systems

(FS) which are assessed during a neurological examination: pyramidal, cerebellar,

brainstem, sensory, bowel and bladder, visual, cerebral or mental, and other. Each

function is scored on the basis of the extent of impairment.

Although EDSS is widely used and accepted it has several disadvantages as it

increases in constant steps of 0.5 but is not a linear scale (i.e. an increase from 1.0

to 1.5 [increase in number of affected functional systems but no disability] is not as

severe as an increase from 6.5 to 7 [transition from walking support to wheelchair]).

Also, EDSS is strongly biased towards ambulation of a patient which means that the

inability to walk may mask disability or improvement in other areas. Furthermore,

studies show that the vague description of the lower scores leads to poor inter-rater

agreement [110] which can limit the reliability in multi-centre studies.

In addition to EDSS, the MS functional composite (MSFC) score has been intro-

duced and is often used in more recent studies. It combines tests of physical and

cognitive function and consists of the following tasks [103]:

• timed walk test (TWT): patients have to walk a certain distance (i.e. 25 ft) while

the needed time is stopped. It measures the mobility and can be performed

with assisting devices such as crutches.

• nine-hole peg test (NHPT): patients have to put pegs of different shapes into

the right hole in a box. This test measures the function of arms and hands

as well as basic cognitive functions. The task has to be performed with both

hands consecutively.

• paced auditory serial addition test (PASAT): patients hear a number every 3

seconds and have to add the last two numbers they heard. This assesses

working memory, information processing and calculation ability.
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• self-assessment with basic questions about the previously described tasks.

Both NHPT and PASAT are sometimes criticised as measures because the results

can be improved through practice. The value of the TWT can be questionable due

to use of walking aids.

2.6 C L I N I C A L LY I S O L AT E D S Y N D R O M E

Most patients who develop MS present initially with a clinically isolated syndrome

(CIS). This is a term used for acute or sub-acute neurological symptoms at onset

which are characteristic of demyelination of the CNS [78]. CIS is only diagnosed if

the neurological attack lasts for at least 24 hours and is not associated with fever,

infections or clinical features of encephalopathy. The disorder is usually clinically

isolated in space but can also occur with multifocal onset. Common presentations

are lesions in the spinal cord (46 %), inflammations of the optic nerve (21 %) and

brainstem syndromes (10 %). Approximately 23 % have a multifocal CIS onset [78,

80]. The median age of onset is 29-31 years [24, 128] and the disease prevalence

for women is 250 % higher for women than for men [78].

Several features have been reported to influence the prognosis of patients with

CIS. Generally, the prognosis is good when symptoms are isolated, attacks rare and

benign and no lesions can be seen in MRI, whereas multifocal symptoms, high re-

lapse rate, disability and lesions are factors for a poorer prognosis [80] (see Table 2).

Even though lesion load is considered an important predictor for disease progression

[70, 78], lesion load and distribution is actually very similar between patients who

convert to MS within one year and those who convert later or not at all as shown in

Figure 5 [50].
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Table 2: CIS features that have been reported to affect patients’ prognosis [70, 80].

Good prognosis Poor prognosis

• optic neuritis • multifocal CIS

• isolated sensory symptoms • different systems affected

• long interval to second relapse • high relapse rate in the first 5 years

• no disability after 5 years • substantial disability after 5 years

• normal MRI • abnormal MRI with large lesion load

• oligoclonal bands negative • oligoclonal bands positive

• male sex • female sex

Figure 5: Distribution of MS lesions in one-year converters and non-converters. Source:
Giorgio et al. [50].

Although, patients with CIS have a very high risk of developing MS, some are

affected by other neurological conditions, which can have a similar onset but a very

different disease progression such neuromyelitis optica (NMO) [39, 54]. However,

43 % of all CIS patients convert to MS after 5 years, 59 % after 10 years and 68 %

after 14-20 years [38, 43]. Patients with abnormal baseline MRI (i.e. presence of T2

lesions) convert in 70-80 % of the cases, whereas patients with radiologically normal

imaging convert in only 20-25 % of all cases.
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Diagnosis of MS is standardised by the 2001 McDonald criteria, which combine

characteristics from MR imaging, such as the occurrence of new lesions, with clinical

measures such as positive CSF tests or further clinical attacks [76]. These criteria

have been revised in 2005 [98] and 2010 [99]. The most recent 2010 criteria are

shown in Table 3. Generally, MS can only be diagnosed when dissemination in time

and space is proved or, clinically, when the patient has had a second neurological

attack after a period of well-being. Latter is the definition of clinically definite multiple

sclerosis (CDMS) which is used as gold standard in the scope of this work. The

accuracy of the (original) McDonald criteria has been reported to be 80-83 % with a

sensitivity and specificity of 74-83 % and 83-86 % respectively [31, 115].

There is currently no clinical standard to predict conversion from CIS to MS at

baseline. Diagnosis of MS can only be made by showing dissemination in time and

space. If dissemination in space and time cannot be proven clinically, then MRI can

be used for follow-up assessments or MRI scans using a gadolinium tracer, which

can show both active (new) and inactive (old) lesions and subsequently fulfil the

criteria in a single scan.
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Table 1: EDSS score for measurement of disability in MS.

Score Description

0.0 Normal neurological Exam

1.0 No disability, minimal signs in 1 FS

1.5 No disability, minimal signs in more than one FS

2.0 Minimal disability in 1 FS

2.5 Minimal disability in 2 FS

3.0 Moderate disability in 1 FS; or mild disability in 3 - 4 FS, though fully
ambulatory

3.5 Fully ambulatory but with moderate disability in 1 FS and mild disability
in 1 or 2 FS; or moderate disability in 2 FS; or mild disability in 5 FS

4.0 Fully ambulatory without aid, up and about 12 hours a day despite
relatively severe disability. Able to walk without aid for 500 m

4.5 Fully ambulatory without aid, up and about much of day, able to work a
full day, may otherwise have some limitations of full activity or require
minimal assistance. Relatively severe disability. Able to walk without
aid for 300 m

5.0 Ambulatory without aid for about 200 m. Disability impairs full daily
activities and ability to work full day without special provisions.

5.5 Ambulatory for 100 m, disability precludes full daily activities

6.0 Intermittent or constant unilateral assistance (cane, crutch or brace)
required to walk 100 m with or without resting

6.5 Constant bilateral support (cane, crutch or braces) required to walk
20 m without resting

7.0 Unable to walk beyond 5 m even with aid, essentially restricted to
wheelchair, wheels self, transfers alone; active in wheelchair about 12
hours a day

7.5 Unable to take more than a few steps, restricted to wheelchair, may
need aid to transfer; wheels self, but may require motorised chair for
full day’s activities

8.0 Essentially restricted to bed, chair, or wheelchair, but may be out of bed
much of day; retains self care functions, generally effective use of arms

8.5 Essentially restricted to bed much of day, some effective use of arms,
retains some self care functions

9.0 Helpless bed patient, can communicate and eat

9.5 Unable to communicate effectively or eat/swallow

10.0 Death due to MS
FS: functional system
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Table 3: Revised McDonald criteria for the diagnosis of MS as defined in 2010 by an inter-
national panel in association with the National Multiple Sclerosis Society of America
[99].

Clinical presentation Additional Data Needed

* 2 or more attacks
(relapses)
* 2 or more objective
clinical lesions

None; clinical evidence will suffice (additional evidence
desirable but must be consistent with MS)

* 2 or more attacks
* 1 objective clinical
lesions

Dissemination in space (DIS), demonstrated by:
* 1 or more T2 lesions in at least 2 of 4 of the following
MS-typical areas of the CNS: periventricular, juxtacortical,
infratentorial, or spinal cord
* or further clinical attack involving different site

* 1 attack
* 2 or more objective
clinical lesions

Dissemination in time (DIT), demonstrated by:
* simultaneous presence of asymptomatic
gadolinium-enhancing and non-enhancing lesions at any
time
* or a new T2 and/or gadolinium-enhancing lesion(s) on
follow-up MRI, irrespective of its timing with reference to a
baseline scan
* or await a second clinical attack

* 1 attack
* 1 objective clinical
lesion (CIS)

Dissemination in space and time, demonstrated by:
- For DIS: * 1 or more T2 lesion in at least 2 of 4 MS-typical
regions of the CNS (periventricular, juxtacortical,
infratentorial, or spinal cord)
* or await a second clinical attack implicating a different
CNS site
- For DIT: * simultaneous presence of asymptomatic
gadolinium-enhancing and nonenhancing lesions at any
time
* or a new T2 and/or gadolinium-enhancing lesion(s) on
follow-up MRI, irrespective of its timing with reference to a
baseline scan
* or await a second clinical attack

Insidious
neurological
progression
suggestive of MS
(primary progressive
MS)

One year of disease progression (retrospectively or
prospectively determined) and
two or three of the following:
a) evidence for DIS in the brain based on 1 or more T2
lesions in the MS-characteristic (periventricular,
juxtacortical, or infratentorial) regions
b) evidence for DIS in the spinal cord based on 2 or more
T2 lesions in the cord
c) positive CSF (isoelectric focusing evidence of
oligoclonal bands and/or elevated IgG index)
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M AC H I N E L E A R N I N G

Machine learning (ML) is a part of artificial intelligence and describes a set of algo-

rithms where performance improves through learning from previously seen cases.

The general concept has been introduced several decades ago but the number and

complexity of applications increased rapidly in over last decade. Recent advances

include mastering Atari video games solely based on the knowledge of controls and

the resulting scores [83] or AlphaGo, an algorithm that is able to beat the world’s best

players of Go, a game more complex than chess [49]. Similarly spectacular results

do not exist yet in medical applications even though several projects in the medical

sector exist such as IBM’s Watson which is a programme that performs evidence-

based diagnoses and aims to reduce the amount of misdiagnosis in clinical practice

(see also https://www.ibm.com/watson/health/).

In this thesis we focus on more conventional supervised classification which is

used to distinguish two or more groups within a data set based on common patterns

of these labelled groups. A common application of this is handwriting recognition,

where an algorithm can learn the shape of individual letters from many examples

and then be applied to ’translate’ previously unseen hand-written texts into digital

text. Similarly, email filters can detect spam messages based on predefined rules

(i.e. learned from examples) that are continuously improved through user interaction

(i.e. when spam is incorrectly marked).

In this chapter, we will explain some technical aspects of the supervised classifica-

tion algorithms used in this thesis. Since, this is well described in literature already,

we will focus on the more fundamental points relevant to this thesis. Detailed infor-

mation on Support Vector Machines can be found in [26], on Random Forests in [27]

and [11], and on general concepts of machine learning and pattern recognition in [8].

30
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3.1 S U P E RV I S E D C L A S S I F I C AT I O N

The motivation for supervised classification is that we want to automate e.g. a diag-

nosis process based on available historical data about a certain condition. This could

be medical records regarding a certain disease, which contains a set of measures

as well as a diagnose given by an expert in the clinical field. The same information

can now be obtained from healthy subjects so that a classifier can be used to find

patterns in the measurements that distinguishes patients from healthy subjects. This

in itself does not provide new insight though, since we already know the clinical sta-

tus of the two groups. However, a well-trained classifier can also be generalised and

applied to unseen data. This means that if we obtain the same measures for a new

patient the classifier model will be able to provide a diagnosis without the need to of

a clinical expert.

More technically, the training data D for a classification algorithm consists of

n tuples (xi, li) of the form D = {(xi, li)|xi ∈ Rp, li ∈ {Ck}}
d
i=1 where xi =

(x1i , x2i , . . . , xdi ) is a d-dimensional feature vector describing e.g. an individual pa-

tient’s measures and li ∈ Ck is an associated label that could e.g. describe the

patient’s diagnosis. In this thesis, two disjoint classes C1 and C2 were used such

that patients were labeled either CIS-MS-converters or non-converters. The classifi-

cation algorithm can then be described as a function f(D) which uses the information

stored in D to map all x to labels l.

3.2 S U P P O RT V E C TO R M AC H I N E

Support vector machines (SVMs) are the most commonly used classifiers, which

can be partially attributed to the comprehensive toolbox LibSVM [17] but also to its

simplicity and efficacy. The algorithm was designed to solve binary classification

tasks and to look at classification as a geometric problem that can be solved by

separating the two classes spatially using a hyperplane (i.e. a straight line in a two-

dimensional space). In contrast to other classifiers such as a perceptron, a SVM has
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a unique solution where the margin between the two classes is maximised using the

points closest to the decision boundary, these points are called support vectors (see

Figure 6 (a)).

Since real-world data is often not linearly or not perfectly separable (e.g. because

of noise, misdiagnosis or outliers), many extensions of the original formulation have

been proposed. Soft-margin SVMs use a cost function which allows for a certain

degree of misclassification in the training data, which may arise from mislabelled

data or noise. Kernel SVMs were introduced to solve classification tasks which are

not linearly separable in the space originally spanned by the features vectors (see

Figure 7).

L I N E A R S V M A hyperplane is a geometric construct that has one dimension

less than the space it is described in. In the case of a two-dimensional feature space

the hyperplane would be a (one-dimensional) line, in three-dimensional spaces it is

a (two-dimensional) plane, while in higher dimensions it is generalised to the term

hyperplane. In a linear SVM the hyperplane of interest is the one that separates the

two classes such that the margin between them is maximised.

This hyperplane is defined by the data points x that satisfy

y(x) = w · x − b = 0 (1)

where w is a normal vector to the hyperplane, x contains the feature vectors, and

b determines the offset of the hyperplane from the origin. Both w and b are chosen

such that the margin, the perpendicular distance between the separating hyperplane

and the closest data points of each class, is maximised. The closest data points are

called support vectors and lie on two parallel hyperplanes

y(x) = w · x − b = 1 (2)
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and

y(x) = w · x − b = −1 (3)

which have a distance of 2
‖w‖ from each other as shown in Figure 6 (a). This distance

can be maximised by minimising ‖w‖ using the constrained optimisation

min
w,b

wTw
2

(4)

subject to li(w · xi − b) > 1.

The constraint ensures that all support vectors are on or outside the supporting hy-

perplanes and not inside the margin.

y(x) = 0

y(x) = 1

y(x) = �1

2

kwk

(a)

y(x) = 0

y(x) = 1

y(x) = �1

⇠i

⇠j

(b)

Figure 6: Illustration of support vectors and hyperplanes. (a) Two classes (green circles and
blue squares) separated by a hyperplane (continuous line). Two supporting hyper-
planes are spanned by the data points closest to the decision surface (circled in
orange). In (b) slack variables ξi and ξj allow data points inside the margin and
misclassification.

S O F T- M A R G I N S V M Since many real-world applications do not have data that

is linearly separable or perfect labels, certain degrees of misclassification can be

allowed by the introduction of slack variables i. The SVM algorithm then finds a

trade-off between a maximal margin as described before and the degree of misclas-
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sification as shown in Figure 6 (b). This is controlled by the cost or penalty parameter

C such that the constrained optimisation (4) is extended to

min
w, ,b

{
wTw
2

−C

N∑
i=1

ξi

}
(5)

subject to li(w · xi − b) > 1− ξi and ξi > 0.

N O N - L I N E A R S V M In some cases, the data cannot be linearly separated in the

space spanned by the available features. Non-linear kernels k(x) can be used to

map each feature vector into a higher-dimensional space where linear separation

may become possible. The illustration in Figure 7 shows an example where one-

dimensional data becomes separable after a simple mapping into two-dimensional

space using k(x) = x · x.

x10

(a)

x2

x1

y(x) = 0

(b)

Figure 7: A not-linearly-separable one-dimensional data set (a) is mapped into a two-
dimensional space (b) where linear classification is possible using y(x).

Common kernel functions are polynomials of degree d

k(xi, xj) = (xi · xj)d

or the Gaussian radial basis function (RBF)

k(xi, xj) = exp(−γ‖xi − xj‖2), with γ > 0.
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3.3 R A N D O M F O R E S T

Random forests are ensemble classifiers which consist of multiple classification trees.

Each of these trees can be used individually to classify new cases. However, single

trees tend to overfit the data which means that they work extremely well on the data

set they were trained on but they generalise very poorly to new data. Combining

a larger number of trees reduces the risk of overfitting and instead increases the

generality of the classifier model.

C L A S S I F I C AT I O N T R E E S Classification trees are directed graphs, where nodes

and edges are hierarchically organised. The algorithm starts at the root node where

a split function is applied that separates the data into two or more child nodes based

on feature thresholds that decrease the heterogeneity of class labels in the child

nodes (see Figure 8 (a) and (b)). In the scope of this thesis, we will only work with

binary classification tasks and two child nodes, and limit the following description to

these cases.

In each parent node the features are parsed in order to find the feature and its as-

sociated cutoff-threshold that reduces the heterogeneity in the resulting child nodes

most. Since the computational expense is proportional to the number of parsed fea-

tures, it is not desirable to look through all features at each node, especially when

the number of features is very high. As a solution for this, the algorithm selects a

random subset of features at each parent node. The number of these randomly se-

lected features can be selected by the user and is often set to the square root of all

features as it is in the work presented in this thesis. Reducing the number of parsed

features, however, results in a tree that does not necessarily find the optimal features

and thresholds but only local maxima. We will explain later in this chapter why this is

advantageous for Random Forest classifiers anyway.
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(a) (b) (c)

Figure 8: A data set with two classes ’red’ and ’blue’ can be separated (a) using a tree.
Depending on the axis (or feature) in the first step, multiple trees achieve results
that are different but very similar to each other (b) and (c). The heterogeneity of
the data (sub-) sets is indicated by the colour-coding of the nodes in (b) and (c).

S P L I T F U N C T I O N A split function measures the heterogeneity of labels in two

child nodes that have been created from thresholding a certain feature. Usually,

multiple features and thresholds are tested and the combination with the highest re-

duction of heterogeneity is selected. In Figure 8 (a) we show a distribution of red and

blue circles with an equal number of instances in each class. The first selected fea-

ture for the tree shown in (b) is the x-axis and the threshold is indicated by the green

line. This results in two child nodes, which represent two subsets of the data space

(see second level of the tree in (b) and the data points left and right of the green

line in (a) respectively). One of these subsets is now completely homogeneous and

represents the blue class, while the other subset is still heterogeneous but the dis-

tribution shifted towards the red class. Subsequent applications of this split function

will create more child nodes and reduce the heterogeneity of the subsets further as

indicated by the purple, yellow and light blue lines in Figure 8 (a) and (b).

A common measure for a split function is information gain

IIG = H(S) −
∑
i∈{L,R}

|Si|

|S|
H(Si) (6)
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which uses the (discrete) Shannon entropy

H(S) = −
∑

Ck∈{−1,1}

p(Ck) log (p(Ck)) (7)

to calculate the decrease of heterogeneity from the parent node S to the two child

nodes Si based on the class proportions p(Ck).

Another option would be gini impurity

Ig =
∑

Ck∈{−1,1}

p(Ck)(1− p(Ck)), (8)

which measures the relative proportion of labels p(Ck) in each child node. It is

minimal (Ig = 0) when both nodes only consist of instances with the same class and

is maximal (Ig = 0.5) when both classes are equally distributed in the both nodes.

R A N D O M N E S S The name Random Forest arises from the fact that an ensem-

ble of classification trees is used and these trees are randomly different from each

other (see Figure 8 (b) and (c)). This difference arises from the random selection of

feature subsets as described above. If the algorithm is always presented with the

entire set of features it would always pick the same feature and cutoff-threshold at

each respective node and, consequently, each tree will be the same. With a reduced

number of features, the correlation between trees is getting reduced as well because

the algorithm will not be able to pick the global best feature and threshold but only

a local optimum from the presented subset. As a result, the trees will be less corre-

lated and will have much better generalisation properties because the features and

associated cutoff-thresholds are less rigid.

An example of this behaviour is given in Figure 9 where the algorithm is presented

with two clearly distinct clusters of yellow and red dots (see (a)). The features are

defined by the axes x1 and x2 and there are many threshold options that would per-

fectly separate the two classes (see (b)). A single tree, however, creates very rigid
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classification boundaries as shown in the left side of Figure 9 (c) where all new in-

stances in the yellow area would be assigned the label ’yellow’ even if they are in

the lower right corner of the field and therefore are much closer to the red cluster.

If we create a larger number of trees where both the x1 and the x2 axis have been

selected as features and the thresholds have been varied, the classification bound-

aries become more smooth and only the areas directly around the data clusters will

still be dominantly yellow or red (see middle of Figure 9 (c)). The areas in between

become more uncertain with increasing distance from the data as one would expect

intuitively. With a further increase of the number of trees, this becomes even more

evident in the right side of Figure 9 (c) where we can see a continuous transition

from a high probability of ’yellow’ in the top left corner to a high probability of ’red’ in

the bottom right corner and a high degree of uncertainty in between.

(a) (b)

(c)

Figure 9: Illustration of the influence of forest size. Two classes (red and yellow circles) (a)
can be separated in many different ways along both axes x1 and x2 (b). Sin-
gle trees tend to overfit and generalise less well (c, left side) while an increasing
number of trees T reduces these effects and allows for a more stable probabilistic
classification (c, middle and and right side). Image source: Criminisi et al. [27].
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OV E R F I T T I N G Individual classification trees tend to overfit the training data un-

less certain precautions are taken into account. It can be seen that the final separa-

tion in Figure 8 is not perfect and could be further improved by adding more levels to

the trees. This would optimise the result for the given data set but it is likely that the

model would not perform well on new data close to the border between red and blue

instances.

The misclassification in the example above is only due to individual outliers so an

’improvement’ of the tree could only be achieved by isolating single instances in a

node. To avoid this, we can simply ensure that a parent node will not be split if the

resulting child nodes will contain only a very small number of instances. Similarly, we

can ignore potential parent nodes if they contain only very small numbers of features.

Usually, these two measures are already sufficient to limit overfitting. In very large

data sets, however, it might be useful to also limit the total number of nodes or levels

in the tree since overly large trees are more likely to overfit and their exponential

growth makes trees computationally expensive after a certain point.

C O M B I N I N G T R E E S The proportions of instances from the training set that end

up in each terminal or leaf node determine the outcome of a new data point that has

to be classified. The bottom left leaf node in Figure 8 (b) for instance was predom-

inantly filled with 95 % blue training data points. A new instance that is propagated

through the tree and ends up in that leaf will therefore be associated with a probability

of 95 % for belonging to the blue class and 5 % for the red class.

It is then possible to define a threshold (e.g. 50 %) and assign a definite label to

the data point. Outcomes from different trees can subsequently be combined using

a majority vote. This means that a data point gets the class label that has been

assigned to it by most of the trees. Alternatively, we could take advantage of the

probabilistic nature of classification trees and calculate an average probability over

the outcomes from each single tree for all instances. The resulting mean probability

can then be thresholded if a binary label is needed.
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3.4 P E R F O R M A N C E E S T I M AT I O N

Classifiers do not work perfectly in real world applications due to many reasons such

as small or unrepresentative data or large variations in the population. Therefore,

it is necessary to make certain precautions that allow to estimate the performance

of the classifier and ensure that the findings from a limited small data set can be

generalised to a larger population.

AC C U R AC Y M E A S U R E S The accuracy of a binary classifier is generally defined

as the proportion of instances that have been assigned to the correct class:

accuracy (acc) = #true positive +#true negative
#subjects .

In this thesis, we defined the conversion from CIS to CDMS as the positive event and

non-conversion as the negative event which results in a confusion matrix as shown

in Table 4.

Consequently, we can define additional performance measures such as

sensitivity (sens) = #true positive∑
converters ,

specificity (spec) = #true negative∑
non-converters ,

positive predictive value (PPV) = #true negative∑
predicted converters , and

negative predictive value (NPV) = #true negative∑
predicted non-converters .

Table 4: Confusion matrix.

predicted converter predicted non-converter

converter # true positive # false negative

non-converter # false positive # true negative

In the case of imbalanced class sizes (i.e. one class has much more subjects

than the other), accuracy can be highly misleading as a performance measure. If we

assume such an imbalanced cohort of 100 subjects with 80 subjects having condition

A (positive) and 20 subjects having condition B (negative), it is evident that we can

achieve an overall accuracy of 80 % with a classifier that diagnoses all subjects with

condition A. Using additional measures, however, reveals that we have a sensitivity

of 100 % and a specificity of 0 %. This can be combined to a single measure called
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balanced accuracy which is defined as accbal =
sens + spec

2 and would be 40 % in

the above example. It now becomes clear that the classifier does not perform well

as indicated by the accuracy of 80 % but in fact is worse than a completely random

assignment of diagnoses, which would be expected to yield a (balanced) accuracy

of 50 %.

C R O S S - VA L I DAT I O N Clinical data is always limited in the number of available

patients. At the same time it is necessary to train a classifier with as much data

as possible and also evaluate how the model performs on unseen data. A possible

solution to this dilemma is k-fold cross-validation (CV) where the available data is

split into k disjunct subsets. To create the classifier model k-1 subsets are used and

the remaining one is employed for testing how well the model generalises to ’new’

data. The k subsets are consequently permuted k times so that all subsets have

been used for testing once. The definitions for the accuracy measures remain valid.

An important parameter is the selection of an appropriate k where the two most

extreme cases would be k = 2 and k = #subjects. In the case of k = 2 the

two resulting models are completely independent as there is no overlap between the

subjects in each set. As a result, the variance in model performance can be expected

to be high when the data has a high variance. When k = #subjects, the resulting

models are highly correlated because they share all but one subject when compared

pairwise. As a result, findings using k = #subjects tend to be positively biased and

hence yield higher accuracies compared to real unseen data [67]. This approach is

also known as leave-one-out (LOO) cross-validation.

A value of k = 10 is often suggested as a good compromise as it reduces the

correlation between models and also does not introduce too much bias to the esti-

mate [67]. Additionally, a small k reduces the computational expense because less

models have to be created compared to LOO.
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3.5 DATA S A M P L I N G

The available clinical data is likely to be not completely representative of the entire

population with a certain disorder. This becomes even more evident when the sam-

ple size is small or when the data was collected at only one single centre. This

effect is known as sampling bias and cannot be avoided completely but only reduced

by collecting large sample sizes from different locations. In retrospective analyses,

however, there is no way to change the available data.

R E S A M P L I N G As mentioned before, unbalanced class sizes lead to a potential

bias in the accuracy estimate, which can be reduced with alternative performance

measures. In addition, the use of imbalanced class sizes often have a negative im-

pact on the classifier performance. A common solution for this is resampling, which

can be divided in oversampling and undersampling [37].

Oversampling means that subjects from the smaller class are randomly selected

with replacement such that final number of selected subjects matches the number of

the larger class. This, however, only solves the problem formally without adding any

new information that the classifier could learn from. In fact it could even increase the

bias when outlier patients are selected multiple times.

When using undersampling or downsampling, subjects from the larger cohort are

randomly selected without replacement in order to match the number of subjects in

the smaller cohort. This has the advantage that no data is artificially added but it has

the clear disadvantage that a large portion of the data set is ignored for the analysis

and this effect increases with increasing imbalance. Since downsampling is the more

conservative variant it was used for the experiments in this thesis where appropriate.

P E R M U TAT I O N Resampling can introduce a second type of sampling bias, due

to the random selection of subjects in both over- and downsampling. In both cases

it is possible that the resulting cohort is not representative of the original data set.

A good way to overcome this is permutation where the experiment is not only per-

formed once but repeatedly with new randomly selected sets of subjects. This leads
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to a variance in the model performance because non-representative cohorts will re-

sult in models that perform overly well or overly poorly with respect to the classifi-

cation task [53]. Performing a large number of repetitions or permutations, however,

shows that the set of obtained accuracies follows a Gaussian distribution so that the

mean value of this accuracy distribution can be assumed to be indicative of the real

performance.



Part III

M AC H I N E L E A R N I N G E X P E R I M E N T S



4
VOX E L S A S F E AT U R E S

A common approach in supervised classification of neuroimaging data is to use ar-

rays of voxel information [62, 64]. This can be direct intensity information or, more

commonly, derived information such as grey matter or white matter density. In sim-

ple classification tasks it can be sufficient to apply linear SVMs in order to distinguish

subject groups such as healthy controls and patients with Alzheimer’s disease, or pa-

tients with early MS and patients with late MS. Both diseases are characterised by

increasing brain atrophy with longer disease duration, so that distinct patterns be-

come visible that can be automatically detected and used for classification. Studies,

which were successful using this approach were placed in the lower-left corner of

our proposed classification landscape (see also Figure 1) indicating low feature and

low classification task complexity.

In this chapter we show the first experiments on the classification of CIS patients

who will convert to CDMS which is a very challenging task. We do not expect simple

patterns to exist for patients with early CIS since MS is mainly characterised by

inflammation rather than atrophy in early stages [92] and appearance of MS lesions

is rather random. However, there is a possibility of other, less obvious patterns, which

could already form at CIS onset and help discriminate between progressive and

non-progressive CIS types. We run pattern analysis experiments using linear SVMs

exploratory on voxel information from T1-, T2- and PD-weighted MR images, as well

as grey and white matter density maps. This chapter will explore the classification

landscape in MS using low-complexity features in a high-complexity task.

45



4.1 DATA 46

4.1 DATA

We included data from two independent MS centres in Barcelona, Spain and London,

UK, which are both part of the European ’Magnetic Resonance in Multiple Sclerosis’

(MAGNIMS) research group. The centres provided MRI scans with T1-weighting,

as well as dual echo PD-T2 images with a resolution of 0.975x0.975x3 mm3, which

were obtained according to the centres’ local acquisition protocols. All MRI scans

had been used previously for a different study [50] but were re-examined for strong

artefacts or distortions. No problems were found so that all 189 patients scanned

in Barcelona and all 73 patients from London were included for this study. More

information on the cohorts can be found in Table 5.

Table 5: Demographic and clinical characteristics of the cohorts used for experiments in chap-
ter 4. Information shown for both data sets.

Barcelona data London data

Age (mean, median, range) 31.7, 31, 16-50 33.1, 34, 19-49

Gender 134F/55M 49F/25M

EDSS (median, [range]) 2 [0-6.5] 1 [0-8]

Type of onset brainstem/cerebellum: brainstem/cerebellum:

(number, [converters]) 55 [12] 6 [1]

spinal cord 52 [9] spinal cord: 4 [4]

optic neuritis: 50 [7] optic neuritis: 64 [17]

other: 32 [6] other: 0 [0]

Converters at follow up 34 (18 %) 22 (30 %)

4.2 I M AG E P R O C E S S I N G

All MR images were initially corrected for bias fields using the N3 algorithm [111]

and brain masks were obtained with FSL bet. The T2- and PD-weighted MRI scans

were affinely registered to T1-space using reg_aladin from the NiftyReg toolbox

[84]. The T1-weighted images were used to obtain tissue probability maps using the

seg_LoAd algorithm [14] from the NiftySeg toolbox. Here, five priors were used for

white matter, grey matter, external CSF, deep grey matter and internal CSF.
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Since we are aiming to find voxelwise patterns, the MRI scans have to be trans-

formed to a common space so that anatomical structures overlap as closely as pos-

sible. To this end, the T1-weighted MR images were diffeomorphically registered to

the MNI-ICBM-152 template with a resolution of 1x1x1 mm3 using reg_aladin for

affine and reg_f3d for non-linear transformation consecutively. In the following step,

the probabilistic tissue density maps as well as the co-registered T2 and PD images

were resampled using the control point parameter maps from the T1-to-MNI registra-

tion. The individual tissue maps for grey and deep grey matter were added to create

a unified map containing all grey matter voxels, and the GM and WM maps were

thresholded at a probability of 50 % to avoid an overlap of tissue classes in border

regions.

Due to physiological variation, the location of grey matter voxels in the brain varies

between subjects so there is no GM mask that fits all patients. Therefore, all indi-

vidual GM masks were overlaid to ensure that all GM voxels will be included for the

analysis. However, this means that the combined mask will include WM, CSF or

even non-brain voxels for some patients. To avoid this bias, the non-GM voxels were

set to zero for individual patients. The same procedure was applied for the white

matter tissue respectively.

4.3 E X P E R I M E N T D E S I G N

Due to the exploratory nature of this study, many different combinations of centres

and features types were analysed. Initially, we used T1-, T2- and PD-weighted inten-

sity values as well as GM and WM densities independently in both centres respec-

tively. For the London data set, we then looked for performance changes arising

from combining the three imaging weightings by concatenating the respective fea-

ture vectors. Finally, we looked at GM and WM features in a data set consisting of

all included patients from both centres. A detailed list of the performed experiments

is given in Table 6.

SVMs are more stable when classes of similar size are used [58]. However, our

two data sets are highly imbalanced with 155 non-converters versus 34 converters
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Table 6: Overview of the experiments performed in chapter 4.

Data set Feature type #features (voxels) #subjects

Barcelona T1 intensity 2132133 34 vs 34

Barcelona T2 intensity 2132133 34 vs 34

Barcelona PD intensity 2132133 34 vs 34

Barcelona GM probability 2057429 34 vs 34

Barcelona WM probability 1389843 34 vs 34

London T1 intensity 2132133 22 vs 22

London T2 intensity 2132133 22 vs 22

London PD intensity 2132133 22 vs 22

London T1+T2+PD intensity 6396399 22 vs 22

London GM probability 1995315 22 vs 22

London WM probability 1307015 22 vs 22

Barcelona + London GM probability 2225051 56 vs 56

Barcelona + London WM probability 1447246 56 vs 56

and 51 non-converters versus 22 converters respectively. To overcome this prob-

lem, we randomly sampled patients from the large non-converter group to match

the number of converters, a method known as subsampling or bootstrapping without

replacement. To reduce the probability of a spuriously well-performing selection of

patients and get a more generalizable outcome, this bootstrapping procedure was

repeated 100 times. Furthermore, we used a leave-one-out (LOO) cross-validation.

This means that all but one subject is used to train the classifier and the left out sub-

ject is then used to test the classifier’s performance. Training and test patients are

then systematically permuted until each patient has been used for testing once.

For these experiments, linear SVMs were used with a cost parameter varying be-

tween 2−1 and 25. In this study, we used the LibSVM library [17] within MATLAB

2012a.

The accuracy outcome was measured as the proportion of correctly classified pa-

tients with respect to the total number of patients. We report both the mean accu-

racies over all 100 bootstraps as well as the accuracy range and 95 % confidence

interval (CI).
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4.4 I N T E N S I T Y N O R M A L I S AT I O N

MRI intensities are not standardised as they depend on the scanner, the MRI coil,

the subject and many more parameters that cannot be kept constant. This can have

a crucial impact on algorithms that perform decisions based on intensity thresholds.

Therefore, an additional experiment was designed to compare the classification out-

come from ’native’ (N3-corrected and registered) and intensity-normalised scans.

This intensity normalisation was performed as a piecewise linear transformation

based on histogram information. In the histogram of a standard MRI scan of the brain

with good contrast there are two clearly distinct peaks right next to each other (and

one at the beginning of the low intensity spectrum for the dark background). These

two peaks represent white and grey matter and are shown in Figure 10 (a). If the

contrast is low, however, the distributions of the two tissue types strongly overlap and

it is no longer possible to separate them (see Figure 10 (b)). Since we have some

low-contrast data, we decided to create an algorithm that reduces the influence of

this effect. It is based on the location of the highest peak, which is usually WM

but can be a combination of WM and GM in the case of low contrast. Firstly, the

location of all main peaks in the patients’ histograms were estimated, and then the

average over all these peak locations was calculated. This mean peak location was

used as an anchor point for a piecewise linear intensity transformation such that

intensities between zero and a patient’s main peak location were stretched/squeezed

into a new range between zero and the overall mean peak location. The intensities

between the individual patients’ main peaks and one were transformed respectively.

The histograms of the cohorts are shown in Figure 10 (c) before and in (d) after the

normalisation.

Additional experiments have been run with normalised MRI intensities on the Lon-

don data set. The three imaging weightings were firstly used independently and then

all three of them concatenated (see Table 7).
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Figure 10: Illustration of intensity normalisation. (a) two main peaks for white and grey matter
between 0.4 and 0.55 (and a background peak around 0.1). (b) grey and white
matter peaks merged due to low contrast in image. (c) histograms of all subjects
before normalisation. (d) same histograms after normalisation.

Table 7: Overview of the performed experiments on normalised intensity values.

Data set Feature type #features (voxels) #subjects

London T1 intensity normalised 2132133 22 vs 22

London T2 intensity normalised 2132133 22 vs 22

London PD intensity normalised 2132133 22 vs 22

London T1&T2&PD intens. norm. 6396399 22 vs 22
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4.5 R E S U LT S

The accuracies of predicting CDMS in the voxel-intensity-based experiments range

between 47.2 % and 48.5 % in the Barcelona data set and between 46.7 % and

55.8 % in the London data set. The individual bootstrap samples of these experi-

ments range between 20.5 % and 75 %. The highest accuracy here was obtained

using the combination of all three MRI contrasts in the London data. Detailed results

for all experiments are shown in Table 8.

Intensity normalisation of the London MRI scans lead to accuracies noticeably

lower compared to the original data with a range from 43.5 % to 45.9 %.

The SVMs with tissue probability maps as features provide an accuracy of 48.7 %

and 47.8 % for grey and white matter respectively in the Barcelona data set. The

bootstrap accuracies range from 30.9 % to 63.2 % with 95 % confidence intervals

(CI) of 47.3 % to 50.1 % and 46.6 % to 48.9 % for the two tissue types respectively.

In the London data, these results are slightly lower with 45.7 % (CI: 43.5 %-47.9 %)

using GM and 38.1 % (CI: 36.6 %-39.6 %) using WM with a range from 11.4 % to

70.5 %.

Combining both centre’s data and apply the respective GM and WM densities to

SVMs showed only little changes compared to single centre experiments. The ac-

curacy using mixed GM masks is 50.6 % (range: 39.3 %-64.2 %, CI: 49.6 %-51.7 %)

and using WM it is 59.1 % (range: 36.6 %-60.7 %, CI: 48.2 %-50.0 %).

4.6 D I S C U S S I O N

All mean accuracies of the performed experiments are between 38.1 % and 59.1 %

which is not a strong deviation from a random finding of 50 %. Hence, it can be

concluded that - if used without further information - neither voxel intensities nor

tissue probability masks are informative enough to find a difference between CIS

patients who will convert to CDMS within one year and those who will not. This is

very different from findings of other groups performing classification of CN vs AD
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Table 8: Results of the performed experiments of section 4. Performance is presented as
mean accuracy, 95 % confidence interval (CI) and range over 100 repetitions.

Data set Feature type Accuracy (CI) (%) Range (%)

Barcelona T1 intensity 47.2 (45.8-48.7) 27.9-64.7

Barcelona T2 intensity 48.1 (46.6-49.6) 27.9-75.0

Barcelona PD intensity 48.5 (47.1-49.8) 33.8-69.1

Barcelona GM probability 48.7 (47.3-50.1) 30.9-63.2

Barcelona WM probability 47.8 (46.6-48.9) 30.9-60.3

London T1 intensity 46.7 (45.0-48.4) 20.5-65.9

London T2 intensity 54.4 (53-55.8) 34.1-70.5

London PD intensity 54.1 (52.6-55.6) 27.3-70.5

London T1+T2+PD intensity 55.8 (55.5-57.1) 36.4-72.7

London GM probability 45.7 (43.5-47.9) 11.4-70.5

London WM probability 38.1 (36.6-39.6) 20.5-59.1

London T1 intensity normalised 43.5 (42.0-45.0) 18.2-56.8

London T2 intensity normalised 45.0 (43.6-46.4) 22.7-63.6

London PD intensity normalised 45.9 (44.5-47.3) 22.7-63.6

London T1+T2+PD intens. norm. 43.8 (42.3-45.2) 20.5-59.1

Barcelona+London GM probability 50.6 (49.6-51.7) 39.3-64.2

Barcelona+London WM probability 49.1 (48.2-50.0) 36.6-60.7

[64] or several subgroups of patients with MS [7]. It should be noted though that this

classification task is extremely challenging as there is currently no known method to

clinically assess a CIS patient’s outcome from baseline data.

Due to the rather random outcome of the classification experiments we did not

examine the SVM kernel weights in order to identify regions of particular interest

as it has been done in other studies [7, 64]. The assumption that the strong differ-

ence of MRI intensity values between subjects (or different scans in general) causes

a reduced classification performance could not be verified since the classification

accuracies actually decrease after an intensity normalisation.

Tissue probability maps are expected to be widely independent from differences

between scans and scanners because they are usually calculated from T1-weighted

MRI scans and mostly rely on a good prior and sufficient contrast between grey and

white matter structures rather than specific intensity ranges. Therefore, a combina-

tion of tissue probability maps from different centres should not significantly influence

the outcome. In our experiments, it could be shown that the accuracy of the com-
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bined maps is 50.6 % and 59.1 % for GM and WM respectively which is slightly higher

than what we observe in single centres. Since we would expect a lower or similar

accuracy due to the higher complexity in a multi-centre classification task, this is an

additional indictor that this is in fact a random finding.

Generally, it must be noted that all results are at - or close to - 50 % and therefore

has to be considered random so that no strong conclusions about the possibility of

multi-centre classification experiments should be drawn from this study.

We showed in section 3.2 that it can become necessary to use kernel functions

in order to map the data points into a higher-dimensional space when no linear sep-

aration is possible in the original feature space. Even though a linear separation is

indeed not possible for the experiments in this chapter, it is very unlikely that this

arises from a lack of dimensionality. The voxelwise approach creates a very high-

dimensional feature space (see column #features (voxels) in Table 6), which is very

sparsely populated with data points. Thus, it can be assumed that a further increase

of feature-space dimensionality will not have any influence on the outcome and that

the bad classification performance actually has to arise from a lack of differences

between the two classes in this study.

Generally, it can be concluded that low-level features do not contain sufficient infor-

mation to solve highly complex classification tasks such as the prediction of outcome

in CIS patients.
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H I G H - L E V E L F E AT U R E S

In chapter 4 we showed that voxelwise information from MRI intensities, GM and

WM densities, or combinations of these does not provide sufficient predictive power

to classify CIS converters and non-converters with an accuracy above chance level.

Expert knowledge can help overcome this problem by introducing high-level features

that are described in literature and are known to play an important role in MS. Clini-

cal studies usually look at single measures of interest - corrected for effects arising

from differences in age, gender, etc - and present findings on a cohort level. Here,

we explore how combinations of a set of high level-features perform in a supervised

classification setting using SVMs. The aim is to use baseline data to predict conver-

sion at 1- and 3-year follow-up.

It must be noted that these high-level features generally require input from clinical

experts who e.g. outline lesions or perform clinical assessments, which can then be

included in the classification analysis. This information was available for all patients

in our retrospective study but if this work were to be generalised to a larger and more

general cohort the method could not be fully automated and relies significantly on

manual input. Due to this need for a clinical expert, we classify our task as high

feature complexity and high task complexity in the classification landscape shown in

Figure 1.

Parts of this work have been published in NeuroImage:Clinical [134].

5.1 DATA

In the scope of this retrospective study 74 patients were included who were scanned

at the UCL Institute of Neurology as part of a larger cohort recruited between 1995

and 2004. The time between disease onset and examination was on average 6.15

54
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weeks (std 3.4), and all included patients were clinically reviewed after one year.

Seventy patients were also included with a follow-up at 3 years. The inclusion criteria

for our study were 1. presence of at least one demyelinating lesion visible in baseline

MRI scans, 2. artefact-free MRI, 3. availability of baseline EDSS and onset location

(i.e. spinal cord, optic nerve, brainstem or multifocal), 4. knowledge of age and

sex, 5. knowledge of clinical outcome at one- and three-year follow-up. The clinical

outcome noted at each follow-up was clinical conversion to MS due to the occurrence

of a second clinical attack attributable to demyelination with a duration of more than

24 hours (see also first McDonald criterion in Table 3). In this cohort, 22 patients

had a second relapse within one year (30 %) and 31 patients (44 %) fulfilled the

criteria for CDMS after three years. None of the patients was on disease modifying

treatment since they were at disease onset. Informed consent and approval by the

local ethics committee was obtained prior to the study.

Detailed information on the cohort characteristics can be found in Table 9.

The baseline MRI protocol was undertaken using a 1.5 T GE Signa MRI scan-

ning system. PD- and T2-weighted brain images were obtained using a FSE dual

echo sequence with a repetition time (TR) = 3200 ms, echo time (TE) = 5/90 ms.

The contiguous axial slices have a thickness of 3 mm and the in-plane resolution is

0.9375x0.9375 mm2. Binary lesion masks were created by the same experienced

neurologist for all patients with a semi-automated in-house software. Lesions were

outlined in the PD-weighted images using the corresponding T2 images as a refer-

ence (see also Figure 11).

5.2 F E AT U R E D E F I N I T I O N S

Expert knowledge can be included in the analysis in the form of high-level features.

Academic literature reports a large set of features that are associated with good

or bad prognosis of patients with CIS (see Table 2). These features have been re-

ported as independent predictors of disease progression comparing large cohorts

of patients. To our knowledge, this is the first study looking at a multivariable ap-
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(a) (b) (c)(a)(a) (b) (c)(b)(a) (b) (c)(c)

Figure 11: Example of T2- and PD-weighted images and corresponding binary lesion mask.
Axial T2-weighted image (a) and proton-sensity-weighted image (b) showing hy-
perintense white matter lesions; the corresponding binary lesion mask (c) was
used to obtain the lesion features.

Table 9: Demographic and clinical characteristics of the cohort used for the experiments in
chapter 5. Information shown for both one- and three-year follow-up. Lesion count
bins correspond to low, medium and high lesion count.

1 year 3 years

Age (mean, median, range) 33.1, 34, 19-49 33.2, 34, 19-49

Gender 49F/25M 47F/23M

EDSS [range] 1 [0-8] 1 [0-8]

Type of onset brainstem/cerebellum: brainstem/cerebellum:

(number, [converters]) 6 [1] 5 [1]

spinal cord: 4 [4] spinal cord: 4 [4]

optic neuritis: 64 [17] optic neuritis: 61 [26]

other: 0 [0] other: 0 [0]

Lesion count 63: 14 63: 13

(number of patients 4-10: 23 4-10: 23

per bin) >11: 37 >11: 34

Converters at follow-up 22 (30 %) 31 (44 %)
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proach combining these independent predictors and applying them to the outcome

prediction of individual patients.

Lesions are the most dominant and most obvious features at early stages of MS

such as CIS or RRMS. According to the literature abnormal MRI with large lesion

load is predictive of poor prognosis [70]. Most of the features included in this study

were derived from binary lesion masks. The idea was to collect information not only

about the total volume but also to capture the number and distribution of a patient’s

lesions. MRI intensity in the PD- and T2-weighted images in lesion areas were used

as approximate measures of lesion activity. Additionally, we included gender, EDSS

and type of onset, which are known to correlate with disease progression in MS, as

well as the patients’ age since MS mostly affects younger people. The CIS type was

coded according to 1 =̂optic neuritis, 2 =̂ spinal cord, 3 =̂brainstem, and 4 =̂other.

This coding was arbitrarily chosen but a permutation of this numbering, however,

has little effect and reduces the accuracies of the best feature combinations by a

maximum of 1.7 %.

A full list of features and their description can be found below:

1. Lesion count: this feature reflects the total number of lesions in the brain, ex-

tracted from the native lesion masks; it was computed using the original binary

lesion masks and an 18-neighbourhood for voxel connectivity. This means that

only lesion voxels that are connected by their faces are treated as the same le-

sion. Pure edge connections are not considered since there is a high chance

of them being separate lesions where the apparent connections are due to

partial volume effects.

2. Lesion load: this feature reflects the total lesion volume, in voxels, extracted

from the native lesion masks

3. Average lesion PD intensity: this feature reflects the average PD intensity of

the lesional voxels marked in the native lesion masks.

4. Average lesion T2 intensity: this feature reflects the average T2 intensity of the

lesional voxels included in the native lesion masks.

5. Average distance of lesions from the centre of the brain: this feature gives

the average distances between all lesional voxels and the centre of the brain
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(defined as the central voxel of the ICBM-MNI 152 template). It provides infor-

mation on how spread out the lesions were on the registered images.

6. Presence of lesions in proximity of the centre of the brain: this binary feature

is 1 if there are lesions within a cube of 1 cm3 centred around the central

voxel of the ICBM-MNI 152 template, or 0 if no lesions were in the central box.

This feature was selected because of the evidence that lesions located in the

corpus callosum, which is a midline brain structure, are useful in predicting

conversion to CDMS in addition to Barkhof criteria [56].

7. Shortest horizontal distance of a lesion from the vertical axis of the brain: this

feature measures the shortest distance of a lesion’s centroid (centre of mass)

from the intersection of the midsagittal and midcoronal planes of the image.

This feature represents an additional way of reflecting the distance of the le-

sions from the centre of the image.

8. Lesion size profile: this feature reflects the distribution of lesion sizes. All

lesions were sorted according to their size in native space and divided in three

groups of equal length representing small (1-15 voxels), medium-sized (16-

36 voxels) and large (37+ voxels) lesions which give similar numbers in each

category over the whole data set.

9. Age: MS affects mostly young people in their twenties and thirties.

10. Gender: Woman are three times more likely to develop MS compared to men

but men have a worse prognosis.

11. Onset location: location of disease onset is controversially discussed in litera-

ture as a sole predictor. However, it is likely to be informative when combined

with other features.

12. EDSS: fast progression from CIS is associated with higher disability when de-

veloping MS. High baseline EDSS might be indicative of faster progression.

5.3 E X P E R I M E N T D E S I G N

The aim of this study is to predict the conversion from CIS to CDMS at 1- and 3-

year follow-up using information available at CIS onset. Firstly, we want to examine
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how individual features compare to feature combinations, and secondly, we want to

identify the most predictive feature combination.

Since the proportion of converters at such short follow-up intervals is relatively

small, the unbalanced group sizes of 22 converters vs. 52 non-converters and 31

converters vs. 39 non-converters for one and three years respectively can lead to

a bias of the hyperplane weighting towards the larger group, and, in addition, often

results in a high sensitivity and a low specificity or vice versa [67]. Therefore, as in

section 4.3, we performed a bootstrapping without replacement. This means that

patients were randomly selected from the larger non-converter group in order to

match the size of the smaller converter group. This was repeated 100 times to

reduce the effect of sampling bias (i.e. a coincidental selection of non-representative

patients), provide a confidence interval of the prediction, and give a better idea of how

well the model generalises to the whole cohort. Overall, we perform 100 experiments

with 22 converters vs 22 non-converters for the 1-year follow-up and 100 experiments

with 31 converters vs 31 non-converters for the 3-year follow-up in a leave-one-out

cross-validation (LOO-CV).

In a LOO-CV for our 1-year follow-up 43 out of 44 patients are used in the training

phase to calculate an optimal separating hyperplane (OSH). The remaining patient

is then classified based on this OSH. The training and testing samples are permuted

until every patient was used for testing once. The nature of LOO-CV implies that in

each individual training step the classes are slightly imbalanced (i.e., 21 vs. 22 or

30 vs. 31) as one patient is always left out of the training cohort. This procedure,

however, is performed for both classes in the exact same way so that this effect can

be neglected.

Each experiment is performed using the built-in functions svmtrain and

svmclassify from the MATLAB 2012a statistics toolbox. We used a polynomial

kernel k(xi, xj) = (xi · xj + c)d with degrees d varying from 1 to 5. This includes the

widely used linear kernel, which is a polynomial kernel of degree one but also allows

the classifier to build more complex models. The maximum degree of 5 was chosen

as a tradeoff between model complexity and overfitting. Parameter optimisation was
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performed with an inherent sequential minimal optimisation (SMO) with 10 million

iterations to allow for convergence.

Initially, all possible feature combinations were tested starting from every individual

feature itself, pairs of features, triplets of features, etc. up to a concatenation of all

12 features. This leads to a total of 212 − 1 = 4095 feature combinations that are

tested with each of the polynomial degrees yielding 4095× 5 = 20475 experiments

per follow-up. This ensures that we find the most predictive combination of features

but has the risk of finding spurious effects arising from the application of a large set

of models on a relatively small data set. This can be accounted for using statistical

methods for multiple comparisons such as Bonferroni correction. This would mean

that the significance level of the p-value - the probability of our result arising from

random distribution - needs to be divided by the number of tested models. Using

the default threshold for statistical significance of p = 0.05, the adjusted significance

level would be p = 0.05
20475 = 0.00000244.

Alternatively, it is possible to perform a more systematic approach to feature se-

lection known as forward Recursive Feature Elimination (fRFE) to create the model.

This is an iterative method where features are added if they improve the accuracy of

the previously applied feature set. It starts with performing the classifications using

all individual features by themselves and identifying the feature providing the highest

accuracy. Then, the remaining 11 features are subsequently combined with the most

predictive single feature in order to find the most predictive pair, etc. This procedure

is continued until adding a new feature does not increase the obtained accuracy any-

more (see Figure 13). It should be noted that this method does not necessarily find

the best combination because the most predictive individual feature does not have

to be part of the overall-best combination of features. In these cases, fRFE will only

find a local-maximum solution.

5.4 R E S U LT S

The highest average accuracy over all 100 bootstraps at 1-year follow-up was 60.6 %

using individual features, and 71.4 % for both the fRFE approach and the exhaustive
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search through all possible feature combinations. At three-year follow-up the average

accuracy was 63.6 % for the most predictive single feature, 73.5 % for the overall

best feature combination, and 68 % using the fRFE. An overview of the accuracies

obtained with the individual features can be seen in Figure 12. Detailed results for

the fRFE approach and the exhaustive search can be found in Tables 10 and 11

respectively.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

les
ion

 co
un

t

les
ion

 lo
ad

PD in
ten

sity

T2 i
nte

ns
ity

mea
n d

ist.
 to

 br
ain

 ce
ntr

e

ce
ntr

al 
les

ion
s

dis
t. t

o v
ert

ica
l a

xis

les
ion

 siz
e p

rof
ile

typ
e o

f p
res

en
tat

ion ag
e

ge
nd

er
EDSS

fea
tur

e c
om

bin
ati

on

cl
as

si
fic

at
io

n 
ac

cu
ra

cy

1-year follow-up
3-year follow-up

Figure 12: Accuracies obtained using individual features and the best fRFE combination for
predicting the conversion from CIS to CDMS at one- and three-year follow-up.
Error bars indicate the 95 % confidence interval.

Using fRFE at one-year follow-up, the accuracy increased from 60.6 % using only

lesion count as feature to 71.4 % (sensitivity/specificity 77 %/66 %) by adding two

additional features and using a polynomial kernel of degree 4. For the linear kernel

(polynomial degree of one), the accuracy decreased when adding additional features.

With degrees 2, 3 and 5, we can observe an increase in accuracy when adding two

or three features but the obtained accuracy is not as high as with a kernel of fourth

degree (see Figure 13 (a)).



5.4 R E S U LT S 62

Respectively, at three-year follow-up the accuracy increased from 63.6 % using only

the average distance to the centre of the brain to 68 % (sensitivity/specificity 60 %/76 %)

using fRFE. The linear kernel performed best here utilising six features. It can be

seen in Figure 13 (b) that the polynomial kernels of degree 1 and 4 reached similar

accuracies using 4 features but additional features did not increase the accuracy any

further at degree 4 whereas the use of a linear kernel improved the result by another

0.8 %.

The same set of features provided the highest accuracy both with the fRFE and

the exhaustive search approach on the one-year follow-up: location of onset, gender

and lesion load. For the three-year follow-up the feature sets were different for the

two methods so that lesion count, PD intensity, mean distance from lesions to centre

of the brain, shortest distance from lesions to the vertical axis of the brain, EDSS,

and age were most predictive using fRFE, and lesion count, lesion load, shortest

distance from lesions to the vertical axis of the brain, age, gender, and EDSS were

most predictive using the exhaustive search. The detailed results can be seen in

Tables 10 and 11.
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Figure 13: Accuracies obtained with forward RFE using an increasing number of features.
The graphs show the progression of mean accuracies for the different polynomial
degrees after recursively adding features in order to find the most predictive com-
bination for conversion at one-year (a) and three-year (b) follow-up. Error bars
indicate 95 % confidence intervals.
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Table 10: Most predictive feature combination for classification of CIS converters and non-
converters at one- and three- year follow-up as given by the exhaustive search
across all possible feature combinations. Classification outcomes are presented
using accuracy, range, 95 % CI, sensitivity, specificity, PPV and NPV.

1 year 3 years

MRI features

Lesion count •

Lesion load • •

Average lesion PD intensity

Average lesion T2 intensity

Average distance of lesions from the centre of the brain

Presence of lesions in proximity of the centre of the brain

Shortest horizontal distance of a lesion from the vertical axis •

Lesion size profile

Clinical features

Type of onset •

Age •

Gender • •

EDSS at onset •

SVM-based classification

Polynomial degree 4 1

Accuracy (%) 71.4 73.5

Range (%) 52-84 65-81

95 % CI (%) 70-73 73-74

Sensitivity (%) 77 67

Specificity (%) 66 80

PPV (%) 70 77

NPV (%) 74 71
CI = confidence interval; PPV = positive predictive value; NPV = negative predictive value.
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Table 11: Best feature combinations for classification of CIS converters and non-converters
at a one- and three-year follow-up as selected through fRFE. Classification out-
comes are presented using accuracy, range, 95 % CI, sensitivity, specificity, PPV
and NPV.

1 year 3 years

MRI features

Lesion count •

Lesion load •

Average lesion PD intensity •

Average lesion T2 intensity

Average distance of lesions from the centre of the brain •

Presence of lesions in proximity of the centre of the brain

Shortest horizontal distance of a lesion from the vertical axis •

Lesion size profile

Clinical features

Type of onset •

Age •

Gender •

EDSS at onset •

SVM-based classification

Polynomial degree 4 1

Accuracy (%) 71.4 68.0

Range (%) 52-84 61-74

95 % CI (%) 70-73 67-69

Sensitivity (%) 77 60

Specificity (%) 66 76

PPV (%) 70 72

NPV (%) 74 65
CI = confidence interval; PPV = positive predictive value; NPV = negative predictive value.
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5.5 D I S C U S S I O N

SVMs were utilised to correctly classify CDMS (or the absence of clinical conver-

sion) at one and three years in 71.4 % and 68 % of CIS patients respectively in a

cohort of 74 patients. Information was derived from individually labelled brain scans

and associated clinical information and results were averaged over 100 bootstraps

with balanced training data sets using leave-one-out cross-validation. Patients who

present with CIS in a neurological clinic today are told that they have a long-term

risk for CDMS of 60-80 % when white matter lesions are seen on the brain scans.

Depending on the number and location of brain lesions they have a low, medium and

high conversion risk to MS [116]. The relative risk of developing CDMS for female

patients compared to males is 1.20 (95 % CI 0.98-1.46) [34]. It must be noted how-

ever, that these findings come from group studies and there are strong limitations

in accuracy (sensitivity and specificity) when extrapolating radiological and clinical

predictors to individual cases in routine clinical practice. Machine-learning-based

classification has the strong potential that it can overcome these limitations and be

used for a single subject (or individualised) prediction of clinical conversion to MS,

which may lead to a more tailored prognosis, which, in turn, would translate into more

timely and better-informed treatment choices. Further benefits could be expected for

the preparation of clinical trials and research studies where the accurate prediction

of prognosis from individual subjects’ scans could help selecting patients.

The average accuracies of 71.4 % and 68 % obtained with SVMs in this study are

lower than those reported in previous applications of SVMs to other neurological

diseases such as Alzheimer’s diseases, Huntington’s disease or depression [63, 65,

89]. However, it is important to note that the classification of patients into those

who will develop MS within a short-term follow-up and those who will not is a more

challenging problem than classifying patients vs. healthy subjects [51, 129], since

some of the patients in the non-converter group may still develop MS in the long-

term. Studies focussing on a similar classification task on patients with mild cognitive

impairment (MCI) obtained lower or similar accuracies with a range from 62 % to

75 % for distinguishing between MCI-stable patients and MCI patients who convert
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to Alzheimer’s disease [136]. This behaviour is also described in the classification

landscape in section 1.4.

M O S T R E L E VA N T F E AT U R E S

Looking at the results shown in Tables 10 and 11, it can be seen that the preferred

lesion measures using both methods in this study are lesion load and lesion count

rather than other features such as lesion size. Similar results were found in previous

clinical studies [78]. For the prediction of CDMS at three-year follow-up, we found

that the distance of lesions from the centre or the vertical axis of the brain were

selected as predictive features, which suggests that lesion location is indeed asso-

ciated with CIS conversion as suggested in several studies regarding the corpus

callosum [56], the brainstem [118], or the corona radiata, optic radiation, and sple-

nium of the corpus callosum (periventricularly) [30]. In our study, a shorter distance

of the lesions to the vertical axis of the brain was seen more often in converters than

non-converters. Lesion probability maps have been recently used to correlate high

lesion frequency in specific white matter regions with conversion to MS [50].

Clinical and demographic features such as age or gender are known to play an

important role in the conversion from CIS to MS on a cohort level [34, 104]. We have

shown that these biomarkers are also informative when predicting individual patients

as they are present in the combinations of features associated with the highest accu-

racy for classification at three and one year respectively. In particular, it can be seen

that younger, female patients convert to MS more often than older, male patients.

The type of CIS is relevant at short-term conversion of one year, where patients with

a spinal cord type are more likely to convert to MS. Generally, it can be seen that the

performance in predicting clinical outcome is considerably higher when using combi-

nations of both MRI and clinical/demographic features rather than individual features.

This indicates that it is crucial to combine information from various sources to obtain

the highest possible accuracy for classification of individual patients.

Complex models (i.e. models with higher degree polynomial kernels) with a high-

dimensional features space (i.e. many features) should always classify training data

better than simpler models but are likely to overfit the data. The cross-validation test
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in out study, however, reduces this effect and allows for generalisation to unseen

test data as well as for identification of the best feature combinations. Consequently,

the models leading to the highest average accuracies contain only a small number

of features (three and six respectively at 1- and 3-year follow-up) and do not use

the highest possible kernel degree of five, even though more complex models with

up to 12 features were possible. This suggests that the obtained prediction models

are indeed based on the intrinsic structure of the data and are not the result of an

overfitted model.

L I M I TAT I O N S

It is important to ensure that no subject that has been used to train the classifier is

used again for testing when performing supervised learning because the classifier

is expected to perform particularly well on previously seen data. Having completely

independent data sets for training and test would be ideal to avoid any bias. In

practice, however, this is often not possible because available data sets are usually

relatively small as it was in the case of this study. Leave-one-out cross-validation is

one approach to partially overcome this problem, but it has the disadvantage that it

generally introduces a positive bias in the accuracy estimate [67]. Due to this bias,

the actual values for the accuracy of our models are likely to be lower on actual

unseen data. However, it can be expected that the comparison and ranking of the

feature combinations remains valid since all feature combinations in this study were

tested with the exact same methods.

The choice of features that need to be selected to perform the experiments with

machine learning techniques is absolutely crucial [20]. In this study we only used a

small set of high-level features that were selected a priori and were associated with

white matter lesions (visible on T2-weighted scans). These measures are known to

be of value in the development of MS [78] and discriminate between MS and healthy

subjects [51]. However, the feature set is mainly based on lesion masks, which are

manually created by an observer, rather than the outputs of automated image analy-

sis and pattern recognition methods. This means that expensive human interaction

is necessary to first create the lesion masks by an expert rater and then select ap-
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propriate features to be included in the analysis. However, there are advances in re-

search on automated lesion segmentation [48], which could be incorporated in future

image analysis pipelines. Similarly, recent advances in machine learning research

using depth sensors indicate that it might soon be possible to automatically assess

EDSS in patients [29] so that future work can focus on more automated approaches

of combining high-level information.

There are many more potential biomarkers that have shown promising results with

respect to prediction of MS prognosis but were not available in the data sets used

here. Non-standard MRI such as magnetisation transfer imaging (MTR) has been

founds to reflect damage outside of MS lesions [2] but results as an independent

predictor are inconclusive [47, 119] so that a combination with other measures would

be of interest. Para-clinical measures such as intrathecal synthesis of oligoclonal

bands [117], grey matter atrophy [13], and genetic factors [59] are discussed in the

context of MS but have never been used in a machine learning setting. This is also

true for more clinical features such as the presence gadolinium-enhancing lesions,

which allow the diagnosis of MS in CIS patients without a follow-up MRI scan or

a second attack [99, 101], spinal cord lesions, which could add predictive value

for patients with a non-spinal-cord type of CIS [55, 112] or cortical lesions, which

indicate GM damage but need additional double-inversion recovery (DIR) or phase-

sensitive inversion recovery (PSIR) MRI acquisition [42].

On the other hand, it can be seen as an advantage that the available data set was

limited to conventional MRI acquisitions and very basic demographic and clinical

features. This information can be obtained in any clinical centre even if they lack

specialist research expertise so that a machine learning model such as ours could

support the local physicians in their patient management.

It should be noted that even though the recursive feature elimination algorithm is a

useful method to identify relevant features, it is possible that it only finds a local max-

imum solution rather than the actual most predictive combination of features. The

alternative option of exploring all possible combinations of features exhaustively is

very tedious, computationally expensive and leads to a multiple comparisons prob-

lem. Testing 212 − 1 = 4095 different models on the same classification task is likely
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to identify a combination of features that spuriously performs well on this relatively

small data set but would not generalise well to unseen data. The fRFE algorithm,

on the other hand, is more likely to perform well on unseen data and also inherently

controls for redundant features as it only adds the one feature with the highest in-

formation gain at each iteration. If two features contain the same information only

one of them will be selected. This resulting feature set is not necessarily the only

one informative about the classification task, since some highly correlated features

may have been rejected. In the case of our study, however, we found that this is not

the case and there is indeed only one combination of the 12 analysed features that

leads to the reported accuracy values.

This work can be extended to confirm our findings in a larger data set, which

could divide the data into separate training and testing sets. It would also be of

interest to combine data from multiple MS centres in order to reduce centre effects

and increase the generality of our method. Additionally, it is possible to evaluate and

compare the classification rates for progression of disability or clinical outcome from

novel algorithms, such as the event-based model recently applied to Alzheimer’s and

Huntington’s disease cohorts [44, 135].
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Parts of this work have been published in Magnetic Resonance Materials in Physics,

Biology and Medicine [133].

It is evident form the experiments presented in chapter 5 that many of the tested

features were not selected for the most informative feature combination using our

SVM approach and therefore can be assumed to contain little predictive power. A

modified set of features was therefore examined with regard to predictive power in

the task to predicting clinical conversion to MS at 1-year follow-up. In particular, it

can be seen that features regarding MRI voxel intensity and lesion location were not

contributing to the final classification model. We removed these features, and instead

increased the number of lesion-based measures and performed a rough parcellation

of the brain in order to capture lesion load and count in different brain areas (see

Figure 14). To this end, the Talairach atlas [114] was used at second-level detail as

described in [http://www.talairach.org/labels.html]. To reduce the number of features

the 12 Talairach ROIs were merged into larger coherent structures resulting in the

following ROIs that were finally utilised: brainstem, cerebellum, frontal lobe, tempo-

ral lobe, occipital lobe, parietal lobe, limbic lobe and sub-lobar structures (see also

Figure 14). The atlas was diffeomorphically registered from ICBM-MNI-152-space

to the individual patients’ native spaces. Furthermore, we obtained brain masks and

GM/WM probability maps and used these to quantify the volume of WM, GM and

intracranial structures. The revised feature set is as follows:

1. Global lesion count: total number of lesions in the brain.

2. Global lesion load: total lesion volume.

3. Lobar lesion count: number of lesions in the eight ROIs.

4. Lobar lesion load: lesion volume in the eight ROIs.

5. Mean lesion size.

70
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6. Standard deviation of lesion size: measure of lesion size variability.

7. Size of the smallest lesion.

8. Size of the largest lesion.

9. Intracranial volume.

10. White matter volume.

11. Grey matter volume.

12. Age.

13. Gender.

14. Onset location.

15. EDSS.

The resulting feature types are similar to the ones used in chapter 5, so again

we place this study in the classification landscape as a high-complexity task with

medium- to high-complexity features due to the usage of ROIs and high-level mea-

sures.

(a) (b)

(c)

Figure 14: Parcellation of the brain in eight areas following the Talairach atlas. Coronal (a),
sagittal (b) and transversal (c) view of the ICBM-MNI 152 brain overlaid with the 8
ROIs.



6.1 E X P E R I M E N T D E S I G N 72

6.1 E X P E R I M E N T D E S I G N

In this study, the data set described in section 5.1 was used again to keep results

comparable. However, we focussed on the one-year follow-up only since short-term

conversion is generally of higher interest. All possible combinations of the 15 fea-

tures (215− 1 = 32767) were tested to avoid local-maximum results. As explained in

section 5.3, the number of patients in each class needs to be balanced for the SVM

classification which has been done with 100 bootstraps without replacement as de-

scribed previously. The data was cross-validated using the LOO method. Both the

polynomial and the RBF kernel have been tested in order to find the most predictive

model. Results are reported as averages over all 100 bootstraps.

6.2 R E S U LT S

The highest obtained average accuracies were 73.5 % (sensitivity/specificity 73 %/

73 %) with the polynomial kernel and 71.6 % (sensitivity/specificity 75 %/69 %) with

the RBF kernel. In fact, two slightly different feature combinations provided the same

accuracy with the polynomial kernel and three different combinations provided the

exact same mean accuracy using the RBF kernel.

The selected features for the final model using the polynomial kernel are global le-

sion count, lobar lesion load, lobar lesion count, GM volume, onset location, and age.

The second model providing the same mean accuracy also included brain volume.

The first model has a relatively large spread of accuracies in the 100 bootstraps rang-

ing from 59 % to 91 %, whereas the second model is slightly more stable and ranges

from 62 % to 84 %.

Using the RBF kernel, the selected features are lobar lesion count, lobar lesion

load, mean lesion size, WM volume and all clinical and demographic features, as

well as brain volume, GM volume or both. All three combinations provide the same

average accuracy of 71.6 % with a range of 55 % to 86 % across the bootstraps.

More detailed results can be found in Table 12
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Table 12: Features used in the most predictive feature combinations for classification of CIS
converters and non-converters at a one-year follow-up. Results are shown for
two different kernel types: polynomial and RBF. For each kernel function we show
multiple combinations as they respectively provide equal accuracy. Classification
outcomes are presented using accuracy, sensitivity, specificity, PPV and NPV.

MRI features Polynomial RBF

Global lesion count • •

Global lesion load

Lobar lesion count • • • • •

Lobar lesion load • • • • •

Mean lesion size • • •

Std of lesion size

Smallest lesion

Largest lesion

Brain volume • • •

WM volume • • •

GM volume • • • •

Clinical features

Type of onset • • • • •

Age • • • • •

Gender • • •

EDSS at onset • • •

SVM-based classification

Accuracy % 73.5 73.5 71.6 71.6 71.6

Range % 59-91 62-84 55-86 55-86 55-86

Sensitivity % 73 74 75 75 75

Specificity % 73 72 69 69 69

PPV % 73 73 71 71 71

NPV % 73 73 73 73 73
PPV = positive predictive value; NPV = negative predictive value.
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6.3 D I S C U S S I O N

The modified feature set leads to a 2 % higher accuracy for the one-year follow-up

compared to the experiments in chapter 5 which indicates that the classification is

very sensitive to the included measures. Comparing the different models shown in

Table 12, it can be seen that some features appear in all top-performing combina-

tions, which suggests a particularly important role of lobar lesion count, lobar lesion

load, CIS type and age. The lobar lesion measures show a clear benefit over global

measures suggesting that a more refined parcellation of the brain might improve

findings even further.
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R O I - B A S E D F E AT U R E S

In the previous chapters we showed that the choice of features is the most important

part in a classification project. Specific feature combinations seem to perform better

than a collection of all features because classifiers are able to reduce the weights of

certain ’noise’ features but cannot eliminate their influence completely. In this chapter

we present a study comparing different types of features, which are combined into

coherent groups, and apply them to the three common classifiers Linear SVM, RBF

SVM and Random Forest. The aims of these experiments are a) to identify predictive

feature groups and b) to compare classifier performance.

The classification experiments will be again performed on baseline data of patients

with CIS. We use three different data sets both independently and in a multi-centre

setting. The features used in this study include high-level features such as EDSS,

CIS onset type or lesion masks but the majority of the included measures are local

measures automatically derived from MRI. The two parts of this study are placed

as medium and medium-to-high complexity in the feature space in a highly complex

task in the classification landscape shown in Figure 1.

7.1 DATA

This is a retrospective study performed on data that was obtained by three centres

in Barcelona/Spain, London/UK and Siena/Italy. It is part of a larger cohort acquired

by the Magnetic Resonance in Multiple Sclerosis (MAGNIMS, www.magnims.eu) re-

search group. The total number of included patients is 296, and 66 (22.3 %) of

them converted from CIS to CDMS within one year. Additional follow-ups were avail-

able for the centres Barcelona (3 and 5 years) and London (3 years). The available

data varies slightly between centres since local protocols were used for the origi-

75



7.1 DATA 76

nal studies. For all patients T1-weighted MRI, PD/T2-weighted MRI, manually out-

lined, binary lesion masks, demographics (age and gender), and clinical information

(type of CIS and EDSS) was obtained. In-plane MRI resolution was approximately

0.95×0.95 mm2 with a slice thickness of 3 mm. Lesion masks were manually drawn

from PD/T2-weighted MRI based on the centres’ internal protocols. The same MRI

scanner has been used for all scans at each respective centre but scanner types

vary between centres. Ethics approval and patient consent was obtained prior to the

study. Inclusion criteria for this study were the availability of the previously mentioned

data, and the presence of WM brain lesions (i.e. non-empty lesion masks). Detailed

information on the data is given in Table 13 and Table 14.

Table 13: Demographic and clinical characteristics of the cohort used for experiments in
chapter 7.

Centres Barcelona London Siena

# patients 176 72 48

# MS converters at 1y 34 (19.3 %) 22 (30.6 %) 10 (20.8 %)

# MS converters at 3y 78 (44.3 %) 29 (40.3 %) NA

# MS converters at 5y 95 (54 %) NA NA

Gender 51M/126F 28M/44F 22M/26F

MRI data —- T1, T2, PD —-

Clinical data —- EDSS, CIS type —-

Demographic data —- age, gender —-

Median EDSS (range) 2 (0-6.5) 1 (0-8) 2.5 (0-2.5)

Mean age (range) 32 (16-50) 34 (19-50) 32.5 (21-54)

Onset type 52/45/30/ 6/62/0/ 10/8/9/

(brainstem, optic nerve, hemispheric, 49/0 4/0 18/3

spinal cord, multifocal)

Table 14: Overview of class characteristics for all centres at 1-year follow-up.

group converters non-converters all

Gender 49F/17M 146F/84M 195F/101M

(74.2 %/25.8 %) (63.5 %/36.5 %) (65.9 %/34.1 %)

Mean age 32.3 32.7 32.6

(range) (16-50) (16-54) (16-54)

Median EDSS 1.5 1.5 1.5

(range) (0-8) (0-5.5) (0-8)
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7.2 I M AG E P R O C E S S I N G

For this study, a comprehensive image processing pipeline was created to calculate

the various features used in the for classification experiments. The individual steps

are described below.

1. N4 correction: all MRI scans were initially corrected for bias field inhomo-

geneities using the N4 algorithm [121].

2. Registration: lesion masks were created from PD/T2-weighted images whereas

most other image processing is performed in T1 space. Therefore, the PD/T2-

weighted MRI scans were affinely registered to T1 space using reg_aladin

from the NiftyReg toolbox [84]. Lesion masks were subsequently resampled

using the obtained transformation parameters.

3. Brain parcellation: we showed in chapter 6 that even a rough brain parcellation

has a beneficial effect on the classification outcome. Therefore, we perform a

more refined brain parcellation here using the GIF (geodesic information flows)

algorithm [15]. This tool segments the brain into 143 ROIs, of which most are

cortical areas as shown in Figure 15. To evaluate the effect of the level of

detail in the brain parcellation, the GIF-ROIs were merged into nine larger

areas. Most of these areas correspond to the anatomical brain lobes, which is

why we refer to all of them as ’lobes’ in the context of this work. These ’lobes’

were limbic, insular, frontal, parietal, temporal, occipital, cerebellum, GM and

WM. In addition to the 143 ROIs, the algorithm also provides a segmentation

of GM and WM, as well as binary masks of intracranial volume and all brain

tissue. A complete list of the GIF-ROIs can be found in Appendix A.1.

4. Cortical thickness: cortical thickness (CT) was calculated using DiReCT, a

registration-based algorithm [32]. It has been shown to have the same degree

of reproducibility as the more commonly used Freesurfer method [122] but is

much faster once WM and GM density maps are available. The algorithm

works reliably as long as the WM and GM density maps used as input are of
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good quality. Here, we used the state-of-the-art probabilistic segmentations

from GIF.

5. ROI masking. We used the ROIs from 3 to calculate local information from

GM/WM probability maps, T1, T2, PD MRI intensities, CT maps, and the lesion

masks.

Figure 15: T1-weighted MRI scans were parcellated using the GIF algorithm. This figure
illustrates the resulting ROIs used in this study.

7.3 F E AT U R E D E F I N I T I O N S

Following the image processing, an extensive list of features has been defined on

different ROI scales as follows.

Global features The following nine non-local features have been included:

global lesion count, global lesion load, brain volume, GM volume, WM volume, age,

gender, EDSS, CIS onset type.

GIF-ROI features and lobar features The following 9 features were calculated

both on the level of the 143 ROIs from the GIF parcellation and on the level of the 9

lobe ROIs (resulting in 1287 and 81 features respectively):

lesion count, lesion load, CT, WM, GM, volume, T1 intensity, T2 intensity, PD inten-

sity.

Some of the listed features actually do not make sense from an anatomical per-

spective and are merely the result of the ROI masking described in section 7.2 step 5.

There is no cortical thickness to be measured in white matter structures or no white
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matter lesions in grey matter ROIs for instance. As a result, there are 36 features

that have a value of zero for all analysed patients and were consequently removed.

It should be noted that one would expect more than 36 features to have a value of

zero (e.g. due to the high number of cortical areas, which should not contain WM

and therefore also no lesions). However, the tissue class segmentation provides

a probabilistic atlas, which can have non-zero values for WM density in GM areas.

In addition to this, it is possible that WM lesions close to the cortex are incorrectly

assigned to cortical ROIs due to small errors in the registration. This has not been

corrected for because it affects both patient groups in the same way seeing that the

lesion distribution is comparable in both classes (see also section 2.6 and Figure 5).

The feature matrix has been normalised across the individual feature axes. This

centres the data to zero mean with unit variance following x′ = x−x̄
σ , where x′ is the

normalised vector, x̄ the mean and σ a feature’s standard deviation.

7.4 E X P E R I M E N T D E S I G N

This is an exploratory study with the aim of identifying feature types that are pre-

dictive of conversion from CIS to CDMS. We explore multiple follow-up durations in

three single centres as well as a combination of these in a multi-centre setting.

Due to the large number of 1341 included features it is not possible or advisable

to look at every single combination of features as it has been done in chapters 5

and 6 since this would lead to 21341 − 1 experiments, which firstly is not feasible to

perform within a reasonable time frame and secondly and more importantly would

give rise to a multiple comparisons problem and consequent spurious findings. For

similar reasons, it is also not advisable to run a recursive feature elimination in the

way proposed in chapter 5.

Instead, we decided to follow two separate approaches:

a) Manual feature combination: we pool the features into coherent groups and anal-

yse them separately using a set of three common classifiers: Linear SVM, RBF SVM

and Random Forest.
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b) Automated feature selection: we perform a recursive feature elimination (RFE)

with a modified algorithm compared to chapter 5.

A ) M A N UA L F E AT U R E C O M B I N AT I O N

We grouped the features as follows:

1. all: a vector containing all 1341 features for each patient.

2. global: all global features as defined in section 7.3.

3. ROI: all 1287 features based on GIF-ROIs.

4. lobes: 81 lobe ROIs consisting of merged GIF-ROIs as described in 7.3.

5. lesions: features containing lesion count and lesion load at different ROI size

levels.

6. nonlesion: all non-lesion features.

7. derived: all automatically derived measures such as cortical thickness and

GM/WM density.

8. CT: all cortical thickness measures at different ROI size levels.

9. GMWM: GM/WM density maps at different ROI size levels.

10. imaging: T1-, T2-, and PD-weighted MR intensities at different ROI size levels.

11. global_derived: a combination of feature groups 2 and 7.

12. global_imaging: a combination of feature groups 2 and 10.

13. global_lesions: a combination of feature groups 2 and 5.

14. global_lobes: a combination of feature groups 2 and 4.

S V M C L A S S I F I E R The experiments have been performed using a linear SVM

and a RBF-kernel SVM independently. The SVM classifiers were used with nested

cross-validation [123]. The data was first divided into a training and a testing set,

then the training data was divided again to estimate the cost and scaling parameters

within a nested loop. This procedure is necessary to reduce the overfitting bias in the

parameter optimisation. Afterwards, a SVM was trained using the complete training

set and the performance was evaluated on the left out test set.
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R A N D O M F O R E S T C L A S S I F I E R For the Random Forest classifiers, a normal

cross-validation was used because no parameters were optimised for each data set.

At each node 37 features were randomly sampled and 500 classification trees were

created for each forest. 37 is the square root of the total number of features, which

is often used as a default setting as it is a good compromise between computational

expense and feature space exploration. We did not restrict the size of leaf nodes

for splitting but the employed tree implementation from scikit-learn avoids overfitting

using an online bootstrapping approach [96].

All experiments in a) were repeated 1000 times to reduce sampling bias and per-

form stable statistics.

B ) AU TO M AT E D F E AT U R E S E L E C T I O N

The RFE algorithm is defined as follows:

We create initial models using all features in a Linear SVM with 250 repetitions. Each

of these 250 models provides weights for the individual features, where the value of

the weights indicates the importance of the feature in the model. These weights can

vary strongly between models and overfit to the individual data sets. In particular, it is

possible that a feature contributes positively in one model and negatively in another

one, and hence no strong evidence can be derived from the individual models. By

averaging the coefficients over all 250 repetitions, we obtain mean weights for all fea-

tures, which allow for better generalisation to the whole data set. Now, it is possible

to identify features, which have only a very small contribution to the model (i.e. are

associated with small average weights). The lowest 25 % of the features are then

removed, and the process repeated with the remaining 75 %. In each subsequent

iteration 25 % of the features are removed until only 5 features are left after 20 steps.

Due to higher model complexity, we did not use an RBF-kernel SVM for this set

of experiments. Similarly, we did not perform the RFE in combination with Ran-

dom Forests because this type of classifier has an inherent feature selection, which

should be sufficient if the number of trees in the forest is high enough. This condition

can be assumed to be satisfied with the 500 trees used in experiment set a) [93].
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The performance of the classifiers was evaluated using balanced accuracy, ac-

curacy, sensitivity, and specificity. Statistical significance was estimated from the

balanced accuracy. Results were considered significant if less than 5 % of the repe-

titions had a random result (i.e. 650 % balanced accuracy). This is illustrated as a

histogram for one set of features in Figure 16.
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Figure 16: p-values are calculated as the proportion of sampling repetitions below the thresh-
old of 50 %. They were considered statistically significant if p 6 0.05.
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7.4.1 Patient sampling

An imbalance in class sizes can lead to a bias in the model and make it more likely

for the classifier to map unseen data to the larger group because it has learned a

higher variability there [67]. In these cases, a high overall classification accuracy is

not necessarily a sign of a good model but merely the result of a dominating large

group.

Downsampling can be used to avoid this imbalance bias. As in previous chap-

ters, we sampled as many subjects from the larger class as there are subjects in the

smaller class. For most experiments in this chapter there are more CIS-stable pa-

tients than converters due to the short follow-up duration so we randomly sampled

patients from the non-converter group to match the size of the smaller converter

group. The only exception is the 5-year follow-up in the Barcelona data set where

the subsampling was performed vice versa. It is obvious now that this random sam-

pling introduces a bias because it is not guaranteed that the downsampled group is

representative of the original cohort because it might, by chance, only contain out-

liers for instance. However, it can be assumed that this bias can be averaged out by

repeating the sampling procedure many times. For the manually combined features

we repeated all experiments (and samplings) 1000 times and the automated feature

selection experiments were repeated 250 times.

7.5 R E S U LT S

7.5.1 Manually grouped features

We present the classification results as balanced accuracy averaged over 1000 boot-

straps for the three classifiers Linear SVM, RBF SVM and Random Forest as well

as an average of the three classifiers. In this section, we focus on the findings

with 2-fold and 10-fold cross-validation because they provide better generalisation to
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unseen data. Leave-one-out cross-validation has been performed as well and the

complete results can be found in the Appendix Tables 18 to 41.

Depending on the data set, follow-up, cross-validation and classifier, the highest

mean balanced accuracies range from 41.4 % to 69.7 % but for most cases the ac-

curacy is approximately 60 %.

For each data set and follow-up, there are specific feature types that are quite

consistently associated with the highest classification performance regardless of the

classifier or the type of cross-validation. We describe the main findings for each data

set separately. All result tables can be found in Appendix Tables 18 to 41. Results

that are non-random at a significance level of p = 0.05 are indicated with a *.

B A R C E L O N A , 1 - Y E A R F O L L OW- U P The highest accuracy using a 2-fold CV

was 59.7 % using a combination of global and lesion features with a linear SVM. Sim-

ilarly, lesion features led to an accuracy of 63.2 %∗ in a 10-fold CV with a linear SVM.

On average, global and lesion features provided accuracies of 57.8 % and 59.4 %

using 2-fold and 10-fold CV respectively. In the case of 10-fold CV and averaged

classifiers outcomes, both lesion features and a combination of global and lesion

features provided the same mean accuracy.

B A R C E L O N A , 3 - Y E A R F O L L OW- U P Global features dominate the classifica-

tion results in this set of experiments along all classifiers and cross-validation types.

The highest accuracies were 61.9 %∗ and 62.5 %∗ at 2-fold and 10-fold CV respec-

tively obtained with Random Forests. The average accuracies across classifiers

were 60.9 % and 61.2 % for the two CV types respectively.

B A R C E L O N A , 5 - Y E A R F O L L OW- U P As for the 3-year follow-up, the global fea-

tures provide the highest mean balanced accuracies with 59.4 %∗ and 60.8 %∗ for

2-fold and 10-fold CV respectively when using the linear SVM classifier. Also when

averaged over classifiers, global features are most predictive with 58.2 % for 2-fold

and 59.3 % for 10-fold CV.
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Figure 17: Qualitative overview of balanced accuracy using different types of features. Plots
shown for multi-centre data at 1-year follow-up using 2-fold cross-validation in (a)
and 10-fold CV in (b). Error bars indicate the 95 % confidence intervals over 1000
repeated samplings.

L O N D O N , 1 - Y E A R F O L L OW- U P In this data set, global features were most

dominant with accuracies of 63.6 % for 2-fold CV and 66.3 %∗ for 10-fold CV using

linear SVMs. The other classifiers had slightly worse performance leading an av-

erage accuracy of 59.5 % and 62 % for the two CV types respectively when using

global features.
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L O N D O N , 3 - Y E A R F O L L OW- U P The best performance for the longer follow-

up is similar to the 1-year results with an average balanced accuracy of 63.8 %∗ with

a 2-fold CV and 68.7 %∗ with a 10-fold CV and a linear SVM. The highest classi-

fier averages using global features were 59 % and 62.9 % for 2-fold and 10-fold CV

respectively.

S I E N A , 1 - Y E A R F O L L OW- U P In this data set, the GMWM features were most

dominant leading to mean accuracies of 66.2 % and 69.7 % for 2-fold and 10-fold CV

with Random Forest classifiers. The other classifiers performed similarly so that the

averages are 64.9 % and 69.7 % respectively for the two types of CV.

M U LT I - C E N T R E , 1 - Y E A R F O L L OW- U P The most predictive feature set in this

multi-centre setting is the combination of global and lesion features for both cross-

validation types with an accuracy of 59.9 % and 61.6 %∗ respectively when using

a linear SVM. The highest balanced accuracies averages over all three classifiers

are also achieved with the combination of global and lesion features with 58.6 %

for 2-fold and 60 % for 10-fold CV. The obtained accuracies for all feature types are

exemplified in Figure 17 (a).

M U LT I - C E N T R E , 3 - Y E A R F O L L OW- U P The highest mean accuracies here

are slightly lower compared to the 1-year follow-up. An outcome of 58.3 % was

achieved with a combination of global and lesion features for the 2-fold CV using

linear SVMs. Both lesion features as well as the combination of global and lesion

features led to an accuracy of 60.4 %∗ for the linear SVM model with 10-fold CV.

Lobe features (and the combination of global and lobe features) also provided over-

all high accuracies so that the highest average accuracies across all classifiers were

57.4 % and 58.9 % respectively achieved with the combination of global and lobe

features using a 2-fold CV and with both lobe features and the combination of global

and lesion features using a 10-fold CV. An overview of all accuracies obtained with

the different feature types and classifiers can be found in 17 (b).
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7.5.2 Automated feature selection

The RFE algorithm repeatedly removes the 25 % of features that contribute least to

the classifier model. Generally it can be observed that the mean balanced accuracy

increases in the first iterations and reaches its peak value when using between 30

and 150 features. For lower numbers of features, the accuracy decreases again.

This behaviour is exemplified in Figure 18.

1
3
4
1

1
0
0
6

7
5
4

5
6
6

4
2
4

3
1
8

2
3
8

1
7
8

1
3
4

1
0
0

7
5

5
6

4
2

3
2

2
4

1
8

1
4

1
0 8 6

# features

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

b
a
la

n
ce

d
 a

cc
u
ra

cy

centre: all, 1-year follow-up

LOO

10-fold

2-fold

(a)

1
3
4
1

1
0
0
6

7
5
4

5
6
6

4
2
4

3
1
8

2
3
8

1
7
8

1
3
4

1
0
0

7
5

5
6

4
2

3
2

2
4

1
8

1
4

1
0 8 6

# features

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

b
a
la

n
ce

d
 a

cc
u
ra

cy

centre: all, 3-year follow-up

LOO

10-fold

2-fold

(b)

Figure 18: Balanced accuracy plotted against the number of used features at each iteration
of the RFE algorithm. Shown for multi-centre data at one-year (a) and three-year
follow-up (b). Shaded areas indicate the 95 % confidence intervals.
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Furthermore, it can be observed that 2-fold cross-validation provides the lowest

accuracies, followed by 10-fold CV and leave-one-out CV, which generally provides

the highest accuracies.

Since 2-fold cross-validation is the most conservative approach and should pro-

vide the most generalizable outcome, we will only report those findings to avoid

positive bias. Complete results for 10-fold and leave-one-out cross-validation can be

found in Appendix Tables 42 and 43.

M U LT I - C E N T R E DATA The highest obtained mean balanced accuracy in the

multi-centre data with one-year follow-up is 74.1 % (95 % CI: 73.5 %-74.7 %) and

was achieved using 42 features after 13 iterations of the RFE algorithm. The se-

lected features are listed in Table 16 and include features of all types except global.

Selected ROIs include deep grey matter structures such as basal ganglia, thala-

mus, putamen and palidum, as well as insula and operculum, and the orbital gyri as

shown in Figure 19. The same parameters resulted in an accuracy of 74.5 % (95 %

CI: 73.9 %-75.1 %) for the three-year follow-up using similar feature groups and ROIs.

The most striking difference being the selection of EDSS as a predictive feature for

the longer follow-up as shown in Table 17.

S I N G L E - C E N T R E DATA The application of data from the individual centres re-

sults in higher mean accuracies compared to the multi-centre data. The exact re-

sults are 80.2 % (95 % CI: 79.4 %-80.9 %) in the Barcelona data set for the one-year

follow-up, 83.9 % (95 % CI: 83.5 %-84.3 %) for the three-year follow-up and 86.0 %

(95 % CI: 85.6 %-86.4 %) in the five-year follow-up. The classifier performance is

even higher in the London and Siena data sets with 92.0 % (95 % CI: 91.3 %-92.6 %)

using data from London with a one-year follow-up, 92.2 % (95 % CI: 91.6 %-92.7 %)

with a three-year follow-up and 96.6 % (95 % CI: 96.2 %-97.0 %) using the Siena data

set. An overview of these findings is given in Table 15.
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(a) (b) (c)

Figure 19: Illustration of ROIs selected by RFE classifier at one-year follow-up (excluding
background, which is considered an artefact).

Table 15: Results of RFE experiments using a 2-fold cross-validation. Findings are shown
as balanced accuracy, range over all repetitions and and 95 % confidence interval
(CI) for the included centres.

centre follow-up bal. acc. (%) range (%) CI (%) # features

multi-centre 1 74.1 61.4-87.9 73.5-74.4 42

multi-centre 3 74.5 58.0-87.5 73.9-75.1 42

Barcelona 1 80.2 58.8-94.1 79.4-80.9 56

Barcelona 3 83.9 72.4-92.3 83.5-84.3 56

Barcelona 5 86.0 77.8-93.2 85.6-86.4 100

London 1 92.0 72.7-100 91.3-92.6 75

London 3 92.2 74.1-100 91.6-92.7 75

Siena 1 96.6 80.0-100 96.2-97.0 56

7.6 D I S C U S S I O N

M A N UA L LY G R O U P E D F E AT U R E S The classifier models predicted the conver-

sion or non-conversion from CIS to CDMS with mean balanced accuracies between

57.9 % and 61.6 % in multi-centre settings using global features in combination with

local lesion and lobar measures. Single-centre results are slightly higher with mean

accuracies between 59.7 % and 69.7 %. We used linear SVMs, RBF-kernel SVMs

and Random Forests on all data sets using feature derived from MRI and clinical in-

formation. Data sets were balanced with respect to class sizes and all experiments

were repeated 1000 times to reduce sampling bias.

Generally, it can be observed that data sets with smaller sample sizes show in-

creased accuracy in prediction and a higher number of folds for the cross-validation
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also leads to higher accuracies. The latter is a well-known effect, which arises from

the fact that the classifier models are highly correlated when the number of folds is

high. In the extreme case of leave-one-out cross-validation, the data sets used cre-

ate the models are almost identical when compared pair-wise with only one patient

being different each time [67]. As a result, the decision boundary will barely move

between classifiers and hence produce a positively biased outcome.

The increasing accuracy arising from smaller data sets may seem surprising be-

cause one would expect a worse classifier performance if there is only little data

available to train the model. However, it must be noted that the data from single cen-

tres is much more homogeneous, which makes it more likely for global features such

as EDSS or lesion count to be selected since they can show high variability between

centres [41, 91] (see e.g. results from Barcelona at 3- and 5-year follow-up or London

at both follow-ups). Using the heterogeneous multi-centre data, the model needs to

identify features that are informative for 132 or 214 patients (2× #converters) at the

same time while the smallest data set in this study (Siena data set with one-year

follow-up) only contains 48 subjects with 10 converters, so only 20 patients have to

be fitted, which is much more likely to result in a well-performing model. However,

such a ’small’ model is less likely to generalise well to the general population of CIS

patients.

It can be observed that the different classifiers’ prediction accuracies only differ

by very few percent when the same set of features is applied. The choice of fea-

tures however, can lead to very strong differences of 10 % or more. This indicates

that indeed the choice of features is considerably more important than the choice of

classifier.

AU TO M AT E D F E AT U R E S E L E C T I O N The classification approach using recur-

sive feature elimination increases the mean prediction accuracies in all applied data

sets and follow-ups compared to the manual grouping of features. The optimised

models can correctly predict 73.9 % of the cases in a multi-centre setting at one-year

follow-up and 74.3 % in a three-year follow-up. In the single-centre experiments, the

obtained accuracies are even higher. As for the manually grouped features, it can be
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observed that accuracies increase with decreasing sample size so that the accura-

cies are 79.9 %, 91.7 % and 96.1 % for the one-year follow-ups in the Barcelona, Lon-

don and Siena data sets respectively. Additionally, the classification models achieve

better results when using longer follow-ups in all data sets, which can be explained

with the higher proportion of converters at later disease stages.

It can be observed that an increasing number of folds k in a cross-validation

scheme introduces a positive bias in the accuracy estimate due to an increasing cor-

relation of the individual classifiers at each fold as mentioned in section 3.4. When k

is very high but only few data points are used as support vectors it is possible (and

increasingly likely with increasing k) that a permutation of the folds will not result in

a change of the decision boundary when the permutation does not affect any of the

support vectors. Subsequently, the permuted test subject will be perfectly classified

because the classifier model is identical to a model where the test subject was part

of the training group. Thus, it is expected to see the pattern of increasing accuracy

with increasing k in Figure 18.

The accuracy changes with varying number of features have a distinct parabolic

pattern as shown in Figure 18. This pattern is a direct result of the proposed feature

elimination approach. When using all features at the beginning of the experiments,

the feature vector contains many entries that are not informative. The SVM algorithm

has an internal weighting of the applied features to ensure an ?optimal? hyperplane.

However, this weighting usually does not apply a weight of exactly zero (i.e. ignore

a certain uninformative feature). Therefore, uninformative or noisy features always

contribute to the calculation of the decision boundary and this can significantly re-

duce the classification accuracy. Using the proposed feature elimination scheme,

these low-weight features are iteratively removed, which results in an increase of ac-

curacy in the first iterations. Since our algorithm always excludes the lowest 25 % of

features but does not apply an upper threshold on the weights, it eventually excludes

features that have a significant positive contribution to the classification so that the

accuracy decreases at lower numbers of features.
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F E AT U R E S S E L E C T E D B Y R F E Both multi-centre follow-ups reached their high-

est accuracy after 13 iterations of the RFE using 42 features. Looking at the actually

utilised features for the multi-centre classification experiments in Table 16 and 17,

it can be seen that many features are shared between the two sets of experiments.

Unfortunately, atrophy cannot be measures from MRI scans obtained at a single time

point. Several measures such as GM density, cortical thickness or ROI volume, how-

ever, can be used as a less-strong indicator of atrophy. These feature types were

indeed selected as predictors in the operculum and insula, which is in line with previ-

ous research that showed atrophy in the insula to be correlated with MS [95] and GM

density to be correlated with disability in MS [9]. Additionally, our analysis shows that

lesion count and load in the operculum are predictive features as well. Even though

this would be supported by studies like [124] it must be noted that we only included

lesion measures in WM while the operculum is a cortical structure so that this finding

in more likely to be explained by (mis-registered) juxtacortical lesions, which are also

known to be associated with early diagnosis of MS [4]. Other regions of interest are

the basal ganglia where WM/GM density, cortical thickness and ROI volume were

selected by the classifier. Again, these measures are indicative of atrophy, which is

indeed associated with MS in literature [6, 40]. Cortical thickness and volume have

been predictive in the thalamus and the ventral diencephalon, which is consistent

with other studies that identified atrophy in CIS patients [3] and showed that atrophy

is stronger in MS patients [21]. Generally, deep grey matter atrophy and inflamma-

tion are associated with CIS [3, 125] but we were only able to utilise atrophy-related

features in our study due to the limited data set, which did not include DIR or PSIR

MRI scans that would allow for identification of GM lesions. Our classifier model

selected GM density in the orbital gyrus, where atrophy has been related to different

types of MS [95]. Previous studies have shown that short progression time is asso-

ciated with higher disability [25] and indeed EDSS has been included by the RFE for

the three-year follow-up but not for the one-year follow-up.

The areas involved in the prediction of CIS-conversion are similar for the single-

centre data sets as well. Especially, deep grey matter structures and the insula and

operculum are selected in all data sets even though there are minor variations in the
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actually selected features. However, most of them can be linked to atrophy so that a

coherent result can be observed. Due to the increased homogeneity in the smaller

data sets, we can also find more global features such as age, sex or onset type. All of

these features are associated with MS but their selection in our classification model

could also be due to a slight overfitting to the specific data set. A definite conclusion

could only be given if we repeated the experiments with cohorts that were matched

for age and gender at each follow-up. This matching was not done here to avoid a

reduction in sample sizes.

L I M I TAT I O N S The feature vector at each vector size is most likely not optimal

but only represents a local solution. The only way to find the actual optimum is to

perform an exhaustive search over all combinations of features (at a given feature

vector size) as presented in chapter 5. This, however, is not feasible with a large

number of features as the number of possible combinations increases exponentially.

Using recursive feature elimination, it is always possible that a potentially useful

feature is eliminated at one of the first iterations because it had a low weight there.

But that same feature could have had a positive effect on the outcome at a later stage

with shorter feature vectors. This behaviour can be observed in chapter 5 where the

exhaustive search and the RFE lead to different outcomes at three-year follow-up,

which result in a difference in classification accuracy of 5.5 %.

It must be noted that the RFE also included some features such as lesion count

in the skull and pial tissue or T1 intensities in the pial tissue. These are likely to be

spurious findings and are caused by mis-registration or noise. In fact, most cases

where MR intensities have been selected as predictive features they are located in

rather irrelevant random areas such as ventricles, vessels, non-ventricular CSF, the

cerebral exterior (pial tissue) or even the background and skull (compare Tables 44

to 48). Since we only excluded the least contributing 25 % of features in each RFE

iteration, these features survived the feature selection process by chance without

actually contributing much to the classification model.

The fact that we did not explicitly exclude features that are known to only add noise

and not have a meaningful contribution to the model can be seen as a rather strong
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limitation of our study because it can introduce overfitting and bias the result. How-

ever, at the same time, our results show that only very few of these noise features

have been selected even though a large number of them was present. In particular,

all intensity-based features can be considered noise features judging by the findings

of the previous chapters 4 and 5 where we showed that MR intensities do not contain

information with respect to the classification of CIS patients. This indicates that our

RFE approach using a large number of repetitions is rather stable and mostly detects

specific features that are known to be associated with multiple sclerosis and its dis-

ease progression. Clinical studies identifying risk factors for MS aim to generalise to

large populations but their findings are not necessarily applicable to single patients.

Our proposed method, however, is able to predict the clinical outcome of individual

patients with an accuracy of approximately 74 %, which has not been possible using

previous methods.

The features included in this study are a combination of medium- and high-level

complexity measures of which only the former can be derived automatically. This is

a clear limitation of this study if it was to be generalised to larger cohorts, which don’t

necessarily have EDSS or lesion masks available. However, it can be seen in the

RFE experiments that the multi-centre results show a dominance of medium-level

features containing local information from MRI, which are driving the classification in

the most generalizable setting. Measures such as EDSS that can only be obtained

by a clinical expert were not selected by the model for one-year follow-up and could

potentially be left out in future studies. Its correlation with future disability, however,

indicates increasing importance for longer follow-ups as shown in our three-year

results. Lesion segmentation has been performed by expert neurologists in the data

available in this study but there is also extensive research ongoing trying to derive

this information automatically from MRI scans [48]. Even though these methods do

not yet achieve the same accuracy as human raters, it might be sufficient to perform

an automated lesion segmentation on the available MRI data for use in a machine

learning setting. This would have the benefit of a consistent objective algorithm for

lesion marking and consequently would avoid bias arising from inter- and intra-rater

variability that is present in manual segmentation [82].
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Table 16: Selected features in best result from RFE experiments using multi-centre data at
1-year follow-up with 2-fold cross-validation:

1. WM_Left_Accumbens_Area
2. WM_Right_Caudate
3. WM_Right_MFC_medial_frontal_cortex
4. WM_Right_OFuG_occipital_fusiform_gyrus
5. GM_Right_Caudate
6. GM_Left_Caudate
7. GM_Right_Pallidum
8. GM_Left_Basal_Forebrain
9. GM_Left_MCgG_middle_cingulate_gyrus

10. GM_Left_MOrG_medial_orbital_gyrus
11. GM_Right_POrG_posterior_orbital_gyrus
12. GM_Left_PP_planum_polare
13. CT_Right_Thalamus_Proper
14. CT_Left_Thalamus_Proper
15. CT_Cerebellar_Vermal_Lobules_I-V
16. CT_Right_Basal_Forebrain
17. CT_Right_ACgG_anterior_cingulate_gyrus
18. CT_Left_AIns_anterior_insula
19. CT_Left_OrIFG_orbital_part_of_the_inferior_frontal_gyrus
20. CT_Right_PIns_posterior_insula
21. CT_Right_PO_parietal_operculum
22. CT_Left_PT_planum_temporale
23. CT_Right_SPL_superior_parietal_lobule
24. volume_Right_Accumbens_Area
25. volume_Left_Putamen
26. volume_Right_Ventral_DC
27. volume_Left_CO_central_operculum
28. volume_Left_FuG_fusiform_gyrus
29. volume_Left_GRe_gyrus_rectus
30. volume_Left_MCgG_middle_cingulate_gyrus
31. volume_Right_PoG_postcentral_gyrus
32. volume_Left_PP_planum_polare
33. volume_Left_SCA_subcallosal_area
34. volume_Right_SOG_superior_occipital_gyrus
35. volume_Right_TrIFG_triangular_part_of_the_inferior_frontal_gyrus
36. lesionCount_Background_and_skull
37. lesionCount_Right_Cerebellum_Exterior
38. lesionCount_Left_Hippocampus
39. lesionCount_Left_Ventral_DC
40. lesionCount_Right_CO_central_operculum
41. lesionCount_Left_CO_central_operculum
42. lesionLoad_Left_PO_parietal_operculum
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Table 17: Selected features in best result from RFE experiments using multi-centre data at
3-year follow-up with 2-fold cross-validation:

1. EDSS
2. WM_4th_Ventricle
3. WM_Left_Accumbens_Area
4. WM_Right_FRP_frontal_pole
5. WM_Left_FRP_frontal_pole
6. GM_Left_Caudate
7. GM_Right_Pallidum
8. GM_Left_Basal_Forebrain
9. GM_Left_LOrG_lateral_orbital_gyrus

10. GM_Left_MCgG_middle_cingulate_gyrus
11. CT_Right_Basal_Forebrain
12. CT_Right_CO_central_operculum
13. CT_Right_MTG_middle_temporal_gyrus
14. CT_Right_PIns_posterior_insula
15. CT_Right_PO_parietal_operculum
16. CT_Left_TTG_transverse_temporal_gyrus
17. T1_Right_Cerebral_Exterior
18. volume_Right_Accumbens_Area
19. volume_Left_Accumbens_Area
20. volume_Right_Putamen
21. volume_Right_Ventral_DC
22. volume_Right_vessel
23. volume_Left_Basal_Forebrain
24. volume_Left_CO_central_operculum
25. volume_Left_MCgG_middle_cingulate_gyrus
26. volume_Right_MOrG_medial_orbital_gyrus
27. volume_Left_MPoG_postcentral_gyrus_medial_segment
28. volume_Right_MTG_middle_temporal_gyrus
29. volume_Right_PoG_postcentral_gyrus
30. volume_Left_PP_planum_polare
31. volume_Right_SOG_superior_occipital_gyrus
32. volume_Right_TrIFG_triangular_part_of_the_inferior_frontal_gyrus
33. lesionCount_Background_and_skull
34. lesionCount_Right_Cerebellum_Exterior
35. lesionCount_Left_Ventral_DC
36. lesionCount_Right_AOrG_anterior_orbital_gyrus
37. lesionCount_Right_CO_central_operculum
38. lesionCount_Left_CO_central_operculum
39. lesionCount_Left_LOrG_lateral_orbital_gyrus
40. lesionCount_Left_MOrG_medial_orbital_gyrus
41. lesionLoad_Left_Cerebellum_White_Matter
42. lesionLoad_Left_Hippocampus
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C O N C L U S I O N

Machine learning models and in particular supervised classification in the sense of

predicting future outcome have become very popular in the field of neuroscience

but the majority of studies has been performed on types of dementia, especially

on Alzheimer’s disease utilising the ADNI data set. In this thesis we presented the

first comprehensive overview of supervised classification models applied to clinically

isolated syndromes (CIS) with the aim of predicting future conversion to clinically

definite multiple sclerosis (CDMS) and put our work into context with existing classifi-

cation studies by introducing the classification landscape as a visualisation of feature

and task complexity.

In chapter 4 we adapted a method that has been used in other classification stud-

ies. Voxel-wise measures of grey matter and white matter density as well as MR

intensity were used in single- and multi-centre settings using linear support vector

machines (SVM). Even though this approach has been successful when applied to

dementia cohorts or some lower-complexity tasks in MS subgroups, it did not prove

to be able to distinguish between CIS-stable patients and those converting to CDMS

within one year of disease onset above chance level. A correction for differences in

the intensity distribution of the MRI scans did not change the results significantly. It

can be concluded that there are no simple pattern present in voxel information that

could be used to predict conversion to CDMS.

High-level features were introduced in chapter 5 where we used a set of twelve

measures known to be related to MS. The aim was to compare the performance of

individual features and combinations of them with respect to CIS-conversion at one-

and three-year follow-up. In order to identify the most informative set of features

we performed an exhaustive search through all 4095 possible combinations of the

twelve features as well as a more systematic recursive feature elimination (RFE). We

97
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found that certain feature combinations provide an accuracy of up to 71.4 % for the

one-year follow-up and 73.5 % for the three-year follow-up which is approximately

10 % higher than what we obtained with individual features. In particular, the exhaus-

tive search through the feature space highlighted the features lesion count and load

as well as the clinical features EDSS, type of onset, age and gender as important

markers.

Since MR intensity and our measures of lesion distribution did not contribute

strongly to the classifier models, we modified the set of features in chapter 6. This

new set included measures of volume of the brain, grey matter and white matter, as

well as more local measures of lesion distribution arising from a brain parcellation

following the Talairach atlas. We performed classification experiments on a single-

centre data set using the one-year follow-up as a label and achieved up to 73.5 %

accuracy, which is slightly higher than the 71.4 % obtained in chapter 5. The newly

introduced features describing volume and local lesion distribution were indeed se-

lected in the most predictive combination of features, indicating an important role of

regional measures.

This led to a final set of experiments in chapter 7 using a very fine grained brain

parcellation into 143 regions of interest and subsequently to a large set of features.

We grouped features into coherent groups such as lesion, non-lesion, ROI, lobes,

WM/GM density or global features and tested the performance of two SVM classifiers

and a Random Forest model using these feature groups. While we could show

that the best performing features came mostly from the groups global, lesion and

lobes (as well as combinations of them) there was actually very little difference in

classification accuracy as they all ranged between approximately 50 % and 61.6 %

in the most generalizable multi-centre setting and only reached up to 69.7 % in small

single-centre data sets which are likely to overfit. Furthermore, we showed that the

difference in classification performance is much larger between different types of

features than between different classifier models.

In addition to the manually grouped features, we presented another application

of recursive feature elimination in chapter 7, which represents a more automated

data-driven method for feature selection. Using this approach, we applied all 1341
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features on all ROI scales (i.e. global, lobe and local ROIs) to linear SVMs and

iteratively removed features that have the smallest weight and therefore the least

contribution to the classification model. This increased the accuracy to 73.9 % in

the multi-centre data set at one-year follow-up and to 74.3 % at three-year follow-up.

The results obtained using individual centres were much higher but are likely to be

biased due to the smaller sample size.

The features and ROIs selected by the RFE such as changes in the deep grey

matter or insula are in line with previous research but our proposed model allows

for the prediction of outcome in individual patients which has not been possible with

previous models.

F U T U R E W O R K A strong limitation of this work is the lack of novel biomarkers

as discussed in chapter 5. Future work could potentially improve the classification

model by utilising a richer data set containing measures such as magnetic transfer

imaging, which can be used to indicate damage outside of lesions, diffusion MRI,

which can show changes in normal appearing white matter, DIR or PSIR MRI to

detect grey matter lesions or even genetic information and CSF measures such as

oligoclonal bands. It must be noted, however, that it is very difficult to obtain such

a diverse data set longitudinally in a large enough cohort to perform meaningful

and generalizable analyses. We emphasise the importance of collaborations and

research consortia such as MAGNIMS with the aim of pooling together data from

various centres and studies as well as sharing expertise in their specific fields.

Physical and cognitive disability are prevalent in MS patients at later disease

stages. Similar to the progression from CIS to MS, there are many risk factors iden-

tified and associated with disability but it is currently not possible to predict the out-

come for individual patients reliably. A possible modification of our proposed model

from chapter 7 could use measures of disability as labels and perform classification

or even regression analyses to predict patients’ long-term disability.

The extension of studies, such as the ones presented in this thesis, to larger co-

horts is very expensive and difficult due to the necessary MRI scans. Furthermore,

our studies in chapters 5 to 7 rely heavily on human interaction and clinical expertise
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to segment lesions or to perform clinical assessments for the EDSS scores, which

have been shown to be beneficial for the classification of CIS patients. Current on-

going work on automated lesion segmentation as well as machine-learning-based

automated assessment of EDSS could overcome or at least reduce these limitations

and also lead to a more automated process. This would not only reduce cost but

also create more objective scores since both lesion marking and EDSS scoring are

known to have a high variability between different raters, which currently makes it

difficult to combine this type of data coming from different centres.

Even though there has been substantial progress in the understanding of MS over

the lest decades, there is still little information available about the individual pro-

cesses and their interactions. Data-driven models such as the event-based model

proposed by Fonteijn et al. [44, 135] for Alzheimer’s and Huntington’s disease can

be used to identify a temporal order of pathological changes in cross-sectional or

longitudinal cohorts. Adaptations of this model for MS could significantly improve

our understanding of underlying disease mechanisms.



A
S U P P L E M E N TA RY M AT E R I A L

A.1 L I S T O F G I F - R O I S

The ROIs used by the GIF algorithm are defined by the Neuromorphometrics atlas
(http://neuromorphometrics.com) and include the following areas:

1. Background and skull

2. Non-ventricular CSF

3. 3rd Ventricle

4. 4th Ventricle

5. 5th Ventricle

6. Right Accumbens Area

7. Left Accumbens Area

8. Right Amygdala

9. Left Amygdala

10. Pons

11. Brain Stem

12. Right Caudate

13. Left Caudate

14. Right Cerebellum Exterior

15. Left Cerebellum Exterior

16. Right Cerebellum White Matter

17. Left Cerebellum White Matter

18. Right Cerebral Exterior

19. Left Cerebral Exterior

20. Right Cerebral White Matter

21. Left Cerebral White Matter

22. 3rd Ventricle (Posterior part)

23. Right Hippocampus

24. Left Hippocampus

25. Right Inf Lat Vent

26. Left Inf Lat Vent

27. Right Lateral Ventricle

28. Left Lateral Ventricle

29. Right Lesion

30. Left Lesion

31. Right Pallidum

32. Left Pallidum

33. Right Putamen

34. Left Putamen

35. Right Thalamus Proper

36. Left Thalamus Proper

37. Right Ventral DC

38. Left Ventral DC

39. Right vessel

40. Left vessel

41. Optic Chiasm

101
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42. Cerebellar Vermal Lobules I-V

43. Cerebellar Vermal Lobules VI-
VII

44. Cerebellar Vermal Lobules VIII-
X

45. Left Basal Forebrain

46. Right Basal Forebrain

47. Right ACgG anterior cingulate
gyrus

48. Left ACgG anterior cingulate
gyrus

49. Right AIns anterior insula

50. Left AIns anterior insula

51. Right AOrG anterior orbital
gyrus

52. Left AOrG anterior orbital gyrus

53. Right AnG angular gyrus

54. Left AnG angular gyrus

55. Right Calc calcarine cortex

56. Left Calc calcarine cortex

57. Right CO central operculum

58. Left CO central operculum

59. Right Cun cuneus

60. Left Cun cuneus

61. Right Ent entorhinal area

62. Left Ent entorhinal area

63. Right FO frontal operculum

64. Left FO frontal operculum

65. Right FRP frontal pole

66. Left FRP frontal pole

67. Right FuG fusiform gyrus

68. Left FuG fusiform gyrus

69. Right GRe gyrus rectus

70. Left GRe gyrus rectus

71. Right IOG inferior occipital
gyrus

72. Left IOG inferior occipital gyrus

73. Right ITG inferior temporal
gyrus

74. Left ITG inferior temporal gyrus

75. Right LiG lingual gyrus

76. Left LiG lingual gyrus

77. Right LOrG lateral orbital gyrus

78. Left LOrG lateral orbital gyrus

79. Right MCgG middle cingulate
gyrus

80. Left MCgG middle cingulate
gyrus

81. Right MFC medial frontal cortex

82. Left MFC medial frontal cortex

83. Right MFG middle frontal gyrus

84. Left MFG middle frontal gyrus

85. Right MOG middle occipital
gyrus

86. Left MOG middle occipital gyrus

87. Right MOrG medial orbital
gyrus

88. Left MOrG medial orbital gyrus

89. Right MPoG postcentral gyrus
medial segment

90. Left MPoG postcentral gyrus
medial segment

91. Right MPrG precentral gyrus
medial segment

92. Left MPrG precentral gyrus me-
dial segment
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93. Right MSFG superior frontal
gyrus medial segment

94. Left MSFG superior frontal
gyrus medial segment

95. Right MTG middle temporal
gyrus

96. Left MTG middle temporal
gyrus

97. Right OCP occipital pole

98. Left OCP occipital pole

99. Right OFuG occipital fusiform
gyrus

100. Left OFuG occipital fusiform
gyrus

101. Right OpIFG opercular part of
the inferior frontal gyrus

102. Left OpIFG opercular part of the
inferior frontal gyrus

103. Right OrIFG orbital part of the
inferior frontal gyrus

104. Left OrIFG orbital part of the in-
ferior frontal gyrus

105. Right PCgG posterior cingulate
gyrus

106. Left PCgG posterior cingulate
gyrus

107. Right PCu precuneus

108. Left PCu precuneus

109. Right PHG parahippocampal
gyrus

110. Left PHG parahippocampal
gyrus

111. Right PIns posterior insula

112. Left PIns posterior insula

113. Right PO parietal operculum

114. Left PO parietal operculum

115. Right PoG postcentral gyrus

116. Left PoG postcentral gyrus

117. Right POrG posterior orbital
gyrus

118. Left POrG posterior orbital
gyrus

119. Right PP planum polare

120. Left PP planum polare

121. Right PrG precentral gyrus

122. Left PrG precentral gyrus

123. Right PT planum temporale

124. Left PT planum temporale

125. Right SCA subcallosal area

126. Left SCA subcallosal area

127. Right SFG superior frontal
gyrus

128. Left SFG superior frontal gyrus

129. Right SMC supplementary mo-
tor cortex

130. Left SMC supplementary motor
cortex

131. Right SMG supramarginal
gyrus

132. Left SMG supramarginal gyrus

133. Right SOG superior occipital
gyrus

134. Left SOG superior occipital
gyrus

135. Right SPL superior parietal lob-
ule

136. Left SPL superior parietal lobule

137. Right STG superior temporal
gyrus

138. Left STG superior temporal
gyrus
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139. Right TMP temporal pole

140. Left TMP temporal pole

141. Right TrIFG triangular part of the inferior frontal gyrus

142. Left TrIFG triangular part of the inferior frontal gyrus

143. Right TTG transverse temporal gyrus

144. Left TTG transverse temporal gyrus
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A.2 M A N UA L LY G R O U P E D F E AT U R E S

Collection of result tables from experiments a) in chapter 7 (Tables 18 to 41).

Table 18: Results of multi-centre experiments at 1-year follow-up with 2-fold cross-validation.
Averaged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 55.6 56.1 56.3 56

(39.3-71.3) (34.8-69.2) (38.9-69.8)

global 54.9 53.6 53.2 53.9

(37.9-68.3) (37.1-72.3) (39.4-68.2)

ROI 54.9 56.1 55.5 55.5

(35.4-70) (38.2-72.4) (38.5-68.2)

lobes 56.7 56.4 58.4* 57.2

(35.6-72.9) (24.2-69.3) (39-75.9)

lesions 59.8 58.9 56.7 58.5

(38.6-75.1) (36-72.8) (41.2-70.6)

nonlesion 51.6 50.9 53.7 52.1

(37-65.3) (24.4-67.2) (36-67.5)

derived 53.8 52.3 52.9 53

(34.8-67.8) (25-75.6) (37.8-66.4)

CT 50.7 49.7 50.3 50.2

(31-63.6) (25-75.2) (35.6-65.5)

GMWM 54.3 53 54 53.8

(35.3-70) (25-67.9) (34.7-69)

imaging 52.4 52.6 53.4 52.8

(36.7-68.2) (32.9-66.5) (36.4-67.5)

global_derived 54.1 52.6 53.3 53.3

(34.8-70.9) (24.6-66.5) (36.4-64.7)

global_imaging 56.1 53.6 54.1 54.6

(37.8-69.7) (24.8-66.4) (37.1-68.6)

global_lesions 59.9 58.7 57.2 58.6

(38.6-73.5) (36.2-70.6) (36.7-72.8)

global_lobes 56.5 56.4 58.4 57.1

(34.1-72.1) (40.2-71.9) (40.1-71.5)

* p-value60.05
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Table 19: Results of multi-centre experiments at 1-year follow-up with 10-fold cross-validation.
Averaged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 57.4 56.8 58.1* 57.4

(39.2-74.8) (40.7-69.8) (43.9-69.9)

global 55.6 55 54 54.8

(40.3-69.3) (40.6-69.8) (40.1-69)

ROI 56.4 57 56.6 56.7

(43-75.3) (42.1-68.1) (42.4-69)

lobes 58.4* 58.3 59.6* 58.8

(43.1-74.3) (41.2-72.9) (48.5-74.3)

lesions 61.5* 60* 57.2 59.6

(44.7-72.2) (39.4-72.2) (44.7-68.5)

nonlesion 51.7 50.8 54.4 52.3

(37.8-65) (37.8-64.3) (39.4-70.6)

derived 53.8 52.3 54.2 53.4

(39.1-68.5) (37.8-65) (33.3-68.3)

CT 50.6 49.9 50.4 50.3

(35.5-64.5) (35.6-66.7) (37.1-64.4)

GMWM 55.5 53.4 54.7 54.5

(38.3-68.8) (38.6-67.7) (40-67.8)

imaging 52.3 52.5 53.2 52.7

(37.8-66.1) (35.5-69) (33.3-66.8)

global_derived 54.3 53 55 54.1

(37-67.1) (39-66) (36.2-69.7)

global_imaging 57.2 54.3 53.7 55.1

(42.4-71.2) (35.4-67.9) (41.6-69)

global_lesions 61.6* 60.1* 58.3* 60

(43.5-73.3) (43.2-74.4) (42.4-70.4)

global_lobes 58.6* 58* 59.7* 58.8

(41.5-72.9) (43.4-73.2) (43.9-72)

* p-value60.05
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Table 20: Results of multi-centre experiments at 1-year follow-up with LOO cross-validation.
Averaged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 57.7 55.4 57.2 56.8

(41.7-72.2) (28.1-71.5) (40.8-73.9)

global 55.7 54 52.9 54.2

(41.5-68.4) (23.4-71.6) (31.8-65.7)

ROI 57.1 53.8 55.8 55.6

(43.1-71) (24.9-70.4) (35.6-68.5)

lobes 59.3* 58.9 59.1* 59.1

(45.3-72.7) (37.7-72.9) (46.2-72.1)

lesions 61.4* 60.9* 56.9 59.7

(44.5-74) (35.7-74.9) (40.9-69.9)

nonlesion 51.6 46.4 53.2 50.4

(34.8-67.4) (8.1-64) (38.3-66.7)

derived 54.1 48.7 52.7 51.8

(37.1-66.6) (10.3-67.2) (35.5-66.6)

CT 51.1 43.6 48.7 47.8

(34.6-64.7) (4.5-64.4) (32.6-63.1)

GMWM 55.8 51.9 53.7 53.8

(39.9-67) (14.6-69.3) (40.1-66)

imaging 52 49.7 52.2 51.3

(33.8-68.2) (24.5-67.1) (37.1-66.7)

global_derived 54.6 49.6 53.8 52.7

(37.1-69.3) (19.2-69.7) (39.4-65.9)

global_imaging 57 53.4 53.2 54.5

(41.6-70.5) (27.2-67.5) (36.3-67.1)

global_lesions 62* 60.9* 57.7 60.2

(45-73.5) (42.3-73.2) (41.6-71.7)

global_lobes 59.2* 58.5 59.1* 58.9

(43.9-72.9) (30.3-71.9) (47-74.3)

* p-value60.05
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Table 21: Results of multi-centre experiments at 3-year follow-up with 2fold cross-validation.
Averaged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 56.1 57 56.2 56.4

(37.5-73.3) (39.8-73.5) (37.7-71.5)

global 54 53.3 53 53.4

(37.5-74) (34.9-72.5) (35.7-69.5)

ROI 56.3 57 56.1 56.5

(35.5-70.9) (36.5-73.8) (38.4-70.7)

lobes 57 56.8 57.6 57.1

(35.4-72.9) (36.5-72.1) (37.7-71.5)

lesions 58.2 57.9 54.8 57

(34.4-73.4) (35.5-76.2) (37.1-68.8)

nonlesion 53 51.9 54.2 53

(34.8-67.9) (24.8-72.1) (30.5-69)

derived 53.1 52.1 52.2 52.5

(31.9-67.7) (24.8-75.7) (34.7-70.3)

CT 51 49.9 50.1 50.3

(33-67.1) (24.1-67.4) (32.1-66.2)

GMWM 53.5 52.5 53.5 53.1

(33-66.4) (25-66.7) (32.1-67.2)

imaging 53.7 54.6 55.7 54.7

(37.5-70.7) (32.4-71.9) (40-71.5)

global_derived 53.6 52.8 52.7 53

(34.8-69) (25-68.1) (34.4-67.1)

global_imaging 57 56.1 56.4 56.5

(36.5-71.5) (24.5-70.9) (39.1-71.4)

global_lesions 58.3 57.9 55.4 57.2

(38.1-75) (35.2-75.9) (36.6-73.2)

global_lobes 57.6 56.6 57.9 57.4

(35.7-71.7) (35.7-77.2) (41.9-70.5)

* p-value60.05
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Table 22: Results of multi-centre experiments at 3-year follow-up with 10-fold cross-validation.
Averaged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 57.5 57.2 58.4* 57.7

(40.9-70.9) (40-73.9) (44.5-75.1)

global 54.2 53.9 54.2 54.1

(37.9-66.3) (38.1-69.1) (38.4-67.9)

ROI 56.9 57.5 57.7 57.4

(41.1-71.1) (40.2-71.9) (41.8-73.2)

lobes 59.3* 58.6* 58.8* 58.9

(43.7-73.2) (41-75.1) (43.7-72.5)

lesions 60.4* 59.1* 55.7 58.4

(37.7-76.2) (40.9-71.4) (40.1-71.5)

nonlesion 53.4 52.9 55.7 54

(37.9-67.9) (37.4-69.8) (38.4-70.5)

derived 54 52.8 53.1 53.3

(36.4-70.9) (34.8-72.4) (35.7-70.7)

CT 51.7 50.4 49.6 50.6

(29-67.2) (24.5-67.6) (32.1-63.4)

GMWM 54.7 53.2 54.3 54.1

(35.7-68.7) (31.2-67.5) (35.6-67)

imaging 54.2 55.2 55.9 55.1

(37.5-68.9) (39.9-69.9) (37.4-72.7)

global_derived 54.4 53.2 53.9 53.8

(38.4-71.7) (37.1-67.1) (37.5-66.1)

global_imaging 57.2 56.8 56.9 57

(41.8-73.5) (43.6-70.6) (41-74.2)

global_lesions 60.4* 59.6* 56.5 58.9

(40.3-75) (40.3-71.4) (37.5-70.3)

global_lobes 59.4* 58.3 58.7* 58.8

(40.2-72.9) (41.1-71.8) (43.7-70.5)

* p-value60.05
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Table 23: Results of multi-centre experiments at 3-year follow-up with LOO cross-validation.
Averaged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 57.8 53.6 56.5 55.9

(40.2-71.1) (8.8-73.7) (41.1-69.7)

global 54.4 48 53.1 51.8

(38.3-67.2) (11.6-67.1) (37.5-65.3)

ROI 57.4 52.3 55.8 55.2

(41.1-72.9) (12.1-68.4) (40.1-71.5)

lobes 59.6* 58.8 57.6 58.7

(40.1-72.7) (23.2-73.2) (42.8-71.7)

lesions 60.6* 59.4 54.2 58.1

(37.7-74.7) (24.5-72.5) (31.9-68.8)

nonlesion 53.6 48 54.6 52.1

(29.5-69.5) (2.7-69.7) (38.4-68.8)

derived 53.7 46.2 51.9 50.6

(37.5-68.3) (2.7-67.9) (33-65.3)

CT 51.5 36.1 47.6 45

(32.1-66.1) (0-68.8) (31.2-62.6)

GMWM 55.1 49.4 52.6 52.3

(36.6-70.6) (9.8-67.5) (35.7-66.6)

imaging 54.1 53.8 55.4 54.5

(33.8-69.6) (13.1-70.1) (39.2-68.1)

global_derived 54.5 47.9 52.3 51.6

(39.2-67.9) (8-67.7) (36.5-69.9)

global_lesions 60.6* 59.7 55.3 58.5

(38.9-75.6) (27.4-73.8) (40-67.9)

global_lobes 59.7* 58.9 57.7 58.8

(41.9-75.8) (34-72.5) (39.3-72.5)

* p-value60.05
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Table 24: Results of Barcelona experiments at 1-year follow-up with 2-fold cross-validation.
Averaged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 56.7 54.9 53.2 54.9

(30.9-73.9) (23.4-75.8) (30.9-74.9)

global 55.8 55 54.8 55.2

(35.8-73) (23.8-77.9) (25.1-74.3)

ROI 56.6 54.3 53.4 54.8

(33.1-77.3) (23.8-72.7) (26.4-72.5)

lobes 57.9 55.3 55.6 56.3

(27.5-76.1) (25-74.3) (35.1-76.6)

lesions 59.6 56.7 56.5 57.6

(32.1-79.4) (32.4-78.3) (30.9-73.9)

nonlesion 53.8 50.6 52 52.1

(25-72.2) (23-75.4) (29.1-73.9)

derived 48.9 47.7 47.7 48.1

(22-69.5) (23.4-75.8) (23.2-66.9)

CT 50.7 48.2 48.7 49.2

(26.3-68.2) (23.4-68) (25-72.1)

GMWM 49 46.8 48.2 48

(30.9-72.2) (24.2-75.8) (27.5-73.6)

imaging 56 53.5 53.1 54.2

(30.9-75.2) (24.2-75.8) (31.3-70.9)

global_derived 49.6 47.7 48.7 48.7

(26.5-69.3) (23.8-68.9) (26.5-68.2)

global_imaging 56.9 54.2 53.9 55

(29.3-75) (24.6-77.9) (30.7-74.3)

global_lesions 59.7 55.9 57.8 57.8

(24.4-83.3) (24.2-79.3) (33.5-73.6)

global_lobes 57.5 55.1 55.7 56.1

(35.1-76.6) (24.2-75.6) (30.7-75.6)

* p-value60.05
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Table 25: Results of Barcelona experiments at 1-year follow-up with 10-fold cross-validation.
Averaged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 58 55.6 54.7 56.1

(35.2-76.8) (37.5-76.1) (33.7-73)

global 57 57.4 55.2 56.5

(39.3-72.4) (40.9-79.8) (34.4-73)

ROI 57.8 54.9 54.2 55.6

(36.7-72.2) (31.1-74.3) (27.5-76.8)

lobes 59 57 57 57.7

(37.9-77.9) (39.3-76.1) (33.8-81.1)

lesions 63.2* 57.7 57.3 59.4

(35.1-80.2) (28.6-77) (29.1-76.5)

nonlesion 54.6 52 51.3 52.6

(33.7-74.9) (32.1-78) (20.5-73.6)

derived 49.7 47.1 48.2 48.3

(29.1-70) (28.2-66.3) (26.1-72.2)

CT 51 48.7 49.2 49.7

(27.9-72.1) (23-67.6) (20.8-70.7)

GMWM 48.4 46.2 48.7 47.8

(23.9-70.7) (26.6-66.9) (27.8-69.1)

imaging 57.4 54.8 53.8 55.3

(38.2-72.5) (35.1-77.4) (27.9-71.2)

global_derived 50.3 47.1 49.1 48.8

(24.8-78.2) (22.1-69.5) (29.4-67.6)

global_imaging 57.7 55.4 54.3 55.8

(38.2-79.5) (34.4-75.5) (32.1-72.2)

global_lesions 63* 57.4 57.9 59.4

(33.5-77.4) (29.8-79.3) (33.7-75.6)

global_lobes 58.9 57.1 57.3 57.7

(33.7-75) (36.7-73.7) (36.8-75.2)

* p-value60.05
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Table 26: Results of Barcelona experiments at 1-year follow-up with LOO cross-validation.
Averaged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 58.6 30.2 52.9 47.2

(33.1-78.6) (1.4-64.8) (32.1-73.6)

global 56.8 29.5 54.3 46.9

(37.9-76.8) (5.9-68.2) (27.8-78.6)

ROI 58.2 29.6 52.2 46.6

(33.7-78.6) (4.1-68.1) (29.3-73.7)

lobes 59.2 39.7 55.3 51.4

(38.9-75) (5.7-73.9) (32.1-73.9)

lesions 63.7* 41.4 56.2 53.8

(33.8-80.2) (2.8-74.5) (33.8-77.3)

nonlesion 55.5 22.7 49.2 42.5

(35.2-75) (0-70.9) (23.2-70.9)

derived 50.6 20.3 44.2 38.4

(23.9-73.6) (0-67.9) (21.8-66.2)

CT 50.9 21.3 45.9 39.4

(21.8-70.7) (0-60.5) (20.6-66.2)

GMWM 48.9 21.4 44.5 38.3

(27.9-69.3) (0-69.3) (26.4-64.8)

imaging 57.2 29.9 52.7 46.6

(36.5-75.6) (1.4-71.8) (30.9-76.1)

global_derived 51 21.9 45.4 39.4

(27.9-73.5) (0-63.3) (18.9-63.3)

global_imaging 57.5 34.8 53.5 48.6

(36.7-75.2) (8.7-69.3) (23.4-73.9)

global_lesions 63.8* 41.3 57 54

(38.1-77.4) (0-80.9) (35.2-72.5)

global_lobes 58.7 33.6 56.3 49.5

(39.7-77.3) (7.3-79) (38.1-76.6)

* p-value60.05
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Table 27: Results of Barcelona experiments at 3-year follow-up with 2-fold cross-validation.
Averaged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 56 54.3 55.3 55.2

(41.4-67.3) (24.2-69.4) (39.5-68.1)

global 61.1* 59.8* 61.9* 60.9

(44.2-70.5) (44.5-71.8) (50.6-72.2)

ROI 55.6 54 54.6 54.7

(40.4-68) (38.2-66.5) (41.6-66.7)

lobes 55.5 54.8 56.6 55.6

(41.6-67.3) (40.7-64.4) (44.2-69.3)

lesions 56.2 54.4 54.7 55.1

(39.6-67.5) (38.2-68.1) (39.8-66.2)

nonlesion 54.2 52.6 53.4 53.4

(40.2-66) (24.8-66.9) (39.5-64.1)

derived 52.5 52.9 55.3 53.6

(36.8-64.9) (25-64.3) (40.4-66.8)

CT 52.7 52.5 55.1 53.4

(37-62.8) (33.8-75.2) (40.3-68.1)

GMWM 52.3 52.6 55.5 53.4

(38.4-64.5) (38.3-67.1) (36.5-66.7)

imaging 55.6 53.9 52.6 54

(37.8-68.1) (41-66.8) (39.7-65.5)

global_derived 53.3 53.6 56 54.3

(40.3-66.1) (38.4-67.3) (42.1-67.4)

global_imaging 56.6 54.4 53.4 54.8

(42.2-66.8) (25-66) (37-65.2)

global_lesions 58.2* 55.4 57.6* 57

(40.9-69.6) (37.8-68.7) (46.8-68)

global_lobes 56.5 55.9 57.6* 56.7

(43.5-68.1) (41-68.2) (42.9-68.7)

* p-value60.05
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Table 28: Results of Barcelona experiments at 3-year follow-up with 10-fold cross-validation.
Averaged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 58.1* 55.6 56.1* 56.6

(46.8-68.6) (44.8-67.3) (45.5-66.2)

global 61.2* 59.9* 62.5* 61.2

(52.6-68.7) (50-70.6) (55.1-70)

ROI 58.2* 55.4 55.4 56.3

(46.8-67.3) (44.2-64.1) (46.1-64.2)

lobes 56.5* 54.9 57.4* 56.3

(47.4-66) (44.7-64.4) (47.4-66)

lesions 58* 55.2 55.3 56.2

(47.1-68.8) (45.4-66.4) (46.1-64.8)

nonlesion 57.5* 55.3 54.8 55.9

(47.4-66) (44.9-65.4) (44.2-63.5)

derived 54.2 54.4 58.3* 55.6

(42.7-62.4) (43.2-66.2) (48.7-68.1)

CT 52.9 53.6 58.3* 54.9

(41.7-62.9) (39.1-63.5) (49.4-67.9)

GMWM 53.8 53.2 56.9* 54.6

(41.7-63.5) (42.1-64.8) (48.1-65.4)

imaging 59.2* 54.4 54 55.9

(44.2-66.9) (45.3-64.2) (44.2-62.8)

global_derived 55 55.7 58.9* 56.5

(44.2-64.2) (42.3-67.5) (48.7-67.9)

global_imaging 58* 54.4 54.5 55.6

(46.2-67.1) (44.5-63.6) (43.6-64.1)

global_lesions 58.4* 56.7* 58.1* 57.7

(46.4-68.6) (38.9-70.1) (49.4-65.4)

global_lobes 57.9* 55.9* 57.9* 57.2

(49.4-68.6) (44.1-65.6) (48.7-66.8)

* p-value60.05
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Table 29: Results of Barcelona experiments at 3-year follow-up with LOO cross-validation.
Averaged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 59.2* 57* 54.7* 57

(48.7-68) (48.1-65.5) (44.8-63.6)

global 60.8* 59.7* 62.1* 60.9

(53.2-68) (49.3-69) (54.5-70.1)

ROI 58.9* 56.9* 53.9 56.6

(50-66.7) (48.1-66) (45.5-61.6)

lobes 56.8* 55.3 56.5* 56.2

(47.4-66) (44.9-63.6) (48.7-64.2)

lesions 58.2* 56.9* 54.8 56.6

(49.3-67) (47.2-67.7) (45.4-63.5)

nonlesion 58.3* 58.2* 54.1 56.9

(48.1-64.7) (50-66.7) (44.2-63.5)

derived 54.9 57.4* 57.2* 56.5

(45.5-63) (49.4-65.4) (48.7-66.1)

CT 53 55.7* 58* 55.6

(42.3-62.3) (46.8-65.4) (48.7-66.7)

GMWM 54.5 55.5* 55.9* 55.3

(41.7-63.4) (44.9-64.8) (46.8-64.3)

imaging 60.3* 53.6 53.2 55.7

(50.6-66.2) (41-63.5) (42.3-62.9)

global_derived 55.5* 58* 58.1* 57.2

(45.5-63.6) (49.4-66.9) (50-66.7)

global_imaging 58.6* 54.5 53.6 55.6

(48.7-66.7) (41.3-64.3) (44.2-61.5)

global_lesions 58.6* 58.4* 57.4* 58.1

(48.6-67.4) (45.8-69) (50-63.5)

global_lobes 58.5* 56* 57.1* 57.2

(49.3-66.4) (45.5-65.5) (48.7-66.7)

* p-value60.05
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Table 30: Results of Barcelona experiments at 5-year follow-up with 2-fold cross-validation.
Averaged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 56.3 55.4 55.7 55.8

(42.6-67.9) (40.1-66.7) (38.8-67.9)

global 59.4* 57.2 58* 58.2

(42.6-69.9) (43.2-68.5) (44.4-70)

ROI 56.1 55.1 55.6 55.6

(41.3-68.5) (40.1-67.4) (43.2-66.1)

lobes 55 54.3 54.4 54.6

(40.7-67.9) (40.6-64.9) (42.6-65.4)

lesions 50.8 49.6 53.3 51.3

(35.7-61.5) (34.6-62.5) (41.1-66.4)

nonlesion 56.2 55.4 55.2 55.6

(42.6-67.9) (40.7-66.7) (42-67.9)

derived 55.2 54.5 55.4 55

(41.4-66.1) (25-66.9) (40.1-68.1)

CT 52.7 51.5 53.4 52.5

(39.4-63.6) (25-67.3) (37-65.4)

GMWM 53.1 53.4 55.9 54.1

(36.4-64.2) (41.1-64.2) (42.5-66.1)

imaging 57.2 57.2 54.2 56.2

(43.2-69.8) (43.8-67.2) (38.2-66.1)

global_derived 55.6 55.3 55.9 55.6

(40.1-68) (34.5-67.9) (39.5-67.9)

global_imaging 57.9* 57.4* 54.7 56.7

(43.2-68.6) (45.3-69.3) (42-66.1)

global_lesions 52.2 51 55.1 52.8

(40.1-65.4) (24.7-63.5) (41.3-65.5)

global_lobes 56.1 55.4 55.1 55.5

(41.2-69.1) (42.9-68.3) (40.3-65)

* p-value60.05



A.2 M A N UA L LY G R O U P E D F E AT U R E S 118

Table 31: Results of Barcelona experiments at 5-year follow-up with 10-fold cross-validation.
Averaged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 58.4* 56.9* 57* 57.4

(46.9-66.8) (46.3-66.5) (48.8-64.2)

global 60.8* 59.2* 57.9* 59.3

(51.9-68.1) (48.8-67.2) (49.4-66.1)

ROI 57.9* 56.8* 56.4* 57.1

(48.1-66.8) (46.9-65.1) (48.8-64.8)

lobes 56.3* 56* 54.4 55.6

(43.8-66.1) (41.9-64.6) (45.6-63)

lesions 50.1 49.3 53.3 50.9

(40.4-59.6) (36.5-60.5) (43.1-61.3)

nonlesion 57.2* 57.2* 55.7* 56.7

(45.6-67.3) (46.9-65.6) (47.5-63.6)

derived 56.9* 57.7* 58.8* 57.8

(46.3-67.4) (45.1-66.8) (50-67.4)

CT 54.2 53.5 55.9* 54.6

(43.8-63.6) (40.7-62.5) (46.9-63.6)

GMWM 54.1 54.4 58.6* 55.7

(43.1-63.6) (44.9-65.1) (48.1-66.7)

imaging 59.5* 58.5* 54.9* 57.6

(47.5-67.4) (49.4-67.3) (45.7-63)

global_derived 57.4* 58.5* 59.3* 58.4

(46.9-66.2) (45.7-68.5) (50.6-67.9)

global_imaging 60.1* 58.5* 55.3* 58

(48.8-69.8) (46.3-66.9) (45.1-63.6)

global_lesions 51.3 50.5 54.8* 52.2

(40-60.7) (35.6-62.6) (45.7-62.4)

global_lobes 58* 57.1* 55.4* 56.8

(48.8-66.1) (48.7-66.8) (46.9-62.4)

* p-value60.05
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Table 32: Results of Barcelona experiments at 5-year follow-up with LOO cross-validation.
Averaged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 58.7* 56.8* 56* 57.2

(47.5-67.9) (48.1-66.1) (48.1-62.3)

global 61* 59.4* 57* 59.1

(54.3-67.9) (50.6-66.8) (50.6-67.4)

ROI 58.1* 56.7* 55.5* 56.7

(48.1-65.5) (49.4-64.3) (46.9-63.6)

lobes 56.3* 56.3* 53.1 55.3

(44.4-66.1) (46.3-65.3) (45.1-61.7)

lesions 50 53.5 52.1 51.9

(40.5-58.5) (44.3-65.6) (45-60.6)

nonlesion 57.3* 57.4* 54.3 56.3

(48.1-66.1) (49.4-66.1) (46.3-63)

derived 57.5* 58.9* 58.1* 58.2

(46.2-68.5) (50-66.9) (50.6-65.5)

CT 54.4 55.7* 55.3* 55.1

(46.9-64.9) (46.9-65.4) (48.1-61.8)

GMWM 54.6 55.4* 58* 56

(44.4-64.6) (45-65.4) (50-65.6)

global_derived 58.2* 59.7* 58.5* 58.8

(48.8-67.3) (51.2-67.4) (48.8-67.3)

global_imaging 60.8* 58.7* 54.5* 58

(50.6-68.5) (50-66.1) (46.9-62.3)

global_lesions 51 53 53.7 52.6

(38.7-60.7) (42.3-63.4) (46.3-62.4)

global_lobes 58.5* 57.3* 54.6* 56.8

(48.1-68.7) (49.4-66.2) (44.4-61.8)

* p-value60.05



A.2 M A N UA L LY G R O U P E D F E AT U R E S 120

Table 33: Results of London experiments at 1-year follow-up with 2-fold cross-validation. Av-
eraged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 57.1 55.7 56.9 56.6

(24.9-77.5) (21.1-78.2) (24.5-77.5)

global 63.6 58.7 56.3 59.5

(27.2-84.7) (24.4-80.1) (23.6-79.5)

ROI 57.8 55.8 56.8 56.8

(24.5-76.4) (25-77.8) (20.4-77.5)

lobes 58.4 55.5 56.6 56.9

(27.1-81.4) (24.4-78.2) (27.1-77.5)

lesions 54.2 49.7 51 51.6

(27.1-78.6) (23.2-78.2) (27.1-73.5)

nonlesion 57.5 55.7 56.6 56.6

(24.5-76.4) (23.2-78.2) (24.5-81.8)

derived 48.3 48.1 48.7 48.4

(17.9-70.5) (22.5-76.2) (22.2-73.5)

CT 48.4 48.2 48.6 48.4

(21.8-72.9) (20.4-78.2) (25.4-71.2)

GMWM 51.6 49.8 50.7 50.7

(27.1-75.1) (20.3-78.2) (26.5-73.5)

imaging 57.5 57.2 58.4 57.7

(26.5-75.5) (29.5-78.2) (25.4-75.1)

global_derived 49.6 48.7 49 49.1

(23.6-72.7) (23.8-76.8) (22.7-70.8)

global_imaging 58.3 57.4 59.1 58.3

(27.3-75.5) (22.5-75.6) (28.8-75.5)

global_lesions 57.3 51.7 52.3 53.8

(29.2-81.4) (23.2-76.2) (23.8-75.1)

global_lobes 60.2 57.4 57 58.2

(27.1-93.3) (27.1-78.9) (29-78.2)

* p-value60.05
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Table 34: Results of London experiments at 1-year follow-up with 10-fold cross-validation.
Averaged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 59.4 58.3 57.8 58.5

(31.2-75.5) (25.6-82.9) (29.2-77.3)

global 66.3* 62.5 57.3 62

(43.2-88.7) (34.3-87.9) (31.7-78.2)

ROI 59.3 57.4 57.5 58.1

(24.9-75.5) (21.8-76.4) (29.2-78.2)

lobes 59.9 58.5 56.1 58.2

(39.5-81.8) (32.5-78.2) (22.5-77.5)

lesions 54.9 49 50 51.3

(33.8-77.3) (22.5-77.5) (23.6-70.8)

nonlesion 59.2 58.4 57.3 58.3

(22.5-77.5) (22.5-76.4) (26.5-78.2)

derived 48.3 46.5 48.2 47.7

(20.4-72.7) (20.3-69.4) (23.8-70.8)

CT 47.9 47.6 47 47.5

(24.9-73.5) (25.4-75.1) (22.5-68.2)

GMWM 51.4 48.3 50.5 50.1

(27.1-70.8) (22.5-69.6) (29.2-77.5)

imaging 59.5 58.4 58.2 58.7

(31.7-77.3) (34.1-76.4) (28.4-75.1)

global_derived 50 46.5 47.8 48.1

(22.7-75.5) (20.3-71.6) (21.8-77.5)

global_imaging 59.6 58.7 58.8 59

(33.8-75.5) (32.3-80.1) (38.6-75.1)

global_lesions 58.3 52.4 53 54.6

(33.8-81.4) (24.1-77.8) (27.1-74.6)

global_lobes 61.7 59.6 56.5 59.2

(38.4-82.9) (31.2-82.1) (31.8-78.2)

* p-value60.05
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Table 35: Results of London experiments at 1-year follow-up with LOO cross-validation. Av-
eraged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 61.1 53.9 54.4 56.5

(38.6-77.5) (2.2-80.1) (29.2-76.4)

global 66.6* 61.4 55.6 61.2

(45.5-84.2) (27.1-82.1) (33.8-75.5)

ROI 61.2* 52.9 54.8 56.3

(38.4-75.5) (2.2-78.2) (26.5-72.9)

lobes 59.8 55.2 53 56

(38.4-79.6) (4.2-78.2) (33.8-75.1)

lesions 56 37.6 46.5 46.7

(29.2-78.6) (4.2-70.8) (17.1-68.3)

nonlesion 60.7 54.4 53.9 56.3

(22.5-77.5) (0-78.2) (27.3-77.5)

derived 52.4 21.1 41.8 38.5

(29.5-77.3) (0-66.2) (17.9-68.2)

CT 48.2 26.8 40.9 38.6

(18.8-70.5) (0-68.3) (13.6-64.1)

GMWM 51.3 29.3 45.6 42.1

(23.6-78.2) (0-68.2) (22.5-68.3)

imaging 59.7 56.3 57 57.7

(34.1-77.5) (2.2-75.5) (35.3-72.9)

global_derived 54 24.2 41.3 39.8

(30.4-77.5) (0-65.9) (17.1-70.5)

global_imaging 59.2 56.5 57.5 57.8

(38.6-77.5) (2.2-80.1) (38-80.1)

global_lesions 59.1 44.6 50.8 51.5

(35.3-83.3) (2.2-80.1) (29.2-71.6)

global_lobes 61.3 59.1 54.4 58.3

(38.6-81.2) (11.3-80.1) (31.7-77.3)

* p-value60.05
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Table 36: Results of London experiments at 3-year follow-up with 2-fold cross-validation. Av-
eraged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 56.9 56.3 56.4 56.5

(31.7-71.3) (24.6-77.9) (27.2-76.4)

global 63.8* 58.2 55 59

(35.8-82.8) (24.6-79.9) (27.7-74.2)

ROI 56.5 56.7 56.7 56.7

(24-70.9) (25-77.4) (29.9-72.5)

lobes 58.1 56.4 54.6 56.4

(28-74.9) (25.7-78.4) (32.2-73.4)

lesions 54.2 50.2 53.4 52.6

(32.6-74.3) (21.6-75.9) (30.9-71.3)

nonlesion 56.2 55.7 55.7 55.9

(29.3-70.9) (25-75.9) (33.8-72)

derived 50.2 48.9 50.4 49.8

(24-72.8) (24.1-77.9) (29.1-69.3)

CT 50.9 50.9 52.5 51.5

(24.4-72.5) (25-75.4) (25.7-71.3)

GMWM 51.2 48.6 50 49.9

(30.9-74.4) (24.1-75.4) (27.1-69.8)

imaging 54.7 57.6 56.5 56.3

(25.8-69.3) (32.2-74.2) (33.2-76.4)

global_derived 51.3 49.2 50.1 50.2

(32.7-79.3) (25-75.9) (27.2-70.7)

global_imaging 55.3 57.1 57.2 56.5

(30.7-69.3) (32.2-74.3) (29.3-74.4)

global_lesions 57 52.8 54.3 54.7

(34.2-76.4) (23.6-75.9) (32.4-72.4)

global_lobes 59.4 56.9 55.3 57.2

(30.9-76.4) (31.3-77.6) (29.3-73.4)

* p-value60.05
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Table 37: Results of London experiments at 3-year follow-up with 10-fold cross-validation.
Averaged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 58 58.6 56.9 57.8

(41.3-72.5) (38.8-73.4) (33.8-72)

global 68.7* 63.4* 56.5 62.9

(48.2-81.4) (43-77.9) (39.6-72.5)

ROI 57.9 58 57.5 57.8

(37.9-70.9) (37.4-72.9) (39.6-71.3)

lobes 59 60.6 54.4 58

(39.5-79.5) (39.3-79.3) (37.7-72)

lesions 55.9 51.2 52.3 53.1

(37.4-72) (34.4-69.1) (32.4-65.6)

nonlesion 57.6 58.8 56.3 57.6

(38.6-69.8) (39.6-75.6) (39.5-72.5)

derived 52 48.6 51.7 50.8

(32.2-72.5) (25.8-70.7) (25.6-70.9)

CT 51.2 51.4 53.9 52.2

(32.6-69) (32.7-72.8) (32.2-71.3)

GMWM 50.2 46.8 50.8 49.3

(30.2-67.8) (25.8-66.1) (28.7-69.1)

imaging 56 59.5 56 57.2

(34.2-70.9) (34.7-72) (34.4-74.9)

global_derived 53.2 49.6 51.6 51.5

(36.1-70.7) (29-70.9) (32.7-70.9)

global_imaging 55.6 59.5 56.7 57.3

(36.2-69.8) (37.4-73.4) (39.5-75.4)

global_lesions 58.3 53 52.6 54.6

(36.9-78) (34.2-75.6) (35.8-67.4)

global_lobes 60.7* 60.4 56 59

(43.1-79.3) (41.2-77.6) (37.9-74.9)

* p-value60.05
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Table 38: Results of London experiments at 3-year follow-up with LOO cross-validation. Av-
eraged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 59.8* 56 54.8 56.9

(42.7-72.8) (21.8-72.9) (35.8-70.7)

global 69.5* 64.8* 54.8 63

(51.7-82.9) (44.4-81.4) (39.5-69.1)

ROI 59.1* 55.2 55 56.4

(41.2-71.3) (10.2-72.9) (35.4-71.3)

lobes 59.9* 60.6 52 57.5

(43.1-77.6) (37.9-85.5) (31-71.3)

lesions 56.4 45.5 48.8 50.2

(37.9-73.5) (14.5-69.8) (30.2-63.9)

nonlesion 58 56.4 53.8 56.1

(39.6-70.7) (17.1-73.4) (29.1-70.7)

derived 54.8 34.2 47 45.3

(36.1-70.9) (1.7-69.1) (26.6-65.6)

CT 51.5 36.8 50.2 46.1

(34.4-69.1) (6.1-67.3) (36.1-67.3)

GMWM 50.3 32.9 46.7 43.3

(32.6-65.5) (4.7-67.3) (24.4-65.5)

imaging 56.3 58.3 54.4 56.3

(41.2-69.8) (18-72) (36.2-72.5)

global_derived 55.8 37.1 47.7 46.9

(37.9-74.4) (3.4-65.6) (25.8-65.6)

global_imaging 55.1 58.8 55.7 56.5

(39.3-72.5) (17-72.9) (39.5-72.8)

global_lesions 58.7 51 49.4 53

(42.7-79.3) (20.5-69.8) (30.2-63.9)

global_lobes 61.3* 60.6 53.3 58.4

(46.5-76) (37.9-79.9) (36.2-73.4)

* p-value60.05
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Table 39: Results of Siena experiments at 1-year follow-up with 2-fold cross-validation. Av-
eraged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 55.7 52.2 60.1 56

(18.8-95.5) (14.6-95.5) (10-95.5)

global 51 50 49 50

(11.5-83.3) (11.5-88.5) (11.5-88.5)

ROI 55.2 52 59 55.4

(10-91.7) (14.6-100) (11.5-95.5)

lobes 61.1 56 63.5 60.2

(22.5-100) (18.8-91.7) (18.8-95.5)

lesions 62.7 56.4 56.1 58.4

(22.5-88.5) (10-91.7) (14.3-85.7)

nonlesion 54.8 50.9 60.3 55.3

(11.5-100) (14.6-85.4) (14.6-95.5)

derived 64.8 60.6 65.5 63.6

(14.6-95.5) (14.3-91.7) (14.3-91.7)

CT 61.6 56.8 63.4 60.6

(10-91.7) (14.6-90) (22.5-91.7)

GMWM 65.8 62.8 66.2 64.9

(18.8-95.5) (16.7-91.7) (16.7-91.7)

imaging 44.8 44.5 44.2 44.5

(8.3-81.2) (10-88.5) (8.3-80)

global_derived 64.9 59.9 65.7 63.5

(14.6-95.5) (16.7-95.5) (16.7-91.7)

global_imaging 45.1 44.4 43.6 44.4

(8.3-85.4) (10-81.2) (4.5-88.5)

global_lesions 61.6 57.4 56 58.3

(22.5-85.7) (18.8-85.7) (14.3-88.5)

global_lobes 59.4 56 63.1 59.5

(10-95.5) (16.7-88.5) (20-95.5)

* p-value60.05
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Table 40: Results of Siena experiments at 1-year follow-up with 10-fold cross-validation. Av-
eraged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 59.5 52.9 64.4 58.9

(10-95.5) (16.7-91.7) (14.6-95.5)

global 50.3 49.4 49.1 49.6

(8.3-88.5) (14.3-88.5) (8.3-85.7)

ROI 59.1 53.1 63.4 58.5

(14.6-95.5) (16.7-95.5) (8.3-95.5)

lobes 61.8 59.1 65.2 62

(18.8-95.5) (16.7-95.5) (20-91.7)

lesions 65.1 59.8 57.4 60.8

(18.8-88.5) (20.6-85.7) (22.5-85.7)

nonlesion 57.2 51.6 64.8 57.9

(4.5-91.7) (16.7-85.4) (14.6-91.7)

derived 67.3 61.1 68.1 65.5

(24.7-95.5) (18.8-95.5) (26.2-91.7)

CT 62.1 58.6 65.6 62.1

(34.8-91.7) (16.7-85.7) (29.2-95.5)

GMWM 68.5 64.8 69.7 67.7

(14.6-95.5) (16.7-91.7) (24.7-91.7)

imaging 42.1 44.2 45 43.8

(4.5-81.2) (11.5-85.7) (4.5-85.4)

global_derived 67.4 61.2 68.7 65.7

(29.2-95.5) (18.8-95.5) (34.8-91.7)

global_imaging 42.4 44.3 44.6 43.7

(4.5-77.5) (14.3-90) (4.5-85.4)

global_lesions 63.4 58.4 58.3 60

(14.3-85.7) (18.8-85.7) (11.5-85.7)

global_lobes 59.8 57.1 63.4 60.1

(14.6-91.7) (18.8-91.7) (24.7-90)

* p-value60.05
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Table 41: Results of Siena experiments at 1-year follow-up with LOO cross-validation. Av-
eraged balanced accuracies (and range over all repetitions) shown for individual
classifiers as well as average across all classifiers.

Features LinSVC RBFSVC RF avg

all 66.7 73.1* 56 65.3

(8.3-95.5) (43.3-100) (0-95.5)

global 50.3 78* 43.6 57.3

(8.3-88.5) (33.5-100) (4.5-85.7)

ROI 67.8 72.6* 54.1 64.8

(18.8-100) (39.6-100) (0-90)

lobes 61.9 77.6* 60.6 66.7

(14.6-95.5) (44.9-100) (20-91.7)

lesions 69.4 77* 51.4 65.9

(18.8-88.5) (34.8-100) (8.3-85.7)

nonlesion 64.6 72.1* 57.1 64.6

(14.6-95.5) (34.8-100) (4.5-90)

derived 71.3* 83.8* 60.9 72

(44.5-95.5) (44.5-100) (8.3-90)

CT 62.4 83.5* 60.9 68.9

(34.8-85.4) (44.9-100) (18.8-91.7)

GMWM 71.7* 82.1* 64.6 72.8

(18.8-95.5) (44.9-100) (11.5-91.7)

imaging 41.6 77.3* 38.2 52.3

(0-77.5) (39.6-100) (0-75.3)

global_derived 70.6* 83.4* 61.3 71.8

(34.8-95.5) (34.8-100) (20-91.7)

global_imaging 41.7 78* 38.6 52.8

(0-75.3) (33.5-100) (0-75.3)

global_lesions 66 78* 53.9 66

(14.3-85.7) (44.9-100) (8.3-85.7)

global_lobes 60.8 78.4* 60.7 66.6

(14.3-91.7) (40-100) (14.6-91.7)

* p-value60.05
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A.3 AU TO M AT E D F E AT U R E S E L E C T I O N

Accuracies of 10-fold and leave-one-out experiments using RFE (Tables 42 and 43),

and lists of selected features (Tables 44 to 49).

Table 42: Results of RFE experiments using a 10-fold cross-validation. Findings are shown
as balanced accuracy, range over all repetitions and and 95 % confidence interval
(CI) for the included centres.

centre follow-up bal. acc. (%) range (%) CI (%) # features

multi-centre 1 84.3 75.0-93.2 83.9-84.7 75

multi-centre 3 84.6 73.2-95.5 84.2-85.1 75

Barcelona 1 86.7 73.5-97.1 86.1-87.3 100

Barcelona 3 94.9 89.7-98.7 94.7-95.0 134

Barcelona 5 95.7 92.6-98.8 95.1-95.4 75

London 1 98.9 90.9-100 98.7-99.1 75

London 3 99.1 93.1-100 98.9-99.2 75

Siena 1 98.4 85.0-100 98.1-98.8 32

Table 43: Results of RFE experiments using a leave-one-out cross-validation. Findings are
shown as balanced accuracy, range over all repetitions and and 95 % confidence
interval (CI) for the included centres.

centre follow-up bal. acc. (%) range (%) CI (%) # features

multi-centre 1 88.7 77.3-97.7 88.3-89.1 75

multi-centre 3 85.9 75.0-98.0 85.4-86.5 100

Barcelona 1 89.4 76.5-100 88.9-89.9 75

Barcelona 3 96.6 91.7-99.4 96.5-96.8 178

Barcelona 5 96.9 93.2-99.4 96.8-97.0 100

London 1 99.2 95.5-100 99.0-99.3 100

London 3 99.6 94.8-100 99.5-99.7 75

Siena 1 97.8 85.0-100 97.5-98.2 24
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Table 44: Selected features in best result from RFE experiments using Barcelona data at
1-year follow-up with 2-fold cross-validation.

1. lesionLoad_WM
2. WM_Left_Accumbens_Area
3. WM_3rd_Ventricle_(Posterior_part)
4. WM_Optic_Chiasm
5. WM_Right_Basal_Forebrain
6. WM_Left_LOrG_lateral_orbital_gyrus
7. WM_Left_MTG_middle_temporal_gyrus
8. WM_Left_OCP_occipital_pole
9. WM_Right_POrG_posterior_orbital_gyrus
10. WM_Right_SOG_superior_occipital_gyrus
11. GM_Non-ventricular_CSF
12. GM_Cerebellar_Vermal_Lobules_VIII-X
13. GM_Left_Basal_Forebrain
14. GM_Right_MFC_medial_frontal_cortex
15. GM_Left_PP_planum_polare
16. CT_Left_Pallidum
17. CT_Right_Thalamus_Proper
18. CT_Left_Thalamus_Proper
19. CT_Right_Basal_Forebrain
20. CT_Right_GRe_gyrus_rectus
21. CT_Right_LiG_lingual_gyrus
22. CT_Right_MTG_middle_temporal_gyrus
23. CT_Right_PO_parietal_operculum
24. T2_Left_Cerebral_Exterior
25. PD_Left_AOrG_anterior_orbital_gyrus
26. PD_Right_OCP_occipital_pole
27. volume_Left_Accumbens_Area
28. volume_Optic_Chiasm
29. volume_Left_Basal_Forebrain
30. volume_Left_CO_central_operculum
31. volume_Right_Cun_cuneus
32. volume_Left_GRe_gyrus_rectus
33. volume_Right_LiG_lingual_gyrus
34. volume_Left_MCgG_middle_cingulate_gyrus
35. volume_Right_MOG_middle_occipital_gyrus
36. volume_Left_MPoG_postcentral_gyrus_medial_segment
37. volume_Right_PCgG_posterior_cingulate_gyrus
38. volume_Right_PO_parietal_operculum
39. volume_Left_PP_planum_polare
40. volume_Right_PT_planum_temporale
41. volume_Right_SOG_superior_occipital_gyrus
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42. volume_Right_TrIFG_triangular_part_of_the_inferior_frontal_gyrus
43. volume_Left_TTG_transverse_temporal_gyrus
44. lesionCount_Right_Cerebellum_Exterior
45. lesionCount_Right_Cerebral_White_Matter
46. lesionCount_Right_Lateral_Ventricle
47. lesionCount_Left_Ventral_DC
48. lesionCount_Right_CO_central_operculum
49. lesionCount_Left_FuG_fusiform_gyrus
50. lesionCount_Left_MOrG_medial_orbital_gyrus
51. lesionCount_Right_OFuG_occipital_fusiform_gyrus
52. lesionCount_Right_PCgG_posterior_cingulate_gyrus
53. lesionCount_Right_PHG_parahippocampal_gyrus
54. lesionLoad_Left_Cerebral_White_Matter
55. lesionLoad_Right_FuG_fusiform_gyrus
56. lesionLoad_Left_FuG_fusiform_gyrus
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Table 45: Selected features in best result from RFE experiments using Barcelona data at
3-year follow-up with 2-fold cross-validation.

1. onset
2. lesionLoad_WM
3. WM_Right_vessel
4. WM_Right_FO_frontal_operculum
5. WM_Right_MFC_medial_frontal_cortex
6. WM_Left_OpIFG_opercular_part_of_the_inferior_frontal_gyrus
7. WM_Left_PHG_parahippocampal_gyrus
8. WM_Left_PT_planum_temporale
9. WM_Left_SMC_supplementary_motor_cortex
10. WM_Right_SOG_superior_occipital_gyrus
11. WM_Left_TTG_transverse_temporal_gyrus
12. GM_Non-ventricular_CSF
13. GM_Brain_Stem
14. GM_Left_Hippocampus
15. GM_Right_AIns_anterior_insula
16. GM_Right_Calc_calcarine_cortex
17. GM_Left_Calc_calcarine_cortex
18. GM_Left_IOG_inferior_occipital_gyrus
19. GM_Left_OCP_occipital_pole
20. GM_Right_SCA_subcallosal_area
21. GM_Left_TMP_temporal_pole
22. CT_Right_Pallidum
23. CT_Left_vessel
24. CT_Cerebellar_Vermal_Lobules_I-V
25. CT_Left_Calc_calcarine_cortex
26. CT_Right_LiG_lingual_gyrus
27. CT_Left_MOrG_medial_orbital_gyrus
28. CT_Left_OCP_occipital_pole
29. CT_Right_PO_parietal_operculum
30. CT_Left_PoG_postcentral_gyrus
31. PD_Left_OCP_occipital_pole
32. volume_4th_Ventricle
33. volume_Left_Pallidum
34. volume_Right_vessel
35. volume_Right_AIns_anterior_insula
36. volume_Right_Ent_entorhinal_area
37. volume_Right_FO_frontal_operculum
38. volume_Left_FRP_frontal_pole
39. volume_Left_GRe_gyrus_rectus
40. volume_Left_MPoG_postcentral_gyrus_medial_segment
41. volume_Right_OpIFG_opercular_part_of_the_inferior_frontal_gyrus
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42. volume_Right_PIns_posterior_insula
43. volume_Left_PO_parietal_operculum
44. volume_Right_SOG_superior_occipital_gyrus
45. volume_Right_SPL_superior_parietal_lobule
46. lesionCount_Right_Cerebellum_White_Matter
47. lesionCount_Right_Lateral_Ventricle
48. lesionCount_Right_CO_central_operculum
49. lesionCount_Right_ITG_inferior_temporal_gyrus
50. lesionCount_Left_MTG_middle_temporal_gyrus
51. lesionCount_Right_PCgG_posterior_cingulate_gyrus
52. lesionCount_Right_PT_planum_temporale
53. lesionCount_Left_PT_planum_temporale
54. lesionLoad_Right_Cerebral_White_Matter
55. lesionLoad_Left_Inf_Lat_Vent
56. lesionLoad_Right_SMC_supplementary_motor_cortex
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Table 46: Selected features in best result from RFE experiments using Barcelona data at
5-year follow-up with 2-fold cross-validation.

1. age
2. sex
3. onset
4. lesionLoad_global
5. lesionLoad_WM
6. WM_Brain_Stem
7. WM_Right_Pallidum
8. WM_Right_vessel
9. WM_Optic_Chiasm
10. WM_Cerebellar_Vermal_Lobules_VIII-X
11. WM_Right_FO_frontal_operculum
12. WM_Left_LOrG_lateral_orbital_gyrus
13. WM_Right_MFC_medial_frontal_cortex
14. WM_Right_MFG_middle_frontal_gyrus
15. WM_Left_OpIFG_opercular_part_of_the_inferior_frontal_gyrus
16. WM_Left_PCgG_posterior_cingulate_gyrus
17. WM_Right_PCu_precuneus
18. WM_Left_PHG_parahippocampal_gyrus
19. WM_Right_PIns_posterior_insula
20. WM_Left_PP_planum_polare
21. WM_Left_PrG_precentral_gyrus
22. WM_Left_PT_planum_temporale
23. WM_Right_SFG_superior_frontal_gyrus
24. WM_Left_SMC_supplementary_motor_cortex
25. GM_Non-ventricular_CSF
26. GM_3rd_Ventricle
27. GM_Right_Amygdala
28. GM_Brain_Stem
29. GM_Left_Cerebral_Exterior
30. GM_3rd_Ventricle_(Posterior_part)
31. GM_Left_Hippocampus
32. GM_Right_Pallidum
33. GM_Left_Calc_calcarine_cortex
34. GM_Left_OrIFG_orbital_part_of_the_inferior_frontal_gyrus
35. CT_Right_Pallidum
36. CT_Left_vessel
37. CT_Cerebellar_Vermal_Lobules_I-V
38. CT_Left_Basal_Forebrain
39. CT_Right_Calc_calcarine_cortex
40. CT_Left_Calc_calcarine_cortex
41. CT_Right_FuG_fusiform_gyrus
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42. CT_Right_GRe_gyrus_rectus
43. CT_Right_LiG_lingual_gyrus
44. CT_Left_MCgG_middle_cingulate_gyrus
45. CT_Right_MOG_middle_occipital_gyrus
46. CT_Left_MOG_middle_occipital_gyrus
47. CT_Right_MPoG_postcentral_gyrus_medial_segment
48. CT_Left_MSFG_superior_frontal_gyrus_medial_segment
49. CT_Right_OrIFG_orbital_part_of_the_inferior_frontal_gyrus
50. CT_Left_PIns_posterior_insula
51. CT_Right_PO_parietal_operculum
52. CT_Left_PP_planum_polare
53. CT_Right_PT_planum_temporale
54. CT_Right_SCA_subcallosal_area
55. CT_Right_SFG_superior_frontal_gyrus
56. CT_Right_SMC_supplementary_motor_cortex
57. T2_Right_vessel
58. PD_Background_and_skull
59. PD_Left_OCP_occipital_pole
60. volume_Left_Caudate
61. volume_Right_Pallidum
62. volume_Left_Putamen
63. volume_Right_vessel
64. volume_Right_AIns_anterior_insula
65. volume_Right_AOrG_anterior_orbital_gyrus
66. volume_Right_CO_central_operculum
67. volume_Right_Ent_entorhinal_area
68. volume_Left_FRP_frontal_pole
69. volume_Right_GRe_gyrus_rectus
70. volume_Left_LOrG_lateral_orbital_gyrus
71. volume_Right_MCgG_middle_cingulate_gyrus
72. volume_Right_MFC_medial_frontal_cortex
73. volume_Right_MOG_middle_occipital_gyrus
74. volume_Right_MOrG_medial_orbital_gyrus
75. volume_Left_MPoG_postcentral_gyrus_medial_segment
76. volume_Left_OFuG_occipital_fusiform_gyrus
77. volume_Right_OrIFG_orbital_part_of_the_inferior_frontal_gyrus
78. volume_Left_PHG_parahippocampal_gyrus
79. volume_Right_PIns_posterior_insula
80. volume_Right_SFG_superior_frontal_gyrus
81. volume_Left_SMG_supramarginal_gyrus
82. volume_Right_SOG_superior_occipital_gyrus
83. volume_Right_SPL_superior_parietal_lobule
84. volume_Left_TTG_transverse_temporal_gyrus
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85. lesionCount_Left_Cerebellum_White_Matter
86. lesionCount_Left_Pallidum
87. lesionCount_Right_CO_central_operculum
88. lesionCount_Right_ITG_inferior_temporal_gyrus
89. lesionCount_Left_ITG_inferior_temporal_gyrus
90. lesionCount_Left_OpIFG_opercular_part_of_the_inferior_frontal_gyrus
91. lesionCount_Right_PCgG_posterior_cingulate_gyrus
92. lesionCount_Left_POrG_posterior_orbital_gyrus
93. lesionCount_Left_PT_planum_temporale
94. lesionCount_Right_SMC_supplementary_motor_cortex
95. lesionLoad_Right_Cerebral_White_Matter
96. lesionLoad_Right_Inf_Lat_Vent
97. lesionLoad_Left_POrG_posterior_orbital_gyrus
98. lesionLoad_Left_PT_planum_temporale
99. lesionLoad_Right_SMC_supplementary_motor_cortex
100. lesionLoad_Right_TTG_transverse_temporal_gyrus
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Table 47: Selected features in best result from RFE experiments using London data at 1-year
follow-up with 2-fold cross-validation.

1. age
2. EDSS
3. onset
4. mean_CT_insular
5. mean_CT_WM
6. volume_insular
7. WM_Brain_Stem
8. WM_Right_Caudate
9. WM_Left_Caudate
10. WM_Right_Cerebral_Exterior
11. WM_Right_Hippocampus
12. WM_Right_Inf_Lat_Vent
13. WM_Right_Pallidum
14. WM_Right_vessel
15. WM_Left_AIns_anterior_insula
16. WM_Right_Ent_entorhinal_area
17. WM_Left_Ent_entorhinal_area
18. WM_Right_FRP_frontal_pole
19. WM_Left_FRP_frontal_pole
20. WM_Right_MCgG_middle_cingulate_gyrus
21. WM_Left_MCgG_middle_cingulate_gyrus
22. WM_Right_OCP_occipital_pole
23. WM_Left_SCA_subcallosal_area
24. GM_Right_Caudate
25. GM_Left_Caudate
26. GM_Right_Pallidum
27. GM_Right_AnG_angular_gyrus
28. GM_Right_Ent_entorhinal_area
29. GM_Left_FO_frontal_operculum
30. GM_Left_FRP_frontal_pole
31. GM_Right_GRe_gyrus_rectus
32. GM_Left_MCgG_middle_cingulate_gyrus
33. GM_Left_MPrG_precentral_gyrus_medial_segment
34. GM_Right_OCP_occipital_pole
35. GM_Left_OCP_occipital_pole
36. GM_Right_TrIFG_triangular_part_of_the_inferior_frontal_gyrus
37. CT_Right_Accumbens_Area
38. CT_Right_Cerebral_White_Matter
39. CT_Right_vessel
40. CT_Left_vessel
41. CT_Left_CO_central_operculum
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42. CT_Left_LiG_lingual_gyrus
43. CT_Right_MOrG_medial_orbital_gyrus
44. CT_Right_OFuG_occipital_fusiform_gyrus
45. CT_Left_OFuG_occipital_fusiform_gyrus
46. CT_Right_PIns_posterior_insula
47. T1_Left_Lateral_Ventricle
48. T2_Right_OCP_occipital_pole
49. T2_Right_SOG_superior_occipital_gyrus
50. T2_Left_TTG_transverse_temporal_gyrus
51. volume_Right_Accumbens_Area
52. volume_Right_Caudate
53. volume_Cerebellar_Vermal_Lobules_VI-VII
54. volume_Right_AIns_anterior_insula
55. volume_Left_AIns_anterior_insula
56. volume_Right_FO_frontal_operculum
57. volume_Right_OFuG_occipital_fusiform_gyrus
58. volume_Left_SMC_supplementary_motor_cortex
59. lesionCount_Background_and_skull
60. lesionCount_Right_Cerebellum_White_Matter
61. lesionCount_Right_AOrG_anterior_orbital_gyrus
62. lesionCount_Left_AOrG_anterior_orbital_gyrus
63. lesionCount_Right_Calc_calcarine_cortex
64. lesionCount_Left_CO_central_operculum
65. lesionCount_Left_LOrG_lateral_orbital_gyrus
66. lesionCount_Left_MTG_middle_temporal_gyrus
67. lesionCount_Left_PO_parietal_operculum
68. lesionCount_Left_PoG_postcentral_gyrus
69. lesionCount_Left_TMP_temporal_pole
70. lesionLoad_Right_Caudate
71. lesionLoad_Right_Cerebellum_White_Matter
72. lesionLoad_Right_ACgG_anterior_cingulate_gyrus
73. lesionLoad_Right_MOrG_medial_orbital_gyrus
74. lesionLoad_Left_MTG_middle_temporal_gyrus
75. lesionLoad_Left_PoG_postcentral_gyrus
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Table 48: Selected features in best result from RFE experiments using London data at 3-year
follow-up with 2-fold cross-validation.

1. EDSS
2. onset
3. WM_4th_Ventricle
4. WM_Right_Amygdala
5. WM_3rd_Ventricle_(Posterior_part)
6. WM_Right_Hippocampus
7. WM_Right_Inf_Lat_Vent
8. WM_Left_Inf_Lat_Vent
9. WM_Left_Lateral_Ventricle
10. WM_Right_Putamen
11. WM_Right_Ventral_DC
12. WM_Right_vessel
13. WM_Left_AOrG_anterior_orbital_gyrus
14. WM_Right_Calc_calcarine_cortex
15. WM_Right_FRP_frontal_pole
16. WM_Left_GRe_gyrus_rectus
17. WM_Left_MCgG_middle_cingulate_gyrus
18. WM_Right_OCP_occipital_pole
19. WM_Right_SCA_subcallosal_area
20. GM_Right_Inf_Lat_Vent
21. GM_Right_Putamen
22. GM_Right_vessel
23. GM_Right_AnG_angular_gyrus
24. GM_Right_Calc_calcarine_cortex
25. GM_Right_Ent_entorhinal_area
26. GM_Right_PIns_posterior_insula
27. GM_Right_SCA_subcallosal_area
28. CT_Right_Accumbens_Area
29. CT_Right_vessel
30. CT_Left_vessel
31. CT_Right_AIns_anterior_insula
32. CT_Right_Calc_calcarine_cortex
33. CT_Left_CO_central_operculum
34. CT_Left_FO_frontal_operculum
35. CT_Right_OFuG_occipital_fusiform_gyrus
36. CT_Left_OFuG_occipital_fusiform_gyrus
37. CT_Left_PoG_postcentral_gyrus
38. CT_Left_SCA_subcallosal_area
39. T1_Left_Lateral_Ventricle
40. T2_Non-ventricular_CSF
41. T2_Right_Cerebral_Exterior
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42. PD_Right_Cerebral_Exterior
43. volume_Right_Accumbens_Area
44. volume_Right_Cerebral_Exterior
45. volume_Left_Lateral_Ventricle
46. volume_Left_vessel
47. volume_Right_Cun_cuneus
48. volume_Right_FO_frontal_operculum
49. volume_Left_GRe_gyrus_rectus
50. volume_Right_ITG_inferior_temporal_gyrus
51. volume_Right_OCP_occipital_pole
52. volume_Right_OFuG_occipital_fusiform_gyrus
53. volume_Left_PO_parietal_operculum
54. volume_Right_PoG_postcentral_gyrus
55. volume_Right_PT_planum_temporale
56. volume_Left_SMC_supplementary_motor_cortex
57. volume_Right_SOG_superior_occipital_gyrus
58. volume_Right_STG_superior_temporal_gyrus
59. lesionCount_Right_Cerebellum_White_Matter
60. lesionCount_Right_Pallidum
61. lesionCount_Right_AOrG_anterior_orbital_gyrus
62. lesionCount_Left_CO_central_operculum
63. lesionCount_Right_GRe_gyrus_rectus
64. lesionCount_Left_MFG_middle_frontal_gyrus
65. lesionCount_Left_MTG_middle_temporal_gyrus
66. lesionCount_Left_PO_parietal_operculum
67. lesionCount_Right_PP_planum_polare
68. lesionCount_Left_TMP_temporal_pole
69. lesionLoad_Right_Cerebellum_White_Matter
70. lesionLoad_Right_Ventral_DC
71. lesionLoad_Right_GRe_gyrus_rectus
72. lesionLoad_Right_MOrG_medial_orbital_gyrus
73. lesionLoad_Left_MTG_middle_temporal_gyrus
74. lesionLoad_Right_PoG_postcentral_gyrus
75. lesionLoad_Left_TMP_temporal_pole
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Table 49: Selected features in best result from RFE experiments using Siena data at 1-year
follow-up with 2-fold cross-validation.

1. mean_CT_temporal
2. WM_4th_Ventricle
3. WM_Right_Accumbens_Area
4. WM_Right_Caudate
5. WM_Left_Basal_Forebrain
6. WM_Left_AOrG_anterior_orbital_gyrus
7. WM_Left_LOrG_lateral_orbital_gyrus
8. WM_Left_MCgG_middle_cingulate_gyrus
9. WM_Right_OFuG_occipital_fusiform_gyrus
10. WM_Left_PrG_precentral_gyrus
11. WM_Right_SMC_supplementary_motor_cortex
12. WM_Right_TMP_temporal_pole
13. GM_Right_Accumbens_Area
14. GM_Cerebellar_Vermal_Lobules_VI-VII
15. GM_Left_Basal_Forebrain
16. GM_Left_AOrG_anterior_orbital_gyrus
17. GM_Left_LOrG_lateral_orbital_gyrus
18. GM_Right_PCgG_posterior_cingulate_gyrus
19. GM_Left_PHG_parahippocampal_gyrus
20. GM_Right_POrG_posterior_orbital_gyrus
21. GM_Left_PP_planum_polare
22. CT_Right_Caudate
23. CT_Right_Cerebellum_Exterior
24. CT_Left_AIns_anterior_insula
25. CT_Left_AOrG_anterior_orbital_gyrus
26. CT_Left_CO_central_operculum
27. CT_Right_GRe_gyrus_rectus
28. CT_Left_LOrG_lateral_orbital_gyrus
29. CT_Right_MFC_medial_frontal_cortex
30. CT_Left_OpIFG_opercular_part_of_the_inferior_frontal_gyrus
31. CT_Left_OrIFG_orbital_part_of_the_inferior_frontal_gyrus
32. CT_Left_PHG_parahippocampal_gyrus
33. CT_Left_PoG_postcentral_gyrus
34. CT_Right_PP_planum_polare
35. CT_Left_PP_planum_polare
36. CT_Left_PrG_precentral_gyrus
37. CT_Left_PT_planum_temporale
38. CT_Left_TrIFG_triangular_part_of_the_inferior_frontal_gyrus
39. volume_Right_Caudate
40. volume_Right_Cerebellum_White_Matter
41. volume_Left_Hippocampus



A.3 AU TO M AT E D F E AT U R E S E L E C T I O N 142

42. volume_Left_vessel
43. volume_Left_AIns_anterior_insula
44. volume_Left_Ent_entorhinal_area
45. volume_Right_MCgG_middle_cingulate_gyrus
46. volume_Left_OFuG_occipital_fusiform_gyrus
47. lesionCount_Left_Cerebellum_Exterior
48. lesionCount_Right_Ventral_DC
49. lesionCount_Left_IOG_inferior_occipital_gyrus
50. lesionCount_Left_MOG_middle_occipital_gyrus
51. lesionCount_Left_PT_planum_temporale
52. lesionLoad_Left_Cerebellum_Exterior
53. lesionLoad_Left_Thalamus_Proper
54. lesionLoad_Left_MOG_middle_occipital_gyrus
55. lesionLoad_Left_PCu_precuneus
56. lesionLoad_Left_PO_parietal_operculum
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