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 Abstract 

The majority of products made by microalgae and requiring extraction before use are 

restricted, commercially, by the high cost of the harvesting methods employed. Although 

considerable progress has been made in biofuel development there are still relatively few 

studies on the initial downstream processing stages. Ultra-scale down (USD) approaches 

have previously been established to study the impact of the engineering environment on 

biopharmaceuticals; they are valuable because they enable study of a wide range of 

operating parameters using minimal quantities of material and resources. The aim of this 

project is therefore to establish a USD platform for the rapid evaluation of pre-treatment 

and recovery operations for microalgae downstream processes. 

The first objective was to explore flocculation as a pre-treatment step. Flocculation is a 

difficult process to operate reproducibly, hence standardisation of flocculation conditions 

becomes vital in order to characterize and quantify process performance. A series of scale-

down flocculation reactors were designed, characterised and scaled-up using Chitosan to 

flocculate heterotrophically grown Chlorella sorokiniana. These enabled flocs with 

defined particle size distributions to be consistently and reproducibly produced. An optimal 

Chitosan concentration of 9.9 ± 0.4 mg.g-1 of algal dry cell weight was determined. Scale-

up of the flocculation process from the scale-down reactor (120 mL) to a 7.5L STR stirred 

tank reactor was achieved at a fixed impeller tip speed during flocculant addition and 

ageing (0.29 and 0.07 ms-1 respectively). 

 Due to the complex nature of unit operations, it is generally difficult to obtain data at 

laboratory scale that closely reflects the performance of operations at pilot scale or beyond. 

For the second objective of this work, a USD model of a cross-flow filtration process for 

microalgal biomass recovery was established. This could accurately reproduce the flux-

TMP (transmembrane pressure) profiles of lab-scale hollow fibre cartridges when operated 

at a defined shear rate. The benefits of flocculation on filtration performance include a 
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reduction in membrane cleaning cycles and a 20% reduction in filtration time. Filtration 

results were also in good agreement between the two scales for both unflocculated and 

flocculated feeds. The USD method enabled a 14-fold decrease in the volume of material 

required. It also demonstrated the benefits of flocculation. And lastly, USD was achieved 

using a 14.5–fold reduction in membrane area at matched volume: surface area ratio.  

The third objective was to establish a USD centrifugation method using a rotating disk 

shear device to expose particles to hydrodynamic shear before centrifugal separation. 

Evaluation of the influence of flocculation on centrifugation efficiency showed the benefits 

of increased particle size on clarification. Clarification efficiencies exceeding 99% was 

obtained even at low centrifugal forces using an optimal Chitosan dosage. The USD 

findings were validated at pilot scale using a CARR PowerfugeTM centrifuge. Similar 

clarification performance was predicted using 2000-fold less broth volume than was 

required for the pilot scale study.  

Sonication and homogenization as small scale cell disruption options for lipid release of 

heterotrophically grown C.sorokiniana were explored. Comparison of the optimal 

conditions of the two methods showed cell disruption and lipid release were similar in both 

cases on a g.g-1 basis. Finally comparison of the transesterified material produced using 

either USD microfiltration or USD centrifugation steps for harvesting showed major 

differences in terms of yield of fatty acid methyl esters (FAME). USD methods for 

evaluation of primary recovery operations and their interactions appear particularly useful 

in microalgae bioprocess synthesis.  

This work is the first to evaluate the use of USD technologies with microalgal cells. It 

illustrates the power of small-scale mimics to enable rapid selection and optimisation of 

different process options and thereby rational selection of the overall bioprocess sequence. 
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  Introduction and Literature Review 

  Background and project motivation 

Energy is a factor essential in maintaining economic growth and living standards. The 

global energy market can be divided into the electricity and fuel sector (Schenk et al., 

2008). Its sources can be further split into three main categories viz: fossil fuels, renewables 

and nuclear. Fossil fuel consists of petroleum, coal and natural gas. Renewable sources are 

biofuels, solar, hydroelectric, wind, and geothermal power while nuclear energy sources 

are radioactive fission and fusion (Demirbaş, 2001). In general, there is a large dependence 

on fossil fuels in order to meet rising energy demands (Arbex & Perobelli, 2010); an 

estimated 40% increase by 2030 is projected by the International Energy Agency (IEA) 

(Chaudhary, 2013). Problems associated with the use of fossil fuels (Figure 1.1) and its 

non-renewable nature has led to research into renewable and sustainable alternatives. 

Biofuels are the only renewable resources with the potential of favourably competing with 

fossil fuels. This is because other technologies concentrate on the production of electricity 

and are not suited to replace fossil fuels especially in the transportation and petro-chemical 

sectors. For example, planes cannot be battery powered as weight would be excessive 

(Posten, 2012).  
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Figure 1-1: Some of the problems associated with fossil fuel usage that led to the need for 

renewable and sustainable energy sources. (a) World energy consumption relies greatly on 

oil coal and gas (BP, 2015). (b) Global warming due to the increased release of greenhouse 

gases with over half attributed to CO2 released via fossil fuel combustion (IPCC, 2007). 

(c) Energy security: sources are depleting and consumption is three times the amount being 

discovered (ASPO, Berlin 2004). (d) Oil price has been increasing over the years (BP, 

2011).  

a) 

c) d) 

b) 
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 Global energy situation 

Currently, the use of fossil fuel is indispensable, nonetheless it cannot meet the future 

demand for energy due to the rapid growth of emerging economies around the world 

(Chaudhary, 2013). Sources are depleting and global warming is also on the rise (Figure 

1.1). Biofuels have received considerable attention in recent years due to the fact that they 

are produced from renewable, biodegradable and non-toxic sources and hence are 

environmentally sustainable. Also, they already contribute 10% of the global energy supply 

(Chaudhary, 2013).  

Larson in 2008 predicted, that commercial scale biofuel production using biochemical 

processes will only begin in 10-20 years (Larson, 2008). The Food and Agricultural 

Organization (FAO) also reported in 2008 that of all the biofuel sources, only bioethanol 

produced from sugar cane in Brazil could compete economically with fossil fuel, as other 

sources of biofuel depend largely on subsidies for its production. The report equally stated 

that by 2017, biodiesel is expected to have a higher global production level (24 million 

litres) when compared to bioethanol.  

In 2009, it was assumed that the global market for biodiesel production will grow 

exponentially in the following decade with an expected rise from 11.1 – 121 million metric 

tons occurring between 2008 and 2016 (Deng et al., 2009). In the same year, about a 400% 

increase in bioethanol production in comparison to that in 2000 was achieved. An increase 

of 72.2 billion litres of global ethanol production was recorded (Tabatabaei et al., 2011). 

The European union (EU) has set a compulsory 10% target in the use of biofuel for 2020 

with the aim of reducing CO2 emission by 20% and decreasing the usage of non-renewable 

sources (Andrew, 2007). In 2012, a continued fall in the price of renewable energy 

technologies was seen, making renewables increasingly competitive with conventional 

energy sources (REN21, 2013). 
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  Overview of biofuels production 

Four generations of biofuels can be defined based on advances in production technologies 

(Table 1.1). First generation biofuels (FGB), derived largely from edible sugars and 

starches (Brennan & Owende, 2010), are faced with the constraint of competing with food 

and fibre production for arable land thus have an adverse impact on the world food supply 

(Moore, 2008). Second generation biofuels (SGB), have attracted more interest because 

they are based on non-edible agricultural residues. However, commercial exploitation has 

been hindered due to failure in the scaling-up of conversion technologies (FAO, 2008). 

Moreover, the economics of production still remains a challenge. Third generation biofuels 

(TGB), involve the production of biodiesel and bioethanol from microalgae and seaweed 

(Dragone et al., 2010). Fourth generation biofuels (FhGB), are based on further 

development of microalgae biofuel production, essentially the metabolic engineering of 

the algae for producing biofuels from oxygenic photosynthetic organisms. This production 

is still in its early stages and the economic feasibility of FhGB appears superior in the 

longer term.   

Table 1-1: Biofuels classification based on their production technologies. Adapted and 

modified from Demirbas (2009). 

Generation Feedstock Examples 

FGB Sugar, starch, vegetable oils, or 

animal fats 

Bioalcohols, vegetable oil, 

biodiesel, biosyngas, biogas 

SGB Non-food crops, wheat straw, corn, 

wood, solid waste, energy crop 

Bioalcohols, bio-oil, bio-DMF, 

biohydrogen, bio-Fischer–

Tropsch diesel, wood diesel 

TGB Algae Vegetable oil, biodiesel 

FhGB Vegetable oil, biodiesel  Biogasoline 
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  Algae  

Algae include macroalgae (seaweeds) and microalgae; they consist of several eukaryotic 

organisms and sometimes prokaryotes (blue-green algae) (Packer, 2009). Algae can exist 

as either freshwater or marine species; some grow optimally in hypersaline conditions 

whereas others thrive at intermediate saline levels. Seaweeds are macroscopic multicellular 

algae while microalgae are microscopic in nature. The former has defined tissues 

containing specialized cells while the latter are typically autotrophic organisms from a 

large and diverse group ranging from simple unicellular to multicellular forms. Microalgae 

make up the majority of the ten million algal species estimated on earth (Barsanti & 

Gualtieri, 2005). This thesis will consequently focus on microalgae.  

 Algal physiology 

They include Chlorophyceae (green algae), Bacillario-phyceae (diatom), dinoflagellates 

and Chryosophyceae (golden algae). They can grow in a variety of conditions especially 

damp areas and water bodies. About 8000 species of green algae containing complex long-

chain sugars (polysaccharides) in their cell wall are known (Packer, 2009). The large 

proportion of carbon possessed by algae is attributed to this property. Proteins, 

carbohydrates and lipids (oils) are the main biomass components of microalgae; though the 

composition of each of these components in the biomass varies between strains. 

Microalgae can be motile or non-motile depending on possession of antenna (flagella). 

Algal strains have been widely studied on their biochemical composition due to the various 

applications of their biomass and metabolites (Guedes et al., 2011). They are able to 

efficiently produce cellulose, starch and oils in large amounts (Benemann & Oswald, 

1996). However, cyanobacteria and some microalgae produce glycogen instead of starch 

and can produce biohydrogen under anaerobic conditions (Hankamer et al., 2007).  

Furthermore, some species contain high proportions of various lipids by dry weight 

(Metting, 1996; Spolaore et al., 2006). Total lipid and fat content of algae is within 1-70% 

http://en.wikipedia.org/wiki/Unicellular
http://en.wikipedia.org/wiki/Multicellular
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of its ash-free dry weight, although reports have shown that species with > 40% are rarely 

observed (Borowitzka, 1988). 

The structures of microalgae cell walls are typically tri-layered which include; 

polysaccharides such as cellulose, glycoproteins, mannose, protein, uronic acid,  xylan or 

trilaminar layers of algaenan and minerals such as silicates or calcium (Allard et al., 2002; 

Sugiyama et al., 1991). Microalgae are known to undergo photosynthesis which could be 

either in the light or dark steps (Calvin cycle). During photosynthesis, adenosine 

triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH) are first 

produced in the cytoplasm of algae. The NADPH produced is as a result of a reaction 

between protons and electrons which combines with ferredoxin-NADP+ oxidoreductase; 

this in turn combines with ATP in some biochemical pathways and Calvincycle to produce 

biomass (oils, starch, sugars and other bio-molecules).   

The growth nutrient requirements of algae include water, CO2 and sunlight just like higher 

plants. 

 Microalgae as a biofuel feedstock 

The potential use of microbial, particularly microalgal photosynthesis to produce biofuels 

is widely recognized (Chisti, 2007; Hu et al., 2008; Huntley & Redalje, 2007). Microalgal 

use for biofuel production has several advantages over higher plants (Dragone et al., 2010): 

(1) they have a rapid growth rate, with short growth cycle of 1-10 days when compared to 

an average food crop which has a harvesting cycle of once or twice a year; (2) they can 

grow on non-agricultural land (Hu et al., 2008; Wahlen et al., 2011), utilize brackish water 

(Deng et al., 2009) or wastewater streams (Schenk et al., 2008) for growth; (3) they are 

grown sustainably in that no pesticides or herbicides are required for cultivation and, 

depending on species, microalgae can serve as a good source of other products with 

valuable applications including a wide range of fine chemicals and bulk products such as 

natural dyes, proteins, pigments, polysaccharides, polyunsaturated fatty acids etc.; (4) they 

also have the capacity to produce 15–300 times as much biodiesel as first and second 
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generation sources (Dragone et al., 2010). Table 1.2 shows that the average biodiesel 

production yield from microalgae is higher than that obtained from their food crop 

counterparts.  

Table 1-2: Comparison of some sources of biodiesel (where superscripts a and b are 70 

and 30% oil by weight in biomass respectively). Adapted from Chisti (2007).  

Crop Oil Yield   (L.ha-1) 

Corn 172 

Soyabean 446 

Canola 1,190 

Jathropa 1,892 

Coconut 2,689 

Palm 5,950 

Microalgaea 136,900 

Microalgaeb 58,700 

Though the potential of microalgae as a biofuel source are clear, a number of limitations 

for the development of algal biofuel technology to commercial viability exist. These 

include: (1) a balance between species selection and extraction of valuable co-products for 

biofuel production; (2) continued development of production systems for example, 

improved photosynthetic efficiency (Pulz & Scheibenbogen, 1998); (3) accumulating flue 

gases which are unsuitable in high concentration due to the presence of poisonous 

compounds such as NOx and SOx (Brown, 1996); (4) potential for a negative energy balance 

after accounting for requirements in pumping, CO2 transfer, harvesting and extraction 

(Brennan & Owende, 2010). Microalgae can be used to produce several biofuel products 

together with electricity depending on the conversion technology used (Figure 1.2). 

Biofuels are not yet economical but improving these technologies can improve process 

economics so that it is possible to substitute some fossil diesel and contribute to global 

energy supply whilst providing a positive environmental impact (Wang et al., 2008) 
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Figure 1-2: Biofuel conversion processes from microalgal biomass. Adapted from Wang 

et al. (2008). 

 Impact of strain selection on biofuel production 

Several studies have been carried out on the isolation and characterization of numerous 

microalgae species with research focusing on these as a strategy to improve biofuel 

production (Sheehan, 1998). Strains contain varied oil content and this impacts on their 

suitability for biodiesel production. Many microalgae have an oil content in the range of 

20-50% dry weight of biomass with doubling times as short as 3.5 hr (Metting, 1996). The 

doubling time of different species can influence biomass productivities hence impacting 

on process economics. Table 1.3 is an example of different microalgal species and strains 

with different lipid content (% dry weight). 
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Table 1-3: Lipid content of some microalgae species. Adapted from Spolaore et al.(2006). 

 

Specie Lipid Content (% dry weight) 

Scenedesmus obliquus 11 – 55 

Scenedesmus dimorphus 6 – 40 

Chlorella vulgaris 14 – 56 

Chlorella emersonii 63 

Chlorella protothecoides 23/55 

Chlorella sorokiniana 22 

Chlorella minutissima 57 

Dunaliella bioculata 8 

Dunaliella salina 14 – 20 

Neochloris oleoabundans 35 – 65 

Spirulina maxima 4 – 9 

 Impact of Photosynthetic Efficiency (PE) 

PE is an important characteristic of microalgae as any increase will improve biomass 

production. It can be defined as the percentage of incident radiation that is converted into 

biomass (Packer, 2009). In biofuel production system, improving the efficiency of light 

capture will directly impact on biomass production. However, the photosynthetic 

machinery can be damaged by excessive light leading to photo-protective mechanisms in 

algae and higher plants known as photo inhibition (Huntley & Redalje, 2007; Pascal et al., 

2005). A study by Mussgnug et al., (2007) showed how modifying the antenna length of 

C.reinhardtii allowed optimal light exposure to all cells in the bioreactor. In addition, as a 

result of improved PE and appropriate energy supply to all photosynthesizing cells, an 

increased efficiency in biomass productivity was seen.  

 Impact of lipid productivity 

In biodiesel production, one major factor to be considered when choosing algae species is 

its lipid productivity which is defined as the rate of lipid production per gram of biomass. 

Microalgae possess a significant variety of valuable lipids and fatty acids (FA) for 

industrial applications (Behrens & Kyle, 1996). Depending on the species, microalgae 
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produce different types of lipids, other complex oils and hydrocarbons (Guschina & 

Harwood, 2006; Metzger & Largeau, 2005). It is the lipid in the form of triglycerols (TG) 

that is transesterified to form biodiesel (Section 1.5). Lipid accumulation is dependent on 

many factors ranging from microalgal species to growth conditions. Some algal species 

produce large quantities of lipid primarily in the form of heavy droplets of TG in the 

cytoplasm (Boswell et al., 1992). Lastly, biodiesel quality and quantity will greatly depend 

on the lipid productivity. 

 Microalgae culture  

The use of sunlight as a free natural source of energy is an advantage in commercial algae 

culture. However, this has its own limitation considering the daily and seasonal variation 

in sun intensity which could limit the viability of its production to areas with a considerable 

supply of solar energy. A good example is the outdoor production of phototropic algae 

which requires sunlight as its energy source; this makes light a key limiting factor (Pulz & 

Scheibenbogen, 1998).  

Microalgae can grow as either autotrophic, heterotrophic or as mixotrophic organisms. 

When they grow as autotrophs, they require only a light source and inorganic compounds 

like salt and CO2 for growth; whereas heterotrophic growth makes use of organic 

compounds sourced externally as an energy source. Some algae can also grow 

mixotrophically, in the sense that they require exogenous organic nutrient as well as light 

for photosynthesis (Lee, 1980). 

Due to the limitations of sunlight energy, synthetic methods of production have been 

developed. Currently, fluorescent lamps are used to simulate phototrophic conditions 

(Muller-Feuga et al., 1998). Although a higher overall energy input is required, fluorescent 

lamps permit continuous light production. In choosing this artificial lighting system, 

understanding the algal morphology, especially absorption of light by photosynthetic 

pigments is important.  
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In a natural setting, CO2 is usually available for algae to fix from three different forms, 

namely: the atmosphere; in discharge gases from heavy industries; or as soluble carbonates 

(Wang et al., 2008). Whereas in an artificial setting, atmospheric CO2 levels of up to 

150,000 ppm (Bilanovic et al., 2009) can be mimicked by feeding soluble carbonates such 

as Na2CO3 and NaHCO3 (Colman & Rotatore, 1995; Huertas et al., 2000) or from other 

outside sources i.e. power plants (Brown, 1996; Doucha et al., 2005; Kadam, 2002). 

In terms of elemental requirements, nitrogen, phosphorus and silicon are some of the 

inorganic nutrients which algae require for growth. Ammonium is the most preferred 

nitrogen source for algae  (Grobbelaar, 2007; Kaplan et al., 2008; Wilhelm et al., 2006), 

while some have the ability to fix nitrogen directly from the atmosphere in the form of 

NOX (Moreno et al., 2003; Welsh et al., 2000). Phosphorus is only required in small 

quantity (Çelekli et al., 2009) but it needs to be supplied in excess since it can complex 

with metal ions, hence not all the phosphorus added is available for algal growth (Chisti, 

2007).  

Microalgae can also grow in aqueous media and can utilize wastewater for growth, thereby 

reducing the competition on fresh water sources and needing less water than terrestrial 

crops (Dismukes et al., 2008).  Wastewater is rich in valuable nutrients such as nitrogen 

and phosphorus (Aslan & Kapdan, 2006; Shi et al., 2007), but the presence of excessive 

trace elements, heavy metals and other contaminants in solution causes problems in biofuel 

production. Reports have shown that heavy metals such as cadmium regulate important 

cellular processes like lipid biosynthesis (Gillet et al., 2006; Yang et al., 2000). Other 

minerals that algae require in sufficient amounts can be lethal or inhibitory at excessive 

levels (Tripathi & Gaur, 2004) e.g. copper. 

Different cultivation methods that could be used in microalgae production are open system 

and closed photobioreactors. Each has its advantages and limitations as summarised in 

Table 1.4. 
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 Open pond production systems 

This type of algae production system can be categorized into natural waters and artificial 

ponds or containers. The dimensions are between 0.2-0.5 m deep with circulation and 

mixing required to support algal growth. The microalgae CO2 requirement is usually 

satisfied from the surface air, but submerged aerators may be installed to enhance CO2 

absorption (Terry & Raymond, 1985). The open pond method is considered a more 

economically viable manner for large scale production of microalgae when compared to 

closed photobiorector system.  

Open ponds have a number of limitation when it comes to location selection due to the 

possible threat of pollution and contamination from other organisms such as other protozoa 

and other algal species (Pulz & Scheibenbogen, 1998). Single-culture cultivation is 

achievable by maintaining an extreme culture environment (e.g. low pH), though few 

strains are suitable for this production type and prolonged production periods can lead to 

bacterial and other biological contaminants (Lee, 2001). Light limitation is evident in this 

production system as a result of the thickness of the top layer and this will result in low 

productivities (Ugwu et al., 2008).  

 Closed photobioreactor system  

In the past years, algal technologies have attracted considerable interest (Posten, 2009), 

with the majority of studies focusing on photobioreactor designs. Closed photobioreactors 

technologies are aimed at overcoming pollution and contamination risks whilst improving 

algal biomass productivity. This type of production system includes flat bed, tubular or 

column photobioreactors.  Photobiorectors consist of an arrangement of straight plastic or 

glass tubes. The tubular arrangement captures sunlight and can be aligned horizontally 

(Molina et al., 2001), vertically (Miron et al., 1999), inclined (Ugwu et al., 2008) or as a 

helix (Watanabe & Saiki, 1997), and the tubes are usually 0.1 m or less in diameter.  

The cost of a closed bioreactor system is higher than open ponds but they are more ideal 

for growing sensitive strains due to their ability to prevent contamination. They have the  
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Table 1-4: Advantages and limitations of various algae culture systems. Adapted and 

modified from Dragone et al. (2010). 

Production System  Advantages  Limitations 

Raceway pond  Relatively cheap   Poor biomass productivity 

  Easy to clean  Large area of land required 

  Utilises non-agricultural land  Limited to few strains of algae 

  Low energy inputs  Poor mixing, light and CO2 utilisation 

  Easy maintenance  Cultures are easily contaminated 

Tubular photobioreactor  Large illumination surface 

area 

 Some degree of wall growth 

  Suitable for outdoor cultures  Fouling 

  Relatively cheap  Requires large footprint 

  Good biomass productivities Gradients of pH, dissolved oxygen 

and CO2 along the tubes 

Flatplate photobioreactor High biomass productivities  Difficult scale-up 

  Easy to sterilise  Difficult temperature control 

  Low oxygen build-up  Small degree of hydrodynamic stress 

  Readily tempered  Some degree of wall growth 

  Good light path   

  Large illumination surface 

area 

  

  Suitable for outdoor cultures   

Column photobioreactor Compact  Expensive compared to open ponds 

  Low energy consumption  Small illumination area 

  High mass transfer Sophisticated construction 

  Good mixing with low shear 

stress 

Shear stress 

  Easy to sterilise  

  Reduced photoinhibition and 

photo-oxidation 
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advantage of better controlled growth condition, a higher volumetric mass transfer rate as 

well as more efficient mixing (Eriksen, 2008).  

  Harvesting techniques in algal bioprocessing 

Algae cultures are known to have a high water content which has to be removed during 

harvesting and processing. One of the major areas of focus in algal production is the high 

operational cost of the harvesting and dewatering operations used (Greenwell et al., 2010; 

Uduman et al., 2010). Pressures to achieve efficient dewatering processes are on the rise 

(Titchener-Hooker et al., 2008) as the primary recovery stages account for about 20 – 30% 

of the cost of production (Gudin C, 1986). Research to date has explored a range of 

microalgal harvesting technologies from dissolved air floatation, flocculation using 

different techniques, drying, microfiltration and centrifugation. Studies have shown that no 

combination or single harvesting method best suits all microalgal species or class of 

product (Mata et al., 2010; Schenk et al., 2008).  

Biomass recovery becomes particularly difficult when there is a low cell density in the 

range of 0.3 – 5 g.L-1 and a small algal size between 2 – 40 µm (Li et al., 2008). Economic 

production of microalgae involves selecting an appropriate harvesting technique which 

will be dependent on factors such as density and size of the species as well as the value of 

the target product (Olaizola, 2003). Microalgae harvesting is normally a two stage process 

involving bulk harvesting and thickening. 

Bulk harvesting: The cell mass in the bulk suspension is separated in this stage, with 

concentration factors generally in the range of 100-800 times in order to attain 2-7% w/w 

total solid matter. This values are however dependent on the technologies used e.g. 

flocculation, gravity sedimentation or flotation and most importantly, the initial biomass 

concentration. 

Thickening: This stage further concentrates the slurry obtained from the bulk harvest stage 

and is achieved using techniques such as filtration, ultrasonic aggregation and 

centrifugation. This stage is recognized for its high energy intensity.   
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   Bulk harvesting methods 

 Flocculation  

Flocculation is a bulk harvesting process that is commonly used to concentrate algae 

(Grima et al., 2003) prior to further recovery stages such as filtration or gravity 

sedimentation (Rao et al., 2007). This method involves the sedimentation or floatation and 

aggregation of algal biomass so as to increase the effective particle size. There are two 

stages involved in flocculation process: The first is perikinetic flocculation which is a 

random process and arises from thermal agitation (Brownian movement). Flocculation in 

this stage commences immediately after destabilization and is complete within seconds 

though there is a limiting floc size beyond which Brownian motion has little or no effect. 

The rate of flocculation of a suspension due to perikinetic flocculation may be described 

by a second order rate law. The second is orthokinetic flocculation which is a process that 

develops from induced velocity gradients in the liquid. Such velocity gradients may be 

induced by setting the liquid in motion by:  

 mechanical agitation or passage of sample around baffles within a flocculation 

reactor;  

 the tortuous path through interstices of a granular filter bed and  

 flocs that are sufficiently formed by sedimentation within a settling basin.  

The effect of velocity gradients within a liquid body is to set up relative velocities between 

particles thereby providing opportunity for contact. Hence for a given flocculation system, 

the applied velocity gradient is the principal parameter governing the orthokinetic 

flocculation rate while the extent of flocculation is governed by both the time taken for the 

flocculation to occur and the velocity applied. The degree of particle aggregation and rate 

of the aggregates breakup are influenced by the afore mentioned parameters (Bratby, 

2006). 

Microalgae cells are known to possess a negative charge on their outermost cell wall that 

prevents them from aggregating naturally in a suspension (Brennan & Owende, 2010). 

Addition of multivalent cations and cationic polymers which act as flocculants neutralises 
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or decreases the negative charge. Aggregation is usually enhanced through a process 

known as bridging which involves the physical linkage of one or more particles together 

(Grima et al., 2003). A number of approaches to flocculation methods exist, and this 

includes:  

 Direct addition of flocculating agents;  

 Bioflocculation, which involves the addition of polyelectrolytes or flocculating 

microarganisms to aid flocculation  

 Natural flocculation or autoflocculation: some algae flocculate naturally while 

others aggregate in response to a stimuli such as pH, nitrogen stress or dissolved 

oxygen levels (Benemann & Oswald, 1996; Uduman et al., 2010). However, 

autoflocculation is considered slow, unreliable and species specific (Schenk et al., 

2008) and therefore can only be applied in particular cases. 

Numerous flocculation methods have been tried and two of the above flocculation method 

can be utilized in a single step. For example, Knuckey et al., (2006) developed a process 

which entailed adjusting the pH of the algae culture to 10 or 10.6, before Magnafloc LT-

25 (a non-ionic polymer) is added. Additionally, Chitosan was successfully used as a 

bioflocculant with pre-pH adjustment by Divakaran & Pillai, (2002) and the residual media 

could be used for producing fresh algae culture. 

In mixing or raceway ponds, flocculation processes are carried out using adjacent settling 

ponds. Effective flocculants like inorganic chemicals (e.g. ferric chloride, alum and lime) 

are not economical for large cell productions and usually renders the eventual algal-

chemical sludge inappropriate for other downstream uses for example anaerobic digestion 

and or animal feed supply. In contrast, organic cationic polyelectrolytes, for example 

Chitosan, are needed in small quantities and allows the use of the eventual residues for 

downstream purposes (Grima et al., 2003). Lavoie et al. (1984) showed the feasibility of 

using Chitosan in an economical way to flocculate freshwater grown algae and subsequent 

use as animal feed. The pH of the algae culture, the concentration of cells and flocculating 

agent greatly influence the effectiveness of flocculation (Clasen et al., 2000).  
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 Flotation 

Flotation, otherwise known as ‘inverted’ sedimentation does not require the addition of 

chemicals like flocculation though sometimes chemical coagulation is employed to aid the 

process. This method is focused on the trapping of algae cells using dispersed micro-air 

bubbles (Wang et al., 2008). Nevertheless, for flotation to be successful, it is vital for the 

particles to be hydrophobic (Gochin & Solari, 1983).  

Some algae strains float naturally on water surfaces as their lipid content increases and 

usually, oxygen generation under light by algae produces gas bubbles which assist in 

flotation (Bruton et al., 2009). Microbubbles can be generated through several techniques 

and this including: turbulent microflotation (Miettinen et al., 2010), induced air flotation 

(IAF) (Hanotu et al., 2012), dissolved air flotation (DAF) (Edzwald, 2010), and electro-

flotation (Hosny, 1996). The generated microbubbles tend to attach to hydrophobic 

particles resulting in buoyant aggregates which then rise to the surface of the flotation cell 

where the particles are recovered following bubble rupture (Dai et al., 1998). From the 

several techniques highlighted, DAF and dispersed air flotation are the most widely 

developed. 

 Gravity sedimentation 

Gravity sedimentation is based upon Stokes law (Schenk et al., 2008) as described in 

Section 1.4.2.1. It is a method commonly used in waste water treatment to produce algal 

biomass, and has the ability to treat a large volume of waste water while generating little 

biomass (Nurdogan & Oswald, 1996). This method is most effectively used for large 

microalgae such as Spirulina (Muñoz & Guieysse, 2006). Settling or pure sedimentation is 

used in some algal farms; this is space and time consuming and not an ideal choice for 

algal biodiesel production.  

 Thickening (dewatering) techniques 

Dewatering is a method for solid-liquid separation. It is aimed at reducing the moisture 

content of sediments. The major techniques used are centrifugation and microfiltration.  
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 Centrifugation 

Centrifuges are extensively used in the process industries for solid-liquid separation 

(Leung, 1998). Centrifugal sedimentation is based on a density difference between two 

liquid phases or solid and liquid phases; the density gradient is amplified by applying a 

centrifugal force to the suspension due to rotation at high speeds.  

In a dynamic equilibrium as found in a centrifuge, sedimentation involves a balance 

between two forces: gravitational and hydrodynamic drag forces. While the former is the 

effective force acting on a particle under gravity, the latter is the force opposing settling. 

Stokes law is based on an equilibrium between these two forces and states that the 

sedimentation velocity is proportional to the difference in density between the cells and 

suspending liquid multiplied by the square of the diameter of the particle and is inversely 

proportional to viscosity of the liquid (Equation 1.1).  

vs =
d2g(𝜌𝐿 − ρ)

18µ
 

(1-1) 

where ρ is the density of the liquid phase, ρL is the density of particles, d is the particle 

diameter, g is the gravitational acceleration, µ is the liquid viscosity and Vs  is the settling 

velocity. Stokes law assumes the particles settle without interference and are spherical.  

The energy input of centrifugation alone has been valued at 3,000 kWhton-1  (Benemann 

& Oswald, 1996) and hence the choice of centrifugation as a primary recovery method for 

microalgae harvesting is considered to be energy and cost intensive. Centrifugation is 

nevertheless a vital secondary harvesting technique to concentrate algal paste (100–200 

g.L-1) from an initial concentration of 10–20 g.L-1. This process is usually used before with 

oil extraction. 

 Microfiltration 

The process of separating solids from liquids with a permeable medium which holds back 

or retains particles when a suspension passes through it is known as filtration. This is 

illustrated by the schematic diagram in Figure 1.3. In microfiltration, the separation of 
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solids is usually expressed as mass recovery or total efficiency (retention), while the 

separation of liquid is usually characterized by the moisture content of the cake or the 

concentration of solids in the filtrate.  

 

Figure 1-3: Schematic diagram of a filter system adapted from Svarovsky (2001). 

Darcys basic filtration equation relating the flow rate Q of a filtrate of viscosity µ (Pa.s) 

through a bed of thickness L (m) and surface area A (m2) to the driving pressure ΔP is: 

𝑄 = 𝐾
𝐴ΔP

µ𝐿
 

(1-2) 

Where K is a constant referred to as the permeability of the bed and the equation can be re-

written as: 

𝑄 =
𝐴Δ𝑃

µ𝑅
 (1-3) 

where R is the medium resistance and is equal to L/K which is the ratio of the medium 

thickness to the permeability of the bed.  

Microfiltration is a conventional harvesting process that fits relatively large algae such as 

Caelastrum and Spirulina. Algae species such as Scenedesmus, Chlorella and Dunaleilla 

are usually not harvested with filtration as their sizes approach bacterial dimensions 

(Mohn, 1980). For recovery of cells in this range, membrane microfiltration and ultra-

filtration are technically viable alternatives (Petrusevski et al., 1995) because they require 
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low transmembrane pressure (TMP) and cross-flow velocity conditions (Borowitzka, 

1997). In order to promote the efficiency of filtration and because conventional filtration 

operates under suction and pressure, filtration aids such as cellulose and diatomaceous 

earth are used (Grima et al., 2003). Mohn in 1980 demonstrated how Coelastrum 

proboscideum produced sludge with 27% w/w solids; showing that filtration processes can 

achieve a concentration factor of 245 times their starting concentration. 

 In comparison to centrifugation, membrane filtration can be more cost effective for 

processing of broth volumes less than 2 m3day-1. However, due to membrane replacement 

and the cost of pumping in larger scales of production, it is not considered economical to 

process volumes greater than 20 m3day-1 (Mackay D, 1988). Similarly, formation of 

compressible filter cakes, membrane-clogging and in particular high maintenance costs are 

challenges in large-scale applications of microfiltration. Example of this is the limitation 

of cost effective cyanobacterium Spirulina due to their long spiral shape.  

  Cell disruption, lipid extraction and transesterification  

Recovery of intracellular products from microalgae requires a cell disruption step. 

Successfully applied methods include: the use of autoclaving, high pressure homogenisers, 

acid/base lysis and sonication (Mendes-Pinto et al., 2001). These release the intracellular 

lipids into the lysis buffer or the suspension medium for extraction to be carried out. 

Sonication is extensively used at laboratory scale and is effective, however, the lack of 

information for its feasibility and cost at commercial scale suggests more research into the 

area is required (Harun et al., 2010).  

Numerous methods for extraction of microalgal lipid and related by-products exist but the 

most common methods include use of chemical solvents, superficial fluid extraction and 

ultrasound techniques (Harun et al., 2010). The properties of a cell membrane can influence 

an extraction process. For instance, during solvent extraction, cells are usually exposed to 

solvents causing an uptake of their molecules which consequently alters cell membrane 
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thereby enhancing the movement of lipid globules towards the outer cell (Hejazi & 

Wijffels, 2004). The presence of the cell walls may prevent direct contact of the solvent 

(Sikkema et al., 1995) and cell membrane and thus impede the extraction process. Hejazi 

et al (2004) reported that solvent extraction process can be applied to living algae in situ in 

a concept they termed as ‘algae-milking’. Also, combine use of organic solvents with 

methanol and a catalyst is utilized during transesterification to produce biodiesel (Fukuda 

et al., 2001).  

Biodiesel is produced from oils extracted from biological sources through 

transesterification. Transesterification is a chemical reaction between extracted oil  

(usually in the form of TG’s) and an alcohol in the presence of a catalyst to produce mono-

esters (Sharma & Singh, 2009). The reaction (Figure 1.4) can be enhanced by a 

combination of immobilized lipases with methyl esterification (Li et al., 2007).  

   

Figure 1-4: Transesterification reaction. 

The reaction stoichiometry shows one molecule of parent oil reacting with three molecules 

of alcohol (methanol) to produce a molecule of glycerol and three molecules of fatty acid 

methyl esters (FAME) (biodiesel). Glycerol is thus a major by-product of the 

transesterification reaction. 

  Biodiesel production 

Biodiesel is produced after extraction and transesterification of microalgal lipids (Section 

1.5). Figure 1.5 is a simple block diagram of biofuel production from microalgae. The 



47 

 

biodiesel produced can be used directly in any kind of diesel engine (Brennan & Owende, 

2010) either for transportation or for industrial power generation. 

 

 

Figure 1-5: An integrated process for biodiesel production from microalgae.  

Numerous advantages exist for algal biodiesel. These include being: (1) renewable as they 

are derived from biomass; (2) quasi-carbon neutral under sustainable production condition; 

(3) biodegradable and non-toxic i.e. contains reduced levels of soot, particulates, carbon 

monoxide, SOx and hydrocarbons. In comparison to petrodiesel, biodiesel has a 33MJL-1 

volumetric energy density, which is about 92% of petrodiesel. Also, biodiesel produces 

complete combustion when compared to fossil sources due to the presence of longer chains 

of hydrocarbon. This gives biodiesel an overall efficiency of about 97% of petro diesel 

(Knothe & Krahl, 2005). Furthermore, a comparison of algal-diesel to first generation 

biodiesel shows that algal biodiesel is more favourable in the aviation industry where high 

energy densities and low freezing points are key criteria (NREL, 2006). Additionally, 

microalgal biodiesel contains reduced CO2 emissions of up to 78% compared to emissions 

from petro-diesel (Sheehan, 1998). 

Microalgal lipids are easily oxygenated due to their polyunsaturated nature and this 

increases proportionally to the extent of unsaturation. This was shown by Gunstone & 

Hilditch (1945) where relative oxidation rates of 25, 12 and 1 were reported for methyl 

esters of linolenic (18:3), linoleic (18:2) and oleic (18:1) acids respectively. Partial catalytic 

hydrogenation of these oils can correct the limitation (Dijkstra, 2006).  In contrast, the 

temperature at which the fuel starts to solidify or crystalize and blocks the fuel filters of an 

engine (cold filter plugging point; CFPP) is lowered by a high degree of polyunsaturation. 
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With these considerations, colder climates needs higher unsaturated lipid levels of 14:0, 

18:1 and 16:1 in the ratio of 1:4:5 as an ideal mix (Schenk et al., 2008). Such biodiesel will 

possess low oxidative potential while maintaining a good cetane number (CN) and CFPP 

rating. 

For algal biodiesel to be acceptable as an alternative to fossil fuel, its properties must match 

the International Biodiesel Standard for Vehicles (EN14214). The quality of the alkyl ester 

plays an important role, as it determines the performance and stability of the fuel (Griffiths 

& Harrison, 2009). Nonetheless, algal-diesel possesses similar chemical and physical 

properties to petro-diesel and also compares favourably with those of the international 

standard (Table 1.5). 

 

Table 1-5: Selected properties of first generation biodiesel (FGB), algal biodiesel and 

typical diesel (Fukuda et al., 2001; Xu et al., 2006). 

Fuel Property  FGB Algal  Biodiesel Diesel  EN14214 Biodiesel 

Standard 

HHV (MJ kg-1)  31.8–42.3 41 45.9 – 

Kinematic viscosity 

(mm2.s-1)  

3.6–9.48 5.2 1.2–3.5 3.5–5.2 

Density (kg.L-1)  0.86–0.895 0.864 0.83–0.84 0.86–0.90 

Carbon (wt%)   77 – 87 – 

Hydrogen (wt%)  12 – 13 – 

Oxygen (wt%)  11 – 0 – 

Sulphur (wt%) 0–0.0015 – 0.05 max <10 

Boiling point (°C) 315–350 – 180–340 – 

Flash point (°C)  100–170 115 60–80 >101 

Cloud point (°C)  -3 to 12 – -15 to 5 – 

Pour point (°C)  -15 to10 -12 -35 to -15 – 

Cetane number  45–65 _ 51 >51 
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  Prospects and challenges for the commercialization of algal biofuels 

The combined use of microalgae for renewable energy production, environmental 

application (CO2 sequestration or greenhouse gas (GHG) emission mitigation) and 

wastewater treatment is one of the major features that support its potential for large scale 

production. More so, Section 1.1 highlights the potentials of biofuel due to the current state 

of fossil fuel use (Figure 1.1). Although considerable progress in biofuels development 

has been made, scope for improvement in its industrial production is still being researched.  

Several studies have been carried out on the isolation and characterization of numerous 

microalgae species (Zimmerman et al., 2011) for biodiesel production; with more focus on 

high oil content species as explained in Section 1.3.2.  

Development of technology for algal products can be quite challenging. In putting 

conceptual designs and scaling up laboratory trials into industrial scale, a number of 

considerations have to be met. This could either be susceptible to external influences or 

cost intensive (Chen et al., 2009). The whole process of algal bioprocessing is faced by the 

aforementioned problems (from culturing, oil extraction down to deposition of residues), 

therefore, fundamental developments are needed to optimize every part of the process.  

Issues with the culturing of algae lie in the fact that numerous species are being studied 

with development of techniques for single species cultivation (Ugwu et al., 2008). Also, in 

order for a strain to make a considerable contribution to the biofuels market at a competitive 

price, it must possess at least 40% w/w lipids (Ratledge & Cohen, 2008). Another challenge 

with algal cultivation is scale-up due to the limitation of light penetration usually required 

for phototrophic or mixotrophic growth. This can be addressed by improving the mixing 

in bioreactors and open cultivation ponds.  

The challenges of downstream processing (DSP) and oil extraction are that the biomass 

harvesting cost can be significant (Uduman et al., 2010) and a study by Chisti (2007) 

showed how the recovery process contributed 50% of the final cost of the recovered oil. In 

another study by Norsker et al. (2010), centrifugation was recognized as the critical cost 
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contributor of the production cost in raceway ponds. Moreover, Grima et al. (2003), 

mentioned centrifugation as an efficient but energy intensive method; whose efficiency 

depends on the cell settling characteristics and conditions utilized for separation. With 

reference to extraction of microalgae intracellular lipids, existing methods are complex, 

costly or underdeveloped. For the methods being explored (Section 1.5), some are 

characterized with low extraction efficiency as a result of insufficient dewatering or cell 

disruption (Chen et al., 2009). 

Considering the advances in omics and genetic engineering, photobioreactor engineering   

and bulk harvesting methods, some techno-economic challenges preventing the 

commercial viability of microalgal products would soon be overcome.  For microalgal oils 

to serve as hydrocarbon feedstocks replacing petroleum, they will need to be sourced at 

prices closely related to that of crude oil (Chisti, 2007). Equation 1.4 shows this 

relationship, which assumes algal oil contains 80% of the energy content of crude 

petroleum.  

Calgal oil  = 6.9 × 10−3 Cpetroleum (1-4)          

where Calgal oil is the price of microalga oil ($ per litre) and Cpetroleum is the price of crude oil 

($ per barrel). 

  Scale down and USD approaches to dewatering methods 

Process development using pilot scale equipment requires large volumes of feed and is 

expensive and labour-intensive. In bioprocess development, scale-down approaches have 

been developed so that reduced feedstocks will be utilized and therefore, serves as a tool 

valuable for time and cost reduction. Scale-down methods involve linearly scaling down 

all unit operation dimensions or mimicking the procedure using designs that maintain the 

principles surrounding the process. An example of scale reduction in centrifugation using 

a disc stack centrifuge was shown by Kempken et al., (1995). This was achieved by using 



51 

 

a geometrically similar machine and reducing the number of active discs available for 

separation (Mannweiler & Hoare, 1992). Geometric similarity was also used for scroll 

decanter scale-down (Lydersen et al., 1994). These approaches however, still utilize litres 

of material and have limitations due to complexity of the design of industrial-scale 

equipment. 

Further work to enhance the predictability of large scale process performance using small-

scale models led to development of USD methods. These techniques were significantly 

different from typical scale-down approaches as they mimic critical parameters which 

affect large scale equipment performance without maintaining geometric similarity 

(Titchener-Hooker et al., 2008). For example, simply employing the concept of equivalent 

settling velocity in traditional laboratory centrifugation using centrifuge tubes was seen not 

capable of mimicking continuous flow centrifuge performance (Boychyn et al., 2004). 

More so, Berrill et al., (2008) showed how USD approach was used to optimize 

flocculation of E.coli lysate followed by centrifugal clarification and scale-up verification 

using disc stack centrifuge.  

A range of scale-down techniques for filtration processes and their application has been 

reviewed by Jaffrin, (2008). In scaling down a filtration process, two variables are 

considered key. First the feed volume has to be reduced accordingly in order to keep 

filtration processing times similar at both scales of operation. Therefore, the ratio of feed 

volume to membrane area is a crucial measure in scale down study and needs to be kept 

constant. Second, variations in operating conditions of small scale studies can lead to large 

scale prediction problems and therefore fluctuations in major parameters governing 

filtration such as pressure and flux control should be avoided (Ma et al., 2010). 

 USD centrifugation 

USD to investigate industrial centrifuges has been extensively researched. Ambler in 1952, 

showed how sigma theories can be used to compare the performance of geometrically 

dissimilar centrifuges and also centrifuges of different sizes and design. This approach 
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maintains the ratio of flow rate to equivalent settling area constant which results in the 

same centrifugal clarification. The Sigma correlation captures all operating and equipment 

variables. Therefore, different centrifuge designs result in different expressions for the 

settling area. A general form of expressing the Sigma Factor () is given in Equation 1.5. 

The Sigma Factor for continuous flow tubular-type centrifuge and for a batch laboratory 

centrifuge is given by Equation 1.6 and 1.7 respectively.  

 

Σ = (Area) × (settling due to gravity) ≡ (L × r)
N2r

g
× geometric factors 

(1-5)          

where N is bowl speed (rev.s-1), L is bowl height (m); r is the characteristic radius (m) and 

g acceleration due to gravity (ms-2). 

Σ𝑡𝑏 =
πω2L

g
×

[
 
 
 
 

r0
2 − r1

2

loge (
2r0

2

r0
2 + r1

2)
]
 
 
 
 

 

(1-6)          

where ω is angular velocity (equal to 2πN) (rev.s-1), r1 and r0 are the inner and outer radii 

position of a settling particle and L is the length of the settling tank. 

Σlab =
FlabVlabω

2

2g × Ln(
2r2

r2 + r1
)
 

(1-7)          

where ω is angular velocity (equal to 2πN)(rev.s-1), r1 and r2 are the inner and outer radii 

i.e. the respective distances between the centre of rotation and the top of the liquid and the 

bottom of the tube, Flab is the calibration factor to allow for non-ideal flow and Vlab is the 

volume of feed in the centrifuge tube. 

In order to achieve a given separation in a continuous gravity settler, it must accommodate 

the characteristic particle settling velocity via a combination of flow rate and settler cross 

sectional area (Equation 1.9). Using this analogy in centrifuges (Lander et al., 2005), area 
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(m2) is substituted by  (m2) in Equation (1.9) and this provides a velocity expression 

(Equation 1.10) corresponding to the removal of particles that settle at a given velocity or 

greater in a normal gravitational field. 

V =
Q

A
 

(1-8)          

where Q is flow rate (m3.s-1) and A is the cross sectional area (m2). 

V =
Q

Σ
 

(1-9)          

Boychyn et al., (2000) and (2004) developed a USD method that involved using a bench 

top centrifuge to mimic the clarification of large scale centrifuges. This method involved a 

two-step approach to achieve clarification; first by pre-shearing the cell suspension in a 

small rotating disc device (Section 2.3.3.2) followed by bench top centrifugation (using 

Sigma theory). Levy et al., (1999) has previously described the construction of the rotating 

disc device; however the design has been modified (Hutchinson et al., 2006). A study by 

Mannweiler & Hoare, (1992) showed how the majority of material breakage occurs in the 

feed zone of a disc-stack centrifuge while Boychyn et al., (2000) affirmed it for a multi-

chamber bowl centrifuge. The pre-shearing concept of the USD methodology reproduces 

the shear forces experienced in the feed zone of large scale centrifuges prior to solid liquid 

separation. The consequence of this breakage is reduced clarification performance due to 

increased production of fine particles. Table 1.6 shows a summary of some USD 

centrifugation methods to predict large scale centrifuge performance. 

 USD rotating disc filter (microfiltration) 

Shear enhanced filtration otherwise known as dynamic filtration consists of creating a 

membrane shear rate necessary to maintain filtration using a rotating disc (Jaffrin, 2008). 

This has been recognized as an efficient factor for increasing permeat flux as well as 

reducing cake build up in microfiltration. USD filter or RDF, as it is termed (Murkes, 1988) 
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has been applied using very high levels of flux and transmission (Brou et al., 2003) to 

separate complex suspensions. 

Feed flow rate does not influence the wall shear rate of the RDF (Ma, 2009). In traditional 

cross flow filtration (CFF), reducing the tube diameter or channel thickness and increasing 

the axial velocity along the membrane will lead to high shear rates at the membrane surface 

(Jaffrin, 2008). 

Equation 1.10 shows the local shear rate is a function of disc radius for slow rotating speeds 

using laminar flow (Bouzerar et al., 2000). 

γ = 0.77ρ(k′ω)1.5rv−0.5 (1-10)          

where ρ is the fluid density, k’ the velocity coefficient, ω is the rotating speed of the disc, 

r the radius of the rotating disc and ν the fluid kinematic viscosity. Although  Brou et al., 

(2003) reported that the coefficient could change if a smooth disc was equipped with vanes. 

Under turbulent flow condition, local shear rate across the membrane was generated using 

the Blasius friction coefficient for a flat plate (Equation 1.11) while mean membrane shear 

rate (ɣm) along the radius of the shear cell is given by Equation 1.12. 

γ = 0.0296(k′ω)1.8𝑟1.6v−0.8 (1-11)          

 

𝛾𝑚 = 0.0164(k′ω)1.8𝑟1.6v−0.8 = 0.55𝛾𝑚𝑎𝑥 (1-12)          

Shear rate estimation of the RDF (Section 2.4.2.2) was carried out using computational 

fluid dynamics (CFD) simulation (Ma et al., 2010) since CFD is widely used in modelling 

of filtration units (Taha & Cui, 2002) and the hydrodynamics in RDF (Francis et al., 2006). 

At a certain membrane loading level,  Lee et al. (1995) observed that there was a critical 

speed below which the RDF behaved similar to a flat sheet system using an equivalent  

level of shear. This was confirmed by Ma et al., (2010) using conventional CFF systems. 

This also served as a motivaton for trying this system to mimic hollow fibres in this thesis.  
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Table 1-6: Summary of USD methods methods used to predict large scale centrifuge clarification or dewatering performance. 

Process Feed USD Methodology Scale 

(mL) 

Centrifuge type Reference 

Baker’s yeast homogenate Sigma concept 30 Multichamber Boychyn et al. (2000) 

Baker’s yeast homogenate 

and protein precipitate 

Conventional USD as described by Boychyn, (2000). 

Further showed how feed breakage occurred during entry to 

centrifuge feed zone by matching the energy dissipation rate profile 

of the large scale centrifuge to the high-speed rotating-disc device 

15 Multichamber Boychyn et al. (2001) 

P.pastoris broth Mimics high solids density feeds (>10% ww/v) by pre-dilution to   

(approx. 2% ww/v) followed by USD according to Boychyn, (2000) 

15 Disc-stack 

Carr powerfugeTM 

Multichamber 

Salte et al. (2006) 

E. coli broth and Baker’s 

yeast suspensions 

Same as Salte et al, (2006) 15 Disc-stack 

Carr powerfugeTM 

 

Tustian et al. (2007) 

Baker’s yeast homogenate 

and polyvinyl acetate 

particles 

Sigma concept - accounting for acceleration and deceleration stages 

studies of shear insensitive and shear-sensitive materials 

 

10 Disc-stack 

 

Maybury et al. (2000) 

Mammalian cell culture 

broths 

Sigma concept 10 Disc-stack Hutchinson et al. (2006) 

Waste sludge Mimic residence times (based on scroll speed) and centrifugal forces 10-15 Scroll decanter Vesilind (1970) 

Homogenised Baker’s 

yeast 

Mimic residence times (based on scroll speed) and centrifugal forces 15-20 Scroll decanter Rumpus (1998) 

Fungal antibody fragment USD device and computational fluid dynamics (CFD) simulations 35 Basket Filter Boulding et al. (2002) 

P. pastoris Dewatering at USD level to achieve equivalent height of wet solids 

at pilot scale 

2 - 15 Nozzle centrifuge 

Disc-stack 

Lopes et al. (2012) 
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  Aim and objectives 

As described in Section 1.1 the need for a sustainable and economic alternative to fossil 

fuels is widely recognised. While a number of options are currently being explored (Section 

1.2), microalgae represent one of the most promising feedstocks due to the advantages 

highlighted in Section 1.3.2.  These include: production throughout the year (with yields 

exceeding the best oilseed crops), simple growth requirements and lack of competition with 

food production or use of arable land. At the same time, the bio-process technology 

surrounding the economic production of microalgal products at manufacturing scale is still 

poorly defined. The vast majority of work has focussed on algal strain selection (Section 

1.7) and bioreactor technologies for optimum cell growth (Section 1.3.3.2) with relatively 

few studies on downstream processing operations (Section 1.4). 

In terms of research on the harvesting of microalgae cells, studies to date have addressed 

dissolved air floatation, flocculation using different techniques, drying and microfiltration 

(Section 1.4). There have been no published studies on centrifugation. The results of the 

published works tend to indicate that no single harvesting method or combination best suits 

all microalgal species (Mata et al., 2010) or class of product. Furthermore, the choices 

being explored have placed a large carbon footprint on microalgal bioprocessing because 

of the low biomass or product concentrations achieved and hence the scales of operation 

involved. Dewatering during initial solid-liquid separation operations is important because 

of the high moisture content of algal biomass on subsequent processing steps and cost 

(Grima et al., 2003). Primary recovery stages are therefore critical and optimum choices 

of operations, together with sequence of operations, needs to be explored on a case-by-case 

basis.  

The availability of small scale predictive tools of key product recovery operations will 

greatly facilitate downstream process synthesis for microalgae. USD technologies 

represent a promising approach due to the small volumes of material required (2-20 mL) 
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and their ability to quantitatively predict larger scale process performance (Section 1.8).  

While USD technologies have been developed to study centrifugation (Boychyn et al., 

2004; Tait et al., 2009) and filtration (Jackson et al., 2006; Kong et al., 2010; Ma et al., 

2010) of microbial and mammalian cells, no studies have so far been reported on the use 

of USD technologies with microalgal cells. 

The overall aim of this project is therefore to establish an ultra scale-down platform for the 

rapid evaluation of pre-treatment and recovery operations for microalgae downstream 

process synthesis. Figure 1.6 shows the emphasis on flocculation as a pre-treatment 

method (Section 1.4.1.1) and either centrifugation or microfiltration (Section 1.4.2) as the 

options for solid-liquid separation. In terms of the downstream unit operations these were 

selected based on their industrial relevance. For example, a hollow fibre membrane 

configuration was selected for microfiltration studies because feedback from various 

equipment vendors suggested that a number of companies are currently investigating this 

technology for microalgae recovery. Similarly the CARR PowerfugeTM was chosen for the 

study of centrifugation due to its superior dewatering ability over other centrifuges which 

could benefit subsequent downstream processing steps such as lipid extraction. Specific 

objectives to achieve the overall project aim are as follows: 

 To carry out preliminary studies on the growth kinetics of microalgal cultures. This 

will involve growing several strains in different media in order to ascertain fast 

growing and high yielding species. This will be necessary in order to reliably 

produce sufficient material of consistent quality for DSP studies. This work is 

described in Chapter 3.  

 To design and fabricate scale-down flocculation reactors that can mimic the 

performance of a conventional lab scale stirred flocculation reactor and provide 

representative quantities of suitable material for subsequent USD studies. The 

flocculation reactors will be characterised based on mixing time and key 

flocculation variables in order to ensure reproducible floc size-profile and stability. 
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Figure 1-6: Overview of the USD platform to be established in this work. Figure indicates the primary unit operation to be addressed and the 

various process sequences that need to be evaluated.

Algae Culture 

No added FLOCCULANT No added FLOCCULANT With FLOCCULANT With FLOCCULANT 

USD Microfiltration USD Centrifugation 

Scale-up verification 

Further downstream processing 

e.g. extraction, transesterification etc. 

Growth kinetics 

Pre-treatment options  

Solid-liquid separation 

options  
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The results of this work are also described in Chapter 3. 

 To establish a USD method for the study of microalgae microfiltration processes 

and the impact of flocculation as a pre-treatment step.  Once optimized, the effect 

of growth conditions on membrane fouling will be investigated and filtration 

performance of flocculated and unflocculated algae broth compared. The results 

of this work are presented in Chapter 4.  

 To establish a USD method for the study of centrifugation for microalgae recovery 

and the impact of flocculation as a pre-treatment step.  This work will also 

demonstrate how pre-treatment prior to centrifugation influences not just 

efficiency but also the overall product (lipid) recovery. The results of this work are 

presented in Chapter 5. 

 To establish and compare the use of sonication and homogenization as small scale 

cell disruption operations for lipid release from harvested cells. The whole USD 

platform will then be used to study the various downstream process sequences 

shown in Figure 1.6 and their impact on overall lipid extraction and 

transesterification. The results of this work are described in Chapter 6. 

In addition to the above, Chapter 2 outlines the experimental methods and equipment used 

while Chapter 7 provides an analysis of the overall findings and options for further work. 

In particular, Chapter 7 will consider the benefits of the USD platform and its wider 

applicability for microalgal downstream process synthesis.  
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  Materials and Methods 

In this chapter, the general experimental methodologies and analytical techniques used in 

this thesis will be described. In some cases further specific detail on particular experiments 

will be provided in the appropriate results chapters.  

 Materials 

Analytical reagents were of the highest purity available and were purchased from either 

Sigma-Aldrich (Dorset, UK) or obtained through VWR International (Leicestershire, UK). 

Filtration materials; 25 mm diameter disc sheets and hollow fibre membranes were 

purchased from Sterlitech (Kent, US) and GE Healthcare (Amersham, UK) respectively. 

Normalize Water Permeability (NWP) tests and dilutions requiring deionized (DI) water 

were performed using water from a Milli-Q® Water Ultra Purification System (Merck 

Millipore, Hertfordshire, UK). All media and reagents were made up in the same water. 

 Algae strain and culture conditions 

The microalgae C.sorokiniana (UTEX 1230) was obtained from the culture collection of 

algae at the University of Texas at Austen while C.vulgaris (CCAP 13/C), C.reinhardtii 

(CCAP 11/32A) and S.obliquus (CCAP 276/3A) were purchased from the Culture 

Collection of Algae and Protozoa (Argyll, Scotland, UK). The strains were kept on agar 

plates and slants of modified Tris-Base-Phosphate (TBP) medium. These were maintained 
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phototrophically at room temperature under continuous illumination of 22 µmols-1m-2 until 

a considerable amount of green colonies formed. They were then stored at 4ºC. Microalgae 

broths was produced either phototrophically (with continuous illumination of 54 µmols-

1m-2) or heterotrophically in various growth media such as TBP, Bold Basal Media (BBM) 

or Euglena Gracilis 

 medium (EG); the compositions of these media are shown in Table 2.1. The initial pH of 

TBP and BBM medium were adjusted with concentrated HCl to be between 7.0-7.1 while 

the pH of EG was between 7.1 – 7.2 after medium formulation. Prior to use, each medium 

was sterilized in a Getinge autoclave (Nottinghamshire, UK) at 120°C for 20 min. When 

grown heterotrophically, the same media were used supplemented with 10 g.L-1 glucose as 

carbon source, which was pre-sterilised by filtration using Millipore® Stericup™ filtration 

system (Sigma-Aldrich, Dorset, UK) and added prior to inoculation.  

Table 2-1: Composition of TBP (tris acetate phosphate), EG and BBM media used in this 

work. 

TBP (per L) EG (per L) BBM (per 400 mL) 

0.4g NH4Cl 2g Tryptone  10g NaNO3 

0.05g CaCl2.2H2O 2g Yeast extract 1g CaCl2.2H2O 

0.06g MgSO4.2H2O 1g Lab-Lemco Powder 3g MgSO4.7H2O 

0.12g K2HPO4 anhydrous 1g CH3COONa·3H2O 3g K2HPO4 anhydrous 

0.06g KH2PO4 anhydrous 10 mL ~ 0.1g CaCl2 7g KH2PO4 anhydrous 

100 mL~ 2 mM Tris base  1g NaCl 

1 mL trace element**  1 mL Trace element** 

+ 31g KOH 

Note** trace elements consists of: 11.14g H3BO3, 22g ZnSO4∙7H2O, 5.1g MnCl2∙4H2O, 

5.0g FeSO4∙7H2O, 1.60g CoCl2∙6H2O, 1.6g CuSO4∙4H2O, 1.1g (NH4)6Mo7O24∙4H2O and 

50g EDTA∙Na2 in 1L of water. 
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Seed cultures were grown in 250 mL Erlenmeyer flasks with cells taken directly from a 

plate and then placed in a Kuhner incubator shaker ISF1-X (Basel, Switzerland) fitted with 

fluorescent tubes (cool white). The cells were grown for 4 days at 27°C with orbital shaking 

at 180 rpm and 25 mm throw. Transfer cultures were prepared with this exponentially 

growing inoculum to a starting optical density (OD) between 0.15 - 0.20 into Erlenmeyer 

flasks or bioreactors (as described in Section 2.2.1 and 2.2.2). 

 Shake flask (SF) cultivation 

250 mL Erlenmeyer flasks were used for laboratory scale algal cultivation. A total medium 

volume of 100 mL was used for each batch experiment. Prior to use, flasks were sealed 

with cotton wool and autoclaved. When utilized for heterotrophic growth, each flask was 

further covered with aluminium foil whilst in the shaker during growth.  

 Stirred tank reactor (STR) 

Scale-up studies of heterotrophically grown C.sorokiniana were carried out in a 7.5 L New 

Brunswick stirred tank bioreactor using a working volume of 4 L. TBP media was prepared 

as described in Table 2.1. Calibration of pH and dissolved oxygen tension (DOT) probes 

was performed as per Standard Operating Procedures (SOPs) and the vessel then 

autoclaved in a Getinge autoclave (Nottinghamshire, UK) at 121ºC for 15 min after which 

the DOT probe was allowed to polarise for 7 hrs. Bioreactor details and operation are as 

described by Ojo (2015). Scale-up between the shake flask (250 mL) and STR experiments 

was on the basis of matched oxygen mass transfer coefficient, kLa (Ojo, 2015). 
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 Equipment design and operation 

 Flocculation reactors  

 Laboratory scale flocculation reactor 

 The laboratory scale STR used in Section 2.2.2 was also used for flocculation scale-up 

studies. The geometry of this reactor is shown in Figure 2.1.  

 Scale-down flocculation reactors 

Three different scale-down flocculation reactors (120, 250 and 500 mL total volume) with 

geometries similar to that of the laboratory scale bioreactor were designed and fabricated 

in the UCL Department of Biochemical Engineering workshop. These reactors were used 

for small scale flocculation studies depending on the volume of feed required for 

subsequent downstream process experiments. Geometric ratios and dimensions of these 

reactors are shown in Figure 2.1. Photographs of the scale-down reactors are shown later 

in Chapter 3. 

Using experimental procedures as described by Rodriguez et al, (2013), the reactors were 

initially characterized based on fluid mixing time. First, a solution containing type 2 pure 

lab water (ASTMD1193) and pH indicators which has previously been acidified with 0.5M 

HCl (red colour) was stirred at the desired rotational speed. This gradually turns yellowish-

green upon addition of base (NaOH). The time taken for the colour change is the time for 

homogeneity to be achieved. From this study, an impeller rotational speed of 350 rpm 

shows the rapid attainment of homogeneity (< 8 s) in all three scale-down reactors. This 

rotational speed was thus employed during flocculant addition while an impeller rotational 

speed of 80 rpm was used for floc ageing post formation.  
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Figure 2-1: Schematic diagram of flocculation reactor (not to scale). Aspect ratio for 7.5 L 

reactor, DT:HT = 1:1.8 and scale-down flocculation reactors, DT:HT = 1:1.5. All other 

dimensions and geometric ratios are as follows: HT = 18.0 cm, 11.3 cm, 8.9 cm and 7.0 cm for 

7.5 L reactor, 500 mL, 250 mL and 120 mL respectively; Di:DT = 1:3; Db:Di = 1:5; Bw:DT = 

1:10; Bh:HT = 1:1.05; a:DT = 1:3; b:Di = 1:4; c:HL = 2:3.  
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 Microfiltration equipment 

 AKTA CrossFlow 

The AKTA CrossFlow (GE Healthcare, UK) is a fully automated system designed to 

facilitate process development and optimization of filtration operations. The main 

components of this instrument are shown in Figure 2.2a and these include: transfer valve 

block (T1 & T2), retentate valve block (B), permeate valve block (C), CFF cartridge holder 

(D), reservoir tank (E), corresponding pumps for each component (transfer lines - Tp, 

permeate - Cp and feed - Fp) and also their corresponding pressure sensors (transfer lines - 

PT, permeate - Pp, retentate - PR and feed – Pf). An illustration of the fluid flow path is shown 

in Figure 2.2b. This equipment was used in this project to achieve microfiltration at 

laboratory scale using hollow fibre membranes (as described in Section 2.4.2.1) and for 

scale down studies using a USD rotating disc filter (Section 2.4.2.2).  

 USD rotating disc filter (RDF) 

The RDF is a custom-built USD filtration device that consists of a filtration chamber made 

of Perspex. It is fitted with a 15 mm diameter stainless steel rotating disc having a 4º conical 

cross section (driven by high efficiency Out Runner Motor 920 kV Park 400) at the top. 

The device has an internal diameter of 21 mm and a total volume of 1.7 mL. A flat disc 

membrane with an effective area of 3.46 cm2 is placed under the rotating disc in position 

(6) (Figure 2.3) above the permeate port allowing a 1mm gap between the disc and 

membrane surface. It also consists of an O-ring seal (7) which sits on the filter to ensure 

chamber is leak-proof. Points a, c and d are connected to the respective pumps via Luer 

lock feed fittings (1). 
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a) 

 

b)

 

Figure 2-2: AKTA cross flow filtration (CFF) unit used to achieve filtration (a) showing 

the major components and (b) PID diagram of fluid flow path. 
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Figure 2-3: Schematic diagram of the USD, RDF filter device showing the different 

components: a) feed inlet b) membrane disc c) permeate port d) retentate port e) rotating 

shear disc and f) motor. 

 

 Centrifugation  

 CARR PowerfugeTM 

The CARR powerfugeTM PneumaticScaleAngelus (Cuyahoga Falls, OH, USA) is a tubular 

bowl centrifuge that can operate between 5000 – 15000 rpm and with an operating feed 

flow range of 0.1 – 1 L.min-1. Figure 2.4 shows a cross section of a CARR powerfuge and 

a picture of the actual equipment used in this thesis. Feed was pumped into the equipment 

via the top and solids were retained within the bowl. Glycol was circulated through the 

cooling jacket of the settling bowl to maintain the temperature at 16°C and upon 

completion of the solid-liquid separation, a scrapper mechanism within the bowl allows 

the solids to discharge from the bottom of the machine.  
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 USD shear device  

The USD shear device has a stainless steel chamber that houses a 40 mm diameter-rotating 

disk (Figure 2.5a).  The chamber is 50 mm in diameter and has a 10 mm height with total 

working volume of approximately 20 mL. The device has previously been characterized 

by Boychyn et al. (2004). The disk rotates at an adjustable speed of 1000 - 35000 rpm that 

generates a maximum elongation strain rate of 1.7 x 104 s-1. For the purpose of this work, 

rotating disk speeds of 5000, 9209 and 15565 rpm corresponding to a range of energy 

dissipation rates of 2.86 x 104, 2 x 105 and 1.4 x 106 Wkg-1 respectively were employed for 

a period of 20s at room temperature. 

Prior to each experiment, the device was initially washed with DI water. Both flocculated 

and non-flocculated algae cells were subjected to hydrodynamic forces in this device. For 

each experiment, the compartment was completely filled with either broth or floc 

suspensions so as to reduce the possibility of air-liquid interface generation. This device 

was used for both USD centrifugation and shear studies. All of these experiments were 

performed in triplicate. 
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Figure 2-4: (a) Photograph of the pilot scale centrifuge used in this thesis (CARR powerfugeTM) with dotted lines indicating the position of the 

settling bowl and (b) an illustration of the cross section of the feed bowl. 

 

a) b) 



70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-5: a) Schematic diagram of the shear device used for USD centrifugation and 

shear evaluation of microalgal cells and flocs: a = motor, b = cooling port (water inlet and 

outlet), c = 1 mm, d = 40 mm, e = 50 mm and b) photograph of the device; f = feed 

inlet/outlet. 
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 Experimental procedures 

 Flocculation  

 Flocculant preparation  

Commercially prepared Chitosan powder (VWR international, Leicestershire, UK) was 

used for all flocculation studies. This was prepared according to Divakaran and Pillai 

(2002) with minor modifications. Varying amount of Chitosan powder (50 – 500 mg) was 

weighed and dissolved in an appropriate volume of 0.1M HCl (5 – 50 mL). This was then 

allowed to mix for one hour and the mixture was made up to 100 mL with DI water to 

make a final solution containing 0.5 – 5 mg Chitosan per mL.  

 Flocculation procedure 

The pH of the algae culture was adjusted to be between 6.0 and 6.1 using concentrated HCl 

prior to flocculation. The required amount of Chitosan was added at a particular flow rate 

(or for time of addition studies; tadd) over a range of concentrations (0.5-5 mg) or at the 

optimal concentration. After floc ageing, the broth was remixed (to ensure homogeneity) 

and sampled into aliquots either for microscopic imaging (Section 2.10.8), shear stability 

evaluation (Section 2.3.3.2) or solid-liquid separation studies (Section 2.4.2 and 2.4.3). The 

recovery efficiency of biomass was calculated using Equation 2.1: 

R = Ci ×
Cf

Ci 
× 100 (2-1) 

where Ci and Cf  denote the initial and final biomass concentrations at a fixed point in the 

flocculation reactor. 

The flocculation reactors described in Section 2.3.1.2 were used for scale-down 

flocculation studies. For pilot scale flocculation process, at point of harvest, cells were 

flocculated in situ in the 7.5L STR using the optimal Chitosan dosage. For flocculation 

studies scale-up was performed on the basis of constant tip speed (Equation 2.2).  
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Vtip = πNDi (2-2) 

where Vtip is the impeller tip speed (s-1), N the rotational speed (rps) and Di the diameter of 

the impeller (m). 

 Microfiltration experiments 

  Laboratory filtration  

A hollow fibre membrane modules (UFP-500-E-2U) consisting of a membrane pore size 

of 500 kD and 1 mm lumen diameter was used for laboratory scale microfiltration (Process 

optimization) studies. 70 mL of heterotrophically grown algal broth containing 5 g.L-1 cells 

(prepared as described in Section 2.2) was pumped into the reservoir tank of the AKTA 

crossflow system (Figure 2.2). This was operated in total recycle mode where permeate 

and retentate lines were recycled back to the feed reservoir. Three different flow rates 75, 

150 and 300 mL.min-1 corresponding to shear rates 2000, 4000 and 8000 s-1 respectively 

were employed and for each experiment, the TMP was increased in a step-wise manner. 

The shear rate and TMP were calculated using Equation 2.3 and 2.4 respectively:  

γ =  
4 × Q 

F × πr3
 (2-3) 

where r is the radius of the lumen (cm) and F is the number of fibres in each cartridge and 

TMP =
Pf − Pr

2
− Pp (2-4) 

where P stands for pressure and subscripts f, r and p stands for feed, retentate and permeate 

respectively.  

Usually, the permeate pressure is atmospheric (therefore, it is neglected) while the feed 

and retentate pressures were measured and adjusted automatically by the software 

(unicorn) using the AKTATM PID control system (Figure 2.2b). 
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In terms of concentration experiments, 10x concentrations were performed using a shear 

rate of 8000 s-1 at a constant TMP of 0.5 bar.  

 Ultra scale-down filtration  

Small scale filtration studies (process optimization and concentration experiments) were 

performed using the RDF (Section 2.3.2.2) which has previously been used to investigate 

diafiltration and CFF (Ma et al., 2010). All USD filtration experiments were conducted 

with similar conditions to lab-scale for example at a constant ratio of feed volume to 

membrane area and shear rates. A correlation between viscosity, surface average shear rate 

and speed of rotating disc was previously developed by Ma (2010) using CFD simulations 

and this is given by: 

γ = aµbω1.5 (2-5) 

where ɣ is the wall shear rate (s-1), a and b the correlation constants (a = 2.12 × 10-6 and b 

= -1.375), µ the viscosity (Pa.s) and ω is the angular velocity 2ℼN (rev.s-1). 

Figure 2.6 shows how USD filtration using rotating disc filter (RDF) was placed in the 

cartridge holder position of this machine. 

Further details of the application of USD filtration method are described in Chapter 4. 

 Normalised water flux (NWF) 

NWF was used to ascertain the membrane permeability, cleanliness and monitor the 

integrity or quality status of the filter membrane. This was achieved using DI water. All 

filter membranes were characterized based on this parameter when initially purchased.  

For hollow fibres, a pre-cleaning step with warm 0.5 M NaOH (for 30 min) in constant 

recycle mode was carried out prior to this test. The retention of at least 60% of the first 

NWF is used as a bench mark for membrane cleanliness and reuse. NWF is calculated 

using the following formula:  
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Figure 2-6: AKTA CFF unit showing a) the set up for USD filtration and its speed control 

unit with red dotted lines highlighting the USD device b) closer view of the USD filtration 

device with ancillaries (1) motor housing (2) motor coupler (3) feed port (4) permeate port 

(5) retentate port (6) cooling in and out. 
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NWF =
Flux × Tcf 

TMP
 (2-6) 

where Tcf  is the temperature correction factor. 

 Centrifugation 

 Pilot scale centrifugation 

Pilot scale centrifugation was carried out using a CARR PowerfugeTM (Section 2.3.3.1) 

using flocculated or unflocculated cells at a flow rate of 1 L.min-1 using a bowl speed of 

255 s-1 (corresponding to Q/Σ 1.61x10-08). Water was initially pumped through the unit 

until supernatant discharge was evident at which point the actual feed solution was quickly 

introduced into the feed line.  

 USD centrifugation 

USD centrifugation was carried out using pre-sheared flocculated or unflocculated cells. 

2.2 mL Eppendorf tubes were used in a bench top centrifuge Eppendorf 5424R (Eppendorf, 

Stevenage, UK) fitted with a FA-45-24-11 rotor and a working volume of 2 mL. Different 

rotational speeds were explored at a constant time and a temperature of 4˚C was set for the 

study of the effect of flocculation. USD studies to predict pilot scale centrifugation 

performance were carried out at 16˚C because this was the temperature that was measured 

during the scale-up studies. 

 Percentage clarification attained  

The performance of each centrifuge was evaluated in terms of clarification of the 

supernatant using Equation 2.7. Clarification measurement was carried out by careful 

pipetting of the resultant supernatant from each Eppendorf tube (Section 2.4.3.2) or the 

supernatant collected from the CARR (Section 2.4.3.1).  

Optical density (OD) of the supernatant was measured at 750 nm. ODws refers to well 

clarified supernatant after extended centrifugation of algal broth at 14000 rpm for 15 min. 

Subscripts f, s and ws stands for feed, supernatant and well spun respectively.  
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Clarification =  
ODf − ODS

ODf − ODWS
×  100 (2-7) 

 Experimental set-up for linked USD- flocculation and centrifugation 

studies 

Figure 2.7 shows the experimental set up for USD flocculation and centrifugation studies. 

Flocculant is loaded into a 20 mL syringe and flow is achieved using an Aladdin AL-1000 

syringe pump (WPI, Hertfordshire, UK) at a set flowrate. The reactor was filled to 

approximately 71% capacity and flocculation was achieved as described in Section 2.4.1.2 

after which sampling is carried out at regions closer to the cylinder wall in between the top 

and bottom impellers.  

 

 

Figure 2-7-: Schematic diagram of experimental set up showing how USD- flocculation 

and centrifugation was achieved. Geometric ratios and dimensions are as described for 

scale down flocculation reactors in Section 2.3.1.2 
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 Cell disruption methods  

 Homogenization  

Cell disruption was performed using an APV Manton-Gaulin Lab 40 homogeniser (APV 

International, West Sussex, UK) with fresh algal broth from a mid-stationary phase growth. 

The homogenizer was operated at full capacity (40 mL) at three different pressures (200, 

500 and 800 bar). At the pressures operated, different numbers of passes (1-3) were also 

explored in order to enhance release. Ethylene glycol was used to cool this equipment to 

4ºC during homogenisation and samples were then used for lipid analysis (Section 2.7.3). 

 Sonication  

An MSE soniprep-150 apparatus (Sanyo Electric, Osaka, Japan) was used for cell 

disruption by sonication. Several variables were used for sonication studies in order to 

determine the best conditions for lipid release and sensitivity analysis for the method. This 

included sonicating different volumes (1 - 2 mL) of algal broth at different intensities (10 

and 15 ma), cycles (1 - 10) and also various cell densities (2 - 5 g.L-1) using 10 s on and 

off. For small volumes and low cell densities (1 mL and 2 gL-1 respectively), samples were 

pooled to make up sufficient amount for particle size analysis (Section 2.10.7) of cell 

debris. The sonicator was operated with samples placed in ice water during each run. 

 Lipid analyses  

All lipid amounts except when gravimetrically quantified (Section 2.7.1), were estimated 

using triolene as a standard. This was achieved by correlating the OD at 540 nm to the 

concentration (w/v) of the triolene (Appendix 1). 

 Total Lipid analysis 

Total lipid analysis was performed gravimetrically. Algae cells were grown to the mid 

stationary phase when all the nitrogen in the media was totally depleted and then cells were 
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harvested. After centrifugation, salts were washed away with DI water twice and then the 

cells were lyophilized as described in Section 2.8. The cells were then weighed and lipid 

extracted using the Bligh & Dyer (1959) method. The total lipid extracted is washed out 

with small volume of chloroform and then evaporated with nitrogen before being weighed. 

All measurements were performed in triplicate. 

 Wet analyses of lipids (sonicated sample) 

Using 15 mL centrifuge tube with a working volume of 10 mL, flocculated and 

unflocculated algae broth were centrifuged at different centrifugal forces. The supernatant 

is then decanted into another centrifuge tube and both tubes i.e. those containing 

supernatant and those with initial sediments are further centrifuged at 4000 rpm using an 

Eppendorf 5810R centrifuge with A-4-62 rotor to further dewater the cells. Media was 

decanted and replaced with an equivalent volume of chloroform-methanol (2:1) solution, 

vortexed and sonicated to release lipids (Section 2.10.6). 100 µL of these samples was 

pipetted into a glass microwell plate and evaporated in a ‘thermo mixer comfort’ 

(Eppendorf UK). Wet analyses of total lipids released was then carried out using sulfo-

phospho-vanillin (SPV) method as described by Cheng et al. (2011) and OD of assay 

recorded using Tecan Safire2 UV-VIS-IR fluorescence plate reader (Männedorf, 

Switzerland). 

 Wet analyses of lipids (Homogenized sample) 

10 mL of well mixed homogenate was diluted with 10 mL of chloroform:methanol (2:1 

v/v) solution and vortexed. This was decanted into a 50 mL Falcon tube and the mixture 

centrifuged at 4000 rpm using an ‘Eppendorf centrifuge 5810R’ with A-4-62 rotor to create 

a three phase liquid layer. The top two layers were carefully pipetted out and 100 µL of the 

bottom layer (chloroform + lipid) was pipetted into a glass microwell plate and evaporated 

in a ‘thermo mixer comfort’ (Eppendorf UK). Wet analyses of total lipids extracted was 
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then carried out using the sulfo-phospho-vanillin (SPV) method as described by Cheng et 

al. (2011). 

 Lyophilisation  

Harvested algal broth was centrifuged at 4 °C for 10 min at 10,000 rpm using a Heraeus 

Fresco17 centrifuge (Thermo Scientific). The resultant supernatant was decanted and the 

pellets washed twice with DI water. The cells were then stored in a -80°C freezer for 24hr 

before being transferred to a vacuum freeze dryer (Edwards K4 Modulyo, Edwards UK) 

for 16-18 hr. The lyophilized cells were weighed using an Ohaus AP250D analytical 

balance for transesterification (Section 2.9) or used for FTIR analysis (Section 2.10.5). 

 Trans-esterification of algal lipids and GC-MS analysis 

Algal lipids were first extracted using the Bligh & Dyer method (1959). Using a one-step 

transmethylation of lipid extracts with trimethyl sulfonium hydroxide (TMSH), these lipids 

were transesterified and the resultant FAMEs analysed using GC-MS. This analysis was 

carried out on Trace1310 gas chromatograph connected to ISQ single quadrupole MS 

(Thermo scientific) equipped with an Omegawax 250 capillary column (30m x 0.25mm x 

0.25µm) (Sigma, UK). Using an injection volume of 1 µL in a split less mode, flow rate of 

1.2 mL.min-1 and helium as carrier gas, initial column temperature was set at 100°C for 2 

min and analysis subsequently run at 230°C (with a rate increment of 4°C min-1 and hold 

time of 20 min). Peaks of methyl esters were identified by MS library and CAS number of 

corresponding commercially prepared FAME mix (Sigma, UK). FAMEs were quantified 

using a calibration curve drawn for each methyl ester (Appendix 11).  

Equation 2.8 is a regression equation where Cetane number (CN) was calculated using a 

relationship that utilizes FAME compositions as described by Bamgboye & Hansen, 

(2008).  
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CN = 61.1 + 0.088x1 + 0.133x2 + 0.152x3 – 0.101x4 – 0.039x5 – 0.243x6 – 0.395x7      (2-8) 

 

where x1 to x7 represents the weight percentages of methyl myristate (C14:0), palmitate 

(C16:0), palmitoleate (C16:1), stearate (C18:0), oleate (C18:1), linoleate (C18:2) and 

linolenate (C18:3) in transesterified lipids respectively. 

 Analytical methods 

  Quantification of biomass concentration  

Algal growth was periodically quantified by OD measurement at 750 nm using an 

Ultrospec 500 pro spectrophotometer (Amersham Biosciences, UK). The broth was diluted 

with DI water wherever the OD approaches 1.0 OD units. The dry weight was determined 

by correlating the OD of exponentially growing cells to the corresponding weight of these 

cells on a predried and preweighed filter paper (Whatman, UK). This was dried to a 

constant weight and the readings used to draw a calibration curve (Appendix 3 and 4). 

Maximum specific growth rate (µmax) and doubling time (td) were calculated using the 

equations:  

  µmax =
Ln (

OD2
OD1

⁄ )

t2 − t1
 

(2-9) 

𝑡𝑑 =
Ln2

µ𝑚𝑎𝑥
 (2-10) 

where OD1 and OD2 denote the optical density at logarithmic phase at time t1 and t2 

respectively. 

 pH measurements 

Daily pH readings of algal culture pH and for pH adjustment before flocculation were 

carried out using a S20-K SevenEasy™ pH meter (Mettler Toledo, UK). The probe was 

calibrated using standard buffers 4.01, 7.00 and 9.21 prior to each use. 
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 Viscosity measurement 

Viscosity measurements were carried out using a Kinexus lab+ rheometer (Malvern, UK) 

with the appropriate geometry (either cone plate, PU-20 or PU-50) depending on the range 

of viscosity expected. 0.5 mL of sample was loaded on the lower plate and with a fixed 

gap size of 150 µm (for cone plate) or range between (200 – 1 mm) for parallel plates 

depending on the average particle size within the sample measured. Using the rSpace 

software at a set temperature of 25ºC, a shear stress – shear rate table was generated which 

displays the viscosity of the sample (example in Appendix 6). Torque mapping was carried 

out each time the geometry of the machine was changed. 

 Light intensity measurement  

The light intensity of the Kuhner incubator shaker and the plate slabs in which cells were 

cultured was measured using a light meter LI-250A (LI-COR Biosciences, Nebraska 

USA). This instrument has a millivolt adapter for connection with a data logger and was 

connected to a LI-COR LI-190SA PAR Sensor which measures photosynthetically active 

radiation (PAR). When placed at the desired position, the sensor output (15s averages) was 

instantly shown on the display. Light intensities were routinely checked during cultures 

and storage. 

 Fourier Transform and Infrared Spectra (FTIR) Analysis 

FTIR was carried out using a Spectrum Two Infrared Spectrometer (Pelkin Elmer, USA). 

A background scan was carried out on the equipment and the lyophilised- phototrophic, 

heterotrophic cells or their flocculated forms were placed on the stage. The samples were 

scanned using a wavelength frequency range of 400 – 5000 cm-1 and resolution of 4 cm-1, 

each sample was scanned 20 times to produce the average spectrum.  



82 

 

 Lipid release  

Using optimal conditions from Section 2.6.2, centrifuged algae pellets were dissolved in 

chloroform-methanol solution and sonicated. This was then centrifuged and the chloroform 

portion containing lipids re-diluted with chloroform for samples whose concentration is 

above the assays detection level. Samples are then analysed for lipid (Section 2.7.2 and 

2.7.3). 

 Particle size distribution 

The size distribution of cell debris, whole cells or flocs generated were evaluated using a 

Malvern Mastersizer 2000E with a size detection range of 0.01-2000 µm. The size 

distribution in terms of percentage total particle volume was recorded using water as a 

dispersant medium and the refractive index was set to 1.03 (Aas, 1996). Flocculated 

samples to be analysed were collected directly from the flocculation reactor and all samples 

were added in a drop wise manner into the dispersant medium, which was being stirred at 

1000 rpm until a laser obscuration of 12-13% was achieved. The results were measured in 

triplicate and average taken. 

  Microscopic images  

Microscopic images were obtained using a Nikon Eclipse TE 2000-U inverted microscope 

(Nikon Instruments Europe B.V, Badhoevedorp, Netherlands) fitted with a charge-couple 

device camera. Using 20 x magnification, images showing size of flocs before and after 

being subjected to shear were obtained. Several flocculation studies were performed and 

for each run, triplicate images were captured and sizes confirmed with the Mastersizer 

2000E as explained in Section 2.10.7 in order to avoid batch to batch sampling error. Image 

analysis was carried out with ‘ImageJ’ software (NIH, US).    
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 Scanning Electron Microscopy (SEM) 

High resolution images of filter membranes before and after filtration experiments were 

obtained using a Field Emission Scanning Electron Microscope (FESEM) (JSM-7401F, 

JEOL Limited, Japan). Wet samples were left to thoroughly dry and then firmly secured 

on a leit adhesive carbon tab before being placed on an aluminium stub. Using a high 

resolution ion beam coater (Model 681, Gatan Ltd, USA), these samples were sputter 

coated with Gold and Palladium which gives the specimen a high conductivity and reduced 

tendencies of damage during imaging. Images were then shot by placing the sample at a 

working distance of 8.5 - 10 mm while utilizing a low accelerating voltage of 2 kV. 

 Determination of floc density 

A Brookhaven (DCP-100 particle sizer) device, a centrifugal disc photosedimentometer, 

was used to analyse the density of the microalgae cells and flocs. Using 1 mL of 50% v/v 

methanol to create a gradient in 20 mL deionized water, this was injected into the surface 

of the rotating annulus; serving as the spin fluid. The rotating drum was set to different 

rotational speeds in order to match the size distributions initially obtained using mastersizer 

2000E (section 2.10.7). 500 rpm appeared to be the most ideal for the size ranges attained. 

0.2 mL of the sample to be measured was injected onto the inner surface of the rotating 

annulus of spin fluid using 15 x 4̎  90º blunt end pipetting needle. The temperature of the 

system was between 23 ± 2 ºC during all runs. All measurements were performed in 

triplicate. 

 Nutrient analysis 

Nutrient analysis (glucose and ammonia) was conducted using Bioprofile® FLEX 

Analyser (Novabiomedical, U.S) for both shake flask and bioreactor. 
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  Microalgae growth and flocculation 

 Introduction and aims 

As described in Section 1.3 there exists a diverse range of microalgae due to their different 

origins. This is evidenced by their physiological differences (filamentous or single-celled), 

multiple growth modes and diverse metabolism. Due to the diversity of algae, a wide range 

of species could be studied under a range of culture conditions enabling them to produce a 

variety of complex biochemical compounds (Radmer, 1996). Microalgal cultures are 

generally characterized by the low biomass densities that can be achieved as a consequence 

of their long doubling time (Hu et al., 2008). In order to enhance biomass production, 

screening of the ideal candidates that possess fast growth rate and high content of the 

desired product (Del Campo et al., 2007) becomes necessary. 

The low biomass productivity places a large burden on the downstream processes utilized 

(Section 1.4) because of the large amount of water used for culture which needs to be 

removed. Early volume reduction by methods such as centrifugation (Section 1.4.2.1) or 

filtration (Section 1.4.2.2) is necessary to minimise the scale of subsequent operations.  

Here pre-treatment steps prior to recovering the algal cells can be explored. The various 

pre-treatment options utilized in microalgal processing have been discussed in Section 

1.4.1. 

Given the above considerations, the aims of this first results chapter are to evaluate the 

growth kinetics of four different microalgae species with potential for biofuel production 

and to characterise flocculation as a potential pre-treatment step to aid cell recovery. The 

specific objectives of this chapter are as follows:  
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 To study the growth kinetics of the selected microalgae species under different 

cultivation conditions (phototrophic and heterotrophic).  

 To study the impact of media composition on lipid production by the different algal 

strains as a basis for choosing one for further study. 

 To design and characterise a series of scale-down flocculation reactors to be able 

to reproducibly produce flocs of the selected microalgae cells at small scale. 

 To evaluate the influence of flocculation conditions on the particle size distribution 

and mechanical stability of the flocs generated.  

 To scale-up the flocculation process in a larger scale stirred tank reactor (STR) 

using the optimised conditions from the scale-down flocculation reactors.  

 

 Growth kinetics of microalgae strains 

 Effect of medium formulation on biomass and lipid production 

The initial experiments examined the influence of cultivation conditions on growth and 

lipid accumulation in a selection of microalgae species. Media composition is a key factor 

to consider since it consists of the various components these species will feed on thereby 

influencing cell growth and metabolism. The major elements required for algal growth 

were highlighted in Section 1.3.3. Apart from carbon, nitrogen is the next most important 

element contributing to the dry matter of microalgal cells since nitrogen deficiency is 

associated with enhanced lipid accumulation (Gouveia & Oliveira, 2009). For the medias 

chosen (Table 2.1), the nitrogen sources include yeast extract (EG), NH4Cl (TBP) and 

NaNO3 (BBM) since these are the nitrogen sources that algae are most able to readily 

assimilate (Ganuza et al., 2008). Four microalgal species known for their biofuel potential 

were chosen. This include C.vulgaris (Spolaore et al. 2006; Illman et al., 2000), 

C.sorokiniana (Illman et al., 2000; Mata et al., 2010), C.reinhardtii (Schenk et al., 2008) 

and S.obliquus (Francisco et al., 2010; Mata et al., 2010).  
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Figures 3.1 and 3.2 show the measured growth kinetics for each of these species grown in 

the three different media either phototrophically or heterotrophically. Variations were 

observed in all cases of growth kinetics amongst all the species. The maximum biomass 

productivity was seen when cells are grown heterotrophically because glucose encourages 

biomass and lipid synthesis more than the production of pigments (Miao & Wu, 2006).  

The low biomass concentration of phototrophic cultivation can be attributed to the low 

light intensities utilized (54 µmols-1m-2) (Section 2.2). Nonetheless S.obliquus obtained a 

maximum biomass concentration of 2.2 g.L-1 in BBM which is higher than those in 

literature and this suggests a good combination of media and growth condition. 

C.sorokiniana exhibited the longest doubling time during phototrophic cultivation but in 

comparison to C.vulgaris and C.reinhardtii, cells was still actively growing throughout the 

time window studied suggesting that the maximum specific growth rate (µmax) would have 

been better if the strain was allowed to grow for longer. In comparison to S.obliquus, a 

higher biomass was obtained by C.sorokiniana except for growth in BBM media. 

For heterothrophic cultivation, the results are markedly different.  In this case the shortest 

doubling times were recorded for C.sorokiniana and this organism’s growth cycle was 

completed within the time of study. The highest biomass concentration of 5.7 ± 0.3 g.L-1 

was obtained for heterotrophic cultivation of C.sorokiniana in TBP medium. A detailed 

summary of growth kinetic parameters showing µmax, td and total lipid accumulated is 

shown in Table 3.1. 

As mentioned in Section 1.3.2.1, lipid content is an important parameter with regards to 

the suitability of an algal strain for biodiesel production. Hence, the total lipid content 

reported as percentage of total dry weight of the different algal strains cultured in the 

different media is shown in Figure 3.3. Lipid accumulation is known to be associated with 

nitrogen depletion in the culture medium (Converti et al., 2009; Illman et al., 2000; 

Stephenson et al., 2010) hence cultures were harvested for analysis in the stationary phase. 

Some studies adopt a nitrogen replete medium for cultivation but deficiency of such an 
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Figure 3-1: Growth kinetics of phototrophically grown microalgae species in different culture media (see section 2.2 for acronyms in legend): (a) C.vulgaris, 

(b) C.sorokiniana, (c) C.reinhardtii and (d) S.obliquus. Experiments performed as described in Section 2.2 and media compositions as described in Table 2.1. 

Error bars represent one standard deviation about the mean (n≥3). 
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Figure 3-2:  Growth kinetics of heterotrophically grown microalgae species in different culture media (see section 2.2 for acronyms in legend): (a) C.vulgaris, 

(b) C.sorokiniana, (c) C.reinhardtii and (d) S.obliquus. Experiments performed as described in Section 2.2 and media compositions as described in Table 2.1. 

Error bars represent one standard deviation about the mean (n≥3). 
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essential nutrient also serves as a signalling metabolite at the onset of cultivation that can 

alter primary and secondary metabolism (Bölling & Fiehn, 2005; Moseley et al., 2009). 

Therefore, nitrogen rich media is recommended for algal cultivation. C.vulgaris 

demonstrated the highest lipid accumulation in the biomass for all three media with < 2% 

w/w variation with differing culture conditions. Lipid content ranged between 15-32% 

w/w which is in agreement with literature values of between 5-58% w/w for both 

phototrophic and heterotrophic cultures depending on cultivation condition (Chen et al., 

2010; Huerlimann et al., 2010).  The lipid content of C.sorokiniana grown in TBP did 

not vary significantly due to cultivation conditions (phototrophic or heterotrophic) 

although it varied in the other medias. In C.rienhardtii and S.obliquus, lipid fractions (% 

w/w) were found to be within lower limits of their ranges reported in literature.  4 - 13% 

w/w was obtained for C.rienhardtii while S.obliquus contained 5-14% w/w. It should be 

noted that even though C.reinhardtii was one of the earlier species investigated for 

biofuel production, this is the most suitable for genetic engineering since its complete 

genome sequence is already available (Huerlimann et al., 2010). 

The variation in lipid content seen across the different media types is possibly associated 

with the different sources and concentration of nitrogen (Leesing et al., 2014). Utilizing 

ammonium as a nitrogen source either phototrophically or heterotrophically was seen to 

support lipid accumulation. This is because ammonium is the most preferred nitrogen 

source due to requirement of less energy for its uptake in comparison to other sources 

(Perez-Garcia et al., 2011; Wilhelm et al., 2006). Based on the data shown in Figures 

3.2 and 3.3 and the growth kinetic parameters shown in Table 3.1 C.sorokiniana cultured 

heterotrophically on TBP media was chosen for further study. Furthermore, the lipid 

content of C.sorokiniana is high, the strain has been intensively studied and featured in 

many research works thus enabling quantitative comparison (Illman et al., 2000; 

Rosenberg et al., 2014).  
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Figure 3-3: Total lipid accumulated by various microalgae strains cultured in different 

media:  (a) phototrophically and (b) heterotrophically. Cells cultured as in Figures 3.1- 3.2 

and harvested at the stationary phase when all nitrogen of the media is expected to have 

been used up. For low cell density cultures, several flasks were pooled in order to get 

sufficient biomass for analysis. Error bars represent one standard deviation about the mean 

(n=3). 
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Table 3-1: Summary of the growth kinetics and total lipid accumulated for phototrophically and heterotrophically grown microalgal cells. Data calculated from 

Figures 3.1 – 3.3. 

Microalgal specie 

Growth parameter and 

total lipid  

Phototrophic Heterotrophic 

EG TBP BBM EG TBP BBM 

C.vulgaris 

Biomass Conc. (g.L-1) 1.69 1.36 0.48 5.01 4.65 3.57 

µmax (hr-1) 0.027 0.021 0.013 0.018 0.016 0.023 

td (hr) 26 33 53 39 43 30 

Total Lipid (%w/w) 18.8 30.6 15 20 32 18 

C.sorokiniana 

Biomass Conc. (g.L-1) 1.52 1.46 0.52 4.01 5.96 2.53 

µmax (hr-1) 0.004 0.005 0.013 0.028 0.048 0.021 

td (hr) 173 139 53 25 14 33 

Total Lipid (%w/w) 11 21.1 14.53 20 22 10 

C.reinhardtii 

Biomass Conc. (g.L-1) 0.53 0.71 0.22 1.06 2 1.65 

µmax (hr-1) 0.007 0.025 0.012 0.012 0.017 0.0135 

td (hr) 99 28 58 58 41 51 

Total Lipid (%w/w) 7 11.2 13 5 4 7.3 

S.obliquus 

Biomass Conc. (g.L-1) 1.04 1.05 2.21 2.23 1.56 3.01 

µmax (hr-1) 0.007 0.009 0.01 0.012 0.009 0.013 

td (hr) 99 77 69 58 77 53 

Total Lipid (%w/w) 12 5.6 14 10 6 9 
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 Scale-up of C.sorokiniana culture in TBP medium  

In order to provide sufficient biomass of consistent quality for subsequent studies the scale-

up of C.sorokiniana cultivation to a 7.5L stirred bioreactor scale was investigated. Figure 

3.4a shows the successful scale-up of fermentation performance based on matched kLa 

between the shake flasks and the bioreactor as described by Ojo (2015). This entailed using 

a shaking / stirring rate of 180 rpm at both scales of operation. C.sorokiniana is a small 2 

– 4.5 µm diameter organism that prefers being cultivated on nitrogen in the form of 

ammonia and glucose as an organic carbon source (Wan et al., 2012). It has been reported 

that higher growth rates and respiration is obtained with glucose than with any other carbon 

source (Griffiths et al., 1960). Due to possession of a mechanism that transports protons 

and sugars (hexose/H+ symport system), Chlorella spp are able to readily uptake glucose 

from the media (Komor et al., 1973; Komor & Tanner, 1974) supporting the efficient 

growth on glucose seen here.  

Figure 3.4a also shows the decline in pH which is a characteristic of ammonia consumption 

from the TBP medium and which can lead to reduction in biomass yields if the pH is not 

controlled (Lee and Lee, 2002; Shi et al., 2000; Yongmanitchai & Ward, 1991). Based on 

this data, the media was reformulated to increase buffering capacity and the growth period 

was seen to be longer than when initially grown in unmodified medium (results not shown). 

Since carbon and nitrogen play an important role in biomass accumulation and product 

formation, their fate in the media and corresponding effect on lipid accumulation was 

studied (Figure 3.4b). This figure shows that the carbon source utilisation and metabolite 

production profiles at the different scales are identical. Lipid content was seen to increase 

in the late exponential and stationary phase of growth. Several hypotheses to explain the 

mechanism of lipid accumulation have been suggested. Some studies suggest media 

containing an excess of carbon coupled with nitrogen exhaustion can lead to lipid  
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Figure 3-4: Comparison of growth kinetics of C.sorokiniana grown heterotrophically in 

shaken flasks (SF, 250mL) and a stirred bioreactor (BR, 7.5 L): (a) cell growth and medium 

pH and (b) corresponding nutrient uptake and total lipid levels. Experiments performed as 

described in Section 2.2 using scale-up criterion as described in Section 2.2.2. Error bars 

represent one standard deviation about the mean (n=3).  
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accumulation (Perez-Garcia et al., 2011). Also, in heterotrophic cultures, conversion of 

sugars into lipid occurs when a higher rate of sugar consumption than that of cell generation 

is observed (Chen & Johns, 1991; Ratledge & Wynn, 2002). The yield of biomass on 

glucose, YX/S, recorded was 1.16 g.g-1. 

 Flocculation as a harvesting pre-treatment step 

It is known that the harvesting step has a significant influence on biodiesel production 

economics (Section 1.4). Microalgae are harvested in large volumes due to the generally 

low biomass concentrations. This large volume increases operational cost during 

dewatering (Uduman et al., 2010); specifically, about 20-30% of the total cost of producing 

the biomass itself (Dragone et al., 2010). An additional problem for dewatering is the small 

size of microalgal cells (Grima et al., 2003). Considering this challenge, microalgae are 

usually harvested in two stages as described in Section 1.4. In this work, flocculation is 

proposed as a pre-treatment step (Figure 1.6) in order to reduce the volume of material 

processed further downstream. Also, the efficiency of DSP operations can be improved by 

flocculant conditioning (Ramsden & Hughes, 1990).  

Flocculation is a process where solute particles collide and adhere to form ‘flocs’. Different 

chemicals have been used for microalgal flocculation and these can be categorized into 

three main types as described in Section 1.4.1. Cationic polymers have been proven to be 

most effective for microalgal flocculation (Tenney et al., 1969) with Chitosan specifically 

gaining wide interest due to various advantages (Section 1.4.1.1); the most important being 

its biodegradability and non-toxicity (Bustos-Ramírez et al., 2013; Ravi Kumar, 2000). 

Due to the negative charge possessed by most algal cells, which prevents them from 

naturally flocculating in suspension (Brennan & Owende, 2010), addition of cationic 

polymers can link the cells to neutralize the charge. 

Even though microalgal flocculation is established in wastewater treatment and the 

harvesting procedures involved are similar, the purpose of algal flocculation for biofuel 
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production differs. This is because biomass is needed for further processing, therefore, 

careful consideration for flocculant choice in order to recycle media or dispose of it safely 

has to be made. 

 Design of scale-down flocculation reactors 

Flocculation is a difficult process to operate reproducibly. Therefore, standardization 

becomes vital in order to quantify and characterize the process. A series of scale-down 

flocculation reactors were designed (Figure 3.5) so that the operation could be performed 

reproducibly over a wide range of conditions using minimum quantities of materials. In 

this study, the ‘large-scale’ flocculation process will be carried out in situ the fermentation 

reactors hence, scale-down flocculation reactors are a geometric mimic of a standard STR 

The internal arrangements of a design should depend on the objective of the operation 

intended (Walas, 1990). The major aims here are homogeneity and keeping flocs suspended 

during flocculation so that small flocs that are shortly bridged can continue to grow.  

As shown in Section 2.3.1, the internal geometry of the flocculation reactors at both scales 

is the same. Agitation is accomplished by means of two Rushton impellers mounted on the 

shaft as in the case of the large scale flocculation reactors. Moreover, when an aspect ratio 

of 1 ≤ HT/DT ≤ 1.8 as is used in this study then two or more impellers should be employed 

for mixing (Walas, 1990).  
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Figure 3-5:  Photographs of the different scale-down flocculation reactors used in this 

work: (a) 120 mL (b) 250 mL and (c) 500 mL, with each having an adjustable 6-bladed 

Rushton turbine impeller. Dimensions and geometric ratios are given in Figure 2-1. 

  Standardization of flocculation conditions 

Standardizing flocculation is vital in order to quantify and characterize the process. As 

mentioned in Section 3.4, reproducing a particular flocculation procedure is difficult, which 

is the reason for the wide variation in the flocculation efficiencies reported to date. In an 

attempt to overcome this challenge and to ensure reproducibility, factors affecting 

flocculation and flocculation conditions will be explored, optimized and fixed ahead of 

subsequent filtration (Chapter 4) and centrifugation (Chapter 5) studies.  

 Mixing time (tm) characterisation 

In order to ensure flocculation occurred under well-mixed and hence homogeneous 

conditions, mixing times in each reactor was studied as a function of impeller rotational 

speed. As mentioned in Section 2.3.1.2, study of the mixing time was achieved using pH 

indicator dyes. An approach that utilizes two pH indicators to estimate the mixing at the 

point when a uniform colour is obtained at a preselected pH value. This colorimetric 

method have been previously demonstrated in stirred reactors by Tissot et al. (2010). 

Figures 3.6 and 3.7 show the progression of the acid-base reaction with time and the 

a) b) c) 
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associated change in colour at low and high rotational speeds in different sized scale-down 

reactors. Initially, a red coloured solution at t = 0 is stirred at the desired rotational speed 

and gradually turns yellowish-green upon addition of base. The examples shown here 

clearly indicate a relatively slow mixing time at a low impeller speed of 80 rpm in both 

scales of reactor. In contrast at a higher rotational speed of 350rpm the mixing time is seen 

to be around 8 seconds i.e. when the developing yellow colour appears homogeneous. 

Figure 3.8 shows the measured mixing time as a function of impeller rotational speed 

where mixing time is seen to reduce with an increase in the speed of rotation. For example 

tm values of 62 ± 0.2s and 11 ± 1.7s where obtained when rotational speed was increased 

from 60 rpm to 300 rpm respectively. Due to their common geometry, mixing time was the 

same for all three reactors. Homogeneity of the pH dyes used was achieved in a shortest 

mixing time of 7.9 ± 0.5s at a rotational speed of 350 rpm.  

It was observed that slower rotational speeds took longer to mix which could delay 

flocculant time to reach other cells for effective agglomeration. While mixing time and 

homogeneity are important, several studies have shown shear induced by the impeller 

during flocculant addition greatly influences the sizes of flocs produced (Ahmad et al., 

2011; Byrne et al., 2002;  Pan et al., 1999). Here, it is assumed that floc breakage should 

only occur if they are subjected to shear rates higher than those from their initial formation 

process. Nevertheless, Ahmad et al. (2011) further stated that particle toughness is 

influenced by shear rate during addition as impeller shear rates during ageing are 

insignificant. Based on these literature reports and the mixing time results obtained here, 

350 rpm was employed during flocculant addition (to ensure rapid mixing and 

homogeneity) while 80 rpm was used for ageing of algae flocs (to minimise potential shear 

damage). 
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Figure 3-6: Time evolution of the mixing dynamics inside the 120 mL scale-down flocculation reactor: a) at 80 rpm and b) at 350 rpm. Reactor as shown in 

Figure 3.5(a). Mixing quantified using dual pH indicator dye method as described in Section 2.3.1.2.  

a) 

t = 0 t = 1.32s t = 3.6s t =8.43s t = 4.8s t = 6.66s 

b) 
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Figure 3-7:  Time evolution of the mixing dynamics inside the 500 mL scale-down flocculation reactor: a) at 80 rpm and b) at 350 rpm. Reactor as shown in 

Figure 3.5(c). Mixing quantified using dual pH indicator dye method as described in Section 2.3.1.2. 

 

b) 

t = 0 t = 1.32s t = 3.6s t =8.43s t = 4.8s t = 6.66s 

a) 
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Figure 3-8: Measured liquid phase mixing time as a function of impeller rotational speed 

in each of the scale-down flocculation reactors. Reactors as shown in Figure 3.5. Mixing 

time measured as described in Section 2.3.1.2 while Figure 3.6 and 3.7 shows the pictures 

of the colorimetric method obtained during the experiment. Error bars represents one 

standard deviation about the mean (n = 2). 
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 Factors influencing flocculation  

Several factors have been highlighted to affect flocculation efficiency as described in 

Section 1.4.1.1 including pH and flocculant addition rate.  

 Influence of pH  

pH is an important variable in flocculation because it influences the charge of ionisable 

groups in the system and their interaction or repulsion. Several studies have reported 

flocculation using different flocculants at different pH ranges. For example, Harith et al. 

(2009) and Cheng et al. (2011) showed total charge neutralization at pH 8 and 8.5 using 

Chitosan to flocculate C. calcitrans and C.sorokiniana cells respectively.  The behaviour 

of Chitosan is known to be influenced by pH, whereby in a weak acid environment, this 

biopolymer is known to be dominated by positive charges which tend to reduce in an 

alkaline medium due to coiling of the molecule (Gualtieri et al., 1988). Figure 3.9a, shows 

the experimentally determined pH threshold for effective flocculation of C.sorokiniana 

using Chitosan. Recovery efficiency is the percentage amount of cells obtained after 

flocculation relative to the initial amount that could be obtained. In this case, recovery 

efficiency was measured as described in Section 2.4.1.2. The Chitosan concentration refers 

to the overall amount of Chitosan added to the flocculation reactor. The pH above which 

the recovery efficiency is greater than 85% is seen to be between pH 6 ± 1 at a Chitosan 

concentration of 5 mg.mL-1. The order of increase in recovery efficiency and size of flocs 

for all the Chitosan concentrations tested increased from pH 9, 8, 7, 5 and 6 respectively. 

The highest recovery efficiency obtained was at pH 6 which is in line with the pKa value 

of the amino group for Chitosan which is approximately 6.5 (Filion et al., 2007; Tourrette 

et al., 2009). Therefore, subsequent experiments will utilize this pH for flocculation which 

is hereafter termed as the optimum pH.  

Figure 3.9b shows the corresponding sizes of flocs formed at a concentration of 5 mg.mL-

1 which is where highest recovery was seen except for pH 9. The particle size d50 increases  
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Figure 3-9: Effect of pH and Chitosan concentration on flocculation of C.sorokiniana 

cells: (a) recovery efficiency of flocculated cells at varying Chitosan concentration and b) 

particle size distribution of flocs produced at 5 mg.mL-1 Chitosan concentration at various 

pH values (5-9). Experiments performed as described in Section 2.4.1.2; adding only 1mL 

of Chitosan solution to 85mL of broth containing 5.2 ± 0.18 g.L-1 algal cell cultured 

heterotrophically as described in Section 2.2. Error bars represent one standard deviation 

about the mean (n≥3). 
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to higher diameters as the pH approaches the pKa of Chitosan and hence cell aggregation 

occurred which is as a result of predominance of positive charges in the medium. A 

substantial level of aggregation occurred at all the various pH ranges (especially at high 

Chitosan concentrations) which impacted on recovery. This verifies the electrostatic 

interaction between the amine functional groups of Chitosan to the anions predominating 

algal cell walls (Uduman et al., 2010; Xu et al., 2013). 

 Influence of flocculant addition rate  

Another important variable that influences the flocculation process and the size of the 

generated flocs is the flocculant addition time referred to as tadd. tadd is the total time it takes 

to add the required amount of flocculant. Figure 3.10 shows the impact of three different 

addition rates on the sizes of the flocs formed; size is seen to increase with a decrease in 

total addition time. Shorter tadd showed a size profile with bimodal distributions 

characterized by a higher proportion of bigger flocs to smaller ones while longer tadd (i.e. 1 

mL.min-1) exhibited a wider floc distribution. The Segregation Index (XS) is a parameter 

used to characterize the degree of particle separation in fluid particle systems. It is known 

that with longer tadd there is a higher XS and therefore improved mixing (Espuny et al., 

2014). This improvement in mixing could be the reason that flocs are broken because of 

exposure to hydrodynamic shear. A detailed study on how mixing time scales affect the  

sizes of flocs has been discussed elsewhere (Espuny et al., 2014). 

The mechanical stability of flocs is important to characterise since they are to be further 

processed using techniques known to induce hydrodynamic shear. Moreover, it has been 

highlighted in Section 3.5.1 that floc stability is influenced by shear rate during flocculant 

addition. Since floc rigidity is of importance, the shear stability of these flocs generated as 

a function of flocculant addition time was explored. Figure 3.10b shows microscopic 

images obtained after the flocs have been subjected to shear in the rotating disc shear device 

described in Section 2.3.3.2 at an energy dissipation rate of 2 x 105 W.kg-1. It is evident  
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Figure 3-10: Influence of Chitosan addition rate on size of flocs: (a) effect of time of addition 

on particle size distribution of flocs and (b) effect of energy dissipation rate (2 x 105 W.kg-1) 

on the flocs generated from Figure 3.10a. The choice of energy dissipation rate is based on 

those experienced in industrially relevant centrifuges (CARR PowerfugeTM and disc stack 

centrifuge). Flocculation was carried out using broth containing 3.5 g.L-1 cells using 

experiment conditions as described in Section 2.4.1.2. Bar size is 50 µm.  
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that flocs produced with longer Chitosan addition times were more resistant to shear as 

bigger flocs are still seen post shear exposure. These results are similar to studies carried 

out by Berrill et al. (2008) which reported reduced stability of E.coli debris flocs obtained 

using short addition time in comparison to those produced using longer addition times. 

More so, heterogeneity in the floc size characteristics was seen with shorter addition times 

and this can be seen with the profile of 3 mLmin-1 in Figure 3.10a (bimodal to trimodal 

distribution profile). Thus, the longer addition times of 1 mL.min-1 are used in subsequent 

experiments.  

 Influence of broth ageing on flocculation efficiency 

The state of the culture broth can influence flocculation process performance. In 1969, 

McGregor & Finn, highlighted the factors that affect the flocculation of homogeneous 

cultures; amongst them is physiological age. In this work the effect of cell age on 

flocculation efficiency showed that at room temperature, a 24 hr broth holding time does 

not affect the flocculation performance. Figure 3.11 verifies this statement where it can be 

seen that the particle sizes of different concentration of flocculant added to freshly harvest 

algal culture and a 24 hr aged culture showed almost identical profile. These distribution 

profiles are within a ± 2.14% error when low flocculant is used whereas at high 

concentration, identical floc profile is formed. A twenty four hour holding time was deemed 

appropriate to mimic production delays or shift patterns in large manufacturing facilities. 

It is also important to study ageing since lysis of cells upon ageing may lead to release of 

intracellular components such as nucleic acids, proteins and polysaccharides thereby 

affecting the amount of flocculant required. 

It is expected that cells will be stressed and some form of lysis evident when they are left 

stagnant or gently agitated after culture as normally seen with other microorganisms such 

as E.coli. This is not evident here which indicates the robustness of C.sorokiniana. It should  
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Figure 3-11: Effect of broth ageing on particle size distribution of C.sorokiniana flocs. (*) 

represent data from samples held for 24 hr while other data is for freshly harvested cells. 

Flocculation performed as described in Section 2.4.1.2 with 5.0 g.L-1 algal cells cultured 

heterotrophically as described in Section 2.2. 
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be noted, however, that there was still un-utilised carbon source in the medium (see Figure 

3.4b) at harvest and this may have contributed to the prolonged stability of the cells. 

 Optimization of flocculation conditions  

In the preceding section, factors influencing flocculation (pH and flowrate for flocculant 

addition) were identified and fixed. However, the outcome of flocculation is still dependent 

on other operating parameters and therefore these will be explored further here in order to 

further optimise the process.  

 Effect of flocculant concentration on floc size 

Flocculant concentration is a key variable for efficient flocculation as this influences floc 

sizes attained and as a result, it aids sedimentation (Mata et al., 2010). Figure 3.12 shows 

floc size to be strongly dependant on the concentration of Chitosan. Floc distributions 

obtained using varying amounts of Chitosan, 0.5 - 5 mg.mL-1 corresponding to 1.09 - 10.89 

mg Chitosan per gram of algaldcw was explored (using 5.4 g.L-1 algal broth)(see Appendix 

12 for sample calculation). The results indicate a shift in the distribution from mono-modal 

to bimodal distributions as Chitosan concentration increases. A low Chitosan dosage of 

0.5-1.5 mg.mL-1 exhibited only a slight change from single C.sorokiniana cells as indicated 

by characteristic particle size descriptors d50, and d90  (Table 3.2). A significant increase in 

size and consistency in the distribution pattern of flocs was observed at higher Chitosan 

concentrations (Figure 3.12). 

A continuous increase in Chitosan concentration will proportionally increase the size of the 

flocs but from a processing (see chapter 4 and 5) and economic point of view, an optimal 

dosage needs to be defined. A floc size big enough to aid fast settling was used as a bench 

mark. Unlike low concentrations of 0.5 - 3 mg.mL-1, considerable sedimentation below the 

impellers was seen during ageing (visual observation) for higher Chitosan concentrations. 
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Additionally, Pan et al. (1999) reported that no significant change in the size of flocs and 

the settling velocity is seen after reaching optimal dosage. This is evident across all size 

 

 

Figure 3-12: Cumulative particle size distribution of C.sorokiniana flocs with increasing 

flocculant amount. Broth containing 5.4 gdcw.L-1 cells () was flocculated with Chitosan 

added to 85 mL of C.sorokiniana broth grown heterotrophically as described in Section 

2.2. Flocculation experiments were performed as described in Section 2.4.1. 
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Chitosan Concentration 

(mg.mL-1) 

Mean Particle Size (µm) 

d10 d50 d90   

Chlorella cells 2.4 ± 0.2 3.6 ± 0.2 5.1 ± 0.2 

0.5 2.4 ± 0.1 5.2 ± 1.8 10.0 ± 4. 8 

1.0 2.4 ± 0.0 6.4 ± 1.7 16.2 ± 3.5 

1.5 3.3 ± 0.6 15.6 ± 2.4 34.8 ± 1.6 

2.0 5.8 ± 0.6 17.9 ± 10.9 41.8 ± 20.5 

2.5 20.7 ± 4.7 26.2 ± 5.4 50.1 ± 26.3 

3.0 21.7 ± 4.2 49.2 ± 1.8 91.6 ± 0.9 

3.5 23.4 ± 3.2 52.0 ± 0.2 92.1 ± 0.7 

4.0 25.2 ± 0.3 52.4 ± 0.2 100.6 ± 2.8 

4.5 25.6 ± 0.2 57.6 ± 1.9 106.7 ± 3.3 

5.0 27.6 ± 1.2 60.4 ± 2.5 112.0 ± 0.9 

Table 3-2: Ranges of floc diameters produced for flocculation of heterotrophically grown 

C.sorokiniana cells with increasing flocculant concentration. d10, d50 and d90 are particle 

diameter (µm) above which 90%, 50 % and 10% of the sample volume exists. Experiments 

performed as in Figure 3.12 and data represents one standard deviation about the mean 

(n>3).  
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descriptors for concentrations ≥ 4mg.mg-1 (Table 3.2). Moreover, other studies reported 

the use of higher concentrations of Chitosan and other flocculants even though the 

concentration of biomass from this study is a lot higher. Furthermore, reduced time to 

achieve fast aggregation in comparison to literature reports was observed.  For example, 

Divakaran & Pillai, (2002) and (Xu et al., 2013) continuously stirred the mixture for 30 

and 15 mins respectively after which the mixture is allowed to sediment for another 30 

mins. The better results seen here might be due to the controlled flocculation methodology 

used. 

 Scale-up of flocculation at constant tip speed 

Having optimized and fixed flocculation conditions in the scale-down reactors it is 

necessary to ensure that similar flocculation performance is seen in the larger scale reactor. 

Several parameters are used to represent the hydrodynamic stresses in stirred vessels. 

Typical examples include the local turbulent energy per unit mass (ɛ), average turbulent 

energy dissipation (ɛavr) and impeller tip speed (Vtip). These have also been used as scale-

up criteria for flocculation processes (Chester & Oldshue, 1987; Uhl & Von Essen, 1986). 

Scaling down of processes also requires a mimic of conditions that can be replicated at both 

scale. As reported by Shamlou et al. (1996), particle growth and breakage is a function of 

hydrodynamic conditions inside the reactor. Scaling up on the basis of constant tip speed 

as used in this study is a typical example. Also, this correlation can be used if there is a 

partial geometric similarity between systems and also because impeller tip speed is an 

established parameter for impeller based mixing systems (Espuny et al., 2014). 

 Figure 3.13 shows the particle size distribution of flocs produced using the 7.5L scale STR 

at optimal Chitosan dosage (9.86 ± 0.35 mg.g-1 of algaldcw) and at a lower Chitosan dosage 

(2.18 mg.g-1 of algaldcw). In both cases the size distributions showed a close match to those 

obtained in the scale down reactors which were operated at an equal impeller  
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Figure 3-13: Scale-up of C.sorokiniana flocculation with Chitosan from 120 mL scale-

down (SD) reactor to 7.5L STR. Flocculation was carried out at a fixed impeller tip speed 

(0.29 ms-1 during flocculant addition and 0.07 ms-1 during ageing) with varying flocculant 

concentration (1 and 4 mg.mL-1 Chitosan) and flowrate of 0.06L.hr-1. Data shown is from 

replicate experiments at each scale. Flocculation experiments performed as described in 

Section 2.4.1. 
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tip speed of 0.29 and 0.07 ms-1 (flocculant addition and ageing respectively). This is due to 

exposure to same shear rates. This results are comparable to studies carried out on post-

centrifuge flocculation of S.cerevisiae by Espuny et al. (2014). 

Additionally, in order to obtain agreement between the different scales, a constant flowrate 

of flocculant addition was used but the concentration of the flocculant solution was 

necessarily increased in order to avoid longer addition times at the large scale. 

 

 Summary  

As stated in Section 3.1, the aims of this chapter were to establish reproducible and scalable 

conditions for the culture and flocculation of microalgal cells. As shown in Figure 3.4 

(scale-up of C.sorokiniana culture) and Figure 3.13 (scale-up of flocculation with 

Chitosan), these initial aims have been achieved. 

In terms of cell growth kinetics, four different microalgae strains were selected and cultured 

on three different media either phototrophically or heterotrophically. Heterotrophically 

cultured strains attained the highest biomass productivity (Figure 3.2) with C.sorokiniana 

considered as the best. This achieved a final biomass concentration of 5.96 g.L-1 with the 

shortest doubling time of 14 hrs and a high lipid content of 22% (w/w) (Table 3.1). Media 

formulation was also seen to be important with regard to cell growth and in particular 

culture pH.  Here the media was reformulated to increase the buffering capacity and better 

control pH. As shown in Figure 3.4a, this modification led to improved growth of 

C.sorokiniana. Ultimately, successful scale-up of C.sorokiniana growth on TBP medium 

from shake flask (250 mL) to bioreactor (7.5 L) scale was achieved using matched kLa as 

the scale-up basis (Figure 3.4a). Cultures performed under matched kLa conditions showed 

comparable growth rates and yields as well as comparable carbon source utilization and 

metabolite production profiles; suggesting the cells produced at the two scales were in a 

similar physiological state (Figure 3.4b).  
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Regarding the flocculation studies, three scale-down stirred flocculation reactors were 

initially designed and characterized based on mixing time (Figure 3.6 - 3.8). It was found 

that the main factors influencing flocculation were pH (Figure 3.9), tadd (Figure 3.10) and 

concentration of flocculant (Figure 3.12). Consequently these were fixed at pH 6, tadd of 

0.06L.hr-1 and an optimal Chitosan concentration of 9.9 ± 0.4 mg.g-1 of algal dry cell weight 

was chosen. Standardizing and fixing these parameters enabled consistency and 

reproducibility in the particle size distributions of the flocs produced (Figure 3.12 and 

Table 3.2). Scale-up of the flocculation process from the scale-down reactor (120 mL) to 

a 7.5L STR was achieved at a fixed impeller tip speed during flocculant addition and ageing 

(0.29 and 0.07 ms-1 respectively) (Figure 3.13).  

In the following chapter, ultra scale-down methods for studying microalgal filtration and 

the impact of flocculation as a pre-treatment step will be investigated. The effect of growth 

conditions on filtration performance and membrane fouling will also be explored. 
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 USD Microfiltration 

 Introduction   

Harvesting and dewatering operations have been highlighted as a key challenge for 

economic processing of algae-derived biofuels (Pienkos & Darzins, 2009). Microfiltration 

is explored in this chapter as a solid-liquid separation choice for algal harvest as it is a 

major technique for dewatering and concentration used in other industry sectors (Section 

1.4.2). Filtration processes can be achieved in two ways: (i) the classical mode of operation 

termed normal flow filtration (NFF) or dead-end filtration and (ii) cross flow (CFF) or 

tangential flow filtration (Figure 4.1). In both cases it is a pressure-driven process that 

consists of a permeable membrane to separate solids from liquid; the retained solids are 

termed the retentate while the material that passes through the membrane is called 

permeate.  

Only a limited number of studies on algal separation using micro- and ultra- filtration have 

been reported in literature (Hung & Liu, 2006). Some studies have suggested mechanical 

dewatering operations such as filtration (Grima et al., 2003) need to be followed by 

additional operations like thermal drying in order to obtain sufficiently concentrated 

biomass streams. 

In this study, crossflow filtration is investigated as it is preferred due to the high permeate 

fluxes attained with minimal damage on cell integrity (Hung & Liu, 2006). Numerous 

parameters can influence filtration performance such as TMP, cross flow velocity (Song, 

1998) membrane pore size and so on. Therefore, it is important to investigate effects of 

these operating parameters on the microfiltration of algal suspensions. 
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Figure 4-1: Schematic illustration of the operation of membrane filtration processes: (a) 

NFF or dead-end filtration and (b) CFF or tangential flow filtration. Large circles represent 

whole cells or solids larger than the membrane pore size (i.e. present in the feed solution) 

and small circles represent media components smaller than the membrane pore size  
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Also, exploring an appropriate pre-treatment step, such as flocculation (Chapter 3), can 

enhance the performance of membrane filtration (Babel & Takizawa, 2011). Consequently, 

the aim of this chapter will be to evaluate the processing parameters for microfiltration of 

algae using hollow fibre cartridges and to explore an ultra scale-down (USD) approach to 

mimic the lab scale hollow fibre results. The key objectives of this chapter are: 

 To define factors influencing performance of algal broth filtration using hollow 

fibre cartridges. 

 To study the effect of cell concentration on membrane performance. 

 To explore the fouling characteristics (caused by extracellular organic matter 

(EOM)) as a result of culture conditions (photo- and hetero- trophic) and the 

consequences on membrane cleaning. 

 To study the effect of a flocculation pre-treatment step on filtration efficiency. 

 To mimic the lab scale findings using a scale-down filtration device for both 

flocculated and unflocculated cells.  

 Experimental setup and approach 

Figure 4.2 is the experimental setup used for filtration process optimization and 

concentration experiments. As mentioned in Section 2.3.2.1, this was achieved on the 

AKTA crossflow rig using either the rotating disc filter (RDF) or the hollow fibre cartridge 

for USD and laboratory scale experiments respectively. The hollow fibre membrane 

configuration was selected based on knowledge of membrane formats being pursued by a 

number of algae-based companies (private communications). The pump control and 

pressure adjustments was done automatically by Unicorn software on the AKTA using the 

PID control system (Figure 2.2b). This operates based on the instructions written and run 

in the method wizard. During process optimization for example, operating in total recycle 

mode utilized a TMP stepping protocol for three different crossflow velocities. Figure 4.3
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Figure 4-2: Schematic diagram of experimental setup for USD membrane and lab-scale hollow fibre experiments operated in either total recycle or dead-end 

mode. When used for lab-scale experiments, the USD membrane device is substituted with the appropriate cartridge. Experimental operation as described in 

Section 2.4.2.
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illustrates this; where the process starts off with the highest flowrate (Figure 4.3a) as 

indicated by the flux values and corresponding time of occurrence down to the lowest 

flowrate employed (Figure 4.3c). When an experiment at a particular TMP is performed, 

the flux is monitored until a steady state flow is attained; this is then fixed and the control 

switches to the next TMP value. The feed was placed on a magnetic stirrer and constantly 

stirred during the entire filtration process in order to pump homogeneous broth into the 

system; this is of particular importance for concentration experiments especially when 

using a pre-flocculated feed. The feed was placed on a magnetic stirrer and constantly 

stirred during the entire filtration process in order to pump homogeneous broth into the 

system; this is of particular importance for concentration experiments especially when 

using a pre-flocculated feed. For lab experiments, the USD membrane device in Figure 4.2 

is substituted with the hollow fibre cartridge (Section 2.4.2.1). Prior to each run, the 

membrane is flushed with water followed by a water flux test. Then equilibration was 

performed using the culture media as a conditioning buffer. When in operation, the 

permeate port further away from the feed port was used in order for the feed to flow through 

the entire membrane area. At the end of an experiment, a cleaning cycle followed by a 

water flux test was carried out in order to assess the effectiveness of the cleaning step and 

cleanliness/quality status of the membrane respectively. The cleaning procedure includes 

recirculating tergazyme (an enzyme detergent) for 30min, followed by a rinse with warm 

water; 0.5M NaOH solution was then recirculated and both cleaning formulations are 

heated to 60°C such that their final temperature in the reservoir tank is around 50°C. The 

cleaning cycle was repeated when a low water flux was recorded. The hollow fibre 

cartridge were stored in 30% v/v ethanol solution between experiments.  

Operating the USD membrane device in a crossflow fashion was achieved by rotating the 

disc inside the retentate chamber which mimics the hydrodynamic shear in the crossflow 

device due to the cross-flow velocity. The shear experienced on the surface of the 

membrane for the USD device is expressed in terms of average surface shear rate. Equation  
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Table 3 

 

 

 

 

 

 

 

 

 

Figure 4-3: Example of data from Unicorn showing an AKTA-generated stepping method to identify steady state profiles for flux at constant TMP. The graphs 

represent the different flowrates (Q) employed using a total recycle mode (a) high flow rate Q1 which is run at 300 mL.min-1; (b) Q2-150 mL.min-1; and (c) 75 

mL.min-1. It is evident that the flux (secondary axis) decreases as the flowrate is decreased. The graphs also show the stepping experiments for TMP over a 

range of 0-1.1 bar (primary y-axis) whose average steady point for flux was used to plot Figure 4.4. Experiments performed as described in Section 2.4.2.1

Time 
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2.5 was used to calculate the disc rotational speed for mimicking the shear rate of the lab-

scale cartridge. During USD critical flux determination, flux versus TMP profile had to be 

mimicked in the dead-end mode i.e. by varying the inlet flowrate as a result of unstable 

TMP values when operated in total recycle mode. This was so that fluctuations caused by 

unstable operating conditions which can lead to prediction problems at larger scale are 

avoided.  

 Effect of TMP and cross flow velocity on hollow fibre membrane flux 

Initial filtration experiments were performed in the lab scale hollow fibre module. TMP 

and crossflow velocity are considered as the major parameters affecting fouling in 

crossflow microfiltration (Song, 1998) making it important to operate below critical values. 

To obtain these basic operating values, the effect of cross flow rate on flux at varying TMP 

was investigated. Figure 4.4 shows that flux is directly proportional to both cross flow rate 

and TMP. Cake formation may be minimised by increasing cross flow velocity which 

directly relates to the hydrodynamic shear generated at the membrane surface. Since high 

velocities makes it difficult for algae to settle on the membrane, this induces higher flux. 

Measured permeate fluxes will typically increase as a function of TMP (Bacchin et al., 

2006) until a critical flux is reached; where flux is insensitive to further increase in TMP.  

At low TMP’s the flux increased almost linearly with increasing cross flow rate. The shear 

rate equivalent of each flowrate was calculated using Equation 2.3. High flow rates (150 

and 300 mL.min-1) which corresponded to shear rates of 4000 and 8000 s-1 showed 

increases in flux rates at increased TMP’s for both photo- and hetero- trophic feeds (Table 

4.2). For 75 mL.min-1 (2000 s-1), algal cell deposition or fouling begins to occur at higher 

TMP’s especially for heterotrophic broth in comparison to phototrophic broth. With respect 

to culture age, no significant difference was seen when fresh or 24 hr old feed was filtered. 

This was observed for both hetero- and photo- tropically cultured broths.  
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Figure 4-4: Graph of permeate flux (L.m-2.h-1) versus TMP (bar) for 5 g.L-1 algal broth operated in total recycle mode for: (a) heterotrophic, and (b) phototrophic 

grown cultures. Solid and dotted lines or F and 24hr (on legend) stand for fresh and 24 hr old broth respectively. Detailed experimental conditions as described 

in Section 2.4.2.1. Data points were obtained by operating at crossflow rates recommended by the manufacturer. Error bars represent one standard deviation 

about the mean (n ≥3). 
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Table 4-2: Summary of the recorded steady flux points obtained for (a) heterotrophic and 

(b) phototrophic algae culture at different flowrates (crossflow velocities). Experiments 

performed as described in Figure 4.4. 
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In order to preserve the membrane integrity, it is advisable to operate at low TMP’s so that 

the mechanical strength of the membrane is sustained over time. Considering this, a TMP 

of 0.5 bar was chosen and a cross flow rate of 300 mL.min-1 (8000 s-1) for further 

investigation 

 Influence of initial biomass concentration on hollow fibre 

performance 

The influence of initial biomass concentration on the time of filtration was studied. A point 

to note here is that less concentrated suspensions were prepared by appropriate dilution of 

the concentrated feed with spent media to avoid any changes in the physio-chemical 

properties of the suspension medium. Figure 4.5 shows that the lower the biomass 

concentration, the shorter the processing time. Hence, filtration time is dependent on the 

initial biomass concentration of the feed as this also relates to the extent of permeate flow 

that can be achieved (flux). A study by Gerardo et al. (2014) reported that membrane 

performance is highly dependent upon cell concentration. Algal concentration can also 

affect membrane fouling since the amount of AOM (algogenic organic matter), a major 

fouling component secreted by algae (Zhang et al., 2010), will be proportional to the 

amount of cells present. In evaluating the factors that influence the cost of a process such 

as membrane filtration, the initial biomass concentration and other operating parameters 

play a significant role. Nevertheless, different quantities of biomass would be recovered as 

product at the end of the harvesting cycle. However, the cost of harvesting microalgae has 

always been reported on a mass basis although process operating parameters such as 

temperature and membrane surface area can affect this. 
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Figure 4-5: Influence of initial biomass concentration on the processing time based on 1L 

starting volume and 10x concentration factor. Solid lines represent reservoir volume while 

dotted lines are the corresponding permeate volume. Experimental conditions are as 

described in Section 2.4.2 with operating conditions in a concentration mode using a shear 

rate of 8000s-1, temperature of 25°C and effective filtration area of 50 cm2. 
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 Influence of physiological state of culture on hollow fibre membrane 

fouling 

Initial studies on filtration parameters showed no significant difference in the flux-TMP 

profile for fresh broth and broth kept overnight prior to use (Section 4.3). This section 

explores how the physical state of the membrane was affected due to variation in 

metabolism and /or age. It has been reported that the physiological state of the algal culture 

and EOM determines the rate of fouling (Babel & Takizawa, 2011; Wicaksana et al., 2012).  

 Cleaning efficiency  

Extracellular polymeric substances (EPS) of algae and cyanobacteria can act as a coating 

that can change the physio-chemical surface properties of the membrane. The performance 

of these membrane will then be affected by the fouling caused due to these extracellular 

compounds. Babel &Takizawa, (2010) showed that fouling of membrane caused by 

dewatering Chlorella was highly dependent on the amount of EOM present in the medium. 

Several studies have shown that these AOM are comprised mainly of polysaccharides, 

polysaccharide-like substances or proteins (Chiou et al., 2010; Hung & Liu, 2006; 

Wicaksana et al., 2012; Zhang et al., 2010). 

Figure 4.6 below shows how the physiological state of the microalgal culture affects the 

cleaning efficiency. Different effects were observed for the different culture types (photo- 

and hetero- trophic) and also how the culture age affects the extent of cleaning. In general, 

phototrophic broth fouls less than a heterotrophic one. Phototrophic broth attained the 

initial flux (water flux test) in short cleaning cycles; three cycles for 24 hr old broth and 4 

cleaning cycles for freshly filtered broth. Heterotrophic broth on the other hand required 

more cleaning cycles. This characteristics can be linked to the extent of fouling caused by 

the different culture types which is attributed to the amount of EOM (released by the algae 

cells while metabolizing (Babel & Takizawa, 2011)) and algal cake deposit on the 

membrane. This was supported by FTIR analysis (Figure 4.7) which shows phototrophic 
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cells secretes less EPS components than heterotrophic cells. Membranes used for 

harvesting 24hr old broth (which is the broth kept at room temperature overnight after 

harvest) cleans faster than those used for freshly harvested broth. 

In a study by Wicaksana et al. (2012), it was reported that the shear forces generated as a 

result of high cross flow velocity enhanced the transmission of EPS. One of the fouling 

control strategies for algal concentration process involved optimizing the cleaning method. 

Continuous washing of the filters (alternating an enzyme detergent with chemical solution) 

was found to improve the cleaning efficiency in comparison to cleaning with chemical only 

Also, the choice and use of enzyme detergent was because Tergazyme is assumed to 

facilitate the breakdown of adsorbed fouling compounds from membrane surfaces. This 

was however only able to sustain the membrane for 3-4 uses until irreversible fouling 

occurred and cleaning took longer than will realistically be accepted. Fouling is a major 

constraint as it shortens the lifespan of the membrane (Chiou et al., 2010) because the 

organic composition of the foulant can remain even after chemical cleaning.  

Having to look at the overall cost of membrane filtration, maintenance-associated cost such 

as cleaning will definitely play a role. The membrane type, use of detergent and temperature 

of the cleaning fluid have an effect on the cleaning efficiency. 

 FTIR and SEM to define EOM 

FTIR analysis of the algal cells grown using different culture medium was carried out in 

order to find a correlation between the characteristic EPS and fouling. Spectra of the 

different cells studied showed similar functional groups on algal surface; these functional 

groups are identical to those reported for algae in literature (Chiou et al., 2010; Her et al., 

2004; Hung & Liu, 2006). Strong absorption bands were seen at 3300 cm-1 which represents 

the presence of proteins due to stretching of N-H bonds, 2930 cm-1 due to asymmetric 

stretching of aliphatic -CH2, 1640 cm-1 due to stretching of C=O bonds (amide I band), 
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Figure 4-6: Influence of culture type on membrane fouling. Cells were grown as described 

in Section 2.2 and filtered using hollow fibre cartridges. Cleaning was achieved as 

described in Section 4.2 using Tergazyme and 0.5M NaOH at 50°C. Dotted line signifies 

the membrane permeability (NWP) where the membrane is considered clean. Error bars 

represent one standard deviation about the mean (n ≥ 3). 
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1550 cm-1 due to deformation of N-H bonds (amide II band) as well as 1024 cm-1 due to C-

O bonds which has been associated with polysaccharides (Her et al., 2004; Hung & Liu, 

2006; Zhang et al., 2010). Based on these spectra, protein and polysaccharide-like 

substances were revealed as major constituents of algal EPS. A point to note here is that 

FTIR analysis was run with the same quantity of cells for each experiment using a force 

gauge of 50. Heterotrophic cells contained more EPS (Figure 4.7) which is closely linked 

to the polysaccharides present in the media formulation. This is as a result of the intensity 

of the absorption peaks shown in comparison to phototrophic cells because the intensity of 

a spectra can be related to the amount of soluble EPS present (Chiou et al., 2010). As algal 

cells in this study were harvested for their lipid, peaks at 1400 cm-1 denote membrane 

foulants contained lipids (Ramesh et al., 2007). However, this was not recorded here 

because cell lysis was not experienced; pH of the media and permeate absorbance remain 

unchanged for the duration of the process except for flocculated feed where absorbance 

was seen to increase but this was attributed to the presence of Chitosan in the solution 

(Section 4.6).   

Observation of the fresh and fouled USD filters for both heterotrophic and phototrophic 

broth using SEM is shown in Figure 4.8. The surface of the unused filter was seen to be 

clean and smooth whilst for the used membranes with heterotrophic broth the membrane 

was observed to possess foulants which was mostly deposited algal cake. The phototrophic 

broth showed randomly deposited algae but the filter pores was blocked with other AOM.   
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Figure 4-7: Use of FTIR to define EPS components on algal cell surfaces for heterotrophic 

(het) and phototrophically (photo) grown algae cells. Experiment was carried out as 

detailed in Section 2.10.5 with cells grown as described in Section 2.2. 

 

Figure 4-8: SEM images of a USD fresh filter and filter fouled with heterotrophic and 

phototrophic broth. Experiment was carried out using 5 g.L-1 algal broth at TMP above the 

critical value.  
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 Effect of broth pre-treatment (flocculation) on filtration 

performance and cleaning 

Appropriate pre-treatment can enhance membrane performance due to the larger particle 

size of the suspensions being processed. Having established a reliable and reproducible 

method for the production of Chitosan flocculated C.sorokiniana cells (Chapter 3), the next 

step was to evaluate the impact of this pre-treatment on microfiltration performance. In this 

study, flocculation which leads to the formation of large flocs (Chapter 3) was explored 

prior to the membrane filtration since membrane-type dewatering of algal broth has been 

reported for different algae species but cell size influence is yet to be established (Gerardo 

et al., 2014).  

At the start of a concentration method, the permeate flux was seen to rise for a few minutes 

and then drastically drop until it attains a steady state in all conditions studied (Figure 

4.9a). Flocculation was seen to impact on the initial flux which in turn influences the 

average permeation of the process. The greater the amount of flocculant, the higher the 

initial flux until steady flux is attained which was seen to be similar for the different 

flocculant concentrations tested. Increasing the Chitosan concentration from 1 to 2 mg.mL-

1 had only a slight effect on microfiltration; even though floc sizes (d50) increased form 

6.40 ± 1.71 to 17.90 ± 10.95 (Chapter 3). This did not make significantly impact on the 

microfiltration performance (with respect to time) as time-flux profile for both is seen to 

have minimal variation (Figure 4.9). Increasing the Chitosan concentration to 5 mg.mL-1 

made an impact by saving 20% of the processing time in comparison to the unflocculated 

feed.  

Effect of pH, preconditioning and absorbance of the feed before filtration processes have 

also been reported to influence performance (Ohmori & Glatz, 1999). These parameters 

are therefore important during crossflow filtration. Changes in absorbance (on the permeate 

side) may denote cell lysis which is not desirable as loss of cellular components might be  
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Figure 4-9: Effect of flocculation on microfiltration performance over time. Algal broth 

containing 5g.L-1 cells was: (a) flocculated as described in Section 2.4.1 and used for 

microfiltration studies (Section 2.4.2) and (b) the recorded pH and permeate absorbance 

were carried out automatically by the unicorn software of the AKTA crossflow system. An 

unflocculated feed was also processed as the control. 
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experienced. Figure 4.9b shows the change in absorbance and pH over time for the entire 

filtration process. It can be seen that the pH of the system did not change significantly 

especially at low Chitosan concentrations. The results were seen to overlap with pH of the 

unflocculated feed. Higher Chitosan concentration resulted in a lower pH but this still 

remained within range (≤ 0.5 of the initial pH). With respect to absorbance of permeate, 

this was seen to change/increase with an increase in the concentration of Chitosan. Further 

investigation into this revealed that it was the presence of Chitosan that changed the 

permeate turbidity rather than cell damage. Besides, the shear experienced by the cells/flocs 

was minimal in comparison to those Chlorella cells were exposed to during shear studies 

(Chapter 5) and this did not cause cell breakage. 

 Influence of flocculation on cleaning  

Chitosan used for algal flocculation is a derivative of the natural polysaccharide Chitin 

which is obtained by its partial deacetylation (in its solid state) in the presence of an enzyme 

chitin deacetylase. The influence of Chitosan-flocculation on the media can be associated 

to the fouling properties and this depends on the type of Chitosan used (i.e. the degree of 

acetylation and distribution of the acetyl groups along the main chain in addition to the 

molecular weight). Also, Chitosan type/properties depends on the origin of the polymer 

(Rinaudo, 2006). The degree of deacetylation of Chitin to form Chitosan also influences its 

solubility in aqueous acidic media (preparation of Chitosan solution used for flocculation; 

Section 2.4.1). Chitosan has a heterogeneous distribution of acetyl groups along its chains 

as a result of semi-crystalline morphology of Chitin when it is obtained by a solid-state 

reaction. The influence of the heterogeneous distribution of acetyl groups has been shown 

to be an important factor controlling solution properties (Aiba, 1991). The solubilisation 

on the other hand occurs by protonation of the –NH2 function on the C-2 position (Figure 

4-10) of the D-glucosamine repeat unit, through which the polysaccharide is converted to 

a polyelectrolyte in acidic media. Polysaccharides being a major foulant during filtration  
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Figure 4-10: Chemical structure of (a) Chitin poly( N-acetyl-β-D glucosamine) and (b) 

Chitosan poly(D-glucosamine) repeat units. Data taken from Rinki et al. (2009) 

 

 

 

Figure 4-11: Comparison of the cleaning cycles required for membranes used for filtering 

unflocculated and flocculated broth. Algal broth was flocculated as described in Section 

2.4.1 and cleaning was achieved as described in Section 4.5. Error bars represent one 

standard deviation about the mean (n = 3). 

CH
2
OH 

H 

H 

H 

OH 

H 

H NHCOCH
3
 

n 

CH
2
OH 

H 

H 

H 

OH 

H 

H NH
2
 

n 

a) b) 

250

300

350

400

450

500

0 1 2 3 4 5 6 7

N
W

P
 (

L
.m

-2
h

-1
/b

a
r)

Number of Cleanings

1mg 2mg unflocculated feed 5mg



134 

(Section 4.5.1) now finds application as a polyelectrolyte flocculant for algal cells 

possessing negatively charged cell walls and sometimes for other flocculation applications 

like protein recovery etc. Even though AOM (which consist of polysaccharides and 

polysaccharide-like substances) are the main components considered to cause membrane 

fouling, probably the fouling effect is due to those polysaccharides produced by 

metabolizing algae or reaction within the media during growth; this however needs to be 

carefully delineated. Nonetheless, the cleaning cycles required for a membrane used to 

dewater unflocculated heterotrophic broth is halved by flocculating these cells (using ≥ 

optimal Chitosan concentration) (Figure 4.11). Also, other pre-treatment types have been 

shown to produce valuable effects on coagulation of algae suspension by changing the 

characteristics and amount of EOM (Hung & Liu, 2006).   

To further support the findings of flocculation effect on fouling, a close look at the FTIR 

spectrum of algae flocculated with low and high dosage of Chitosan (Figure 4.12a) shows 

that intensity of the functional groups decreased when flocculated with high dosage of 

Chitosan. This point supports Figure 4.9 and Figure 4.11 where high Chitosan dosage 

made more impact on filtration performance and cleaning respectively than low dosages. 

Additionally, Figure 4.12b illustrates that the spectra for high Chitosan flocculated cells 

(heterotrophically grown) has similar intensity of the major functional groups as to those 

phototrophically grown (and /or flocculated with low Chitosan  dose).  This explains why 

the cleanings are similar Figure 4.6 and Figure 4.11. Phototrophic cells have previously 

been shown to possess less EPS components than their heterotrophic counterparts (Figure 

4.7) and hence required lesser cleaning (Figure 4.6).  
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Figure 4-12: FTIR spectra comparing the EPS components of (a) flocculated and 

unflocculated heterotrophic cells and (b) flocculated phototrophic, unflocculated 

phototrophic and flocculated heterotrophic cells. Experiment was carried out as described 

in Section 2.10.5 with cells grown or flocculated as described in Sections 2.2.2 and 2.4.1.2 

respectively. 
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 USD verification of lab experiments 

As described in Section 1.9, the development of a USD platform for early stage microalgae 

processing is the overall aim of this thesis. Scale down of unit operations is important as 

the smaller scale devices can be used for optimisation process, trouble shooting and 

validation studies (Van Reis et al., 1997). It is however important to achieve consistent 

results across these scales of operation (scale- up or down). Since characterization of 

filtration performance was done in Section 4.3, the next step is to use USD methods to 

mimic the lab-scale systems on the basis of matched operating conditions. 

 Mimicking permeate flux and TMP profiles 

As mentioned in Section 4.7, obtaining consistent results was of optimal importance, 

therefore, before using the USD device to evaluate filtration performance, a comparable 

crossflow filtration methodology had to be determined. In an effort to obtain steady state 

fluxes for each of the lab-scale and USD systems, crossflow microfiltration experiments 

was carried out at varying TMP conditions and matched shear rate. TMP and cross flow 

velocity are defining operating variables for membrane filtration at production scale acting 

as the physical driving force through the filter medium and influences fouling (section 4.3). 

Moreover, process flux is dependent on TMP (especially when operating at low feed 

concentration, low pressures and high crossflow rates) until the critical flux is reached. 

Steady flux in membrane filtration is a key criterion in measuring performance as it 

provides information needed for scaling-up filtration processes (Bacchin et al., 2006).  

Considering the above, the USD device was operated at constant TMP (between 0 and 1.1 

bar) using a similar average surface shear rate as that of the lab-scale module (8000 s-1). As 

shown in Figure 4.13a and 4.14a, at the matched shear rate (calculated using equation 2.5) 

the flux measured in the USD membrane device was consistently lower than in the hollow 

fibre module. The reason for the difference is thought to be for one or a combination of 

these reasons: 
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(1) different membrane materials, as disc membranes are polyethersulfone (PES) while lab-

scale cartridge is made of Polysulfone (PS) (Figure 4.15). Although the difference between 

PES and PS is minimal, it is expected that dissimilar clean membrane resistances would 

exist; 

(2) variation in membrane porosity. It has been reported that slight difference may exist 

between the lab-scale and cut discs in the bubble point pressure (Rayat, 2010). Bubble point 

test is normally used to measures the maximum pore size in a given membrane (Mulder, 

1996). Bubble point is indirectly proportional to pore diameter hence, a higher bubble point 

means a smaller pore diameter; and  

(3) design limitation. The hollow fibres consist of turbulence promoters and screens which 

are considered to aid filtration. Therefore, consideration was given to the practical design 

limitation of the USD device to compensate for absence of these turbulence promoters, 

screens etc. 

As a result of the higher flux profiles attained in the lab-scale and also the fouling 

experienced on the USD membrane at matched shear rate; and since the wall shear rate 

calculations for screened channels are normally assumed to be approximate or relative 

values (Millipore, 1998), the shear rate and feed flow rate of the USD device was increased. 

The shear rate was increased up to a value of 13100 s-1 where there was closer agreement 

between the USD and hollow fibre devices. This increase improved the performance of the 

USD device and similar flux profile to that of the lab scale was seen (profiles within ≤10 

L.m-2.h-1) Figure 4.13.  

In addition, the flat sheet disks used in the USD membrane device would have been made 

of the same material and have the same pore size as the hollow fibre membrane cartridge. 

Unfortunately this was not possible. The hollow fibre cartridge comprised of a polysulfone 

membrane with 500 kD molecular weight cut off. Based on the manufacturers 

recommendation of the closest available flat sheet membrane, a polyethersulfone (Figure  



138 

 

Figure 4-13: Comparison of flux and TMP relationship determined with laboratory hollow 

fibre (500kD) and USD membrane device (0.03µm discs) in a dead-end mode: (a) 

unflocculated feed at matched shear rates and at increased shear rate (13100 s-1) and flow 

rate for USD and (b) flocculated feed with lab scale at 8000 s-1 and shear rate of USD 

device at 13100 s-1. Experiments performed as described in Section 2.4.2. Error bars 

represent one standard deviation about the mean (n = 3). 
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Figure 4-14: Flux and TMP relationship determined with laboratory hollow fibre (0.2 µm) 

and USD membrane (0.2µm discs) in a dead-end mode. (a) unflocculated feed at matched 

shear rates and at increased shear rate for USD (13100 s-1) and (b) flocculated feed with lab 

scale at 8000s-1 and shear rate of USD device at 13100 s-1. Experiments performed as 

described in Section 2.4.2. Error bars represent one standard deviation about the mean (n ≥ 

2). 
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4.15) membrane was used with a 0.03µm pore size. In order to overcome bubble point 

variation, a confirmation experiment using a 0.2 µm hollow fibre and disc membranes 

where used to re-run same experiment as Figure 4.13. Given the overlapping error bars the 

differences in the profiles are not statistically significant (Figure 4.13 and 4.14). 

 

 

Figure 4-15: Chemical structure of: (a) polysulfone and (b) polyethersulfone repeat units. 

 

 Comparison of the filtration outcome parameters for USD and lab 

experiments 

Before the USD device was used to evaluate filtration performance of algal suspensions, a 

comparable crossflow filtration methodology was first established to determine steady state 

flux. From the graphs presented in Figure 4.13 and 4.14, it can be seen that matching points 

(linear relationship) were obtained at TMP values ≤ 0.5 bar. On this basis, the USD device 

was suggested to be operated using a TMP of 0.5 bar, increased flowrate and shear rate of 

13100 s-1 since this conditions fall within the range where there is similar trend with the 

lab-scale system and no significant changes in the permeate flux was seen.  
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Scaling down of membrane area requires a consequent reduction in the feed volume in 

order to keep the operation time as those of the large scale. Hence, using constant volume 

to surface area ratio, a concentration experiment was conducted in order to obtain and 

compare filtration outcomes with lab scale data Figure 4.16. Very similar flux values for 

USD and lab-scale experiments were recorded for both flocculated and unflocculated feeds. 

Also, pH and absorbance has been reported to be important parameters (Section 4.6) with 

regards to product condition. This was investigated during the USD studies and comparable 

results to those obtained during lab studies were obtained. Overall, the results obtained are 

comparable for both flocculated and unfloculated feeds.  

To further explore the applicability of the USD device as a tool for fast and early data 

accusation, the characteristic nature of fouling was explored. SEM images of fouled 

membranes due to different biomass concentration is shown (Figure 4.17 and Figure 4.18). 

Filtration is mostly applied at lab-scale because of membrane-clogging, formation of 

compressible filter cakes and principally high maintenance cost when operated at large-

scale (Schenk et al., 2008).   Therefore, USD to predict and optimize process parameters 

will be beneficial at early stages of process development. For example, in Figure 4.17 

heterotrophically grown algal cells were observed to constitute foulants (in the form of 

algal cell deposit) and heavy coverage of membrane pores by other foulants (this reduced 

with decrease in biomass concentration). Other foulants included adsorbed or bonded 

biological and organic compounds (section 4.5.2) which is evident covering the filter pores.   

The USD findings were verified at lab-scale and similar characteristics was seen. Figure 

4.18 is the phototrophic version that can support the data’s for FTIR which suggests less 

EPS than heterotrophic (Section 4.5.2). This rapid data accusation and flexibility of the 

USD are rather expensive to be performed at larger scales (for example, destroying lab-

scale cartridges for SEM imaging).  
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Figure 4-16: Comparison of laboratory and USD filtration performance in concentration 

mode. Experiment was performed using 5g.L-1 algal broth and operating conditions: TMP 

0.5 bar, shear rate of 8000 s-1 and 13100 s-1 for lab and USD device respectively: (a) 

unflocculated, (b) flocculated with 9.5 mg of Chitosan per gram of algal dry cell weight. 

Both scales had similar final broth load per filter area (20 mL.cm-2). Experiments performed 

as described in Section 2.4.2. Error bars represent one standard deviation about the mean 

(n = 3). 
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Figure 4-17: SEM images of clean and fouled USD membrane and hollow fibre filters after filtering heterotrophic broth at different cell concentrations. 

Experiment was carried out using operating conditions above critical TMP (0.7 bar).  Filters were prepared and images taken as described in Section 2.10.9. 
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Figure 4-18: SEM images of clean and fouled USD membrane filters after filtering phototrophic broth at different cell concentrations. Experiment was 

carried out using operating conditions above critical TMP (0.7 bar). Filters were prepared and images taken as described in section 2.10.9. 
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 Summary  

As described in Section 4.1, the overall aim of this chapter was to explore and characterize 

algal harvest using microfiltration and to establish a USD method to mimic the findings. 

Key process parameters influencing filtration performance were explored including the 

effect of the physiological state of the algal culture on fouling (Figure 4.7 and 4.8) and 

consequently cleaning (Figure 4.6), the effect of broth pre-treatment (flocculation) on 

filtration performance (Figure 4.9a) and its influence on cleaning (Figure 4.11).  

It was observed that the type and extent of fouling was dependent on the physiological state 

of the culture due the amount of EOM present. Further characterization of the different 

culture types using FTIR revealed that heterotrophically cultured cells possessed more EPS 

than their phototrophic counterparts (Figure 4.7). This was also evident during cleaning of 

the membranes after use, as longer cycles where required for heterotrophic compared to 

phototrophic. 

With regards to broth pre-treatment, this was seen to influence cleaning positively (Figure 

4.11) and aids filtration. FTIR spectra of the pre-treated broth showed lower intensities of 

the major EPS components in comparison to untreated cells (Figure 4.12a). This had an 

important benefit of reducing the number of cleaning cycles required.  

Ultimately, a USD approach to cross-flow membrane filtration was successfully 

established that could accurately reproduce flux-TMP profiles at a defined shear rate. This 

was achieved at elevated shear rates in the USD device due to absence of spacers 

(turbulence promoter) which is a key element in a crossflow filter (Figure 4.13 and 4.14). 

Other filtration outcomes, such as flux, initial and final pH of the feed and absorbance of 

permeate were also in good agreement between the two scales for both unflocculated and 

flocculated feed (Figure 4.16). The advantage of the USD approach was that it required a 

14-fold decrease in the volume of broth to undertake studies at match volume:surface area.  
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Finally, a further advantage of the USD method was that it enabled direct investigation and 

visualisation of the fouling characteristics of the heterotrophic and phototrophic broth on 

the membrane surface using SEM (Figure 4.17 and Figure 4.18). Confirmation of the 

USD findings using lab-scale cartridges showed similar fouling characteristics between the 

two scales (Figure 4.17).  

While a USD approach to study the filtration performance of microalgae suspensions has 

been established, the maximum concentration factor achieved was only 10-fold. Higher 

concentration cell suspensions are often required for subsequent operations such as lipid 

extraction from the biomass. Consequently the next chapter will investigate USD method 

for algal biomass recovery by centrifugation as this should enable grater dewatering of the 

algal cell suspensions. The impact of flocculation as a pre-treatment step on overall 

centrifugation efficiency will again be investigated.  
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  USD Centrifugation  

 Introduction   

Centrifugation has been highlighted as one of the key steps utilized in algal processing for 

biomass recovery and concentration (Section 1.4.2); it is a reliable and effective technique 

(Uduman et al., 2010). Although the flocculation (Chapter 3) and filtration (Chapter 4) 

studies described in previous chapters have proven successful for concentrating algal 

biomass, these methods alone may not be sufficient for producing the required dewatering 

level as shown in Figure 5.1. This can be problematic further downstream (Mohn, 1978) 

and also microfiltration operations generally require longer processing times (Grima et al., 

2003). However, using centrifugation in algal processing has been reported to be energy 

intensive and requires high capital investment (Sim et al., 1988). These disadvantages need 

to be considered alongside the fact that an increase in biomass concentration can decrease 

the cost of extraction and purification (Uduman et al., 2010).  

At present, commercial production and processing equipment for microalgae remain at a 

nascent stage, and methods for predicting behaviour during scale-up are generally not 

available (González-López et al., 2012). USD technologies have some unique 

characteristics, as highlighted in Section 1.8, including the ability to rapidly investigate a 

range of operating conditions and the accurate prediction of large scale process 

performance (Titchener-Hooker et al., 2008) using only small quantities of material. In 

other industry sectors the application of USD helps ensure rapid process evaluation and 

enables fast development of successful operations at industrial scale (Tustian et al., 2007).
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Figure 5-1: Photographs of the various dewatering steps used in this project. Showing the time it takes to settle and the level of dewatering achieved.
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The aim of this chapter, therefore, is to establish a USD method for the study of 

centrifugation for microalgae recovery and concentration. This will also be used to 

investigate the impact of flocculation as a pre-treatment step on centrifugation 

performance. The specific objectives of this chapter are as follows: 

 To characterize algal broth base on parameters that influence centrifugation 

efficiency. 

 To study the mechanical stability of algal flocs by exposing them to shear 

equivalent to those experienced in industrial centrifuges. 

 To explore the influence of flocculated and unflocculated cells on USD 

centrifugation. 

 To validate the USD centrifugation predictions against the performance of a pilot 

scale centrifuge (CARR PowerfugeTM centrifuge). 

 To evaluate the impact of processing conditions (flocculation plus centrifugation) 

on lipid recovery. 

 

 Factors affecting centrifugation 

The fundamental parameters involved in centrifugation for effective clarification or 

dewatering are expressed by Stokes Law (Equation 1.1). For a centrifugation operation 

clarification is also a function of the applied flow rate, temperature and applied centrifugal 

force, as well as the Sigma coefficient (Section 1.8.1). The broth characteristic with the 

largest effect on separation efficiency will be the quantity and behaviour of the smallest 

particles in the system (Shelef & Sukenik, 1984). 

 Particle diameter and culture viscosity  

The algal broth to be processed was characterised in terms of the particle size of the cells 

produced (Figure 5.2) and the viscosity of the broth (Figure 5.3). An example of the mono  
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Figure 5-2: Particle size of C.sorokiniana cells grown heterotrophically in shake flasks 

(SF, 250mL) and a stirred bioreactor (BR, 7.5 L). Cells were grown as described in Section 

2.2 and particle size d50 measured using a Mastersizer 2000E as described in Section 2.10.7. 

Error bars represent one standard deviation about the mean (n ≥ 3). 

 

Figure 5-3: Viscosity of C.sorokiniana broth and DI water at 25ºC. Cells were grown 

heterotrophically as described in Section 2.2.1 and 2.2.2 in shake flasks (SF, 250mL) and 

a stirred bioreactor (BR, 7.5 L) respectively. Viscosity was measured as described in 

Section 2.10.3. Error bars represent one standard deviation about the mean (n = 3). 
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modal size distribution of cells obtained from both shaken and stirred cultures is shown in 

Appendix 5. 

The mean particle size (d50) was seen not to change significantly throughout the time 

window studied for both shake flasks and bioreactor cultures. An average diameter of 3.6 

± 0.2 µm was recorded suggesting the need to operate the centrifugation process at low 

flow throughputs (Sim et al., 1988) which will increase processing times. 

The measured size is within the range reported in literature and it has been reported that 

such sizes - 3 to 30 mm diameter (Grima et al., 2003) or the microscopic size of microalgal 

cells (2 - 200µm) (Rawat et al., 2013) as being problematic to the recovery of biomass.  

Likewise, the viscosity of the broth did not change markedly during either shaken or stirred 

cultures and remained close to that of water (Figure 5.3). This suggests that no cell 

damage, intracellular leakage or excretion of viscous metabolites was experienced. The 

measured viscosities are within the range of those reported for green or blue green algae 

(Petkov & Bratkova, 1996).  

 Influence of flocculant on broth viscosity 

Viscosity is a hydrodynamic drag force opposing settling of solid particles suspended in a 

fluid (Themelis, 1995). The greater the viscosity of a solution, the slower the settling 

velocity of the suspended particles.  Chitosan is non polar, does not dissolve in organic 

solvents and aqueous bases (Kubota et al., 2000) and hence it is initially dissolved in HCl 

during preparation (Section 2.4.1.1) forming a viscous solution. The viscosity of the 

flocculation solution was observed to increase with an increase in the amount of Chitosan 

(Figure 5.4). However, this did not significantly change the viscosity of the algal broth 

because of the small percentage (1.2%v/v) added in comparison to the bulk volume 

flocculated. Low concentrations of Chitosan solution has viscosities close to that of water 

whereas the highest viscosity used in this work was 14-fold more viscous than water.  
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Figure 5-4: Viscosity of different concentrations of Chitosan solutions and the 

corresponding flocculated solutions. Solutions were prepared as described in Section 

2.4.1.1 and 1 mL of each solution was used to flocculate 85 mL of C.sorokiniana broth 

containing 5 g.L-1 cells in the flocculation reactor (Section 3.5).  
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Nonetheless, flocculating 85 mL of algal broth with a 1 mL of 5 mg.mL-1 dose of Chitosan 

solution only increased the viscosity of the broth from 1.09 mPas to 2.6 mPas.  

 Density of C.sorokiniana cells and flocs 

Another parameter that influences centrifugation performance is the particle density. 

Centrifugation involves sedimentation based on density difference of the medium 

components and particle size. Therefore, the density of the Chlorella cells and those of the 

flocs derived from flocculating heterotrophic Chlorella broth was measured using a 

combination of electrical sensing zone and centrifugal sedimentation technique (Taylor et 

al., 1986). This technique utilized spinning a fluid (methanol and water) in the centrifugal 

disc photosedimentometer (Section 2.10.10) and then the cells or flocs were added while 

the annulus was spun at 500 rpm. Figure 5.5 shows that the density of the flocs increases 

with an increase in flocculant concentration. This is due to bridging of the cells by Chitosan 

and/or an increase in floc size (Figure 3.12).  

According to Equation 1.1, the density difference of the fluid and the suspended particles 

is directly proportional to the settling velocity. The density of the broth (medium plus cells) 

was seen to be close to that of water and spin fluid (Figure 5.5). Flocculation can lead to 

the formation of flocs with low densities especially when the concentration of the 

flocculant is low (Uduman et al., 2010). Considerable difference between the spin fluid 

(ρs) and the suspended particles (ρc) was seen after increasing the amount of flocculant. 

Chitosan is a polymer with medium to high molecular weight (Roussy et al., 2005) and 

this aids the bridging mechanism thereby increasing weight. Also, precision in density 

measurement is influenced by the choice of carrier solutions (Godin et al., 2007) since 

density of particles tends to increase or vary with the density of the suspending solvent or 

spin fluid (Taylor et al., 1986). Therefore, careful consideration has to be made in selecting 

the spin fluid that will give accurate density measurement. 
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Figure 5-5: Estimated density of C.sorokiniana cells and flocs. Density was predicted as 

described in Section 2.10.10 and by matching the median diameter (d50) from the 

Mastersizer distribution (Table 3.2) with the particle settling characteristics. Error bars 

represent one standard deviation about the mean (n = 3). 

Table 5-1: Operating details for the centrifugal disc photodensitometer with a summary of 

the sedimentation data. (ρc - ρs) is the density difference of the cells/flocs and the spin fluid. 

Composition Temp. 

(ºC) 

viscosity 

(mPa.s) 

ρ  

(g.cm-3) 

ρc - ρs  

(g.cm-3) 

Deionized water 23 ± 2 1.00 0.9982 - 

Spin fluid (5% methanol in 

water) 

23 ± 1 - 0.9965 - 

Chlorella broth 25 ± 0 1.09 1.09 0.09 

1 mg floc 23 ± 2 1.29 1.33 0.34 

2 mg floc 24 ± 1 1.44 1.75 0.75 

3 mg floc 23 ± 2 1.69 2.20 1.20 

4 mg floc 23 ± 2 2.01 2.38 1.38 

5 mg floc 23 ± 1 2.62 2.62 1.62 
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The biggest floc was seen to be 2.6 fold denser than the spin fluid (Table 5.1) while single 

Chlorella cells had a density of 1.09 g.cm-3 which is in agreement with literature where 

average density of algae was reported to be 1.04 -1.23 g.cm-3 (Edzwald, 1993). 

 The viscosity of the feed sample was seen to slightly increase due to flocculant viscosity 

(Figure 5.4). This was assumed not to affect the density measurement since the sample 

volume is only a small percentage (~ 5%) of the overall spin fluid used. 

 Mechanical stability of flocs 

 Flocs obtained with different concentration of Chitosan 

The mechanical stability of C.sorokiniana – Chitosan flocs was evaluated. This plays an 

important role in determining whether breakage occurs in the feed zone of industrial 

centrifuges as feed damage has been reported to occur at this locations (Boychyn et al., 

2004) since it is where highest energy dissipation rates are experienced. The shear studies 

were performed in the rotating disc device (Section 2.3.3.2) which has previously been 

used for studies on the shear sensitivity of different biological materials (Boychyn et al., 

2000; Lee et al., 2002) and USD studies for centrifugation (Boychyn et al., 2001; 

Hutchinson et al., 2006).  The flocs were subjected to varying levels of shear, classified 

into low, medium and high shear rates (Table 5.2). The choices being the energy 

dissipation rates of centrifuges utilized in biotechnological industries; mainly disc stack 

and CARR PowerfugeTM. Computational fluid dynamics (CFD) analysis of the feed zones 

of these centrifuges revealed that the minimum and maximum shear experienced in a CSA 

disc stack centrifuge are 2.86 x 104 W.kg-1and 2 x 105 W.kg-1 respectively while for CARR, 

it was recorded as 2 x 105 W.kg-1 and 1.4 x 106 W.kg-1 respectively; all in flooded condition 

(Boychyn et al., 2004).  

Visual examination of C.sorokiniana flocs before and after exposure to shear indicate that 

the flocs are broken down when exposed to levels of shear above 2.86 x 104 W.kg-1 (Figure 
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5.6). For Chitosan concentrations below 3 mg.mL-1, the flocs break down to single cells 

even under low shear conditions (2.0 x 105 W.kg-1) whilst for doses ≥ 4 mg (Table 5.2) it 

is reasonable to assume the excess of this biopolymer in the medium  stabilizes the smaller 

flocs as they are produced. The CARR powerfugeTM used here for scale-up studies (Section 

5.7) is considered a high shear centrifuge as the minimum shear experienced in this 

machine is the maximum for disc stack centrifuges (2.0 x 105 W.kg-1) (Boychyn et al., 

2004). Nonetheless, the dewatering capacity of this equipment is superior to that achieved 

by disc stack designs and this parameter is important in subsequent microalgal processing 

where moisture in the harvested biomass can significantly influence the economics of 

product recovery further downstream (Mohn, 1978). 

Unflocculated algae cells with a size range of 3.6 ± 0.2 µm were found to be stable when 

exposed to the highest shear rate (Table 5.2) and suffered no measurable mechanical or 

hydrodynamic damage which would have resulted in the formation of smaller-sized cell 

debris. This can be attributed to the possession of rigid cell walls with sporopollenin-like 

properties (Faegri, K., Iversen, 1964). It is known that the morphology and composition of 

Chlorella cell walls vary between species and from strain to strain (Atkinson et al., 1972). 

In addition, these properties are also dependant on growth conditions.  

Possessing a resilient cell wall also protects Chlorella cells from impact of harsh 

processing steps that might lead to yield losses due to cell wall damage and intracellular 

product leakage. Low shear stresses may not induce breakage but can affect growth and 

cell division (Vandanjon et al., 1999), however, centrifugation has successfully been used 

as a concentration step for developing extended shelf-life concentrates of some microalgal 

species (Heasman et al., 2000) and reduced shipment volumes. It has also been suggested 

that shear is independent of concentration of microalgal cells within a range.  

It was observed that 1 – 3 mg.mL-1 Chitosan concentration induced flocculation but the 

mechanical stability of these flocs was seen to be weak. This was confirmed by 

microscopic and particle size measurements which showed sheared cell sizes to be closely. 
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Figure 5-6: Illustration of the effect of shear on Chitosan-flocculated C.sorokiniana cells at different flocculant concentration. From left to right - 

No shear, 2.86 x 104 W.kg-1, 2.0 x 105 W.kg-1 and 1.4 x 106 W.kg-1 energy dissipation rates. Flocculation was performed as described in Section 

2.4.1.2 using 5.4 gL-1 DCW cells. Bar size represents 100µm 
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Table 5-2: Measured C.sorokiniana floc diameters (µm) (d50) with increasing Chitosan 

concentration and shear rate. Flocs prepared in either the 120 mL scale-down flocculation 

reactor or the 7.5L STR as described in Section 2.4.1.2. Flocs exposed to shear in the USD 

shear device as described in Section 2.3.3.2. Errors shown represent one standard deviation 

about the mean (n≥ 3). 

 

Chitosan 

Concentration 

(mg.mL-1) 

Energy Dissipition Rate (Wkg-1)  

No shear 2.86 x 104 2.0 x 105 1.4 x 106 

No flocculant 3.6 ± 0.2 3.6 ± 0.3 3.5 ± 0.1 3.5 ± 0.3 

1.0 6.4 ± 1.7 3.8 ± 1.3 3.8 ± 0.9 3.8 ± 0.9 

2.0 17.9 ± 10.9 4.4 ± 1.0 3.9 ± 1.3 3.9 ± 1.3 

3.0 49.2 ± 1.8 4.8 ± 1.8 4.5 ± 1.6 4.3 ±1.7 

4.0 52.4 ± 0.2 28.3 ± 0.9 16.3 ± 0.3 15.4 ± 0.3 

5.0 60.4 ± 2.5 31.6 ± 2.0 21.1 ± 0.5 18.3 ± 0.5 

7.5 L STR 51.7 ± 0.5 28.3 ± 1.0 14.9 ± 0.4 15.4 ± 0.8 
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compared to single C.sorokiniana cells with a mean size range of 3.8 ± 1.3 µm to 4.8 ± 1.8 

µm after shear. Whereas using ≥ 4 mg.mL-1 Chitosan dosage, a significant resistance to 

shear was observed; with mean size increasing with increment in flocculant dosage across 

all shear rates. For instance, 15.4 ± 0.3 and 18.3 ± 0.5 µm were obtained for 4 and 5 mg.mL-

1 respectively at a high shear rate. This suggests the use of optimal flocculant dosage for 

varied centrifuge types as flocs derived have shown significant resistance to shear. 

 Flocs obtained during flocculant addition 

Flocs obtained when exploring the effect of flocculant flowrate on the sizes of flocs 

produced were exposed to shear (2.0 x 105 W.kg-1) to ascertain whether the flocculant 

flowrate influenced the hydrodynamic and mechanical stability of the flocs produced. In 

the previous chapter, three different flow rates were employed (Figure 3.10) and 

subsequent floc images post exposure to high shear were obtained. The flocs produced with 

slow flowrates were more resistant to shear as bigger flocs were seen after shearing (Figure 

3.10b) 

 USD evaluation of influence of flocculation on centrifugation 

efficiency  

Having established a reliable scale-down method for the production of Chitosan 

flocculated C. sorokiniana cells (Chapter 3), the next step was to use USD methods to 

evaluate the impact of flocculation on centrifugation performance. Microalgal cells have a 

density which is close to that of water (Figure 5.5); this causing an extremely slow 

sedimentation rate under gravity due to the insignificant density difference (Millero & 

Lepple,1973). The size and stability of the flocs (Section 5.3.1) were found to greatly 

impact on clarification performance. As shown in Figure 5.7, clarification increased with 

increasing Chitosan concentration for unsheared flocs. The highest clarification was 

measured at concentrations ≥ 4 mg.mL-1 as indicated by the dashed line in Figure 5.7 and  
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Figure 5-7: USD centrifugation clarification efficiency of flocculated C.sorokiniana broth. 

Dashed line indicates Chitosan concentration above which the effect of shear on 

clarification becomes insignificant: no shear (solid black); 2.86 x 104 W.kg-1 (solid white); 

2.0 x 105 W.kg-1 (horizontal black); 1.4 x 106 W.kg-1 (solid grey). Error bars represent one 

standard deviation about the mean (n ≥ 3).  
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hence this was considered the optimal dosage. At this concentration, little effect of shear 

on clarification was observed even though the flocs were broken. The average floc 

diameters obtained after exposure to shear were sufficiently large enough to sediment 

rapidly under the conditions applied. However at low Chitosan dosage, the interaction 

between the algal cells and Chitosan polymers does not produce large or stable-enough 

flocs to withstand the level of shear found in disc stack and CARR PowerfugeTM centrifuge 

designs. Consequently, this was shown to break the flocs back to single cells (Figure 5.6) 

and hence the reason for the low clarification as compared to those obtained using ≥ 4 mg 

concentration (Figure 5.7).  

The low clarification efficiencies measured for small Chitosan dosage may be as a result 

of the actual flocculation mechanism with this polymer (Section 1.4.1.1) which is assumed 

to be a combination of incomplete charge neutralization and static patch effects (Xu et al., 

2013). Less than 8.71 mg of Chitosan per gdcw of algae was not sufficient to neutralize the 

charges of cells at the biomass concentrations density studied. 

 Overall influence of flocculation on centrifugation performance 

The performance of pilot scale centrifugation processes is influenced by the choice of 

operating conditions. Settling velocity is dependent on flow rate, density, temperature as 

well as feed condition (Section 5.2). Flocculating algal cells by means of a flocculating 

agent to form flocs which aids separation not only reduces the time for processing but also 

the force required to achieve this. Also, using USD centrifugation, a wide range of process 

conditions (such as settling velocities, flowrates, shear rates etc.) can be explored with 

minimal quantity of material.  

Figure 5.8 shows a comparison of the USD clarification efficiencies achieved by 

flocculated and unflocculated algal cells at 2 different rotational speeds using three 

different working volumes. The variation in volume was selected to represent flow rate in 

continuous flow centrifuges where an increase in flow rate is indirectly proportional to 
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clarification of supernatant because the residence time of this feed in the settling 

compartment is reduced. This can further be explained by the sigma correlation (Section 

1.8.1) which captures all operating and equipment variables. The Sigma Factor () is then 

used in correlation to flow rate to produce equivalent settling area (Q/); which is used to 

compare the performance of different types of centrifuges. Therefore, the varying 

rotational speed and volume used for here led to differences in the term plotted on the X-

axis of Figure 5.8.  

Both treated and untreated samples exhibited a decrease in clarification with an increase in 

volume and decrease in rotational speed. Flocculated cells achieved a high supernatant 

clarity of > 99% at low centrifugal forces (Vlab/ctƩ ≤ 1.7e-7). Microscopy (Figure 5.6) 

shows that not all the flocs were broken down at this optimal Chitosan dosage and hence 

centrifugation performance is enhanced by the size increment due to flocculant addition. 

When flocculation is used as a pre-treatment step, cells settle rapidly and 90% of the culture 

volume can be decanted (Figure 5.1); this further reduces the volume of material 

transferred for centrifugation thereby saving more time and consequently energy. 

In general, flocculation enabled high clarification efficiencies to be achieved at lower 

rotational speeds. 

 Influence of process conditions on lipid recovery  

The choice of biomass recovery strategy can have impacts further downstream. Figure 5.9 

shows a large variation between the mass balance of lipid (% total) that can be recovered 

from flocculated and unflocculated cells after centrifugation under different conditions. 

Cultures in stationary phase of growth were centrifuged at different centrifugal forces. 

First, the total lipids contained in these cells (serving as control) was used as a base line 

assuming all cells were captured and this was used to determine the percentage of product 

loss due to downstream processing. Total lipids are comprised of neutral, glycol- and  
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Figure 5-8: Effect of flocculation on USD centrifugal recovery of microalgae. 

Clarification plotted against equivalent flow rate or settling area for C.sorokiniana cells 

centrifuged in a laboratory bench top centrifuge at two different speeds and three different 

volumes; flocculated, no shear (♦), flocculated, low shear (●), flocculated, high shear (▲), 

unflocculated, no shear (◊), unflocculated, low shear (○) and  unflocculated, high shear (∆). 

The biomass concentration of feed used was 5.4 g.L-1 and temperature was 4°C. Error bars 

represent one standard deviation about the mean (n=3). Solid lines fitted by linear 

regression to average vales of flocculated (R2 = 0.994) and unflocculated (R2 = 0.987) data 

sets.  
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Figure 5-9: Effect of flocculation on lipid recovery. Three sets of conditions of broth 

containing 5.9 ± 0.2 g.L-1 C.sorokiniana cells were used: 10 mL of broth spun for half an 

hour which served as reference sample, flocculated (●) and unflocculated (▲) cells 

centrifuged at different rotational speeds. The subsequent supernatant: flocculated (○) and 

unflocculated (∆) were further respun together with the pellets as described in Section 

2.7.2. Amount of lipid recovered is plotted against centrifugal speed (rpm).   
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phospho- lipids (NL, GL and PL) which can vary considerably depending on the species 

and cultivation conditions. Heterotrophic cultivation of algae is known to support the 

biosynthesis of storage lipids which can represent approximately 81% of total lipids (Liu 

et al., 2011). A trend of increased recovery with increase centrifugal force and decline in 

losses with supernatant was seen for both conditions. As shown in Figure 5.9, flocculation 

of cells at the optimal Chitosan dosage has a significant impact on lipid recovery. Addition 

of Chitosan aids coagulation and bond formation between Chitosan and algal cells is 

compatible with further processing. Under the same disruption conditions, lipid recovered 

for flocculated and unflocculated cells at the lowest centrifugal forces was 72.7 and 15.5% 

respectively. Even at an increased centrifugal force (500 rpm), only 46.5% of product was 

recovered with unflocculated cultures in comparison to 77.6% for the flocculated 

counterparts. 

 Scale-up verification of USD predictions 

 USD to explore specific operating ranges of the CARR powerfugeTM 

To be useful, USD must satisfactorily predict larger scale unit operation performance. In 

this case, a comparison of morphological properties, dewatering and yield productivities 

between the two scales used for centrifugation has been examined. Scale-up based on 

achieving a high level of dewatering was explored and this verifies the choice of CARR 

powerfugeTM despite its relative high shear level and also because of the influence of high 

moisture content (>85%) of algal biomass on subsequent processing steps and cost (Grima 

et al., 2003).  

Previous publications (Boychyn et al., 2001; Boychyn et al., 2004; Hutchinson et al., 2006) 

have described how protein precipitates and whole cells such as mammalian cells are prone 

to hydrodynamic shear damage in a continuous flow centrifuge. This poses a challenge on 

subsequent processing steps, as yield losses increase proportionally to cell damage. Scale-

up of USD to large scale centrifuges was achieved by pre shearing the feed prior to bench 
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centrifugation (Section 1.8.1). This pre shearing concept was adapted in the scale-up 

verification presented in Figure 5.10 which shows a sigma plot with data points of USD 

and pilot centrifugation studies in a ± 0.5% agreement. The shear rates utilized are as 

explained in Section 5.3.1 whereas the parameters used for operating the pilot centrifuge 

where predicted using the sigma concept developed by Ambler (1959) (Equation 5.1) 

before being validated.  

QP

CPƩP
=

VUSD

CUSDtUSDƩUSD
 

(5-1) 

 

C.sorokiniana single cells exhibited high shear resistance as cell sizes remained unchanged 

after exposure to high shear forces (Table 5.2); however, flocs showed minimal breakage 

due to this shear effect (Figure 5.10). The operating windows surrounding the two scales 

(CARR powerfugeTM and USD centrifugation) in reaching a desired specific settling 

velocity was unexplorable. At those ranges 2.0e-8 ≤ V/ctΣ ≤ 1.7e-7 (Figure 5.8), it was 

observed that USD centrifugation obtained significant difference between flocculated and 

unflocculated cells. It should be noted that all centrifuges have a minimum residence time 

which is a limitation attributed to bowl capacity and cooling requirements (Boychyn et al., 

2004).  Also, bench top centrifugation of flocculated algal broth reached a plateau (V/ctΣ 

≤ 1.6e-8) below which clarity was 100%. Nonetheless, a wide window of operation is 

possible with USD applications using minimal material and large data generation.  

Ultimately, USD predictions of the clarification performance in the CARR powerfugeTM 

was accurately verified as shown in Figure 5.10; flocculation also had a beneficial effect 

on clarification under the operating conditions found in the CARR centrifuge. 
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Figure 5-10: Comparison of USD clarification and scale-up verification of the benefits of 

flocculation on biomass recovery. Clarification plotted against equivalent flow rate or 

settling area for C.sorokiniana cells centrifuged in a CARR PowerfugeTM at a constant 

Sigma factor as described in Equation 5-1. The biomass concentration of feed used was 5.4 

gdcw.L-1 and error bars represents one standard deviation about the mean (n ≥ 2). USD 

centrifugation was performed under the same conditions as CARR, using a temperature of 

16˚C.  
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 FAME composition of flocculated and unflocculated cells 

Biodiesel quality depends on the fatty acid (FA) profile and structural features of various 

FAMEs. In Europe, this needs to comply with EN 14214 standard (Brennan & Owende, 

2010). These FA’s however vary between species and with less variation due to changing 

conditions such as growth phases and media types (Huerlimann et al., 2010). There is a 

limit to the content of FA’s with four or more double bonds due to susceptibility of 

oxidation during storage (Chisti, 2007), minimum CN (Lu et al., 2012) and the iodine 

value. For this reasons, both flocculated and unflocculataed broth were analysed for their 

FAME composition in order to clarify any changes the pre-treatment step might have on 

the biodiesel quality. Table 5.3 shows the FA composition of the oil extracts which 

illustrates similar FAME profile with no significant difference between the two conditions. 

This was the reason for choosing GC-MS for its enhanced selectivity, sensitivity and ability 

to separate co-eluting peaks. A representative chromatogram of the flocculated feeds 

FAMEs is shown in Figure 5.11.  

Twenty five FAs were detected and the dominant FAMEs recorded include palmitic, 

linoleic, oleic, stearic, and ɣ-linolenic acid which accounted for approximately 70% of the 

total FAMEs. C16 and C18 lipids are major components of C.sorokiniana (Lu et al., 2012) 

and also common in biodiesel production (Huerlimann et al., 2010; Ojo et al., 2014). The 

values obtained for the %wt of C.sorokiniana FA’s showed predominance in saturated fatty 

acids (relating to iodine number) compared to mono- and poly- unsaturated FA’s (Table 

5.3). Biodiesel properties that influences the fuel properties include CN, cold flow 

properties, oxidative stability, viscosity, heat of combustion, lubricity, iodine value as well 

as exhaust emissions (Francisco et al., 2010). Furthermore, reports have shown CN to be a 

prime indicator of biodiesel quality through its ignition quality (Bamgboye & Hansen, 

2008; Francisco et al., 2010) with an EN ISO 5165 standard minimum range of 51 . 

Nevertheless, different microalgal species have exhibited ranges between 52.2 and 56.7 

which is in accordance with various country standards (Francisco et al., 2010). The CN  
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Table 5-3: Comparison of fatty acid methyl ester profile (dry wt. %) of lipid recovered 

from unflocculated and flocculated C.sorokiniana cells. FAME compositions quantified 

using a standard as described in Section 2.9. 

Methyl esters  
FAME 

Formula 

Unflocculated 

sample 

Flocculated 

sample (USD) 

Flocculated 

sample (Pilot) 

Caproic C6 0.67 ± 0.7 0.74 ± 0.5 0.72 ± 0.3 

Capric C10 0.37 ± 0.0 0.33 ± 0.1  0.35 ± 0.0 

Lauric C12:0 0.16 ± 0.0 0.16 ± 0.0 0.16  ± 0.0 

Tridecanoic C13:0 1.13 ± 0.4 1.35 ± 0.4 0.37  ± 0.0 

Myristic C14:0 1.57 ± 0.6 1.88 ± 0.7 1.85  ± 0.7 

Myristoleic C14:1 0.15 ± 0.0 0.19 ± 0.0 0.19  ± 0.0 

Pentadecanoic C15:0 6.96 ± 2.1 5.97 ± 1.0 5.97  ± 1.1 

cis-10-Pentadecenoic C15:1 0.64 ± 0.2 0.52 ± 0.1 0.59  ± 0.2 

2,4 -Pentadienoic  C15:2 3.16 ± 0.1 3.12 ± 0.1 3.00  ± 0.0 

Pentatrienoic C15:3 0.96 ± 0.0 0.92 ± 0.0 0.92  ± 0.0 

Palmitic  C16:0 28.78 ± 2.6 27.09 ± 1.9 28.55  ± 1.1 

Palmitoleic  C16:1 4.74 ± 0.2 5.06 ± 0.4 4.97  ± 0.2 

Heptadecanoic C17:0 0.89 ± 0.0 0.93 ± 0.0 0.93  ± 0.0 

cis-10-Heptadecenoic  C17:1 2.03 ± 0.0 2.18 ± 0.0 2.18  ± 0.0 

Stearic C18:0 5.70 ± 0.9 5.74 ± 0.3 5.73  ± 0.8 

Octadecenoic  C18:1 0.94 ± 0.0 0.93 ± 0.0 0.94  ± 0.0 

Elaidic C18:ln9t 2.43 ± 0.9 2.01 ± 0.3 2.44  ± 0.6 

Oleic C18:ln9c 12.62 ± 1.2 10.54 ± 0.8  12.3  ± 0.9 

Linolelaidic C18:2n6t 0.04 ± 0.0 0.6 ± 0.1 0.44  ± 0.0 

Linoleic C18:2n6c 22.09 ± 0.1 24.98 ± 0.0 22.1  ± 0.1 

Arachidic C20:0 0.06 ± 0.0 0.12 ± 0.1 0.11  ± 0.0 

γ - Linolenic  C18:3n6 0.17 ± 0.0 0.22 ± 0.1 0.13  ± 0.0 

α-Linoleic acid C18:3n3 0.79 ± 0.0 0.7 ± 0.0 0.71  ± 0.0 

cis-5,8,11,14,17- 

Eicosapentaenoic 
C20:5n3 0.94 ± 0.1 0.05 ± 0.0 

0.17  ± 0.1 

Nervonic C24:1 0.98 ± 0.3 3.35 ± 0.3 3.22  ± 0.2 

SFA (%) 
 

46.3 44.3 44.7 

MUFA (%) 
 

23.6 24.8 26.8 

PUFA (%) 
 

29.1 30.6 27.5 

TOTAL (%) 99 99.7 99.0 
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Figure 5-11: GC-MS chromatogram of FAME analysis produced from lipid recovered 

from flocculated C.sorokiniana cells using 9.9 mg Chitosan per gram of algaldcw. GC-MS 

performed as described in Section 2.9.  
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was calculated using Equation 2.8 and was recorded as 65.17 and 65.02 for flocculated and 

unflocculated cells respectively. The higher the value the better the ignition quality. The 

non-interference of Chitosan with final products is not only seen here but also in a study 

by (Riske et al., 2007) for mammalian cell culture. 

 Summary  

As described in Section 5.1, the overall aim of this chapter was to establish a USD method 

for algal biomass recovery by centrifugation in order to investigate the impact of 

flocculation as a pre-treatment step and to verify this at scale. Figure 5.10 shows the 

successful implementation of the USD prediction from Equation 5.1 and verification using 

a CARR powerfugeTM for both flocculated and unflocculated cells.  

The initial objectives of characterizing broth based on parameters that affect centrifugation 

revealed that C.sorokinina cells grown in shake flasks and bioreactor remained unaffected 

by the hydrodynamics (i.e. orbital shaking and agitation respectively) throughout the 

growth period. An average size of 3.6 ± 0.2 was measured (Figure 5.2) while viscosity and 

density of algal broth was seen to be close to that of water (Figure 5.3 and Figure 5.5 

respectively). The density of flocs also increased with increase in their sizes. The viscosity 

and density was measured because behaviour of a fluid in flow is related to the intrinsic 

properties of the fluid. 

With respect to flocculant used, the solution viscosity was observed to increase with an 

increase in the amount of Chitosan. This did not significantly increase the viscosity of the 

broth because of the small percentage added (1.2%v/v) in comparison to the bulk volume 

flocculated (Figure 5.4). Study of the mechanical stability of the flocs showed that at an 

optimal Chitosan concentration of  ≥ 4 mg.mL-1, flocs were observed to be shear stable 

with mean size increasing with an increase in flocculant dose across the shear rates studied 

(Figure 5.6).  
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More so, evaluation of the influence of flocculation on centrifugation efficiency showed 

that low Chitosan dosage (where total breakage of flocs was seen with shear), recorded low 

clarification efficiencies in comparison to those obtained at optimal dosage of ≥ 4 mg.mL-

1 (Figure 5.7). Based on this, the optimal dosage was calculated as 9.9 ± 0.4 mg of Chitosan 

per gram of algaldcw which verifies the optimal value obtained in Chapter 3. Using this 

optimal concentration, a study on the influence of flocculation on centrifugation 

performance showed the benefits of increased particle  size on settling; where USD 

centrifugation of flocculated and unflocculated  cells revealed high clarity of the 

supernatant ( ≥ 99%) at low centrifugal forces (Vlab/ctƩ ≤ 1.7e-7) (Figure 5.8). 

Finally, using USD to explore the influence of process condition on lipid recovery showed 

significant impact of flocculation combined with centrifugation. A difference of 57.2% 

lipid recovery at low centrifugal forces was seen (Figure 5.9). Comparison of the trans-

esterified lipids from flocculated centrifuged -USD and -7.5L STR cells showed similar 

FAME profile (Table 5.3).  

The following chapter will explore various cell disruption processes and compare how the 

dewatering step affects the lipid productivity through transesterification.  
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 Cell disruption and Transesterification 

 Introduction  

In biodiesel production lipid productivity is an important factor (Section 1.3.2.3). The 

extraction of intracellular lipid first requires cell disruption in which the cellular structure 

is broken apart and product is released (Middelberg, 1995). The choice of cell disruption 

method (Section 1.5) is usually based on optimisation of the amount of product recovered 

from the cell. A larger number of factors may affect disruption of microbial cells, however, 

no comprehensive theory of this process is available in literature (Doucha & Lívanský, 

2008).  

Also, little attention is generally given to characterisation of the process stream properties 

following disruption, e.g. particle size distribution, yet such properties have been shown to 

have a strong impact on subsequent unit operations (van Hee et al., 2004). While some 

information on the diruption of other microbes can be found in literature, there are very 

few reports on algal disruption (Doucha & Lívanský, 2008).  Several methods are utilized 

in microalgal biodiesel production and this includes mechanical and non-mechanical action 

(Mata et al., 2010). Although considerable attention is given to mechanical methods these 

continue to be preferred for large-scale processes (Balasundaram et al., 2009; Middelberg, 

1995).   

After cell disruption, biodiesel is produced by transesterifying the lipids released (Section 

1.5) with an appropriate alcohol (Figure 1.4). Extracted oil is preferably highly dewatered 

in order to avoid yield losses through reactions like saponification (Fukuda et al., 2001).  
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The aim of this chapter is to establish and compare the use of sonication and 

homogenization as small-scale cell disruption operations for lipid release from harvested 

microalgae. In order to do that, we need to establish each cell disruption method. 

Furthermore, the impact of different biomass recovery methods on transesterification will 

be explored. Specific objectives are: 

 To optimize sonication variables based on extent of micronization of cell debris  

 To carry out sensitivity analysis on the lipid assay. 

 To explore homogenization parameters. 

 To study transesterification of extracted oils from C.sorokiniana cells based on 

different biomass recovery conditions i.e. microfiltration (Chapter 4) or 

centrifugation (Chapter 5). 

 Establishment of sonication for cell disruption 

This method of cell disruption is extensively used at laboratory scale. Although it has 

significant potential, further information is needed on feasibility for commercial-scale 

operation (Dragone et al., 2010) and hence more research is needed (Harun et al., 2010). 

Sonication is a method that exposes algae cells to high intensity ultrasonic waves, which 

create tiny cavitation bubbles around a cell. When the bubbles collapse, they emit 

shockwaves that rupture the cell wall thereby releasing intracellular products into solution. 

Cell disruption can influence the extent of product recovery, the nature of suspension to be 

processed (Balasundaram et al., 2009) and can also ease subsequent purification steps 

(Harrison, 1991). The form and quality of the final product can also be affected because 

most of the energy that is absorbed by a cell suspension is transformed into heat hence the 

reason the sample must be cooled during processing (Section 2.6.2). The operating 

variables for sonication that will facilitate product release without affecting product 

quantity include: sonication frequency, number of cycles used, cell density etc. These are 

studied in the following sections. 
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 Effect of volume on particle size 

To study the effect of sample volume on cell disruption, the sample to be sonicated was 

split into two aliquots; 1 and 1.5 mL. This was observed not to have an effect on the cell 

debris particle profile (Figure 6.1 and 6.2). When using fewer cycles (Figure 6.1) and 

varied sonication intensity (Figure (a) and (b)), this did not influence the effect of volume 

on cell micronization (particle size attained after prolonged disruption) as particle profiles 

were seen to still overlap. Further increment of the number of cycles (Figure 6.2) and 

keeping other variables the same as in Figure 6.1 did not provide any additional difference. 

 Effect of sonication intensity on particle size 

The influence of sonication intensity on particle disintegration was also studied. Since 

numerous variables can be studied during sonication, a combination of cell concentration 

and number of cycles were investigated at sonication frequencies of 10 and 15. Figure 6.3 

and 6.4 shows that an increase in the wave frequency increases the rate of particle 

disruption. This is evident by a clear shift to smaller particle sizes when the 15 ma intensity 

is used in comparison to whole algal cells and those sonicated using 10 ma.  

When the number of cycles was varied between 4 and 8 cycles, the distance between the 

two frequencies (10 and 15) did not vary significantly as shown in (Figure 6.3 (a) and 6.4 

(a)) and (Figure 6.3 (b) and 6.4 (b)) respectively. The same was observed for varied cell 

concentrations of 3.0 and 4.2 g.L-1 where only the intensity impacted on micronization of 

cell debris.  
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Figure 6-1: Effect of sample volume on cell disruption frequency for (a) 10 and (b) 15 

(Ctrl = control cell suspension). Cells were disrupted using 4 cycles and contained 2 g.L-1 

cells grown heterotrophically as described in Section 2.2.1. Sonication performed as 

described in Section 2.6.2.  
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Figure 6-2: Effect of volume on cell disruption (a) intensity of 10 and (b) intensity of 15. 

Cells were disrupted using 8 cycles and contained 2 g.L-1 cells grown heterotrophically as 

described in Section 2.2.1. Sonication performed as described in Section 2.6.2. 
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Figure 6-3: Effect of sonication intensity on the particle size of disrupted cells.  Cells were 

sonicated using (a) 4 cycles and (b) 8 cycles and each vial contained 3 g.L-1 cells grown 

heterotrophically as described in Section 2.2.1. Particle size distribution measured as 

described in Section 2.10.7. 
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Figure 6-4: Effect of sonication intensity on particle size of disrupted cells.  Cells were 

sonicated using (a) 4 cycles and (b) 8 cycles and each vial contained 4.2 g.L-1 cells grown 

heterotrophically as described in Section 2.2.1. Particle size distribution measured as 

described in Section 2.10.7. 
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 Effect of number of cycles and sonication intensity on lipid release 

The number of cycles and sonication intensity are clearly two important variables in 

sonication. Increasing the number of rounds of sonication disrupts cells that were omitted 

in the previous cycle but also further disrupts existing cell debris.  Figure 6.5 shows a clear 

shift to smaller particle sizes as the number of cycle’s increases from 1 to 10. This is as a 

result of continuous degradation of the disrupted cells by several cycles of ultrasonic wave 

exposure. A good example of the benefit of combining sonication intensity and number of 

cycles is shown between Figure 6.5 (a) and (b); here the particle profile of 1 cycle which 

initially overlapped whole cells (Figure 6.5a) was seen to shift further away in Figure 

6.5b (this is indicated by the red oval in the figure). Also, in the red arrows pointing down 

showing the small particles attained using 10 and 8 cycles having a shift further away from 

0.1 µm point. This is also in agreement with Section 6.2.2 where sonication intensity was 

observed to produce smaller particles. 

In order to study the effect of these parameters (number of cycles and sonication intensity) 

on lipid release, those cycles (4, 8 and 10) which were responsible for increasing cell 

disruption were studied further. 2 g.L-1 cells of algae broth was sonicated at these three 

different numbers whilst being subjected to waves of increasing intensity. Although 

smaller particles were acquired using 15ma (Figure 6.5b), less lipid was released (Figure 

6.6). As expected, the amount of lipid extracted was proportional to the increase in the 

number of cycles, even though, the difference in the quantity recorded using 8 and 10 

cycles is very small and within experimental error. In contrast, using high ultrasonic waves 

did not benefit product extraction as the quantities obtained are approximately 71% less 

than those achieved at the lower intensity.  
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Figure 6-5: Effect of number of sonication cycles on cell disruption.  Cells were sonicated 

using an intensity of (a) 10 and (b) 15. Each vial contained 2 g.L-1 cells grown 

heterotrophically as described in Section 2.2.1. 
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Figure 6-6: The effect of number of sonication cycles and intensity on lipid release. 

Experiment was carried out using 2.10 ± 0.08 gL-1 cells as described in Section 2.6.2. 

Lipid released was quantified as described in Section 2.10.6. Error bars represent one 

standard deviation about the mean (n=3). 
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 Effect of biomass concentration on lipid assay (sensitivity analysis) 

Sulphur phosphor vanillin (SPV) assays produce a charged coloured complex (distinct pink 

colour) due to the reaction of the carbonium ion (produced by a reaction between 

unsaturated compounds and sulphuric acid) and activated carbonyl group of phospho-

vanillin. Quantification of the lipid was achieved by creating a calibration curve using a 

standard lipid (Appendix 1). Known concentration of this lipid standard (triolene) were 

used and a linear relationship between absorbance and concentration was found with a 

strong correlation coefficient (R2 > 99).  

Figure 6.7a shows brownish to black coloured solution with increasing number of cycles 

instead of pink due to high amount of lipid contained in the sample. As explained earlier 

in Section 6.2.3, increasing the intensity to 15 ma does not increase lipid yield. This is seen 

from the colour intensity of the images (either undiluted Figure 6.7a or diluted Figure 

6.7b). The increasing intensity of this pink coloration is an indication of more lipids present 

in the sample (Mishra 2013). This is similar to studies by Cheng et al., (2011) which 

showed an increase in colour development  with an increase in sample loading volumes.  

Figure 6.8 shows the effect of cell density on the absorbance readings measured using 

Tecan Safire2 UV-VIS-IR fluorescence plate reader. This equipment has a capacity of 

reading optical densities up to 4 AU. Increasing the cell concentration is seen to increase 

proportionally with the optical densities with higher concentrations exceeding the capacity 

of the machine (>3 g.L-1). Therefore, samples approaching this biomass concentration 

(3g.L-1) were therefore diluted in order to obtain the pink coloration expected (for example 

Figure 6.7b). 
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Figure 6-7: Representative photographs of lipid assay at different sonication intensity and 

cycles (a) without dilution (b) after diluting with chloroform methanol. Experiment was 

carried out using 5.5 ± 0.4 gL-1 cells and performed as described in Section 2.6.2 and 

Section 2.7.2.  

 

Figure 6-8: Effect of cell concentration on absorbance of the lipid assay used in this work. 

Cells were grown heterotrophically in TBP media as described in Section 2.2 and lipid 

quantification performed using the SPV method as described in Section 2.7.2. 
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 Establishment of homogenization for cell disruption 

Homogenization has been successfully used as a cell disruption method for microalgae 

(Brennan & Owende, 2010) and has been adapted from applications with intracellular 

bioproduct release from other microorganisms (Middelberg, 1994). Homogenization is 

studied here in order to benchmark lipid release by sonication with an industry standard 

method of cell disruption. 

 Effect of number of passes 

The effect of the number of passes through the homogeniser on the disruption of 

C.sorokiniana cells is shown in Figure 6.9. This shows that lipid release is proportional to 

the number of passes and that there is a strong influence of the operating pressure on the 

disruption process in the homogenizer. Comparison of the number of passes, in particular 

3 pass shows that a 4 fold increase was seen when the pressure was increased from 200 to 

800 bars. By operating the homogenizer at higher pressures, it is possible to decrease the 

number of passes of the cell slurry through the homogenizer for a given degree of 

disruption (Chisti & Moo-Young, 1986; Bury et al., 2001). More so, a reduced number of 

passes would allow increased throughput and minimize downstream clarification issues 

which are caused by the formation of very fine debris with increasing passages. However, 

the deactivation of heat sensitive products may limit the operating pressure, which in turn 

may increase the number of passages required (Kula & Schiitte, 1987). 

 Effect of cell concentration   

The influence of cell concentration on the degree of cell disruption is disputed in the 

literature. While some studies show an influence due to cell concentration (Doulah et al., 

1975) others (Englert & Robinson, 1981; Hetherington et al., 1971) found cell 

concentration to have little or no effect on disruption. Studies by Chisti & Moo-Young, 

(1986) reported a range of concentration (10 - 80%w/v) to have no significant effect on 
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Figure 6-9: Effect of homogenization parameters on concentration of lipid released from 

C. sorokiniana cells. Cells were grown heterotrophically as described in Section 2.2 and 

homogenisation performed as described in Section 2.6.1. Lipid analysis was carried out as 

described in Section 2.7.3. Error bars represent one standard deviation about the mean 

(n=3). 
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disruption rate. Other studies have also suggested that the cell concentration in the feed 

should be as high as possible in order to minimize the power consumption per unit of 

disrupted cells mass (Mogren et al., 1974; Schütte & Kula, 1990). In this study, varying 

the cell concentration did not show a significant influence on micronization of cell debris 

(Figure 6.10). Experiments using C.sorokiniana concentrations of 1 and 3 g.L-1 had similar 

particle size profiles. 5 g.L-1 however showed a different particle pattern between 0.5 and 

21.4 µm. 

 

 

Figure 6-10: Particle profile produced by homogenising different biomass concentration 

of C.sorokiniana broth. Experiments were performed using fresh algal broth from a mid-

stationary phase culture. Readjustment of cell concentration was achieved by diluting with 

spent media in order to keep chemical composition of the media the same. Broth was 

homogenized as described in Section 2.6.1 using 800 bar and 3 passes. 
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In this thesis USD methods for both membrane filtration (Chapter 4) and centrifugation 

(Chapter 5) have been established. As shown in Figure 1.6 the USD methods enable 

evaluation of different solid-liquid separation steps on subsequent cell disruption and the 

pre-treatment of the cells by flocculation. Flocculation benefits on yield was minimal, 

hence in this chapter, only untreated feed was used to show the benefit of the USD methods 

in microalgae downstream processing. Moreover, Table 5.3 compared the FA composition 

of the oil extracts from flocculated- and unflocculated- centrifuged cells and this was found 

to possess similar FAME profile.  

Samples of broth from a single heterotrophic culture of C.sorokiniana were taken through 

different processing sequences. These comprised of cell culturing (in shake flasks), solid-

liquid separation (USD- centrifugation and microfiltration), extraction of the lipids and 

transesterification. 

 Transesterification  

In microalgal cells, polar and neutral lipids are the major classes of lipids synthesized 

(Vigeolas et al., 2012). Neutral lipids are composed of monoacylglycerols, diacylglycerols, 

triacylglycerols, sterols and sterol esters (Guschina & Harwood, 2006) while polar lipids 

which are mainly glycosyl- and phosphosyl- glycerides are found on membrane surfaces. 

In transesterification (Section 1.5) of algal lipids, triglycerols are mostly esterified to 

produce biodiesel of the required quality (Section 5.7.2). 

From Table 6.1, it can be seen that there is difference in the yield of the FAMEs following 

transesterification depending on the harvesting method adapted. USD centrifugation was 

observed to possess higher yield (dry wt. %) of major components (C16 and C18) of 

biodiesel as highlighted in Table 6.1. A specific example can be seen in the values obtained 

for Palmitic- and Stearic- methyl esters, C16 and C18 respectively; where 28.8 and 5.7% 

was recorded for centrifugation while 12.3 and 1.7% for microfiltration recovered cells. 
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Table 6-1: Comparison of transesterified lipid (dry wt. %) recovered from centrifuged or 

filtered C.sorokiniana broth. Samples were transesterified following extraction of the 

lipids using Bligh and dyer method (1959) after which GC-MS was used to characterize 

the FAMEs (Section 2.9). This was then quantified using a calibration curve drawn for 

each methyl ester (example of curve in Appendix). 

Methyl esters  FAME Formula USD Centrifugation USD Filtration  

Caproic C6 0.67 ± 0.7 0.33 ± 0.2 

Capric C10 0.37 ± 0.0 0.93 ± 0.4 

Lauric C12:0 0.16 ± 0.0 7.20 ± 0.1 

Tridecanoic C13:0 1.13 ± 0.4 5.15 ± 0.4 

Myristic C14:0 1.57 ± 0.6 1.88 ± 0.7 

Myristoleic C14:1 0.15 ± 0.0 0.11 ± 0.0 

Pentadecanoic C15:0 6.96 ± 2.1 3.33 ± 0.9 

cis-10-Pentadecenoic C15:1 0.64 ± 0.2 0.52 ± 0.1 

2,4 -Pentadienoic  C15:2 3.16 ± 0.1 3.12 ± 0.1 

Pentatrienoic C15:3 0.96 ± 0.0 0.92 ± 0.0 

Palmitic  C16:0 28.78 ± 2.6 12.33 ± 1.9 

Palmitoleic  C16:1 4.74 ± 0.2 1.08 ± 0.2 

Heptadecanoic C17:0 0.89 ± 0.0 4.90 ± 0.3 

cis-10-Heptadecenoic  C17:1 2.03 ± 0.0 2.18 ± 0.0 

Stearic C18:0 5.70 ± 0.9 1.77 ± 0.3 

Octadecenoic  C18:1 0.94 ± 0.0 2.08 ± 0.4 

Elaidic C18:ln9t 2.43 ± 0.9 4.80 ± 0.5 

Oleic C18:ln9c 12.62 ± 1.2 <0.01 

Linolelaidic C18:2n6t 0.04 ± 0.0 3.51 ± 0.2 

Linoleic C18:2n6c 22.09 ± 0.1 27.48 ± 0.4 

Arachidic C20:0 0.06 ± 0.0 <0.01 

γ - Linolenic  C18:3n6 0.17 ± 0.0 5.02 ± 0.2 

α-Linoleic acid C18:3n3 0.79 ± 0.0 1.40 ± 0.3 

cis-5,8,11,14,17- 
Eicosapentaenoic 

C20:5n3 0.94 ± 0.1 3.05 ± 0.1 

Nervonic C24:1 0.98 ± 0.3 5.85 ± 0.6 

SFA (%) 
 

46.3 37.82 

MUFA (%) 
 

23.6 16.62 

PUFA (%) 
 

29.1 44.5 

TOTAL (%) 99 98.9 
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Another major difference is in the possession of Oleic and Arachidic acid methyl esters; it 

has been reported that biodiesel with good ignitability usually contains high C18 such as 

Oleic acid methyl ester (methyl oleate) content, this in turn gives lower levels of NO, 

hydrocarbons etc. (Yamane et al., 2001). Using microfiltration as a recovery option, oleic 

as well as Arachidic acid were obtained at statistically insignificant values.  

During the transesterification reaction, the reacting components i.e. alcohol and glycerides 

have to be considerably dewatered because water causes a partial reaction change to 

saponification, which produces soap (Fukuda et al., 2001). Figure 5.1 shows the moisture 

content of each recovery method and microfiltration (using CFF) can be seen to contain 

about 80-85% water which has to either be centrifuged to further dewater or freeze dried 

directly (as carried out in this study) which is not the most preferred option.  

 Summary   

As described in Section 6.1 the overall aim of this chapter was to establish and compare 

the use of sonication and homogenization as small-scale cell disruption operations for lipid 

release from harvested cells. Also the impact of biomass recovery method on 

transesterification was studied.  

Sonication was preferred choice for cell disruption because volumes compatible with USD 

studies; the volume of feed required for sonication can be as small as 1 - 1.5 mL whereas 

40 mL was required for homogenization. For sonication, this was used for all experiments 

irrespective of the conditions employed (number of cycles, cell concentration or sonication 

intensity). Also, it is often the preferred cell disruption method at the laboratory scale 

(Wenger et al., 2008). In conclusion, a comparison of the disruption efficiencies of 

sonication and homogenization, showed that cell disruption and lipid release in both cases 

are similar lipid on mass/mass basis (Figure 6.6 and Figure 6.9). 

.  
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Initial objectives of exploring sonication parameters revealed that varying the volume of 

the sample did not have any effect on debris particle profile (Figure 6.1 and Figure 6.2). 

Increasing the wave frequency increased the rate of particle disintegration (Figure 6.3) 

while for the effect of number of cycles, it was observed that increasing the number of 

rounds sonication occurs micronizes the debris further (Figure 6.5).  

Cell disruption methods are known to significantly differ due to variations in disruption 

properties (van Hee et al., 2006). For homogenization, the effect of number of passes 

showed that lipid release is proportional to the number to passes and is also influenced by 

the operating pressure (Figure 6.9). In Figure 6.10, 5 g.L-1 broth was homogenized using 

800 bar, 3 passes where a percentage of large particles was seen. This could be particle 

aggregates.  

Finally, this thesis has established USD methods for membrane filtration (Chapter 4), 

centrifugation (Chapter 5) and cell disruption (Section 6.2). Broth from a single 

heterotrophic culture of C.sorokiniana was taken through different processing sequences 

(Figure 1.6) and tranesterified (Section 6.4). Transesterification of centrifuged or filtered 

broth showed that centrifugation produces the slurry in the desired form suitable for 

biodiesel production as not all major biodiesel components that affects its quality were 

detected using filtered slurry (Table 6.1). The reason for this could be because of the 

dewatering abilities of each method since reports have shown that the reacting components 

for biodiesel production have to be considerably dewatered. Further, the pictorial moisture 

content of the recovery methods used in this thesis is shown in Figure 5.1. Water is known 

to cause a partial reaction change to saponification (Fukuda et al., 2001).  
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 Conclusions and Future Work 

 Summary and overall conclusions 

The overall aim of this project is to establish an ultra scale-down platform for the rapid 

evaluation of pre-treatment and recovery operations for microalgae downstream process 

(Figure 7.1). This was successfully achieved for flocculation (Chapter 3), microfiltration 

(Chapter 4) and centrifugation (Chapter 5) operations. The establishment of a USD 

platform for algal downstream processing will benefit whole bioprocess development for 

microalgae since the process technology surrounding the economic production of 

microalgal products at manufacturing scale is still poorly defined (Section 1.9). In 

particular, microalgae dewatering technologies has hindered the prospects of its use as a 

feasible technology (Chapter 1). Based upon literature, research has indicated that it may 

be more beneficial to harvest biomass in two steps: bulk harvesting and thickening (Wang 

et al., 2008) (Section 1.4). In this thesis, a scenario of using flocculation as a pre-treatment 

step prior to microfiltration and centrifugation was explored (Figure 7.1). For the initial 

flocculation step, Chitosan was used because of its biodegradability and non-toxicity 

(Bustos-Ramírez et al., 2013; Ravi Kumar, 2000) (Section 3.3).  

In Chapter 1, a series of objectives were outlined (Section 1.9) in order to achieve the 

overall thesis aim. These followed a sequential order as follows:  

 Choose a suitable strain and scale-up the growth kinetics from shake flask to lab 

bioreactor scale; 

 Design, fabricate and characterize scale-down flocculation reactors that can 

operate reproducibly and mimic conventional stirred flocculation reactors; 
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Figure 7-1: Overview of the USD platform established in this work. Figure indicates the primary unit operation that were addressed and the various 

process sequences that was evaluated. 
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 Establish a USD method for the study of microalgae microfiltration processes and 

the impact of flocculation as a pre-treatment step; 

 Establish a USD method for the study of centrifugation for microalgae recovery 

and the impact of flocculation as a pre-treatment step; 

 Establish and compare the use of sonication and homogenization as small scale 

cell disruption operations for lipid release from harvested cells; 

 Use the USD platform to study the various downstream process options shown in 

Figure 7.1 and their impact on overall lipid extraction and transesterification. 

Identifying a suitable strain with high biomass productivity is still an important first step 

in microalgae process development. In this study, heterotrophically cultured strains were 

preferred because they attained the highest biomass productivity (Figure 3.2). C. 

sorokiniana was the organism selected for investigation as it exhibited a short doubling 

time and a high lipid content of 22% (w/w) (Table 3.1). Scale-up studies showed 

comparable growth rates, yields, as well as carbon source utilization and metabolite 

production profiles in the shake flask (250 mL) and bioreactor (7.5 L) suggesting the cells 

produced at the two scales were in a similar physiological state (Figure 3.4). 

Establishment of a flocculation methodology involved the design (Section 3.4) and 

characterization (Figure 3.6-3.8) of scale-down stirred flocculation reactors. A scale-down 

approach was considered useful since it was highlighted in Chapter 3 that one of the major 

problems with flocculation is the difficulty of operating the process reproducibly. 

Therefore in Chapter 3, standardizing and fixing the parameters (pH (Figure 3.9), tadd 

(Figure 3.10) and concentration of flocculant (Figure 3.12)) that influence flocculation 

enables consistency and reproducibility in the particle size distributions of the flocs 

produced (Figure 3.12 and Table 3.2). Scale-up of the flocculation process from the scale-

down reactor (120 mL) to a 7.5L STR was achieved at a matched impeller tip speed during 

flocculant addition and ageing (Figure 3.13). 
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Initial microfiltration studies in Chapter 4 focussed on establishing conditions for a lab-

scale, hollow fibre-based process for cell recovery and concentration. In this study, 

difference in the amount of EOM due to culture type and hence cleaning (Section 4.5) was 

observed. Flocculation was seen to benefit the overall filtration performance and 

subsequently cleaning (Section 4.6). Scaling-down of the process was successfully 

achieved using an RDF. Comparable steady state flux profiles with those of lab-scale 

within ≤10 L.m-2.h-1 difference was obtained. This was achieved with a 14-fold reduction 

in volume and approximately 14.5-fold reduction in membrane area. Other key operation 

variables considered during CFF such as flux and pH, were also in good agreement 

between the two scales for both unflocculated and flocculated feed (Figure 4.16). 

In Chapter 5, a USD methodology for algal biomass recovery by centrifugation was 

established (Figure 5.8). This was used to explore flocculation as a pre-treatment step 

(Figure 5.8), a process that was shown to be scalable up to pilot scale (Figure 5.10). Study 

of the influence of flocculation on centrifugation efficiency showed that low Chitosan 

dosage (where total breakage of flocs was seen with shear), resulted in low clarification 

efficiencies compared to those obtained at an optimal dosage of ≥ 4 mg.mL-1 (Figure 5.7). 

Based on this, the optimal dosage was calculated as 9.9 ± 0.4 mg of chitosan per gDCW of 

algae. Flocculation was also shown not to affect the composition of the final lipid produced 

at both USD and pilot scale (Table 5.3).   The USD approach only required 2-10 mL of 

material which is 400-2000 fold less than was required for the pilot scale study. 

Scale translation is valuable as it aids research and development by reducing the 

uncertainties of developmental delays and thus accelerates product commercialization. 

Here, the approach is illustrated by examples using small-scale mimics for operations such 

as flocculation, centrifugation, filtration, linkage of some of these operations and their 

successful scale-up/down. A good example in this thesis was the ability to view the fouling 

characteristics (at USD level) of phototrophic broth using SEM micrographs in Chapter 4. 
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The application of USD to microalgal downstream processing is considered novel and will 

give a wider opportunity to the understanding and development of different processes 

and/or unit operations. 

Chapter 6 of this thesis explored sonication and homogenization as small scale cell 

disruption options for lipid release of heterotrophically grown C.sorokiniana. Comparison 

of the optimal conditions of the two methods showed cell disruption and lipid release were 

similar in both cases on a g.g-1 basis; Figure 3.4 (sonication) and Figure 6.9 

(homogenization). This was important in order to have established a cell disruption method 

compatible with the scale of operation of the USD operations.  

Finally, to demonstrate the potential of the whole USD platform, the whole primary process 

sequence options were investigated (Figure 7.1) Comparison of the transesterified -

centrifuged and -microfiltered cells shows some major differences in terms of yield of 

FAME (Table 6.1). Primary recovery stages are therefore critical and optimum choices of 

operations, together with sequence of operations, needs to be explored on a case-by-case 

basis.  

In terms of the wider implications of this work, the ability to rapidly select and optimize 

the numerous processes that exist for harvesting microalgae will not only reduce the 

process cost, but can render the whole scheme economically feasible. Existing literature is 

not conclusive enough to define a optimal DSP sequence (Shelef & Sukenik, 1984). This 

is because there are a wide range of choices for process design in each step of the algal 

production sequence. Given the constraints in resources at early stages of process 

development, USD will aid optimization up to validation studies at reduced risk, cost and 

time. Finally, centrifugation is known to be more energy intensive than tangential flow 

filtration, but the throughput in terms of product quality (Table 6.1) and consumables (i.e. 

membranes used for filtration and this being the most sensitive variable for overall cost) 
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has rendered centrifugation a better choice for dewatering and harvesting microalgae cells 

with a prior flocculation step to enhance the process. 

 Recommendations for future research 

Section 7.1 highlighted the high level outcomes of the research performed in this thesis. 

This section will present suggestions for future work in order to further explore the ability 

of using predictive USD tools in microalgae bioprocessing. 

 In Chapter 3, flocculation reactors were characterized and scaled-down using 

heterotrophically grown C.sorokiniana cells.  Further studies should be performed 

in order to verify the applicability of these reactors with other microalgae strains 

and phototrophically grown cells. 

 To better define the method of scale translation between the USD membrane 

device used in Chapter 4 and the hollow fibre cartridge further work could be 

undertaken using the same membrane material at the two scales. In relation to this, 

experiments accessing different membrane types and pore sizes could also be 

explored to further aid process optimisation studies. 

 Successful scale translation between the USD RDF and the hollow fibre cartridge 

was not achieved at matched shear rates as expected (Section 4.7.1). This was due 

to turbulence promotors present in the larger lab-scale device. Therefore, Future 

work should focus on redesigning the device as follows: (1) in order to accurately 

mimic the larger scale modules, the prototype should be fitted with screens and 

turbulence promoters as to those present in the cartridges being mimicked. Studies 

on the effect of these turbulence promoters based on feed hydrodynamics and the 

overall influence on filtration outcomes should be evaluated; and (2) CFD 

modelling of the device is recommended in order to develop and confirm shear 

rate predictions.   
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 In Chapter 5, the generic nature of the USD methodology for centrifugation should 

be established by repeating the study for phototrophically grown cells. 

Furthermore, confirmation of the accurate scale-up predictions should be 

undertaken using different designs of large scale centrifuges. 

  Cell disruption studies (Chapter 6) could be done more systematically with 

applications such as statistical Design of Experiments (DoE), since numerous 

variables are involved.  

 It was mentioned in the initial aims that downstream processing options (Figure 

7.1) will be compared on the overall impact on lipid extraction. This was however 

not accomplished because a common ground has to be provided for the two solid-

liquid separation systems. Therefore, studies on the best operating conditions at 

which the highest moisture content that can be attained for microfiltration and 

centrifugation will be most ideal to allow the cost implication and efficiency of 

each process to be evaluated thereby give a rational basis for comparison of the 

two systems.  

 Finally, considering the biofuel applications being considered, it would important 

to further characterization the FAMEs produced in terms of their physical 

properties and combustion properties in formulated fuels. 
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Appendices 

 

Appendix 1: Triolene calibration curve for quantification of algal lipids. Experiment was 

carried out using SPV method as described by Cheng et al. (2011) and this is described in 

Section 2.7. Error bars represents one standard deviation about the mean (n ≥ 5). 
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Appendix 2: Image showing the phases of sulphur phosphor-vanillin (SPV) analysis (a) 

lipid + H2SO4; (b) solution from (a) after heating for 20mints at 85 ± 5°C; and (c) reaction 

of lipid, H2SO4 and SPV after 10 min. Experiment was conducted using triolene at 

increasing concentrations and colour in (c) was obtained using 40 times dilution. 

 

c b a 
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Appendix 3: Optical density versus corresponding dry cell weight measurements for a) Chlorella Vulgaris b) Chlorella sorokiniana c) Chlamydomonas 

reinhardtii and d) Scenedesmus obliquus. TAP in legend is equivalent to TBP as mentioned throughout the thesis. Cells were grown phototrophically as 

described in Section 2.2 after preparing the SF as described in Section 2.2.1.  
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Appendix 4: Optical density versus corresponding dry cell weight measurements for a) Chlorella Vulgaris b) Chlorella sorokiniana c) Chlamydomonas 

reinhardtii and d) Scenedesmus obliquus. TAP in legend is equivalent to TBP as mentioned throughout the thesis. Cells were grown heterotrophically as 

described in Section 2.2 after preparing the SF as described in Section 2.2.1.  
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Appendix 5: Monomodal size distribution of cells obtained for shaken (SF) and stirred 

(Bioreactor; BR) cultures grown as described in section 2.2.1 and 2.2.2 respectively. 

Particle size distribution measured as described in Section 2.10.7. 
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Appendix 6: Example of a stress stress-shear rate graph used for calculating viscosity of 

heterotrophically grown C.sorokiniana. Viscosity was measured as described in Section 

2.10.3 using a Kinexus lab+ rheometer and results obtained presented in Section 5.2.1. 
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Appendix 7: Particle size distribution of single C.sorokiniana cells post exposure to 

different shear rates in the USD shear device (Section 2.3.3.2).  Ctrl = control cell 

suspension.  

 

  

0

4

8

12

16

20

0.1 1 10 100 1000

V
o

lu
m

e 
(%

)

Particle Size (µm)

Ctrl 6000 rpm 8000rpm

12000rpm 15000rpm 18000rpm



223 

 

 

Appendix 8: Example of a GC-MS chromatogram obtained using a commercially prepared 

FAME mix standard solution. GC-MS was performed as described in Section 2.9.  

 

 

Appendix 9: Example of a GC-MS chromatogram obtained for unfloculated C.sorokiniana 

extracted lipids. Lipids were extracted and GC-MS performed as described in Section 2.9. 
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Appendix 10: Examples of matching compounds from the mass spectrometry (MS) library for peaks on the GC-MS chromatogram. a) Capric acid methyl 

ester also known as decanoic acid, methyl ester C11H22O2, eluted at a retention time 11.06 min, molecular weight 186 g.mol and CAS number 110-42-9; and 

b) lauric acid methyl ester also known as dodecanoic acid, methyl ester C13H26O2, eluted at a retention time 16.71 min, molecular weight 214 g.mol and CAS 

number 111-82-0. Experiment was carried out as described in Section 2.9. 

a) b) 
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Appendix 11: Calibration curve for selected FAME’s (a) capric acid (C10); and (b) palmitic acid (C16). Experiment was carried out as described 

in Section 2.9 with each point representing different concentrations of FAME standard prepared by diluting with dichloromethane. Error bars 

represents one standard deviation about the mean (n = 3). 
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Appendix 12: Sample calculation for amount of Chitosan used during flocculation 

The final concentration of Chitosan in each solution prepared ranged from 0.5 – 5 mg.mL-

1 (Section 2.4.1.1). From section 3.7.1 (Pg. 107), Chitosan amounts 0.5, 4.5 and 5mg 

corresponds to of 1.09, 9.80 and 10.89 mg per gram algaldcw respectively. This was 

calculated as follows: 

Total amount of algal broth in flocculation reactor = 85 mL 

Amount of Chitosan added = 1 mL 

Chitosan Concentration = 0.5,4.5 or 5 mg.mL-1 

Broth Concentration = 5.4 g.L-1 

 

Amount of algal cells in 85 mLs of broth: 85 mL × 5.4 g

1000 mL
= 0.459 g 

Example 1: using 1 mL of 0.5 mg.mL-1 Chitosan Conc.  

 
=

0.5 mg Chitosan

0.459 g of algae
 

 = 1.09 mg Chitosan g-1 of algaedcw 

Example 2: using 1 mL of 4.5 mg.mL-1 Chitosan Conc.  

 
=

4.5 mg Chitosan

0.459 g of algae
 

 = 9.80 mg Chitosan g-1 of algaedcw 

Example 3: using 1 mL of 5 mg.mL-1 Chitosan Conc.  

 
=

5 mg Chitosan

0.459 g of algae
 

 = 10.89 mg Chitosan g-1 of algaedcw 

 


